

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics MobileComm U.S.A. Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: 08/09/2016 - 08/11/2016 Test Site/Location: PCTEST Lab, Columbia, MD, USA **Test Report Serial No.:**

0Y1608121382-R1.ZNF

ZNFVS995 FCC ID:

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A. INC.

Audio Band Magnetic Testing (T-Coil) Scope of Test:

Application Type: Class II Permissive Change

CFR §20.19(b) FCC Rule Part(s): **HAC Standard:** ANSI C63.19-2011 **DUT Type:** Portable Handset

Model(s): LG-VS995, LGVS995, VS995, LG-VS995S, LGVS995S, VS995S,

LG-US996, LGUS996, US996, LG-H990T, LGH990T, H990T

Test Device Serial No.: Pre-Production Sample [S/N: 11320]

Class II Permissive Change(s): See FCC Change Document

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 0Y1608121382-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 1 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 1 of 71

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	19
6.	FCC 3G MEASUREMENTS	21
7.	TEST SUMMARY	23
8.	MEASUREMENT UNCERTAINTY	34
9.	EQUIPMENT LIST	35
10.	TEST DATA	36
11.	CALIBRATION CERTIFICATES	59
12.	CONCLUSION	66
13.	REFERENCES	67
14.	TEST SETUP PHOTOGRAPHS	69

FCC ID: ZNFVS995	PCTEST VECENTIAL LANDAU DATA	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 2 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Faye 2 01 / 1

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 3 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 3 01 7 1

2. **DUT DESCRIPTION**

FCC ID: ZNFVS995

Applicant: LG Electronics MobileComm U.S.A. Inc.

1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

United States

Model(s): LG-VS995, LGVS995, VS995, LG-VS995S, LGVS995S, VS995S,

LG-US996, LGUS996, US996, LG-H990T, LGH990T, H990T

Serial Number: 11320 HW Version: Rev.1.0 SW Version: VS9950CA

Antenna: Ant 1 (CDMA BC0, WCDMA B5, LTE B5/12/13/17, GSM 850)

Ant 2 (CDMA BC1, WCDMA B2/4, LTE B2/4/25/66, GSM 1900)

Ant 3 (CDMA BC0 Diversity, LTE B5/12/13/17 Diversity)

HAC Test Configurations: Cellular CDMA, 1013, 384, 777, BT Off, WLAN Off, LTE Off

> PCS CDMA, 25, 600, 1175, BT Off, WLAN Off, LTE Off GSM 850, 128, 190, 251, BT Off, WLAN Off, LTE Off GSM 1900, 512, 661, 810, BT Off, WLAN Off, LTE Off UMTS V, 4132, 4183, 4233, BT Off, WLAN Off, LTE Off UMTS IV, 1312, 1412, 1513, BT Off, WLAN Off, LTE Off UMTS II, 9262, 9400, 9538, BT Off, WLAN Off, LTE Off

LTE FDD B5; BW's: 10MHz, 5MHz, 3MHz, 1.4MHz; BT Off, WLAN Off LTE FDD B12; BW's: 10MHz, 5MHz, 3MHz, 1.4MHz; BT Off, WLAN Off

LTE FDD B13; BW's: 10MHz, 5MHz; BT Off, WLAN Off

LTE FDD B25; BW's: 20MHz, 15MHz, 10MHz, 5MHz, 3MHz, 1.4MHz; BT Off, WLAN Off

LTE FDD B66; BW's: 20MHz, 15MHz, 10MHz, 5MHz; BT Off, WLAN Off

* Note: LTE test channels for different bands and bandwidths can be found in Sect. 7.II

DUT Type: Portable Handset

I. LTE Band Selection

This device supports the following pairs of LTE bands with similar frequencies: LTE B2 & B25, LTE B12 & B17 and LTE B4 & B66. Each pair of LTE bands have the same target power and share the same transmission. Since the supported frequency spans for the smaller LTE bands are completely covered by the larger LTE bands, only the larger LTE bands (LTE B25, LTE B12 and LTE B66) were evaluated for hearing-aid compliance.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 4 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 4 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Voice over Digital Transport OTT Capability	Additional GSM Power Reduction
	835	VO	Yes	Yes: WIFI or BT	N/A	N/A
CDMA	1900	٧٥	res	Yes: WIFI OF BT	N/A	IN/A
	EVDO	DT	No	Yes: WIFI or BT	Yes	N/A
	850	VO	Yes	Yes: WIFI or BT	N/A	No
GSM	1900	VO	163	res. Wiri of Bi	N/A	INU
	GPRS/EDGE	DT	No	Yes: WIFI or BT	Yes	No
	850					
UMTS	1700	VD	Yes	Yes: WIFI or BT	N/A	N/A
UIVITS	1900					
	HSPA	DT	No	Yes: WIFI or BT	Yes	N/A
	700 (B12)					
	700 (B17)		Yes	Yes: WIFI or BT	Yes	N/A
	780 (B13)					
LTE (FDD)	850 (B5)	VD ¹				
LIL (IDD)	1700 (B4)					
	1700 (B66)					
	1900 (B2)					
	1900 (B25)					
	2450					
	5200					
WIFI	5300	VD	No ²	Yes: CDMA, GSM, UMTS, or LTE	Yes	N/A
	5500					
	5800					
BT	2450	DT	No	Yes: CDMA, GSM, UMTS, or LTE	N/A	N/A

Table 2-1: ZNFVS995 HAC Air Interfaces

testing for CMRS IP.

1. The 3GPP VolTE CMRS service is defined by GSMA in PRD IR.92 for IP Voice Service and Digital

2. Not tested in accordance with the guidance issued by OET in KDB publication 285076 D02 T-Coil

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 5 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 5 01 / 1

VO = Voice Only

VD = CMRS and Data Transport

DT = Digital Data - Not intended for CMRS Service Transport.

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

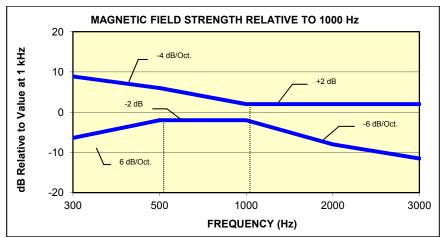


Figure 3-1

Magnetic field frequency response for Wireless Devices with an axial field

≤-15 dB(A/m) at 1 kHz

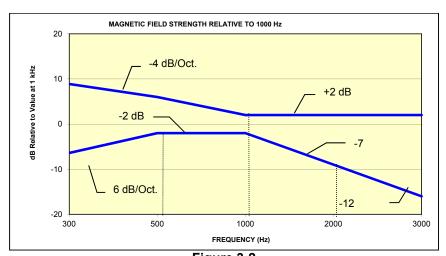


Figure 3-2
Magnetic Field frequency response for wireless devices with an axial field that exceeds
-15 dB(A/m) at 1 kHz

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 6 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 6 01 7 1

© 2016 PCTEST Engineering Laboratory, Inc.

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters		
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]		
T1	0 to 10 dB		
T2	10 to 20 dB		
Т3	20 to 30 dB		
T4 > 30 dB			
Table 3-1 Magnetic Coupling Parameters			

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 7 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page / 01 / 1

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

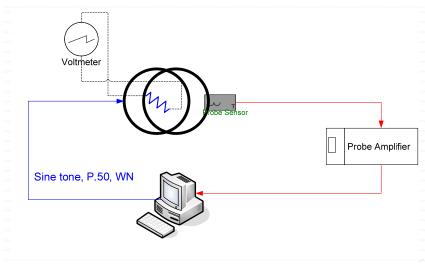


Figure 4-1
Validation Setup with Helmholtz Coil

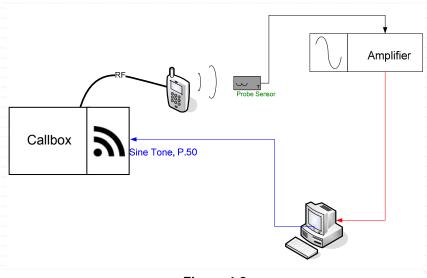


Figure 4-2 T-Coil Test Setup

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 8 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 0 01 / 1

II. Scanning Mechanism

Manufacturer: TEM

Accuracy: ± 0.83 cm/meter

Minimum Step Size: 0.1 mm

Maximum speed 6.1 cm/sec Line Voltage: 115 VAC Line Frequency: 60 Hz

Material Composite: Delrin (Acetal)

Data Control: Parallel Port

Dynamic Range (X-Y-Z): 45 x 31.75 x 47 cm

Dimensions: 36" x 25" x 38" Operating Area: 36" x 49" x 55"

Reflections: < -20 dB (in anechoic chamber)

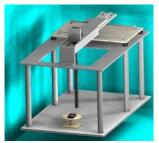


Figure 4-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

Manufacturer: ITU-T

Active Frequency 100 Hz – 8 kHz

Range:

Stimulus Type: Male and Female, no spaces

Single Sample 20.96 seconds

Duration: 20.90 Activity Level: 100%

Figure 4-4
Spectral Characteristic of full P.50

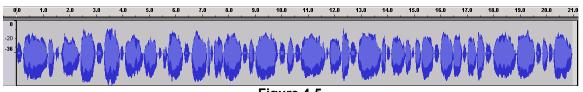
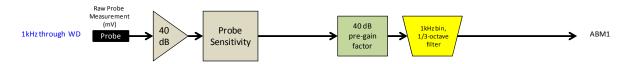



Figure 4-5
Temporal Characteristic of full P.50

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 9 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 9 01 / 1

ABM2 Measurement Block Diagram:

Figure 4-6 Magnetic Measurement Processing Steps

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation(See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316 A/m \approx -10 dB (A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10dB(A/m). This was verified to be within \pm 0.5 dB of the -10dB(A/m) value (see Page 32).

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 10 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

c. Frequency Response Validation The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the P.50l signal as shown below:

Figure 4-7 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

> Table 4-1 **ABM2 Frequency Response Validation**

	HBI, A -	HBI, A -	
f (Hz)	Measured	Theoretical	dB Var.
	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 11 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 11 of 71
0.0040.007507.5				DEV. 0.4.14

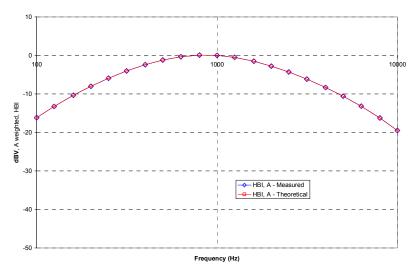
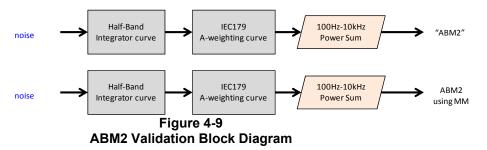



Figure 4-8
ABM2 Frequency Response Validation

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and A-weighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 12 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 12 01 / 1

Table 4-2 **ABM2 Power Sum Validation**

	WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
I	-60	-60.36	-60.2	0.16
	-50	-50.19	-50.13	0.06
	-40	-40.14	-40.03	0.11
	-30	-30.13	-30.01	0.12
	-20	-20.12	-20	0.12
Ī	-10	-10.14	-10	0.14

ABM2 Power Sum Validation (LISTEN)

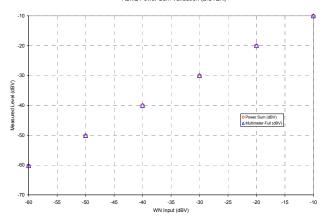


Figure 4-10 **ABM2 Power Sum Validation**

3. Measurement Test Setup

- a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

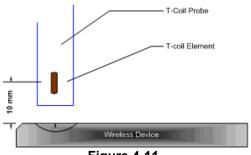
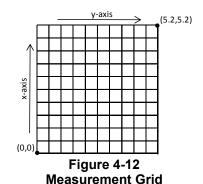



Figure 4-11 **Measurement Distance**

FCC ID: ZNFVS995	PCTEST VARIABLE LADIATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 13 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 13 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-16 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

The CMU200 audio levels were determined using base station simulator manufacturer calibration procedures resulting in the below corresponding voltages relative to handset test point level (in dBm0):

Table 4-3 CMU200 Voltage Input Levels for Audio

CMO200 Voltage Input Levels for Addio				
dBm0 Ref.	Input Voltage		Notes	
3.14 dBm0	1052.0 mV	0.4 dBV	From CDMA2K "DECODER CAL". (What is needed through Encoder for FS)	
-18 dBm0	92.260 mV	-20.7 dBV	For 8k Enhanced (Low)	
dBm0 Ref.	Voltage		Notes	
3.14 dBm0	990.5 mV	-0.08 dBV	From GSM "DECODER CAL". (What is needed through Encoder for FS)	
-16 dBm0	109.4 mV	-19.2 dBV	For Speechcod/Handset Low	
dBm0 Ref.	Voltage		Notes	
3.14 dBm0	1068.5 mV	0.58 dBV	From UMTS "DECODER CAL". (What is needed through Encoder for FS)	
-16 dBm0	118.0 mV	-18.6 dBV	For Handset Low	

 See Section 5 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE) testing.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 14 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 14 01 / 1

- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (see below for GSM, see Section 6 for more information regarding worst-case configurations for CDMA and UMTS. LTE configuration information can be found in Section 5):

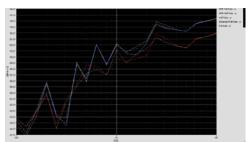


Figure 4-13 Vocoder Analysis for ABM Noise for GSM

- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 - 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight on, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz -10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 15 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 15 01 / 1

V. Test Setup

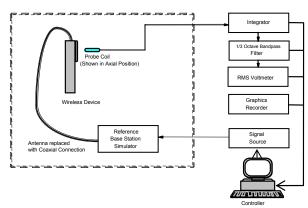


Figure 4-14
Audio Magnetic Field Test Setup

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to shielding effects of battery cover.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

According to the April 2013 TCB workshop slides, OTT data services are outside the current definition of a managed CMRS service and are currently not required to be evaluated.

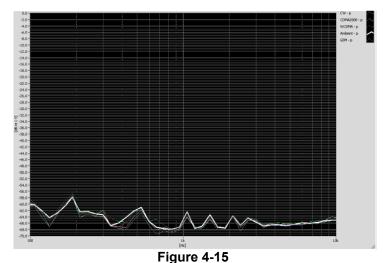
VoIP over WIFI CMRS air interfaces were not tested in accordance with the guidance issued by OET in KDB publication 285076 D02 T-Coil testing for CMRS IP.

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 16 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 10 01 / 1

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band.


Table 4-4 **Center Channels and Frequencies**

Test frequencies & associated channels				
Channel	Frequency (MHz)			
Cellular 850				
384 (CDMA)	836.52			
190 (GSM)	836.60			
4183 (UMTS)	836.60			
AWS 1750				
1412 (UMTS)	1730.40			
PCS 1900				
600 (CDMA)	1880			
661 (GSM)	1880			
9400 (UMTS)	1880			

1. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. See Tables 7-13 to 7-20 for LTE bandwidths and channels.

IX. RF Emission Effect on T-coil Measurements

High power RF Emissions Effect with HAC Dipole on the T-coil Probe System 10mm between dipole maximum and magnetic probe

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 17 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 17 of 71

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

X. **Test Flow**

The flow diagram below was followed (From C63.19):

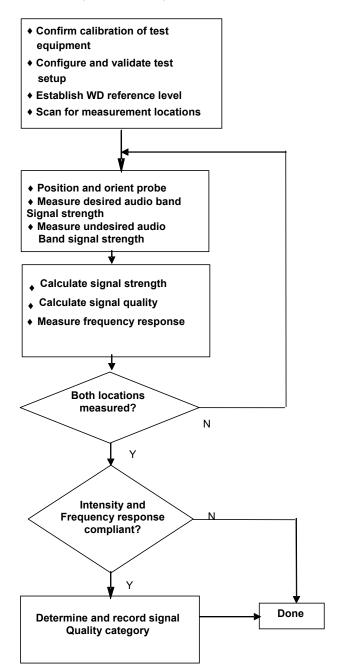


Figure 4-16 **C63.19 T-Coil Signal Test Process**

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 18 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 10 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE is shown below (adopted from FCC KDB 285076 D02). The callbox used when performing VoLTE T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

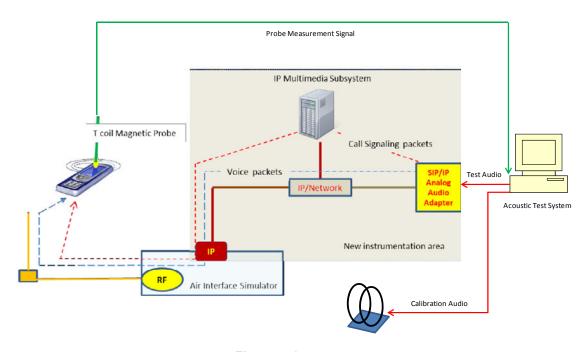


Figure 5-1
Test Setup for VoLTE T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for LTE T-coil testing, -16dBm0 shall be used for the normal speech input level. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 19 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 1901/1

© 2016 PCTEST Engineering Laboratory, Inc.

II. DUT Configuration for VoLTE T-coil Testing

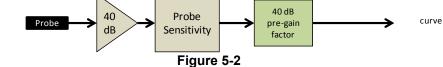
1. Radio Configuration

An investigation was performed on the worst-case LTE Band and bandwidth combination to determine the modulation and RB configuration to be used for testing. 16QAM, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
1745.0	132322	20	QPSK	1	0	-3.20	-48.78	45.58
1745.0	132322	20	QPSK	1	50	-3.20	-48.79	45.59
1745.0	132322	20	QPSK	1	99	-2.67	-48.48	45.81
1745.0	132322	20	QPSK	50	0	-2.77	-48.59	45.82
1745.0	132322	20	QPSK	50	25	-3.23	-48.60	45.37
1745.0	132322	20	QPSK	50	50	-3.15	-48.95	45.80
1745.0	132322	20	QPSK	100	0	-3.32	-49.00	45.68
1745.0	132322	20	16QAM	1	0	-2.95	-48.18	45.23
1745.0	132322	20	16QAM	1	50	-3.10	-48.77	45.67
1745.0	132322	20	16QAM	1	99	-3.02	-48.28	45.26
1745.0	132322	20	16QAM	50	0	-3.11	-48.73	45.62
1745.0	132322	20	16QAM	50	25	-3.26	-48.98	45.72
1745.0	132322	20	16QAM	50	50	-3.37	-49.40	46.03
1745.0	132322	20	16QAM	100	0	-2.99	-48.84	45.85

Table 5-1
LTE SNNR by Radio Configuration

2. Codec Configuration


An investigation was performed on the worst-case LTE Band and bandwidth combination to determine the audio codec configuration to be used for testing. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoLTE T-coil testing. See below table for ABM1 and ABM2 comparisons between different codecs and codec data rates:

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel	Antenna Config.
ABM1 Pre-test (dBA/m)	-2.13	-3.03	-2.05	-2.50				
ABM2 Pre-test (dBA/m) (A-weight, Half-Band Int.)		-48.01	-48.55	-48.77	Radial	Band 66 / 20MHz	132322	Ant 2
S+N/N (dB)	46.01	44.98	46.50	46.27				

Table 5-2
FCC 4G ABM Measurements for ZNFVS995

Mute on; Backlight on; Max Volume; Max Contrast

TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFVS995	PCTEST VECENTIAL LANDAU DATA	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 20 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 20 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

WD noise

REV 3.1.M

6. FCC 3G MEASUREMENTS

I. CDMA Test Configurations

Radio Configuration 1, Service Option 3 (thick, green data curve) was used for the testing as the worst-case configuration for the handset due to vocoder gating from the EVRC logic. See below plot for ABM noise comparison between operational field service options and radio configurations for a CDMA2000 handset:

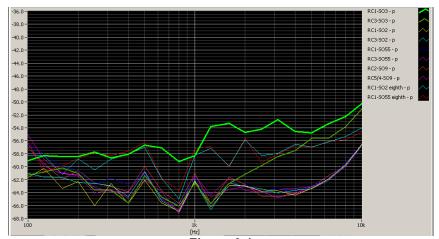
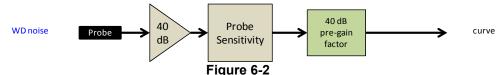



Figure 6-1 CDMA Audio Band Magnetic Noise

Table 6-1 FCC 3G ABM Measurements for ZNFVS995 (CDMA)

		Biii iiioacaici			,	
Codec Setting:	RC1/SO3	RC3/SO3	RC4/SO3	Orientation	Channel	Antenna Config.
ABM1 Pre-test (dBA/m)	3.40	3.30	3.18			
ABM2 Pre-test (dBA/m) (A-weight, Half-Band Int.)	- 18 5 1	-55.15	-53.97	Axial	25	Ant 2
S+N/N (dB)	41.93	58.45	57.15			

- · Mute on; Backlight on; Max Volume; Max Contrast
- Power Control Bits = "All Up"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 21 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 21 01 7 1

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

II. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

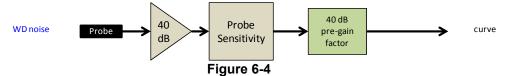


Figure 6-3
UMTS Audio Band Magnetic Noise

Table 6-2 FCC 3G ABM Measurements for ZNFVS995 (UMTS)

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel	Antenna Config.
ABM1 Pre-test (dBA/m)	-1.84	-1.79	-1.77			
ABM2 Pre-test (dBA/m) (A-weight, Half-Band Int.)	-04 no	-54.94	-55.49	Radial	1312	Ant 2
S+N/N (dB)	52.81	53.15	53.72			

- · Mute on; Backlight on; Max Volume; Max Contrast
- · TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 22 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 22 01 / 1

7. TEST SUMMARY

I. T-Coil Test Summary for Antennae 1&2

Table 7-1
Table of Results for CDMA – Ant 1&2

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	3.3	PASS
8.3.1			Intensity, Radial	-18	-3.8	PASS
8.3.4	CDMA	Cellular	Signal-to-Noise/Noise, Axial	20	43.2	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	47.6	PASS
8.3.2			Frequency Response, Axial	0	1.6	PASS
8.3.1			Intensity, Axial	-18	3.1	PASS
8.3.1			Intensity, Radial	-18	-3.9	PASS
8.3.4	CDMA	PCS [Signal-to-Noise/Noise, Axial	20	42.1	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	46.4	PASS
8.3.2			Frequency Response, Axial	0	1.6	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 7-9.

Table 7-2
Table of Results for GSM – Ant 1&2

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	6.5	PASS
8.3.1			Intensity, Radial	-18	-0.7	PASS
8.3.4	GSM	Cellular	Signal-to-Noise/Noise, Axial	20	29.0	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	32.8	PASS
8.3.2			Frequency Response, Axial	0	1.4	PASS
8.3.1			Intensity, Axial	-18	6.5	PASS
8.3.1			Intensity, Radial	-18	-0.7	PASS
8.3.4	GSM	PCS	Signal-to-Noise/Noise, Axial	20	34.3	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	39.1	PASS
8.3.2			Frequency Response, Axial	0	1.3	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 7-11.

FCC ID: ZNFVS995	PCTEST VARIABLE LADIATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 23 01 / 1

Table 7-3
Table of Results for UMTS – Ant 1&2

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	5.5	PASS
8.3.1			Intensity, Radial	-18	-1.8	PASS
8.3.4	UMTS	Band 5	Signal-to-Noise/Noise, Axial	20	59.9	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	53.6	PASS
8.3.2			Frequency Response, Axial	0	1.6	PASS
8.3.1			Intensity, Axial	-18	5.5	PASS
8.3.1			Intensity, Radial	-18	-1.8	PASS
8.3.4	UMTS	Band 4	Signal-to-Noise/Noise, Axial	20	59.2	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	52.7	PASS
8.3.2			Frequency Response, Axial	0	1.6	PASS
8.3.1			Intensity, Axial	-18	5.5	PASS
8.3.1			Intensity, Radial	-18	-1.8	PASS
8.3.4	UMTS	Band 2	Signal-to-Noise/Noise, Axial	20	59.8	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	52.8	PASS
8.3.2			Frequency Response, Axial	0	1.6	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 7-12.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 24 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 24 01 / 1

Table 7-4
Table of Results for LTE – Ant 1&2

		Table	Of Results for ETE - F	TIL IGE		
C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	4.3	PASS
8.3.1			Intensity, Radial	-18	-2.8	PASS
8.3.4	LTE FDD	Band 12	Signal-to-Noise/Noise, Axial	20	47.8	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	48.7	PASS
8.3.2			Frequency Response, Axial	0	0.7	PASS
8.3.1			Intensity, Axial	-18	4.2	PASS
8.3.1			Intensity, Radial	-18	-2.9	PASS
8.3.4	LTE FDD	Band 13	Signal-to-Noise/Noise, Axial	20	46.9	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	49.0	PASS
8.3.2			Frequency Response, Axial	0	0.6	PASS
8.3.1			Intensity, Axial	-18	4.1	PASS
8.3.1			Intensity, Radial	-18	-2.8	PASS
8.3.4	LTE FDD	Band 5	Signal-to-Noise/Noise, Axial	20	47.2	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	49.6	PASS
8.3.2			Frequency Response, Axial	0	0.4	PASS
8.3.1			Intensity, Axial	-18	4.1	PASS
8.3.1			Intensity, Radial	-18	-3.1	PASS
8.3.4	LTE FDD	Band 66	Signal-to-Noise/Noise, Axial	20	45.2	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	44.6	PASS
8.3.2			Frequency Response, Axial	0	0.7	PASS
8.3.1			Intensity, Axial	-18	3.9	PASS
8.3.1			Intensity, Radial	-18	-2.9	PASS
8.3.4	LTE FDD	Band 25	Signal-to-Noise/Noise, Axial	20	45.8	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	45.4	PASS
8.3.2			Frequency Response, Axial	0	0.6	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Tables 7-13, 7-15, 7-17, 7-19 and 7-20.

Table 7-5
Consolidated Tabled Results – Ant 1&2

	Consolidated Tabled Results - Ant Taz											
		Freq. Response Margin		U	netic / Verdict	FCC SNNR Verdict		FCC Margin (dB)	C63.19-2011 Rating			
		Axial	Radial	Axial	Radial	Axial	Radial					
CDMA	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-22.11	T4			
CDIVIA	PCS	PASS	NA	PASS	PASS	PASS	PASS	-22.11	14			
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-9.02	Т3			
GSW	PCS	PASS	NA	PASS	PASS	PASS	PASS	-9.02	13			
	Cellular	PASS	NA	PASS	PASS	PASS	PASS					
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-32.66	T4			
	PCS	PASS	NA	PASS	PASS	PASS	PASS					
	B12	PASS	NA	PASS	PASS	PASS	PASS					
	B13	PASS	NA	PASS	PASS	PASS	PASS					
LTE FDD	B5	PASS	NA	PASS	PASS	PASS	PASS	-24.59	T4			
	B4	PASS	NA	PASS	PASS	PASS	PASS					
	B25	PASS	NA	PASS	PASS	PASS	PASS					

Note: Result shown is for T-coil category only.

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 25 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Fage 25 01 7 1

© 2016 PCTEST Engineering Laboratory, Inc.

T-Coil Test Summary for Antenna 3 II.

Table 7-6 Table of Results for CDMA - Ant 3

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	3.2	PASS
8.3.1			Intensity, Radial	-18	-3.8	PASS
8.3.4	CDMA	Cellular	Signal-to-Noise/Noise, Axial	20	43.5	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	46.6	PASS
8.3.2			Frequency Response, Axial	0	1.7	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 7-10.

Table 7-7 Table of Results for LTE - Ant 3

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	4.1	PASS
8.3.1			Intensity, Radial	-18	-3.2	PASS
8.3.4	LTE FDD	Band 12	Signal-to-Noise/Noise, Axial	20	46.8	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	48.2	PASS
8.3.2			Frequency Response, Axial	0	0.6	PASS
8.3.1			Intensity, Axial	-18	4.2	PASS
8.3.1			Intensity, Radial	-18	-2.8	PASS
8.3.4	LTE FDD	Band 13	Signal-to-Noise/Noise, Axial	20	47.3	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	48.6	PASS
8.3.2			Frequency Response, Axial	0	0.7	PASS
8.3.1			Intensity, Axial	-18	4.3	PASS
8.3.1			Intensity, Radial	-18	-3.2	PASS
8.3.4	LTE FDD	Band 5	Signal-to-Noise/Noise, Axial	20	47.6	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	48.8	PASS
8.3.2			Frequency Response, Axial	0	0.7	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Tables 7-14, 7-16 and 7-18.

Table 7-8 Consolidated Tabled Results - Ant 3

	Consolidated Tabled Results - Alit 5												
		Freq. Resp Margi				FCC SNNR Verdict		FCC Margin (dB)	C63.19-2011 Rating				
		Axial	Radial	Axial	Radial	Axial	Radial						
CDMA	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-23.45	T4				
	B12	PASS	NA	PASS	PASS	PASS	PASS						
LTE FDD	B13	PASS	NA	PASS	PASS	PASS	PASS	-26.83	T4				
	B5	PASS	NA	PASS	PASS	PASS	PASS						

Note: Result shown is for T-coil category only.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 26 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Fage 20 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

III. Raw Handset Data

Table 7-9 Raw Data Results for CDMA - Ant 1&2

	Train Butta (Country for Shift Train Total											
Mode	Orientation	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		1013	Ant 1	3.33	-40.55		1.57	43.88	20.00	-23.88	T4	
	Axial	384	Ant 1	3.27	-41.37	-62.74	1.63	44.64	20.00	-24.64	T4	2.6, 2.6
Cellular		777	Ant 1	3.40	-39.84		1.65	43.24	20.00	-23.24	T4	
Celiular		1013	Ant 1	-3.83	-51.46	-61.18		47.63	20.00	-27.63	T4	
	Radial	384	Ant 1	-3.58	-51.88		N/A	48.30	20.00	-28.30	T4	2.4, 3.0
		777	Ant 1	-3.74	-51.73			47.99	20.00	-27.99	T4	
		25	Ant 2	3.20	-38.91		1.77	42.11	20.00	-22.11	T4	
	Axial	600	Ant 2	3.20	-40.31	-62.74	1.59	43.51	20.00	-23.51	T4	2.6, 2.6
PCS		1175	Ant 2	3.11	-39.69		1.78	42.80	20.00	-22.80	T4	
FCS		25	Ant 2	-3.92	-50.32			46.40	20.00	-26.40	T4	
	Radial	600	Ant 2	-3.85	-51.04	-61.18	N/A	47.19	20.00	-27.19	T4	2.4, 3.0
		1175	Ant 2	-3.91	-50.31			46.40	20.00	-26.40	T4	

Table 7-10 Raw Data Results for CDMA - Ant 3

	Trail Bata Rodalto for Oblinit 7 till O													
	Mode	Orientation	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)		Test Coordinates	
ſ			1013	Ant 3	3.25	-40.24		1.71	43.49	20.00	-23.49	T4		
		Axial	384	Ant 3	3.17	-40.34	-62.74	1.69	43.51	20.00	-23.51	T4	2.6, 2.6	
	Cellular		777	Ant 3	3.55	-39.90		1.66	43.45	20.00	-23.45	T4		
	Celiular		1013	Ant 3	-3.70	-51.04			47.34	20.00	-27.34	T4		
		Radial	384	Ant 3	-3.69	-51.14	-61.18	N/A	47.45	20.00	-27.45	T4	2.4, 3.0	
			777	Ant 3	-3.83	-50.39			46.56	20.00	-26.56	T4		

Table 7-11 Raw Data Results for GSM - Ant 1&2

					itu itost							
Mode	Orientation	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		128	Ant 1	6.56	-22.64		1.39	29.20	20.00	-9.20	T3	
	Axial	190	Ant 1	6.51	-22.51	-62.74	1.35	29.02	20.00	-9.02	Т3	2.6, 2.6
GSM850		251	Ant 1	6.53	-22.55		1.37	29.08	20.00	-9.08	Т3	
GSWood		128	Ant 1	-0.60	-33.39			32.79	20.00	-12.79	T4	
	Radial	190	Ant 1	-0.67	-34.47	-61.18	N/A	33.80	20.00	-13.80	T4	2.4, 3.0
		251	Ant 1	-0.62	-35.13			34.51	20.00	-14.51	T4	
		512	Ant 2	6.51	-29.24		1.38	35.75	20.00	-15.75	T4	
	Axial	661	Ant 2	6.52	-28.57	-62.74	1.34	35.09	20.00	-15.09	T4	2.6, 2.6
GSM1900		810	Ant 2	6.53	-27.78		1.39	34.31	20.00	-14.31	T4	
GSWITHOU		512	Ant 2	-0.66	-40.93	-61.18		40.27	20.00	-20.27	T4	
	Radial	661	Ant 2	-0.71	-40.06		3 N/A	39.35	20.00	-19.35	T4	2.4, 3.0
		810	Ant 2	-0.63	-39.70			39.07	20.00	-19.07	T4	

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 27 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 27 of 71

Table 7-12 Raw Data Results for UMTS - Ant 1&2

				IXAW Da	ia ixesu	its for Of	11 1 0 - AI	IL IUL				
Mode	Orientation	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		4132	Ant 1	5.49	-54.36		1.59	59.85	20.00	-39.85	T4	
	Axial	4183	Ant 1	5.49	-54.54	-62.74	1.59	60.03	20.00	-40.03	T4	2.6, 2.6
UMTS Band		4233	Ant 1	5.51	-54.66		1.59	60.17	20.00	-40.17	T4	
5		4132	Ant 1	-1.83	-55.47			53.64	20.00	-33.64	T4	
	Radial	4183	Ant 1	-1.84	-55.52	-61.18	N/A	53.68	20.00	-33.68	T4	2.4, 3.0
		4233	Ant 1	-1.83	-55.48			53.65	20.00	-33.65	T4	
		1312	Ant 2	5.54	-53.70		1.58	59.24	20.00	-39.24	T4	
	Axial	1412	Ant 2	5.51	-53.84	-62.74	1.57	59.35	20.00	-39.35	T4	2.6, 2.6
UMTS Band		1513	Ant 2	5.51	-54.00		1.56	59.51	20.00	-39.51	T4	
4	Radial	1312	Ant 2	-1.82	-54.48			52.66	20.00	-32.66	T4	
		1412	Ant 2	-1.82	-54.78	-61.18	N/A	52.96	20.00	-32.96	T4	2.4, 3.0
		1513	Ant 2	-1.80	-54.85			53.05	20.00	-33.05	T4	
		9262	Ant 2	5.51	-54.49		1.58	60.00	20.00	-40.00	T4	
	Axial	9400	Ant 2	5.47	-54.55	-62.74	1.57	60.02	20.00	-40.02	T4	2.6, 2.6
UMTS Band		9538	Ant 2	5.50	-54.26		1.58	59.76	20.00	-39.76	T4	
2		9262	Ant 2	-1.81	-54.71			52.90	20.00	-32.90	T4	
	Radial	9400	Ant 2	-1.77	-54.55		B N/A	52.78	20.00	-32.78	T4	2.4, 3.0
		9538	Ant 2	-1.79	-54.74			52.95	20.00	-32.95	T4	

Table 7-13 Raw Data Results for LTE B12 - Ant 1

							·							
Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates	
		10MHz	23095	Ant 1	4.26	-44.21		0.70	48.47	20.00	-28.47	T4		
	Axial	5MHz	23095	Ant 1	4.58	-43.43	-62.74	0.72	48.01	20.00	-28.01	T4	2.6, 2.6	
LTE Band	Axiai	3MHz	23095	Ant 1	4.30	-43.45	-02.74	0.72	47.75	20.00	-27.75	T4	2.0, 2.0	
		1.4MHz	23095	Ant 1	4.58	-43.45		0.77	48.03	20.00	-28.03	T4		
12		10MHz	23095	Ant 1	-2.65	-51.31	1 3 1 -61.18		48.66	20.00	-28.66	T4		
	Radial	5MHz	23095	Ant 1	-2.69	-52.43		-61.18 N/A	13	49.74	20.00	-29.74	T4	2.4. 3.0
	Raulai	3MHz	23095	Ant 1	-2.72	-52.31			49.59	20.00	-29.59	T4	2.4, 3.0	
		1.4MHz	23095	Ant 1	-2.83	-52.55			49.72	20.00	-29.72	T4		

Table 7-14 Raw Data Results for LTE B12 - Ant 3

LTE Band 10MHz 23095 Ant 3 4.18 42.65 Axial	Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
Axial 3MHz 23095 Ant3 4.23 -44.04 0.68 48.27 20.00 -28.27 T4 2.6, 1.4MHz 23095 Ant3 4.51 -44.02 0.68 48.53 20.00 -28.53 T4 12 10MHz 23095 Ant3 -2.84 -52.25 49.41 20.00 -29.41 T4 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15			10MHz	23095	Ant 3	4.18	-42.65		0.65	46.83	20.00	-26.83	T4	
LTE Band 12		Avial	5MHz	23095	Ant 3	4.13	-43.01	62.74	0.64	47.14	20.00	-27.14	T4	2.6, 2.6
12 10MHz 23095 Ant 3 -2.84 -52.25 49.41 20.00 -29.41 T4 5MHz 23095 Ant 3 -2.75 -51.72 -51.18 N/A 48.97 20.00 -28.97 T4 24.		Axiai	3MHz	23095	Ant 3	4.23	-44.04	-02.74	0.68	48.27	20.00	-28.27	T4	2.0, 2.0
Radial SMHz 23095 Ant 3 -2.75 -51.72 -61.18 N/A 48.97 20.00 -28.97 T4			1.4MHz	23095	Ant 3	4.51	-44.02		0.68	48.53	20.00	-28.53	T4	
Radial -61.18 N/A 2.4	12		10MHz	23095	Ant 3	-2.84	-52.25	-61.18		49.41	20.00	-29.41	T4	
Radial 3MHz 23095 Ant 3 -3.20 -51.96 -01.10 PVA 48.76 20.00 -28.76 T4		Dadial	5MHz	23095	Ant 3	-2.75	-51.72			48.97	20.00	-28.97	T4	2420
		Raulai	3MHz	23095	Ant 3	-3.20	-51.96			48.76	20.00	-28.76	T4	2.4, 3.0
1.4MHz 23095 Ant 3 -2.70 -50.92 48.22 20.00 -28.22 T4			1.4MHz	23095	Ant 3	-2.70	-50.92			48.22	20.00	-28.22	T4	1

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 28 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Faye 20 01 / 1

Table 7-15 Raw Data Results for LTE B13 - Ant 1

П														
	Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)		Test Coordinates
I	Axial	10MHz	23230	Ant 1	4.23	-42.64	-62.74	0.61	46.87	20.00	-26.87	T4	2.6, 2.6	
	LTE Band Axial	5MHz	23230	Ant 1	4.37	-43.19	-02.74	0.61	47.56	20.00	-27.56	T4	2.0, 2.0	
	13		10MHz	23230	Ant 1	-2.77	-51.81	64.40	NI/A	49.04	20.00	-29.04	T4	2.4. 3.0
		Naulai	5MHz	23230	Ant 1	-2.93	-52.41	-61.18	1.18 N/A	49.48	20.00	-29.48	T4	2.4, 3.0

Table 7-16 Raw Data Results for LTE B13 - Ant 3

Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)		Test Coordinates	
	Axial	10MHz	23230	Ant 3	4.22	-43.28	-62.74	0.70	47.50	20.00	-27.50	T4	2.6, 2.6	
LTE Band		5MHz	23230	Ant 3	4.50	-42.82	-02.74	0.76	47.32	20.00	-27.32	T4	2.0, 2.0	
13		10MHz	23230	Ant 3	-2.72	-51.30	61 10	NI/A	48.58	20.00	-28.58	T4	2.4. 3.0	
Radia	Radiai	5MHz	23230	Ant 3	-2.79	-52.34	-61.18	-61.18	1.18 N/A	49.55	20.00	-29.55	T4	2.4, 3.0

Table 7-17 Raw Data Results for LTE B5 - Ant 1

Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)		Test Coordinates	
		10MHz	20525	Ant 1	4.40	-42.81		0.62	47.21	20.00	-27.21	T4		
	Axial	5MHz	20525	Ant 1	4.32	-44.14	-62.74	0.51	48.46	20.00	-28.46	T4	2.6, 2.6	
	Radial	3MHz	20525	Ant 1	4.36	-43.90	-02.74	0.67	48.26	20.00	-28.26	T4	2.0, 2.0	
I TE Band 5		1.4MHz	20525	Ant 1	4.14	-43.86		0.40	48.00	20.00	-28.00	T4		
LTE Band 5		10MHz	20525	Ant 1	-2.70	-52.25	-61.18	0.10	49.55	20.00	-29.55	T4		
		5MHz	20525	Ant 1	-2.76	-52.57			NIZA	49.81	20.00	-29.81	T4	2.4, 3.0
		3MHz	20525	Ant 1	-2.79	-52.85		-61.18 N/A	50.06	20.00	-30.06	T4	2.4, 3.0	
		1.4MHz	20525	Ant 1	-2.70	-52.41			49.71	20.00	-29.71	T4		

Table 7-18 Raw Data Results for LTE B5 - Ant 3

Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	20525	Ant 3	4.51	-43.80		0.71	48.31	20.00	-28.31	T4	
	Axial	5MHz	20525	Ant 3	4.29	-44.01	-62.74	0.71	48.30	20.00	-28.30	T4	2.6, 2.6
	Axidi	3MHz	20525	Ant 3	4.53	-43.60	02.74	0.72	48.13	20.00	-28.13	T4	2.0, 2.0
LTE Band 5		1.4MHz	20525	Ant 3	4.49	-43.06		0.68	47.55	20.00	-27.55	T4	
LIE Ballu 5		10MHz	20525	Ant 3	-3.15	-52.56	-61.18	0.00	49.41	20.00	-29.41	T4	
	Radial	5MHz	20525	Ant 3	-3.13	-52.12		12	48.99	20.00	-28.99	T4	2.4. 3.0
		3MHz	20525	Ant 3	-2.72	-51.60		N/A	48.88	20.00	-28.88	T4	2.4, 3.0
		1.4MHz	20525	Ant 3	-3.19	-52.01			48.82	20.00	-28.82	T4	ĺ

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 29 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Fage 29 01 / 1

Table 7-19 Raw Data Results for LTE B66 – Ant 2

				I Vall	Julu I V	Juito i		וא – טטט						
Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates	
		20MHz	132572	Ant 2	4.38	-41.72		0.65	46.10	20.00	-26.10	T4		
		20MHz	132322	Ant 2	4.41	-40.83		0.79	45.24	20.00	-25.24	T4		
Axial LTE Band	Avial	20MHz	132072	Ant 2	4.36	-42.05	-62.74	0.67	46.41	20.00	-26.41	T4	2.6, 2.6	
	Axiai	15MHz	132322	Ant 2	4.19	-41.21		0.67	45.40	20.00	-25.40	T4	2.0, 2.0	
		10MHz	132322	Ant 2	4.14	-43.22		0.73	47.36	20.00	-27.36	T4		
		5MHz	132322	Ant 2	4.40	-43.11		0.67	47.51	20.00	-27.51	T4		
66		20MHz	132572	Ant 2	-3.14	-48.05	8.05 7.18 8.82 8.59 1.76	0.07	44.91	20.00	-24.91	T4		
		20MHz	132322	Ant 2	-2.59	-47.18		_		44.59	20.00	-24.59	T4	
	DII-I	20MHz	132072	Ant 2	-3.09	-48.82		45.73	20.00	-25.73	T4	0400		
	Radial	15MHz	132322	Ant 2	-3.02	-48.59		N/A	45.57	20.00	-25.57	T4	2.4, 3.0	
		10MHz	132322	Ant 2	-2.85	-51.76			48.91	20.00	-28.91	T4		
		5MHz	132322	Ant 2	-2.97	-51.33			48.36	20.00	-28.36	T4		

Table 7-20 Raw Data Results for LTE B25 – Ant 2

	Naw Data Nesults for LTL B25 - Aft 2														
Mode	Orientation	Bandwidth	Channel	Antenna Config.	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates		
		20MHz	26365	Ant 2	4.23	-41.59		0.75	45.82	20.00	-25.82	T4			
		15MHz	26365	Ant 2	4.40	-42.09		0.72	46.49	20.00	-26.49	T4			
	Axial	10MHz	26365	Ant 2	3.94	-43.02	-62.74	0.65	46.96	20.00	-26.96	T4	2.6, 2.6		
	Axiai	5MHz	26365	Ant 2	4.31	-43.53		0.61	47.84	20.00	-27.84	T4	2.0, 2.0		
		3MHz	26365	Ant 2	4.44	-43.47		0.78	47.91	20.00	-27.91	T4			
LTE Band		1.4MHz	26365	Ant 2	4.41	-44.05		0.67	48.46	20.00	-28.46	T4			
25		20MHz	26365	Ant 2	-2.64	-48.53	-61.18	-	45.89	20.00	-25.89	T4			
		15MHz	26365	Ant 2	-2.86	-48.24			45.38	20.00	-25.38	T4			
	Radial	10MHz	26365	Ant 2	-2.84	-50.77		-50.77	-50.77	61.10	N/A	47.93	20.00	-27.93	T4
	radial	5MHz	26365	Ant 2	-2.67	-51.43	-01.10	IWA	48.76	20.00	-28.76	T4	2.4, 3.0		
		3MHz	26365	Ant 2	-2.67	-51.62			48.95	20.00	-28.95	T4			
		1.4MHz	26365	Ant 2	-2.63	-51.66			49.03	20.00	-29.03	T4			

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 20 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 30 of 71
0.0040.007507.5				DE\

IV. Test Notes

A. General

- 1. Phone Condition: Mute on; Backlight on; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- Hearing Aid Mode (Phone→Call Settings→More→Hearing aids) as well as Noise Suppression (Phone→Call Settings→More→Noise Suppression) was set to ON for Frequency Response compliance.

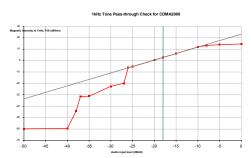
B. CDMA

- 1. Power Configuration: Power Control Bits = "All Up"
- 2. Vocoder Configuration: RC1/SO3 (CDMA EVRC)
- 3. Speech Signal: ITU-T P.50 Artificial Voice

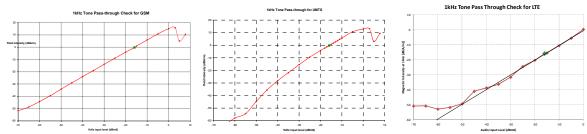
C. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);
- 3. Speech Signal: ITU-T P.50 Artificial Voice

D. UMTS


- 1. Power Configuration: TPC="All 1s";
- 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);
- 3. Speech Signal: ITU-T P.50 Artificial Voice

E. LTE


- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 0RB offset
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. Speech Signal: ITU-T P.50 Artificial Voice
- 5. The worst case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 66 at 20MHz is the worst case for the Axial probe orientation. LTE Band 66 at 20MHz bandwidth is the worst case for the Radial probe orientation.

FCC ID: ZNFVS995	HAC (T-COIL) TEST REPORT		LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 31 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 31 01 71

1 kHz Vocoder Application Check V.

This model was verified to be within the linear region for ABM1 measurements at -18 dBm0 for CDMA. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE. This measurement was taken in the axial configuration above the maximum location.

T-Coil Validation Test Results VI.

Table 7-21 Helmholtz Coil Validation Table of Results

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.626	PASS
Environmental Noise	< -58 dBA/m	-62.74	PASS
Frequency Response, from limits	> 0 dB	0.60	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.826	PASS
Environmental Noise	< -58 dBA/m	-61.18	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

FCC ID: ZNFVS995	PCTEST VECENTIAL LANDAU DATA	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 32 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 32 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

VII. ABM1 Magnetic Field Distribution Scan Overlays

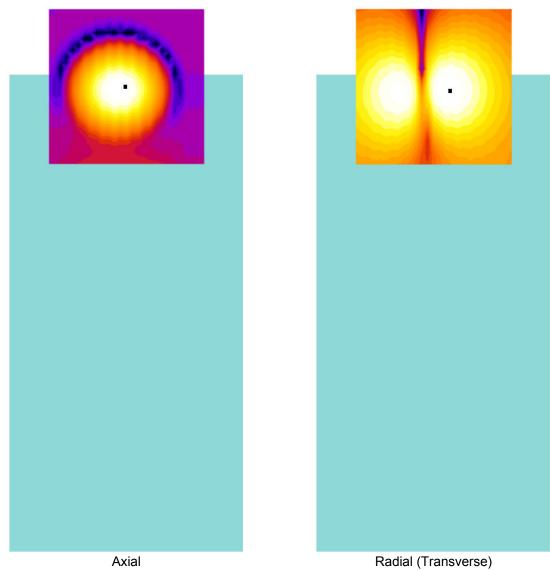


Figure 7-1
T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFVS995	PCTEST VALUE LABORATOR, INC.	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 33 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 33 01 7 1

© 2016 PCTEST Engineering Laboratory, Inc.

8. MEASUREMENT UNCERTAINTY

Table 8-1
Uncertainty Estimation Table

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)						17.7%	0.71
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Notes:

- 1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.
- All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 34 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 34 01 / 1

9. EQUIPMENT LIST

Table 9-1 Equipment List

		=40.16				
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Listen	SoundCheck	Acoustic Analyzer System	6/13/2016	Annual	6/13/2017	04-06-5876-SC2850
Listen	SoundConnect	Microphone Power Supply	11/13/2015	Annual	11/13/2016	PS2612
Rohde & Schwarz	CMW500	Radio Communication Tester	4/6/2016	Annual	4/6/2017	128635
Rohde & Schwarz	CMU200	Base Station Simulator	3/23/2015	Annual	3/23/2016	836371/0079
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM		HAC Positioner	N/A		N/A	N/A
TEM	Radial T-Coil Probe	Radial T-Coil Probe	11/17/2015	Annual	11/17/2016	TEM-1130
TEM	Axial T-Coil Probe	Axial T-Coil Probe	11/17/2015	Annual	11/17/2016	TEM-1124
TEM	Helmholtz Coil	Helmholtz Coil	12/22/2015	Annual	12/22/2016	SBI 1052

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 35 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 33 of 71

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 36 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 30 01 7 1

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

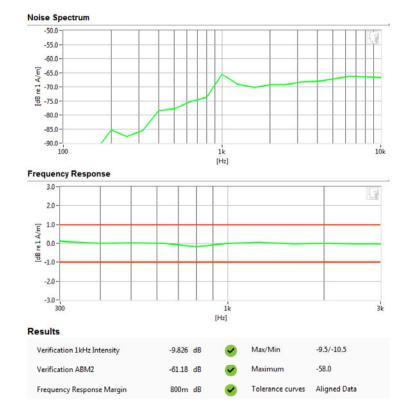
Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1124; Calibrated: 11/17/2015
- Helmholtz Coil SN: SBI 1052; Calibrated: 12/22/2015

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 37 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 37 01 71

PCTEST Hearing-Aid Compatibility Facility


DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1130; Calibrated: 11/17/2015
- Helmholtz Coil SN: SBI 1052; Calibrated: 12/22/2015

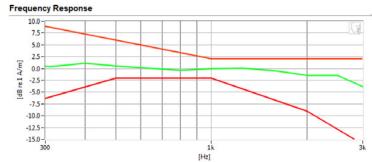
FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 38 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 30 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015


Test Configuration:

Mode: CDMA CellChannel: 777

Speech Signal: ITU-T P.50 Artificial Voice

Antenna Configuration: Ant 1

Noise Spectrum 10.0 -0.0 -10.0 -10.0 -20.0 -10.0 -20.0 -10.0 -20.0 -10.0 -20.

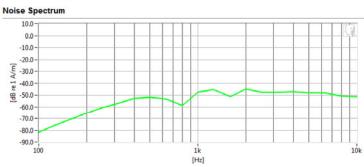
Results				
ABM1	3.4 dB	•	Minimum	-18.0
ABM2	-39.84 dB	•	Maximum	0.0
SNNR	43.24 dB	•	Minimum	20.0
Aligned Response - P.50	1.65 dB	•	Tolerance curves	Aligned Data

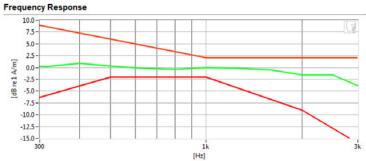
FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 39 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 39 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015


Test Configuration:

Mode: CDMA CellChannel: 777

Speech Signal: ITU-T P.50 Artificial Voice

Antenna Configuration: Ant 3

Results					
ABM1	3.55 dB	•	Minimum	-18.0	
ABM2	-39.9 dB	\checkmark	Maximum	0	
SNNR	43.45 dB	•	Minimum	20	
Aligned Response - P.50	1.66 dB	•	Tolerance curves	Aligned Data	

FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 40 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 40 01 / 1

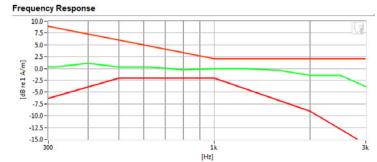
Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015

Test Configuration:


Mode: CDMA PCS

Channel: 25

Speech Signal: ITU-T P.50 Artificial Voice

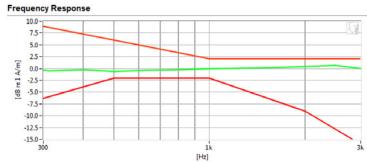
Antenna Configuration: Ant 2

Results					
ABM1	3.2 dB	•	Minimum	-18.0	
ABM2	-38.91 dB	•	Maximum	0.0	
SNNR	42.11 dB	•	Minimum	20.0	
Aligned Response - P.50	1.77 dB	•	Tolerance curves	Aligned Data	

FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 41 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 410171

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015

Test Configuration:

- Mode: GSM850Channel: 190
- Speech Signal: ITU-T P.50 Artificial Voice
- Antenna Configuration: Ant 1

Noise Spectrum 10.0 -10.0 -20

Results			
ABM1	6.51 dB	Minimum	-18.0
ABM2	-22.51 dB	Maximum	0.0
SNNR	29.02 dB	Minimum	20.0
Aligned Response - P.50	1.35 dB	▼ Tolerance curves	Aligned Data

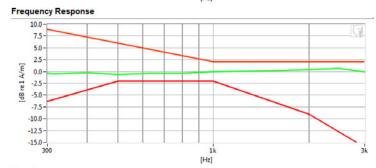
FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 42 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 42 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015


Test Configuration:

Mode: GSM1900Channel: 810

Speech Signal: ITU-T P.50 Artificial Voice

Antenna Configuration: Ant 2

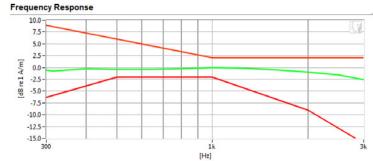
Noise Spectrum 10.0 -10.0 -20

Results				
ABM1	6.53 dB	\checkmark	Minimum	-18.0
ABM2	-27.79 dB	•	Maximum	0.0
SNNR	34.31 dB	•	Minimum	20.0
Aligned Response - P.50	1.39 dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 43 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 43 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015

Test Configuration:

- Mode: UMTS Band 5
- Channel: 4132
- Speech Signal: ITU-T P.50 Artificial Voice
- Antenna Configuration: Ant 1

Noise Spectrum 10.0 -10.0 -10.0 -10.0 -20

Results					
ABM1	5.49 dB	•	Minimum	-18.0	
ABM2	-54.36 dB	•	Maximum	0	
SNNR	59.85 dB	•	Minimum	20	
Aligned Response - P.50	1.59 dB	•	Tolerance curves	Aligned Data	

FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 44 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 44 01 / 1

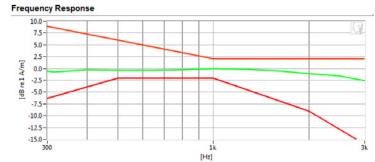
Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015

Test Configuration:


Mode: UMTS Band 4

Channel: 1312

Speech Signal: ITU-T P.50 Artificial Voice

Antenna Configuration: Ant 2

Noise Spectrum 10.0 -10.0 -10.0 -20.0 -10.0 -20.0 -10.0 -20.0 -10.0 -20.0 -10.0 -20.0 -10.0 -20

Results			
ABM1	5.54 dB	Minimum	-18.0
ABM2	-53.7 dB	Maximum	0.0
SNNR	59.24 dB	Minimum	20.0
Aligned Response - P.50	1.58 dB	Tolerance curves	Aligned Data

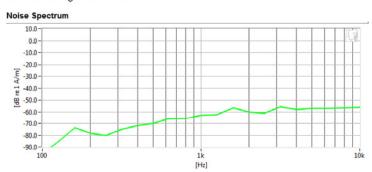
FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 45 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 43 01 / 1

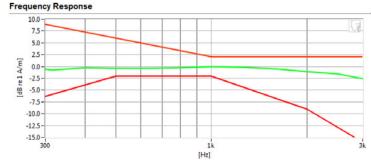
Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015


Test Configuration:


Mode: UMTS Band 2

Channel: 9538

Speech Signal: ITU-T P.50 Artificial Voice

Antenna Configuration: Ant 2

Results					
ABM1	5.5 dB	•	Minimum	-18.0	
ABM2	-54.26 dB	•	Maximum	0.0	
SNNR	59.76 dB	•	Minimum	20.0	
Aligned Response - P.50	1.58 dB	•	Tolerance curves	Aligned Data	

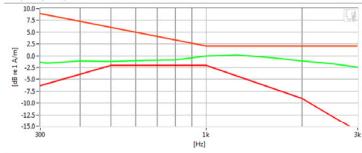
FCC ID: ZNFVS995	PCTEST*	HAC (I-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 40 of 71

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015


Test Configuration:

Mode: LTE FDD Band 66Bandwidth: 20MHzChannel: 132322

Speech Signal: ITU-T P.50 Artificial Voice

· Antenna Configuration: Ant 2

Results			[HZ]		
ABM1	4.41	dB	•	Minimum	-18.0
ABM2	-40.83	dB	•	Maximum	0
SNNR	45.24	dB	•	Minimum	20
Aligned Response - P.50	790m	dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 47 OI 7 I

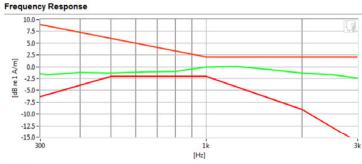
Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1124; Calibrated: 11/17/2015

Test Configuration:


Mode: LTE FDD Band 12

Bandwidth: 10MHzChannel: 23095

Speech Signal: ITU-T P.50 Artificial Voice

Antenna Configuration: Ant 3

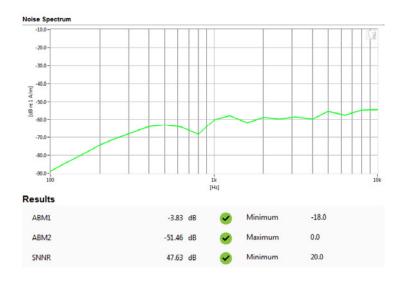
Noise Spectrum 10.0 - 0.0 - 10.0 - 2

Results				
ABM1	4.18	dB 🕜	Minimum	-18.0
ABM2	-42.65 d	dB 🕜	Maximum	0
SNNR	46.83 c	dB 🕜	Minimum	20
Aligned Response - P.50	650m d	dB 🕜	Tolerance curves	Aligned Data

FCC ID: ZNFVS995	PCTEST*	HAC (1-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 48 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 40 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

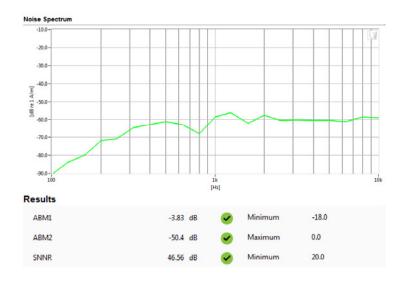
Mode: CDMA CellChannel: 1013

Antenna Configuration: Ant 1

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 49 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

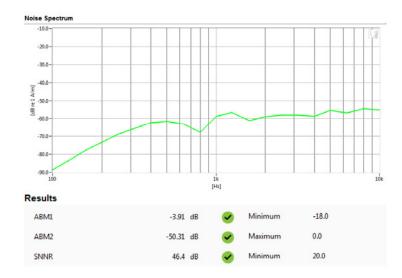
Mode: CDMA CellChannel: 777

Antenna Configuration: Ant 3

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT		Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 50 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 50 01 7 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

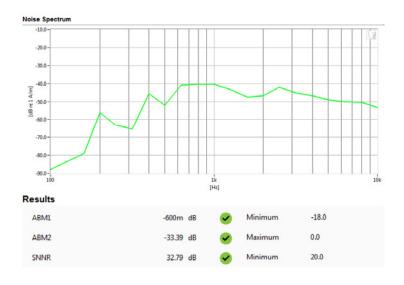
Mode: CDMA PCSChannel: 1175

Antenna Configuration: Ant 2

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 51 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 51 01 71

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

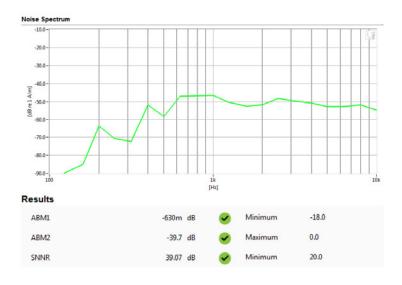
Mode: GSM850Channel: 128

Antenna Configuration: Ant 1

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 52 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Fage 52 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

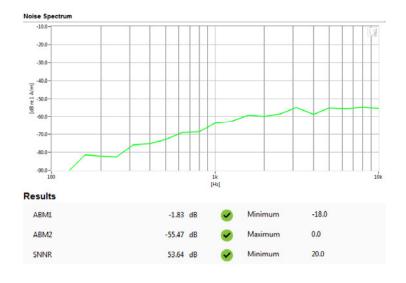
Mode: GSM1900Channel: 810

Antenna Configuration: Ant 2

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 53 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 55 of 71

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

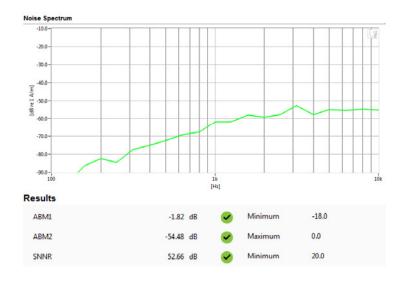
Mode: UMTS Band 5Channel: 4132

Antenna Configuration: Ant 1

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 54 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

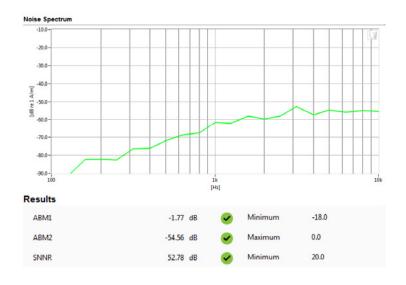
Mode: UMTS Band 4Channel: 1312

Antenna Configuration: Ant 2

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 55 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 55 01 7 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

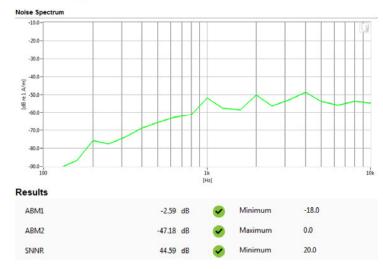
Mode: UMTS Band 2Channel: 9400

Antenna Configuration: Ant 2

FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 56 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 50 01 / 1

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

Mode: LTE FDD Band 66Bandwidth: 20MHzChannel: 132322

· Antenna Configuration: Ant 2

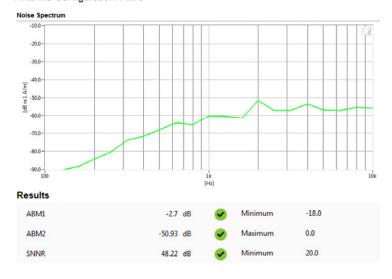
FCC ID: ZNFVS995	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 57 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 57 Of 71

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFVS995

Type: Portable Handset Serial: 11320

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1130; Calibrated: 11/17/2015

Test Configuration:

Mode: LTE FDD Band 12Bandwidth: 1.4MHzChannel: 23095

· Antenna Configuration: Ant 3

FCC ID: ZNFVS995	PCTEST VALUE LABORATOR, INC.	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 58 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 56 01 7 1

11. CALIBRATION CERTIFICATES

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 59 01 / 1

Certificate of Calibration

AXIAL T COIL PROBE

Manufactured by:

TEM CONSULTING

Model No:

AXIAL T COIL PROBE

Serial No:

TEM-1124

Calibration Recall No:

25880

Submitted By:

Customer:

ANDREW HARWELL

Company: Address:

PCTEST ENGINEERING LAB

6660-B DOBBIN ROAD

COLUMBIA

MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIAL T C TEM

Upon receipt for Calibration, the instrument was found to be:

Within (X)

tolerance of the indicated specification. See attached Report of Calibration.

West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Certificate Page 1 of 1

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

17-Nov-15

Certificate No:

QA Doc. #1051 Rev. 2.0 10/1/01

25880 - 3

Felix Christopher (QA Mgr.)

West Caldwell Calibration uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

Reviewed by: FCC ID: ZNFVS995 HAC (T-COIL) TEST REPORT Quality Manager **DUT Type:** Page 60 of 71 08/09/2016 - 08/11/2016 Portable Handset

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

ISO/IEC 17025: 2005

ACCREDITED

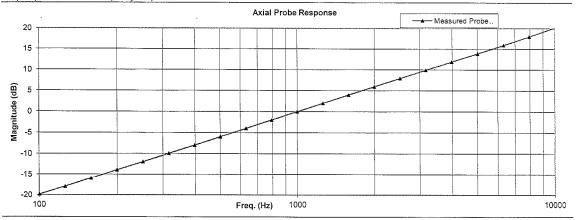
Calibration Lab. Cert. # 1533.01

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

for

Model No.: Axial T Coil Probe


Serial No.: TEM-1124

Company: PC Test Engineering Lab.

TEM Consulting LP Axial T Coil Probe

I. D. No: XXXX

Calibration results:			Before data:	After data	:
Probe Sensitivity measured wit	h Helmholi	tz Coil			
Helmholtz Coil;			Before & afte	er data same	:X
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Enviror	nment:	
the current in the coils, in amperes.;	0.09	Α	Ambient Temperature:	21.7	°C
Helmholtz Coil Constant;	7.09	A/m/V	Ambient Humidity:	28.1	% RH
Helmholtz Coil magnetic field;	6.05	A/m	Ambient Pressure:	100.8	kPa
			Calibration Date:	17-Nov-15	
Probe Sensitivity at	1000	Hz.	Re-calibration Due:	17-Nov-16	
was	-60.07	dBV/A/m	Report Number:	25880	-3
	0.992	mV/A/m	Control Number:	25880	
Probe resistance	902	Ohms			
The above listed instrument meets or	exceeds t	he tested man	ıfacturer's specifications.	•	
This Calibration is traceable through NIST test numbers	s:	683/284413-14	_		
The expanded uncertainty of calibration: 0.30dB at 95% or	onfidence leve	el with a coverage fact	or of k=2.		
Graph represents Probes Frequency Response.					

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025

Cal. Date: 17-Nov-2015 · Calibrated on WCCL system type 9700

Measurements performed by:

Felix Christopher

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

caldwell Cal. Labs. Inc. Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 61 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Fage 010171

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

HCATEMC_TEM-1124_Nov-17-2015

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe

Model No.: Axial T Coil Probe

Serial No.: TEM-1124

Company: PC Test Engineering Lab.

Function	Tolera	nce	Measured values			
			Before	Out	Remarks	
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.07			
		dB				
Probe Level Linearity		6	6.06			
	Ref. (0 dB)	0	0.00			
		-6	-6.03			
		-12	-12.06			
		Hz				
3.0 Probe Frequency Response			-19.8			
		126	-18.0			
		158	-16.0		[
		200	-13.9			
		251	-12.0			
		316	-9.9			
		398	-8.0			
		501	-6.0			
		631	-4.0			
		794	-2.0			
	Ref. (0 dB)	1000	0.0			
		1259	2.0			
		1585	4.0			
		1995	6.0			
		2512	7.9		ł	
		3162	9.9			
		3981	11.9			
		5012	13.9			
		6310	15.9			
		7943	18.0			
		10000	20.1			
		Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB) Probe Frequency Response	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity 6 Ref. (0 dB) 0 -6 -12 Probe Frequency Response 100 126 158 200 251 316 398 501 631 794 Ref. (0 dB) 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943	Probe Sensitivity at 1000 Hz. dBV/A/m -60.07 Probe Level Linearity 6 6 6.06 Ref. (0 dB) 0 0.00 -6 -6.03 -12 -12.06 Probe Frequency Response 100 -19.8 126 -18.0 158 -16.0 200 -13.9 251 -12.0 316 -9.9 398 -8.0 501 -6.0 631 -4.0 794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1585 4.0 1995 6.0 2512 7.9 3162 9.9 3981 11.9 5012 13.9 6310 15.9 7943 18.0	Probe Sensitivity at 1000 Hz. dBV/A/m -60.07 Probe Level Linearity 6	

Instruments used for calibration	on:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N 36064102	1-Oct-2015	,287708	1-Oct-2016
HP	34401A	S/N 36102471	1-Oct-2015	.287708	1-Oct-2016
HP	33120A	S/N 36043716	1-Oct-2015	.287708	1-Oct-2016
B&K	2133	S/N 1583254	1-Oct-2015	683/284413-14	1-Oct-2016

Cal. Date: 17-Nov-2015

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: Felix Christopher

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: ZNFVS995	PCTEST'	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 62 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 62 01 7 1

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 07/05/2016

Certificate of Calibration

for

RADIAL T COIL PROBE

Manufactured by:

TEM CONSULTING

Model No:

RADIAL T COIL PROBE

Serial No:

TEM-1130

Calibration Recall No:

25880

Submitted By:

Customer:

ANDREW HARWELL

Company: Address: PCTEST ENGINEERING LAB

6660-B DOBBIN ROAD

COLUMBIA

MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

RADIAL T TEM

Upon receipt for Calibration, the instrument was found to be: Within (X)

464VV

tolerance of the indicated specification. See attached Report of Calibration.

West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

17-Nov-15

FC_

Certificate No:

25880 - 2

Felix Christopher (QA Mgr.)

QA Doc. #1051 Rev. 2.0 10/1/01

Certificate Page 1 of 1

ISO/IEC 17025:2005

West Caldwell Calibration Laboratories, Inc.

uncompromised calibration Laborator
1575 State Route 96, Victor, NY 14564, U.S.A.

08/09/2016 - 08/11/2016

Calibration Lab. Cert. # 1533.01

FCC ID: ZNFVS995

HAC (T-COIL) TEST REPORT

CD LG

Reviewed by:
Quality Manager

Filename:

DUT Type:

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

Page 63 of 71

Portable Handset

ACCREDITED

ISO/IEC 17025: 2005

1575 State Route 96, Victor NY 14564

Calibration Lab. Cert. # 1533.01

REPORT OF CALIBRATION

for

TEM Consulting LP Radial T Coil Probe

Model No.: Radial T Coil Probe

Serial No.: TEM-1130

Company: PC Test Engineering Lab.

Graph represents Probes Frequency Response.

I. D. No: XXXX

Calibration results:			Before data:	After data	:
Probe Sensitivity measured wit	h Heimhol	tz Coil			
Helmholtz Coil;			Before & after	er data same	:X
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Enviror	nment:	
the current in the coils, in amperes.;	0.09	Α	Ambient Temperature:	21.7	°C
Helmholtz Coil Constant;	7.09	A/m/V	Ambient Humidity:	28.1	% RH
Helmholtz Coil magnetic field;	5.98	A/m	Ambient Pressure:	100.8	kPa
			Calibration Date:	17-Nov-15	
Probe Sensitivity at	1000	Hz.	Re-calibration Due:	17-Nov-16	
was	-60.41	dBV/A/m	Report Number:	25880	-2
	0.954	mV/A/m	Control Number:	25880	
Probe resistance	903	Ohms			
The above listed instrument meets or	exceeds t	the tested man	ufacturer's specifications	•	
This Calibration is traceable through NIST test numbers	s:	683/284413-14			
The expanded uncertainty of calibration: 0.30dB at 95% c	onfidence lev	el with a coverage fact	or of k=2.		

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025

Cal. Date: 17-Nov-2015

Felix Christopher

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 64 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 04 01 / 1

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

HCRTEMC_TEM-1130_Nov-17-2015

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe

Model No.: Radial T Coil Probe

Serial No.: TEM-1130

Company: PC Test Engineering Lab.

Function	Tolera	nce	Me	asured val	ues
			Before	Out	Remarks
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.41		
		dB			
Probe Level Linearity		6	6.05		
	Ref. (0 dB)	0	0.00		
		-6	-6.03		
		-12	-12.05		
		Hz			
Probe Frequency Response		100	-20.0		
		126	-17.9		
		158	-15.9		1 .
		200	-13.9		
		251	-11.9		
		316	-10.0		
		398	-8.0		
		501	-6.0		
		631	-4.0		
		794	-2.0		
	Ref. (0 dB)	1000	0.0		
		1259	2.0		
		1585	4.0		
		1995	6.0		
		2512	7.9		
		3162	9.9		
		3981	11.9		
		5012	13.9		
		6310	15.9		
		7943	18.0		
		10000	20.2		
	Probe Sensitivity at Probe Level Linearity	Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB) Probe Frequency Response	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity 6 Ref. (0 dB) 0 -6 -12 Probe Frequency Response 100 126 158 200 251 316 398 501 631 794 Ref. (0 dB) 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943	Probe Sensitivity at 1000 Hz. dBV/A/m -60.41 Probe Level Linearity Ref. (0 dB) Ref. (0 dB)	Probe Sensitivity at 1000 Hz. dBV/A/m -60.41 Probe Level Linearity Ref. (0 dB) Ref. (0 dB)

Instruments used for calibration:				Date of Cal.	Traceability No.	Due Date
HP	34401A	S/N	36064102	1-Oct-2015	,287708	1-Oct-2016
HP	34401A	S/N	36102471	1-Oct-2015	,287708	1-Oct-2016
НР	33120A	S/N	36043716	1-Oct-2015	,287708	1-Oct-2016
B&K	2133	S/N	1583254	1-Oct-2015	683/284413-14	1-Oct-2016

Cal. Date: 17-Nov-2015

Tested by: Felix Christopher

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: ZNFVS995	PCTEST'	HAC (T-COIL) TEST REPORT	LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 65 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		Page 05 01 7 1

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 07/05/2016

12. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 66 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage oo oi 7 i

13. REFERENCES

- ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- 2. FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v04," October 31, 2013
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v01r01," October 31, 2013
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify
 Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, "IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 19. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 67 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		raye 07 01 7 1

- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 25. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFVS995	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Reviewed by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 68 of 71
0Y1608121382-R1.ZNF	08/09/2016 - 08/11/2016	Portable Handset		rage 66 01 7 1