

FCC 47 CFR PART 15 SUBPART E

CERTIFICATION TEST REPORT

FOR

GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

MODEL NUMBER: VS980, LGVS980 and LG-VS980

FCC ID: ZNFVS980

REPORT NUMBER: 13U15118-2, Revision F

ISSUE DATE: JULY 19, 2013

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NJ 07632

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Rev.	lssue Date	Revisions	Revised By
	07/08/13	Initial Issue	P. Kim
Α	07/09/13	Move 802.11ac to UNI Band report rather than DTS.	P. Kim
В	07/15/13	Update accessory information, Section 5.6 Description of Test Set Up - Support Equipment and Section 5.2 Maximum Output Power	P. Kim
С	07/16/13	Update max power summary table with correct values Section 5.2 Maximum Output Power	P. Kim
D	7/17/13	Update test methodology description and radiated harmonic data.	P. Kim
E	7/18/13	Update administrative information and comments from TCB	P. Kim
F	7/19/13	Update frequency range table from section 5.2, minor typos and missing data inserted. Duty cycle factor also included under 802.11ac 5.8GHz section under power measurement.	P. Kim

Page 2 of 405

REPORT NO: 13U15118-2F

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	8
2.	TES	ST METHODOLOGY	9
3.	FAC	CILITIES AND ACCREDITATION	9
4.	CAL	LIBRATION AND UNCERTAINTY	9
4	4.1.	MEASURING INSTRUMENT CALIBRATION	9
4	4.2.	SAMPLE CALCULATION	9
4	4.3.	MEASUREMENT UNCERTAINTY	9
5.	EQI	JIPMENT UNDER TEST1	0
5	5.1.	DESCRIPTION OF EUT1	0
5	5.2.	MAXIMUM OUTPUT POWER1	0
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS1	0
5	5.4.	SOFTWARE AND FIRMWARE1	0
5	5.5.	WORST-CASE CONFIGURATION AND MODE1	2
5	5.6.	DESCRIPTION OF TEST SETUP1	3
6.	TES	ST AND MEASUREMENT EQUIPMENT1	5
7.	ON	TIME, DUTY CYCLE AND MEASUREMENT METHODS10	6
7	7.1.	ON TIME AND DUTY CYCLE RESULTS1	6
7	7.2.	DUTY CYCLE PLOTS1	6
8.	ME	ASUREMENT METHOD1	9
9.	AN	FENNA PORT TEST RESULTS	0
g	9.1.	802.11a MODE IN THE 5.2 GHz BAND2	0
	9.1.	1. 26 dB BANDWIDTH	0
	9.1. 9.1	2. 99% BANDWIDTH2 3 AVERAGE POWER 2	3 6
	9.1.	4. OUTPUT POWER AND PPSD	7
	9.1.	5. PEAK EXCURSION	1
g	9.2.	802.11n HT20 MODE IN THE 5.2 GHz BAND	2
	9.2.	1. 26 dB BANDWIDTH	2
	9.2. 9.2	3 AVERAGE POWER 3	ว 8
	9.2.	4. OUTPUT POWER AND PPSD	9
	9.2.	5. PEAK EXCURSION	3
g	9.3.	802.11n HT40 MODE IN THE 5.2 GHz BAND	4
	9.3. a 2	1. 26 ab bandwid i h	4 6
	9.3.	3. AVERAGE POWER	8
	9.3.	4. OUTPUT POWER AND PPSD4	9
<u></u>			_
UL	VERI		

EUT: GSMCDMAWCDM + LTE Phone Bluetooth, WLAN (2.4GH2 & SGH2) and NFC FCC ID: ZN-VS905 9.4. 802.11ac HT20 MODE IN THE 5.2 GH2 BAND 52 9.4.1. 26 dB BANDWIDTH 55 9.4.3. AVERAGE POWER 58 9.4.4. OUTPUT POWER AND PPSD 59 9.5. 802.11ac HT40 MODE IN THE 5.2 GH2 BAND 63 9.5. 802.11ac HT40 MODE IN THE 5.2 GH2 BAND 63 9.5. 802.11ac HT80 MODE IN THE 5.2 GH2 BAND 70 9.6. 802.11ac HT80 MODE IN THE 5.2 GH2 BAND 70 9.6. 802.11ac HT80 MODE IN THE 5.2 GH2 BAND 70 9.6. 802.11ac HT80 MODE IN THE 5.3 GH2 BAND 71 9.6. 802.11a MDDE IN THE 5.3 GH2 BAND 71 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 80.2 11a MDDE IN THE 5.3 GH2 BAND 81 9.7.1.2 Gd B BANDWIDTH 81 9.7.1.2 Gd B BANDWIDTH 81 9.7.1.2 Gd B BANDWIDTH 81 9.7.1.2 Gd B BANDWIDTH 81 9.7.1.2 Gd B BANDWIDTH 81 9.7.1.2 Gd B BANDWIDTH 81 9.7.4. OUTPUT POWER AND PPSD 98 98 9.8.4.	REPORT NO: 13U15118-2F	DATE: JULY 19, 2013
9.4.1 26 dB BANDWIDTH	EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC	FCC ID: ZNFVS980
3.1.1 20 BANDWIDTH		
9.4.3. AVERAGE POWER. 58 9.4.4. OUTPUT POWER AND PPSD 59 9.5. 802.11 ac HT40 MODE IN THE 5.2 GHz BAND 63 9.5.1. 26 dB BANDWIDTH 63 9.5.2. 99% BANDWIDTH 66 9.5.3. AVERAGE POWER 69 9.5.4. OUTPUT POWER AND PPSD 70 9.6. 802.11 ac HT80 MODE IN THE 5.2 GHz BAND 73 9.6.1. 26 dB BANDWIDTH 73 9.6.1. 26 dB BANDWIDTH 75 9.6.3. AVERAGE POWER 77 9.6.4. 0UTPUT POWER AND PPSD 78 9.7. 802.11 a MODE IN THE 5.3 GHz BAND 81 9.7.1. 26 dB BANDWIDTH 81 9.7.2. 9% BANDWIDTH 81 9.7.4. OUTPUT POWER AND PPSD 88 9.8.8. 802.11 n H720 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 92 9.8.3. AVERAGE POWER 95 9.8.4. 0UTPUT POWER AND PPSD 98 9.9.9. 802.	9.4.1. 20 0D DANDWIDTTT	
9.4.4. OUTPUT POWER AND PPSD 59 9.5. 802.11ac HT40 MODE IN THE 5.2 GHz BAND 63 9.5.1. 26 dB BANDWIDTH 63 9.5.2. 99% BANDWIDTH 66 9.5.3. AVERAGE POWER 69 9.5.4. OUTPUT POWER AND PPSD 70 9.6. 802.11ac HT80 MODE IN THE 5.2 GHz BAND 73 9.6.1. 26 dB BANDWIDTH 73 9.6.2. 99% BANDWIDTH 73 9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7.1. 26 dB BANDWIDTH 81 9.7.1. 26 dB BANDWIDTH 81 9.7.1. 26 dB BANDWIDTH 84 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 92 9.8.3. AVERAGE POWER 93 9.8.4. OUTPUT POWER AND PPSD 93 9.9.8.2 99% BANDWIDTH 93 9.9.9.802.11n HT40 MODE IN THE 5.3 GHz BAND <td>9.4.3 AVERAGE POWER</td> <td>58</td>	9.4.3 AVERAGE POWER	58
9.5. 802.11ac HT40 MODE IN THE 5.2 GHz BAND 63 9.5.1. 26 dB BANDWIDTH. 63 9.5.2. 99% BANDWIDTH. 66 9.5.3. AVERAGE POWER 69 9.5.4. OUTPUT POWER AND PPSD 70 9.6. 802.11ac HT30 MODE IN THE 5.2 GHz BAND 73 9.6.1. 26 dB BANDWIDTH 73 9.6.2. 99% BANDWIDTH 75 9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 802.11a MODE IN THE 5.3 GHz BAND 81 9.7.1. 26 dB BANDWIDTH 81 9.7.2. 99% BANDWIDTH 84 9.7.3. AVERAGE POWER 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.3. AVERAGE POWER 88 9.8.4. OUTPUT POWER AND PPSD 98 9.9.8.3. AVERAGE POWER 99 9.9.8.4. OUTPUT POWER AND PPSD 103 9.9.1. 26 dB	944 OUTPUT POWER AND PPSD	59
9.5. 802.11ac H140 MODE IN THE 5.2 GHZ BAND 63 9.5.1. 26 dB BANDWIDTH 66 9.5.3. AVERAGE POWER 69 9.5.4. OUTPUT POWER AND PPSD 70 9.6. 802.11ac HT30 MODE IN THE 5.2 GHZ BAND 73 9.6.1. 26 dB BANDWIDTH 73 9.6.2. 99% BANDWIDTH 75 9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 96.6. BANDWIDTH 73 9.6.1. 26 dB BANDWIDTH 81 9.7.1. 26 dB BANDWIDTH 81 9.7.2. 99% BANDWIDTH 84 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHZ BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 92 9.8.3. AVERAGE POWER 92 9.8.4. 0UTPUT POWER AND PPSD 98 9.8.4. 0UTPUT POWER AND PPSD 98 9.8.4. 0UTPUT POWER AND PPSD 99 9.9. 802.11		
9.5.1. 26 dB BANDWIDTH. 66 9.5.3. AVERAGE POWER. 69 9.5.4. OUTPUT POWER AND PPSD. 70 9.6. 802.11ac HT80 MODE IN THE 5.2 GHz BAND. 73 9.6.1. 26 dB BANDWIDTH. 73 9.6.2. 99% BANDWIDTH. 75 9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 802.11a MODE IN THE 5.3 GHz BAND. 81 9.7.1. 26 dB BANDWIDTH. 81 9.7.2. 99% BANDWIDTH. 81 9.7.4. OUTPUT POWER AND PPSD 88 9.8.02.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH. 92 9.8.2. 99% BANDWIDTH. 92 9.8.3. AVERAGE POWER. 98 9.8.4. OUTPUT POWER AND PPSD 98 9.8.4. OUTPUT POWER AND PPSD 99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1.2 6 dB BANDWIDTH. 103 9.9.1 802.11ac HT20 MODE IN THE 5.3 GHz BAND 103 9.9.1	9.5. 802.11ac HT40 MODE IN THE 5.2 GHz BAND	
9.5.2. 99% BANDWIDTH	9.5.1. 26 dB BANDWIDTH	
9.5.3. AVERAGE POWER 869 9.5.4. OUTPUT POWER AND PPSD 70 9.6.802.11ac HT80 MODE IN THE 5.2 GHz BAND 73 9.6.1.26 dB BANDWIDTH 73 9.6.2.99% BANDWIDTH 75 9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 802.11a MODE IN THE 5.3 GHz BAND 81 9.7. 802.11a MODE IN THE 5.3 GHz BAND 81 9.7.1.26 dB BANDWIDTH 84 9.7.3. AVERAGE POWER 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1.26 dB BANDWIDTH 92 9.8.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 98 9.9.802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1.26 dB BANDWIDTH 103 9.9.3 AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.9.1.26 dB BANDWIDTH 103 103 9.9.2.99% BANDWIDTH 103 103 9.9.3. AVERAG		
9.5.4. OUTPUT POWER AND PPSD //0 9.6.1 26 dB BANDWIDTH //3 9.6.1. 26 dB BANDWIDTH //3 9.6.2. 99% BANDWIDTH //5 9.6.3. AVERAGE POWER //7 9.6.4. OUTPUT POWER AND PPSD //7 9.6.4. OUTPUT POWER AND PPSD //7 9.6.4. OUTPUT POWER AND PPSD //7 9.7. 802.11a MODE IN THE 5.3 GHz BAND //8 9.7. 802.11a MODE IN THE 5.3 GHz BAND //8 9.7.3. AVERAGE POWER //87 9.7.4. OUTPUT POWER AND PPSD //87 9.8.1 26 dB BANDWIDTH //92 9.8.1 26 dB BANDWIDTH //92 9.8.2 99% BANDWIDTH //92 9.8.3. AVERAGE POWER //98 9.8.4. OUTPUT POWER AND PPSD //98 9.9.802.11n HT40 MODE IN THE 5.3 GHz BAND //03 9.9.1.26 dB BANDWIDTH //103 9.9.3 AVERAGE POWER //107 9.9.4. OUTPUT POWER AND PPSD //108 9.10. 802.11a hT40 MODE IN THE 5		
9.6. 802.11ac HT80 MODE IN THE 5.2 GHz BAND 73 9.6.1. 26 dB BANDWIDTH. 73 9.6.2. 99% BANDWIDTH. 75 9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 802.11a MODE IN THE 5.3 GHz BAND 81 9.7.1. 26 dB BANDWIDTH 84 9.7.3. AVERAGE POWER 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 103 9.9.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 103 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 118 9.10. 802.11ac HT20 MODE IN THE 5.3 GHZ BAND </td <td>9.5.4. OUTPUT POWER AND PP3D</td> <td></td>	9.5.4. OUTPUT POWER AND PP3D	
9.6.1. 26 dB BANDWIDTH. 73 9.6.2. 99% BANDWIDTH. 75 9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 802.11a MODE IN THE 5.3 GHz BAND 81 9.7.1. 26 dB BANDWIDTH. 81 9.7.2. 99% BANDWIDTH. 84 9.7.3. AVERAGE POWER 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n H720 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 92 9.8.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 98 9.9. 802.11n H740 MODE IN THE 5.3 GHz BAND 103 9.9.1. 26 dB BANDWIDTH 103 9.9.2. 99% BANDWIDTH 103 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11a C H720 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11a C H720 MODE IN THE 5.3 GHz BAND 111 9.10.	9.6. 802.11ac HT80 MODE IN THE 5.2 GHz BAND	73
9.6.2. 99% BANDWIDTH.	9.6.1. 26 dB BANDWIDTH	73
9.6.3. AVERAGE POWER 77 9.6.4. OUTPUT POWER AND PPSD 78 9.7. 802.11a MODE IN THE 5.3 GHz BAND 81 9.7.1. 26 dB BANDWIDTH 84 9.7.2. 99% BANDWIDTH 84 9.7.3. AVERAGE POWER 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 92 9.8.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1. 26 dB BANDWIDTH 103 9.9.2. 99% BANDWIDTH 103 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11a HT20 MODE IN THE 5.3 GHz BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.3. AVERAGE POWER 117 9.11.4. OUTPUT POWER AND PPSD 108 9.10.4.	9.6.2. 99% BANDWIDTH	75
9.6.4. OUTPUT POWER AND PPSD .78 9.7. 802.11a MODE IN THE 5.3 GHz BAND .81 9.7.1. 26 dB BANDWIDTH .81 9.7.2. 99% BANDWIDTH .84 9.7.3. AVERAGE POWER .87 9.7.4. OUTPUT POWER AND PPSD .88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND .92 9.8.1. 26 dB BANDWIDTH .92 9.8.2. 99% BANDWIDTH .92 9.8.3. AVERAGE POWER .98 9.8.4. OUTPUT POWER AND PPSD .99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND .103 9.9.1. 26 dB BANDWIDTH .103 9.9.2. 99% BANDWIDTH .103 9.9.3. AVERAGE POWER .107 9.9.4. OUTPUT POWER AND PPSD .108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND .111 9.10.1. 26 dB BANDWIDTH .111 9.10.2 98 BANDWIDTH .111 9.10.3. AVERAGE POWER .111 9.10.4. OUTPUT POWER AND PPSD .118 9	9.6.3. AVERAGE POWER	
9.7. 802.11a MODE IN THE 5.3 GHz BAND 81 9.7.1. 26 dB BANDWIDTH 81 9.7.2. 99% BANDWIDTH 84 9.7.3. AVERAGE POWER 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 95 9.8.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1. 26 dB BANDWIDTH 103 9.9.2. 99% BANDWIDTH 103 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11a chT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11a chT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11a chT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11a chT40 MODE IN THE 5.3 GHz BAND 111 9.11.4. OUTPUT POWER AND PPSD 118 9.11.2. 99% BANDWIDTH <	9.6.4. OUTPUT POWER AND PPSD	
9.7.1. 26 db BANDWIDTH. 81 9.7.2. 99% BANDWIDTH. 84 9.7.3. AVERAGE POWER 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 db BANDWIDTH. 92 9.8.2. 99% BANDWIDTH. 92 9.8.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1. 26 db BANDWIDTH 103 9.9.2. 99% BANDWIDTH 103 9.9.2. 99% BANDWIDTH 103 9.9.2. 99% BANDWIDTH 103 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11ac MT40 MODE IN THE 5.3 GHz BAND 112 9.11. 802.11ac MT40 MODE IN THE 5.3 GHz BAND 112 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND	9.7. 802.11a MODE IN THE 5.3 GHz BAND	
9.7.2. 99% BANDWIDTH	9.7.1. 26 dB BANDWIDTH	81
9.7.3. AVERAGE POWER. 87 9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH. 92 9.8.2. 99% BANDWIDTH. 95 9.8.3. AVERAGE POWER. 98 9.8.4. OUTPUT POWER AND PPSD 99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1. 26 dB BANDWIDTH 103 9.9.2. 99% BANDWIDTH 103 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 112 9.11. 26 dB BANDWIDTH 112 9.10. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11. 26 dB BANDWIDTH 122 9.11. 26 dB BANDWIDTH<	9.7.2. 99% BANDWIDTH	84
9.7.4. OUTPUT POWER AND PPSD 88 9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 95 9.8.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1. 26 dB BANDWIDTH 103 9.9.2. 99% BANDWIDTH 105 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 26 dB BANDWIDTH 114 9.11. 26 dB BANDWIDTH 112 9.11. 26 dB BANDWIDTH 122 9.11. 26 dB BANDWIDTH 122 9.11. 26 dB BANDWIDTH 125 9.12.	9.7.3. AVERAGE POWER	
9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND 92 9.8.1. 26 dB BANDWIDTH 92 9.8.2. 99% BANDWIDTH 95 9.8.3. AVERAGE POWER 98 9.8.4. OUTPUT POWER AND PPSD 99 9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND 103 9.9.1. 26 dB BANDWIDTH 103 9.9.2. 99% BANDWIDTH 105 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.2. 99% BANDWIDTH 111 9.10.3. AVERAGE POWER 111 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 29% BANDWIDTH 114 9.10.4. OUTPUT POWER AND PPSD 112 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12.1. 26 d	9.7.4. OUTPUT POWER AND PPSD	
9.8.1. 26 dB BANDWIDTH.	9.8 802 11n HT20 MODE IN THE 5.3 GHz BAND	92
9.8.2. 99% BANDWIDTH	9.8.1. 26 dB BANDWIDTH	
9.8.3. AVERAGE POWER	9.8.2. 99% BANDWIDTH	
9.8.4. OUTPUT POWER AND PPSD	9.8.3. AVERAGE POWER	
9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND. 103 9.9.1. 26 dB BANDWIDTH. 103 9.9.2. 99% BANDWIDTH. 105 9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.2. 99% BANDWIDTH 111 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 26 dB BANDWIDTH 112 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.4. OUTPUT POWER AND PPSD 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.8 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 <t< td=""><td>9.8.4. OUTPUT POWER AND PPSD</td><td></td></t<>	9.8.4. OUTPUT POWER AND PPSD	
9.9.1. 26 dB BANDWIDTH		103
9.9.2 99% BANDWIDTH	9.9.1 26 dB BANDWIDTH	103
9.9.3. AVERAGE POWER 107 9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.2. 99% BANDWIDTH 114 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.3. AVERAGE POWER 125 9.11.4. OUTPUT POWER AND PPSD 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.4. OUTPUT POWER AND PPSD 133 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13	9 9 2 99% BANDWIDTH	105
9.9.4. OUTPUT POWER AND PPSD 108 9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.2. 99% BANDWIDTH 114 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13.802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2.	9.9.3 AVERAGE POWER	107
9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.2. 99% BANDWIDTH 111 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 143 9.13.2. 99% B	9.9.4. OUTPUT POWER AND PPSD	
9.10. 802.11ac H120 MODE IN THE 5.3 GH2 BAND 111 9.10.1. 26 dB BANDWIDTH 111 9.10.2. 99% BANDWIDTH 114 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.2. 99% BANDWIDTH 125 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12. 802.11ac HT80 MODE IN THE 5.6 GHz BAND 133 9.13.1. 26 dB BANDWIDTH 134 9.13.1. 26 dB BANDWIDTH 140 9.13.1. 26 dB BANDWIDTH 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER <		
9.10.1. 26 dB BANDWIDTH 111 9.10.2. 99% BANDWIDTH 114 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.3. AVERAGE POWER 125 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 137 9.13.1. 26 dB BANDWIDTH 143 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 146 Page 4 of 405 <	9.10. 802.11aC H120 MODE IN THE 5.3 GHZ BAND	
9.10.2. 99% DANDWIDTH 114 9.10.3. AVERAGE POWER 117 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 122 9.11.3. AVERAGE POWER 125 9.11.4. OUTPUT POWER AND PPSD 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 137 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 140 9.13.3. AVERAGE POWER 146 Page 4 of 405 146		
9.10.3. AVERAGE FOWER 111 9.10.4. OUTPUT POWER AND PPSD 118 9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 125 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 146 Page 4 of 405 Page 4 of 405 140		
9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 125 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 140 9.13.3. AVERAGE POWER 140		
9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND. 122 9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 125 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 132 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 143 9.13.3. AVERAGE POWER 146 Page 4 of 405 Page 4 of 405 140		
9.11.1. 26 dB BANDWIDTH 122 9.11.2. 99% BANDWIDTH 125 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 143 9.13.3. AVERAGE POWER 143 9.13.4. Page 4 of 405 146	9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND	
9.11.2. 99% BANDWIDTH 125 9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 143 9.13.3. AVERAGE POWER 146 Page 4 of 405 Page 4 of 405 140	9.11.1. 26 dB BANDWIDTH	
9.11.3. AVERAGE POWER 128 9.11.4. OUTPUT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 143 9.13.3. AVERAGE POWER 146 Page 4 of 405 Page 4 of 405 1405	9.11.2. 99% BANDWIDTH	
9.11.4. OUTPOT POWER AND PPSD 129 9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 143 9.13.3. AVERAGE POWER 146 Page 4 of 405 Page 4 of 405 1405		
9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND 132 9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 143 9.13.3. AVERAGE POWER 146	9.11.4. OUTPUT POWER AND PPSD	129
9.12.1. 26 dB BANDWIDTH 132 9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 146 Page 4 of 405	9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND	
9.12.2. 99% BANDWIDTH 134 9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 146 Page 4 of 405	9.12.1. 26 dB BANDWIDTH	132
9.12.3. AVERAGE POWER 136 9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 146 Page 4 of 405	9.12.2. 99% BANDWIDTH	134
9.12.4. OUTPUT POWER AND PPSD 137 9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 146 Page 4 of 405	9.12.3. AVERAGE POWER	
9.13. 802.11a MODE IN THE 5.6 GHz BAND 140 9.13.1. 26 dB BANDWIDTH 140 9.13.2. 99% BANDWIDTH 143 9.13.3. AVERAGE POWER 146 Page 4 of 405	9.12.4. OUTPUT POWER AND PPSD	
9.13.1. 26 dB BANDWIDTH	9.13. 802.11a MODE IN THE 5.6 GHz BAND	
9.13.2. 99% BANDWIDTH	9.13.1. 26 dB BANDWIDTH	140
9.13.3. AVERAGE POWER146 Page 4 of 405	9.13.2. 99% BANDWIDTH	143
Page 4 of 405	9.13.3. AVERAGE POWER	146
	Page 4 of 405	

REPORT NO: 13	U15118-2F	DATE: JULY 19, 2013
9.13.4.	OUTPUT POWER AND PPSD	147
9.14. 802.	11n HT20 MODE IN THE 5.6 GHz BAND	
9.14.1.	26 dB BANDWIDTH	151
9.14.2.	99% BANDWIDTH	154
9.14.3.	AVERAGE POWER	157
9.14.4.	OUTPUT POWER AND PPSD	158
9.15. 802.	11n HT40 MODE IN THE 5.6 GHz BAND	
9.15.1.		
9.15.2.		
9.15.3. 9.15.4	OUTPUT POWER AND PPSD	169
0.10.4.		
9.16. 802.	11ac H120 MODE IN THE 5.6 GHZ BAND	
9.10.1.	20 00 DAINDWIDTH	
9.16.3	AVERAGE POWER	
9.16.4.	OUTPUT POWER AND PPSD	
9 17 802	11ac HT40 MODE IN THE 5.6 GHz BAND	184
9.17.1.	26 dB BANDWIDTH	
9.17.2.	99% BANDWIDTH	
9.17.3.	AVERAGE POWER	
9.17.4.	OUTPUT POWER AND PPSD	191
9.18. 802.	11ac HT80 MODE IN THE 5.6 GHz BAND	
9.18.1.	26 dB BANDWIDTH	195
9.18.2.	99% BANDWIDTH	
9.18.3.		
9.10.4.		
9.19. 802.	11a MODE IN THE 5.8 GHz BAND	
9.19.1.		200
9.19.2	99% BANDWIDTH	209
9.19.3.	AVERAGE POWER	
9.19.4.	OUTPUT POWER AND PPSD	213
9.19.4.	PEAK EXCURSION	217
9.20. 802.	11n HT20 MODE IN THE 5.8 GHz BAND	
9.20.1.	Test Methodology	218
9.20.2.	26 dB BANDWIDTH	218
9.20.2.	99% BANDWIDTH	
9.20.3.		
9.20.4.		
9.21. 802.	11n H140 MODE IN THE 5.8 GHZ BAND	
9.21.1.	26 dB BANDWIDTH	
9.21.2.	99% BANDWIDTH	
9.21.3.	AVERAGE POWER	234
9.21.3.	OUTPUT POWER AND PPSD	235
9.21. 802.	11ac HT20 MODE IN THE 5.8 GHz BAND	
9.21.1.	Test Methodology	238
9.21.2.	26 dB BANDWIDTH	
9.21.2.	99% BANDWIDTH	241
	Page 5 of 405	

REPORT N	O: 13U15118-2F	DATE: JULY 19, 2013
EUT: GSM/C	DMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC	FCC ID: ZNFVS980
9.21.3	0. OUTPUT POWER AND PPSD	
9 22	802 11ac HT40 MODE IN THE 5.8 GHz BAND	249
9.22.1	. Test Methodology	
9.22.2	26 dB BANDWIDTH	249
9.22.3	AVERAGE POWER	
9.22.3	. OUTPUT POWER AND PPSD	
9.23. 0.23.1	802.11ac H180 MODE IN THE 5.8 GHz BAND	
9.23.2	26 dB BANDWIDTH	
9.23.1	. 99% BANDWIDTH	
9.23.2		
9.23.3	PEAK EXCURSION	
		007
10. IRA		
10.1.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND	
10.2.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BA	ND276
10.3.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BA	ND285
10.4.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND	
10.5.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BA	ND302
10.6.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BA	ND311
10.7.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BAND	
10.8.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BA	ND329
10.9.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.6 GHz BA	ND339
10.1.	TX ABOVE 1 GHz 802.11a HT20 MODE IN THE 5.8 GHz BA	ND349
10.1.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BA	ND358
10.1.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.8 GHz BA	ND367
10.2.	WORST-CASE BELOW 1 GHz	
11. AC	POWER LINE CONDUCTED EMISSIONS	376
12. DYI	NAMIC FREQUENCY SELECTION	
12.1.	OVERVIEW	
12.1.1	LIMITS	
12.1.2	TEST AND MEASUREMENT SYSTEM	
12.1.3		
12.1.7	RESULTS FOR 20 MHz BANDWIDTH	380
12.2.1	. TEST CHANNEL	
12.2.2	RADAR WAVEFORM AND TRAFFIC	
12.2.3	OVERLAPPING CHANNEL TESTS	
12.2.4		
12.3. 12 2 1	RESULTS FOR 40 MHz BANDWIDTH	
12.3.1	Page 6 of 405	
	CATION SERVICES INC.	FORM NO: CCSUP4701J

13.	SETUP	PHOTOS	
	12.3.5.	NON-OCCUPANCY PERIOD	403
	12.3.4.	MOVE AND CLOSING TIME	
	12.3.3.	OVERLAPPING CHANNEL TESTS	
	12.3.2.	RADAR WAVEFORM AND TRAFFIC	
EUT	: GSM/CDMA	WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC	FCC ID: ZNFVS980
REP	ORT NO: 1	3U15118-2F	DATE: JULY 19, 2013

Page 7 of 405

1. ATTESTATION OF TEST RESULTS

	STANDARD TEST RESULTS				
APPLICABLE STANDARDS					
DATE TESTED:	JANUARY 7 TO 25 AN	ND MARCH 14 TO 25, 2013			
SERIAL NUMBER:	99000250000211(CO 256691464000002160	NDUCTED) AND) (RADIATED)			
MODEL:	DEL: VS980, LGVS980 and LG-VS980				
EUT DESCRIPTION:	Tri-Band Phone with V	VLAN, Bluetooth, BLE, and NFC			
COMPANY NAME:	LG ELECTRONICS M 1000 SYLVAN AVENU ENGLEWOOD, NJ 07	IOBILECOMM USA,INC. JE 7632, USA			

 STANDARD
 TEST RESULTS

 CFR 47 Part 15 Subpart E
 Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

Pai hi

PHILIP KIM WISE PROGRAM MANAGER UL Verification Services Inc.

STEVEN TRAN Wise LAB TECHNICIAN UL Verification Services Inc.

Page 8 of 405

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009, RSS-GEN Issue 3, FCC KDB 644545 D01, FCC KDB 644545 D02(Alternative Guidance for 802 11ac V01) and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 9 of 405

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Dual Band phone that also supports BLUETOOTH, WLAN and NFC.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5170-5250	802.11a	12.39	17.34
5170-5250	802.11n HT20	11.78	15.07
5170-5250	802.11n HT40	11.62	14.52
5170-5250	802.11ac HT20	10.44	11.07
5170-5250	802.11ac HT40	10.72	11.80
5170-5250	802.11ac HT80	10.52	11.27
5250-5330	802.11a	12.5	17.78
5250-5330	802.11n HT20	11.61	14.49
5250-5330	802.11n HT40	12.23	16.71
5250-5330	802.11ac HT20	10.65	11.61
5250-5330	802.11ac HT40	10.86	12.19
5250-5330	802.11ac HT80	10.65	11.61
5490-5730	802.11a	12.16	16.44
5490-5730	802.11n HT20	11.4	13.80
5490-5730	802.11n HT40	10.4	10.96
5490-5730	802.11ac HT20	10.55	11.35
5490-5730	802.11ac HT40	10.2	10.47
5490-5730	802.11ac HT80	10.79	11.99
5735-5835	802.11a	11.66	14.66
5735-5835	802.11n HT20	10.7	11.75
5735-5835	802.11n HT40	9.92	9.82
5735-5835	802.11ac HT20	9.42	8.75
5735-5835	802.11ac HT40	9.09	8.11
5735-5815	802.11ac HT80	9.17	8.26

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of -1.00 dBi.

5.4. SOFTWARE AND FIRMWARE

Page 10 of 405

REPORT NO: 13U15118-2FDATE: JULY 19, 2013EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFCFCC ID: ZNFVS980The test utility software used during was VS9800RA and firmware used was g2_vzw-userdebug4.2.2 JDQ39B VS9800RA.1368678220.

Page 11 of 405

EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that the Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in the X orientation.

Based on the baseline scan, the worst-case data rates were:

802.11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40mode: MCS0

Page 12 of 405

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
AC Adapter	TEN PAO	MCS-04WT2	N/A	N/A			
Earphone	I-SOUND	EAB62729001	N/A	N/A			

I/O CABLES

I/O Cable List							
Cable	Cable Port # of identical Connector Cable Type Cable Remarks						
No		ports	Туре		Length (m)		
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A	
2	Audio	1	Mini-Jack	Unshielded	1.0m	N/A	

TEST SETUP

The EUT is setup as a stand-alone device.

Page 13 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC SETUP DIAGRAM FOR TESTS

Page 14 of 405

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	Asset	Cal Due			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	4/1/2014			
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	2/26/2014			
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	8/8/2013			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	1/28/2014			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	10/22/2013			
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	8/2/2013			
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	N/A	3/6/2014			
Antenna, Horn, 18 GHz	ETS	3117	C01022	2/21/2014			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	12/17/2013			
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/2013			
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/2013			
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/14			
Reject Filter, 5.725-5.825 GHz	Micro-Tronics	BRC13192	N02676	CNR			

Page 15 of 405

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

7.1. O		AND DU	JIY CYCL	E RES	ULIS			
Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B		
	В		х	Cycle	Correction Factor	Minimum VBW		
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)		
802.11a 20 MHz	2.065	2.165	0.954	95.4%	0.21	0.484		
802.11n HT20	1.920	2.020	0.950	95.0%	0.22	0.521		
802.11n HT40	0.9267	1.037	0.894	89.4%	0.49	1.079		

. DEALU

7.2. **DUTY CYCLE PLOTS**

en	ter F	req	5.2000	000000 G	iHz PNO: Fast		Trig Free F	bun	Avg	Type: Lo	Ig-Pwr	1138	NACE 1 2 3 4 5 TITE MOMMAN	5.6 Frequency	Ē.
	1000	Re	Offset 1	2 dB	9 Garin:Lav		Atten: 10 d				Δ	Mkr3	2.165 m	Auto T	une
0 de	Sidiv sile-a	Re	1 20.00	dBm	Vigilia		w. gidlange ikk	Norther	in the	and a	304 -	فليسيعا	Malandaula		_
10.0	(Center F 5 20000000	GH:
20.0 20.0 20.0 40.0														Start F 5.200000000	GH
0.0 0.0														Stop F 5.20000000	rec GH
en	ter 5 BW	2000 8 MH	000000 Iz	GHz	#\	BW	50 MHz	_	-	Sw	eep 5.	.000 m	Span 0 H s (1001 pt	Hz CF S 8.000000	iteş MH
		120 120	100	-	065 mt	(A)	0.05 4	1 100	CITUR	AUNCOL	N WOTH	HIS	TEN VALUE	Auto	Mar
2 2 4 5	F.4	1	ίΔ)	1	460 ms 166 ms 460 ms	(Δ)	13.96 dBn 0.21 dl 13.96 dBn	1. 3						FreqOf	fse 0 H
9 7 8 9						_									

Page 16 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Frequency	TIACE 1 2 3 4 5 5	e: Log-Pwr	Avg	Trig Free Run	Fast -+-	0000 GHz	5.200000	Freq	nter		
Auto Tuni	B GaintLaw Attack 18 dB ΔΔMkr3 2.020 ms Ref 076act 12 dB ΔΔMkr3 2.020 ms D dF 20 00 cHarp 0.43 dB										
	0.45 dB1	to do d and	ALL AREAS	and to be a local second		Sm Withoultin	f 20.00 dE	Ref			
Center Free	Compare indiana and a sol	ul's a self-		Banan Dakinley	Part and	Margared	or store in	mary	0		
5.290000000 GH		-					-	-	a —		
			_		-			-	0		
Start Free		-					-	-	0		
5 20000000 GH		-		-			-	-	n		
	1.	-				14		-	θ		
0200233	I		_					-	0		
Stop Free		-			-			-	0		
5.20000000 GH.		-		-				-	0		
	Span 0 Hz	10 A		and the second	and a second	łz	00000 GH	5.2000	nter		
B 000000 MH	3.000 ms (601 pts)	Sweep 3		50 MHz	#VBW	000 A	z	8 MH	s BW		
Auto Mar	HINGTON VALUE	NOTON MOTION	HARRON			8	1000	100 500	MOOS		
		2000 - CO.	- AMARDANIA	-0.67 dB	ms (Δ)	1.920 m	(4)	1	A2		
Freq Offse				0.43 dB	ms (A)	2.020 m	(<u>A</u>)	i	44		
0 H		-		13.76 dBm	us .	0.089		1			
					_			_			
					-				-		

Frequency	THE NUMBER OF	11.003	Log-Pwr	Avg Typ	in	Trig Free R		Hz PNO: Fast	0000 GH	3000	5.23	r Freq	nte
Auto Tun	1.037 ms	Ref Offset 12.5 dB ΔMkr3 1.037 ms 0 dB/dlv Ref 20.00 dBm -1.28 dB											
Center Free 5.230000000 GH	and and a second		64	142	e'nees	henne	and a	ليعدارحها	الحدود حريدة	Wa.		-eyste	-
Start Free 5 230000000 GH							-						
Stop Free 5.230000000 GH				had						4	he		
CF Step 8 000000 MH	Span 0 Hz ms (601 pts)	2.000 m	Sweep			50 MHz	VBW	#\	Hz	000 G	0000 Iz	5.2300 N 8 MH	nter 5 Bl
Auto Mar	STATUS VILLE	HINC	ALCH MEDIN	IN NO	100	5.28 dB	<u>(Δ)</u>	26.7 µs	92		(4)		
Freq Offse 0 H			_	-		-1.28 dB 7.30 dBm	(Δ)	037 ms 28.7 µs	1,0) 	(4)	į	M
			_	-				_					
													_

UL VERIFICATION SERVICES INC. FORM NO: CCSUP4701J 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 17 of 405

Cen	ter F	req	5.200	0000	000 G	1z NO: Fast		Trig Free Atten: 16	Run	1	eAvg Ty	pe: Log-Pwr	10	CE 1 2 3 4 5 5	Frequency
10 di	B/div	Re	offse	t 12 d 00 dE	B	GIERLEON		74411 10				L	Mkr3 2	.025 ms	Auto Tuni
.0g	-two-	440	sharry.	well }	"glack	Hurber	400	deallan	eddun	nelit	344	aprolationsk	***	phanel Response	Contra Con
0.00	0				2.2										5 20000000 GH
10.0	-	_		-		-	-			-		-	-		
20.0		_		-			-			-+	-	-	-	(8.17. Pm	Frank Frank
30 D	-	_	_	-	-	-	-		_	-	-	-	-		5 20000000 GH
40.8	-	-		-	<u>. </u>	-	+		-	-	-	-	-		o zoneoooo on
50.0	-	-					+			-		-	-		-
0.06	-		_				+		-	-		-	-		Stop Free 5 20000000 GH
70.0							+			-					a good door dri
Cen	ter 5. BW 8	2000 8 MH	00000 z	0 GH	iz	#VE	3W	50 MHz				Sweep	5.000 m	Span 0 Hz s (601 pts)	CF Ster 8.000000 MH
			(4)		15	25 ms (A)	2.98	8	HALTO	N N	NCTION WOTH	HINCT		Auto Ma
2	F.	i	105		16	62 ms	A1	12.75 dE	m				-		E
4	7	î	1220		12	62 ms	<u>.</u>	12.75 dt	Im						Frequise
5		-				-									0.8.9
8		-													
9	-	-	-			-	_						-		
11	_		-						_				-		

	- III.	51.0	DC 1				-			AUGUAUTO.	12:34	44 PM Mar 27, 2012	[
Center I	req 5.	23000	00000 G	Hz		Tria F	ree Ru		#Avg Typ	e: Log-Pur	- Denix	TRACE 1 2 3 4 5 5	Frequency
				Gaint a		Atten	18 dB	S.			maco	DET P NIVINI N	
Ref Offset 12 dB ΔMkr3 1.050 ms 10 dB/div Ref 20.00 dBm 0.68 dB										Auto Tune			
-og	1.01.		St				14 32	4.	AL.	d Inle	L	a data be	102808000000
0.00		Xe		de loca		-	T					Are the spec	Center Free 5.230000000 GH
20.0		_		-	_	-		-	_				Start Fre
40.0		An				-	~	-			100		5.230000000 GH
ac.o													Stop Fre 5,230000000 GH
Center 5 Res BW	23000 8 MHz	0000 0	BHz	#\	BW	50 MH	z	-		Sweep	3.000	Span 0 Hz ms (601 pts)	CF Ster
	100 510		8			-		Hatt	01 100	NATION WARTER		CINE WILLIE	Auto Mar
1 A2	10	0.0		60.0 µs	(Δ)	4.99	2 dBm	1.111/14		200-201	1. 20.2		-
4 P	t G	<u>a</u>	1	050 ms 60 0 µs	(6)	0.6	dBm						Freq Offse 0 H
5							-		-		-		
8							_						
10													
11	++				-				-		-		

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 18 of 405

8. MEASUREMENT METHOD

The Duty Cycle is less than 98% and consistent therefore KDB 789033 Method SA-2 is used for .power and PPSD

The Duty Cycle is less than 98% and consistent, KDB 789033 Method AD with Power RMS Averaging and duty cycle correction is used.

Page 19 of 405

9. ANTENNA PORT TEST RESULTS

9.1. 802.11a MODE IN THE 5.2 GHz BAND

9.1.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	20.150
Mid	5200	20.100
High	5240	20.075

Page 20 of 405

Page 21 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 22 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	16.607
Mid	5200	16.652
High	5240	16.584

Page 23 of 405

Page 24 of 405

Center Freq 5,240000000 GHz Center Freq 5,24000000 GHz Radio Stat None #I Gata ov #I Gat											Frequency	
10 dB/div	Ref Offset 12 dB Ref 20.00 dBm											
10.0 0.00			(datab)	andri	e alterna	R (vhere					Center Freq 5.240000000 GHz	
10.0 20.0		al.	y attedd.	ad di la va	Alberidio	. it. it.	ų	1				
400 800	unum da junita	h.					1	hing the second	atuar.	alaalistat.		
70.0	alter d								1 thed	a la h	CF Step	
Center 5.24 Res BW 47	I GHZ 0 KHZ			#VE	3W 1.5 M	Hz			Spa Swi	eep 1 ms	Auto Man	
Occupie	ed Bandwidtl 16	58-	4 Mł	۰łz	Total P	ower		11.0	dBm		Freq Offset 0 Hz	
Transmit Freq Error 44.872 kHz x dB Bandwidth 20.46 MHz			dHz NHz	OBW P	ower		99.00 % -26.00 dB					
490							-	STATUS	i i			

Page 25 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	12.39
Mid	5200	12.32
High	5240	12.17

Page 26 of 405

9.1.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 27 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	20.150	16.607	-6.40
Mid	5200	20.100	16.652	-6.40
High	5240	20.075	16.584	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5180	17.00	22.20	28.60	17.00	4.00	10.00	4.00
Mid	5200	17.00	22.21	28.61	17.00	4.00	10.00	4.00
High	5240	17.00	22.20	28.60	17.00	4.00	10.00	4.00

Duty Cycle CF (dB) 0.21 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	12.826	13.04	17.00	-3.96
Mid	5200	11.487	11.70	17.00	-5.30
High	5240	11.226	11.44	17.00	-5.56

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	1.486	1.70	4.00	-2.30
Mid	5200	-0.494	-0.28	4.00	-4.28
High	5240	0.009	0.22	4.00	-3.78

Page 28 of 405

enter F	req 5.1	8000	00000 G	iHz PNO: Wid		Trig Free	Ru	Avg AvgP	Type: RMS fold: 100/10	0	7	ACE 1 2 3 4 5 5 THE A MANNIN H	Frequency
10 dB/div	Ref Of	set 12 0.00 c	dB JBm	FGainta	W	Allen: 10	ab)	Band F	Mkr2	5.18 er 12.	0 00 GHz 826 dBm	Auto Tuni
10.0 0.00			-	Q1.			2			~	-		Center Free 5.18000000 GH
20.0 20.0 20.0 40.0		7									Y	SIS DE	Start Free 5.16500000 GH
0.0 0.0	-							_	-		-		Stop Free 5.19500000 GH
enter 5. Res BW	18000 (1.0 MH	3Hz Z	-	#1	/BW	3.0 MHz		Sv	veep (#S	wp)	Span 1.00 m	30.00 MHz is (601 pts)	CF Step 3.000000 MH
			5 174	60 CH+	(4)	1.495.46		PERCENCE	AINCHORY	ESTH.	HINC		<u>Auto</u> Mar
2 N 3 4 5	1 m		5.180	CO GHZ	101	0.003 di	3m	Sand Power	20.401	WHz		12.626 dBm	Freq Offse 0 H
7 8 9 10													

Page 29 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter F	req	5.240	000	0000	GHz PNO: W	101 -+	Trig Fre	e Ru	Avg	Type: RMS Hold: 100/100	1.00	106-26 190 1	PM May 22, 2012 CE 1 2 3 4 5 5 TE A 94444449 PM May 22, 2012	Frequency
0 dB/div	Ref Ref	Offset	12 d	iB Bm	If Gainch	aw	Atten: 18	B)	Mk Band Pov	25 ver	.240	00 GHz 26 dBm	Auto Tune
og (00)				~			01	0 ²		_				Center Free 5.240000000 GH
00 200 200 200		/	Å			_					2	2	-31.00 m	Start Free 5 22500000 GH
0.0										-			Trans	Stop Free 5.25500000 GH
enter 5. Res BW	2400 1.0 P	0 GH: MHz	z		4	#VBW	3.0 MHz		S	weep (#Swp	S) 1.0	pan 1 00 ma	30.00 MHz s (601 pts)	CF Step 3.000000 MH Auto Mar
1 N 2 N 3 4 5 5	1	(4)		523 524	8 50 GH 0 00 GH		0.009 di -1.038 di	Bm. Bm.	Band Power	20.30 MHz		1	11.226 dBm	Freq Offse 0 H
7 8 9 10														

Page 30 of 405

9.1.5. PEAK EXCURSION

<u>LIMITS</u>

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
Mid	5200	9.02	-0.28	0.20	9.10	13	-3.90

PEAK EXCURSION

Page 31 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

9.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

9.2.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	21.00
Mid	5200	20.83
High	5240	20.96

Page 32 of 405

Page 33 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 34 of 405

9.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	17.828
Mid	5200	17.861
High	5240	17.828

Page 35 of 405

Sweep/Control	Radio Stat None	ALIZIAJTO	0000 GHz	Freq: 5.100	Center	i 1.	51 A 52	oints 601	
Sweep Time	Radio Device: BTS			18 dB	#Atten	#FGain:Low			
Auto Man			10			1	Ref Offset 12 dB Ref 20.00 dBn	10 dB/div	
Sweep Setup					20			10.0	
		-	14/14/	制作用	物种物	144		10,0	
Paus					-	1		20.0	
		ñ				J.FI	1	30.0 40.0	
	Wanter they	T WHY		4		₽'	property set	ma weekly	
	1 d. Arabah Mal	101 002		-	-			80.0 0 1 1 1	
								70.0	
	Span 50 MHz Sweep 1 ms		Hz	/BW 1.6	#		GHZ 0 kHz	Center 5.18 Res BW 5	
Gate [off, Lo]	Total Power 12,4 dBm				MHz	h 7.828 N	ccupied Bandwidth 17.828		
Beint	.00%	99.00 %			7 kHz	eq Error 82.387 kHz		Transmit	
60	00 dB	-26.0		x dB	1 MHz	19.91	fwidth	x dB Ban	

Page 36 of 405
Frequency	Strike Col Strike Col Strike Col Strike Col 15,2400000000 GHz Contert Free, S. 240000000 GHz Rodio Stat. None 15,240000000 GHz Free Run Rodio Stat. None Attribution Attribution Rodio Stat. None Attribution Attribution Rodio Stat. None Attribution Attribution Rodio Stat. None									ter Fred		
								12 dB 0 dBm	Ref Offset Ref 20.0	B/div		
Center Free 5.240000000 GH:												
		-		治市市川市の	inite a	phylip	1					
		-	N.			-	1					
		-	1		_		ł	- ul	-	-		
		h batte	14 Marsh				1	hy Mill	10.180			
	per hubbres	and advertisially the	a dell'A					ish.	houde	1 Party		
CF Step												
Auto Mar	an 50 MHz veep 1 ms	Spa Swi		1.6 MHz	#VE				GHz I0 kHz	ter 5.24 s BW 51		
Freq Offse 0 H;		.8 dBm	11.8	al Power	1	Occupied Bandwidth 17.828 MHz						
		9.00 %	95	W Power		1.30 k	Transmit Freq Error 111.30 k x dB Bandwidth 20.67 M					
		5.00 dB	-26.	в		.67 M						

Page 37 of 405

9.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	11.70
Mid	5200	11.37
High	5240	11.78

Page 38 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 39 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	21.00	17.828	-6.40
Mid	5200	20.83	17.861	-6.40
High	5240	20.96	17.828	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5180	17.00	22.51	28.91	17.00	4.00	10.00	4.00
Mid	5200	17.00	22.52	28.92	17.00	4.00	10.00	4.00
High	5240	17.00	22.51	28.91	17.00	4.00	10.00	4.00

Duty Cycle CF (dB) 0.22 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	11.234	11.45	17.00	-5.55
Mid	5200	10.237	10.46	17.00	-6.54
High	5240	9.732	9.95	17.00	-7.05

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-0.148	0.07	4.00	-3.93
Mid	5200	-1.297	-1.08	4.00	-5.08
High	5240	-1.986	-1.77	4.00	-5.77

Page 40 of 405

enter F	req 5.	18000	0000 GH	łz 10. Wie		Trig Fre	e Ru	n Avg N Avgit	Type: RMS fold: 100/100	10/11/00	ACE 1 2 3 4 5 5	Frequency
0 dB/div	Ref 0 Ref 2	00 GHz 234 dBm	Auto Tune									
(0.0) (0.0)				-	***	<u>0</u> 1	¢ ²				*	Center Free 5.18000000 GH:
20.0 20.0 20.0 40.8		/								/	-35.11.004	Start Free 5.16500000 GH
10.0 10.0								-			/	Stop Free 5.19500000 GH
enter 5. Res BW	18000 1.0 M	GHz Hz		#V	BW	3.0 MH	r*	S	veep (#Swp)	Span 1.00 m	30.00 MHz s (601 pts)	CF Step 3.000000 MH
		44			(Å)	0.149.4	2	HIRCOON	AUNCHOR MEDTAL	HISC		Auto Mar
2 N 3 4 5 5	1		5.100.0	0 GHz	101	-2.332 d	Bm.	Band Power	20.70 MHz		11.234 dBm	Freq Offse 0 H
7 8 9 10					_							

Page 41 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Fr	eq 5.24	000000	00 GHz		irig: Free R	Avg un Avg	Type: RMS Hold: 100/100	TRACE 1 2 3 4 5 5 TUTE A MANNAN	Frequency
0 dB/div	Ref Offse Ref 20.	et 12 dB 00 dBm	IF GaincLas	Auto Tune					
og 10.0 0.00				- 5	1 0				Center Free 5.240000000 GH:
10.0 10.0 10.0									Start Free 5.22500000 GH
0 0 0 0 0 0						_			Stop Free 5 25500000 GH
enter 5.2 Res BW	4000 GH	4z	#\	/BW 3.	0 MHz*	S	weep (#Swp)	Span 30.00 MHz 1.00 ms (601 pts)	CF Step 3.000000 MH Auto Mar
1 N 2 N 3 4 5 5 7	τ τ	1	237 65 GHz 240 00 GHz	(Δ) - -	1.986 dBm 3.571 dBm	Eand Power	20.90 MHz	9.732 dBm	Freq Offse 0 H
8 9 10 11									

Page 42 of 405

<u>LIMITS</u>

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

<u>RESULTS</u>

Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
Mid	5200	8.928	-1.08	0.22	9.79	13	-3.21

PEAK EXCURSION

Page 43 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

9.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND

9.3.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5190	39.8
High	5230	39.4

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 44 of 405

Page 45 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5190	36.481
High	5230	36.570

Page 46 of 405

Center Fre	q 5.19000	Frequency								
10 dB/div	Ref Offset Ref 20.00	12.5 dB) dBm				5.00				
10.0										Center Freq 5.19000000 GHz
10.0	1		enter ma	A ADALINA	y familie	keepla and				
20.0		-1	122	1.55						
40.0	AND AND A	all'		-			h.			
800 800 WWW	and and						.h.d	特纳特有	Plantakyotha	
75.0										CF Step
Center 5.1 Res BW 1	9 GHz MHz			#\	/BW 3 MHz	8		Swi	eep 1 ms	<u>Auto</u> Man
Occupi	ed Band	width 36.4	481 M	Hz	Total Po	wer	12.0	dBm		Freq Offset 0 Hz
Transmi	ransmit Freq Error 165.08 kHz				Error 165.08 kHz OBW Power 99.00 %					
x dB Ba	B Bandwidth 38.78 MHz						-26.	00 dB		

Page 47 of 405

9.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5190	11.62
High	5230	11.54

Page 48 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 49 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional	
		26 dB	99%	Gain	
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	
Low	5190	39.8	36.481	-6.40	
High	5230	39.4	36.570	-6.40	

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5190	17.00	23.00	29.40	17.00	4.00	10.00	4.00
High	5230	17.00	23.00	29.40	17.00	4.00	10.00	4.00

Duty Cycle CF (dB)0.49Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
		(dDma)	(al Dura)	(al Dara)	
		(авт)	(авт)	(авт)	(aB)
Low	5190	(авт) 11.704	(авт) 12.19	(dBm) 17.00	(dB) -4.81

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5190	(dBm) -2.488	(dBm) -2.00	(dBm) 4.00	(dB) -6.00

Page 50 of 405

enter F	req 5.1900	000000 G	Hz NO: Fast	Trig Pr	ee Run	Avg 1 AvgH	ype: RMS old: 100/100	112.560	TYTE A WWWWW	Frequency
0 dB/div	Ref Offset 1 Ref 20.00	12.5 dB 0 dBm	GainLow	Atten	IS dB		Mk Band Po	r2 5.19 wer 11	0 00 GHz 704 dBm	Auto Tuni
				01	¢ ²					Center Fre 5.19000000 GH
0.0 0.0		I					1		.25 M	Start Fre 5.15500000 GH
										Stop Fre 5 22500000 GH
enter 5. Res BW	19000 GHz 1.0 MHz		#VBI	W 3.0 MH	z*	Sw	veep (#Swj	Spar 5) 1.00 r	n 70.00 MHz ns (601 pts)	CF Ste 7.000000 MH
1 N	f. (Δ)	5.185 (BO GHZ IA	-2.488	1Bm	PURCTION	HINGTON MEDI	H HUS		<u>Auto</u> Ma
2 N 3 4 5 5	1	5.190 (20 GHz	-8.309	115m5	and Prover	39.20 MH		11.704 dBm	Freq Offse 0 H
7 8 9 0										

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 51 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

9.4. 802.11ac HT20 MODE IN THE 5.2 GHz BAND

9.4.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
(MHz)		(MHz)
Low	5180	20.710
Mid	5200	20.670
High	5240	20.790

Page 52 of 405

Page 53 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 54 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	17.881
Mid	5200	17.932
High	5240	17.876

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 55 of 405

Page 56 of 405

Center Fre	q 5.240000000	GHz #FGale:Low	Center Fr Trig Free ØAtten: 2	req: 5.2400 e Run 0 dB	00000 GHz	ALTRACTO.	Radio Stat	MMay 27, 2010 None ice: BTS	Frequency
10 dB/div	Ref Offset 12 dB Ref 20.00 dBm								
10.0 0.00		uittitu	Laterar	anad	asilind 6				Center Freq 5.24000000 GHz
10.0 20.0		1 Ann	a. Auth.	a la dud	us ti ha	ù.			
40.0	a solution of	AL_	_			Ha.	-		
en H	Alternation	T				, and the	制物	r Y Y Y Y Y	
Center 5.24	GHz 10 kHz		#VE	BW 1.6 P	WHz		Spa	n 50 MHz	CF Step 5.000000 MHz Auto Man
Occupie	ed Bandwidth 17	876 M	Hz	Total P	ower	11.0	6 dBm		Freq Offset 0 Hz
Transmit	Freq Error	9.099 20.65	kHz MHz	OBW F	Power	99 -26	9.00 % .00 dB		

Page 57 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	10.25
Mid	5200	10.44
High	5240	10.14

Page 58 of 405

9.4.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 59 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5180	20.710	17.881	-6.40
Mid	5200	20.670	17.932	-6.40
High	5240	20.790	17.876	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5180	17.00	22.52	28.92	17.00	4.00	10.00	4.00
Mid	5200	17.00	22.54	28.94	17.00	4.00	10.00	4.00
High	5240	17.00	22.52	28.92	17.00	4.00	10.00	4.00

Duty Cycle CF (dB) 0.21 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	11.489	11.70	17.00	-5.30
Mid	5200	11.401	11.61	17.00	-5.39
High	5240	11.316	11.53	17.00	-5.47

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	0.217	0.43	4.00	-3.57
Mid	5200	-0.209	0.00	4.00	-4.00
High	5240	0.009	0.22	4.00	-3.78

Page 60 of 405

THACE 1 2 3 4 5 5 THE A MANNAN A	Type: RMS loid: 100/100	n Avgitt	Trig Free Ru Atten: 18 dB	00 GHz PNO: Wide -	18000000	req 5	ter F
5.180 00 GHz er 11.489 dBm	Mkr2 Band Powe			n	fiset 12 dB 20.00 dBm	Ref (B/div
		4	¢2				
					λ		-
		_					
Span 30.00 MHz 1.00 ms (601 pts)	Sweep	-	W 3.0 MHz*	#VB	GHz Hz	18000 1.0 M	ter 5. s BW
	AUXION WOTH	HIRITOOR	-0.217 dBm	5.182.90 GHz	5		N
11,409 dBm	20.80 MHz	Band Power	-2.058 dBm	5.180 CO GHZ	5	1	N
							-
	Span 30.00 MHz 1.409 dBm 11.409 dBm	Type RMS MKr2 5.180 00 GHz Band Power 11.489 dBm Arran Span 30.00 MHz Sweep 1.00 ms (601 pts) 400400-000 MHz 20.80 MHz 11.489 dBm	Ming Type: RMS AvgHod: 100/100 Mkr2 5, 180 00 GHz Band Power 11.489 dBm 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Trig Free Run Amen 16 dB Mrg Type: RMS AvgHod: 100r00 Mrd (2,2,343 b) Trig Control (2,2,435 b) (2,2,435 b	0 GHz PB0: Wide → Trig: Free Run Riter: 16 dB Mkr2 5.180 00 GHz Band Power 11.489 dBm 2 1 4 2 1 Band Power 11.489 dBm 2 1 4 2 1 Band Power 11.489 dBm 2 2 1 4 2 1 3 2 1 4 3 5 Trig: Free Run Riter: 16 dB Mkr2 5.180 00 GHz 3 2 1 4 3 5 Trig: Free Run Riter: 16 dB Mkr2 5.180 00 GHz 3 2 1 4 3 5 Trig: Free Run Riter: 16 dB 2 1 4 3 5 Trig: Free Run Riter: 16 dB Mkr2 5.180 00 GHz 3 2 1 4 3 5 Trig: Free Run Riter: 16 dB 1 4 89 dBm 1 4 89 dBm	180000000 GHz Mvg Type: RMS Mvg Type	Proc. Wide Trig. Pree Run If GancLaw Marg Type: RMS Arighted: 100100 March 12 3/43 5 Trig. Pree Run Arighted: 100100 Ref Offset 12 dB Ref 20.00 dBm Mkr2 5.180 00 GHz Band Power 11.489 dBm 10000 GHz 2 110000 GHz 2 12000 GHz 30.00 MHz 18000 GHz 5.182.90 GHz 15000 GHz 0.217 dBm 1 5.182.90 GHz 2.059 dBm 20.60 MHz 11.489 dBm

Page 61 of 405

enter F	req 5.2	4000	0000 G	Hz NO: Wide -	Trig Fre	Run	#Avg	Type: RMS Hold: 100/100	12:25:2	Detta MINININI	Frequency
dB/div	Ref Off	set 12 e 0.00 di	18 Bm	GainLaw	Alten: 10			Mkr. Band Pow	2 5.24 ver 11.	0 00 GHz 316 dBm	Auto Tune
					01	2 ²					Center Free 5 24000000 GH
0 0 0		/							1	-26.17 @	Start Fre 5.22500000 GH
0 0							-				Stop Fre 5 25500000 GH
nter 5. es BW	24000 C	aHz z		#VB	W 3.0 MHz		1	Sweep	Span 1.00 m	30.00 MHz is (601 pts)	CF Step 3.000000 MH
N	1		5.238 4	0 GHz	-0.169 di	3m		ADDATOR CODING	HING		Auto Ma
N	,		5.240 0	JO GHZ	-2.304 di	smta	02 Power	20.90 MHz		11.316 dBm	Freq Offse 0 H
						+					

Page 62 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

9.5. 802.11ac HT40 MODE IN THE 5.2 GHz BAND

9.5.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5190	39.670
Mid	5230	40.130

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 63 of 405

Page 64 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Freq 5.2	30000000 G	Hz	Trig Free Bun	#Avg Type: Log-Pr	ar that it	23456 Frequency
Ref Offi 0 dBidiv Ref 20	set 12 dB 1.00 dBm	PNO: Fast Ca Gain:Law	Atten: 16 dB	4	ر مانه Mkr2 40.13 -0.9	MHz Auto Tun 6 dB
10.0			1			Center Fre 5 230000000 GH
100	1		V			Start Fre 5.195000000 GH
0.0	×3				243	Stop Fre 5.26500000 GH
410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410 - 410	sque!				A.W. Hay	CF Step 7.000000 MH Auto Ma
0.0						Freq Offse 0 H
no						

Page 65 of 405

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5190	36.317
Mid	5230	36.269

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 66 of 405

Page 67 of 405

Page 68 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5190	10.72
Mid	5230	10.05

Page 69 of 405

9.5.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 70 of 405

REPORT NO: 13U15118-2F

EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC **RESULTS**

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5190	39.670	36.317	-6.40
Mid	5230	40.130	36.269	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5190	17.00	23.00	29.40	17.00	4.00	10.00	4.00
Low	5230	17.00	23.00	29.40	17.00	4.00	10.00	4.00

 Duty Cycle CF (dB)
 0.21
 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(8.41.1.)				(>
	(MHZ)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHZ) 5190	(dBm) 11.559	(dBm) 11.77	(dBm) 17.00	(dB) -5.23

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
	5400				
LOW	5190	1.486	1.70	4.00	-2.30

Page 71 of 405

Page 72 of 405 **UL VERIFICATION SERVICES INC.**
DATE: JULY 19, 2013 FCC ID: ZNFVS980

9.6. 802.11ac HT80 MODE IN THE 5.2 GHz BAND

9.6.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5210	81.670

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 73 of 405

Page 74 of 405

9.6.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5210	75.421

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 75 of 405

Page 76 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5210	10.52

Page 77 of 405

9.6.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 78 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5210	81.670	75.421	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5210	17.00	23.00	29.40	17.00	4.00	10.00	4.00

Duty Cycle CF (dB) 0.21 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5210	12.826	13.04	17.00	-3.96

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5210	1.486	1.70	4.00	-2.30

Page 79 of 405

Center F	req 5.210	000000 GHz PNO: Fast	Trig Free	Run Avgi	Type: RMS Hold: 100/100	BI-40:07 PM May 20, 2012 MACE 1, 2, 3, 4, 5, 5 TYTE A WARMANY DOT A INTERNET	Frequency
vibiBb 0	Ref Offset Ref 20.0	12 dB 0 dBm	Attent to	-	Mkr Band Pow	2 5.210 00 GHz er 10.519 dBm	Auto Tune
0.00			01	2			Center Free 5.210000000 GH:
20.0 20.0 40.0						-	Start Free 5.140000000 GH
50.0 80.0 70.0							Stop Free 5,28000000 GH
Center 5. Res BW	21000 GHz 1.0 MHz	, #V	BW 3.0 MHz*		Sweep	Span 140.0 MHz 1.00 ms (601 pts)	CF Step 14.000000 MH
		5 000 00 001	6 206 40	ALCONO.	AUNCTION MOTION	HINE TON VALUE	Auto Mar
2 N 3 4 5	ł	5.210.00 GHz	-13.389 dB	im Band Power	80.27 MHz	10.519 dBm	Freq Offse 0 H
7 8 9 10							

Page 80 of 405

9.7.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	20.12
Mid	5300	20.13
High	5320	20.04

Page 81 of 405

26 dB BANDWIDTH

Page 82 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Freq 5.32000	0000 GHz	Transformer Prove	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 5	Frequency
Ref Offset 12 o dBidty Ref 20.00 dl	Pito: Web: Ca Il CaintLaw dB Bm	Atten: 16 dB	۵N	1kr2 20.04 MHz 0.30 dB	Auto Tune
0.0	01				Center Free 5.32000000 GH:
	Reference for the second		and the second second second second	M.	Start Free 5.307500000 GH
00 3				263_ 230.des	Stop Free 5.332500000 GH
ap provide				Tay -	CF Step 2.500000 MH Auto Ma
0.0					Freq Offse 0 H
uo					

Page 83 of 405

9.7.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5260	16.551
Mid	5300	16.608
High	5320	16.679

Page 84 of 405

Page 85 of 405

Page 86 of 405

9.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5260	12.51
Mid	5300	12.50
High	5320	12.32

Page 87 of 405

LIMITS

FCC §15.407 (a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 88 of 405

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5260	20.12	16.551	-6.40
Mid	5300	20.13	16.608	-6.40
High	5320	20.04	16.679	-6.40

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5260	24.00	23.19	29.19	23.19	11.00	11.00	11.00
Mid	5300	24.00	23.20	29.20	23.20	11.00	11.00	11.00
High	5320	24.00	23.22	29.22	23.22	11.00	11.00	11.00

 Duty Cycle CF (dB)
 0.21
 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	12.335	12.55	23.19	-10.64
Mid	5300	12.760	12.97	23.20	-10.23
High	5320	12.008	12.22	23.22	-11.00

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	0.428	0.64	11.00	-10.36
Mid	5300	0.951	1.16	11.00	-9.84
High	5320	0.037	0.25	11.00	-10.75

Page 89 of 405

Harast	TRACE 1 2 3 4 5 5 THE A MININ N	ype: RMS old: 100/100	Avg T Avg H	Trig Free Ru	Z Wide -+	0000 GHz PNO W	000000	5.26	ker 2	Aar
Marker Tabl	5.260 00 GHz r 12.335 dBm	Mkr2 Band Pow		Addit to do	art aw	dB Bm	iffset 12 20.00 d	Ref (B/div	0 d
Marker Count			_			2003	2004 V + Q	-		og
[Off]	-			Q'			_	-	-	1.00
		X	_				1	+	-	0.0
Couple	310.00		_			-	1	-	1	2.0
On <u>O</u>	N						/	- 2		
	1	-							_	10
					_		_	-	-	0.0
			_				-	-	-	0.0
	Span 30.00 MHz .00 ms (601 pts)	eep (#Swp)	Sw	3.0 MHz*	#VBV	1	GHz Hz	26000 1.0 M	ter 5. s BW	er
	RINCTON VALUE	AUNCTION WOTH	ABILITION						HOLE N	a.
	12.335 dBm	20.50 MHz	Band Power	-0.714 dBm	GHZ	5 262 55 GF	<u>a)</u>	1	N	
All Markers Of					-					4
-					-			\pm	-	5
Mor					-			++	-	8
2									-	Ő,

Page 90 of 405

ente	r Fn	eq !	5,320	000	0000	GH:	e With	-	Trig Fr	ee Ra	Av n	g Ty	pe; RMS	1.02	122:53	PN May 22, 2012 ACE 1 2 3 4 5 5 THE A SMITHIN M	Frequency
0 dB/d	IV.	Ref	Offse 20.0	t 12 e	iB Bm	IF Ga	into		Atten	IB dB	97	в	Mkr and Pow	25 er	.320	0 00 GHz	Auto Tur
					7			_	⊘¹	¢2			-				Center Fre 5.32000000 GH
200		_	1	2	0									1	×	3886	Start Fre 5.30500000 Gi
0.0 0.0 0.0			_				_										Stop Fre 5.33500000 GH
enter Res E	r 5.3 BW 1	200 1.0 P	0 GH MHz	z	_	_	#V	BW	3.0 MH	z		Swe	rep (#Swp)	8 1.0	pan 00 m	30.00 MHz s (601 pts)	CF Ste 3.000000 Mi
1 N		1	(4)		5.3	18 05	GHz	(Δ)	0.037	ißm	PURCTION	1	UNCTION WRITH	-	HIN,	IN VALUE	Auto Ma
2 N 3 4 5 5	1	1			5.3	20.00	GHZ		-1.026 :	iBm.	BanaPowe		20.10 MHz			12.008 dBm	Freq Offs 01
7 8 9														_			

Page 91 of 405

9.8. 802.11n HT20 MODE IN THE 5.3 GHz BAND

9.8.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	20.71
Mid	5300	20.54
High	5320	20.71

Page 92 of 405

26 dB BANDWIDTH

Page 93 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Prequency	123455	1904/ Tot	e: Log-Pwr	Avg Type	Free Dun	IZ To	00000000	r Freq	ente
Auto Tune	71 MHz .975 dB	ikr2 20. 0	ΔN		n: 16 dB	ininLow At	et 12 dB .00 dBm	Ref) dB/d
Center Freq 5.32000000 GHz				<u></u> 1					0.0
Start Free 5.307500000 GHz		when for	handra	phantan	rayments	anar-anar-a	nd address the		00
Stop Freq 5.332500000 GH/	₹ ^{2∆3} _ 300 dbs							X	10
CF Step 2.500000 MHa <u>Auto</u> Mar	N.							^م ^{الم}	10 b
Freq Offset 0 Hz							-	_	x.o
									00

Page 94 of 405

9.8.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5260	17.778
Mid	5300	17.918
High	5320	17.896

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 95 of 405

Page 96 of 405

Center Fre	enter Freq 5.320000000 GHz Center Freq 5.32000000 GHz Radio Stat None stil Gaind over Research 34 B Radio Device; BTS							
10 dB/div	Ref Offset 12 dB Ref 20.00 dBm				167.1			
10.0 0.00			ula crular					Center Free 5.320000000 GH
10.0		r	Under allered	and another provide the second	114	-		
0.0		1			1	-		
00		1			h			
an Laky	WIN THE PARTY	ų.			1	dath!	1. WARLIN	
80.0 1 4					M	Am T	141 . 14	
	2.011-							CF Step 5.000000 MH
Res BW	510 kHz		10	VBW 1.5 MHz		Sw	eep 1 ms	<u>Auto</u> Ma
Occup	ied Bandwidtl 17	MHz	Total Power	1	1.4 dBm		Freq Offse 0 H	
Transm	it Freq Error	107	.87 kHz	OBW Power	8	99.00 %		
x dB Ba	ndwidth	20	.24 MHz	x dB	4	26.00 dB		

Page 97 of 405

9.8.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5260	11.61
Mid	5300	11.55
High	5320	11.51

Page 98 of 405

9.8.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 99 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5260	20.54	17.778	-6.40
Mid	5300	20.54	17.778	-6.40
High	5320	20.54	17.778	-6.40

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5260	24.00	23.50	29.50	23.50	11.00	11.00	11.00
Mid	5300	24.00	23.50	29.50	23.50	11.00	11.00	11.00
High	5320	24.00	23.50	29.50	23.50	11.00	11.00	11.00

Duty Cycle CF (dB) 0.22 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	11.690	11.91	23.50	-11.59
Mid	5300	10.950	11.17	23.50	-12.33
High	5320	10.741	10.96	23.50	-12.54

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	0.041	0.26	11.00	-10.74
Mid	5300	-0.544	-0.32	11.00	-11.32
High	5320	-0.904	-0.68	11.00	-11.68

Page 100 of 405

enter F	req 5.20	50000	000 GHz PNO WA		Trig Free R	Avg un Avgil	Type: RMS fold: 100/100	TACE 1 2 3 4 5 6	Frequency
0 dB/div	Ref Offs Ref 20	et 12 di .00 dB	a m	W	Allen 10 de	1	Mkr/ Band Pow	2 5.260 00 GHz er 11.690 dBm	Auto Tuni
0.00			p1		¢ ²	_			Center Free 5.26000000 GH
20.0 20.0 40.0		4						3000	Start Free 5.24500000 GH
0.0 10.0 70.0				_					Stop Free 5.27500000 GH
enter 5 Res BW	26000 G	Hz	#	VBW	3.0 MHz*	S	weep (#Swp)	Span 30.00 MHz 1.00 ms (601 pts)	CF Step 3.000000 MH
	T (A)		5 254 20 GHz	(Å)	0.041 dBm	HURCHOR	AINCODE WOTH	HINAKA MULTURA	Auto Mar
2 N 3 4 5 5	1		5.260 00 GHz		-1.365 dBm	Eand Power	20.70 MHz	11.690 dBm	Freq Offse 0 H
7 8 9 10 11									

Page 101 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter F	req	5.320	0000	0000 G	Hz PNO: Wie		Trig Fre	e Ru	н 1	Avg	Type: RI fold: 100	MS W100	195.3	TRACE TITLE	1 2 3 4 5 6 A Martin	Frequency
0 dB/div	Ref	Offse 20.0	t 12 d	B Sm	lf Gaint La	w	Atten: 1	8 48	e	- 200];	Band	Mkra	2 5.3 er 1	20 0	00 GHz 1 dBm	Auto Tun
		-						¢2	Q1		-					Center Fre 5.32000000 GH
0.0	_	Ζ	4							_	-	_	1		-28 90 stile	Start Fre 5.30500000 GH
0.0											-	_				Stop Fre 5.33500000 GH
enter 5. Res BW	.3200 1.0 P	0 GH MHz	z		#\	/BW	3.0 MHz	e	-	Sv	weep (#Swp)	Sp4 1.00	an 30 ms (0.00 MHz (601 pts)	CF Ster 3.000000 MH Auto Ma
1 N 2 N 3 4 5 6	1	(Δ)		5.321 5.320	30 GHz 00 GHz	(Δ)	-0.904 d -2.683 d	Bm Bm	BanaPi	(1995)	20.7	ro MHz		10	741 dBm	Freq Offse 0 H
7 8 9 0																

Page 102 of 405

9.9. 802.11n HT40 MODE IN THE 5.3 GHz BAND

9.9.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5270	39.5
High	5310	39.6

Page 103 of 405

26 dB BANDWIDTH

Page 104 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5270	36.492
High	5310	36.595

99% BANDWIDTH

Page 105 of 405

Center Fre	q 5.310000000	GHz #FGaintaw	Center P Trig Fre- #Atten: 1	req: 5.31000 e Run 8 dB	0000 GHz	ALISIACIO	Radio Stat	None None ice: BTS	Frequency
10 dB/div	Ref Offset 12.5 dB Ref 10.00 dBm								
10.0 10.0 20.0		广州	hill	in line	W.				Center Freq 5.310000000 GHz
	acymic a fleddid	#				n Matanga	MM MA	MAR AN	
center 5.3 Res BW	1 GHz MHz		#VE	SW 3 MH	z		l Span Swe	100 MHz ep 1 ms	CF Step 10.000000 MH2 Auto Man
Occupied Bandwidth 36.595 MHz				Total Power 11.1 dl			dBm	10	Freq Offset 0 Hz
Transmi x dB Ba	t Freq Error ndwidth	113.50 k 38.83 M	(Hz NHz	OBW P x dB	ower	99 -26.0	.00 % 00 dB		

Page 106 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5270	12.23
High	5310	11.44

Page 107 of 405

LIMITS

FCC §15.407 (a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 108 of 405
Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional	
		26 dB	99%	Gain	
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	
Low	5270	39.5	36.492	-6.40	
Lliab	5040			0 40	

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5270	24.00	24.00	30.00	24.00	11.00	11.00	11.00
High	5310	24.00	24.00	30.00	24.00	11.00	11.00	11.00

Duty Cycle CF (dB) 0.49 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
	()	((()	
Low	5270	11.733	12.22	24.00	-11.78

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5270	(dBm) -2.559	(dBm) -2.07	(dBm) 11.00	(dB) -13.07

Page 109 of 405

enter F	req 5.2700	00000 GH	Z 0: Fast -	Trig Fi	ee Ru	Avg 1 n AvgH	Type: RMS Iold: 100/100	12.3	THE A MINIMUM	Frequency
10 dB/dby	Ref Offset 1: Ref 20.00	FG 2.5 dB dBm	ain1.aw	Atten	16 dB		Mk Band Po	r2 5.2 wer 1	70 00 GHz	Auto Tune
10.0 0.00				1	¢2					Center Free 5.270000000 GH
-20.0		/							-21/5 (0)	Start Free 5 23500000 GH
40.0 40.0									***	Stop Free 5.30500000 GH
Center 5. Res BW	27000 GHz 1.0 MHz		#VB	W 3.0 MH	łz"	Sv	veep (#Swj	Spa b) 1.00	an 70.00 MHz ms (601 pts)	CF Step 7.000000 MH
1 N	1 (0)	5 265 45	GHz (2	-2.559	dBm	409000	AUNCTION WIDTH	1	SCHORE VALUE	Auto Mar
2 N 3 4 5	1	5.270.00	GHz	-8,445	dBm.	Band Power	38.97 MH		11.733 dBm	Freq Offse 0 H
7 8 9 10 11										

Page 110 of 405

9.10. 802.11ac HT20 MODE IN THE 5.3 GHz BAND

9.10.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	20.540
Mid	5300	20.630
High	5320	20.500

Page 111 of 405

Page 112 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 113 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel Frequency		99% Bandwidth
	(MHz)	(MHz)
Low	5260	17.692
Mid	5300	18.039
High	5320	17.831

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 114 of 405

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 115 of 405

Page 116 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5260	10.65
Mid	5300	10.45
High	5320	10.41

Page 117 of 405

9.10.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 118 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5260	20.500	17.692	-6.40
Mid	5300	20.500	17.692	-6.40
High	5320	20.500	17.692	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5260	17.00	22.48	28.88	17.00	4.00	10.00	4.00
Mid	5300	17.00	22.48	28.88	17.00	4.00	10.00	4.00
High	5320	17.00	22.48	28.88	17.00	4.00	10.00	4.00

Duty Cycle CF (dB)0.21Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	11.421	11.63	17.00	-5.37
Mid	5300	11.355	11.57	17.00	-5.43
High	5320	11.297	11.51	17.00	-5.49

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	-0.251	-0.04	4.00	-4.04
Mid	5300	-0.329	-0.12	4.00	-4.12
High	5320	0.009	0.22	4.00	-3.78

Page 119 of 405

Page 120 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Fi	req 5.3	2000	0000 GHz	Trig Free R	MAvg un AvgH	Type: RMS old: 100/100	18402 1.15 PM May 20, 2015 18402 1.2, 7, 13, 5 1996 4 Westman	Frequency
- ADARD	Ref Offs	iet 12	If Gain:Law dB	Atten: 18 dE		Mkr2	5.320 00 GHz	Auto Tune
98	Nel 20			62	6			Center Free
0.0		1		-				5.32000000 GH
0.0		1			_		39.85	Start Free
0.0	-						- marine	5 3000000 GH
0,0								Stop Frei 5.33500000 GH
enter 5.3 Res BW	32000 G	Hz	#VB	W 3.0 MHz*		#Sweep	Span 30.00 MHz 1.60 ms (601 pts)	CF Step 3 000000 MH
			5 323 05 Chi+	0 504 dBm		ных на обра	NUMBER WOLF	Auto Mar
2 N 3 4 5	ł		6.320 00 GHz	2.369 dBm	Band Power	20.80 MHz	11.287 dBm	Freq Offse 0 H
7 8 9								

Page 121 of 405

9.11. 802.11ac HT40 MODE IN THE 5.3 GHz BAND

9.11.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5270	40.020
Mid	5310	40.020

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 122 of 405

Page 123 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 124 of 405

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Mid	5270	36.172
High	5310	36.145

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 125 of 405

Page 126 of 405

Page 127 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Mid	5270	10.86
High	5310	10.94

Page 128 of 405

9.11.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 129 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC <u>RESULTS</u>

DATE: JULY 19, 2013 FCC ID: ZNFVS980

		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Mid	5270	40.02	36.145	-6.40
High	5310	40.02	36.145	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Mid	5270	17.00	23.00	29.40	17.00	4.00	10.00	4.00
High	5310	17.00	23.00	29.40	17.00	4.00	10.00	4.00

 Duty Cycle CF (dB)
 0.21
 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Mid	(MHz) 5270	(dBm) 11.351	(dBm) 11.56	(dBm) 17.00	(dB) -5.44

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Mid	(MHz) 5270	(dBm) 1.486	(dBm) 1.70	(dBm) 4.00	(dB) -2.30

Page 130 of 405

Page 131 of 405

9.12. 802.11ac HT80 MODE IN THE 5.3 GHz BAND

9.12.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5290	82.830

Page 132 of 405

Page 133 of 405

9.12.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5290	75.805

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 134 of 405

Page 135 of 405

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5290	10.65

Page 136 of 405

9.12.4. OUTPUT POWER AND PPSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 137 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5290	82.83	75.805	-6.40

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5290	17.00	23.00	29.40	17.00	4.00	10.00	4.00

Duty Cycle CF (dB) 0.21 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5290	10.455	10.67	17.00	-6.34

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5290	-7.123	-6.91	4.00	-10.91

Page 138 of 405

enter F	req 5.29000	PNO Fast	Trig Free Ro Atten: 18 dE	Avg1 un AvgP	Type: RMS told: 100/100	TRACE 12 2 7 4 9 5 TRACE 12 7 4 9 5 TRACE A WARNING	Frequency
VINED O	Ref Offset 12 Ref 20.00 d	dB JBm			Mkr2 Band Power	5.290 00 GHz 10.465 dBm	Auto Tune
0.20			0	¢ [∎]	-		Center Free 5.29000000 GH
0.0 0.0 0.0							Start Fre 5 220000000 GH
90.0 10.0 10.0					>	-	Stop Fre 5.36000000 GH
enter 5. Res BW	29000 GHz 1.0 MHz	#VB	W 3.0 MHz*		Sweep 1	Span 140.0 MHz .00 ms (601 pts)	CF Ster 14.000000 MH
I N	2 113	5 298 87 GHz	J 123 dBm	PUBLICIA	HISCHER OLDER	FUNCTION VALUE	Auto Mar
2 N 3 4 5 5	,	5.290 00 GHz	-13.350 dBm	Band Power	90.27 MHz	10.465 dBm	Freq Offse 0 H
7 8 9 10							

Page 139 of 405

9.13.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	20.50
Mid	5580	20.40
High	5700	20.45

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 140 of 405

26 dB BANDWIDTH

Page 141 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Frequency	123456	TRAC	Log-Pwr	Avg Type		1	GHz	5.720000000	nter Fr	en
Auto Tune	45 MHz 083 dB	ikr2 20. 1.	ΔN	wgros	16 dB	Atten	PSO: Web: Ca If Gaint av	ef Offset 12 dB ef 20.00 dBm	Bidly	0 d
Center Free 5.72000000 GH:						1				10.0
Start Free 5.70500000 GH			Phone -	^{Aller} Works	er your and		www.	1		0.00
Stop Freq 5.73500000 GH/	300	203						13	-	20.0
CF Step 5.000000 MHz Auto <u>Mar</u>	المايس	<u></u>							yiztha	410 500
Freq Offse 0 H					-				-	10.0
										00

Page 142 of 405

9.13.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	16.548
Mid	5580	16.784
High	5700	16.601

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 143 of 405

Page 144 of 405

Page 145 of 405

9.13.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5500	12.16
Mid	5580	11.92
High	5700	11.39

Page 146 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 147 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5500	20.40	16.548	-6.40
Mid	5580	20.40	16.548	-6.40
High	5700	20.40	16.548	-6.40

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5500	24.00	23.19	29.19	23.19	11.00	11.00	11.00
Mid	5580	24.00	23.19	29.19	23.19	11.00	11.00	11.00
High	5700	24.00	23.19	29.19	23.19	11.00	11.00	11.00

 Duty Cycle CF (dB)
 0.21
 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	11.468	11.68	23.19	-11.51
Mid	5580	11.536	11.75	23.19	-11.44
High	5700	11.029	11.24	23.19	-11.95

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	-0.465	-0.26	11.00	-11.26
Mid	5580	0.172	0.38	11.00	-10.62
High	5700	-0.289	-0.08	11.00	-11.08

enter F	req 5.5	00000	000 GHz PNO: With	Trig P	ree Ru 16 dB	Avg AvgP	Type: RMS fold: 100/100	10/14241	ACE 1 2 3 4 5 6	Frequency
0 dB/div	Ref Offs Ref 20	et 12 dE .00 dB) m				Mkr2 Band Pow	2 5.500 er 11.4	0 00 GHz 468 dBm	Auto Tuni
000				<u>.</u>	¢2					Center Free 5.50000000 GH
20.0 20.0 40.8		4						1	-26.06 (07)	Start Free 6.485000000 GH
0 0 0 0 10 0					+			-		Stop Fre 5.51500000 GH
enter 5. Res BW	50000 G 1.0 MHz	Hz	#V	BW 3.0 M	Hz*		Sweep	Span 1.00 m	30.00 MHz s (601 pts)	CF Step 5.000000 MH
	2122		5 406 65 CHz	0.465	dilan	HIGHLIGH	AUNCTION WIDTH	HINC		Auto <u>Ma</u>
2 N 3 4 5	1		5.500 00 GHz	-1.775	dßm.	Band Power	19.90 MHz		11.468 dBm	Freq Offse 0 H
7 8 9 10 11										

Page 149 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter F	req 5.72	0000000	GHz PNO: Wide -	Trig Free Ru	Avg Avg	Type: RMS Hold: 100/100	164CE 1 2 3 4 5 5 THE A MANAGEM	Frequency
0 dB/db	Ref Offs	et 12 dB 00 dBm	If GainsLaw	Atten: 18 dB	10 - 1830 1	Mkr. Band Pow	2 5.720 00 GHz	Auto Tune
				¢2	_Q1	-		Center Free 5.72000000 GH:
20.0 20.0 20.0 40.0		/					37.00	Start Free 5.705000000 GH
0.0								Stop Free 5.73500000 GH
enter 5. Res BW	72000 G 1.0 MHz	Hz	#VB	W 3.0 MHz*	Auton	Sweep	Span 30.00 MHz 1.00 ms (601 pts)	CF Step 5.00000 MH Auto Mar
1 N 2 N 3 4 5	1	5.72 5.72	22.00 GHz 20.00 GHz	-0.269 dBm -1.743 dBm	BandPower	19.00 MHz	11.029 dBm	Freq Offse 0 H
9 9 10								

Page 150 of 405

9.14. 802.11n HT20 MODE IN THE 5.6 GHz BAND

9.14.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	20.67
Mid	5580	20.50
High	5700	20.67

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 151 of 405

26 dB BANDWIDTH

Page 152 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Freq 5.72000000	0 GHz Tdg Free Pup	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 5	Frequency
Ref Offset 12 dB gB/dtv Ref 20.00 dBm	HGaintaw Atten: 18 dB	۵N	0.25 dB	Auto Tune
	×1			Center Free 5.72000000 GH
00 / martin	Manufur second and	alimetric and an and a second second	my	Start Free 5.707500000 GH
ao 3 3			₹2∆3 23.21.4m	Stop Fre 5.732500000 GH
nd publication			Para Para Para Para Para Para Para Para	CF Step 5.000000 MH Auto Mar
10				Freq Offse 0 H
enter 5.72000 GHz Res BW 200 kHz	#VBW 620 kHz	Sween	Span 25.00 MHz 1.00 ms (601 pts)	

Page 153 of 405

9.14.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	17.785
Mid 5580		17.904
High	5700	17.889

Page 154 of 405

Page 155 of 405

Page 156 of 405

9.14.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

<u>RESULTS</u>

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5500	11.4
Mid	5580	11.1
High	5700	10.6

Page 157 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 158 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5500	20.50	17.785	-6.40
Mid	5580	20.50	17.785	-6.40
High	5700	20.50	17.785	-6.40

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power Power		EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	24.00	23.50	29.50	23.50	11.00	11.00	11.00
Mid	5580	24.00	23.50	29.50	23.50	11.00	11.00	11.00
High	5700	24.00	23.50	29.50	23.50	11.00	11.00	11.00

Duty Cycle CF (dB)0.22Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	11.863	12.08	23.50	-11.42
Mid	5580	11.621	11.84	23.50	-11.66
High	5700	11.040	11.26	23.50	-12.24

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD	
		Meas	Corr'd	Limit	Margin	
		PPSD	PPSD			
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5500	0.149	0.37	11.00	-10.63	
Mid	5580	0.066	0.29	11.00	-10.71	
High	5700	-0.053	0.17	11.00	-10.83	

enter F	req 5.50	000000	O GHz	Trip	Free Ru	Avg n Avgl	Type: RMS fold: 100/100	100-56:15 PM May 22, 1 10ACE 1, 2, 3, 4 11/15: A MMM	5 5 Frequency
Ref Offset 12 dB Mkr2 5.500 00 GHz Ref Offset 12 dB Band Power 11.863 dBm									
000				01	¢ ²		+		Center Free 5.50000000 GH
0.0								1 38	5 48500000 GH
0.0				_	-	-			Stop Fre 5.51500000 GH
enter 5. Res BW	50000 GI 1.0 MHz	Hz	#\	BW 3.0	MHz*		Sweep	Span 30.00 M 1.00 ms (601 p	Hz CF Ste ts) 5 00000 MH
		5	497 30 GHz	(A) 0.1	49 dBm	HISTOR	RUNCTION WOTH	RINCTON VALUE	Auto Ma
2 N 3 4 5	1	ő	500 00 GHz	-1.3	62 dBm	BanaPower	20.80 MHz	11.663 di	im Freq Offse 0 H
7 8 9 10									

Page 160 of 405

enter	Freq	5.72	0000	0000 G	Hz PNO: Wid		Trig Fre	Ru	Avg Avgit	Type: RMS fold: 100/100	10	10.50-26 18 1	SM May 22, 2013 ACE 1 2 3 4 5 5 THE A MANANAN	Frequency
0 dB/div	Re	roffs f 20.	et 12 c 00 di	iB Bm	FGainta	W	Alten: 16	dB		Mk Band Por	r2 5 wer	5.720	0 00 GHz 040 dBm	Auto Tun
					-			2	01					Center Fre 5.72000000 GH
20.0 20.0 20.0 20.0 20.0		>	/			_					1	1	.26.50 data	Start Fre 5.70500000 GH
0.0														Stop Fre 5.73500000 GH
enter Res B	5.720 W 1.0	DO GH MHz	łz		#1	/BW	3.0 MHz		-	Swee	5 1.	Span 00 m	30.00 MHz s (601 pts)	CF Step 5.000000 MH
		(4)		5.723 5.720	75 GHz	<u>(۵</u>)	-0.503 di	šm.	and Divert	20.40 Mile		HISC.	Auto	
34557				9.129	ww.write		52,000,50		0.64.7.1090	20.000 0010				Freq Offse D H
8 9 0														

Page 161 of 405

9.15. 802.11n HT40 MODE IN THE 5.6 GHz BAND

9.15.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5510	39.7
Mid	5550	39.9
High	5670	39.7

Page 162 of 405

26 dB BANDWIDTH

Page 163 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Free	5.67000	0000 GH	z	Tele Free	Run	Avg Type	Log-Pwr	1904	123455	Frequency
g gB/dtv R	ef Offset 12.t ef 20.00 di	en Bin Bin	i0: Fast : C.p. airc1.ow	Atten 18	dB		۵	Mkr2 39	9.7 MHz 1.38 dB	Auto Tune
10.0					-01					Center Free 5.67000000 GH
		- Alteria	a for loss (may	- mail	- Sin	the second	0******	1		Start Free 5.64000000 GH
80	3							●2∆3	.24.30 alim	Stop Free 5 70000000 GH
00	and fail							- M	Contraction of	CF Step 5.000000 MH Auto <u>Ma</u> r
0.0	-									Freq Offse 0 H
uo										

Page 164 of 405

9.15.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5510	36.622
Mid	5550	36.636
High	5670	36.495

Page 165 of 405

Page 166 of 405

enter Freq 5.	Frequency								
Re 0 dB/div Re	f Offset 12.5 dB f 20.00 dBm								
0.00 10.0		NicalPin	KANARAT	anderin	Birlial.				Center Freq 5.67000000 GHz
10.0		ATT	1014	hild tel	dr.W				
00	والأفار ليددر					L	1900/25		
	Mbdbulde						the state	WWW.	
enter 5.67 GH	z					l h	Span	100 MHz	CF Step 5.000000 MHz Auto Man
Res BW 1 MH	2		#VE	SW 3 MH2			Swe	ep 1 ms	
Occupied	Bandwidth 36	495 MI	Ηz	Total Po	wer	11.7	dBm		Freq Offset 0 Hz
Transmit Fre	eq Error	281.80	dHz	OBW Po	ower	99	.00 %		
x dB Bandw	idth	39.80 N	9Hz	x dB		-26.0	00 dB		

Page 167 of 405

9.15.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

<u>RESULTS</u>

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5510	11.26
High	5670	10.92

Page 168 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 169 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5510	39.7	36.495	-6.40
Mid	5550	39.7	36.495	-6.40
High	5670	39.7	36.495	-6.40

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power Power		EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5510	24.00	24.00	30.00	24.00	11.00	11.00	11.00
Mid	5550	24.00	24.00	30.00	24.00	11.00	11.00	11.00
High	5670	24.00	24.00	30.00	24.00	11.00	11.00	11.00

Duty Cycle CF (dB)0.49Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	11.591	12.08	24.00	-11.92
Mid	5550	11.485	11.98	24.00	-12.03
High	5670	11.595	12.09	24.00	-11.92

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	-2.900	-2.41	11.00	-13.41
Mid	5550	-3.014	-2.52	11.00	-13.52
High	5670	-2.696	-2.21	11.00	-13.21

Page 170 of 405

Cen	ter F	req	5.51000	00000 G	Hz PND: Fast		Trig Fre	e Ru	n	Avg 1 AvgH	ype: RN old: 100	15	(09)	TRACE TITLE	May 22, 2019 1 2 3 4 5 5 A MANANAN	Frequency
10 di	B/div	Ref	Offset 12 f 20.00 d	1 15 dB 158m	i Gain:La	4	Atten: 1	8 48	201		Band	Mk	r2 5. wer 1	510 0	0 GHz 1 dBm	Auto Tun
100 100 000	1			6			_	¢2	<u>≬</u> 1		-	2				Center Free 5.510000000 GH
-30.0 -30.0 -40.9	-			ľ		-					-	-		_	.22 St-alies	Start Free 5.47500000 GH
-50 0 -80 0 -70 0		_			-		_				+				-	Stop Fre 5.54500000 GH
Cen	ter 5. s BW	5100	0 GHz MHz		#\	BW :	3.0 MHz	17			s	wee	Sp 1.00	an 70) ms (.00 MHz 601 pts)	CF Ste 5.000000 MH
1 2 3 4 5	N N		(43)	5.513 5.510	73 GHz 00 GHz	(Δ)	-2.900 d -8.662 d	Bm. Bm.	Eand)	Proven	39.2	0 MH	2	11.	591 dBm	Freq Offse
5 7 8 9 10																

Page 171 of 405

REPORT NO: 13U15118-2F EUT: GSM/CDMA/WCDMA + LTE Phone Bluetooth, WLAN (2.4GHz & 5GHz) and NFC

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Fr	eq 5.670	000000 G	Hz PNO: Fast	Trig Free	Avg Run Avg	Type: RMS Hold: 100/100	TUACE 1 2 TUACE 1 2	Frequency
10 dB/div	Ref Offset Ref 20.0	12.5 dB 0 dBm	GainLaw	Atten: 18	dB	Mk Band Por	r2 5.670 00 wer 11.595	GHz Auto Tune
		~		01	2			Center Free 5.67000000 GH
200 200 200 200		/						Start Free 5.635000000 GH
0 0 0 80 0 70 0								Stop Free 5.705000000 GH
Center 5.0 Res BW	37000 GHz 1.0 MHz		#VBI	V 3.0 MHz*	1	Swee	Span 70.00 1.00 ms (60	0 MHz CF Step 1 pts) 5 00000 MH
1 N 2 N 3 4 5	f (A)	5.665 5.870	80 GHz (Δ) 00 GHz	-2.696 dB -8.275 dB	m BanaPower	39.20 MH	11.59	5.dBm FreqOffse 0 H
7 8 9 10								

Page 172 of 405

9.16. 802.11ac HT20 MODE IN THE 5.6 GHz BAND

9.16.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	20.200
Mid	5580	20.375
High	5700	20.450

Page 173 of 405

26 dB BANDWIDTH

Page 174 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 175 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	17.818
Mid	5580	17.881
High	5700	17.873

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 176 of 405

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 177 of 405

Page 178 of 405

9.16.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5500	10.6
Mid	5580	10.2
High	5700	9.5

Page 179 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 180 of 405
Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional	
		26 dB	99%	Gain	
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	
Low	5500	20.200	17.818	-6.40	
Mid	5580	20.200	17.818	-6.40	
High	5700	20.200	17.818	-6.40	

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5500	24.00	23.51	29.51	23.51	11.00	11.00	11.00
Mid	5580	24.00	23.51	29.51	23.51	11.00	11.00	11.00
High	5700	24.00	23.51	29.51	23.51	11.00	11.00	11.00

Duty Cycle CF (dB)0.21Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	9.50	9.71	23.51	-13.80
Mid	5580	9.95	10.16	23.51	-13.35
High	5700	8.62	8.83	23.51	-14.68

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	-2.19	-1.98	11.00	-12.98
Mid	5580	-2.70	-2.49	11.00	-13.49
High	5700	-3.00	-2.79	11.00	-13.79

Page 182 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

enter Fre	q 5.70	0000	000 GHz	Wino -+	Trig Free R	MAVg un Avg/H	Type: RMS old: 100/100	10:11:20 AM May 29, 2013 TRACE 2 3 4 5 5 Triffe & wanted	Frequency
n Janeu 🖁	Ref Offs	et 12 di	IF Ga	inclaw	Atten: 16 dE		Mkr	2 5,700 00 GHz	Auto Tune
				Q1	¢				Center Freq 5.70000000 GHz
0.0 0.0 0.0	1	ł						1	Start Free 5.68500000 GH
0.0 0.0								nude -	Stop Free 5.716000000 GH;
enter 5.70 Res BW 1.	000 GI 0 MHz	Hz		#VBV	V 3.0 MHz*		Sweep	Span 30.00 MHz 1.00 ms (601 pts)	CF Step 3.000000 MH:
			5 695 00	GHz	-3.002 dBm	PUNCTUR	IUSCIEN ODIN	NUMERICA MADE	Auto Man
2 N 3 4 6 6	,		5.700 00	GHz	4.056 dBm	Band Power	20.80 MHz	8.623 dBm	Freq Offse 0 Ha
7 8 9 0									

Page 183 of 405

9.17. 802.11ac HT40 MODE IN THE 5.6 GHz BAND

9.17.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5100	39.670
Mid	5550	39.430
High	5670	39.900

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 184 of 405

26 dB BANDWIDTH

Page 185 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 186 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	5100	36.347	
Mid	5550	36.209	
High	5670	36.174	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 187 of 405

Page 188 of 405

Page 189 of 405

9.17.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel Frequency		Power
	(MHz)	(dBm)
Low	5100	10.6
Mid	5550	10.9
High	5670	10.2

Page 190 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 191 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min Min		Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5100	39.430	36.174	-6.40
Mid	5550	39.430	36.174	-6.40
High	5670	39.430	36.174	-6.40

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5100	24.00	24.00	30.00	24.00	11.00	11.00	11.00
Mid	5550	24.00	24.00	30.00	24.00	11.00	11.00	11.00
High	5670	24.00	24.00	30.00	24.00	11.00	11.00	11.00

Duty Cycle CF (dB) 0.21 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5100	9.41	9.62	24.00	-14.38
Mid	5550	9.54	9.75	24.00	-14.26
High	5670	9.43	9.64	24.00	-14.36

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5100	-4.98	-4.77	11.00	-15.77
Mid	5550	-4.77	-4.56	11.00	-15.56
High	5670	-5.04	-4.83	11.00	-15.83

OUTPUT POWER AND PPSD, Chain 0

Page 192 of 405

Center Fre	q 5.550000	000 GHz PNO Fast	Trig Free	Run	#Avg Type: Avg[Hold: 1	RMS 00/100	1 10:04(31)	AM May 29, 20113	Frequency
n dana i	lef Offset 12 d	IF Gain Le IB Ren	W Atten: 16	dB	Ba	Mk nd Pr	r2 5.550 ower 9.4	00 GHz	Auto Tune
020				2 01					Center Fre 5.55000000 GH
30.0 30.0 40.0									Start Fre 5.51500000 GH
60.0 /0.0									Stop Fre 5.585000000 GH
Center 5.55 Res BW 1.	000 GHz 0 MHz	#1	BW 3.0 MHz*			Sweer	Span i p 1.00 m	70.00 MHz s (601 pts)	CF Ste 7.00000 MH
170 10000 NTO 1	10					EXTREMON	0.000	CR COLORED	Auto Ma
NNN 34557	ł	5.550 00 GHz	-4.975 dB -11.179 dB	im Band F	Nover 38	3.43 MHz		9.413 dBm	Freq Offse 0 H
8 9 10 11									

Page 193 of 405

enter Freq 5.67	0000000 GHz PND Fast	Trig Free Run	Marg Type: RMS Avg(Held: 100/100	130-27-53 AM May 29, 2013 TRACE 2, 7, 4, 5, 6 Trank A Westman	Frequency
Ref Offs	FGainLaw et 12 dB 00 dBm	Atten: 18 dB	Band Por	2 5.670 00 GHz	Auto Tune
		01 02			Center Free 5.67000000 GH
0.0 0.0				20.00	Start Free 5.635000000 GH
0.0 0.0					Stop Free 5.70500000 GH
enter 5.67000 G Res BW 1.0 MHz	Hz. #VI	8W 3.0 MHz*	Sweep	Span 70.00 MHz 1.00 ms (601 pts)	CF Step 7 00000 MH
				COLUMN DE COLUMN	Auto Mar
1 N F 3 A 5 5	5.670 00 GHz 5.670 00 GHz	40.043 dBm 41.189 dBm Ba	nd Power 39.20 MHz	9,429 dBm	Freq Offse 0 H
7 8 9 1 1					

Page 194 of 405

9.18. 802.11ac HT80 MODE IN THE 5.6 GHz BAND

9.18.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5300	81.430
High	5690	82.130

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 195 of 405

26 dB BANDWIDTH

Page 196 of 405

DATE: JULY 19, 2013 FCC ID: ZNFVS980

Page 197 of 405

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5530	75.411
High	5690	75.865

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 198 of 405

Page 199 of 405

Center Fre	rq 5.690000000	GHz	Center Pr Trig Free Altten: 18	eq: 5.69000000 GP Run dB	atraixoro tr	Radio Std: Nor Radio Device:	Frequency BTS
0 dB/div	Ref Offset 12 dB Ref 20.00 dBm						
10.00 10.00 10.00		-	orrester.	atry the state	67 		Center Freq 5.690000000 GHz
800 800	17 MA Marchale	<i>A</i>			Maria	hand like a	Wete
Center 5.6 Res BW	9 GHz 820 kHz		#VB	W 2.4 MHz		Span 20 Sweep	0 MHz 1 ms
Occup	ied Bandwidtl 75	865 MH	z	Total Power	9.24	l dBm	Freq Offset 0 Hz
Transm x dB Ba	it Freq Error Indwidth	277.41 ki 78.21 Mi	łz łz	OBW Power x dB	99 -26.	9.00 % 00 dB	

Page 200 of 405

9.18.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5300	10.790
High	5690	10.220

Page 201 of 405

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Page 202 of 405

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5530	81.130	75.411	-6.40
High	5690	82.130	75.411	-6.40

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5530	24.00	24.00	30.00	24.00	11.00	11.00	11.00
High	5690	24.00	24.00	30.00	24.00	11.00	11.00	11.00

Duty Cycle CF (dB) 0.21 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5530	9.157	9.37	24.00	-14.63
High	5690	8.442	8.65	24.00	-15.35

PPSD Results

Channel	Frequency	Chain 0	Total	PPSD	PPSD
		Meas	Corr'd	Limit	Margin
		PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5530	-8.152	-7.94	11.00	-18.94
High	5690	-8.945	-8.74	11.00	-19.74