SAR EVALUATION REPORT CLASS II PERMISSIVE CHANGE FCC 47 CFR § 2.1093 IEEE Std 1528-2013 For CDMA/LTE PHONE + BLUETOOTH, & 2.4GHz DTS b/g/n FCC ID: ZNFVW820 Model Name: LG-VW820, VW820, LGVW820 > Report Number: 15I20187-S1 Issue Date: 4/1/2015 Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVE. ENGLEWOOD CLIFFS, NJ 07632 Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888 ### **Revision History** | Rev. | Date | Revisions | Revised By | |------|----------|---------------|------------| | | 4/1/2015 | Initial Issue | | | | | | | | | | | | | | | | | ### **Table of Contents** | 1. | Attestation of Test Results | 5 | |------|---|----| | 2. | Test Specification, Methods and Procedures | 6 | | 3. | Facilities and Accreditation | 6 | | 4. | SAR Measurement System & Test Equipment | 7 | | 4.1. | SAR Measurement System | 7 | | 4.2. | SAR Scan Procedures | 8 | | 4.3. | Test Equipment | 10 | | 5. | Measurement Uncertainty | 11 | | 6. | Device Under Test (DUT) Information | 12 | | 6.1. | DUT Description | 12 | | 6.2. | Wireless Technologies | 12 | | 6.3. | Nominal and Maximum Output Power | 13 | | 6.4. | . General LTE SAR Test and Reporting Considerations | 14 | | 7. | RF Exposure Conditions (Test Configurations) | 15 | | 8. | Dielectric Property Measurements & System Check | 16 | | 8.1. | Dielectric Property Measurements | 16 | | 8.2. | System Check | 20 | | 9. | Conducted Output Power Measurements | 23 | | 9.1. | . CDMA | 23 | | 9.2. | LTE | 24 | | 9.3. | . Wi-Fi 2.4GHz (DTS Band) | 32 | | 9.4. | . Bluetooth | 32 | | 10. | Measured and Reported (Scaled) SAR Results | 33 | | 10.1 | 1. CDMA BC0 | 35 | | 10 | 0.1.1. CDMA BC0 Additional Testing | 35 | | 10.2 | 2. CDMA BC1 | 36 | | 10.3 | 3. LTE Band 2 (20MHz Bandwidth) | 36 | | 10.4 | 4. LTE Band 4 (20MHz Bandwidth) | 37 | | 10.5 | 5. LTE Band 5 (10MHz Bandwidth) | 38 | | 10.6 | 6. LTE Band 13 (10MHz Bandwidth) | 38 | | 10.7 | 7. Wi-Fi (DTS Band) | 38 | | 10.8 | 8. Bluetooth | 39 | | 11. | SAR Measurement Variability | 40 | | | Page 3 of 42 | | | 12. | Simultaneous Transmission SAR Analysis | 41 | |-----|--|----| | 1 | 12.1. Sum of the SAR for WWAN & Wi-Fi & BT | 41 | | Арр | pendixes | 42 | | Α | A_15l20187v0 SAR Photos & Ant. Locations | 42 | | В | B_15l20187v0 SAR System Check Plots | 42 | | C | C_15l20187v0 SAR Highest Test Plots | 42 | | D | D_15l20187v0 SAR Tissue Ingredients | 42 | | E | E_15l20187v0 SAR Probe Cal. Certificates | 42 | | F | F_15l20187v0 SAR Dipole Cal. Certificates | 42 | ### 1. Attestation of Test Results | Applicant Name | LG ELECTRONICS | MOBIL ECOMMILIS | S A INC | | | |---|---------------------------------|--|-----------|----------|--| | - • • | | LG ELECTRONICS MOBILECOMM U.S.A., INC. | | | | | FCC ID | ZNFVW820 | | | | | | Model Name | LG-VW820, VW820, | LGVW820 | | | | | FCC 47 CFR § 2.1093 | | | | | | | Applicable Standards | Published RF expos | ure KDB procedure | S | | | | | IEEE Std 1528-2013 | } | | | | | | SAR Li | mits (W/Kg) | | | | | Exposure Category | | Peak spatial-average(1g of tissue) | | | | | General population /
Uncontrolled exposure | | 1.6 | | | | | | The Highest Reported SAR (W/kg) | | | | | | DE Esserance Oscalidada | | Equipm | ent Class | | | | RF Exposure Conditions | Licensed | DTS | U-NII | DSS (BT) | | | Head | 0.915 | 0.145 | | | | | Body-worn | 4 000 | 0.054 | N1/A | NI/A | | | Hotspot/Wi-Fi Direct | 1.290 | 0.054 | N/A | N/A | | | Simultaneous Tx | 1.344 | | | | | | Date Tested | 2/23/2015 to 3/10/2015 | | | | | | Test Results | Pass | | | | | UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. **Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above. | Approved & Released By: | Prepared By: | |-------------------------------|-------------------------------| | JanCary | AT Vancer | | Devin Chang | AJ Newcomer | | Senior Engineer | Laboratory Technician | | UL Verification Services Inc. | UL Verification Services Inc. | ### 2. Test Specification, Methods and Procedures The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures: - 248227 D01 SAR meas for 802.11 v02 - o 447498 D01 General RF Exposure Guidance v05r02 - 648474 D04 Handset SAR v01r02 - 648474 D03 Handset Wireless Chargers Battery Covers v01r02 - o 690783 D01 SAR Listings on Grants v01r03 - o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03 - o 865664 D02 RF Exposure Reporting v01r01 - 941225 D01 3G SAR Procedures v03 - 941225 D05 SAR for LTE Devices v02r03 - o 941225 D06 Hotspot Mode v02 ### 3. Facilities and Accreditation The test sites and measurement facilities used to collect data are located at | 47173 Benicia Street | 47266 Benicia Street | |----------------------|----------------------| | SAR Lab A | SAR Lab 1 | | SAR Lab B | SAR Lab 2 | | SAR Lab C | SAR Lab 3 | | SAR Lab D | SAR Lab 4 | | SAR Lab E | SAR Lab 5 | | SAR Lab F | | | SAR Lab G | | | SAR Lab H | | UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm ### 4. SAR Measurement System & Test Equipment ### 4.1. SAR Measurement System The DASY5 system used for performing compliance tests consists of the following items: - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ### 4.2. SAR Scan Procedures #### **Step 1: Power Reference Measurement** The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. #### Step 2: Area Scan The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly. Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz | | ≤3 GHz | > 3 GHz | |--
--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$ | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | #### Step 3: Zoom Scan Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label. Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz | | | | ≤3 GHz | > 3 GHz | |---|----------------|---|--|--| | Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom} | | | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded
grid | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz:} \le 3 \text{ mm}$
$4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz:} \le 2 \text{ mm}$ | | | | Δz _{Zoom} (n>1):
between subsequent
points | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ | | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | $3-4 \text{ GHz:} \ge 28 \text{ mm}$
$4-5 \text{ GHz:} \ge 25 \text{ mm}$
$5-6 \text{ GHz:} \ge 22 \text{ mm}$ | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### Step 4: Power drift measurement The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. #### Step 5: Z-Scan (FCC only) The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction. ^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ### 4.3. Test Equipment The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards. System Check | System Check | | | | | |--|-----------------|------------------------|-------------|---------------| | Name of Equipment | Manufacturer | Type/Model | Serial No. | Cal. Due Date | | HP Signal Generator | HP | 8665B | 3546A00784 | 6/23/2015 | | Power Meter | HP | 437B | 3125U09516 | 10/6/2015 | | Power Meter | Agilent | N1911A | MY53060016 | 8/7/2015 | | Power Sensor | Agilent | E9323A | MY53070003 | 5/1/2015 | | Power Sensor | Agilent | 8481A | 3318A95392 | 10/6/2015 | | Amplifier | MITEQ | AMF-4D-00400600-50-30P | 1622052 | N/A | | Bi-directional coupler | Werlatone, Inc. | C8060-102 | 2711 | N/A | | DC Power Supply | Sorensen Ametek | XT20-3 | 1318A00530 | N/A | | Synthesized Signal Generator | Agilent | 8665B | 3438A00633 | 7/10/2015 | | Power Meter | HP | 437B | 3125U11347 | 8/27/2015 | | Power Meter | HP | 437B | 3125U16345 | 6/16/2015 | | Power Sensor | HP | 8481A | 2702A60780 | 6/16/2015 | | Power Sensor | HP | 8481A | 1926A16917 | 10/10/2015 | | Amplifier | MITEQ | AMF-4D-00400600-50-30P | 1808938 | N/A | | Bi-directional coupler | Werlatone, Inc. | C8060-102 | 2710 | N/A | | DC Power Supply | HP | 6296A | 2841A-05955 | N/A | | Synthesized Signal Generator | HP | 8665B | 3744A01084 | 5/20/2015 | | Power Meter | Agilent | N1912A | MY53040016 | 5/5/2015 | | Power Sensor | Agilent | E9323A | MY53070005 | 5/1/2015 | | Power Sensor | Agilent | E9323A | MY53070009 | 5/28/2015 | | Amplifier | MITEQ | AMF-4D-00400600-50-30P | 1795093 | N/A | | Directional coupler | Werlatone | C8060-102 | 2149 | N/A | | DC Power Supply | AMETEK | XT 15-4 | 1319A02778 | N/A | | E-Field Probe (SAR Lab 1) | SPEAG | EX3DV4 | 3902 | 5/19/2015 | | E-Field Probe (SAR Lab 2) | SPEAG | EX3DV3 | 3749 | 1/26/2016 | | E-Field Probe (SAR Lab 3) | SPEAG | EX3DV4 | 3773 | 4/22/2015 | | E-Field Probe (SAR Lab 4) | SPEAG | EX3DV4 | 3929 | 5/9/2015 | | E-Field Probe (SAR Lab 5) | SPEAG | EX3DV4 | 3991 | 5/16/2015 | | E-Field Probe (SAR Lab G) | SPEAG | EX3DV4 | 3990 | 4/15/2015 | | Data Acquisition Electronics (SAR Lab 1) | SPEAG | DAE4 | 1352 | 11/7/2015 | | Data Acquisition Electronics (SAR Lab 2) | SPEAG | DAE4 | 1259 | 1/14/2016 | | Data Acquisition Electronics (SAR Lab 3) | SPEAG | DAE4 | 1380 | 7/23/2015 | | Data Acquisition Electronics (SAR Lab 4) | SPEAG | DAE4 | 1377 | 8/27/2015 | | Data Acquisition Electronics (SAR Lab 5) | SPEAG | DAE4 | 1439 | 5/14/2015 | | Data Acquisition Electronics (SAR Lab G) | SPEAG | DAE4 | 1434 | 4/14/2015 | | System Validation Dipole | SPEAG | D750V3 | 1019 | 3/17/2015 | | System Validation Dipole | SPEAG | D835V2 | 4d142 | 9/9/2015 | | System Validation Dipole | SPEAG | D1750V2 | 1077 | 9/11/2015 | | System Validation Dipole | SPEAG | D1900V2 | 5d163 | 9/11/2015 | | System Validation Dipole | SPEAG | D2450V2 | 899 | 9/10/2015 | | System Validation Dipole | SPEAG | D2450V2 | 706 | 5/20/2015 | | Thermometer (SAR Lab 1) | EXTECH | 445703 | CCS-205 | 3/24/2015 | | Thermometer (SAR Lab 2) | EXTECH | 445703 | CCS-203 | 3/28/2015 | | Thermometer (SAR Lab 3) | EXTECH | 445703 | CCS-237 | 6/3/2015 | | Thermometer (SAR Lab 4) | EXTECH | 445703 | CCS-238 | 6/3/2015 | | Thermometer (SAR Lab 5) | EXTECH | 445703 | CCS-239 | 6/3/2015 | | Thermometer (SAR Lab G) | EXTECH | 445703 | CCS-239 | 9/18/2015 | **Dielectric Property Measurements** | Name of Equipment | Manufacturer | Type/Model | Serial No. | Cal. Due Date | |------------------------|-----------------------------------|---------------|---------------|---------------| | Network Analyzer | Agilent | E753ES | MY40000980 | 4/7/2015 | | Dielectronic Probe kit | SPEAG | DAK-3.5 | 1082 | 9/16/2015 | | Dielectronic Probe kit | SPEAG | DAK-3.5 Short | SM DAK 200 BA | N/A | | Thermometer | Control Company | Traceable | 122529163 | 10/8/2015 | | Network Analyzer | Agilent | 8753ES | MY40001647 | 7/17/2015 | | Dielectronic Probe kit | SPEAG | DAK-3.5 | 1087 | 11/11/2015 | | Dielectronic Probe kit | SPEAG | DAK-3.5 Short | SM DAK 200 BA | N/A | | Thermometer | Traceable Calibration Control Co. | 4242 | 122529162 | 10/8/2015 | **Other** | Name of Equipment | Manufacturer | Type/Model | Serial No. | Cal. Due Date | |------------------------|--------------|------------|------------|---------------| | Power Meter | Agilent | N1911A | MY53060016 | 8/7/2015 | | Power Sensor | Agilent | N1921A | MY52270022 | 12/12/2015 | | Base Station Simulator | R&S | CMW500 | 27187 | 7/8/2015 | ### 5. Measurement Uncertainty Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. # 6. Device Under Test (DUT) Information # 6.1. DUT Description | | Overall (Length x Width): 129.8 mm x 64.6 mm | |---------------------------|---| | Device Dimension | Overall Diagonal: 138 mm | | | Display Diagonal: 115 mm | | | | | | ☐ Normal Battery Cover with NFC | | Battery Back Cover | ☐ Wireless Charger Battery Cover | | | ☐ Wireless Charger Battery Cover with NFC | | | ☐ The rechargeable battery is not user accessible. | | | ☑ Standard – Lithium-ion battery, Rating 3.8Vdc, 8.0Wh | | Battery Options | ☐ Extended (large capacity) | | | ☐ The rechargeable battery is not user accessible. | | Accessory | Headset | | | Wi-Fi
Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices. | | Wireless Router (Hotspot) | ☑ Mobile Hotspot (Wi-Fi 2.4 GHz) | | | ☐ Mobile Hotspot (Wi-Fi 5 GHz) | | | Wi-Fi Direct enabled devices transfer data directly between each other | | Wi-Fi Direct | ⊠ Wi-Fi Direct (Wi-Fi 2.4 GHz) | | | ☐ Wi-Fi Direct (Wi-Fi 5 GHz) | # 6.2. Wireless Technologies | Wireless technologies | Frequency bands | Operating mode | Duty Cycle used for SAR testing | | | | | |-----------------------|--|----------------------------------|---------------------------------|--|--|--|--| | | BC0 | 1xRTT (Voice & Data) | 4000/ | | | | | | CDMA2000 | BC1 | 1xEV-DO Rel. 0
1xEV-DO Rev. A | 100% | | | | | | | Does this device SV-DO (1xRTT-1xEVDO)? ☐Yes ☒ No | | | | | | | | | Band 2 | | | | | | | | | Band 4 | QPSK | 1000/ | | | | | | LTE (FDD) | Band 5 | 16QAM | 100% | | | | | | | Band 13 | | | | | | | | | Does this device SV-LTE (1xRTT-LTE)? ☐ Yes ☒ No | | | | | | | | | | 802.11b | | | | | | | Wi-Fi | 2.4 GHz | 802.11g | 100% | | | | | | | | 802.11n (HT20) | | | | | | | Bluetooth | 2.4 GHz | Version 4.0 LE | 77.5% (DH5) | | | | | ### 6.3. Nominal and Maximum Output Power KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit | Upper limit (dB): | -1.5 ~ 0.5 | RF Output Pow er (dBm) | | | |-------------------|---------------|------------------------|------------------------------|--| | RF Air interface | Mode | Target | Max. tune-up tolerance limit | | | | 1xRTT | 23.7 | 24.2 | | | CDMA BC0 | 1xEVDO Rel. 0 | 23.7 | 24.2 | | | | 1xEVDO Rev. A | 23.7 | 24.2 | | | | 1xRTT | 23.7 | 24.2 | | | CDMA BC1 | 1xEVDO Rel. 0 | 23.7 | 24.2 | | | | 1xEVDO Rev. A | 23.7 | 24.2 | | | LTE Band 2 | QPSK | 22.2 | 22.7 | | | LTE Band 4 | QPSK | 23.2 | 23.7 | | | LTE Band 5 | QPSK | 23.2 | 23.7 | | | LTE Band 13 | QPSK | 23.2 | 23.7 | | | Upper limit (dB): | 1.0 | RF Output Pow er (dBm) | | | | |-------------------|--------------|------------------------|------------------------------|--|--| | RF Air interface | Mode | Target | Max. tune-up tolerance limit | | | | | 802.11b | 13.5 | 14.5 | | | | WiFi 2.4 GHz | 802.11g | 9.0 | 10.0 | | | | | 802.11n HT20 | 8.0 | 9.0 | | | | Blue | etooth | 6.5 | 7.5 | | | | Blueto | ooth LE | -2.5 | -1.5 | | | # 6.4. General LTE SAR Test and Reporting Considerations | Item | Description | | | | | | | | |--|--------------|-----------------|---------------|----------------|-----------------|------------|---------------|----------------------------| | | | | F | requency rar | ige: 1850 - 19 | 10 MHz | | | | | Band 2 | | | Chanr | nel Bandwidth | | | | | | | 20 MHz | 15 MHz | 10 MHz | 5 MHz | 3 | MHz | 1.4 MHz | | | | 18700 | 18675/ | 18650/ | | | 615/ | 18607/ | | | Low | /1860 | 1857.5 | 1855 | 1852.5 | | 51.5 | 1850.7 | | | N 41 -1 | 18900/ | 18900/ | 18900/ | 18900/ | 18 | 900/ | 18900/ | | | Mid | 1880 | 1880 | 1880 | 1880 | | 880 | 1880 | | | Lliab | 19100/ | 19125/ | 19150/ | 19175/ | 19 | 185/ | 19193/ | | | High | 1900 | 1902.5 | 1905 | 1907.5 | 19 | 08.5 | 1909.3 | | | | | F | requency rar | ige: 1710 - 17 | 55 MHz | | | | | Band 4 | | | Chanr | nel Bandwidth | | | | | | | 20 MHz | 15 MHz | 10 MHz | 5 MHz | 3 | MHz | 1.4 MHz | | | Low | 20050/ | 20025/ | 20000/ | 19975/ | 19 | 965/ | 19957/ | | | Low | 1720 | 1717.5 | 1715 | 1712.5 | 17 | '11.5 | 1710.7 | | | Mid | 20175/ | 20175/ | 20175/ | | | 175/ | 20175/ | | | IVIIG | 1732.5 | 1732.5 | 1732.5 | | | 32.5 | 1732.5 | | | High | 20300/ | 20325/ | 20350/ | | _ | 385/ | 20393/ | | Frequency range, Channel Bandwidth, | g | 1745 | 1747.5 | 1750 | 1752.5 | | 53.5 | 1754.3 | | Numbers and Frequencies | | | | | inge: 824 - 84 | 9 MHz | | | | | Band 5 | | | _ | nel Bandwidth | | | | | | | 20 MHz | 15 MHz | 10 MHz | | | MHz | 1.4 MHz | | | Low | | | 20450/ | | _ |)415/ | 20407/ | | | | | | 829 | 826.5 | | 25.5 | 824.7 | | | Mid | | | 20525/ | | |)525/ | 20525/ | | | | | | 836.5 | 836.5 | | 36.5 | 836.5 | | | High | | | 20600/
844 | 20625/
846.5 | |)635/
47.5 | 20643/
848.3 | | | | | | | inge: 777 - 78 | | +7.5 | 040.3 | | | Band 13 | | | | nel Bandwidth | 7 1011 12 | | | | | Danu 13 | 20 MHz | 15 MHz | 10 MHz | | 2 | MHz | 1.4 MHz | | | | ZU IVITIZ | 13 IVITZ | TO IVITIZ | 23205/ | | IVITZ | 1.4 IVITZ | | | Low | | | | 779.5 | | | | | | | | | 23230/ | | , | | | | | Mid | | | 782 | 782 | | | | | | | | | | 23255/ | 1 | | | | | High | | | | 784.5 | | | | | I.T. | LTE has one | (1) Tx/Rx ant | enna for LTE | Bands 5/13 | , one (1) Tx/R | x antenna | for LTE | Bands 2/4, | | LTE transmitter and antenna | one (1) Rx a | ntenna for LTI | E Bands 2/4 | and one (1) I | Rx antenna for | r LTE Ban | ds 5/13. | | | implementation | Refer to App | endix A. | | | | | | | | | | ble 6.2.3-1: Ma | ximum Powe | er Reduction | (MPR) for Pov | ver Class | 3 | | | | Modulatio | on Cha | nnel bandwid | th / Transmiss | ion bandwidth (| RB) | MPR (di | B) | | | | 1.4 | 3.0 | 5 10 | 15 | 20 | 1 | | | Manipular and a deadles (MADD) | | MHz | | MHz MHz | | MHz | | | | Maximum power reduction (MPR) | QPSK | >5 | >4 | >8 > 12 | | > 18 | ≤ 1 | | | | 16 QAM | | ≤4 | ≤8 ≤12 | | ≤ 18 | ≤1 | \dashv | | | 16 QAM | >5 | > 4 | > 8 > 12 | > 16 | > 18 | ≤ 2 | | | | MPR Built-ir | by design | | | | | | | | | | litional MPR) v | as disabled | during SAR | testing | | | | | Power reduction | No | | | <u>_</u> | <u> </u> | | | | | | | onfigured base | station simi | ılator was us | ed for the SAI | R and now | ver meas | urements. | | Spectrum plots for RB configurations | | ectrum plots f | | | | | | | | Specifully plots for No configurations | | ectium piots i | ui tauli ND a | mocamon and | a onset coningt | urauon ale | 5 HOLHICIL | uu c u III IIIE | | | SAR report. | | | | | | | | ## 7. RF Exposure Conditions (Test Configurations) Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances. | Wireless | RF Exposure | DUT-to-User | Test | Antenna-to- | SAR | Note | |--------------|--------------|-------------|------------------|--------------|----------|------| | technologies | Conditions | Separation | Position | edge/surface | Required | Note | | | | | Left Touch | N/A | Yes | | | | Head | 0 mm | Left Tilt (15°) | N/A | Yes | | | | Ticad | 0 111111 | Right Touch | N/A | Yes | | | | | | Right Tilt (15°) | N/A | Yes | | | | Body | 10 mm | Rear | N/A | Yes | | | WWAN | 200) | | Front | N/A | Yes | | | (Antenna 1) | | | Rear | < 25 mm | Yes | | | | | | Front | < 25 mm | Yes | | | | Hotspot | 10 mm | Edge 1 (Top) | > 25 mm | No | 1 | | | Ποισροί | 10 111111 | Edge 2 (Right) | < 25 mm | Yes | | | | | | Edge 3 (Bottom) | < 25 mm | Yes | | | | | | Edge 4 (Left) | > 25 mm | No | 1 | | | | | Left Touch | N/A | Yes | | | | Head | 0 mm | Left Tilt (15°) | N/A | Yes | | | | пеац | O IIIIII | Right Touch | N/A | Yes | | | | | | Right Tilt (15°) | N/A | Yes | | | | Body | 10 mm | Rear | N/A | Yes | | | WWAN | Dody | 10 111111 | Front | N/A | Yes | | | (Antenna 2) | | | Rear | < 25 mm | Yes | | | | | | Front | < 25 mm | Yes | | | | Hotspot | 10 mm | Edge 1 (Top) | > 25 mm | No | 1 | | | поізроі | 10 111111 | Edge 2 (Right) | > 25 mm | No | 1 | | | | | Edge 3 (Bottom) | < 25 mm | Yes | | | | | | Edge 4 (Left) | < 25 mm | Yes | | | | | | Left Touch | N/A | Yes | | | | Head | 0 mm | Left Tilt (15°) | N/A | Yes | | | | пеаа | 0 mm | Right Touch | N/A | Yes | | | | | | Right Tilt (15°) | N/A | Yes | | | | Body | 10 mm | Rear | N/A | Yes | | | WLAN | Body | 10 111111 | Front | N/A | Yes | | | (Antenna 4) | | | Rear | < 25 mm | Yes | | | , | | | Front | < 25 mm | Yes | | | | Hotspot / | 10 | Edge 1 (Top) | < 25 mm | Yes | | | | Wi-Fi Direct | 10 mm | Edge 2 (Right) | < 25 mm | Yes | | | | | | Edge 3 (Bottom) | > 25 mm | No | 1 | | | | | Edge 4 (Left) | > 25 mm | No | 1 | ### Notes: ^{1.} SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR. ### 8. Dielectric Property Measurements & System Check ### 8.1. Dielectric Property Measurements The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series. Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device. #### **Tissue Dielectric Parameters** FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz | Target Frequency (MHz) | F | lead | Boo | ly | |--------------------------|----------------|---------|----------------|---------| | rarget Frequency (Miriz) | ε _r | σ (S/m) | ϵ_{r} | σ (S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800 – 2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5000 | 36.2 | 4.45 | 49.3 | 5.07 | | 5100 | 36.1 | 4.55 | 49.1 | 5.18 | | 5200 | 36.0 | 4.66 | 49.0 | 5.30 | | 5300 | 35.9 | 4.76 | 48.9 | 5.42 | | 5400 | 35.8 | 4.86 | 48.7 | 5.53 | | 5500 | 35.6 | 4.96 | 48.6 | 5.65 | | 5600 | 35.5 | 5.07 | 48.5 | 5.77 | | 5700 | 35.4 | 5.17 | 48.3 | 5.88 | | 5800 |
35.3 | 5.27 | 48.2 | 6.00 | ### IEEE Std 1528-2013 Refer to Table 3 within the IEEE Std 1528-2013 ### **Dielectric Property Measurements Results:** ### SAR Lab 1 | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |-----------|-------------|----|---------|--|----------|--------|-----------|------------| | | Body 2450 | e' | 51.0400 | Relative Permittivity (ε_r): | 51.04 | 52.70 | -3.15 | 5 | | | | e" | 14.9600 | Conductivity (σ): | 2.04 | 1.95 | 4.51 | 5 | | 2/23/2015 | Body 2410 | e' | 51.2400 | Relative Permittivity (ε_r): | 51.24 | 52.76 | -2.88 | 5 | | 2/23/2013 | Body 2410 | e" | 14.7900 | Conductivity (σ): | 1.98 | 1.91 | 3.90 | 5 | | | Body 2475 | e' | 50.9700 | Relative Permittivity (ε_r): | 50.97 | 52.67 | -3.22 | 5 | | | Body 2473 | e" | 15.1200 | Conductivity (σ): | 2.08 | 1.99 | 4.82 | 5 | #### SAR Lab 2 | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |-----------|-------------|----|---------|--|----------|--------|-----------|------------| | | Head 750 | e' | 40.2300 | Relative Permittivity (ε_r): | 40.23 | 41.96 | -4.13 | 5 | | | Fleati 750 | e" | 21.5700 | Conductivity (σ): | 0.90 | 0.89 | 0.72 | 5 | | 2/27/2015 | Head 700 | e' | 41.0000 | Relative Permittivity (ε_r): | 41.00 | 42.22 | -2.88 | 5 | | 2/21/2013 | Tieau 700 | e" | 22.1100 | Conductivity (σ): | 0.86 | 0.89 | -3.22 | 5 | | | Head 790 | e' | 39.6700 | Relative Permittivity (ε_r) : | 39.67 | 41.76 | -5.00 | 5 | | | | e" | 21.3200 | Conductivity (σ): | 0.94 | 0.90 | 4.50 | 5 | | | Body 750 | e' | 53.5800 | Relative Permittivity (ε_r): | 53.58 | 55.55 | -3.54 | 5 | | | Body 730 | e" | 23.3100 | Conductivity (σ): | 0.97 | 0.96 | 0.93 | 5 | | 2/27/2015 | Body 700 | e' | 54.0300 | Relative Permittivity (ε_r): | 54.03 | 55.74 | -3.07 | 5 | | 2/21/2013 | Body 700 | e" | 23.7400 | Conductivity (σ): | 0.92 | 0.96 | -3.67 | 5 | | | Body 790 | e' | 53.0300 | Relative Permittivity (ε_r): | 53.03 | 55.39 | -4.26 | 5 | | | Body 790 | e" | 23.0400 | Conductivity (σ): | 1.01 | 0.97 | 4.75 | 5 | #### SAR Lab 3 | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |--------------------|-------------|----|---------|--|----------|--------|-----------|------------| | | Head 835 | e' | 42.0600 | Relative Permittivity (ε_r): | 42.06 | 41.50 | 1.35 | 5 | | | Head 000 | e" | 19.5700 | Conductivity (σ): | 0.91 | 0.90 | 0.96 | 5 | | 2/23/2015 | Head 820 | e' | 42.3800 | Relative Permittivity (ε_r): | 42.38 | 41.60 | 1.87 | 5 | | 2/23/2013 | rieau 620 | e" | 19.5800 | Conductivity (σ): | 0.89 | 0.90 | -0.64 | 5 | | | Head 850 | e' | 41.9800 | Relative Permittivity (ε_r): | 41.98 | 41.50 | 1.16 | 5 | | | Tlead 000 | e" | 19.4700 | Conductivity (σ): | 0.92 | 0.92 | 0.57 | 5 | | | Body 835 | e' | 54.8800 | Relative Permittivity (ε_r): | 54.88 | 55.20 | -0.58 | 5 | | 2/23/2015 Body 820 | Body 833 | e" | 21.9200 | Conductivity (σ): | 1.02 | 0.97 | 4.92 | 5 | | | Body 820 | e' | 55.1400 | Relative Permittivity (ε_r): | 55.14 | 55.28 | -0.25 | 5 | | | B00y 020 | e" | 22.0800 | Conductivity (σ): | 1.01 | 0.97 | 3.95 | 5 | | | Body 850 | e' | 54.7300 | Relative Permittivity (ε_r): | 54.73 | 55.16 | -0.77 | 5 | | | | e" | 21.8400 | Conductivity (σ): | 1.03 | 0.99 | 4.57 | 5 | | | Head 835 | e' | 40.0800 | Relative Permittivity (ε_r): | 40.08 | 41.50 | -3.42 | 5 | | | ricad 000 | e" | 19.3900 | Conductivity (σ): | 0.90 | 0.90 | 0.03 | 5 | | 2/27/2015 | Head 820 | e' | 40.2000 | Relative Permittivity (ε_r): | 40.20 | 41.60 | -3.37 | 5 | | 2/21/2013 | Tieau 020 | e" | 19.3500 | Conductivity (σ): | 0.88 | 0.90 | -1.80 | 5 | | | Head 850 | e' | 39.9600 | Relative Permittivity (ε_r): | 39.96 | 41.50 | -3.71 | 5 | | | Head 050 | e" | 19.1200 | Conductivity (σ): | 0.90 | 0.92 | -1.24 | 5 | | | Body 835 | e' | 53.0100 | Relative Permittivity (ε_r): | 53.01 | 55.20 | -3.97 | 5 | | | Body 833 | e" | 21.9200 | Conductivity (σ): | 1.02 | 0.97 | 4.92 | 5 | | 2/27/2015 | Body 820 | e' | 53.1900 | Relative Permittivity (ε_r): | 53.19 | 55.28 | -3.78 | 5 | | 2/21/2015 | 500y 020 | e" | 21.8700 | Conductivity (σ): | 1.00 | 0.97 | 2.96 | 5 | | | Body 850 | e' | 52.9300 | Relative Permittivity (ε_r): | 52.93 | 55.16 | -4.04 | 5 | | | Body 650 | e" | 21.5900 | Conductivity (σ): | 1.02 | 0.99 | 3.37 | 5 | ### SAR Lab 3 (continued) | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |-------------------|-------------|---------|--|--|----------|--------|-----------|------------| | | Head 835 | e' | 39.7100 | Relative Permittivity (ε_r): | 39.71 | 41.50 | -4.31 | 5 | | | ricad 655 | e" | 19.2300 | Conductivity (σ): | 0.89 | 0.90 | -0.80 | 5 | | 3/2/2015 Head 820 | e' | 40.0700 | Relative Permittivity (ε_r): | 40.07 | 41.60 | -3.68 | 5 | | | 3/2/2013 | Fleau 620 | e" | 19.5300 | Conductivity (σ): | 0.89 | 0.90 | -0.89 | 5 | | | Head 850 | e' | 39.6100 | Relative Permittivity (ε_r): | 39.61 | 41.50 | -4.55 | 5 | | | Head 650 | e" | 19.2300 | Conductivity (σ): | 0.91 | 0.92 | -0.67 | 5 | | | Body 835 | e' | 53.5200 | Relative Permittivity (ε_r): | 53.52 | 55.20 | -3.04 | 5 | | | Body 655 | e" | 21.7100 | Conductivity (σ): | 1.01 | 0.97 | 3.91 | 5 | | 3/2/2015 | Body 820 | e' | 53.7400 | Relative Permittivity (ε_r): | 53.74 | 55.28 | -2.78 | 5 | | 3/2/2013 | B00y 620 | e" | 21.8500 | Conductivity (σ): | 1.00 | 0.97 | 2.87 | 5 | | | Body 850 | e' | 53.4500 | Relative Permittivity (ε_r): | 53.45 | 55.16 | -3.10 | 5 | | | Body 650 | e" | 21.7400 | Conductivity (σ): | 1.03 | 0.99 | 4.09 | 5 | #### SAR Lab 4 | Date | Freq. (MHz) | | Liqu | Measured | Target | Delta (%) | Limit ±(%) | | |----------------|-------------|----|---------|--|--------|-----------|------------|---| | | Body 1900 | e' | 51.5000 | Relative Permittivity (ε_r): | 51.50 | 53.30 | -3.38 | 5 | | | Бойу 1900 | e" | 14.7000 | Conductivity (σ): | 1.55 | 1.52 | 2.17 | 5 | | 2/26/2015 Body | Body 1850 | e' | 51.6900 | Relative Permittivity (ε_r) : | 51.69 | 53.30 | -3.02 | 5 | | 2/20/2013 | Body 1650 | e" | 14.6300 | Conductivity (σ): | 1.50 | 1.52 | -0.99 | 5 | | | Body 1910 | e' | 51.4900 | Relative Permittivity (ε_r) : | 51.49 | 53.30 | -3.40 | 5 | | | Body 1910 | e" | 14.7700 | Conductivity (σ): | 1.57 | 1.52 | 3.20 | 5 | | | Head 1900 | e' | 39.3700 | Relative Permittivity (ε_r) : | 39.37 | 40.00 | -1.58 | 5 | | | nead 1900 | e" | 13.5600 | Conductivity (σ): | 1.43 | 1.40 | 2.33 | 5 | | 2/26/2015 | Head 1850 | e' | 39.6200 | Relative Permittivity (ε_r) : | 39.62 | 40.00 | -0.95 | 5 | | 2/20/2013 | rieau 1650 | e" | 13.4500 | Conductivity (σ): | 1.38 | 1.40 | -1.18 | 5 | | | Head 1910 | e' | 39.3000 | Relative Permittivity (ε_r): | 39.30 | 40.00 | -1.75 | 5 | | | Tieau 1910 | e" | 13.5900 | Conductivity (σ): | 1.44 | 1.40 | 3.09 | 5 | #### SAR Lab 5 | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |--------------------|-------------|---------|---|--|----------|--------|-----------|------------| | | Head 1900 | e' | 38.8700 | Relative Permittivity (ε_r): | 38.87 | 40.00 | -2.83 | 5 | | | Head 1900 | e" | 13.3600 | Conductivity (σ): | 1.41 | 1.40 | 0.82 | 5 | | 3/3/2015 | Head 1850 | e' | 39.1800 | Relative Permittivity (ε_r) : | 39.18 | 40.00 | -2.05 | 5 | | 3/3/2015 | Head 1650 | e" | 13.1600 | Conductivity (σ): | 1.35 | 1.40 | -3.31 | 5 | | | Head 1910 | e' | 38.8700 | Relative Permittivity (ε_r) : | 38.87 | 40.00 | -2.83 | 5 | | | Head 1910 | e" | 13.3600 | Conductivity (σ): | 1.42 | 1.40 | 1.35 | 5 | | | Body 1900 | e' | 50.6900 | Relative Permittivity (ε_r) : | 50.69 | 53.30 | -4.90 | 5 | | | Бойу 1900 | e" | 14.2600 | Conductivity (σ): | 1.51 | 1.52 | -0.89 | 5 | | 3/3/2015 Body 1850 | e' | 50.9600 | Relative Permittivity (ε_r) : | 50.96 | 53.30 | -4.39 | 5 | | | 3/3/2015 | B00y 1650 | e" | 14.0800 | Conductivity (σ): | 1.45 | 1.52 | -4.71 | 5 | | | Body 1910 | e' | 50.6500 | Relative Permittivity (ε_r): | 50.65 | 53.30 | -4.97 | 5 | | | Бойу 1910 | e" | 14.3000 | Conductivity (σ): | 1.52 | 1.52 | -0.09 | 5 | | | Head 1750 | e' | 39.4700 | Relative Permittivity (ε_r): | 39.47 | 40.08 | -1.53 | 5 | | | Head 1750 | e" | 14.1400 | Conductivity (σ): | 1.38 | 1.37 | 0.51 | 5 | | 3/9/2015 | Head 1710 | e' | 39.6300 | Relative Permittivity (ε_r) : | 39.63 | 40.15 | -1.29 | 5 | | 3/9/2015 | Head 1710 | e" | 13.9600 | Conductivity (σ): | 1.33 | 1.35 | -1.42 | 5 | | | Head 1755 | e' | 39.3700 | Relative Permittivity (ε_r) : | 39.37 | 40.08 | -1.76 | 5 | | | Head 1755 | e" | 14.0700 | Conductivity (σ): | 1.37 | 1.37 | 0.09 | 5 | | | Body 1750 | e' | 51.8200 | Relative Permittivity (ε_r) : | 51.82 | 53.44 | -3.03 | 5 | | | Body 1750 | e" | 15.6400 | Conductivity (σ): | 1.52 | 1.49 | 2.40 | 5 | | 3/9/2015 | Pody 1710 | e' | 51.9500 | Relative Permittivity (ε_r): | 51.95 | 53.54 | -2.98 | 5 | | 3/9/2015 | Body 1710 | e" | 15.5700 | Conductivity (σ): | 1.48 | 1.46 | 1.29 | 5 | | | Pody 1755 | e' | 51.7300 | Relative Permittivity (ε_r): | 51.73 | 53.43 | -3.18 | 5 | | | Body 1755 | e" | 15.5600 | Conductivity (σ): | 1.52
| 1.49 | 1.96 | 5 | ### SAR Lab G | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |----------|-------------|----|---------|--|----------|--------|-----------|------------| | | Head 2450 | e' | 38.3900 | Relative Permittivity (ε_r): | 38.39 | 39.20 | -2.07 | 5 | | | Tieau 2430 | e" | 13.7300 | Conductivity (σ): | 1.87 | 1.80 | 3.91 | 5 | | 3/3/2015 | Head 2410 | e' | 38.5600 | Relative Permittivity (ε_r): | 38.56 | 39.28 | -1.83 | 5 | | 3/3/2013 | Tieau 2410 | e" | 13.5800 | Conductivity (σ): | 1.82 | 1.76 | 3.37 | 5 | | | Head 2475 | e' | 38.2900 | Relative Permittivity (ε_r): | 38.29 | 39.17 | -2.24 | 5 | | | Head 2475 | e" | 13.8000 | Conductivity (σ): | 1.90 | 1.83 | 3.95 | 5 | ### 8.2. System Check SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements. #### **System Performance Check Measurement Conditions:** - The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters. - The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz. - The DASY system with an E-Field Probe was used for the measurements. - The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface. - The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole. - Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube. - Distance between probe sensors and phantom surface was set to 3 mm. For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm - The dipole input power (forward power) was 100 mW. - The results are normalized to 1 W input power. #### **Reference Target SAR Values** The reference SAR values can be obtained from the calibration certificate of system validation dipoles | System Dipole | Serial No. | Cal. Date | Frog (MUz) | Ta | rget SAR Values (\ | W/kg) | |---------------|------------|-----------|-------------|--------|--------------------|-------| | System Dipole | Serial No. | Cai. Date | Freq. (MHz) | 1g/10g | Head | Body | | D750V3 | 1019 | 3/17/2014 | 750 | 1g | 8.21 | 8.64 | | D/30V3 | 1019 | 3/11/2014 | 750 | 10g | 5.38 | 5.69 | | D835V2 | 4d142 | 9/9/2014 | 835 | 1g | 8.91 | 9.22 | | D635 V 2 | 40142 | 9/9/2014 | 633 | 10g | 5.77 | 6.05 | | D1750V2 | 1077 | 9/11/2014 | 1750 | 1g | 36.5 | 36.9 | | D1730V2 | 1077 | 9/11/2014 | 1730 | 10g | 19.4 | 19.8 | | D1900V2 | 5d163 | 9/11/2014 | 1900 | 1g | 40.8 | 40.6 | | D1900V2 | 50165 | 9/11/2014 | 1900 | 10g | 21.2 | 21.4 | | D2450V2 | 899 | 9/10/2014 | 2450 | 1g | 52.3 | 50.5 | | D2450V2 | 699 | 9/10/2014 | 2450 | 10g | 24.3 | 23.5 | | D2450V2 | 706 | 5/20/2014 | 2450 | 1g | 53.0 | 50.2 | | D2430V2 | 706 | 3/20/2014 | 2430 | 10g | 24.5 | 23.4 | ### **System Check Results** The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target. #### SAR Lab 1 | | System | Dipole | т.с | | Measured | d Results | Tanast | Dalta | Dist | |-------------|---------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------| | Date Tested | Туре | Serial # | T.S.
Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | Plot
No. | | 2/23/2015 | D2450V2 | 899 | Body | 1g | 5.19 | 51.9 | 50.5 | 2.77 | 1,2 | | 2/23/2013 | D2430V2 | 099 | Body | 10g | 2.38 | 23.8 | 23.5 | 1.28 | 1,2 | #### SAR Lab 2 | | System | Dipole | т.с | | Measured | d Results | Toract | Dolto | Plot | |-------------|--------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|------| | Date Tested | Туре | Serial # | T.S.
Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | No. | | 2/27/2015 | D750V3 | 1019 | Head | 1g | 0.842 | 8.42 | 8.91 | -5.50 | 3,4 | | 2/21/2015 | D/30V3 | 1019 | пеац | 10g | 0.549 | 5.49 | 5.77 | -4.85 | 3,4 | | 2/27/2015 | D750V3 | 1019 | Body | 1g | 0.880 | 8.80 | 8.64 | 1.85 | | | 2/21/2015 | D730V3 | 1019 | Войу | 10g | 0.586 | 5.86 | 5.69 | 2.99 | | #### SAR Lab 3 | SAN Lab 3 | <u> </u> | D | | | | | | | | |-------------|----------|----------|--------|-----|------------------------|---------------------|--------------|-------|------| | | System | Dipole | T.S. | | Measured | Results | Target | Delta | Plot | | Date Tested | Туре | Serial # | Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | (Ref. Value) | ±10 % | No. | | 2/23/2015 | D835V2 | 4d142 | Head | 1g | 0.904 | 9.04 | 8.91 | 1.46 | | | 2/23/2013 | D033V2 | 40142 | Head | 10g | 0.590 | 5.90 | 5.77 | 2.25 | | | 2/23/2015 | D835V2 | 4d142 | Body | 1g | 0.938 | 9.38 | 9.22 | 1.74 | | | 2/23/2013 | D03372 | 40142 | Войу | 10g | 0.618 | 6.18 | 6.05 | 2.15 | | | 2/27/2015 | D835V2 | 4d142 | Head | 1g | 0.950 | 9.50 | 8.91 | 6.62 | | | 2/21/2013 | D033V2 | 40142 | Head | 10g | 0.623 | 6.23 | 5.77 | 7.97 | | | 2/27/2015 | D835V2 | 4d142 | Body | 1g | 0.989 | 9.89 | 9.22 | 7.27 | | | 2/21/2013 | D033V2 | 40142 | Войу | 10g | 0.648 | 6.48 | 6.05 | 7.11 | | | 3/2/2015 | D835V2 | 4d142 | Head | 1g | 0.956 | 9.56 | 8.91 | 7.30 | 5,6 | | 3/2/2015 | D035V2 | 4u142 | rieau | 10g | 0.626 | 6.26 | 5.77 | 8.49 | 5,6 | | 3/2/2015 | D835V2 | 4d142 | Body | 1g | 0.955 | 9.55 | 9.22 | 3.58 | | | 3/2/2015 | D03572 | 4u142 | Бойу | 10g | 0.629 | 6.29 | 6.05 | 3.97 | | #### SAR Lab 4 | | System | Dipole | т.с | | Measured | d Results | Tanast | Dalta | Dist | |-------------|--------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------| | Date Tested | Type | Serial # | T.S.
Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | Plot
No. | | 2/26/2015 | 1900 | 5d163 | Body | 1g | 3.81 | 38.1 | 40.60 | -6.16 | | | 2/20/2013 | 1900 | 30103 | Войу | 10g | 1.98 | 19.8 | 21.40 | -7.48 | | | 2/26/2015 | 1900 | 5d163 | Head | 1g | 3.80 | 38.0 | 40.80 | -6.86 | 7,8 | | 2/26/2015 | 1900 | 50165 | пеац | 10g | 1.96 | 19.6 | 21.20 | -7.55 | 7,0 | ### SAR Lab 5 | | System | Dipole | T.S. | | Measured | d Results | Torget | Delte | | |-------------|---------|----------|--------|-----|------------------------|---------------------|------------------------|----------------|----------| | Date Tested | Туре | Serial # | Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | Plot No. | | 3/3/2015 | D1900V2 | 5d163 | Head | 1g | 4.04 | 40.4 | 40.80 | -0.98 | | | 3/3/2013 | D1900V2 | 30103 | Head | 10g | 2.09 | 20.9 | 21.20 | -1.42 | | | 3/3/2015 | D1900V2 | 5d163 | Body | 1g | 4.12 | 41.2 | 40.60 | 1.48 | | | 3/3/2013 | D1900V2 | 50105 | Войу | 10g | 2.14 | 21.4 | 21.40 | 0.00 | | | 3/9/2015 | D1750V2 | 1077 | Head | 1g | 3.56 | 35.6 | 36.5 | -2.47 | | | 3/9/2013 | D1730V2 | 1077 | Head | 10g | 1.89 | 18.9 | 19.4 | -2.58 | | | 3/9/2015 | D1750V2 | 1077 | Body | 1g | 3.93 | 39.3 | 36.90 | 6.50 | 9,10 | | 3/3/2013 | D1730V2 | 1077 | Body | 10g | 2.10 | 21.0 | 19.8 | 6.06 | 3,10 | ### SAR Lab G | | | System | Dipole | Τ.0 | | Measured | d Results | T | Dalla | Dist | |---|-------------|---------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------| | l | Date Tested | Туре | Serial # | T.S.
Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | Plot
No. | | ľ | 3/3/2015 | D2450V2 | 706 | Head | 1g | 5.56 | 55.6 | 53.0 | 4.91 | 11.12 | | | 3/3/2013 | D2430V2 | 700 | Head | 10g | 2.53 | 25.3 | 24.5 | 3.27 | 11,12 | # 9. Conducted Output Power Measurements ### 9.1. CDMA **Measured Results** | Band | | Mode | Ch No. | Freq.
(MHz) | Avg Pwr
(dBm) | |--------------|------------------|--
--|---|--| | | | DO4 0055 | 1013 | 824.70 | 23.7 | | | | RC1 SO55
(Loopback) | 384 | 836.52 | 23.8 | | | | (Еборбаск) | 1013 824.70 384 836.52 777 848.31 1013 824.70 384 836.52 777 848.31 1013 824.70 384 836.52 777 848.31 1013 824.70 384 836.52 777 848.31 1013 824.70 384 836.52 777 848.31 1013 824.70 384 836.52 777 848.31 1013 824.70 384 836.52 777 848.31 1013 824.70 384 836.52 777 848.31 1013 824.70 824.70 1013 1013 | 23.8 | | | | | DC3 COFF | 1013 | 824.70 | 23.8 | | | 1xRTT | RC3 SO55
(Loopback) | 384 | 836.52 | 23.8 | | | | (Loopback) | 777 | 848.31 | 23.9 | | | | BC2 CO22 | 1013 | 824.70 | 23.7 | | BC 0 | | RC3 SO32
(+F-SCH) | 384 | 836.52 | 23.8 | | | | (11-3011) | 777 | 848.31 | 23.9 | | | . 51/50 | | 1013 | 824.70 | 23.8 | | | 1xEVDO
Rel. 0 | FTAP Rate: 307.2 kbps(2 slot, QPSK) RTAP Rate: 153.6 kbps | 384 | 836.52 | 23.8 | | | Rei. U | KTAF Kale. 155.6 kbps | 777 | 848.31 | 23.9 | | | | | 1013 | 824.70 | 23.9 | | | 1xEVDO
Rev. A | FETAP: 307.2k, QPSK/ ACK
RETAP: 4096 | 384 | 836.52 | 23.9 | | | Rev. A | RETAP. 4090 | 777 | 848.31 | 24.0 | | | | | | _ | | | Band | | Mode | Ch No. | | Avg Pwr
(dBm) | | Band | | | | (MHz) | _ | | Band | | RC1 SO55 | 25 | (MHz)
1851.25 | (dBm) | | Band | | | 25
600 | (MHz)
1851.25
1880.00 | (dBm)
23.6 | | Band | | RC1 SO55
(Loopback) | 25
600
1175 | (MHz)
1851.25
1880.00
1908.75 | (dBm)
23.6
23.7 | | Band | 1xRTT | RC1 SO55
(Loopback)
RC3 SO55 | 25
600
1175
25 | (MHz)
1851.25
1880.00
1908.75
1851.25 | (dBm)
23.6
23.7
23.6 | | Band | 1xRTT | RC1 SO55
(Loopback) | 25
600
1175
25
600 | (MHz)
1851.25
1880.00
1908.75
1851.25
1880.00 | (dBm)
23.6
23.7
23.6
23.7 | | Band | 1xRTT | RC1 SO55
(Loopback)
RC3 SO55
(Loopback) | 25
600
1175
25
600
1175 | (MHz)
1851.25
1880.00
1908.75
1851.25
1880.00
1908.75 | (dBm)
23.6
23.7
23.6
23.7
23.7 | | Band
BC 1 | 1xRTT | RC1 SO55
(Loopback)
RC3 SO55
(Loopback) | 25
600
1175
25
600
1175
25 | (MHz)
1851.25
1880.00
1908.75
1851.25
1880.00
1908.75
1851.25 | (dBm) 23.6 23.7 23.6 23.7 23.7 23.8 | | | 1xRTT | RC1 SO55
(Loopback)
RC3 SO55
(Loopback) | 25
600
1175
25
600
1175
25
600 | (MHz) 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 | (dBm) 23.6 23.7 23.6 23.7 23.7 23.7 23.8 23.5 | | | | RC1 SO55
(Loopback) RC3 SO55
(Loopback) RC3 SO32
(+F-SCH) | 25
600
1175
25
600
1175
25
600
1175 | (MHz) 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 | (dBm) 23.6 23.7 23.6 23.7 23.7 23.8 23.5 23.6 | | | 1xEVDO | RC1 SO55 (Loopback) RC3 SO55 (Loopback) RC3 SO32 (+F-SCH) FTAP Rate: 307.2 kbps(2 slot, QPSK) | 25
600
1175
25
600
1175
25
600
1175
25 | (MHz) 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 | (dBm) 23.6 23.7 23.6 23.7 23.7 23.8 23.5 23.6 23.7 | | | | RC1 SO55
(Loopback) RC3 SO55
(Loopback) RC3 SO32
(+F-SCH) | 25
600
1175
25
600
1175
25
600
1175
25
600 | (MHz) 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 | (dBm) 23.6 23.7 23.6 23.7 23.7 23.8 23.5 23.6 23.7 23.6 23.7 | | | 1xEVDO
Rel. 0 | RC1 SO55 (Loopback) RC3 SO55 (Loopback) RC3 SO32 (+F-SCH) FTAP Rate: 307.2 kbps(2 slot, QPSK) RTAP Rate: 153.6 kbps | 25
600
1175
25
600
1175
25
600
1175
25
600
1175 | (MHz) 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 | (dBm) 23.6 23.7 23.6 23.7 23.7 23.8 23.5 23.6 23.7 23.6 23.7 | | | 1xEVDO
Rel. 0 | RC1 SO55 (Loopback) RC3 SO55 (Loopback) RC3 SO32 (+F-SCH) FTAP Rate: 307.2 kbps(2 slot, QPSK) RTAP Rate: 153.6 kbps FETAP: 307.2k, QPSK/ ACK | 25
600
1175
25
600
1175
25
600
1175
25
600
1175
25 | (MHz) 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 | (dBm) 23.6 23.7 23.6 23.7 23.7 23.8 23.5 23.6 23.7 23.6 23.7 23.8 23.5 23.6 23.7 | | | 1xEVDO
Rel. 0 | RC1 SO55 (Loopback) RC3 SO55 (Loopback) RC3 SO32 (+F-SCH) FTAP Rate: 307.2 kbps(2 slot, QPSK) RTAP Rate: 153.6 kbps | 25
600
1175
25
600
1175
25
600
1175
25
600
1175
25 | (MHz) 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 1908.75 1851.25 1880.00 | (dBm) 23.6 23.7 23.6 23.7 23.8 23.5 23.6 23.7 23.6 23.7 23.5 23.6 23.6 23.8 | ### 9.2. LTE The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification. UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101. Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3 | Modulation | Cha | nnel bandw | idth / Tra | ansmission | bandwidth (| (RB) | MPR (dB) | | | | | |------------|------------|----------------------|------------|------------|-------------|------|----------|--|--|--|--| | | 1.4
MHz | | | | | | | | | | | | QPSK | >5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤1 | | | | | | 16 QAM | ≤ 5 | ≤5 ≤4 ≤8 ≤12 ≤16 ≤18 | | | | | | | | | | | 16 QAM | >5 | > 4 | >8 | > 12 | > 16 | > 18 | ≤ 2 | | | | | The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS 01". Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR) | Network
Signalling
value | Requirements
(sub-clause) | E-UTRA Band | Channel
bandwidth
(MHz) | Resources
Blocks (N _{RB}) | A-MPR (dB) | |--------------------------------|------------------------------|----------------------------|-------------------------------|--|----------------| | NS_01 | 6.6.2.1.1 | Table 5.5-1 | 1.4, 3, 5, 10,
15, 20 | Table 5.6-1 | NA | | | | | 3 | >5 | ≤ 1 | | | | | 5 | >6 | ≤ 1 | | NS_03 | 6.6.2.2.1 | 2, 4,10, 23, 25,
35, 36 | 10 | >6 | ≤ 1 | | | | | 15 | >8 | ≤ 1 | | | | | 20 | >10 | ≤ 1 | | NS 04 | 6.6.2.2.2 | 41 | 5 | >6 | ≤ 1 | | 110_04 | 0.0.2.2.2 | 41 | 10, 15, 20 | See Tab | le 6.2.4-4 | | NS_05 | 6.6.3.3.1
 1 | 10,15,20 | ≥ 50 | ≤ 1 | | NS_06 | 6.6.2.2.3 | 12, 13, 14, 17 | 1.4, 3, 5, 10 | Table 5.6-1 | n/a | | NO 07 | 6.6.2.2.3 | 13 | 10 | Table 6.2.4-2 | Table 6.2.4-2 | | NS_07 | 6.6.3.3.2 | 13 | 10 | Table 6.2.4-2 | Table 6.2.4-2 | | NS_08 | 6.6.3.3.3 | 19 | 10, 15 | > 44 | ≤ 3 | | NS 09 | 6.6.3.3.4 | 21 | 10, 15 | > 40 | ≤ 1 | | 143_09 | 0.0.0.0.4 | 21 | • | > 55 | ≤ 2 | | NS_10 | | 20 | 15, 20 | Table 6.2.4-3 | Table 6.2.4-3 | | NS_11 | 6.6.2.2.1 | 231 | 1.4, 3, 5, 10 | Table 6.2.4-5 | Table 6.2.4-5 | | | | | | | | | NS_32 | - | - | - | - | - | | Note 1: A | pplies to the lower l | block of Band 23, i.e | a carrier place | d in the 2000-20 | 10 MHz region. | ### LTE Band 2 Measured Results | LTE Band : | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | |------------|-------------|---------|------------------|--------------|---------------|--------------|------------|--|--| | Band | (MHz) | iviode | Allocation | offset | MPR | MPR | 1860 MHz | 1880 MHz | 1900 MHz | | | | | 1 | 0 | 0 | 0 | 22.7 | 22.7 | 22.7 | | | | | 1 | 49 | 0 | 0 | 22.7 | 22.7 | 22.5 | | | | | 1 | 99 | 0 | 0 | 22.7 | 22.6 | 22.6 | | | | QPSK | 50 | 0 | 1 | 1 | 21.7 | 21.7 | 21.7 | | | | | 50 | 24 | 1 | 1 | 21.6 | 21.7 | 21.6 | | | | | 50 | 50 | 1 | 1 | 21.7 | 21.7 | 21.7 | | LTE Band 2 | 20 | | 100 | 0 | 1 | 1 | 21.6 | 21.7 | 21.7 | | ETE Bana 2 | 20 | | 1 | 0 | 1 | 1 | 21.7 | 21.7 | 21.6 | | | | | 1 | 49 | 1 | 1 | 21.7 | 21.7 | 21.3 | | | | | 1 | 99 | 1 | 1 | 21.6 | 21.6 | 21.1 | | | | 16QAM | 50 | 0 | 2 | 2 | 20.7 | 20.7 | 20.7 | | | | | 50 | 24 | 2 | 2 | 20.7 | 20.7 | 20.6 | | | | | 50 | 50 | 2 | 2 | 20.6 | 20.6 | 20.6 | | | | | 100 | 0 | 2 | 2 | 20.6 | 20.6 | 20.7 | | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | 24.14 | (MHz) | | Allocation | offset | MPR | MPR | 1857.5 MHz | 1880 MHz | | | | | | 1 | 0 | 0 | 0 | 22.7 | | | | | | | 1 | 37 | 0 | 0 | 22.7 | | | | | | | 1 | 74 | 0 | 0 | 22.7 | | | | | | QPSK | 36 | 0 | 1 | 1 | 21.7 | | | | | | | 36 | 20 | 1 | 1 | 21.7 | | 21.6 | | | | | 36 | 39 | 1 | 1 | 21.7 | | 21.6 | | LTE Band 2 | 15 | | 75 | 0 | 1 | 1 | 21.6 | 21.6 | 21.6 | | | | | 1 | 0 | 1 | 1 | 21.7 | | | | | | | 1 | 37 | 1 | 1 | 21.7 | 21.6 | 21.7 | | | | | 1 | 74 | 1 | 1 | 21.7 | | | | | | 16QAM | 36 | 0 | 2 | 2 | 20.6 | | | | | | | 36 | 20 | 2 | 2 | 20.6 | | | | | | | 36 | 39 | 2 | 2 | 20.7 | | | | | | | 75 | 0 | 2 | 2 | 20.6 | | 20.7 | | Band | BW
(MHz) | Mode | RB
Allocation | RB
offeet | Target
MPR | Meas.
MPR | | | | | | (MHz) | | Allocation | offset | | | 1855 MHz | | | | | | | 1 | 0 | 0 | 0 | 22.7 | | | | | | | 1 | 25 | 0 | 0 | 22.7 | | | | | | ODCK | 1 | 49 | 0 | 0 | 22.7 | | | | | | QPSK | 25 | 0 | 1 | 1 | 21.7 | | | | | | | 25 | 12 | 1 | 1 | 21.7 | | | | | | | 25 | 25 | 1 | 1 | 21.7 | | | | LTE Band 2 | 10 | | 50 | 0 | 1 | 1 | 21.7 | | | | | | | 1 | 0 | 1 | 1 | 21.6 | 22.6 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 | | | | | | 1 | 25 | 1 | 1 | 21.6 | | | | | | 100 114 | 1 | 49 | 1 | 1 | 21.7 | | 880 MHz 1900 MHz 22.7 22.7 22.6 22.6 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.3 21.6 21.1 20.7 20.6 20.6 20.6 20.6 20.7 20.7 22.6 22.7 22.6 22.7 22.6 21.7 21.6 21.6 21.5 21.6 21.5 21.6 21.6 21.7 21.6 21.7 21.6 21.7 21.6 21.7 | | | | 16QAM | 25 | 0 | 2 | 2 | 20.6 | | | | | | | 25 | 12 | 2 | 2 | 20.6 | | | | | | | 25 | 25 | 2 | 2 | 20.7 | | | | | | | 50 | 0 | 2 | 2 | 20.6 | 20.6 | 20.7 | | LTE Band | 2 Measure | ed Results | (continue | <u>d)</u> | | | | | | | | | | | | |------------|-----------|------------|------------|-----------|--------|--------|------------|---------------|------------|------|---|---|---|------|------| | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | | | | | | 20.10 | (MHz) | | Allocation | offset | MPR | MPR | 1852.5 MHz | 1880 MHz | 1907.5 MHz | | | | | | | | | | | 1 | 0 | 0 | 0 | 22.5 | 22.7 | 22.7 | | | | | | | | | | | 1 | 12 | 0 | 0 | 22.7 | 22.7 | 22.7 | | | | | | | | | | | 1 | 24 | 0 | 0 | 22.5 | 22.7 | 22.7 | | | | | | | | | | QPSK | 12 | 0 | 1 | 1 | 21.5 | 21.6 | 21.6 | | | | | | | | | | | 12 | 7 | 1 | 1 | 21.6 | 21.6 | 21.6 | | | | | | | | | | | 12 | 13 | 1 | 1 | 21.6 | 21.6 | 21.6 | | | | | | | | LTE Band 2 | 5 | | 25 | 0 | 1 | 1 | 21.6 | 21.6 | 21.6 | | | | | | | | LIL Dana Z | 3 | | 1 | 0 | 1 | 1 | 21.7 | 21.7 | 21.7 | | | | | | | | | | | 1 | 12 | 1 | 1 | 21.7 | 21.7 | 21.7 | | | | | | | | | | | 1 | 24 | 1 | 1 | 21.7 | 21.7 | 21.7 | | | | | | | | | | 16QAM | 12 | 0 | 2 | 2 | 20.7 | 20.7 | 20.7 | | | | | | | | | | | 12 | 7 | 2 | 2 | 20.7 | 20.7 | 20.7 | | | | | | | | | | | 12 | 13 | 2 | 2 | 20.4 | 20.7 | 20.7 | | | | | | | | | | | 25 | 0 | 2 | 2 | 20.7 | 20.6 | 20.7 | | | | | | | | Daniel | BW | Mada | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | | | | | | Band | (MHz) | Mode | Allocation | offset | MPR | MPR | 1851.5 MHz | 1880 MHz | 1908.5 MHz | | | | | | | | | | | 1 | 0 | 0 | 0 | 22.6 | 22.6 | 22.6 | | | | | | | | | | | 1 | 7 | 0 | 0 | 22.6 | 22.7 | 22.6 | | | | | | | | | | QPSK | 1 | 14 | 0 | 0 | 22.5 | 22.5 | 22.7 | | | | | | | | | | | 6 | 0 | 1 | 1 | 21.5 | 21.6 | 21.5 | | | | | | | | | | | 6 | 3 | 1 | 1 | 21.6 | 21.6 | 21.6 | | | | | | | | | | | 6 | 5 | 1 | 1 | 21.5 | 21.6 | 21.6 | | | | | | | | | • | | 15 | 0 | 1 | 1 | 21.6 | 21.6 | 21.6 | | | | | | | | LTE Band 2 | 3 | | 1 | 0 | 1 | 1 | 21.7 | 21.3 | 21.5 | | | | | | | | | | | 1 | 7 | 1 | 1 | 21.4 | 21.5 | 21.7 | | | | | | | | | | | 1 | 14 | 1 | 1 | 21.7 | 21.4 | 21.5 | | | | | | | | | | 16QAM | 6 | 0 | 2 | 2 | 20.6 | 20.7 | 20.7 | | | | | | | | | | | 6 | 3 | 2 | 2 | 20.6 | 20.7 | 20.7 | | | | | | | | | | | 6 | 5 | 2 | 2 | 20.4 | 20.7 | 20.5 | | | | | | | | | | | 15 | 0 | 2 | 2 | 20.6 | 20.6 | 20.7 | | | | | | | | | BW | | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | | | | | | Band | (MHz) | Mode | Allocation | offset | MPR | MPR | 1850.7 MHz | 1880 MHz | 1909.3 MHz | | | | | | | | | | | 1 | 0 | 0 | 0 | 22.5 | 22.6 | 22.6 | | | | | | | | | | | 1 | 2 | 0 | 0 | 22.6 | 22.7 | 22.6 | | | | | | | | | | | 1 | 5 | 0 | 0 | 22.4 | 22.7 | 22.7 | | | | | | | | | | QPSK | QPSK | 3 | 0 | 0 | 0 | 22.7 | 22.6 | 22.6 | | | | | | | | | | | UPSK | QPSK _ | QPSK _ | QPSK - | QPSK | ursk | 3 | 1 | 0 | 0 | 22.5 | 22.6 | | | | | 3 | 2 | 0 | 0 | 22.6 | 22.6 | 22.6 | | | | | | | | | | | 6 | 0 | 1 | 1 | 21.5 | 21.6 | 21.6 | | | | | | | | LTE Band 2 | 1.4 | | 1 | 0 | 1 | 1 | 21.2 | 21.6 | 21.6 | | | | | | | | | | | 1 | 2 | 1 | 1 | 21.7 | 21.7 | 21.5 | | | | | | | | | | | 1 | 5 | 1 | 1 | 21.4 | 21.7 | 21.7 | | | | | | | | | | 16QAM | 3 | 0 | 1 | 1 | 21.7 | 21.4 | 21.5 | | | | | | | | | | | 3 | 1 | 1 | 1 | 21.6 | 21.7 | 21.6 | | | | | | | | | | | 3 | 2 | 1 | 1 | 21.2 | 21.6 | 21.7 | | | | | | | | | | | 6 | 0 | 2 | 2 | 20.2 | 20.6 | 20.7 | | | | | | | | | | | L v | | | _ | 20.2 | 20.0 | 20.1 | | | | | | | ### LTE Band 4 Measured Results | LTE Band Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | |---------------|-------------|--------|------------------|--------------|---------------|--------------|------------|---------------|------------| | Danu | (MHz) | iviode | Allocation | offset | MPR | MPR | 1720 MHz | 1732.5 MHz | 1745 MHz | | | | | 1 | 0 | 0 | 0 | 23.7 | 23.5 | 23.5 | | | | | 1 | 49 | 0 | 0 | 23.7 | 23.7 | 23.1 | | | | | 1 | 99 | 0 | 0 | 23.5 | 23.7 | 23.3 | | | | QPSK | 50 | 0 | 1 | 1 | 22.7 | 22.7 | 22.5 | | | | | 50 | 25 | 1 | 1 | 22.7 | 22.7 | 22.4 | | | | | 50 | 49 | 1 | 1 | 22.7 | 22.6 | 22.4 | | LTE Band 4 | 20 | | 100 | 0 | 1 | 1 | 22.7 | 22.7 | 22.5 | | ETE Bana T | 20 | | 1 | 0 | 1 | 1 | 22.6 | 22.7 | 22.5 | | | | | 1 | 49 | 1 | 1 | 22.7 | 22.7 | 22.2 | | | | | 1 | 99 | 1 | 1 | 22.2 | 22.2 | 22.4 | | | | 16QAM | 50 | 0 | 2 | 2 | 21.7 | 21.7 | 21.3 | | | | | 50 | 25 | 2 | 2 | 21.7 | 21.7 | 21.2 | | | | | 50 | 49 | 2 | 2 | 21.7 | 21.6 | 21.3 | | | | | 100 | 0 | 2 | 2 | 21.7 | 21.7 | 21.5 | | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | (MHz) | | Allocation | offset | MPR | MPR | 1717.5 MHz | 1732.5 MHz | 1747.5 MHz | | | | | 1 | 0 | 0 | 0 | 23.5 | 23.5 | 23.5 | | | | | 1 | 37 | 0 | 0 | 23.1 | 23.7 | 23.7 | | | | QPSK | 1 | 74 | 0 | 0 | 23.3 | 23.7 | 23.7 | | | | | 36 | 0 | 1 | 1 | 22.5 | 22.7 | 22.7 | | | | | 36 | 18 | 1 | 1 | 22.4 | 22.7 | 22.7 | | | | | 36 | 35 | 1 | 1 | 22.4 | 22.6 | 22.6 | | LTE Band 4 | 15 | | 75 | 0 | 1 | 1 | 22.5 | 22.7 | 22.7 | | | . • | | 1 | 0 | 1 | 1 | 22.5 | 22.7 | 22.7 | | | | | 1 | 37 | 1 | 1 | 22.2 | 22.7 | 22.7 | | | | | 1 | 74 | 1 | 1 | 22.4 | 22.2 | 22.2 | | | | 16QAM | 36 | 0 | 2 | 2 | 21.3 | 21.7 | 21.7 | | | | | 36 | 18 | 2 | 2 | 21.2 | 21.7 | 21.7 | | | | | 36 | 35 | 2 | 2 | 21.3 | 21.6 | 21.6 | | | | | 75 | 0 | 2 | 2 | 21.5 | 21.7 | 21.7 | | Band | BW
(MHz) | Mode | RB
Allocation | RB
effect | Target
MPR | Meas.
MPR | | Avg Pwr (dBm) | .=== | | | (MHz) | | Allocation | offset | | | 1715 MHz | 1732.5 MHz | 1750 MHz | | | | | 1 | 0 | 0 | 0 | 23.6 | 23.5 | 23.4 | | | | | 1 | 24 | 0 | 0 | 23.3 | 23.1 | 23.4 | | | | ODCK | 1 | 49 | 0 | 0 | 23.4 | 23.3 | 23.5 |
 | | QPSK | 25 | 0 | 1 | 1 | 22.5 | 22.5 | 22.5 | | | | | 25 | 12 | 1 | 1 | 22.4 | 22.4 | 22.5 | | | | | 25 | 24 | 1 | 1 | 22.4 | 22.4 | 22.5 | | LTE Band 4 | 10 | | 50 | 0 | 1 | 1 | 22.5 | 22.5 | 22.4 | | | | | 1 | 0 | 1 | 1 | 22.7 | 22.5 | 22.2 | | | | | 1 | 24 | 1 | 1 | 22.7 | 22.2 | 22.1 | | | | | 1 | 49 | 1 | 1 | 22.7 | 22.4 | 22.2 | | | | 16QAM | 25 | 0 | 2 | 2 | 21.5 | 21.3 | 21.6 | | | | | 25 | 12 | 2 | 2 | 21.5 | 21.2 | 21.6 | | | | | 25 | 24 | 2 | 2 | 21.2 | 21.3 | 21.2 | | | | | 50 | 0 | 2 | 2 | 21.4 | 21.5 | 21.5 | | LTE Band | 4 Measure | ed Results | (continue | <u>d)</u> | | | | | | |-------------|-----------|------------|--------------|-----------|--------|-------|------------|---------------|------------| | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | (MHz) | | Allocation | offset | MPR | MPR | 1712.5 MHz | 1732.5 MHz | 1752.5 MHz | | | | | 1 | 0 | 0 | 0 | 23.1 | 23.4 | 23.6 | | | | | 1 | 12 | 0 | 0 | 23.5 | 23.4 | 23.3 | | | | | 1 | 24 | 0 | 0 | 23.2 | 23.5 | 23.4 | | | | QPSK | 12 | 0 | 1 | 1 | 22.4 | 22.5 | 22.5 | | | | | 12 | 6 | 1 | 1 | 22.4 | 22.5 | 22.4 | | | | | 12 | 11 | 1 | 1 | 22.4 | 22.5 | 22.4 | | LTE Band 4 | 5 | | 25 | 0 | 1 | 1 | 22.4 | 22.4 | 22.5 | | LTE Bana T | Ü | | 1 | 0 | 1 | 1 | 22.7 | 22.2 | 22.7 | | | | | 1 | 12 | 1 | 1 | 22.7 | 22.1 | 22.7 | | | | | 1 | 24 | 1 | 1 | 22.7 | 22.2 | 22.7 | | | | 16QAM | 12 | 0 | 2 | 2 | 21.6 | 21.6 | 21.5 | | | | | 12 | 6 | 2 | 2 | 21.5 | 21.6 | 21.5 | | | | | 12 | 11 | 2 | 2 | 21.4 | 21.2 | 21.2 | | | | | 25 | 0 | 2 | 2 | 21.5 | 21.5 | 21.4 | | Band | BW | Mode | RB | RB | Target | Meas. | | | | | Danu | (MHz) | IVIOGE | Allocation | offset | MPR | MPR | 1711.5 MHz | 1732.5 MHz | 1753.5 MHz | | | | | 1 | 0 | 0 | 0 | 23.4 | 23.5 | 23.7 | | | | | 1 | 7 | 0 | 0 | 23.4 | 23.7 | 23.7 | | | | QPSK | 1 | 14 | 0 | 0 | 23.5 | 23.7 | 23.5 | | | | | 6 | 0 | 1 | 1 | 22.5 | 22.7 | 22.7 | | | | | 6 | 3 | 1 | 1 | 22.5 | 22.7 | 22.7 | | | | | 6 | 5 | 1 | 1 | 22.5 | 22.6 | 22.7 | | LTE Band 4 | 2 | | 15 | 0 | 1 | 1 | 22.4 | 22.7 | 22.7 | | LIE Dallu 4 | Band 4 3 | | 1 | 0 | 1 | 1 | 22.2 | 22.7 | 22.6 | | | | | 1 | 7 | 1 | 1 | 22.1 | 22.7 | 22.7 | | | | | 1 | 14 | 1 | 1 | 22.2 | 22.2 | 22.2 | | | | 16QAM | 6 | 0 | 2 | 2 | 21.6 | 21.7 | 21.7 | | | | | 6 | 3 | 2 | 2 | 21.6 | 21.7 | 21.7 | | | | | 6 | 5 | 2 | 2 | 21.2 | 21.6 | 21.7 | | | | | 15 | 0 | 2 | 2 | 21.5 | 21.7 | 21.7 | | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | Danu | (MHz) | ivioue | Allocation | offset | MPR | MPR | 1710.7 MHz | 1732.5 MHz | 1754.3 MHz | | | | | 1 | 0 | 0 | 0 | 23.4 | 23.5 | 23.4 | | | | | 1 | 2 | 0 | 0 | 23.3 | 23.4 | 23.5 | | | | | 1 | 5 | 0 | 0 | 23.4 | 23.6 | 23.6 | | | | QPSK | 3 | 0 | 0 | 0 | 23.3 | 23.5 | 23.7 | | | | | 3 | 1 | 0 | 0 | 23.4 | 23.6 | 23.7 | | | | | 3 | 2 | 0 | 0 | 23.4 | 23.7 | 23.7 | | LTE Band 4 | 1.4 | | 6 | 0 | 1 | 1 | 22.4 | 22.7 | 22.7 | | LIL Dallu 4 | 1.4 | | 1 | 0 | 1 | 1 | 22.6 | 22.7 | 22.1 | | | | | 1 | 2 | 1 | 1 | 22.7 | 22.7 | 22.6 | | | | | 1 | 5 | 1 | 1 | 22.7 | 22.5 | 22.7 | | | | 16QAM | 3 | 0 | 1 | 1 | 22.7 | 22.7 | 22.6 | | | | | 3 | 1 | 1 | 1 | 22.5 | 22.6 | 22.4 | | ı İ | | 1 | 3 | 2 | 1 | 1 | 22.5 | 22.7 | 22.7 | | | | | ³ | | 1 | ' | 22.5 | 22.1 | 22.1 | ### LTE Band 5 Measured Results | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | |------------|-------|--------|------------|--------|--------|-------|-----------|---------------|-----------|--| | Danu | (MHz) | iviode | Allocation | offset | MPR | MPR | 829 MHz | 836.5 MHz | 844 MHz | | | | | | 1 | 0 | 0 | 0 | 23.5 | 23.5 | 23.6 | | | | | | 1 | 25 | 0 | 0 | 23.7 | 23.7 | 23.7 | | | | | | 1 | 49 | 0 | 0 | 23.7 | 23.5 | 23.7 | | | | | QPSK | 25 | 0 | 1 | 1 | 22.3 | 22.3 | 22.3 | | | | | | 25 | 12 | 1 | 1 | 22.5 | 22.5 | 22.3 | | | | | | 25 | 25 | 1 | 1 | 22.3 | 22.4 | 22.2 | | | LTE Band 5 | 10 | | 50 | 0 | 1 | 1 | 22.3 | 22.5 | 22.3 | | | LIL Dana 3 | 10 | | 1 | 0 | 1 | 1 | 22.6 | 22.6 | 22.7 | | | | | | 1 | 25 | 1 | 1 | 22.7 | 22.5 | 22.7 | | | | | | 1 | 49 | 1 | 1 | 22.6 | 22.7 | 22.6 | | | | | 16QAM | 25 | 0 | 2 | 2 | 21.3 | 21.5 | 21.3 | | | | | | 25 | 12 | 2 | 2 | 21.5 | 21.5 | 21.3 | | | | | | 25 | 25 | 2 | 2 | 21.3 | 21.4 | 21.3 | | | | | | 50 | 0 | 2 | 2 | 21.2 | 21.2 | 21.3 | | | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | Bana | (MHz) | Mode | Allocation | offset | MPR | MPR | 826.5 MHz | 836.5 MHz | 846.5 MHz | | | | | | 1 | 0 | 0 | 0 | 23.4 | 23.5 | 23.4 | | | | | | 1 | 12 | 0 | 0 | 23.5 | 23.5 | 23.0 | | | | | QPSK | 1 | 24 | 0 | 0 | 23.4 | 23.4 | 23.7 | | | | | | 12 | 0 | 1 | 1 | 22.5 | 22.7 | 22.6 | | | | | | 12 | 7 | 1 | 1 | 22.6 | 22.7 | 22.3 | | | | | | 12 | 13 | 1 | 1 | 22.7 | 22.7 | 22.7 | | | LTE Band 5 | 5 | | 25 | 0 | 1 | 1 | 22.5 | 22.7 | 22.7 | | | LIL Dana o | Ü | | 1 | 0 | 1 | 1 | 22.7 | 22.2 | 22.2 | | | | | | 1 | 12 | 1 | 1 | 22.7 | 21.8 | 22.7 | | | | | | 1 | 24 | 1 | 1 | 22.7 | 21.8 | 22.7 | | | | | 16QAM | 12 | 0 | 2 | 2 | 21.6 | 21.7 | 21.3 | | | | | | 12 | 7 | 2 | 2 | 21.7 | 21.7 | 21.4 | | | | | | 12 | 13 | 2 | 2 | 21.7 | 21.7 | 21.5 | | | | | | 25 | 0 | 2 | 2 | 21.7 | 21.7 | 21.7 | | | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | | (MHz) | | Allocation | offset | MPR | MPR | 825.5 MHz | 836.5 MHz | 847.5 MHz | | | | | | 1 | 0 | 0 | 0 | 23.6 | 23.6 | 23.2 | | | | | | 1 | 7 | 0 | 0 | 23.3 | 23.4 | 23.5 | | | | | | 1 | 14 | 0 | 0 | 23.4 | 23.3 | 23.6 | | | | | QPSK | 6 | 0 | 1 | 1 | 22.2 | 22.5 | 22.0 | | | | | | 6 | 3 | 1 | 1 | 22.1 | 22.3 | 22.1 | | | | | | 6 | 5 | 1 | 1 | 22.0 | 22.2 | 22.2 | | | TE Band 5 | 3 | | 15 | 0 | 1 | 1 | 22.2 | 22.4 | 22.3 | | | 3 3 | • | | 1 | 0 | 1 | 1 | 22.7 | 22.7 | 22.7 | | | | | | 1 | 7 | 1 | 1 | 22.3 | 22.5 | 22.7 | | | | | | 1 | 14 | 1 | 1 | 22.7 | 22.6 | 22.7 | | | | | 16QAM | 6 | 0 | 2 | 2 | 21.3 | 21.7 | 21.0 | | | | | | 6 | 3 | 2 | 2 | 21.2 | 21.3 | 21.0 | | | | | | 6 | 5 | 2 | 2 | 21.3 | 21.1 | 21.2 | | | | | | 0 | J | | | 21.0 | 21.1 | 21.2 | | LTE Band 5 Measured Results (continued) | Band | BW | Mode | RB | RB | Target | Meas. | | Avg Pwr (dBm) | | | | | | |-------------|-------|--------|------------|--------|--------|-------|-----------|---------------|-----------|---|------|------|------| | Danu | (MHz) | ivioue | Allocation | offset | MPR | MPR | 824.7 MHz | 836.5 MHz | 848.3 MHz | | | | | | | | | 1 | 0 | 0 | 0 | 23.4 | 23.5 | 23.5 | | | | | | | | | 1 | 2 | 0 | 0 | 23.4 | 23.3 | 23.5 | | | | | | | | | 1 | 5 | 0 | 0 | 23.1 | 23.3 | 23.4 | | | | | | | | QPSK | 3 | 0 | 0 | 0 | 23.4 | 23.6 | 23.7 | | | | | | | | | 3 | 1 | 0 | 0 | 23.4 | 23.6 | 23.6 | | | | | | | | | 3 | 2 | 0 | 0 | 23.3 | 23.5 | 23.6 | | | | | | LTE Band 5 | 1.4 | | 6 | 0 | 1 | 1 | 22.1 | 22.3 | 22.5 | | | | | | LIL Dallu 3 | 1.4 | | 1 | 0 | 1 | 1 | 22.7 | 22.6 | 22.7 | | | | | | | | | | | | | 1 | 2 | 1 | 1 | 22.7 | 22.7 | 22.7 | | | | | 1 | 5 | 1 | 1 | 22.6 | 22.4 | 22.7 | | | | | | | | 16QAM | 3 | 0 | 1 | 1 | 22.2 | 22.7 | 22.7 | | | | | | | | | 3 | 1 | 1 | 1 | 22.7 | 22.5 | 22.4 | | | | | | | | | 3 | 2 | 1 | 1 | 22.3 | 22.5 | 22.7 | | | | | | | | | 6 | 0 | 2 | 2 | 21.0 | 21.0 | 21.5 | | | | | #### LTE Band 13 Measured Results | Band | BW | Mode | RB | RB | Target | Meas. | Avg Pwr (dBm) | | | |---------|-------------|--------------|---|---|-------------------------------|----------------------------------|---|------|------| | Danu | (MHz) | IVIOGE | Allocation | offset | MPR | MPR | 782 MHz | | | | | | | 1 | 0 | 0 | 0 | 23.7 | | | | | | | 1 | 25 | 0 | 0 | 23.7 | | | | | | | 1 | 49 | 0 | 0 | 23.5 | | | | | | QPSK | 25 | 0 | 1 | 1 | 22.5 | | | | | | | 25 | 12 | 1 | 1 | 22.5 | | | | | | | 25 | 25 | 1 | 1 | 22.5 | | | | LTE | 10 | | 50 | 0 | 1 | 1 | 22.5 | | | | Band 13 | 10 | | 1 | 0 | 1 | 1 | 22.7 | | | | | | | 1 | 25 | 1 | 1 | 22.7 | | | | | | | 1 | 49 | 1 | 1 | 22.7 | | | | | | 16QAM | 25 | 0 | 2 | 2 | 21.5 | | | | | | | | | 25 | 12 | 2 | 2 | 21.4 | | | | | | 25 | 25 | 2 | 2 | 21.5 | | | | | | 50 | 0 | 2 | 2 | 21.6 | | | | | | | | - | _ | _ | - | | | | Band | BW | Mode | RB | RB | Target | Meas. | Avg Pwr (dBm) | | | | Band | BW
(MHz) | Mode | | | | | | | | | Band | | Mode | RB | RB | Target | Meas. | Avg Pwr (dBm) | | | | Band | | Mode | RB
Allocation | RB
offset | Target
MPR | Meas.
MPR | Avg Pwr (dBm)
782 MHz | | | | Band | | Mode | RB
Allocation | RB
offset
0 | Target
MPR
0 | Meas.
MPR
0 | Avg Pwr (dBm)
782 MHz
23.5 | | | | Band | | Mode
QPSK | RB
Allocation
1 | RB
offset
0
12 | Target
MPR
0 | Meas.
MPR
0 | Avg Pwr (dBm) 782 MHz 23.5 23.7 | | | | Band | | | RB
Allocation
1
1 | RB offset 0 12 24 | Target MPR 0 0 0 | Meas.
MPR
0
0 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 | | | | Band | | | RB
Allocation
1
1
1
1 | RB offset 0 12 24 0 | Target MPR 0 0 0 1 | Meas. MPR 0 0 1 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 | | | | LTE | (MHz) | | RB Allocation 1 1 1 1 12 12 | RB offset 0 12 24 0 6 | Target MPR 0 0 1 1 | Meas.
MPR
0
0
0
1 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 22.5 | | | | | | | RB
Allocation 1 1 1 12 12 12 | RB offset 0 12 24 0 6 11 | Target MPR 0 0 1 1 1 | Meas. MPR 0 0 1 1 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 22.5 22.5 | | | | LTE | (MHz) | | RB
Allocation 1 1 1 1 12 12 12 25 | RB offset 0 12 24 0 6 11 0 | Target MPR 0 0 0 1 1 1 1 | Meas. MPR 0 0 1 1 1 1 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 22.5 22.5 22.5 22.5 | | | | LTE | (MHz) | QPSK | RB
Allocation 1 1 1 1 12 12 12 12 12 11 11 11 11 11 | RB offset 0 12 24 0 6 11 0 0 | Target MPR 0 0 0 1 1 1 1 1 | Meas. MPR 0 0 1 1 1 1 1 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 22.5 22.5 22.5 22.5 22.4 | | | | LTE | (MHz) | | RB Allocation 1 1 1 12 12 12 12 25 1 | RB offset 0 12 24 0 6 11 0 0 12 24 0 0 0 0 12 24 0 | Target MPR 0 0 1 1 1 1
1 1 | Meas. MPR 0 0 1 1 1 1 1 1 2 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 22.5 22.5 22.5 22.7 | | | | LTE | (MHz) | QPSK | RB Allocation 1 1 1 1 12 12 12 25 1 1 1 | RB offset 0 12 24 0 6 11 0 0 12 24 24 24 24 24 | Target MPR 0 0 1 1 1 1 1 1 1 | Meas. MPR 0 0 1 1 1 1 1 1 1 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 22.5 22.5 22.5 22.7 22.7 | | | | LTE | (MHz) | QPSK | RB Allocation 1 1 1 1 12 12 12 25 1 1 1 1 12 | RB offset 0 12 24 0 6 11 0 0 12 24 0 0 0 0 12 24 0 | Target MPR 0 0 1 1 1 1 1 1 2 | Meas. MPR 0 0 1 1 1 1 1 1 2 | Avg Pwr (dBm) 782 MHz 23.5 23.7 23.5 22.5 22.5 22.5 22.5 22.5 22.7 22.7 21.4 | | | ### Note(s): 10/5 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices ### 9.3. Wi-Fi 2.4GHz (DTS Band) ### **Measured Results** | Band
(GHz) | Mode | Data Rate | Ch# | Freq.
(MHz) | Avg Pwr (dBm) | Max Output
Power (dBm) | SAR Test
(Yes/No) | Note(s) | |---------------|-------------------|-----------|-----|----------------|---------------|---------------------------|----------------------|---------| | | | | 1 | 2412 | 12.6 | | | | | | 802.11b | 1 Mbps | 6 | 2437 | 12.7 | 14.5 | Yes | | | | | | 11 | 2462 | 12.7 | | | | | | | | 1 | 2412 | | | | | | 2.4 | 802.11g | 6 Mbps | 6 | 2437 | | 10.0 | No | 1 | | | | | 11 | 2462 | Not Required | | | | | | 000 44 | | 1 | 2412 | Not Required | | | | | | 802.11n
(HT20) | 6.5 Mbps | 6 | 2437 | | 9.0 | No | 1 | | | (20) | | 11 | 2462 | | | | | #### Note(s): - Output Power and SAR measurement is not required for 802.11g/n HT20 channels when the specified tune-up tolerances for 802.11g/n HT20 are lower than 802.11b by more than 1 dB and the measured SAR is ≤ 1.2 W/Kg. - A second channel is tested because the <u>reported</u> SAR is > 0.8 W/kg. A third channel is tested because the <u>reported</u> SAR is > 1.2 W/kg. ### 9.4. Bluetooth Maximum tune-up tolerance limit is 7.50 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing. ### 10. Measured and Reported (Scaled) SAR Results #### SAR Test Reduction criteria are as follows: #### KDB 447498 D01 General RF Exposure Guidance: Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz #### KDB 648474 D04 Handset SAR: With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. #### KDB 941225 D01 SAR test for 3G devices: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode #### KDB 941225 D05 SAR for LTE Devices: SAR test reduction is applied using the following criteria: - Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. - When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. - Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. - Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK. - Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth. #### KDB 248227 D01 SAR meas for 802.11 v02: SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration. The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the <u>initial test position(s)</u> by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The <u>initial test position(s)</u> is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the <u>reported SAR</u> for the <u>initial test position</u> is: - ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures. - > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested. - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested. - When it is unclear, all equivalent conditions must be tested. - For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered. - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction. - When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR. - When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR. To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the <u>Maximum Value of SAR</u> (measured). The position that produced the highest <u>Maximum Value of SAR</u> is considered the worst case position; thus used as the <u>initial test position</u>. ### 10.1. CDMA BC0 | RF Exposure | | Dist. | | | Freq. | Power | (dBm) | 1-g SAF | R (W/kg) | Plot | |-------------|------------|-------|---------------|-------|-------|------------------|-------|---------|----------|------| | Conditions | Mode | (mm) | Test Position | Ch #. | (MHz) | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | | | Left Touch | 384 | 836.5 | 24.2 | 23.8 | 0.573 | 0.628 | | | | 1xRTT | 0 | Left Tilt | 384 | 836.5 | 24.2 | 23.8 | 0.349 | 0.383 | | | | (RC3 SO55) | U | Right Touch | 384 | 836.5 | 24.2 | 23.8 | 0.717 | 0.786 | | | | | | Right Tilt | 384 | 836.5 | 24.2 | 23.8 | 0.415 | 0.455 | | | Head | | | Left Touch | 384 | 836.5 | 24.2 | 23.8 | 0.582 | 0.638 | | | rieau | | | Left Tilt | 384 | 836.5 | 24.2 | 23.8 | 0.356 | 0.390 | | | | 1xEVDO | 0 | | 1013 | 824.7 | 24.2 | 23.8 | 0.784 | 0.860 | 1 | | | (Rel. 0) | U | Right Touch | 384 | 836.5 | 24.2 | 23.8 | 0.775 | 0.850 | | | | | | | 777 | 848.3 | 24.2 | 23.9 | 0.735 | 0.788 | | | | | | Right Tilt | 384
 836.5 | 24.2 | 23.8 | 0.419 | 0.459 | | | | | | | 1013 | 824.7 | 24.2 | 23.7 | 1.090 | 1.223 | 2 | | | | | Rear | 384 | 836.5 | 24.2 | 23.8 | 0.927 | 1.016 | | | Body-worn & | 1xRTT | 10 | | 777 | 848.3 | 24.2 | 23.9 | 0.879 | 0.942 | | | Hotspot | (RC3 SO32) | 10 | | 1013 | 824.7 | 24.2 | 23.7 | 0.867 | 0.973 | | | | | | Front | 384 | 836.5 | 24.2 | 23.8 | 0.818 | 0.897 | | | | | | | 777 | 848.3 | 24.2 | 23.9 | | | | | Hotspot | 1xRTT | 10 | Edge 2 | 384 | 836.5 | 24.2 | 23.8 | 0.566 | 0.621 | | | riotspot | (RC3 SO32) | 10 | Edge 3 | 384 | 836.5 | 24.2 | 23.8 | 0.306 | 0.336 | | ### 10.1.1. CDMA BC0 Additional Testing | RF Exposure | | Dist. | | | Freq. | Power | (dBm) | 1-g SAF | R (W/kg) | Plot | |------------------------|---------------------|-------|---------------|-------|-------|------------------|-------|---------|----------|------| | Conditions | Mode | (mm) | Test Position | Ch #. | (MHz) | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | 4×DTT | | | 1013 | 824.7 | 24.2 | 23.7 | 1.080 | 1.212 | | | | 1xRTT
(RC1 SO55) | | Rear | 384 | 836.5 | 24.2 | 23.8 | 0.963 | 1.056 | | | | (1.01 0000) | | | 777 | 848.3 | 24.2 | 23.8 | 0.869 | 0.953 | | | Dody war 9 | 4×EV/DO | | | 1013 | 824.7 | 24.2 | 23.8 | 1.100 | 1.206 | | | Body-worn &
Hotspot | 1xEVDO
(Rel. 0) | 10 | Rear | 384 | 836.5 | 24.2 | 23.8 | 1.010 | 1.107 | | | Tiotopot | (1101. 0) | | | 777 | 848.3 | 24.2 | 23.9 | 0.932 | 0.999 | | | | 4×EV/DO | | | 1013 | 824.7 | 24.2 | 23.9 | 1.120 | 1.200 | | | | 1xEVDO
(Rev. A) | | Rear | 384 | 836.5 | 24.2 | 23.9 | 1.020 | 1.093 | | | | (1107.71) | | | 777 | 848.3 | 24.2 | 24.0 | 0.916 | 0.959 | | ### 10.2. CDMA BC1 | RF Exposure | | Dist. | | | Fred | Power | (dBm) | 1-g SAF | R (W/kg) | Plot | |-------------|------------|-------|--|---|--------|-------|-------|---------|----------|------| | Conditions | Mode | (mm) | Left Touch 600 1880.0 24.2 23.7 0.542 0.60 Left Tilt 600 1880.0 24.2 23.7 0.346 0.38 Right Touch 600 1880.0 24.2 23.7 0.546 0.61 Right Tilt 600 1880.0 24.2 23.7 0.546 0.61 Right Tilt 600 1880.0 24.2 23.7 0.237 0.26 Left Touch 600 1880.0 24.2 23.8 0.516 0.56 Left Tilt 600 1880.0 24.2 23.8 0.334 0.36 Right Touch 600 1880.0 24.2 23.8 0.581 0.63 Right Touch 600 1880.0 24.2 23.8 0.237 0.26 Right Tilt 600 1880.0 24.2 23.8 0.237 0.26 Rear 600 1880.0 24.2 23.8 0.832 0.97 Rear 600 1880.0 24.2 23.8 0.888 0.97 1175 1908.8 24.2 23.8 1.090 1.19 Eront 600 1880.0 24.2 23.8 0.769 0.84 Front 600 1880.0 24.2 23.8 0.769 0.84 Front 600 1880.0 24.2 23.8 0.769 0.84 Right Tilt 0.84 Right Tilt 600 1880.0 | Scaled | No. | | | | | | | | | | Left Touch | 600 | 1880.0 | 24.2 | 23.7 | 0.542 | 0.608 | | | | 1xRTT | 0 | Left Tilt | ouch 600 1880.0 24.2 23.7 0.542 0.608 Tilt 600 1880.0 24.2 23.7 0.346 0.388 Touch 600 1880.0 24.2 23.7 0.546 0.613 Tilt 600 1880.0 24.2 23.7 0.237 0.266 ouch 600 1880.0 24.2 23.8 0.516 0.566 Tilt 600 1880.0 24.2 23.8 0.334 0.366 Touch 600 1880.0 24.2 23.8 0.581 0.637 Tilt 600 1880.0 24.2 23.8 0.237 0.260 | | 0.388 | | | | | | | (RC3 SO55) | U | Right Touch | 600 | 1880.0 | 24.2 | 23.7 | 0.546 | 0.613 | | | Head | | | Right Tilt | 600 | 1880.0 | 24.2 | 23.7 | 0.237 | 0.266 | | | rieau | | | Left Touch | 600 | 1880.0 | 24.2 | 23.8 | 0.516 | 0.566 | | | | 1xEVDO | 0 | Left Tilt | 600 | 1880.0 | 24.2 | 23.8 | 0.334 | 0.366 | | | | (Rel. 0) | 0 | Right Touch | 600 | 1880.0 | 24.2 | 23.8 | 0.581 | 0.637 | 3 | | | | | Right Tilt | 600 | 1880.0 | 24.2 | 23.8 | 0.237 | 0.260 | | | | | | | 25 | 1851.3 | 24.2 | 23.5 | 0.832 | 0.978 | | | | | | Rear | 600 | 1880.0 | 24.2 | 23.8 | 0.888 | 0.974 | | | Body-worn & | 1xRTT | 10 | | 1175 | 1908.8 | 24.2 | 23.8 | 1.090 | 1.195 | 4 | | Hotspot | (RC3 SO32) | 10 | | 25 | 1851.3 | 24.2 | 23.5 | 0.731 | 0.859 | | | | | | Front | 600 | 1880.0 | 24.2 | 23.8 | 0.769 | 0.843 | | | | | | | 1175 | 1908.8 | 24.2 | 23.8 | 0.845 | 0.927 | | | Hotspot | 1xRTT | 10 | Edge 3 | 600 | 1880.0 | 24.2 | 23.6 | 0.462 | 0.530 | | | Ποισροί | (RC3 SO32) | 10 | Edge 4 | 600 | 1880.0 | 24.2 | 23.6 | 0.409 | 0.470 | | # 10.3. LTE Band 2 (20MHz Bandwidth) | RF Exposure | | Dist. | Test | O | Freq. | RB | RB | Power | (dBm) | 1-g SAF | R (W/kg) | Plot | |-------------|--------|-------|-------------|-------|--------|------------|--------|------------------|-------|---------|----------|------| | Conditions | Mode | (mm) | Position | Ch #. | (MHz) | Allocation | offest | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | | | Left Touch | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 0.552 | 0.552 | 5 | | | | | Lett Touch | 10900 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.411 | 0.411 | | | | | | Left Tilt | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 0.322 | 0.322 | | | Head | QPSK | 0 | LOR THE | 10300 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.246 | 0.246 | | | rieau | QI SIX | U | Right Touch | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 0.480 | 0.480 | | | | | | Night Touch | 10900 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.355 | 0.355 | | | | | | Right Tilt | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 0.240 | 0.240 | | | | | | Night The | 10900 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.185 | 0.185 | | | | | | | 18700 | 1860.0 | 1 | 0 | 22.7 | 22.7 | 0.918 | 0.918 | | | | | | Rear | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 1.020 | 1.020 | 6 | | | | | rtear | 10300 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.727 | 0.727 | | | Body-worn | QPSK | 10 | | 19100 | 1900.0 | 1 | 0 | 22.7 | 22.7 | 0.935 | 0.935 | | | & Hotspot | QI OIX | 10 | | 18700 | 1860.0 | 1 | 0 | 22.7 | 22.7 | 0.885 | 0.885 | | | | | | Front | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 0.911 | 0.911 | | | | | | Tiont | 10900 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.701 | 0.701 | | | | | | | 19100 | 1900.0 | 1 | 0 | 22.7 | 22.7 | 0.923 | 0.923 | | | | | | Edge 3 | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 0.464 | 0.464 | | | Hotspot | QPSK | 10 | Lage 3 | 10300 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.344 | 0.344 | | | Ποιοροί | QI OIL | 10 | Edge 4 | 18900 | 1880.0 | 1 | 0 | 22.7 | 22.7 | 0.509 | 0.509 | | | | | | Lage 4 | 10300 | 1000.0 | 50 | 0 | 21.7 | 21.7 | 0.365 | 0.365 | | # 10.4. LTE Band 4 (20MHz Bandwidth) | RF Exposure | | Dist. | Test | | Freq. | RB | RB | Power | (dBm) | 1-g SAF | R (W/kg) | Plot | |-------------|--------|-------|-------------|-------|--------|------------|--------|------------------|-------|---------|----------|------| | Conditions | Mode | (mm) | Position | Ch #. | (MHz) | Allocation | offest | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | | | Left Touch | 20175 | 1732.5 | 1 | 49 | 23.7 | 23.7 | 0.572 | 0.572 | | | | | | Left Touch | 20175 | 1732.5 | 50 | 0 | 22.7 | 22.7 | 0.446 | 0.446 | | | | | | Left Tilt | 20175 | 1732.5 | 1 | 49 | 23.7 | 23.7 | 0.403 | 0.403 | | | | | | Len Till | 20175 | 1732.5 | 50 | 0 | 22.7 | 22.7 | 0.326 | 0.326 | | | Head | QPSK | 0 | | 20050 | 1720.0 | 1 | 0 | 23.7 | 23.7 | 0.915 | 0.915 | 7 | | Tieau | QI SIX | | Right Touch | 20175 | 1732.5 | 1 | 49 | 23.7 | 23.7 | 0.845 | 0.845 | | | | | | Right Toden | 20173 | 1732.3 | 50 | 0 | 22.7 | 22.7 | 0.663 | 0.663 | | | | | | | 20300 | 1745.0 | 1 | 49 | 23.7 | 23.7 | 0.869 | 0.869 | | | | | | Right Tilt | 20175 | 1732.5 | 1 | 49 | 23.7 | 23.7 | 0.322 | 0.322 | | | | | | raght filt | 20173 | 1732.3 | 50 | 0 | 22.7 |
22.7 | 0.257 | 0.257 | | | | | | | 20050 | 1720.0 | 1 | 0 | 23.7 | 23.7 | 1.150 | 1.150 | | | | | | | 20030 | 1720.0 | 50 | 0 | 22.7 | 22.7 | 0.927 | 0.927 | | | | | | | | | 1 | 49 | 23.7 | 23.7 | 1.280 | 1.280 | | | | | | Rear | 20175 | 1732.5 | 50 | 0 | 22.7 | 22.7 | 0.944 | 0.944 | | | | | | | | | 100 | 0 | 22.7 | 22.7 | 0.967 | 0.967 | | | | | | | 20300 | 1745.0 | 1 | 49 | 23.7 | 23.7 | 1.290 | 1.290 | 8 | | Body-worn | QPSK | 10 | | 20000 | 1740.0 | 50 | 0 | 22.7 | 22.7 | 1.010 | 1.010 | | | & Hotspot | QI OIX | 10 | | 20050 | 1720.0 | 1 | 0 | 23.7 | 23.7 | 1.180 | 1.180 | | | | | | | 20030 | 1720.0 | 50 | 0 | 22.7 | 22.7 | 0.964 | 0.964 | | | | | | | | | 1 | 49 | 23.7 | 23.7 | 1.250 | 1.250 | | | | | | Front | 20175 | 1732.5 | 50 | 0 | 22.7 | 22.7 | 0.987 | 0.987 | | | | | | | | | 100 | 0 | 22.7 | 22.7 | 0.994 | 0.994 | | | | | | | 20300 | 1745.0 | 1 | 49 | 23.7 | 23.7 | 1.270 | 1.270 | | | | | | | 20300 | 1745.0 | 50 | 0 | 22.7 | 22.7 | 0.967 | 0.967 | | | _ | | | Edge 3 | 20175 | 1732.5 | 1 | 49 | 23.7 | 23.7 | 0.768 | 0.768 | | | Hotspot | QPSK | 10 | Luge 5 | 20173 | 1702.0 | 50 | 0 | 22.7 | 22.7 | 0.601 | 0.601 | | | Посорос | Qi Oit | ' | Edge 4 | 20175 | 1732.5 | 1 | 49 | 23.7 | 23.7 | 0.408 | 0.408 | | | | | | Luge 4 | 20173 | 1732.3 | 50 | 0 | 22.7 | 22.7 | 0.340 | 0.340 | | ### 10.5. LTE Band 5 (10MHz Bandwidth) | RF Exposure | | Dist. | Test | | Freq. | RB | RB | Power | (dBm) | 1-g SAF | R (W/kg) | Plot | |-------------|------|-------|-------------|-------|-------|------------|--------|------------------|-------|---------|----------|------| | Conditions | Mode | (mm) | Position | Ch #. | (MHz) | Allocation | offest | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | | | Left Touch | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.442 | 0.442 | | | | | | Lett Touch | 20020 | 030.5 | 25 | 12 | 22.7 | 22.5 | 0.337 | 0.353 | | | | | | Left Tilt | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.260 | 0.260 | | | Head | QPSK | 0 | Lentint | 20020 | 630.5 | 25 | 12 | 22.7 | 22.5 | 0.196 | 0.205 | | | пеац | QPSK | U | Right Touch | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.577 | 0.577 | 9 | | | | | Right Touch | 20525 | | 25 | 12 | 22.7 | 22.5 | 0.436 | 0.457 | | | | | | Right Tilt | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.271 | 0.271 | | | | | | | | | 25 | 12 | 22.7 | 22.5 | 0.204 | 0.214 | | | | | | Rear | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.742 | 0.742 | 10 | | Body-worn | QPSK | 10 | Real | 20323 | 630.5 | 25 | 12 | 22.7 | 22.5 | 0.542 | 0.568 | | | & Hotspot | QPSK | 10 | Front | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.568 | 0.568 | | | | | | Front | 20525 | | 25 | 12 | 22.7 | 22.5 | 0.428 | 0.448 | | | | | | Edge 2 | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.390 | 0.390 | | | Hotspot | QPSK | 10 | Euge 2 | 20525 | 836.5 | 25 | 12 | 22.7 | 22.5 | 0.287 | 0.301 | | | Ποιδροί | QF3N | 10 | Edge 3 | 20525 | 836.5 | 1 | 25 | 23.7 | 23.7 | 0.224 | 0.224 | | | | | | Luge 3 | 20323 | 550.5 | 25 | 12 | 22.7 | 22.5 | 0.165 | 0.173 | | ### 10.6. LTE Band 13 (10MHz Bandwidth) | RF Exposure | | Dist. | Test | | Freq. | RB | RB | Power | (dBm) | 1-g SAF | R (W/kg) | Plot | |-------------|------|-------|---------------|-------|-------|------------|--------|------------------|-------|---------|----------|------| | Conditions | Mode | (mm) | Position | Ch #. | (MHz) | Allocation | offest | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | | | Left Touch | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.360 | 0.360 | | | | | | Lett Touch | 23230 | 762.0 | 25 | 0 | 22.7 | 22.5 | 0.260 | 0.272 | | | | | | Left Tilt | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.222 | 0.222 | | | Head | QPSK | 0 | Len IIII | 23230 | 702.0 | 25 | 0 | 22.7 | 22.5 | 0.159 | 0.166 | | | неао | QFSK | U | Right Touch | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.412 | 0.412 | 11 | | | | | Right Touch | 23230 | 782.0 | 25 | 0 | 22.7 | 22.5 | 0.300 | 0.314 | | | | | | Right Tilt | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.270 | 0.270 | | | | | | | | | 25 | 0 | 22.7 | 22.5 | 0.206 | 0.216 | | | | | | Rear
Front | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.627 | 0.627 | 12 | | Body-worn | QPSK | 10 | | | | 25 | 0 | 22.7 | 22.5 | 0.467 | 0.489 | | | & Hotspot | QPSK | 10 | | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.476 | 0.476 | | | | | | | 23230 | | 25 | 0 | 22.7 | 22.5 | 0.358 | 0.375 | | | | | | Edge 2 | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.632 | 0.632 | 13 | | Hotspot | QPSK | 10 | Luge 2 | 23230 | | 25 | 0 | 22.7 | 22.5 | 0.463 | 0.485 | | | Поівроі | QF3N | 10 | Edge 3 | 23230 | 782.0 | 1 | 0 | 23.7 | 23.7 | 0.161 | 0.161 | | | | | | Luge 3 | 23230 | 102.0 | 25 | 0 | 22.7 | 22.5 | 0.125 | 0.131 | | ### 10.7. Wi-Fi (DTS Band) | Frequency Mode Band | | RF Exposure | Dist. | | | Freq. | Area Scan | Power (dBm) | | 1-g SAR (W/kg) | | | Plot | |---------------------|----------------|---------------------------|---------------|-------------|--------|--------------------|------------------|-------------|-------|----------------|-------|-----|------| | | Conditions | (mm) | Test Position | Ch #. | (MHz) | Max. SAR
(W/kg) | Tune-up
limit | Meas. | Meas. | Scaled | Notes | No. | | | | | | Left Touch | 6 | 2437.0 | 0.122 | 14.5 | 12.7 | | | | | | | | | Head | | Left Tilt | 6 | 2437.0 | 0.125 | 14.5 | 12.7 | 0.096 | 0.145 | 1 | 14 | | | | | пеаа 0 | Right Touch | 6 | 2437.0 | 0.086 | 14.5 | 12.7 | | | | | | 2.4GHz | 802.11b | | | Right Tilt | 6 | 2437.0 | 0.087 | 14.5 | 12.7 | | | | | | 2.4602 | 1 Mbps | Body-worn & | | Rear | 6 | 2437.0 | 0.044 | 14.5 | 12.7 | 0.036 | 0.054 | 1 | 15 | | | | | 10 | Front | 6 | 2437.0 | 0.036 | 14.5 | 12.7 | | | | | | | | Hotspot &
Wi-Fi Direct | 10 | Edge 1 | 6 | 2437.0 | 0.033 | 14.5 | 12.7 | | | | | | | vvi i i bilect | | Edge 2 | 6 | 2437.0 | 0.023 | 14.5 | 12.7 | | | | | | #### Note(s) 1. Highest <u>reported</u> SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. #### 10.8. Bluetooth #### Standalone SAR Test Exclusion Considerations & Estimated SAR The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where - f_(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: - (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm; - where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. ### **Body-worn Accessory Exposure Conditions** | Max. tune-up | tolerance limit | Min. test
separation | Frequency
(GHz) | SAR test
exclusion | Test
Configuration | Estimated
1-g SAR | |--------------|-----------------|-------------------------|--------------------|-----------------------|-----------------------|----------------------| | (dBm) | (mW) | distance (mm) | · / | Result* | Configuration | (W/kg) | | 7.5 | 6 | 10 | 2.480 | 0.9 | Rear/Front | 0.118 | #### **Conclusion:** ^{*:} The computed value is < 3; therefore, Bluetooth qualifies for Standalone SAR test exclusion. ### 11. SAR Measurement Variability In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. - Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. | Frequency
Band
(MHz) | Air Interface | RF Exposure Conditions | Test Position | Repeated
SAR
(Yes/No) | Highest
Measured SAR
(W/kg) | Repeated
Measured SAR
(W/kg) | Largest to
Smallest
SAR Ratio | |----------------------------|-------------------|------------------------|---------------|-----------------------------|-----------------------------------|------------------------------------|-------------------------------------| | 700 | LTE Band 13 | Hotspot | Edge 2 | No | 0.632 | N/A | N/A | | 950 | CDMA BC0 | Body-worn & Hotspot | Rear | Yes | 1.120 | 1.050 | 1.07 | | 850 | LTE Band 5 | Body-worn & Hotspot | Rear | No | 0.742 | N/A | N/A | | 1900 | CDMA BC1 | Body-worn & Hotspot | Rear | Yes | 1.090 | 1.080 | 1.01 | | 1900 | LTE Band 2 | Body-worn & Hotspot | Rear | No | 1.020 | N/A | N/A | | 1700 | LTE Band 4
 Body-worn & Hotspot | Rear | Yes | 1.290 | 1.250 | 1.03 | | 2400 | Wi-Fi 802.11b/g/n | Head | Left Tilt | No | 0.096 | N/A | N/A | #### Note(s): Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20. ### 12. Simultaneous Transmission SAR Analysis ### **Simultaneous Transmission Condition** | RF Exposure Condition | Item | Capable Trai | Capable Transmit Configurations | | | | | |------------------------|------|---|---------------------------------|---------------|--|--|--| | Head | 1 | CDMA | + | Wi-Fi 2.4 GHz | | | | | rieau | 2 | 1 CDMA 2 LTE 1 CDMA 2 CDMA 3 LTE 4 LTE 1 CDMA | + | Wi-Fi 2.4 GHz | | | | | | 1 | CDMA | + | Wi-Fi 2.4 GHz | | | | | Body-w orn | 2 | CDMA | + | BT | | | | | Body-World | 3 | LTE | + | Wi-Fi 2.4 GHz | | | | | | 4 | LTE | + | BT | | | | | Hotspot & Wi-Fi Direct | 1 | CDMA | + | Wi-Fi 2.4 GHz | | | | | Hotspot & WI-FI Direct | 2 | LTE | + | Wi-Fi 2.4 GHz | | | | #### Notes: - 1. Wi-Fi 2.4GHz supports Hotspot. - 2. CDMA and LTE support Hotspot. - 3. VoIP is supported in CDMA and LTE. - 4. Wi-Fi 2.4 GHz Radio cannot transmit simultaneously with Bluetooth Radio. ### 12.1. Sum of the SAR for WWAN & Wi-Fi & BT | RF Exposure | 1 | 2 | 3 | _ | +②
I+DTS | ① +③
WWAN+BT | | |------------------------|-------|-------|-------|--------------------|-------------------|--------------------|-------------------| | conditions | WWAN | DTS | ВТ | ∑1-g SAR
(mW/g) | SPLSR
(Yes/No) | ∑1-g SAR
(mW/g) | SPLSR
(Yes/No) | | Head | 0.403 | 0.145 | | 0.548 | No | | | | Body-worn
& Hotspot | 1.290 | 0.054 | 0.118 | 1.344 | No | 1.408 | No | #### **Conclusion:** Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation. ### **Appendixes** Refer to separated files for the following appendixes. - A_15I20187v0 SAR Photos & Ant. Locations - **B_15I20187v0 SAR System Check Plots** - C_15I20187v0 SAR Highest Test Plots - **D_15I20187v0 SAR Tissue Ingredients** - E_15I20187v0 SAR Probe Cal. Certificates - F_15I20187v0 SAR Dipole Cal. Certificates **END OF REPORT**