

7.4 Band Edge Emissions at Antenna Terminal §2.1051 §22.917(a) §24.238(a) §27.53(c) §27.53(g) §27.53(h)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v02r02 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

<u>Test Setup</u>

The EUT and measurement equipment were set up as shown in the diagram below.

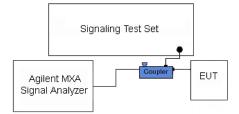


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

Per 22.917(b) 24.238(a) 27.53(h) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

Per 27.53(g) for operations in the 698-746 MHz band, in the 100 kHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least 30 kHz may be employed to demonstrate compliance with the out-of-band emissions limit.

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 61 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 61 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0

Per 27.53(c.5) for operations in the 776-788 MHz band, in the 100 kHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least 30 kHz may be employed to demonstrate compliance with the out-of-band emissions limit.

For all plots showing emissions in the 763 – 775MHz and 793 – 805MHz band, the FCC limit per 27.53(c.4) is $65 + 10log_{10}(P) = -35dBm$ in a 6.25kHz bandwidth.

Plot 7-90. Lower Band Edge Plot (Band 12 – 1.4MHz QPSK – RB Size 6)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 62 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 62 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0

Plot 7-91. Upper Band Edge Plot (Band 12 – 1.4MHz QPSK – RB Size 6)


Plot 7-92. Upper Extended Band Edge Plot (Band 12 – 1.4MHz QPSK – RB Size 6)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 63 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 63 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016

	ysight Spe														- 6
<mark>,X/</mark> R	L	RF		50 Ω	DC	CORR			ENSE:INT	#Avg Typ	ALIGN AUTO	TRA	M Jul 11, 2016 CE 1 2 3 4 5 6	F	requency
	B/div	Ref	25.0	00 d	Bm	PNC IFGa	:Wide 🕞 in:Low	Atten: 3			М	kr1 697.8	B36 MHz 07 dBm		Auto Tun
Log 15.0												Jun	harden and		Center Fre 8.000000 MH
												/		69	Start Fr 6.000000 MI
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i></i>	مىرىمىموارىمىرىم	1	h	m	man		-13.00 dBm	70	<b>Stop Fr</b> 0.000000 M
35.0 45.0	Managerature	www.r												<u>Auto</u>	<b>CF St</b> 400.000 k M
55.0															Freq Offs 0
65.0 Cen	ter 69	8.000	D MH	z								Span 4	.000 MHz	Log	Scale Ty
	s BW						#VBV	/ 300 kH	z		Sweep	2.000 ms	(1001 pts)		
SG											STAT	US			

Plot 7-93. Lower Band Edge Plot (Band 12 – 3.0MHz QPSK – RB Size 15)



Plot 7-94. Upper Band Edge Plot (Band 12 – 3.0MHz QPSK – RB Size 15)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 64 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 64 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016



	pectrum Analyz											
<mark>XI</mark> RL	RF	50Ω D	C COR	REC	SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Jul 11, 2016	Fi	requency
				O: Wide ← ain:Low	Trig: Fre Atten: 3		0 71		TY D			Auto Tun
10 dB/div Log	Ref 25	.00 dBı	n					Mk	r1 716.1 -18.	32 MHz 10 dBm		Auto Tun
15.0						Ĭ						Center Fre
											/18	3.100000 MH
5.00											716	Start Fre 5.100000 M⊦
5.00										-13.00 dBm		5.100000 Mil
-15.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5 ADD								720	Stop Fre
25.0				www.ye	- how	monson	~~~					
35.0							- Annon					CF Ste
45.0								human	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	<u>Auto</u>	400.000 kH Ma
												Freq Offs
55.0												01
65.0												
												Scale Typ
	18.100 M / 100 kHz			#VB	N 300 kHz			Sweep 2	Span 4 2.000 m <u>s</u>	.000 MHz (1001 pts)	Log	L
ISG								STATU				

Plot 7-95. Upper Extended Band Edge Plot (Band 12 – 3.0MHz QPSK – RB Size 15)



Plot 7-96. Lower Band Edge Plot (Band 12/17 - 5.0MHz QPSK - RB Size 25)

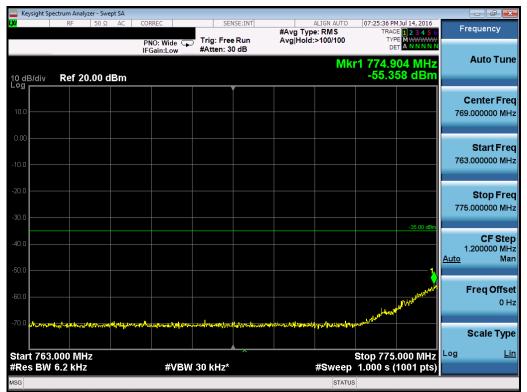
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 65 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



Keysight Spectrum Anal R L RF	yzer - Swept SA 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO	03:34:12 PM Jul 11, 2016	
		PNO: Wide ⊂ IFGain:Low	Trig: Free Run Atten: 36 dB	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	Frequency
	5.00 dBm			M	r1 716.004 MHz -19.44 dBm	Auto Tu
5.0 5.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Man marine				<b>Center Fr</b> 716.000000 M
.00						Start Fr 714.000000 M
5.0			1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-13.00 dBm	<b>Stop Fr</b> 718.000000 M
5.0						CF St 400.000 F <u>Auto</u> N
5.0						Freq Off 0
5.0						Scale Ty
enter 716.000 N Res BW 100 kH		#VBV	V 300 kHz	Sweep	Span 4.000 MHz 2.000 ms (1001 pts)	Log
G				STAT	JS	

	Plot 7-97. Upper Band Edge Plot (Band 12/17 – 5.0MHz QPSK – RB Size 25)
--	-------------------------------------------------------------------------




Plot 7-98. Lower Band Edge Plot (Band 12/17 - 10.0MHz QPSK - RB Size 50)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 66 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 66 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0



Keysight Spectrum Analyzer - Swept SA				
U RL RF 50Ω DC	CORREC SENSE:	#Avg Type: RMS	03:28:27 PM Jul 11, 2016 TRACE 1 2 3 4 5 6 TYPE A *****	Frequency
0 dB/div Ref 25.00 dBm	PNO: Wide 🖵 Trig: Free Ro IFGain:Low Atten: 36 dE	3	kr1 716.008 MHz -24.55 dBm	Auto Tur
15.0				Center Fre 716.000000 MH
5.00	Manufacture (Constrained on the Constrained on the			Start Fre 712.000000 Mi
25.0	Inn. 1	Malania Anto and Anto a	-13.00 dBm	<b>Stop Fr</b> 720.000000 Mi
35.0		and and an and a start and a	al provide a second sec	<b>CF Ste</b> 800.000 kl <u>Auto</u> M
5.0				Freq Offs 0
55.0				Scale Ty
enter 716.000 MHz Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 8.000 MHz 4.000 ms (1001 pts)	Log <u>L</u>
SG		STAT	US	

Plot 7-99. Upper Band Edge Plot (Band 12/17 - 10.0MHz QPSK - RB Size 50)



Plot 7-100. Lower Emission Mask Plot (Band 13 – 5.0MHz QPSK – RB Size 25)

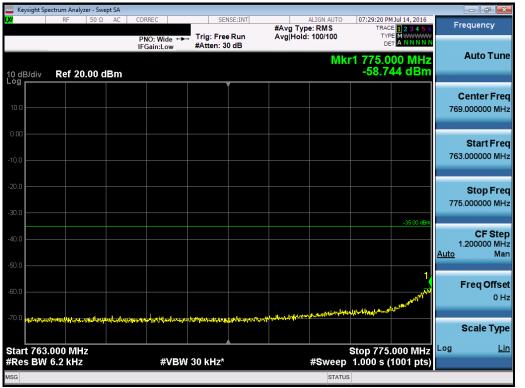
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 67 of 144		
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 67 01 144		
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.					



Keysight Spectrum Analyzer - Swept SA				- đ <b>-</b>
RF 50Ω AC	CORREC SENSE:INT	ALIGN AUTO #Avg Type: RMS	07:16:28 PM Jul 14, 2016 TRACE <b>1 2 3 4 5 6</b>	Frequency
10 dB/div Ref 20.00 dBm	PNO: Wide ++- Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 100/100	r1 777.000 MHz -29.117 dBm	Auto Tun
10.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Center Fre 777.000000 M⊦
10.0			-13.00 dBm	Start Fre 775.000000 MH
30.0	N. L			<b>Stop Fro</b> 779.000000 Mi
40.0	~~~~~			CF Ste 400.000 kl <u>Auto</u> M
50.0				Freq Offs
70.0				Scale Typ
Center 777.000 MHz Res BW 51 kHz	#VBW 160 kHz*	Sweep 1	Span 4.000 MHz .933 ms (1001 pts)	Log <u>L</u>
SG		STATU	S	

Plot 7-101. Lower Band Edge Plot (Band 13 – 5.0MHz QPSK – RB Size 25)




Plot 7-102. Upper Band Edge Plot (Band 13 – 5.0MHz QPSK – RB Size 25)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 68 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 66 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



Keysight Species	ctrum Analyze	r - Swept SA										
<mark>X/</mark>	RF	50 Ω AC	CORRE			NSE:INT	#Avg Typ Avg Hold	ALIGN AUTO	TRAC	4 Jul 14, 2016 E 1 2 3 4 5 6 E M +++++++++++++++++++++++++++++++++++	F	requency
10 dB/div	Ref 20.	00 dBm	PNO: IFGair	Wide 🕞	#Atten: 3		Avginoia		⊓ 1 801.9	28 MHz 94 dBm		Auto Tun
10.0												Center Fre 9.000000 МН
0.00											79	Start Fre 3.000000 M⊦
20.0											80	<b>Stop Fre</b> 5.000000 M⊦
40.0										-35.00 dBm	<u>Auto</u>	CF Ste 1.200000 MH Ma
60.0								↓1				Freq Offs 0 H
-70.0 <b>dir-miqid</b> ay	Alufondulanor	and and a state for the state of the state o	-lunder Horth	let you generally co	uldererteninege	peritationage	ndern freitige standeler	npostalkovetow	04		Log	Scale Typ
Start 793. Res BW				#VBW	30 kHz*			#Sweep	5top 805 1.000 <u>s (</u>	.000 MHz 1001 pts)	209	-
SG								STATUS				

Plot 7-103. Upper Emission Mask Plot (Band 13 – 5.0MHz QPSK – RB Size 25)



Plot 7-104. Lower Emission Mask Plot (Band 13 – 10.0MHz QPSK – RB Size 50)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 69 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 69 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0





Plot 7-105. Lower Band Edge Plot (Band 13 – 10.0MHz QPSK – RB Size 50)



Plot 7-106. Upper Band Edge Plot (Band 13 – 10.0MHz QPSK – RB Size 50)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 70 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0



Keysight Specific Specific Control Sp	ectrum Analyz		it SA										
	RF	50 Ω	AC	CORREC		S	ENSE:INT	#Avg Typ	ALIGN AUTO		MJul 14, 2016 E <mark>1 2 3 4 5 6</mark>	F	requency
				PNO: N IFGain	Wide 🔶	Trig: Fr #Atten:		Avg Hold		TYF DE			
10 dB/div	Ref 20	.00 dl	Зm						Mk	r1 803.4 -68.7	64 MHz 18 dBm		Auto Tune
10.0													Center Fred 9.000000 MH;
•10.00												79	Start Fred 3.000000 MH;
-20.0												80	<b>Stop Fred</b> 5.000000 MH:
40.0											-35.00 dBm	<u>Auto</u>	CF Stej 1.200000 MH Ma
-60.0										<b>↓</b> ¹			Freq Offse 0 H
-70.0 <b>******/6**</b>	Hitipong Isospes	un de la la de la de La de la d	l _{and de} Art	إد الارام ما مع	hat a that you the	halve-Julerho	Mondaria - Ma	nathrapping Applying	konkeringehende	Annad Antonia An	-lgler[knoγ-turins] _{gl} ffest _{turi}		Scale Type
Start 793. #Res BW		z			#VBW	30 kHz	:		#Sween	Stop 805	.000 MHz 1001 pts)	Log	Lir
ISG						0.0011112			STATUS		neer proj		

Plot 7-107. Upper Emission Mask Plot (Band 13 – 10.0MHz QPSK – RB Size 50)



Plot 7-108. Lower Band Edge Plot (Band 5 – 1.4MHz QPSK – RB Size 6)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 71 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page / 1 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016



	pectrum Analyzer - S										
K, RL	RF 50	Ω AC	CORREC		SE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Jul 15, 2016	F	requency
	_		PNO: Wide G	Trig: Free Atten: 36				TYI Di			A
10 dB/div Log	Ref 25.00	dBm					Mk	r1 849.0 -20.	00 MHz 22 dBm		Auto Tune
											Center Free
15.0		Jun		m l						84	9.000000 MH
5.00		/									Start Free
-5.00										84	7.000000 MH
-15.0					1				-13.00 dBm		
					' '~~					85	Stop Free 1.000000 MH
-25.0	www.					m	w.				OF Oto
-35.0								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>Auto</u>	CF Stej 400.000 kH Mai
-45.0									- hours		
-55.0											Freq Offse
-65.0											UH
											Scale Typ
	49.000 MHz							Span 4		Log	Li
	/ 100 kHz		#VBW	/ 300 kHz				1.000 ms (	1001 pts)		
ASG							STATU	s			

Plot 7-109. Upper Band Edge Plot (Band 5 – 1.4MHz QPSK – RB Size 6)



Plot 7-110. Lower Band Edge Plot (Band 5 – 3.0MHz QPSK – RB Size 15)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 72 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 72 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0



Keysight Sp	pectrum Analyzer - Sw	ept SA									
L <mark>XI</mark> RL	RF 50 Ω	AC (	CORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		M Jul 15, 2016 E <b>1 2 3 4 5 6</b>	F	requency
			PNO: Wide 🖵 IFGain:Low	Trig: Free Atten: 36		#118 Jp		TYF DE			Auto Tune
10 dB/div Log	Ref 25.00	dBm					MK	r1 849.0 -17.	00 MHz 77 dBm		Auto Tune
15.0					i.						Center Freq
~~~~				$\sim$						84	9.000000 MHz
5.00											Start Fred
-5.00									-13.00 dBm	84	7.000000 MHz
-15.0					1						Stop Fred
-25.0					hora a					85	1.000000 MH:
-35.0							~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CF Step 400.000 kH
-45.0										<u>Auto</u>	Mar
-55.0											Freq Offse
-65.0											0 H:
											Scale Type
	49.000 MHz / 100 kHz		#VBW	300 kHz			Sween 1	Span 4	.000 MHz 1001 pts)	Log	Lin
MSG			<i></i>	000 AT12			STATUS		loor proj		


Plot 7-111. Upper Band Edge Plot (Band 5 – 3.0MHz QPSK – RB Size 15)

Plot 7-112. Lower Band Edge Plot (Band 5 – 5.0MHz QPSK – RB Size 25)

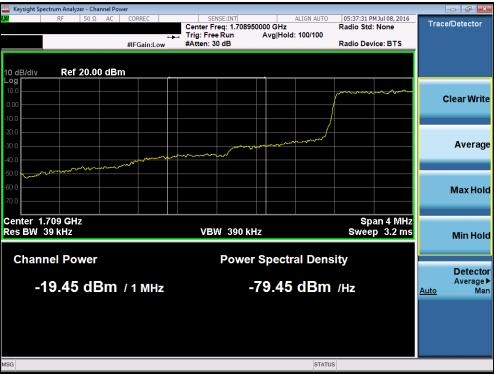
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 72 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 73 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0

Plot 7-113. Upper Band Edge Plot (Band 5 – 5.0MHz QPSK – RB Size 25)

Plot 7-114. Lower Band Edge Plot (Band 5 – 10.0MHz QPSK – RB Size 50)

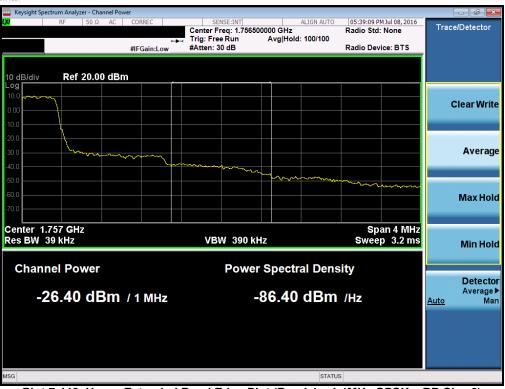
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 74 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 74 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0

	pectrum Analyze										
I <mark>XI</mark> RL	RF	50 Ω AC	CORREC		ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	4 Jul 15, 2016 E 1 2 3 4 5 6	F	requency
10 dB/div	Ref 25.0	00 dBm	PNO: Wide 🕞 IFGain:Low	Trig: Free Atten: 36			Mk	r1 849.0	00 MHz 44 dBm		Auto Tune
	Kel 23.										Center Free 9.000000 MH
-5.00	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	^							84	Start Fre 5.000000 MH
-15.0					-1				-13.00 dBm	85	Stop Fre 3.000000 MH
-35.0						·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	······	<u>Auto</u>	CF Ste 800.000 k⊢ Ma
-45.0											Freq Offs 0 H
-65.0											Scale Typ
	49.000 MH V 100 kHz	IZ	#VBW	/ 300 kHz			Sweep 1	Span 8 .000 ms (.000 MHz 1001 pts)	Log	Li
MSG							STATUS				


Plot 7-115. Upper Band Edge Plot (Band 5 – 10.0MHz QPSK – RB Size 50)

Plot 7-116. Lower Band Edge Plot (Band 4 – 1.4MHz QPSK – RB Size 6)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 75 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 75 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.		•	V 4.0



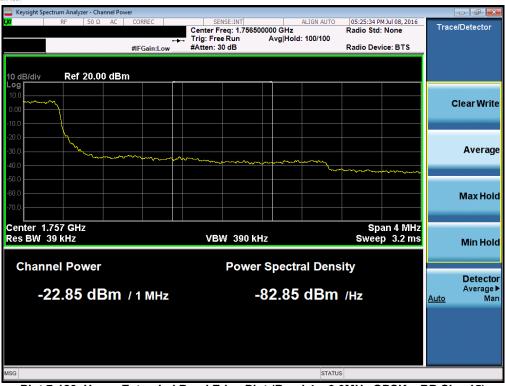
Plot 7-118. Upper Band Edge Plot (Band 4 – 1.4MHz QPSK – RB Size 6)

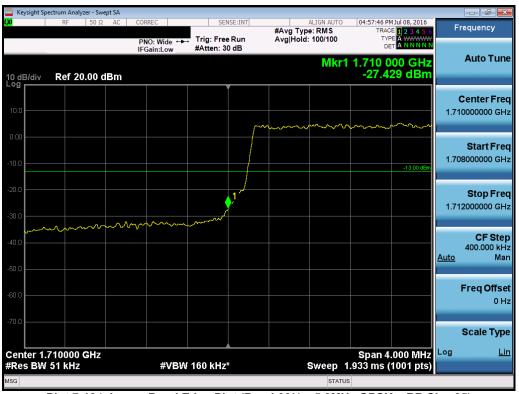
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 76 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 76 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0


Plot 7-119. Upper Extended Band Edge Plot (Band 4 – 1.4MHz QPSK – RB Size 6)

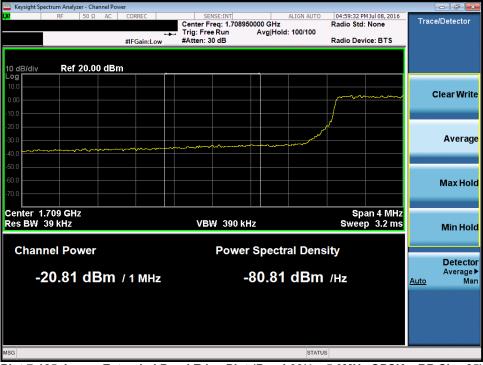
Plot 7-120. Lower Band Edge Plot (Band 4 – 3.0MHz QPSK – RB Size 15)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 77 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 77 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0


Plot 7-121. Lower Extended Band Edge Plot (Band 4 – 3.0MHz QPSK – RB Size 15)

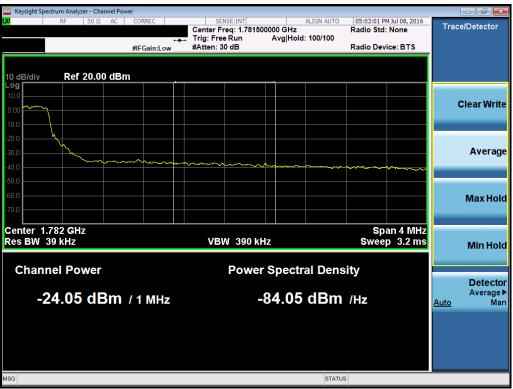

Plot 7-122. Upper Band Edge Plot (Band 4 – 3.0MHz QPSK – RB Size 15)

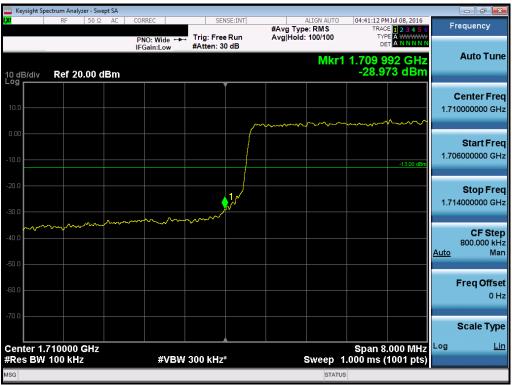
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 79 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 78 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016


Plot 7-123. Upper Extended Band Edge Plot (Band 4 – 3.0MHz QPSK – RB Size 15)

Plot 7-124. Lower Band Edge Plot (Band 66/4 – 5.0MHz QPSK – RB Size 25)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 79 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 79 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0


Plot 7-125. Lower Extended Band Edge Plot (Band 66/4 – 5.0MHz QPSK – RB Size 25)


Plot 7-126. Upper Band Edge Plot (Band 66 – 5.0MHz QPSK – RB Size 25)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 80 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 60 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016

Plot 7-127. Upper Extended Band Edge Plot (Band 66 – 5.0MHz QPSK – RB Size 25)

Plot 7-128. Lower Band Edge Plot (Band 66/4 – 10.0MHz QPSK – RB Size 50)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 81 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 61 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0

Keysight Spe	ectrum Analyzer -	Swept SA					
L <mark>XI</mark>	RF 50	Ω AC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:41:39 PM Jul 08, 2016 TRACE 1 2 3 4 5 6	Frequency
			PNO: Fast ↔→→ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	DET A NNNN	
					Mkr1	1.709 000 GHz	Auto Tune
10 dB/div Log	Ref 20.00) dBm				-21.116 dBm	
							Center Freq
10.0							1.707000000 GHz
0.00							
0.00							Start Freq
-10.0						-13.00 dBm	1.705000000 GHz
						1	
-20.0			and the second state of th	والإدرية والمالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية وال	AND THE REAL PROPERTY OF THE R	water and and and a state	Stop Freq
-30.0		elysial and a second	aderitating and a second s	alifyidation bir fa to a			1.709000000 GHz
							CF Step
-40.0							400.000 kHz
-50.0							<u>Auto</u> Man
00.0							Ener Offerst
-60.0							Freq Offset 0 Hz
-70.0							Scale Type
							Log Lin
Center 1.7 #Res BW	707000 GH 1.0 MHz	Z	#VBW	3.0 MHz*	Sweep 1	Span 4.000 MHz .000 ms (1001 pts)	
MSG					STATU		

Plot 7-130. Upper Band Edge Plot (Band 66 – 10.0MHz QPSK – RB Size 50)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 82 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 62 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0

🔤 Keysight	Spectrum Analyze	r - Swept SA									
LXI	RF	50 Ω AC	CORREC	SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Jul 08, 2016 CE <mark>1 2 3 4 5 6</mark>	F	requency
			PNO: Fas IFGain:Lo			Avg Hold:	: 100/100	TYF DE			Auto Tune
10 dB/div	Ref 20.	00 dBm					Mkr1	1.781 0 -22.7	00 GHz 28 dBm		Auto Tune
Log					Ĭ						Center Freq
10.0										1.78	3000000 GHz
0.00											Start Freq
-10.0									-13.00 dBm	1.78	1000000 GHz
-20.0											Stop Freq
-30.0	La Palitic Internet Contraction	www.winalywys	margan	๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	mmelling	herrymous	who was allowed	white warder ware	l mark was have a long	1.78	5000000 GHz
											CF Step
-40.0										<u>Auto</u>	400.000 kHz Man
-50.0											
-60.0											Freq Offset 0 Hz
-70.0											
											Scale Type
	1.783000 G N 1.0 MHz	Hz	#\	/BW 3.0 MHz	*		Sweep 1	59 Span 1.000 m <u>s (</u>	.000 MHz 1001 pts)	Log	<u>Lin</u>
MSG							STATU	S			

Plot 7-131. Upper Extended Band Edge Plot (Band 66 – 10.0MHz QPSK – RB Size 50)

Plot 7-132. Lower Band Edge Plot (Band 66/4 – 15.0MHz QPSK – RB Size 75)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 83 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 65 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0

Keysight Spe	ectrum Analyzer - Swept	SA									
	RF 50 Ω		EC D:Fast ↔→ ain:Low			#Avg Typ Avg Hold		TRAC	MJul 08, 2016 E 1 2 3 4 5 6 PE A WWWW T A N N N N N	F	requency
dB/div	Ref 20.00 dB		ain:Low	#Atten: St			Mkr1	1.708 9	48 GHz 50 dBm		Auto Tur
											Center Fre
0.0									-13.00 dBm	1.70	Start Fr 05000000 G
0.0 •••••••		a, Paymond of a part of Lagorst	u-Afreithiansty Agric	₽₽₽ <mark>₽₽₽₽₽₽₽₽₽₽₽</mark> ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	www.elsyster	an a	enersymmetry	a source and a source of	- A A A A A A A A A A A A A A A A A A A	1.70	Stop Fr 09000000 G
).0										<u>Auto</u>	CF St 400.000 k M
).0											Freq Offs 0
anter 17	707000 GHz							Snan 4	.000 MHz	Log	Scale Ty
	1.0 MHz		#VBW	3.0 MHz*			Sweep 1	.000 m <u>s (</u>	1001 pts)		
G							STATUS			-	

Plot 7-133. Lower Extended Band Edge Plot (Band 66/4 - 15MHz QPSK - RB Size 75)

Plot 7-134. Upper Band Edge Plot (Band 66 - 15.0MHz QPSK - RB Size 75)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 94 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 84 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0

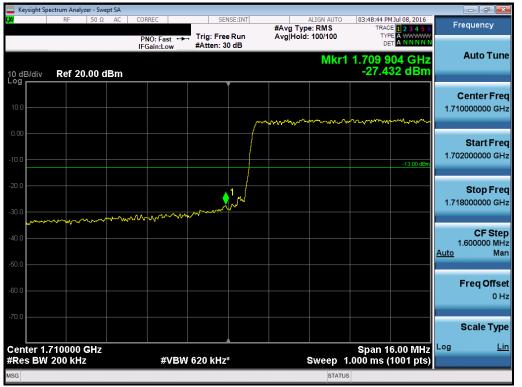
🔤 Keysight Spe	ctrum Analyze	r - Swept S	A										
L <mark>XI</mark>	RF	50 Ω A	AC (CORREC		SEI	NSE:INT	#Avg Ty	ALIGN AUTO		4 Jul 08, 2016 E 1 2 3 4 5 6	F	requency
				PNO: Fa IFGain:L		Trig: Free #Atten: 3			1: 100/100	TYF DE			Auto Tune
10 dB/div Log	Ref 20.	00 dBr	m						Mkr1	1.781 0 -24.2	16 GHz 35 dBm		Auto Tune
10.0													Center Freq 3000000 GHz
-10.0											-13.00 dBm	1.78	Start Freq 1000000 GHz
-20.0 1 -30.0	~~~,116-y117+**	all the second	بىدىنچەر مەر	rent de rente	nyalgun 200 jayoon	⊷ſ≈∿∽¦t _{ertet} ue	and all and a second second	waynaadalaafa	politique de Mariadape	⁹ ## [#] #}#17µ*#31-8¥ ⁶ /1/1	A. matter and the	1.78	Stop Freq 5000000 GHz
-40.0												<u>Auto</u>	CF Step 400.000 kHz Man
-60.0													Freq Offset 0 Hz
-70.0													Scale Type
Center 1.7 #Res BW		Hz		#	VBW	3.0 MHz	*		Sweep 1	Span 4	.000 MHz 1001 pts)	Log	Lin
MSG	1.0 141112			"		0.0 141112			STATU		ree r pts)		
									01110				

Plot 7-135. Upper Extended Band Edge Plot (Band 66 – 15.0MHz QPSK – RB Size 75)

Plot 7-136. Lower Band Edge Plot (Band 66/4 – 15.0MHz QPSK – RB Size 75)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 95 of 114
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 85 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0

Plot 7-137. Lower Extended Band Edge Plot (Band 66/4 - 15MHz QPSK – RB Size 75)


Plot 7-138. Upper Band Edge Plot (Band 66 – 15.0MHz QPSK – RB Size 75)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 86 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset	Fage 60 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.		V 4.0 05/16/2016

🔤 Keysight Sp	ectrum Analyz	er - Swep	t SA										
LXI	RF	50 Ω	AC	CORREC		SEN	ISE:INT	#Avg Ty	ALIGN AUTO		MJul 08, 2016	F	requency
				PNO: Fa IFGain:L		Trig: Free #Atten: 3			d: 100/100	TYF DE			
10 dB/div Log	Ref 20	.00 dE	Зm						Mkr1	1.781 0	16 GHz 35 dBm		Auto Tune
10.0													Center Freq 33000000 GHz
-10.0											-13.00 dBm	1.78	Start Freq 31000000 GHz
-20.0 1	¥ ¹ +****************************	م البالي الم		where the read	ngalan san sayan	⊷∕≈∿°∳ <i>⊌∕и</i> нини	₩₩₩ ₽₽₩ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	an a	ontheorie worklyin	**************************************	A. market and the	1.78	Stop Freq 35000000 GHz
-40.0												<u>Auto</u>	CF Step 400.000 kHz Man
-60.0													Freq Offset 0 Hz
-70.0													Scale Type
Center 1. #Res BW				#	VBW	3.0 MHz	*		Sweep 1	Span 4 .000 ms (.000 MHz 1001 pts)	Log	<u>Lin</u>
MSG									STATUS	5			

Plot 7-139. Upper Extended Band Edge Plot (Band 66 – 15.0MHz QPSK – RB Size 75)

Plot 7-140. Lower Band Edge Plot (Band 66/4 – 20.0MHz QPSK – RB Size 100)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 87 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 67 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0

Keysight Spec	ctrum Analyzer - Sw	vept SA									
LXI	RF 50 ភ	2 AC	CORREC PNO: Fast IFGain:Lov		SENSE:INT	#Avg Typ Avg Hold		TRACI	Jul 08, 2016 1 2 3 4 5 6 A WWWWW A NNNN	F	requency
10 dB/div	Ref 20.00	dBm					Mkr1	1.708 8 -23.5	40 GHz 92 dBm		Auto Tune
10.0											Center Freq 07000000 GHz
-10.0									-13.00 dBm	1.70	Start Freq 5000000 GHz
-20.0	a dallalar tuar t _a n a lugi murtu		www.	9	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	م) معا ^ر المدر معمد ال ^{ور و} مراجع	~] { ~}~~ ⁽ ₀ ~}~/ ₁ ~/ ₁ ~/ ₂ ~/ ₂ ~/	harmalmenter	1_ 	1.70	Stop Freq
-40.0										<u>Auto</u>	CF Step 400.000 kHz Mar
-60.0											Freq Offset 0 Hz
-70.0											Scale Type
Center 1.7 #Res BW 1	07000 GHz 1.0 MHz		#V	'BW 3.0 MI	Hz*		Sweep 1	Span 4. 1.000 ms (′		Log	Lin
ISG							STATU	S			

Plot 7-141. Lower Extended Band Edge Plot (Band 66/4 - 20MHz QPSK – RB Size 100)

Plot 7-142. Upper Band Edge Plot (Band 66 – 20.0MHz QPSK – RB Size 100)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 88 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 66 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0

Keysight Spectrum Analyzer								
XI RF :	50 Ω AC CORI	REC	SENSE:INT	#Avg Type	ALIGN AUTO e: RMS	03:54:31 PM Jul 0 TRACE 1 2	3456	Frequency
			Free Run n: 30 dB	Avg Hold:				Auto Tur
0 dB/div Ref 20.0	00 dBm				Mkr1	1.781 204 -28.836	GHz dBm	Auto Tur
-og			Ĭ					Center Fre
10.0							1	.783000000 GI
0.00								Start Fr
10.0							3.00 dBm	.781000000 G
							3.00 dbin	
20.0							1	Stop Fr .785000000 G
30.0 Material and the second second	ana tana kasa mangana manga ka	๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	~~~~~	and a general to the second	warnhyllelnygels	management		
40.0								CF Ste 400.000 k
50.0							Aut	to M
								Freq Offs
50.0								0
70.0								Scale Ty
Center 1.783000 G	U-7					Span 4.000		
Res BW 1.0 MHz	12	#VBW 3.0 M	Hz*	9	Sweep 1	5pan 4.000 .000 ms (100	1 pts)	
SG					STATUS			

Plot 7-143. Upper Extended Band Edge Plot (Band 66 – 20.0MHz QPSK – RB Size 100)

Plot 7-144. Lower Band Edge Plot (Band 2/25 – 1.4MHz QPSK – RB Size 6)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 89 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 69 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0

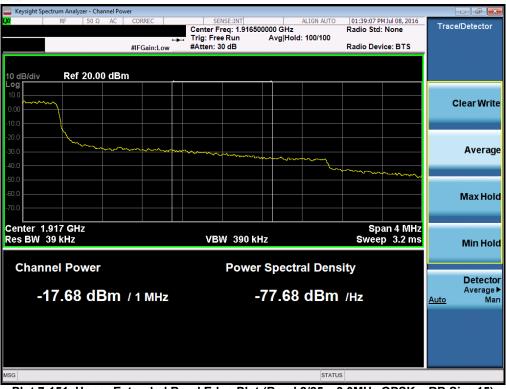
Plot 7-146. Upper Band Edge Plot (Band 2/25 – 1.4MHz QPSK – RB Size 6)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 90 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 90 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0

Plot 7-147. Upper Extended Band Edge Plot (Band 2/25 – 1.4MHz QPSK – RB Size 6)

Plot 7-148. Lower Band Edge Plot (Band 2/25 – 3.0MHz QPSK – RB Size 15)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 01 of 114	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 91 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					


Plot 7-149. Lower Extended Band Edge Plot (Band 2/25 – 3.0MHz QPSK – RB Size 15)

Plot 7-150. Upper Band Edge Plot (Band 2/25 – 3.0MHz QPSK – RB Size 15)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 02 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 92 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0

Plot 7-152. Lower Band Edge Plot (Band 2/25 – 5.0MHz QPSK – RB Size 25)

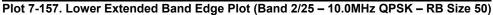
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 02 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 93 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					

Plot 7-153. Lower Extended Band Edge Plot (Band 2/25 – 5.0MHz QPSK – RB Size 25)


Plot 7-154. Upper Band Edge Plot (Band 2/25 – 5.0MHz QPSK – RB Size 25)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 04 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 94 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					

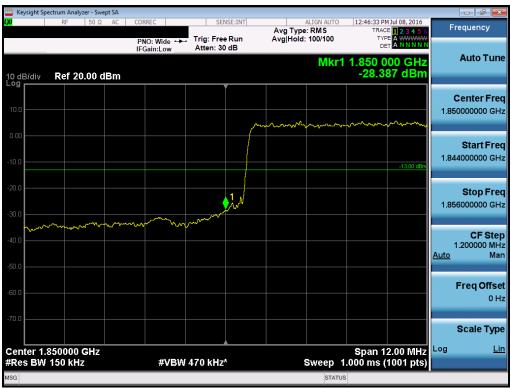
Plot 7-155. Upper Extended Band Edge Plot (Band 2/25 – 5.0MHz QPSK – RB Size 25)



Plot 7-156. Lower Band Edge Plot (Band 2/25 – 10.0MHz QPSK – RB Size 50)

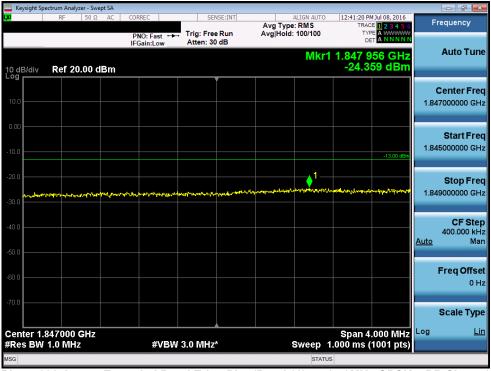
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)				Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego OF of 144		
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 95 of 144		
© 2016 PCTEST Engineering Laboratory, Inc.						

G						STATU	IC.			
	847000 (1.0 MHz		#VB	W 3.0 MHz*		Sweep	Span 4.0 1.000 ms (10		Jung	<u>_</u>
	047000						0	00.5411-	og	Li
									S	Scale Typ
0.0										
0.0									F	req Offs
									_	
0.0								4	Auto	Ma
0.0										CF Ste 400.000 k
n northele	walther	~~~~~	e-phonenerstate	hard an the second s	نريحل سلحيلو عيدهم المحصل	utalation of a state of the second	of the second second second second		1.849	000000 G
0.0							a dua ta dua da da da da da	al marks		Stop Fr
								-13.00 dBm		
0.0										000000 G
.00										Start Fr
0.0										000000 G
^{og}				Ĭ					C	enter Fr
) dB/div	Ref 20	.00 dBm				WIKI	-21.43	1 dBm		
			IFGain:Low	#Atten: 30	dB	Mkr	1 1.849 00			Auto Tu
			PNO: Fast +	🛶 Trig: Free F	Run Avg	g Type: RMS j Hold: 100/100	TYPE	1 2 3 4 5 6 A WWWWW A N N N N N		querrey
	ectrum Analyz RF	50 Ω AC	CORREC	SENS	E:INT	ALIGN AUTO	01:06:43 PM J		Ere	quency


Plot 7-158. Upper Band Edge Plot (Band 2/25 – 10.0MHz QPSK – RB Size 50)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 06 of 111	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 96 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					

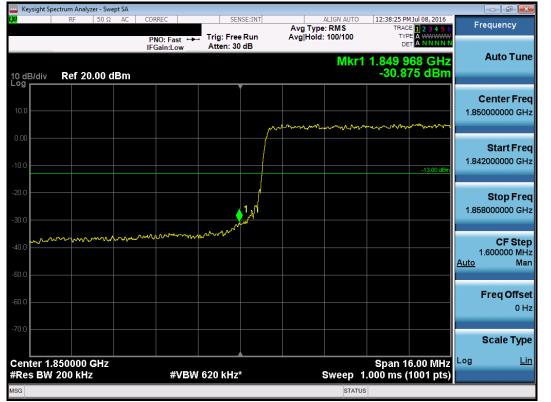
Keysight Spectrum Analyzer - Swept SA							(- đ <mark>-</mark> ×
	CORREC	SENSE:INT	Avg Type:		01:08:03 PM	Jul 08, 2016		BW
Video BW 3.0 MHz	PNO: Fast ↔→ Trig: F IFGain:Low #Atten	ree Run : 30 dB	Avg Hold:		TYP	A WWWWW A NNNN N		Res BW
10 dB/div Ref 20.00 dBm				Mkr1	1.915 0	08 GHz dBm	Auto	1.0 MHz <u>Man</u>
10.0								Video BW 3.0 MHz
							Auto	<u>Mai</u>
0.00							VBW	:3dB RBV 0.
-10.0						-13.00 dBm	<u>Auto</u>	Mar
-20.0								106 106
-30.0	and the section of th	Yourrelationstructions	and the second for	yaharika wananji kiti	Mp-17-10-Witnes	Volumenter (be	<u>Auto</u>	Mai
-40.0								V Control
-50.0							Louda	51011,-0 0D]
-60.0							_	
70.0								
Center 1.918000 GHz #Res BW 1.0 MHz	#VBW 3.0 MH	Iz*	s	weep 1	Span 4. 000 ms (′	000 MHz 1001 pts)		
ISG				STATUS				


Plot 7-159. Upper Extended Band Edge Plot (Band 2/25 – 10.0MHz QPSK – RB Size 50)

Plot 7-160. Lower Band Edge Plot (Band 2/25 – 15.0MHz QPSK – RB Size 75)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 97 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 97 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0

Plot 7-161. Lower Extended Band Edge Plot (Band 2/25 – 15.0MHz QPSK – RB Size 75)


Plot 7-162. Upper Band Edge Plot (Band 2/25 – 15.0MHz QPSK – RB Size 75)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 98 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 96 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016

incysigne s		zer - Swept SA										
	RF	50 Ω AC	C COR	REC		NSE:INT	Avg Type		TRA	PM Jul 08, 2016 CE 1 2 3 4 5 6	F	requency
				IO: Fast ↔ Sain:Low	Atten: 3		Avg Hold					Auto Tui
0 dB/div og	Ref 20	.00 dBn	n					Mkr1	1.916 -26.0	484 GHz)29 dBm		Auto Tu
10.0												Center Fre
0.00											1.9	18000000 G
											1.91	Start Fr 6000000 G
0.0										-13.00 dBm		
Mr. Lahar	ylografyundyna		~~~~								1.92	
Mr. Lahar	ployon-under a	Martin and a start of the start	∼¶°≵∕₩₩₽₩₩	rintmonen	₩ddty-yetawydynyd	a por a second and	Till Malaor Bar Alwaladi (r	open by for by pro	the stratege way	-maylewish	1.92	20000000 G
• %/1øh */	ployers-weidens	Martin Contra	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ninin Walana	-Phillippedenset	and the second	nt/hationstanticles	varantwight. Lapana	11 Jong Jones and Control of Cont		1.92 <u>Auto</u>	20000000 G CF St 400.000 k
0.0	ylmynni yndrod	Array Institution	~ q r t/a wo /4	nintmuseen.	<u>and hy when the set</u>		nt/helenterations	arabyldulogaa	the spectrum			20000000 G CF St 400.000 k M
0.0	yelmyerer-use dye de	**	-999/100/04	ninhtrounn			Strater Arabet	non-hyldulogen	14/ Jane 1000			CF St 400.000 k M Freq Offs
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					an a hafa. Ingan				Stop Fr 20000000 G CF Sta 400.000 k M Freq Offs 0 Scale Ty
0.0	.918000 / 1.0 MHz	GHz			• 40,00000000000000000000000000000000000				Span	4.000 MHz (1001 pts)	<u>Auto</u>	CF Sta 400.000 k M Freq Offs 0

Plot 7-163. Upper Extended Band Edge Plot (Band 2/25 – 15.0MHz QPSK – RB Size 75)



Plot 7-164. Lower Band Edge Plot (Band 2/25 – 20.0MHz QPSK – RB Size 100)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 00 of 111
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 99 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.		•	V 4.0



Keysight Spectrum Analyzer - Swept SA				
<b>Χ</b> RF 50 Ω AC	CORREC SENSE:INT	Avg Type: RMS	12:39:55 PM Jul 08, 2016 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold: 100/100		
10 dB/div Ref 20.00 dBm		Mkr1	1.847 844 GHz -27.221 dBm	Auto Tune
10.0				Center Fre 1.847000000 GH
-10.0			-13.00 dBm	Start Fre 1.845000000 GH
-20.0	uphane martin server and the server server	heyer-aller proved from the state of the	halanenenenenenenenenen	<b>Stop Fre</b> 1.849000000 GH
40.0				CF Ste 400.000 kH <u>Auto</u> Ma
60.0				Freq Offs 0 F
70.0				Scale Typ
Center 1.847000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Sweep	Span 4.000 MHz .000 ms (1001 pts)	Log <u>Li</u>
MSG		STATU	3	

Keysight Spectrum Analyzer - Swept SA 12:30:09 PMJul 08, 2016 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N ALIGN AUTO Avg Type: RMS Avg|Hold: 100/100 Frequency Trig: Free Run PNO: Fast ↔→ IFGain:Low #Atten: 30 dB Auto Tune Mkr1 1.915 032 GHz -31.529 dBm 10 dB/div Log Ref 20.00 dBm **Center Freq** 1.915000000 GHz Start Freq 1.907000000 GHz -13.00 d Stop Freq 1.923000000 GHz 1 CF Step 1.600000 MHz ww Man <u>Auto</u> **Freq Offset** 0 Hz Scale Type Span 16.00 MHz Log Sweep 1.000 ms (1001 pts) Center 1.915000 GHz #Res BW 200 kHz Lin #VBW 620 kHz* SG STATUS Plot 7-166. Upper Band Edge Plot (Band 2/25 – 20.0MHz QPSK – RB Size 100)

Plot 7-165. Lower Extended Band Edge Plot (Band 2/25 – 20.0MHz QPSK – RB Size 100)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 100 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



Keysight Spectrum Analyzer -					
RF 50	Ω AC CORREC	SENSE:INT	ALIGN AUTO Avg Type: RMS	12:34:15 PM Jul 08, 2016 TRACE 1 2 3 4 5 6	Peak Search
	PNO: Fast ↔→→ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	TYPE A WWWWW DET A NNNNN	
0 dB/div Ref 20.00	) dBm		Mkr1	1.916 252 GHz -29.542 dBm	NextPea
10.0					Next Pk Rigl
0.00				-13.00 dBm	Next Pk Le
	Mindel allocation of the Association				Marker De
0.0	htendlasselleringgalandsjondjoneljeteljetergerygg	and the second of the second	1984-sensitivespectration (secondary of the	Anglases and for the for the former of factories a	Mkr→(
0.0					Mkr→RefL
enter 1.918000 GH				Span 4.000 MHz	<b>М</b> а 1 о
Res BW 1.0 MHz		3.0 MHz*	Sweep 1	.000 ms (1001 pts)	
G			STATUS		

Plot 7-167. Upper Extended Band Edge Plot (Band 2/25 – 20.0MHz QPSK – RB Size 100)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 101 of 111
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 101 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.



## 7.5 Peak-Average Ratio §24.232(d)

#### Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

#### Test Procedure Used

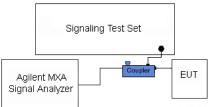
KDB 971168 D01 v02r02 - Section 5.7.1

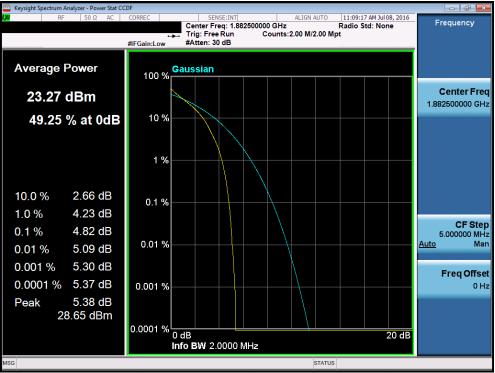
#### Test Settings

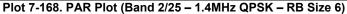
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.

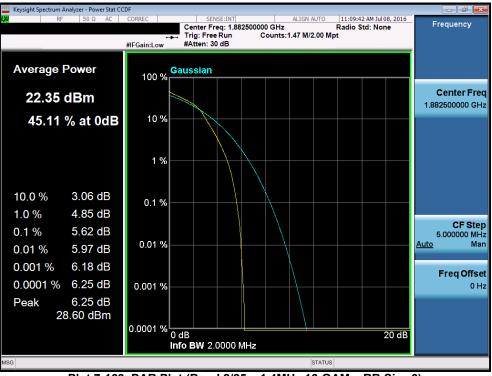
#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.





Figure 7-4. Test Instrument & Measurement Setup

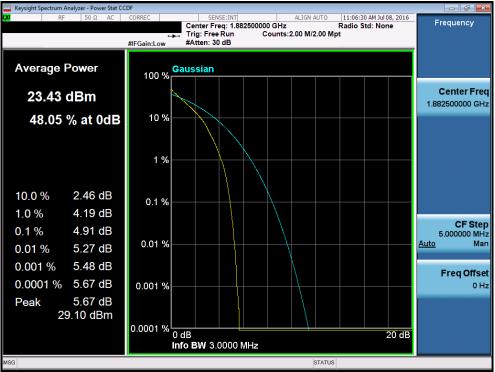

#### Test Notes


None.

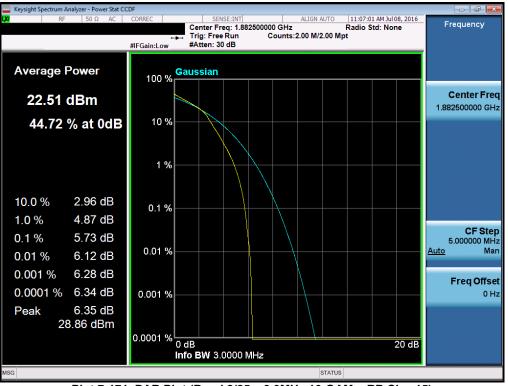
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 102 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 102 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0







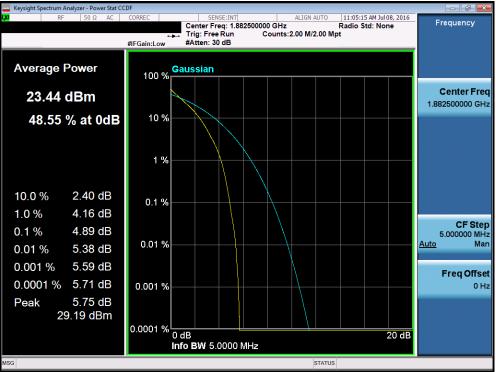




Plot 7-169. PAR Plot (Band 2/25 – 1.4MHz 16-QAM – RB Size 6)

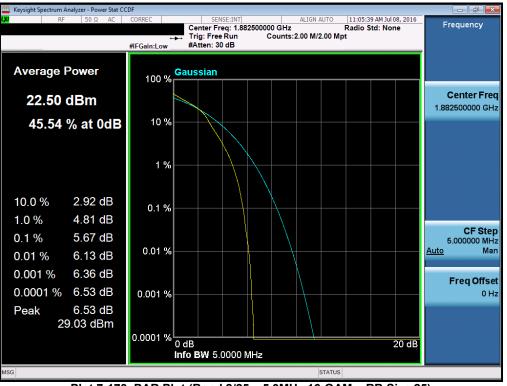
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 102 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 103 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016






Plot 7-170. PAR Plot (Band 2/25 - 3.0MHz QPSK - RB Size 15)

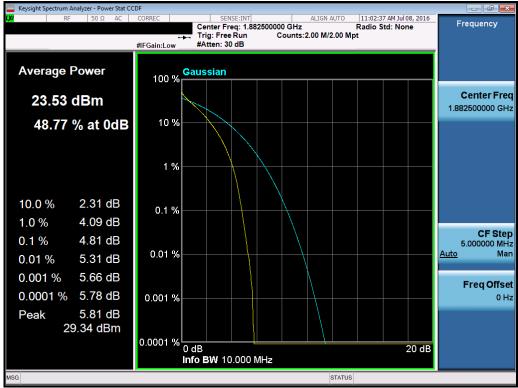



Plot 7-171. PAR Plot (Band 2/25 - 3.0MHz 16-QAM - RB Size 15)

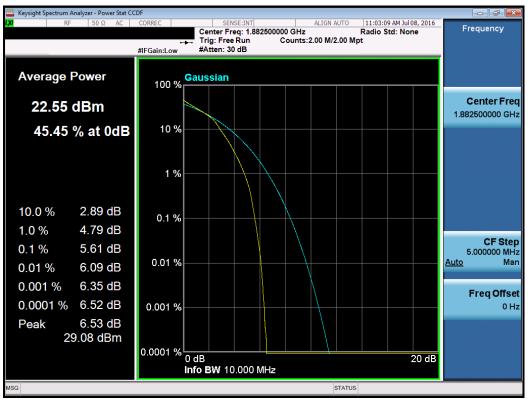
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 104 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 104 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0






Plot 7-172. PAR Plot (Band 2/25 - 5.0MHz QPSK - RB Size 25)

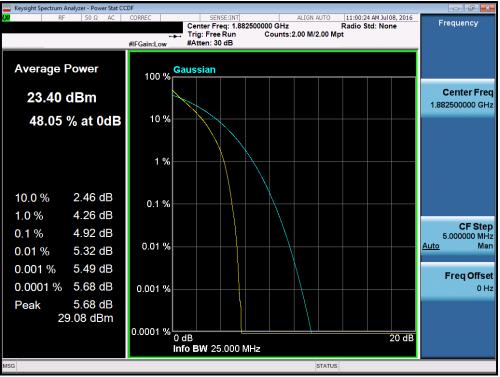


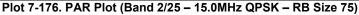

Plot 7-173. PAR Plot (Band 2/25 - 5.0MHz 16-QAM - RB Size 25)

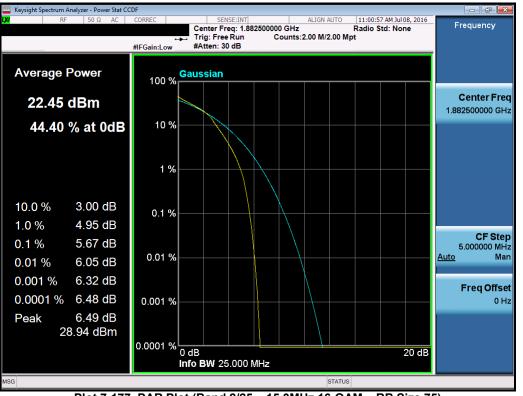
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 105 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 105 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0






Plot 7-174. PAR Plot (Band 2/25 - 10.0MHz QPSK - RB Size 50)

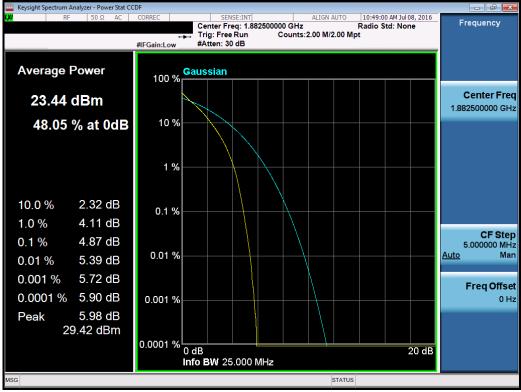




Plot 7-175. PAR Plot (Band 2/25 - 10.0MHz 16-QAM - RB Size 50)

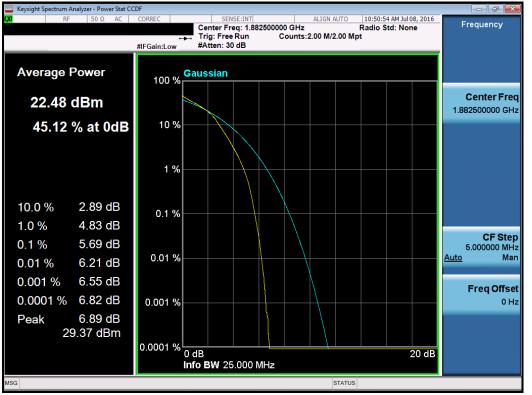
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 106 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 106 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0











Plot 7-177. PAR Plot (Band 2/25 - 15.0MHz 16-QAM - RB Size 75)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 111
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 107 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0





Plot 7-178. PAR Plot (Band 2/25 - 20.0MHz QPSK - RB Size 100)



Plot 7-179. PAR Plot (Band 2/25 - 20.0MHz 16-QAM - RB Size 100)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 109 of 111
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 108 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0



## 7.6 Radiated Power (ERP/EIRP) §22.913(a.2) §24.232(c.2) §27.50(b.10) §27.50(c.10) §27.50(d.4)

#### **Test Overview**

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

#### Test Procedures Used

KDB 971168 D01 v02r02 - Section 5.2.1

ANSI/TIA-603-D-2010 - Section 2.2.17

#### Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW  $\geq$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 109 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 109 01 144	
© 2016 PCTEST Engineering Laboratory, Inc.					



#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

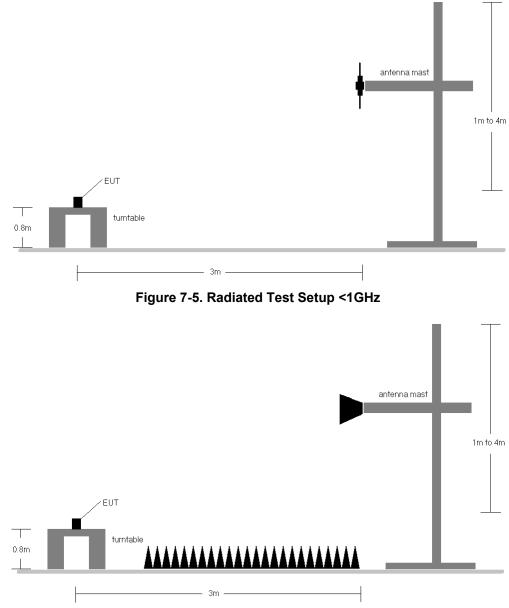



Figure 7-6. Radiated Test Setup >1GHz

#### Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 110 of 111
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 110 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0



# 7.6.1 Antenna-1 Radiated Power (ERP/EIRP)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBd]	ERP [dBm]	ERP Limit [dBm]	Margin [dB]
699.70	1.4	QPSK	Н	271	3	3 / 2	15.45	2.12	17.57	34.77	-17.20
707.50	1.4	QPSK	Н	255	0	3 / 2	16.27	2.31	18.58	34.77	-16.19
715.30	1.4	QPSK	Н	259	0	3 / 2	16.76	2.52	19.28	34.77	-15.49
699.70	1.4	16-QAM	н	271	3	3 / 2	14.33	2.12	16.45	34.77	-18.32
707.50	1.4	16-QAM	н	255	0	3 / 2	15.20	2.31	17.51	34.77	-17.26
715.30	1.4	16-QAM	Н	259	0	3 / 2	15.67	2.52	18.19	34.77	-16.58
700.50	3	QPSK	Н	274	3	1 / 14	16.47	2.12	18.59	34.77	-16.18
707.50	3	QPSK	н	256	350	1 / 14	16.80	2.31	19.11	34.77	-15.66
714.50	3	QPSK	н	255	3	1 / 0	17.23	2.50	19.73	34.77	-15.04
700.50	3	16-QAM	н	274	3	1 / 14	15.52	2.12	17.64	34.77	-17.13
707.50	3	16-QAM	Н	256	350	1 / 14	15.86	2.31	18.17	34.77	-16.60
714.50	3	16-QAM	Н	255	3	1 / 0	16.37	2.50	18.87	34.77	-15.90
701.50	5	QPSK	Н	275	4	1 / 24	16.59	2.15	18.74	34.77	-16.03
707.50	5	QPSK	Н	282	0	1 / 0	16.77	2.31	19.08	34.77	-15.69
713.50	5	QPSK	Н	259	0	1 / 0	17.48	2.48	19.96	34.77	-14.82
701.50	5	16-QAM	Н	275	4	1 / 24	15.72	2.15	17.87	34.77	-16.90
707.50	5	16-QAM	н	282	0	1 / 0	15.96	2.31	18.27	34.77	-16.50
713.50	5	16-QAM	н	259	0	1 / 0	16.56	2.48	19.04	34.77	-15.74
704.00	10	QPSK	Н	284	182	1 / 49	16.42	2.22	18.64	34.77	-16.14
707.50	10	QPSK	н	279	178	1 / 0	17.01	2.31	19.32	34.77	-15.45
711.00	10	QPSK	н	256	192	1 / 49	16.24	2.41	18.65	34.77	-16.12
704.00	10	16-QAM	н	284	182	1 / 49	15.49	2.22	17.71	34.77	-17.07
707.50	10	16-QAM	н	279	178	1 / 0	16.09	2.31	18.40	34.77	-16.37
711.00	10	16-QAM	н	256	192	1 / 49	15.43	2.41	17.84	34.77	-16.93
713.50	5	QPSK	V	100	0	1 / 0	16.55	2.48	19.03	34.77	-15.75

Table 7-2. ERP Data (Band 12/17)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 111 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 111 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBd]	ERP [dBm]	ERP Limit [dBm]	Margin [dB]
779.50	5	QPSK	н	235	317	1 / 0	15.46	4.19	19.65	34.77	-15.12
782.00	5	QPSK	н	242	307	1 / 0	15.48	4.25	19.73	34.77	-15.04
784.50	5	QPSK	н	218	310	1 / 24	15.53	4.32	19.85	34.77	-14.92
779.50	5	16QAM	н	235	317	1 / 0	14.54	4.19	18.73	34.77	-16.04
782.00	5	16QAM	н	242	307	1 / 0	14.74	4.25	18.99	34.77	-15.78
784.50	5	16QAM	н	218	310	1 / 24	14.60	4.32	18.92	34.77	-15.85
782.00	10	QPSK	н	238	312	1 / 0	15.16	4.25	19.41	34.77	-15.36
782.00	10	16QAM	н	238	312	1 / 0	14.43	4.25	18.68	34.77	-16.09
784.50	5	QPSK	V	117	135	1/0	14.15	4.32	18.47	34.77	-16.30

Table 7-3. ERP Data (Band 13)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 112 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 112 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBd]	ERP [dBm]	ERP Limit [dBm]	Margin [dB]
824.70	1.4	QPSK	Н	226	313	3 / 2	14.69	5.01	19.70	38.45	-18.75
836.50	1.4	QPSK	н	358	313	3 / 2	14.36	5.16	19.52	38.45	-18.93
848.30	1.4	QPSK	н	206	311	3 / 2	13.76	5.30	19.06	38.45	-19.39
824.70	1.4	16-QAM	Н	226	313	3 / 2	13.68	5.01	18.69	38.45	-19.76
836.50	1.4	16-QAM	Н	358	313	3 / 2	13.30	5.16	18.46	38.45	-19.99
848.30	1.4	16-QAM	н	206	311	3 / 2	12.52	5.30	17.82	38.45	-20.63
825.50	3	QPSK	Н	223	319	1 / 14	14.92	5.02	19.94	38.45	-18.51
836.50	3	QPSK	н	186	356	1 / 14	14.24	5.16	19.40	38.45	-19.05
847.50	3	QPSK	н	358	189	1 / 0	13.99	5.29	19.28	38.45	-19.17
825.50	3	16-QAM	н	223	319	1 / 14	13.96	5.02	18.98	38.45	-19.47
836.50	3	16-QAM	Н	186	356	1 / 14	13.20	5.16	18.36	38.45	-20.09
847.50	3	16-QAM	н	358	189	1 / 0	13.07	5.29	18.36	38.45	-20.09
826.50	5	QPSK	Н	221	316	1 / 0	14.41	5.03	19.44	38.45	-19.01
836.50	5	QPSK	н	356	180	1 / 24	13.32	5.16	18.48	38.45	-19.97
846.50	5	QPSK	н	358	183	1 / 0	13.41	5.28	18.69	38.45	-19.76
826.50	5	16-QAM	н	221	316	1 / 0	13.49	5.03	18.52	38.45	-19.93
836.50	5	16-QAM	н	356	180	1 / 24	12.41	5.16	17.57	38.45	-20.88
846.50	5	16-QAM	н	358	183	1 / 0	12.54	5.28	17.82	38.45	-20.63
829.00	10	QPSK	н	186	184	1 / 0	14.64	5.06	19.70	38.45	-18.75
836.50	10	QPSK	н	188	181	1 / 0	14.29	5.16	19.45	38.45	-19.00
844.00	10	QPSK	н	188	179	1 / 0	13.30	5.25	18.55	38.45	-19.90
829.00	10	16-QAM	н	186	184	1/0	13.76	5.06	18.82	38.45	-19.63
836.50	10	16-QAM	н	188	181	1/0	13.36	5.16	18.52	38.45	-19.93
844.00	10	16-QAM	н	188	179	1/0	12.37	5.25	17.62	38.45	-20.83
825.50	3	QPSK	V	149	346	1 / 74	13.03	5.02	18.05	38.45	-20.40

Table 7-4. ERP Data (Band 5)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 112 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 113 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP Limit [dBm]	Margin [dB]
1710.70	1.4	QPSK	н	188	214	1/3	13.75	9.66	23.41	30.00	-6.59
1732.50	1.4	QPSK	н	222	225	1/3	12.20	9.61	21.81	30.00	-8.19
1754.30	1.4	QPSK	н	176	217	1/3	13.79	9.57	23.36	30.00	-6.64
1710.70	1.4	16-QAM	н	188	214	1/3	12.07	9.66	21.73	30.00	-8.27
1732.50	1.4	16-QAM	н	222	225	1/3	10.80	9.61	20.41	30.00	-9.59
1754.30	1.4	16-QAM	н	176	217	1/3	12.64	9.57	22.21	30.00	-7.79
1711.50	3	QPSK	н	190	211	1 / 0	13.65	9.65	23.30	30.00	-6.70
1732.50	3	QPSK	н	109	206	1 / 7	12.85	9.61	22.46	30.00	-7.54
1753.50	3	QPSK	н	180	218	1 / 7	13.79	9.57	23.36	30.00	-6.64
1711.50	3	16-QAM	н	190	211	1 / 0	12.30	9.65	21.95	30.00	-8.05
1732.50	3	16-QAM	н	109	206	1 / 7	11.65	9.61	21.26	30.00	-8.74
1753.50	3	16-QAM	н	180	218	1 / 7	12.29	9.57	21.86	30.00	-8.14
1712.50	5	QPSK	н	255	321	1 / 0	11.55	9.65	21.20	30.00	-8.80
1745.00	5	QPSK	н	176	325	1 / 0	12.92	9.59	22.51	30.00	-7.49
1777.50	5	QPSK	н	100	212	1 / 0	13.02	9.53	22.55	30.00	-7.45
1712.50	5	16-QAM	н	255	321	1 / 0	10.48	9.65	20.13	30.00	-9.87
1745.00	5	16-QAM	н	176	325	1 / 0	11.69	9.59	21.28	30.00	-8.72
1777.50	5	16-QAM	н	100	212	1 / 0	11.74	9.53	21.27	30.00	-8.73
1715.00	10	QPSK	н	113	230	1 / 0	12.23	9.65	21.88	30.00	-8.12
1745.00	10	QPSK	н	174	212	1 / 49	13.62	9.59	23.21	30.00	-6.79
1775.00	10	QPSK	н	100	214	1 / 0	13.18	9.53	22.71	30.00	-7.29
1715.00	10	16-QAM	н	113	230	1 / 0	10.98	9.65	20.63	30.00	-9.37
1745.00	10	16-QAM	н	174	212	1 / 49	12.57	9.59	22.16	30.00	-7.84
1775.00	10	16-QAM	н	100	214	1 / 0	11.96	9.53	21.49	30.00	-8.51
1717.50	15	QPSK	н	113	223	1 / 0	13.33	9.64	22.97	30.00	-7.03
1745.00	15	QPSK	н	230	204	1 / 74	13.38	9.59	22.97	30.00	-7.03
1772.50	15	QPSK	н	100	217	1 / 74	13.09	9.54	22.63	30.00	-7.37
1717.50	15	16-QAM	н	113	223	1/0	11.39	9.64	21.03	30.00	-8.97
1745.00	15	16-QAM	н	230	204	1 / 74	12.02	9.59	21.61	30.00	-8.39
1772.50	15	16-QAM	н	100	217	1 / 74	11.70	9.54	21.24	30.00	-8.76
1720.00	20	QPSK	н	189	216	1/0	12.74	9.64	22.38	30.00	-7.62
1745.00	20	QPSK	н	121	223	1/0	14.21	9.59	23.80	30.00	-6.20
1770.00	20	QPSK	н	182	217	1/0	12.87	9.54	22.41	30.00	-7.59
1720.00	20	16-QAM	н	189	216	1/0	12.20	9.64	21.84	30.00	-8.16
1745.00	20	16-QAM	н	121	223	1/0	13.49	9.59	23.08	30.00	-6.92
1770.00	20	16-QAM	н	182	217	1/0	11.67	9.54	21.21	30.00	-8.79
1745.00	20	QPSK	v	180	13	1/0	13.41	9.59	23.00	30.00	-7.00
	•	-	- Lak	- 7 F		Data (B	and CC	14			

Table 7-5. EIRP Data (Band 66/4)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 114 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 114 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0 05/16/2016



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP Limit [dBm]	Margin [dB]
1850.70	1.4	QPSK	н	111	191	1 / 0	13.56	9.35	22.91	33.01	-10.10
1882.50	1.4	QPSK	н	100	195	1/3	12.94	9.27	22.21	33.01	-10.80
1914.30	1.4	QPSK	н	107	188	1 / 3	12.86	9.26	22.12	33.01	-10.89
1850.70	1.4	16-QAM	н	111	191	1 / 0	12.43	9.35	21.78	33.01	-11.23
1882.50	1.4	16-QAM	н	100	195	1/3	11.87	9.27	21.14	33.01	-11.87
1914.30	1.4	16-QAM	н	107	188	1/3	11.62	9.26	20.88	33.01	-12.13
1851.50	3	QPSK	н	100	187	1 / 7	14.41	9.35	23.76	33.01	-9.25
1882.50	3	QPSK	н	100	194	1 / 7	12.43	9.27	21.70	33.01	-11.31
1913.50	3	QPSK	н	100	189	1 / 7	12.45	9.26	21.71	33.01	-11.30
1851.50	3	16-QAM	н	100	187	1 / 7	12.61	9.35	21.96	33.01	-11.05
1882.50	3	16-QAM	н	100	194	1 / 7	11.06	9.27	20.33	33.01	-12.68
1913.50	3	16-QAM	н	100	189	1 / 7	11.08	9.26	20.34	33.01	-12.67
1852.50	5	QPSK	н	100	188	1 / 12	14.33	9.34	23.67	33.01	-9.34
1882.50	5	QPSK	н	100	196	1 / 12	12.42	9.27	21.69	33.01	-11.32
1912.50	5	QPSK	н	100	195	1 / 12	12.39	9.26	21.65	33.01	-11.36
1852.50	5	16-QAM	н	100	188	1 / 12	12.88	9.34	22.22	33.01	-10.79
1882.50	5	16-QAM	н	100	196	1 / 12	10.96	9.27	20.23	33.01	-12.78
1912.50	5	16-QAM	н	100	195	1 / 12	11.25	9.26	20.51	33.01	-12.50
1855.00	10	QPSK	н	100	100	1 / 0	12.89	9.34	22.23	33.01	-10.78
1882.50	10	QPSK	н	100	93	1 / 49	12.18	9.27	21.45	33.01	-11.56
1910.00	10	QPSK	н	285	107	1 / 0	11.36	9.25	20.61	33.01	-12.40
1855.00	10	16-QAM	н	100	100	1 / 0	11.56	9.34	20.90	33.01	-12.11
1882.50	10	16-QAM	н	100	93	1 / 49	10.78	9.27	20.05	33.01	-12.96
1910.00	10	16-QAM	н	285	107	1 / 0	9.90	9.25	19.15	33.01	-13.86
1857.50	15	QPSK	н	100	100	1 / 0	13.69	9.33	23.02	33.01	-9.99
1882.50	15	QPSK	н	100	91	1 / 74	12.08	9.27	21.35	33.01	-11.66
1907.50	15	QPSK	н	284	104	1 / 74	11.65	9.24	20.89	33.01	-12.12
1857.50	15	16-QAM	н	100	100	1/0	11.81	9.33	21.14	33.01	-11.87
1882.50	15	16-QAM	н	100	91	1 / 74	10.98	9.27	20.25	33.01	-12.76
1907.50	15	16-QAM	н	284	104	1 / 74	10.18	9.24	19.42	33.01	-13.59
1860.00	20	QPSK	н	100	104	1/0	12.59	9.32	21.91	33.01	-11.10
1882.50	20	QPSK	н	100	92	1/0	12.05	9.27	21.32	33.01	-11.69
1905.00	20	QPSK	н	180	93	1 / 99	12.47	9.24	21.71	33.01	-11.30
1860.00	20	16-QAM	н	100	104	1/0	11.25	9.32	20.57	33.01	-12.44
1882.50	20	16-QAM	н	100	92	1/0	10.95	9.27	20.22	33.01	-12.79
1905.00	20	16-QAM	н	180	93	1 / 99	11.42	9.24	20.66	33.01	-12.35
1851.50	3	QPSK	v	118	5	1 / 99	12.99	9.35	22.34	33.01	-10.67
	1		Tah	07-6		Data (B	and 2/2	25)		1	

Table 7-6. EIRP Data (Band 2/25)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 115 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 115 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



## 7.6.2 Antenna-2 Radiated Power (ERP/EIRP)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBd]	ERP [dBm]	ERP Limit [dBm]	Margin [dB]
699.70	1.4	QPSK	Н	262	360	1 / 5	11.39	2.31	13.70	34.77	-21.07
707.50	1.4	QPSK	Н	240	10	3 / 2	12.68	2.31	14.99	34.77	-19.78
715.30	1.4	QPSK	Н	200	220	1 / 0	10.65	2.52	13.17	34.77	-21.60
699.70	1.4	16-QAM	н	262	360	1 / 5	10.49	2.31	12.80	34.77	-21.97
707.50	1.4	16-QAM	н	240	10	1 / 0	11.62	2.31	13.93	34.77	-20.84
715.30	1.4	16-QAM	н	200	220	1 / 0	9.65	2.52	12.17	34.77	-22.60
700.50	3	QPSK	Н	223	13	1 / 14	11.63	2.12	13.75	34.77	-21.02
707.50	3	QPSK	н	238	11	1 / 14	12.48	2.31	14.79	34.77	-19.98
714.50	3	QPSK	н	223	13	1 / 0	12.57	2.50	15.07	34.77	-19.70
700.50	3	16-QAM	н	223	13	1 / 14	10.71	2.12	12.83	34.77	-21.94
707.50	3	16-QAM	Н	238	11	1 / 14	11.50	2.31	13.81	34.77	-20.96
714.50	3	16-QAM	н	223	13	1 / 0	11.68	2.50	14.18	34.77	-20.59
701.50	5	QPSK	Н	140	100	1 / 24	12.12	2.15	14.27	34.77	-20.50
707.50	5	QPSK	н	234	0	1 / 24	12.70	2.31	15.01	34.77	-19.76
713.50	5	QPSK	н	245	90	1 / 0	12.74	2.48	15.22	34.77	-19.56
701.50	5	16-QAM	н	140	100	1 / 24	11.29	2.15	13.44	34.77	-21.33
707.50	5	16-QAM	н	234	0	1 / 24	11.88	2.31	14.19	34.77	-20.58
713.50	5	16-QAM	н	245	90	1 / 0	11.91	2.48	14.39	34.77	-20.39
704.00	10	QPSK	Н	200	129	1 / 49	12.44	2.22	14.66	34.77	-20.12
707.50	10	QPSK	н	224	100	1 / 49	12.48	2.31	14.79	34.77	-19.98
711.00	10	QPSK	н	230	250	1 / 0	12.37	2.41	14.78	34.77	-19.99
704.00	10	16-QAM	н	200	129	1 / 49	11.49	2.22	13.71	34.77	-21.07
707.50	10	16-QAM	н	224	100	1 / 49	11.60	2.31	13.91	34.77	-20.86
711.00	10	16-QAM	Н	230	250	1 / 0	11.47	2.41	13.88	34.77	-20.89
713.50	5	QPSK	V	167	223	1 / 0	12.66	2.48	15.14	34.77	-19.64

Table 7-7. ERP Data (Band 12)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 116 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 116 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBd]	ERP [dBm]	ERP Limit [dBm]	Margin [dB]
779.50	5	QPSK	н	200	122	1 / 0	11.21	4.19	15.40	34.77	-19.37
782.00	5	QPSK	н	223	161	1 / 24	11.04	4.25	15.29	34.77	-19.48
784.50	5	QPSK	н	100	250	1 / 0	11.21	4.32	15.53	34.77	-19.24
779.50	5	16QAM	н	200	122	1 / 0	9.95	4.19	14.14	34.77	-20.63
782.00	5	16QAM	н	223	161	1 / 24	10.17	4.25	14.42	34.77	-20.35
784.50	5	16QAM	н	100	250	1 / 0	10.07	4.32	14.39	34.77	-20.38
782.00	10	QPSK	Н	220	190	1 / 49	10.66	4.25	14.91	34.77	-19.86
782.00	10	16QAM	н	220	190	1 / 49	9.69	4.25	13.94	34.77	-20.83
784.50	5	QPSK	V	100	59	1 / 74	8.34	4.32	12.66	34.77	-22.11

Table 7-8. ERP Data (Band 13)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 117 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 117 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0



Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBd]	ERP [dBm]	ERP Limit [dBm]	Margin [dB]
824.70	1.4	QPSK	Н	122	150	1 / 0	6.46	5.01	11.47	38.45	-26.98
836.50	1.4	QPSK	н	200	190	1 / 5	5.94	5.16	11.10	38.45	-27.35
848.30	1.4	QPSK	н	150	210	1 / 5	5.95	5.30	11.25	38.45	-27.20
824.70	1.4	16-QAM	н	122	150	1 / 0	5.52	5.01	10.53	38.45	-27.92
836.50	1.4	16-QAM	н	200	190	1 / 0	4.97	5.16	10.13	38.45	-28.32
848.30	1.4	16-QAM	н	150	210	1 / 5	4.93	5.30	10.23	38.45	-28.22
825.50	3	QPSK	Н	120	200	1 / 0	5.94	5.02	10.96	38.45	-27.49
836.50	3	QPSK	н	187	153	1 / 0	5.51	5.16	10.67	38.45	-27.78
847.50	3	QPSK	н	321	158	1 / 0	4.50	5.29	9.79	38.45	-28.66
825.50	3	16-QAM	Н	120	200	1 / 14	4.89	5.02	9.91	38.45	-28.54
836.50	3	16-QAM	н	187	153	1 / 0	5.01	5.16	10.17	38.45	-28.28
847.50	3	16-QAM	н	321	158	1 / 14	3.53	5.29	8.82	38.45	-29.63
826.50	5	QPSK	Н	192	100	1 / 0	6.16	5.03	11.19	38.45	-27.26
836.50	5	QPSK	н	315	152	1 / 24	5.40	5.16	10.56	38.45	-27.89
846.50	5	QPSK	Н	205	162	1 / 0	4.95	5.28	10.23	38.45	-28.22
826.50	5	16-QAM	н	192	100	1 / 0	5.27	5.03	10.30	38.45	-28.15
836.50	5	16-QAM	н	315	152	1 / 24	4.40	5.16	9.56	38.45	-28.89
846.50	5	16-QAM	н	205	162	1 / 0	3.93	5.28	9.21	38.45	-29.24
829.00	10	QPSK	Н	120	200	1 / 0	5.86	5.06	10.92	38.45	-27.53
836.50	10	QPSK	н	182	148	1/0	5.85	5.16	11.01	38.45	-27.44
844.00	10	QPSK	н	125	225	1/0	5.28	5.25	10.53	38.45	-27.92
829.00	10	16-QAM	н	120	200	1 / 0	4.89	5.06	9.95	38.45	-28.50
836.50	10	16-QAM	н	182	148	1 / 0	4.90	5.16	10.06	38.45	-28.39
844.00	10	16-QAM	Н	125	225	1 / 0	4.36	5.25	9.61	38.45	-28.84
824.70	1.4	QPSK	V	123	283	1 / 0	2.83	5.01	7.84	38.45	-30.61

Table 7-9. ERP Data (Band 5)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 118 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 116 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



#### 7.7 Radiated Spurious Emissions Measurements §2.1053 §22.917(a) §24.238(a) §27.53(c) §27.53(f) §27.53(g) §27.53(h)

#### **Test Overview**

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

#### **Test Procedures Used**

KDB 971168 D01 v02r02 - Section 5.8

ANSI/TIA-603-D-2010 – Section 2.2.12

#### Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points  $\geq$  2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 119 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Fage 119 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



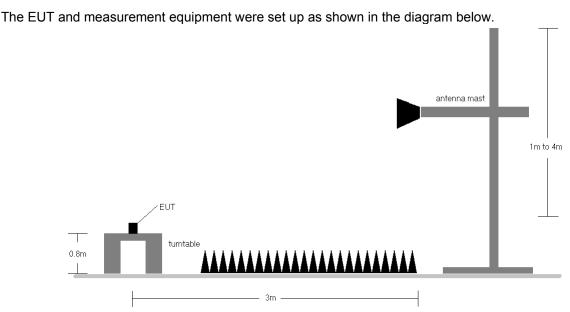
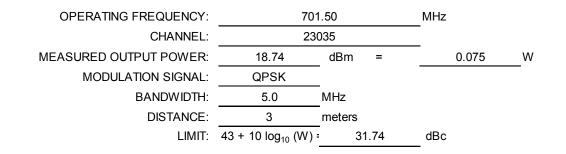



Figure 7-7. Test Instrument & Measurement Setup


#### Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 5) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 120 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 120 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0



## 7.7.1 Antenna-1 Radiated Spurious Emissions Measurements



Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1403.00	Н	-	-	-57.84	2.39	-55.45	74.2
2104.50	Н	110	131	-51.70	3.46	-48.24	67.0
2806.00	Н	-	-	-55.75	4.76	-50.99	69.7

Table 7-10. Radiated Spurious Data (Band 12/17 – Low Channel)

OPERATING FREQUENCY:	707	<b>.</b> 50	MHz
CHANNEL:	230	095	_
MEASURED OUTPUT POWER:	19.08	dBm =	0.081 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	32.08	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1415.00	Н	-	-	-58.29	2.54	-55.74	74.8
2122.50	Н	122	132	-50.97	3.42	-47.55	66.6
2830.00	Н	-	-	-55.12	4.85	-50.27	69.4

Table 7-11. Radiated Spurious Data (Band 12/17 – Mid Channel)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 101 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 121 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



OPERATING FREQUENCY:	713	3.50	MHz
CHANNEL:	23	155	
MEASURED OUTPUT POWER:	19.96	dBm =	0.099 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W)	32.96	dBc

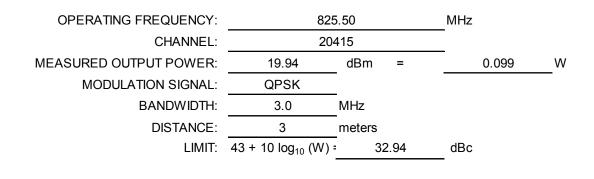
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1427.00	Н	-	-	-58.03	2.70	-55.34	75.3
2140.50	Н	112	108	-52.43	3.38	-49.05	69.0
2854.00	Н	-	-	-55.85	4.95	-50.91	70.9

Table 7-12. Radiated Spurious Data (Band 12/17 – High Channel)

OPERATING FREQUENCY:	782	2.00	MHz
CHANNEL:	232	230	
MEASURED OUTPUT POWER:	19.41	dBm =	0.087 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	10.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	32.41	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
2346.00	Н	-	-	-56.54	3.63	-52.91	72.3
3128.00	Н	-	-	-55.89	4.95	-50.94	70.3
3910.00	Н	-	-	-55.77	6.55	-49.22	68.6

Table 7-13. Radiated Spurious Data (Band 13 – Mid Channel)

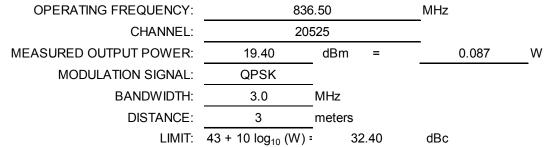

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 122 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 122 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0



MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	5.00	MHz
DISTANCE:	3	meters
NARROWBAND EMISSION LIMIT:	-50	dBm
WIDEBAND EMISSION LIMIT:	-40	dBm/MHz

Frequency [MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	Margin [dB]
1564.00	Н	120	130	-65.93	6.57	-59.36	-19.4

Table 7-14. Radiated Spurious Data (Band 13 – 1559-1610MHz Band)




[MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1651.00	Н	-	-	-59.04	3.63	-55.40	75.3

Table 7-15. Radiated Spurious Data (Band 5 – Low Channel)

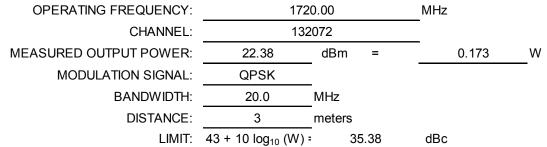
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 114
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 123 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0





Frequency [MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]		Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1673.00	Н	-	-	-58.40	3.52	-54.88	74.3

Table 7-16. Radiated Spurious Data (Band 5 – Mid Channel)


OPERATING FREQUENCY:	847	MHz	
CHANNEL:	206	_	
MEASURED OUTPUT POWER:	19.28	dBm =	0.085 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	3.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	32.28	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1695.00	Н	205	287	-55.89	3.41	-52.49	71.8
2542.50	Н	-	-	-54.22	3.73	-50.49	69.8

Table 7-17. Radiated Spurious Data (Band 5 – High Channel)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 124 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 124 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					





Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	[dBc]
3440.00	Н	-	-	-55.71	8.19	-47.53	69.9
5160.00	Н	-	-	-54.23	10.38	-43.85	66.2

Table 7-18. Radiated Spurious Data (Band 66/4 – Low Channel)

OPERATING FREQUENCY:	174	MHz	
CHANNEL:	132	122	_
MEASURED OUTPUT POWER:	23.80	dBm =	0.240 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	20.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	36.80	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	[dBc]
3490.00	Н	100	212	-49.32	8.33	-40.99	64.8
5235.00	Н	-	-	-54.19	10.38	-43.82	67.6

Table 7-19. Radiated Spurious Data (Band 66/4 – Mid Channel)

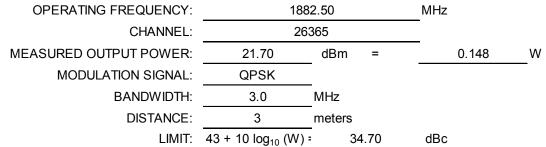
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 125 of 114	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 125 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					



OPERATING FREQUENCY:	177	MHz	
CHANNEL:	132	2572	_
MEASURED OUTPUT POWER:	22.41	dBm =	0.174 W
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	20.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	35.41	dBc

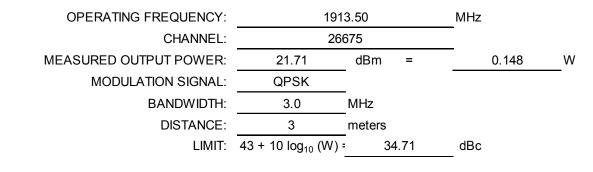
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	[dBc]
3540.00	Н	-	-	-55.13	8.42	-46.72	69.1
5310.00	Н	-	-	-55.16	10.32	-44.84	67.3

Table 7-20. Radiated Spurious Data (Band 66 – High Channel)


OPERATING FREQUENCY:	185	1.50	MHz
CHANNEL:	260	)55	
MEASURED OUTPUT POWER:	23.76	dBm =	0.238 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	3.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	36.76	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	[dBc]
3703.00	Н	110	250	-53.59	8.41	-45.18	68.9
5554.50	Н	125	200	-53.11	10.52	-42.59	66.3
7406.00	Н	-	-	-53.45	12.01	-41.44	65.2

Table 7-21. Radiated Spurious Data (Band 2/25 – Low Channel)


FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 126 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	·		V 4.0





Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	[dBc]
3765.00	Н	232	142	-49.71	8.66	-41.05	62.8
5647.50	Н	106	132	-55.46	10.62	-44.84	66.5
7530.00	Н	-	-	-52.65	12.06	-40.59	62.3

Table 7-22. Radiated Spurious Data (Band 2/25 – Mid Channel)



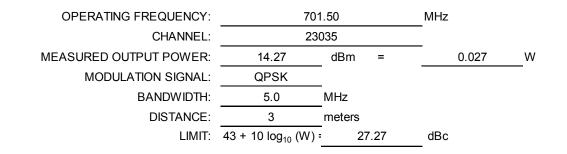

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	[dBc]
3827.00	Н	110	200	-55.76	8.76	-47.01	68.7
5740.50	Н	122	250	-55.11	10.73	-44.38	66.1
7654.00	Н	-	-	-53.21	12.18	-41.04	62.7

Table 7-23. Radiated Spurious Data (Band 2/25 – High Channel)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 127 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 127 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



## 7.7.2 Antenna-2 Radiated Spurious Emissions Measurements



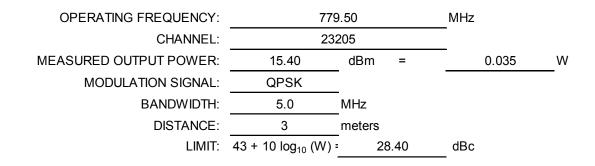
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1403.00	Н	100	218	-25.58	2.39	-23.19	37.5
2104.50	Н	-	-	-28.61	3.46	-25.15	39.4
2806.00	Н	-	-	-27.18	4.76	-22.42	36.7

Table 7-24. Radiated Spurious Data (Band 12 – Low Channel)

OPERATING FREQUENCY:	707	.50	MHz
CHANNEL:	230	)95	_
MEASURED OUTPUT POWER:	15.01	dBm =	0.032 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	28.01	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1415.00	Н	140	153	-27.90	2.54	-25.36	40.4
2122.50	Н	247	287	-28.34	3.42	-24.92	39.9

Table 7-25. Radiated Spurious Data (Band 12 – Mid Channel)

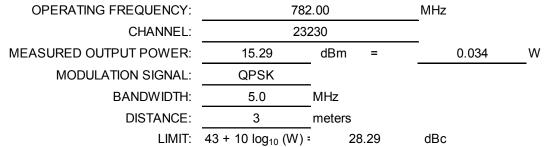

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 128 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 126 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



OPERATING FREQUENCY:	713	3.50	MHz
CHANNEL:	23	155	_
MEASURED OUTPUT POWER:	15.22	dBm =	0.033 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	28.22	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1427.00	Н	136	205	-27.74	2.70	-25.04	40.3
2140.50	Н	-	-	-28.40	3.38	-25.02	40.2

Table 7-26. Radiated Spurious Data (Band 12 – High Channel)




Frequency [MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
2338.50	Н	-	-	-58.05	3.64	-54.41	69.8
3118.00	Н	100	142	-56.38	4.98	-51.39	66.8

Table 7-27. Radiated Spurious Data (Band 13 – Low Channel)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 120 of 111
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 129 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0





Frequency [MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
2346.00	Н	-	-	-56.53	3.63	-52.90	68.2
3128.00	Н	100	347	-53.61	4.95	-48.66	64.0

Table 7-28. Radiated Spurious Data (Band 13 – Mid Channel)

OPERATING FREQUENCY:	784	1.50	MHz
CHANNEL:	232	255	_
MEASURED OUTPUT POWER:	15.53	dBm =	0.036 W
MODULATION SIGNAL:	QPSK	-	
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	28.53	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
2353.50	Н	-	-	-56.55	3.63	-52.92	68.4
3138.00	Н	100	146	-52.28	4.92	-47.36	62.9

Table 7-29. Radiated Spurious Data (Band 13 – High Channel)

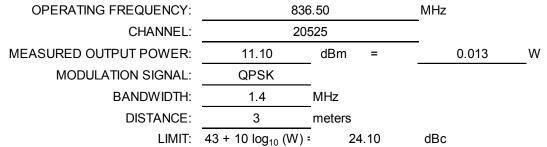
FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 120 of 111
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 130 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



MODULATION SIGNAL:	QPSK	
BANDWIDTH:	5.00	MHz
DISTANCE:	3	meters
NARROWBAND EMISSION LIMIT:	-50	dBm
WIDEBAND EMISSION LIMIT:	-40	dBm/MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	Margin [dB]
1559.00	Н	120	221	-66.40	6.55	-59.85	-19.8
1564.00	Н	110	122	-65.43	6.57	-58.86	-18.9
1569.00	Н	102	160	-65.64	6.59	-59.06	-19.1

Table 7-30. Radiated Spurious Data (Band 13 – 1559-1610MHz Band)


OPERATING FREQUENCY:	824	.70	MHz
CHANNEL:	204	_	
MEASURED OUTPUT POWER:	11.47	dBm =	0.014 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	1.4	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	24.47	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Height	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1649.40	Н	-	-	-54.54	6.25	-48.29	59.8
2474.90	Н	100	128	-49.72	7.45	-42.27	53.7
3300.40	Н	-	-	-53.00	8.21	-44.79	56.3

Table 7-31. Radiated Spurious Data (Band 5 – Low Channel)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 121 of 114
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 131 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0





Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1673.00	Н	110	150	-55.12	6.51	-48.62	59.7
2509.50	Н	122	200	-50.81	7.40	-43.42	54.5
3346.00	Н	-	-	-52.74	8.27	-44.48	55.6

Table 7-32. Radiated Spurious Data (Band 5 – Mid Channel)

OPERATING FREQUENCY:	848	3.30	MHz
CHANNEL:	206	643	
MEASURED OUTPUT POWER:	11.25	dBm =	0.013 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	1.4	MHz	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	24.25	dBc

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBd]	Spurious Emission Level [dBm]	[dBc]
1696.60	Н	-	-	-55.18	6.60	-48.57	59.8
2544.10	Н	207	360	-52.75	7.42	-45.33	56.6
3391.60	Н	-	-	-53.91	8.33	-45.58	56.8

Table 7-33. Radiated Spurious Data (Band 5 – High Channel)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 122 of 144		
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 132 of 144		
© 2016 PCTEST Engineering Laboratory, Inc.						



#### 7.8 Frequency Stability / Temperature Variation §2.1055 §22.355 §24.235 §27.54

#### Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within  $\pm 0.00025\%$  ( $\pm 2.5$  ppm) of the center frequency. For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### **Test Procedure Used**

ANSI/TIA-603-D-2010

#### Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

#### Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

#### Test Notes

None

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 133 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Fage 155 01 144
© 2016 PCTEST Engineering	Laboratory, Inc.			V 4.0



## Band 12 Frequency Stability Measurements §2.1055 §27.54

OPERATING FREQUENCY:	707,500,000	Hz
CHANNEL:	23790	
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	707,499,919	-81	-0.0000115
100 %		- 30	707,499,848	-152	-0.0000215
100 %		- 20	707,499,847	-153	-0.0000216
100 %		- 10	707,499,979	-21	-0.0000029
100 %		0	707,499,985	-15	-0.0000022
100 %		+ 10	707,499,970	-30	-0.0000043
100 %		+ 20	707,499,993	-7	-0.0000009
100 %		+ 30	707,499,885	-115	-0.0000163
100 %		+ 40	707,499,984	-16	-0.0000023
100 %		+ 50	707,499,993	-7	-0.0000009
BATT. ENDPOINT	3.45	+ 20	707,499,892	-108	-0.0000153

Table 7-34. Frequency Stability Data (Band 12/17)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 124 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 134 of 144
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 4.0



### Band 12 Frequency Stability Measurements §2.1055 §27.54

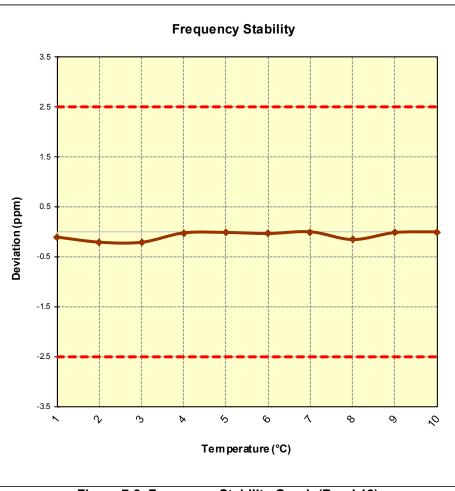



Figure 7-8. Frequency Stability Graph (Band 12)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 125 of 114	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 135 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					



# Band 13 Frequency Stability Measurements §2.1055 §27.54

OPERATING FREQUENCY:	782,000,000	Hz
CHANNEL:	23230	_
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	781,999,958	-42	-0.0000053
100 %		- 30	781,999,862	-138	-0.0000176
100 %		- 20	781,999,888	-112	-0.0000143
100 %		- 10	781,999,988	-12	-0.0000016
100 %		0	781,999,998	-2	-0.0000003
100 %		+ 10	781,999,927	-73	-0.0000093
100 %		+ 20	781,999,886	-114	-0.0000146
100 %		+ 30	781,999,883	-117	-0.0000150
100 %		+ 40	781,999,873	-127	-0.0000162
100 %		+ 50	781,999,875	-125	-0.0000160
BATT. ENDPOINT	3.45	+ 20	781,999,827	-173	-0.0000222

Table 7-35. Frequency Stability Data (Band 13)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 136 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 136 01 144	
© 2016 PCTEST Engineering Laboratory, Inc.					



### Band 13 Frequency Stability Measurements §2.1055 §27.54

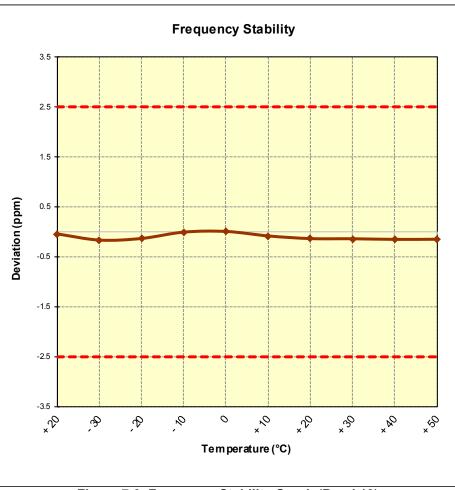



Figure 7-9. Frequency Stability Graph (Band 13)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dego 127 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 137 of 144	
© 2016 PCTEST Engineering Laboratory, Inc.					



### Band 5 Frequency Stability Measurements §22.1055 §22.355

OPERATING FREQUENCY:	836,500,000	Hz
CHANNEL:	20525	_
REFERENCE VOLTAGE:	3.85	VDC
DEVIATION LIMIT:	± 0.00025 % or 2.5 ppm	

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	836,499,954	-46	-0.0000055
100 %		- 30	836,499,988	-12	-0.0000015
100 %		- 20	836,499,846	-154	-0.0000184
100 %		- 10	836,499,834	-166	-0.0000198
100 %		0	836,499,906	-94	-0.0000113
100 %		+ 10	836,499,882	-118	-0.0000141
100 %		+ 20	836,499,821	-179	-0.0000213
100 %		+ 30	836,499,934	-66	-0.0000079
100 %		+ 40	836,499,819	-181	-0.0000217
100 %		+ 50	836,499,991	-9	-0.0000011
BATT. ENDPOINT	3.45	+ 20	836,499,816	-184	-0.0000220

Table 7-36. Frequency Stability Data (Band 5)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 138 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 136 01 144	
© 2016 PCTEST Engineering Laboratory, Inc.					



### Band 5 Frequency Stability Measurements §2.1055 §22.355

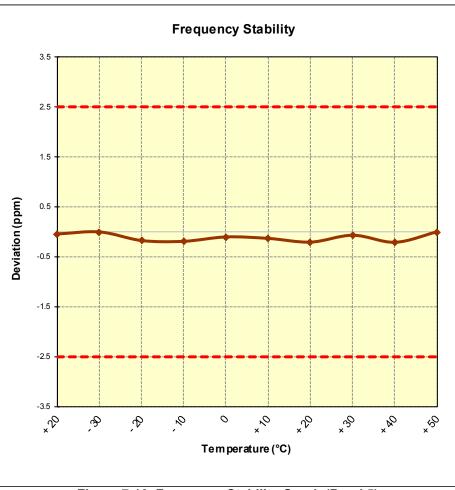



Figure 7-10. Frequency Stability Graph (Band 5)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 120 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 139 of 144
© 2016 PCTEST Engineering Laboratory, Inc.				



## Band 66 Frequency Stability Measurements §2.1055 §§27.54

OPERATING FREQUENCY:	1,732,500,000	Hz
CHANNEL:	20175	_
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	1,732,499,852	-148	-0.0000085
100 %		- 30	1,732,499,834	-166	-0.0000096
100 %		- 20	1,732,499,963	-37	-0.0000022
100 %		- 10	1,732,499,980	-20	-0.0000012
100 %		0	1,732,499,870	-130	-0.0000075
100 %		+ 10	1,732,499,929	-71	-0.0000041
100 %		+ 20	1,732,499,935	-65	-0.0000037
100 %		+ 30	1,732,499,898	-102	-0.0000059
100 %		+ 40	1,732,499,846	-154	-0.0000089
100 %		+ 50	1,732,499,881	-119	-0.0000069
BATT. ENDPOINT	3.45	+ 20	1,732,499,980	-20	-0.0000012

Table 7-37. Frequency Stability Data (Band 4/66)

#### Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 140 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 140 of 144
© 2016 PCTEST Engineering Laboratory, Inc.				



### Band 4 Frequency Stability Measurements §2.1055 §§27.54



Figure 7-11. Frequency Stability Graph (Band 66)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 141 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 141 of 144
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			



### Band 25 Frequency Stability Measurements §2.1055 §24.235

OPERATING FREQUENCY:	1,882,500,000	Hz
CHANNEL:	26365	_
REFERENCE VOLTAGE:	3.85	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.85	+ 20 (Ref)	1,882,499,891	-109	-0.0000058
100 %		- 30	1,882,499,828	-172	-0.0000091
100 %		- 20	1,882,499,821	-179	-0.0000095
100 %		- 10	1,882,499,852	-148	-0.0000079
100 %		0	1,882,499,830	-170	-0.0000090
100 %		+ 10	1,882,499,820	-180	-0.0000096
100 %		+ 20	1,882,499,921	-79	-0.0000042
100 %		+ 30	1,882,499,821	-179	-0.0000095
100 %		+ 40	1,882,499,932	-68	-0.0000036
100 %		+ 50	1,882,499,926	-74	-0.0000039
BATT. ENDPOINT	3.45	+ 20	1,882,499,822	-178	-0.0000094

Table 7-38. Frequency Stability Data (Band 2/25)

#### Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 142 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 142 of 144
© 2016 PCTEST Engineering Laboratory, Inc.				V 4.0



### Band 25 Frequency Stability Measurements §2.1055 §24.235

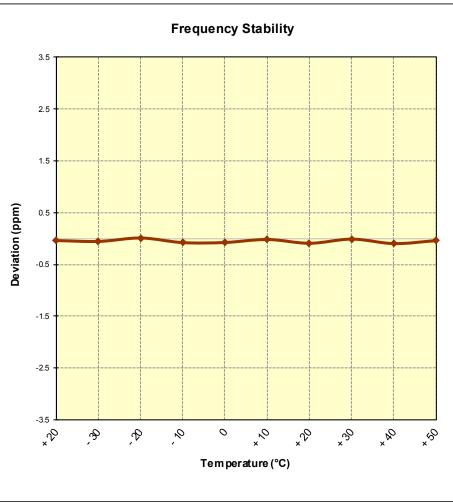



Figure 7-12. Frequency Stability Graph (Band 25)

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 142 of 144
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 143 of 144
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			



#### 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the LGE Portable Handset FCC ID: ZNFVS995 complies with all the requirements of Parts 22, 24, & 27 of the FCC rules for LTE operation only.

FCC ID: ZNFVS995		FCC Pt. 22, 24, & 27 LTE MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 144 of 144	
0Y1607051216-R2.ZNF	7/5 - 7/20/2016	Portable Handset		Page 144 01 144	
© 2016 PCTEST Engineering Laboratory, Inc.					