

FCC CFR47 PART 15 SUBPART C

BLUETOOTH LOW ENERGY

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE + BLUETOOTH + WLAN b/g/n & NFC WATCH

MODEL NUMBER: LG-W200A, LGW200A, W200A

FCC ID: ZNFW200A

REPORT NUMBER: 15I21604-E3V3

ISSUE DATE: OCTOBER 02, 2015

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY, 07632, U.S.A

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
V1	09/29/15	Initial Issue	
V2	10/01/15	 Updated section 8.2, to reference ANSI C63.10 for 99% BW test procedure. Updated page 37, two descriptions for radiated test frequency range: one ups to 26GHz the other ups to 40 GHz. Changed to 18GHz. This is referenced in ANSI C63.10, 5.2. 	I.Netto
V3	10/02/15	Updated Section 9.1	D. Coronia

Page 2 of 57

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAL	LIBRATION AND UNCERTAINTY	5
4.	1.	MEASURING INSTRUMENT CALIBRATION	5
4.	2.	SAMPLE CALCULATION	5
4.	3.	MEASUREMENT UNCERTAINTY	6
5.	EQI	JIPMENT UNDER TEST	7
5.	1.	DESCRIPTION OF EUT	7
5.	2.	MAXIMUM OUTPUT POWER	7
5.	3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.	4.	WORST-CASE CONFIGURATION AND MODE	8
5.	5.	DESCRIPTION OF TEST SETUP	9
6.	TES	ST AND MEASUREMENT EQUIPMENT1	1
7.	SUN	MMARY TABLE1	2
7. 8.		MMARY TABLE	2 3
7. 8. 8.	SUN AN 1.	MMARY TABLE 1 FENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1	2 3
7. 8. 8. 8.	SUN AN 1. 2.	MMARY TABLE 1 FENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1	2 3 3 7
7. 8. 8. 8. 8.	SUN AN 1. 2. 3.	MMARY TABLE 1 FENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1 OUTPUT POWER 2	2 3 7 1
7. 8. 8. 8. 8. 8.	SUN ANT 1. 2. .3. .4.	MMARY TABLE 1 FENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1 OUTPUT POWER 2 AVERAGE POWER 2	2 3 3 7 1 5
7. 8. 8. 8. 8. 8. 8. 8.	SUN AN <i>1.</i> <i>2.</i> <i>3.</i> <i>4.</i> <i>5.</i>	MMARY TABLE 1 FENNA PORT TEST RESULTS 1 6 dB BANDWIDTH 1 99% BANDWIDTH 1 OUTPUT POWER 2 AVERAGE POWER 2 POWER SPECTRAL DENSITY 2	2 3 7 1 5 6
7. 8. 8. 8. 8. 8. 8. 8.	SUN ANT 2. 3. 4. 5. 6.	MMARY TABLE1FENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3	2 3 <i>7</i> <i>1</i> <i>5</i> <i>6</i> <i>80</i>
7. 8. 8. 8. 8. 8. 8. 8. 9.	SUN AN 2. 2. 3. 4. 5. 6. RAI	MMARY TABLE1 FENNA PORT TEST RESULTS 16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3	2 3 <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i>
7. 8. 8. 8. 8. 8. 8. 8. 9. 9.	SUN AN 1. 2. 3. 4. 5. 6. RAI 1.	MMARY TABLE1FENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3	2 3 <i>3</i> <i>7</i> <i>1</i> <i>5</i> <i>6</i> <i>6</i> 7 <i>7</i>
7. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9.	SUN AN 1. 2. 3. 4. 5. 6. RAI 1. 2.	MMARY TABLE1FENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3TRANSMITTER ABOVE 1 GHz3	2 3 <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i> <i>7</i>
7. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9.	SUN ANT 2. 3. 4. 5. 6. RAI 2. 3.	MMARY TABLE1FENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH1OUTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3TRANSMITTER ABOVE 1 GHz5WORST-CASE BELOW 1 GHz5	2 3 3 7 1 5 6 0 7 7 8 7
7. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9. 9. 9. 10.	SUN ANT 1. 2. 3. 4. 5. 6. RAI 2. 3. 3. A	MMARY TABLE1FENNA PORT TEST RESULTS16 dB BANDWIDTH199% BANDWIDTH10UTPUT POWER2AVERAGE POWER2POWER SPECTRAL DENSITY2CONDUCTED SPURIOUS EMISSIONS3DIATED TEST RESULTS3LIMITS AND PROCEDURE3TRANSMITTER ABOVE 1 GHz3WORST-CASE BELOW 1 GHz5C POWER LINE CONDUCTED EMISSIONS5	2 3 3 7 1 5 6 0 7 7 8 1 3 3 7 1 5 6 0 7 7 7 8 1 3 7 1 5 6 0 7 1 5 6 0 7 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1

Page 3 of 57

1. ATTESTATION OF TEST RESULTS

DATE TESTED:	JULY 2-7 and AUGUST 29, 2015
SERIAL NUMBER:	223B9
MODEL:	LG-W200A, LGW200A, W200A
EUT DESCRIPTION:	GSM/WCDMA/LTE + BLUETOOTH + WLAN b/g/n & NFC WATCH
COMPANY NAME:	LG ELECTRONICS MOBILECOMM U.S.A., INC.

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 Part 15 Subpart C	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Isadore nett

ISADORE NETTO CONSUMER TECHNOLOGY DIVISION WISE SENIOR ENGINEER UL VERIFICATION SERVICES INC Tested By:

JONATHAN HSU CONSUMER TECHNOLOGY DIVISION WISE LAB ENGINEER UL VERIFICATION SERVICES INC

Page 4 of 57

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, and KDB 558074 D01 v03r03, ANSI C63.10-2009 for FCC.

ANSI C63.10-2009 Deviation

Radiated spurious emission above 1GHz EUT height is 1.5m not 0.8m.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street		
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)		
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)		
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)		
	Chamber G(IC: 2324B-7)		
	Chamber H(IC: 2324B-8)		

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 57

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 18000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 57

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE + BLUETOOTH + WLAN b/g/n & NFC WATCH

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Mode		Output Power	Output Power
Range		(dBm)	(mW)
(MHz)			
2402-2480	BLE	9.06	8.05

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of -1.9 dBi.

Page 7 of 57

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Page 8 of 57

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
AC Adapter	LG	MCS-02WRE	RB550800170	N/A		
Earphone						

I/O CABLES

I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A

TEST SETUP

The EUT is continuously communicating to the Bluetooth tester during the tests. EUT was set in the Hidden menu mode to enable BLE communications.

Page 9 of 57

SETUP DIAGRAM FOR TESTS

Page 10 of 57

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Due		
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	02/13/16		
Antenna, Horn, 18GHz	EMCO	3115	C00783	10/25/15		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	11/14/15		
RF Preamplifier, 100KHz -> 1300MHz	HP	TBD	C00825	06/01/16		
RF Preamplifier, 1GHz - 18GHz	Miteq	NSP4000-SP2	924343	03/23/16		
RF Preamplifier, 1GHz - 26.5GHz	HP	8449B	T404	06/29/16		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/15		
CBT Bluetooth Tester	R & S	СВТ	T258	06/30/16		
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/15		
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/15		
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/16		
Reject Filter, 2.4GHz	Micro-Tronics	BRM50702	N02684	CNR		
Radiated Software	UL	UL EMC	Ver 9.5, Ju	ly 22, 2014		
Conducted Software	UL	UL EMC	Ver 9.5, May 17 2012			
CLT Software	UL	UL RF	Ver 1.0, Fe	b 2 2015		
Antenna Port Software	UL	UL RF	Ver 2.1.1.1	, Jan 20 2015		

Page 11 of 57

7. SUMMARY TABLE

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
15.247 (a)(2)	RSS-247 5.2.1	Occupied Band width (6dB)	>500KHz		Pass	0.686 MHz
2.1051, 15.247 (d)	RSS-247 5.5	Band Edge / Conducted Spurious Emission	-20dBc	Conducted	Pass	-49.21 dBm
15.247	RSS-247 5.4.4	TX conducted output power	<30dBm	Conducted	Pass	9.06 dBm
15.247	RSS-247 5.2.2	PSD	<8dBm		Pass	-0.09 dBm
15.207 (a)	RSS-GEN 8.8	AC Power Line conducted emissions	Section 10	Padiatad	Pass	23.4 dBuV (AV)
15.205, 15.209	RSS-GEN 8.9/7	Radiated Spurious Emission	< 54dBuV/m	Naulateu	Pass	43.52 dBuV/m

Page 12 of 57

8. ANTENNA PORT TEST RESULTS8.1. 6 dB BANDWIDTH

<u>LIMITS</u>

FCC §15.247 (a) (2)

IC RSS-247 5.2.1

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

<u>RESULTS</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.6860	0.5
Middle	2440	0.7140	0.5
High	2480	0.7100	0.5

Page 13 of 57

6 dB BANDWIDTH PLOTS

							ANNEL				
🔆 Ag	j ilent 16	6:54:55	Jul 2,	2015						L	Freq/Channel
Ref 10 #Peak	.3 dBm		#Atten	10 dB		~~~~·	1	1 4	4kr1 0 0.0	86 kHz 135 dB	Center Freq 2.40200000 GHz
Log 10 dB/ Offst			سمير	'/هـ				m			Start Freq 2.40100000 GHz
10.3 dB DI	Vrrw	Hollow	r 						- Vu	m	Stop Freq 2.40300000 GHz
1.4 dBm #PAvg 20											CF Step 200.000000 kHz <u>Auto</u> Man
V1 S2 S3 FS AA											FreqOffset 0.00000000 Hz
£ (f): f>50k Swp											Signal Track ^{On <u>Off</u>}
Center #Res B	2.402 W 100	 000 GH kHz	lz	#VB	W 300	kHz	Swe	eep 1 m	Span ıs (100	2 MHz 1 pts)	
Copyri	ight 20	000-20)11 Ag	ilent T	echnol	ogies					

Page 14 of 57

					14						
🔆 Ag	ilent 16	:49:10	Jul 2,	2015						L	Freq/Channel
Ref 10. #Peak	.3 dBm	4	#Atten	10 dB	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~ <u>~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	un 1	1 4	Mkr1 –0.1	714 kHz 079 dB	Center Freq 2.44000000 GHz
Log 10 dB/ Offet			N					مر مر مر مر			Start Freq 2.43900000 GHz
10.3 dB DI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	en y year	м 						h K	www	Stop Freq 2.44100000 GHz
1.9 dBm #PAvg 20											CF Step 200.000000 kHz <u>Auto</u> Man
V1 S2 S3 FS AA											FreqOffset 0.00000000 Hz
£ (f): f>50k Swp											Signal Track ^{On <u>Off</u>}
Center #Res B	2.440 W 100	000 GH KHz	łz	#VB	W 300	kHz	Swe	eep 1 m	Spar is (100	 2 MHz 01 pts)	
Copyri	ght 20	100-20	11 Agi	ilent T	echnol	ogies					

MID CHANNEL

Page 15 of 57

🔆 Agi	ilent 16:	59:23	Jul 2,	2015						L	Freq/Channel
Ref 10. #Peak	.3 dBm	:	#Atten	10 dB				Δ	Mkr1 _0.	710 kHz 067 dB	Center Freq 2.48000000 GHz
Log 10 dB/ Offst			~					Mar N			Start Freq 2.47900000 GHz
10.3 dB DI	mmy	my	/						$\overline{}$	harr	Stop Freq 2.48100000 GHz
-1.4 dBm #PAvg 20											CF Step 200.000000 kHz <u>Auto</u> Man
V1 S2 S3 FS AA											FreqOffset 0.00000000 Hz
£ (f): f>50k Swp											Signal Track ^{On <u>Off</u>}
Center #Res B	2.480 W 100 k	000 GH (Hz	lz	#VE	W 300	kHz	Swe	ep 1 m	Spar Spar s (10	 n 2 MHz 01 pts)	
Copyri	gnt 20	00-20	011 Hg	lient i	ecnnol	ogies					

HIGH CHANNEL

Page 16 of 57

8.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Reference to ANSI C63.10 (6.9.3) test procedures: The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0506
Middle	2440	1.0521
High	2480	1.0542

Page 17 of 57

99% BANDWIDTH PLOTS

LOW CHANNEL

Page 18 of 57

MID CHANNEL

Page 19 of 57

HIGH CHANNEL

Page 20 of 57

8.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-247 5.4.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using KDB558074 D01 DTS Meas Guidance v03r03 section 9.1.1 utilizing spectrum analyzer.

RESULTS

Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	8.410	30	-21.590
Middle	2440	9.060	30	-20.940
High	2480	5.530	30	-24.470

OUTPUT POWER PLOTS

🔆 Ag	ilent 16	:56:49	Jul 2,	2015						L	Detector
Ref 30 #Peak '	dBm Cent	or	Atten	30 dB				Mkr1	2.401 8.4	94 GHz 1 dBm	Auto
Log 10 dB/ Offet	2.40	2000	000	GHz							Normal
dB											Average (Log/RMS/V)
#PAvg											Peak
V1 S2 S3 FC AA											Sample
£ (f): FTun Swp											Negative Peak
Center #Res B	2.402 W 3 MH	000 GH z	l Iz	<u> </u> #V	BW 3 M	Hz	Sr	veep 1	Span ms (10	3 MHz 1 pts)	More 1 of 2
Copyri	ight 20	00-20)11 Ag	ilent T	echnol	ogies					

LOW CHANNEL

Page 22 of 57

🔆 Ag	jilent 16	:51:32	Jul 2,	2015						L	Freq/Channel
Ref 30 #Peak	dBm		Atten	30 dB				Mkr1	2.440 9.0	00 GHz 16 dBm	Center Freq 2.44000000 GHz
Log 10 dB/ Offst						i >					Start Freq 2.43850000 GHz
10.3 dB											Stop Freq 2.44150000 GHz
#PAvg											CF Step 300.000000 kHz <u>Auto</u> Man
V1 S2 S3 FC AA											Freq Offset 0.00000000 Hz
£ (f): FTun Swp											Signal Track ^{On <u>Off</u>}
Center #Res B	2.440 W 3 MH	000 GH z	 z	#V	BW 3 M	Hz	Sv	veep 1	Span ms (10	3 MHz 1 pts)	
Copyri	ight 20	00-20)11 Ag	ilent T	echnol	ogies					

MID CHANNEL

Page 23 of 57

🔆 Ag	ilent 17:00:25	Jul 2, 2015			L	Freq/Channel
Ref 30 #Peak	dBm	Atten 30 dB		Mkr1	2.479 82 GHz 5.53 dBm	Center Freq 2.48000000 GHz
Log 10 dB/ Offst						Start Freq 2.47850000 GHz
10.3 dB						Stop Freq 2.48150000 GHz
#PAvg						CF Step 300.000000 kHz <u>Auto</u> Man
V1 S2 S3 FC AA						FreqOffset 0.00000000 Hz
£ (f): FTun Swp						Signal Track ^{On <u>Off</u>}
Center #Res B	2.480 000 GI W 3 MHz	 Hz #V	BW 3 MHz	Sweep 1	Span 3 MHz ms (101 pts)	
Copyri	ight 2000-20	011 Agilent T	echnologies			

HIGH CHANNEL

Page 24 of 57

8.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	6.50
Middle	2440	7.41
High	2480	3.34

Page 25 of 57

8.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-247 5.2.2

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Power Spectral Density was performed utilizing the "Method PKPSD (Peak PSD)" under KDB558074 D01 DTS Meas Guidance v03r03.

<u>RESULTS</u>

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-0.57	8	-8.57
Middle	2440	-0.09	8	-8.09
High	2480	-3.45	8	-11.45

Page 26 of 57

POWER SPECTRAL DENSITY PLOTS

LOW CHANNEL

Page 27 of 57

HIGH CHANNEL

Page 29 of 57

8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

LOW CHANNEL BANDEDGE

Page 31 of 57

🔆 Agilent 16:58:39	Jul 2, 2015		L	Freq/Channel
Ref 20.3 dBm #Peak	#Atten 20 dB		Mkr4 24.941 GHz -50.371 dBm	Center Freq 13.0150000 GHz
Log 10 dB/ 0ffst				Start Freq 30.0000000 MHz
10.3 dB				Stop Freq 26.000000 GHz
-11.5 dBm #PAvg				CF Step 2.59700000 GHz <u>Auto</u> Man
Center 13.015 GHz #Res BW 100 kHz Marker Trace	*VBW	300 kHz Swee	Span 25.97 GHz p 2.482 s (8192 pts) Amplitude	FreqOffset 0.00000000 Hz
$ \begin{array}{cccc} 1 & (1) \\ 2 & (1) \\ 3 & (1) \\ 4 & (1) \end{array} $	Freq Freq Freq Freq	2.402 GHz 4.804 GHz 7.205 GHz 24.941 GHz	7.40 dBm -61.44 dBm -58.24 dBm -50.37 dBm	Signal Track ^{On <u>Off</u>}
Copyright 2000-21	011 Agilent Ter	hnologies		

LOW CHANNEL SPURIOUS

Page 32 of 57

SPURIOUS EMISSIONS, MID CHANNEL

🔆 Ag	ilent 16:	52 : 53	Jul 2,	2015				-		L	Freq/Channel
Ref 30 Peak	dBm		Atten	30 dB				Mkr1	2.440 8.4	02 GHz 7 dBm	Center Freq 2.44000000 GHz
Log 10 dB/											Start Freq 2.43500000 GHz
dB DI						$\frac{1}{2}$					Stop Freq 2.44500000 GHz
-11.5 dBm #PAvg					J						CF Step 1.00000000 MHz <u>Auto</u> Man
M1 S2 S3 FC AA							L.				FreqOffset 0.00000000 Hz
£ (f): f>50k Swp	hronon	Mulews/Wo	and the second	••* 			~~	how we	-and -and	www.v	Signal Track ^{On <u>Off</u>}
Center #Res B	2.440 W 100 k	00 GHz Hz	2	#VB	W 300	kHz	Swe	ep 1 r	Span 1 ns (100	0 MHz 1 pts)	
Copyri	Copyright 2000–2011 Agilent Technologies										

MID CHANNEL REFERENCE

Page 33 of 57

🔆 Agilent 16	:53:52 Jul 2,	2015			L	Freq/Channel
Ref 20.3 dBm #Peak 1	#Atten	20 dB		Mkr4 25.0 -50.3	052 GHz 80 dBm	Center Freq 13.0150000 GHz
Log 10 dB/ Offst						Start Freq 30.0000000 MHz
10.3 dB DI					4	Stop Freq 26.0000000 GHz
-11.5 dBm #PAvg						CF Step 2.59700000 GHz <u>Auto</u> Man
Start 30 MHz #Res BW 100 Marker T	kHz race Type	#VBW 300	kHz Sweep Axis	Stop 26.0 2.482 s (819 Ampli	00 GHz 32 pts) ude	FreqOffset 0.00000000 Hz
1 2 3 4	(1) Free (1) Free (1) Free (1) Free	2.4 4.8 1 7.3 1 25.6	440 GHz 880 GHz 816 GHz 952 GHz	7.26 -62.15 -58.54 -50.38	dBm dBm dBm dBm	Signal Track ^{On <u>Off</u>}
Copyright 20	00-2011 Ag	ilent Technol	ogies			

MID CHANNEL SPURIOUS

Page 34 of 57

SPURIOUS EMISSIONS, HIGH CHANNEL

🔆 Agilent 17:01:15	Jul 2, 2015			L	Freq/Channel
Ref 30 dBm Peak	Atten 30 dB		Mkr1	2.478 50 GHz -44.16 dBm	Center Freq 2.48350000 GHz
Log 10 dB/ Offst					Start Freq 2.47850000 GHz
10.3 dB DI	5				Stop Freq 2.48850000 GHz
-11.5 Ø dBm #PAvg	- Marine Marine	worker the the second	2 - 1/1/ 101/10/00/00/00	alen fransk Annalis a	CF Step 1.00000000 MHz <u>Auto</u> Man
Center 2.483 50 GH; #Res BW 100 kHz Marker Trace	z #VB Type	W 300 kHz X Axis	Sweep 1 n	Span 10 MHz ns (1001 pts) Amplitude	FreqOffset 0.00000000 Hz
$ \begin{array}{cccc} 1 & (1) \\ 2 & (1) \end{array} $	Freq Freq	2.478 50 GHz 2.485 33 GHz		-44.16 dBm -50.17 dBm	Signal Track ^{On <u>Off</u>}
Converient 2000 0	11. Onitont T				

HIGH CHANNEL BANDEDGE

Page 35 of 57

🔆 Ag	ilent 17:	:02:07	Jul 2,	2015						L	Freq/Channel
Ref 20. #Peak	.3 dBm	4	#Atten i	20 dB				Mkr	4 25.0 -50.36	39 GHz 7 dBm	Center Freq 13.0150000 GHz
Log 10 dB/ Offst	Ŏ										Start Freq 30.0000000 MHz
10.3 dB DI										4	Stop Freq 26.0000000 GHz
-11.5 dBm #PAvg		2	Å			Analise and a second			an the second		CF Step 2.59700000 GHz <u>Auto</u> Man
Center #Res B	13.015 W 100 k	GHz (Hz	Tura	#VE	3W 300	kHz Avia	Sweep	Sp 2.482	an 25.9 s (819	97 GHz 2 pts)	Freq Offset 0.00000000 Hz
1 2 3 4	er ir (((ace (1) (1) (1) (1)	Freq Freq Freq Freq Freq		2 4.9 7 25.1	HXIS 480 GHz 360 GHz 436 GHz 339 GHz			4.25 -62.75 -58.16 -50.37	uae dBm dBm dBm dBm	Signal Track On <u>Off</u>
Copyri	ight 20	00-20	11 Agi	ilent T	echnol	ogies					

HIGH CHANNEL SPURIOUS

Page 36 of 57

9. RADIATED TEST RESULTS

LIMITS AND PROCEDURE 9.1. LIMITS

FCC §15.205 and §15.209

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and add duty cycle factor for average measurements. Duty cycle factor = $10 \log (1/x)$. For this sample: DCF = $10 \log (1/0.618) = 2.05 dB$

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 37 of 57

9.2. TRANSMITTER ABOVE 1 GHz RESTRICTED BANDEDGE (LOW CHANNEL)

HORIZONTAL PEAK AND AVERAGE PLOT

HORIZONTAL DATA

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
1	* 2.39	40	Pk	32	-24.1	0	47.9	-	-	74	-26.1	331	199	н
2	* 2.351	42.24	Pk	31.8	-24.2	0	49.84	-	-	74	-24.16	331	199	н
3	* 2.39	30.54	RMS	32	-24.1	2.05	40.49	54	-13.51	-	-	331	199	н
4	* 2.369	30.98	RMS	31.9	-24.2	2.05	40.73	54	-13.27	-	-	331	199	н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 38 of 57

VERTICAL DATA

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Flt	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHz)	Reading		(dB/m)	r/Pad (dB)		Reading	Limit	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)					(dBuV/m)	(dBuV/m)						
1	* 2.39	40.19	Pk	32	-24.1	0	48.09	-	-	74	-25.91	60	362	V
2	* 2.34	42.29	Pk	31.7	-24.2	0	49.79	-	-	74	-24.21	60	362	V
3	* 2.39	29.81	RMS	32	-24.1	2.05	39.76	54	-14.24	-	-	60	362	V
4	* 2.385	30.75	RMS	32	-24.1	2.05	40.7	54	-13.3	-	-	60	362	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 39 of 57

AUTHORIZED BANDEDGE (HIGH CHANNEL)

HORIZONTAL PEAK AND AVERAGE PLOT

HORIZONTAL DATA

Marker	Frequency	Meter	Det	AF T345	Amp/Cbl/Fit	DC Corr (dB)	Corrected	Average	Margin	Peak Limit	PK Margin	Azimuth	Height	Polarity
	(GHZ)	(dBuV)		(dB/m)	r/Pad (dB)		(dBuV/m)	(dBuV/m)	(dB)	(dBuV/m)	(aB)	(Degs)	(cm)	
	* * * * *	(====)						(),						
1	* 2.484	42.91	РК	32.5	-24	0	51.41	-	-	/4	-22.59	0	184	н
2	* 2.484	47.7	Pk	32.5	-24	0	56.2	-	-	74	-17.8	0	184	н
3	* 2.484	30.35	RMS	32.5	-24	2.05	40.9	54	-13.1	-	-	0	184	н
4	* 2.484	31.22	RMS	32.5	-24	2.05	41.77	54	-12.23	-	-	0	184	н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 40 of 57

VERTICAL DATA

Marker	Frequency (GHz)	Meter	Det	AF T345 (dB/m)	Amp/Cbl/Fit	DC Corr (dB)	Corrected	Average	Margin (dB)	Peak Limit	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(0.1.2)	(dBuV)		(00/11)	.,. da (ab)		(dBuV/m)	(dBuV/m)	(00)	(0007))	(00)	(5683)	()	
1	* 2.484	41.73	Pk	32.5	-24	0	50.23	-	-	74	-23.77	270	129	V
3	* 2.484	30.38	RMS	32.5	-24	2.05	40.93	54	-13.07	-	-	270	129	V
2	2.552	42.74	Pk	32.7	-23.9	0	51.54	-	-	74	-22.46	270	129	V
4	2.562	30.61	RMS	32.7	-23.9	2.05	41.46	-	-	-	-	270	129	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

RMS - RMS detection

Page 41 of 57

HARMONICS AND SPURIOUS EMISSIONS

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 42 of 57

LOW CHANNEL VERTICAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 43 of 57

LOW CHANNEL DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr /Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	* 2.82	36.03	Pk	32.6	-23.7	0	44.93	-	-	74	-29.07	0-360	199	V
5	* 4.707	33.63	Pk	34.2	-31.3	0	36.53	-	-	74	-37.47	0-360	101	V
1	1.887	39.04	Pk	31.7	-24.6	0	46.14	-	-	-	-	0-360	199	V
2	7.752	35.41	Pk	35.5	-28.3	0	42.61	-	-	-	-	0-360	101	н
6	7.868	34.47	Pk	35.6	-29.2	0	40.87	-	-	-	-	0-360	101	н
3	15.345	28.12	Pk	40.7	-22.8	0	46.02	-	-	-	-	0-360	200	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

Radiated Emissions

Frequenc	Meter	Det	AF T345	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak	PK Margin	Azimuth	Height	Polarity
У	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	Limit	(dB)	(Degs)	(cm)	
(GHz)	(dBuV)			(dB)		(dBuV/m)			(dBuV/m)				
* 2.819	43.93	PK2	32.6	-23.7	0	52.83	-	-	74	-21.17	302	400	V
* 2.821	32.31	MAv1	32.6	-23.7	2.05	43.26	54	-10.74	-	-	302	400	V
* 4.707	41.81	PK2	34.2	-31.3	0	44.71	-	-	74	-29.29	302	400	V
* 4.709	30.74	MAv1	34.2	-31.2	2.05	35.79	54	-18.21	-	-	302	400	V
1.885	44.42	PK2	31.6	-24.6	0	51.42	-	-	-	-	302	400	V
1.885	31.95	MAv1	31.6	-24.6	2.05	41	54	-13	-	-	302	400	V
1.885	32.3	MAv1	31.6	-24.6	2.05	41.35	54	-12.65	-	-	302	400	V
7.751	39.77	PK2	35.5	-28.2	0	47.07	-	-	74	-26.93	302	400	н
7.751	39.4	PK2	35.5	-28.2	0	46.7	-	-	74	-27.3	302	400	Н
7.754	28.01	MAv1	35.5	-28.3	2.05	37.26	54	-16.74	-	-	302	400	н
7.754	28.17	MAv1	35.5	-28.3	2.05	37.42	54	-36.58	-	-	302	400	н
7.867	40.12	PK2	35.6	-29.2	0	46.52	-	-	74	-27.48	302	400	Н
7.87	28.35	MAv1	35.6	-29.2	2.05	36.8	54	-37.2	-	-	302	400	Н
15.344	23.57	MAv1	40.7	-22.8	2.05	43.52	54	-10.48	-	-	302	400	Н
15.347	34.8	PK2	40.7	-22.7	0	52.8	-	-	74	-21.2	302	400	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

MID CHANNEL HORIZONTAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 45 of 57

MID CHANNEL VERTICAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 46 of 57

MID CHANNEL DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fitr /Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	* 15.703	29.89	Pk	40.6	-23.1	0	47.39	-	-	74	-26.61	0-360	200	V
1	1.717	42.33	Pk	29.9	-24.7	0	47.53	-	-	-	-	0-360	101	V
2	1.729	41.33	Pk	30	-24.8	0	46.53	-	-	-	-	0-360	101	V
4	2.001	36.29	Pk	32.3	-24.5	0	44.09	-	-	-	-	0-360	101	н
6	5.779	33.24	Pk	35.1	-32	0	36.34	-	-	-	-	0-360	200	н
5	6.801	31.37	Pk	35.9	-30.1	0	37.17	-	-	-	-	0-360	200	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

Radiated Emissions

Frequenc	Meter	Det	AF T345	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak	PK Margin	Azimuth	Height	Polarity
У	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	Limit	(dB)	(Degs)	(cm)	
(GHz)	(dBuV)			(dB)		(dBuV/m)			(dBuV/m)				
* 15.705	34.56	PK2	40.6	-23.1	0	52.06	-	-	74	-21.94	187	303	V
* 15.705	23.07	MAv1	40.6	-23.1	2.05	42.62	54	-11.38	-	-	187	303	V
1.717	44.54	PK2	29.9	-24.8	0	49.64	-	-	74	-24.36	121	170	V
1.718	32.06	MAv1	29.9	-24.8	2.05	39.21	54	-34.79	-	-	121	170	V
1.728	44.49	PK2	30	-24.8	0	49.69	-	-	74	-24.31	187	303	V
1.73	32.35	MAv1	30	-24.8	2.05	39.6	54	-14.4	-	-	187	303	V
2	32.34	MAv1	32.3	-24.5	2.05	42.19	54	-11.81	-	-	121	170	Н
2.001	43.97	PK2	32.3	-24.5	0	51.77	-	-	74	-22.23	121	170	Н
5.78	30.73	MAv1	35.1	-32	2.05	35.88	54	-18.12	-	-	187	303	н
5.781	42.85	PK2	35.1	-32	0	45.95	-	-	74	-28.05	187	303	н
6.8	28.49	MAv1	35.9	-30.1	2.05	36.34	54	-17.66	-	-	187	303	Н
6.801	39.88	PK2	35.9	-30.1	0	45.68	-	-	74	-28.32	187	303	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

HIGH CHANNEL HORIZONTAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 48 of 57

HIGH CHANNEL VERTICAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 49 of 57

HIGH CHANNEL DATA

Trace Markers

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fltr /Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.283	37.64	Pk	29.3	-25.4	0	41.54	-	-	74	-32.46	0-360	199	н
2	* 7.441	33.5	Pk	35.3	-29.2	0	39.6	-	-	74	-34.4	0-360	101	н
5	* 4.793	32.3	Pk	34.3	-30.9	0	35.7	-	-	74	-38.3	0-360	200	V
6	* 15.5	31.36	Pk	40.9	-23.4	0	48.86	-	-	74	-25.14	0-360	101	V
4	1.913	36.17	Pk	31.9	-24.6	0	43.47	-	-	-	-	0-360	199	V
3	7.752	34.76	Pk	35.5	-28.3	0	41.96	-	-	-	-	0-360	199	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

Pk - Peak detector

Radiated Emissions

Frequenc	Meter	Det	AF T345	Amp/Cbl/	DC Corr	Corrected	Avg Limit	Margin	Peak	PK Margin	Azimuth	Height	Polarity
У	Reading		(dB/m)	Fltr/Pad	(dB)	Reading	(dBuV/m)	(dB)	Limit	(dB)	(Degs)	(cm)	
(GHz)	(dBuV)			(dB)		(dBuV/m)			(dBuV/m)				
* 1.284	44.08	PK2	29.3	-25.4	0	47.98	-	-	74	-26.02	1	101	Н
* 1.283	32.74	MAv1	29.3	-25.4	2.05	38.69	54	-15.31	-	-	1	101	н
* 7.441	42.41	PK2	35.3	-29.2	0	48.51	-	-	74	-25.49	312	131	Н
* 7.439	31.17	MAv1	35.3	-29.2	2.05	39.32	54	-14.68	-	-	312	131	н
* 4.793	40.73	PK2	34.3	-30.9	0	44.13	-	-	74	-29.87	312	131	V
* 4.795	29.64	MAv1	34.3	-30.9	2.05	35.09	54	-18.91	-	-	312	131	V
* 15.501	35.5	PK2	40.9	-23.4	0	53	-	-	74	-21	312	131	V
* 15.499	23.76	MAv1	40.9	-23.4	2.05	43.31	54	-10.69	-	-	312	131	V
1.913	43.69	PK2	31.9	-24.6	0	50.99	-	-	74	-23.01	1	101	V
1.914	32.1	MAv1	31.9	-24.6	2.05	41.45	54	-12.55	-	-	1	101	V
7.752	28.09	MAv1	35.5	-28.3	2.05	37.34	54	-16.66	-	-	312	131	н
7.753	38.96	PK2	35.5	-28.3	0	46.16	-	-	74	-27.84	312	131	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 50 of 57

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

HORIZONTAL PLOT

Page 51 of 57

VERTICAL PLOT

BELOW 1 GHz TABLE

Trace Markers

Marker	Frequency	Meter	Det	AF T185	Amp/Cbl (dB)	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
	(MHz)	Reading		(dB/m)		Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
3	30.0425	39.06	РК	21.8	-27.3	33.56	40	-6.44	0-360	100	V
4	40.71	43.16	РК	13.7	-27	29.86	40	-10.14	0-360	100	V
1	54.225	34.5	РК	7.2	-26.9	14.8	40	-25.2	0-360	400	Н
5	60.005	35.99	РК	7.3	-26.8	16.49	40	-23.51	0-360	100	V
6	66.5925	35.63	РК	8.1	-26.7	17.03	40	-22.97	0-360	100	V
7	79.98	34.35	PK	8	-26.6	15.75	40	-24.25	0-360	100	V
2	103.5675	35.54	PK	10.6	-26.3	19.84	43.52	-23.68	0-360	100	Н
8	643.8	29.94	PK	19.5	-24.5	24.94	46.02	-21.08	0-360	300	V

PK - Peak detector

Page 52 of 57

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 "	56 to 46 "			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.10

RESULTS

Page 53 of 57

<u>6 WORST EMISSIONS</u>

LINE 1 PLOT

LINE 1 RESULTS

Range 1: Line-L1 .15 - 30MHz										
Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin
	(MHz)	Reading			1&3	Reading	Part 15	(dB)	Part 15	(dB)
		(dBuV)				dBuV	Class B QP		Class B	
									Avg	
1	.1545	46.78	Pk	1.3	0	48.08	65.75	-17.67		
2	.177	25.76	Av	1.1	0	26.86	-	-	54.63	-27.77
3	.3975	34.97	Pk	.4	0	35.37	57.91	-22.54		
4	.3975	22.99	Av	.4	0	23.39	-	-	47.91	-24.52
5	1.5045	33.8	Pk	.2	.1	34.1	56	-21.9		
6	1.509	17.51	Av	.2	.1	17.81	-	-	46	-28.19
7	6.2655	35.94	Pk	.2	.1	36.24	60	-23.76		
8	6.36	22.25	Av	.2	.1	22.55	-	-	50	-27.45
9	13.56	44.86	Pk	.2	.2	45.26	60	-14.74		
10	13.551	16.97	Av	.2	.2	17.37	-	-	50	-32.63
11	15.0945	34.81	Pk	.3	.2	35.31	60	-24.69		
12	15.1035	18.41	Av	.3	.2	18.91	-	-	50	-31.09

Pk - Peak detector

Av - Average detection

Page 54 of 57

LINE 2 RESULTS

Range 2: Line-L2 .15 - 30MHz											
Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CFR 47	Margin	CFR 47	Margin	
	(MHz)	Reading			2&3	Reading	Part 15	(dB)	Part 15	(dB)	
		(dBuV)				dBuV	Class B QP		Class B		
									Avg		
13	.1545	46.19	Pk	1.4	0	47.59	65.75	-18.16			
14	.1635	21.42	Av	1.3	0	22.72	-	-	55.28	-32.56	
15	.411	35.36	Pk	.4	0	35.76	57.63	-21.87			
16	.4245	19.47	Av	.4	0	19.87	-	-	47.36	-27.49	
17	1.6215	30.56	Pk	.2	.1	30.86	56	-25.14			
18	1.608	12.5	Av	.2	.1	12.8	-	-	46	-33.2	
19	5.8965	32.12	Pk	.2	.1	32.42	60	-27.58			
20	5.9415	18.24	Av	.2	.1	18.54	-	-	50	-31.46	
21	13.569	45.36	Pk	.2	.2	45.76	60	-14.24			
22	13.569	13.35	Av	.2	.2	13.75	-	-	50	-36.25	
23	17.7495	32.1	Pk	.3	.2	32.6	60	-27.4			
24	17.727	11.6	Av	.3	.2	12.1	-	-	50	-37.9	

Pk - Peak detector

Av - Average detection

Page 55 of 57