9. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

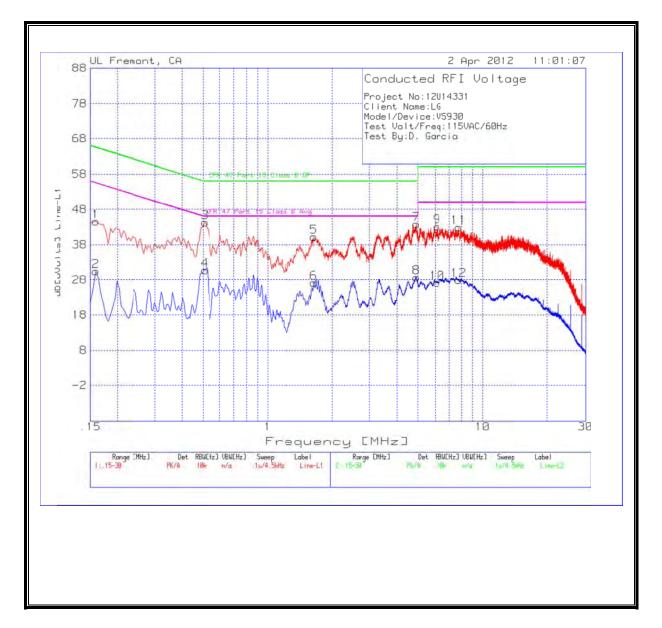
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 166 of 201

STANDARD COVER


6 WORST EMISSIONS

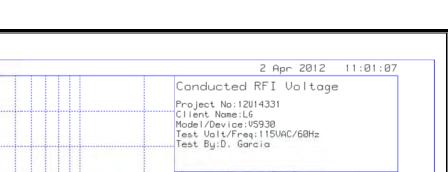
Line-L1 .15 - 30MHz

Test Frequency	Meter Reading	Detector	T24 IL L1.TXT [d8]	LC Cables 1&3.TXT [dB]	dB[uVolt s]	CFR 47 Part 15 Class B QP	Margin	CFR 47 Part 15 Class B Avg	Margin
0.159			0.1		44.49	65.5			-
0.159	30.36	Av	0.1	0	30.46	-	-	55.5	-25.04
0.51	44.23	PK	0.1	0	44.33	56	-11.67	-	-
0.51	30.67	Av	0.1	0	30.77	-	-	46	-15.23
1.6485	39.93	PK	0.1	0.1	40.13	56	-15.87	-	-
1.6485	26.98	Av	0.1	0.1	27.18	-	-	46	-18.82
4.9155	43.53	PK	0.1	0.1	43.73	56	-12.27	-	-
4.9155	28.48	Av	0.1	0.1	28.68	-	-	46	-17.32
6.153	42.88	PK	0.1	0.1	43.08	60	-16.92	-	-
6.153	26.99	Av	0.1	0.1	27.19	-	-	50	-22.81
7.764	42.72	PK	0.1	0.1	42.92	60	-17.08	-	-
7.764	27.74	Av	0.1	0.1	27.94	-	-	50	-22.06
Line-L2.15	- 30MHz								
0.159	44.95	PK	0.1	0	45.05	65.5	-20.45	-	-
0.159	21.88	Av	0.1	0	21.98	-	-	55.5	-33.52
0.4965	41.17	PK	0.1	0	41.27	56.1	-14.83	-	
0.4965	25.98	Av	0.1	0	26.08	-	-	46.1	-20.02
0.663	39.96	PK	0.1	0	40.06	56	-15.94	-	-
0.663	19.93	Av	0.1	0	20.03	-	-	46	-25.97
1.491	34.06	PK	0.1	0.1	34.26	56	-21.74	-	-
1.491	15.74	Av	0.1	0.1	15.94	-	-	46	-30.06
4.65	37.46	PK	0.1	0.1	37.66	56	-18.34	-	-
4.65	22.97	Av	0.1	0.1	23.17	2	÷	46	-22.83
7.116	37.39	PK	0.1	0.1	37.59	60	-22.41	-	-
7.116	22.65	Av	0.1	0.1	22.85	-	-	50	-27.15

Page 167 of 201

LINE 1 RESULTS

Page 168 of 201


15 17

-6

Det. RBWCHz3 UBWCHz3 PK/A 18k ch

18

d

21

0

PMA

19

Frequency [MHz]

Rorge [MHz]

Label Line-L1

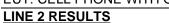
Sweep 1s/4 Skttz

23

24

i na Albherb

WWW


10

Det RBWEHz] UBWEHz] Sweep

30

Label

Line-LZ

88

78

68

58

38

28

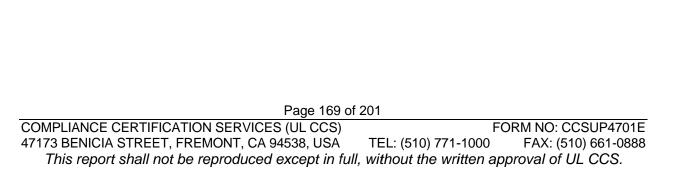
18

8

-2

.15

Ronge [MHz] |: 15-30

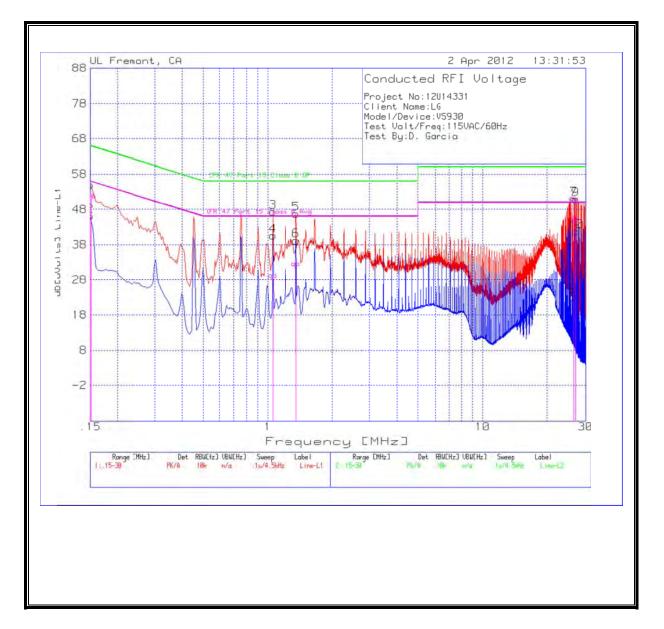

4

MN

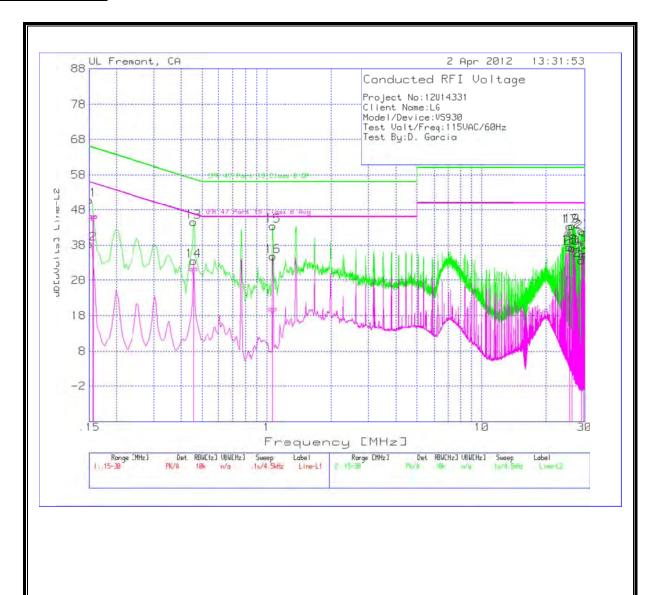
3 Line 48 3

JD [JU / JU / L=]

UL Fremont, CA


INDUCTIVE COVER

6 WORST EMISSIONS


Project No	o:12U1433	1					
Client Nam	me:LG						
Model/Dev:	ice:VS930						
Test Volt,	/Freq:115	VAC/60Hz					
Test By:D.	Garcia						
Line-L1 .:	15 - 30MH:	z		-			
Frequency	Reading	Detector	Cable Loss	Part 15B	Margin	Part 15B	Margin
0.15	50.9	QP	0.1	66	-15	-	-
0.152	50.56	QP	0.1	65.89	-15.23	-	-
1.0565	28	QP	0.1	56	-27.9	-	-
1.3595	31.28	QP	0.2	56	-24.52	-	-
26.4685	49.29	QP	0.8	60	-9.91	1	
26.934	43.18	QP	0.8	60	-16.02) , .	-
Line-L2 .:	15 - 30MH:	z					
Frequency	Reading	Detector	Cable Loss	Part 15B	Margin	Part 15B	Margin
0.156	44.8	QP	0.1	65.67	-20.77		-
0.157	44.84	QP	0.1	65.62	-20.68	-	11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
0.456	30.03	QP	0.1	56.77	-26.64	-	-
1.064	18.6	QP	0.2	56	-37.3		-
25.6115	39.5	QP	0.8	60	-19.7	-	-
26.2175	26.88	QP	0.8	60	-32.32	-	-
29.0675	36.98	QP	0.8	60	-22.22	-	-
29.6775	7.01	QP	0.8	60	-52.19	-	-

Page 170 of 201

LINE 1 RESULTS

Page 171 of 201

Page 172 of 201

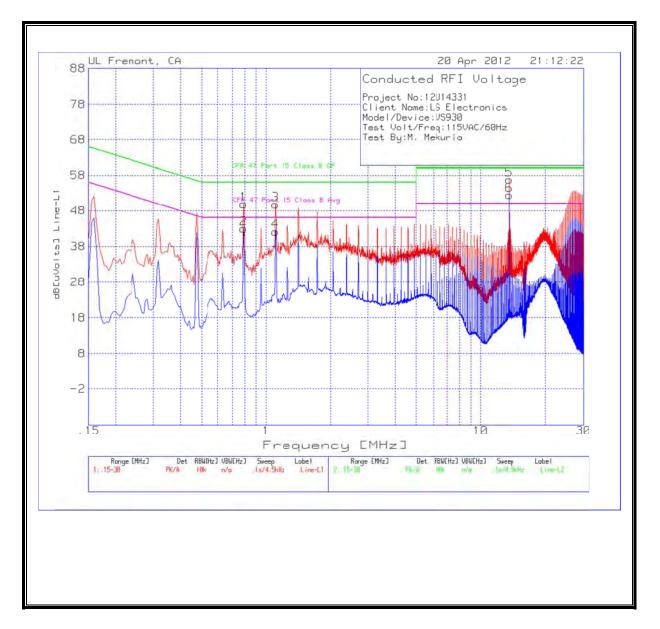
RESULTS

INDUCTIVE CHARGER PAD

EUT WITH ANTENNA

6 WORST EMISSIONS

Project No: 12U	14331								
Client Name:LO	G Electronics								
Model/Device:	/\$930								
Test Volt/Freq:	115VAC/60Hz								
Test By:M. Me	kuria								
Line-L1 .15 - 30	OMHz								
Test Frequency	Meter Reading	Detector	T24 IL L1.	LC Cables	dB[uVolts]	Part 15B QP	Margin	Part 15B Avg	Margin
0.789	49.83	PK	0.1	0	49.93	56	-6.07	-	-
0.789	42.89	Av	0.1	0	42.99		-	46	-3.01
1.104	49.71	PK	0.1	0	49.81	56	-6.19		-
1.104	42.04	Av	0.1	0	42.14	-		46	-3.86
13.56	56.35	PK	0.2	0.2	56.75	60	-3.25	-	-
13.56	52.01	Av	0.2	0.2	52.41	-		50	2.41
Line-L2 .15 - 30	OMHz								
Test Frequency	Meter Reading	Detector	T24 IL L1.	LC Cables	dB[uVolts]	Part 15B QP	Margin	Part 15B Avg	Margin
0.483	47.4	PK	0.1	0	47.5	56.3	-8.8	-	-
0.483	36.51	Av	0.1	0	36.61	-	-	46.3	-9.69
1.0995	45.4	PK	0.1	0.1	45.6	56	-10.4	-	-
1.0995	36.67	Av	0.1	0.1	36.87	-		46	-9.13
13.56	51.45	PK	0.2	0.2	51.85	60	-8.15	-	-
13.56	46.33	Av	0.2	0.2	46.73	-		50	-3.27


Page 173 of 201

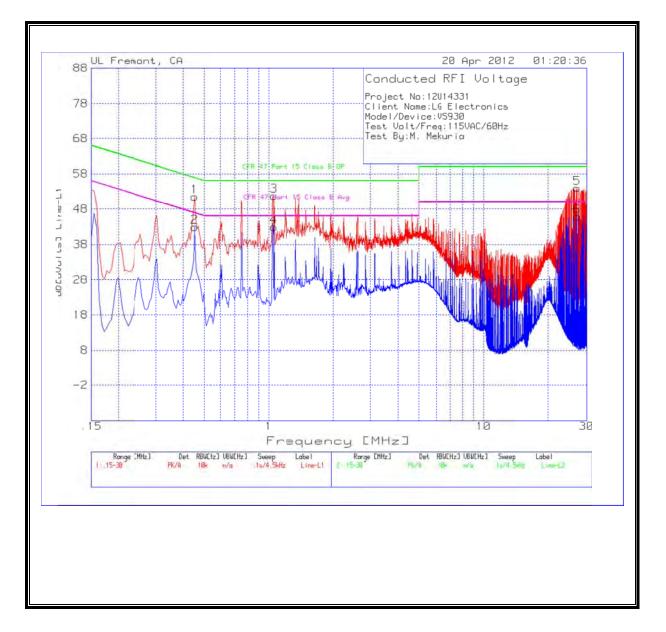
<u>6 WORST EMISSIONS</u>

Project No:12L	J14331								
Client Name:L	G Electronics								
Model/Device	:VS930								
Test Volt/Freq	:115VAC/60Hz								
Test By:M. Me	kuria								
Line-L1 .15 - 30	MHz								
Test Frequency	Meter Reading	Detector	T24 L L1.TXT [dB]	LC Cables 1&3.TXT [dB]	dB[uVolts]	CFR 47 Part 15 Class B QP	Margin	CFR 47 Part 15 Class B Avg	Margin
0.4515	51.38	PK	0.1	0	51.48	56.8	-5.32	-	÷
0.4515	42.77	Av	0.1	0	42.87		-	46.8	-3.93
1.059	51.72	PK	0.1	0	51.82	56	-4.18		
1.059	42.79	Av	0.1	0	42.89			46	-3.11
27.1275	53.22	PK	0.5	0.3	54.02	60	-5.98	4	
27.1275	45.01	Av	0.5	0.3	45.81	•	-	50	-4.19
e-L2 .15 - 30M	Hz								
Test Frequency	Meter Reading	Detector	T24 L L1.TXT [dB]	LC Cables 1&3.TXT [dB]	dB[uVolts]	CFR 47 Part 15 Class B QP	Margin	CFR 47 Part 15 Class B Avg	Margin
0.4515	48.03	PK	0.1	0	48.13	56.8	-8.67	-	
0.4515	36.34	Av	0.1	0	36.44	-		46.8	-10.36
1.05	48.05	PK	0.1	0	48.15	56	-7.85	-	-
1.05	38.07	Av	0.1	0	38.17		-	46	-7.83
1.3425	48.33	PK	0.1	0	48.43	56	-7.57		-
1.3425	37.48	Av	0.1	0	37.58	-	-	46	-8.42

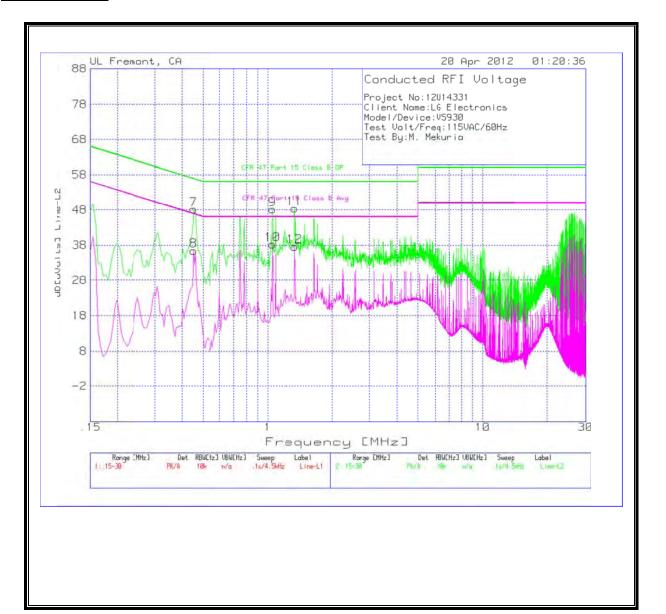
Page 174 of 201

LINE 1 RESULTS

Page 175 of 201


UL Frenont, CA 20 Apr 2012 21:12:22 88 Conducted RFI Voltage Project No:12U14331 Client Name:LG Electronics Model/Device:VS930 78 Test Volt/Freq:115VAC/60Hz Test By:M. Mekuria 68 Port 15 Close B 58 1 1 3 rt 15 Closs B Avg q Line-.q 48 dBCuVal ts] 10 38 28 18 8 -2 15 30 10 Frequency [MHz] Range [MHz] Det RBW[Hz] VBW[Hz] Sweep Lobel Det PBWEHz] VBWEHz] Range [MHz] Sueep Label 18.6 1.15-30 PK/A Line-LI. 2.15-30 Line-L2 10k n/a

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4701E 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 176 of 201

INDUCTIVE CHARGER PAD WITH 50 Ohm Terminator

LINE 1 RESULTS

Page 177 of 201

DATE: MAY 8, 2012 FCC: ZNFVS930

10. DYNAMIC FREQUENCY SELECTION

10.1. OVERVIEW

10.1.1. LIMITS

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701E47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 179 of 201

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode			
	Master	Client (without radar detection)	Client (with radar detection)	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operationa	Operational Mode					
	Master	Client	Client				
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm
Note 1: This is the level at the input of the receiver ass Note 2: Throughout these test procedures an additional of the test transmission waveforms to account for varial will ensure that the test signal is at or above the detect response.	I 1 dB has been added to the amplitude tions in measurement equipment. This

Page 180 of 201

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

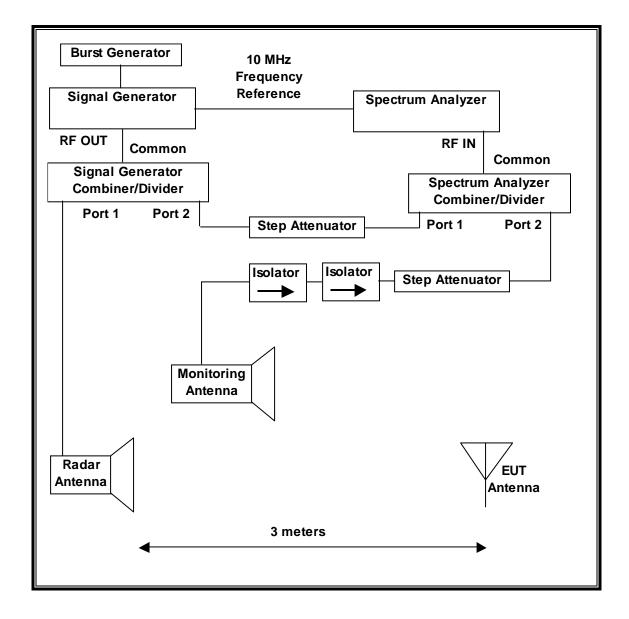
The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum				
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials				
				Successful					
				Detection					
1	1	1428	18	60%	30				
2	1-5	150-230	23-29	60%	30				
3	6-10	200-500	16-18	60%	30				
4	11-20	200-500	12-16	60%	30				
Aggregate (F	Aggregate (Radar Types 1-4) 80% 120								

Table 6 – Long Pulse Radar Test Signal

Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum
Waveform		per	Width	Width	(µsec)	Percentage	Trials
		Burst	(µsec)	(MHz)		of Successful	
						Detection	
5	8-20	1-3	50-100	5-20	1000-	80%	30
					2000		


Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width (µsec)	PRI (µsec)	Burst Length (ms)	Pulses per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	300	9	.333	70%	30

Page 181 of 201

10.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 182 of 201

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

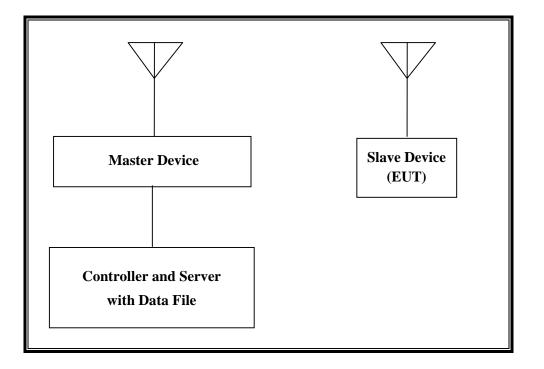
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 183 of 201

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset Number	Cal Due				
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/15/12				
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	11/17/12				

Page 184 of 201

10.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	FCC ID			
AC Adapter (Slave)	LG Electronics	STA-U34WRI	RC1X0009771	DoC			
Notebook PC (Controller/Server)	Dell	PP18L	10657517725	DoC			
AC Adapter (Notebook PC)	Dell	LA65SN0-00	CN-ODF263-71615- 6AU-1019	DoC			
Wireless Access Point	Cisco	AIR-AP1252AG-A- K9	FTX120690N2	LDK102061			
AC Adapter (AP)	Delta Electronics	EADP-45BB B	DTH112490BD	DoC			

10.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Slave Device.

The highest power level within these bands is 10.21 dBm EIRP in the 5250-5350 MHz band and 14.85 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of -2.28 dBi in the 5.3 GHz band and +0.95 dBi in the 5.5 GHz band.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter/receiver chain, connected to an antenna to perform radiated tests.

Traffic is generated by transferring a 4.1Gbyte file from the controller/server PC to the EUT using FTP software package FileZilla version 3.5.0 as referenced in KDB 581937.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. One nominal channel bandwidth, 20 MHz, is implemented.

The software installed in the EUT is revision VS930_0311.

UNIFORM CHANNEL SPREADING

This requirement is not applicable to Slave radio devices.

Page 186 of 201

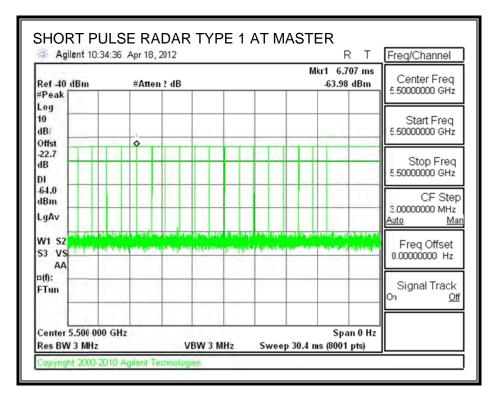
OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Cisco Access Point, FCC ID: LDK102061. The minimum antenna gain for the Master Device is 3.5 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

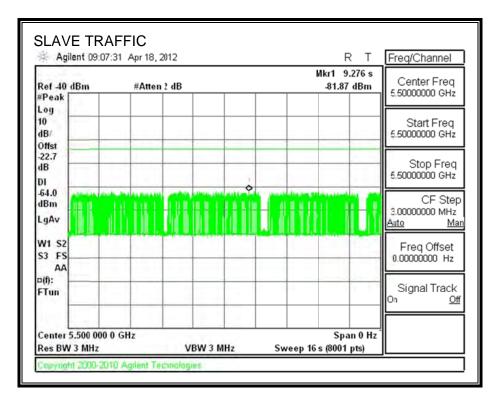
The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

Page 187 of 201


10.2. **RESULTS FOR 20 MHz BANDWIDTH**

10.2.1. **TEST CHANNEL**

All tests were performed at a channel center frequency of 5500 MHz.


RADAR WAVEFORM AND TRAFFIC 10.2.2.

RADAR WAVEFORM

Page 188 of 201

TRAFFIC

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 189 of 201

10.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

10.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

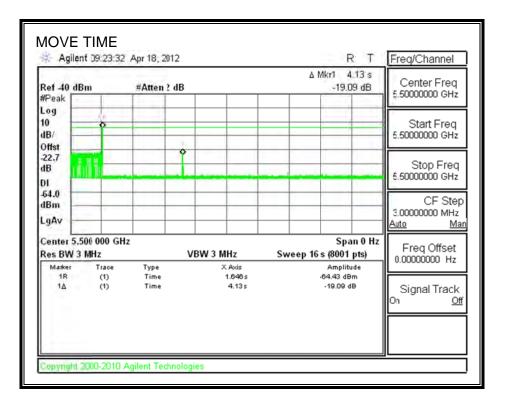
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

Channel Move Time	Limit
(sec)	(sec)
4.130	10

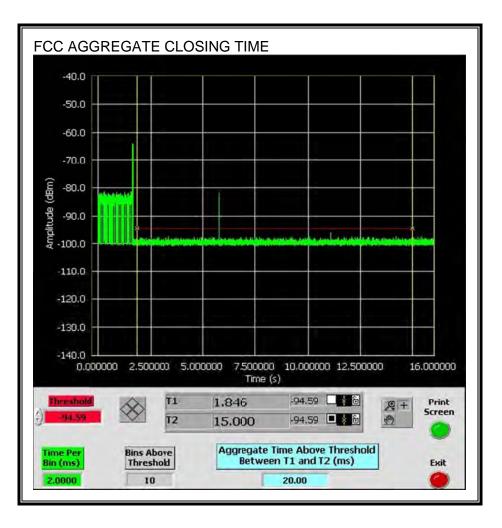
Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
20.0	60

Page 190 of 201

MOVE TIME

Note: The manufacturer has attested that spike after radar is a control signal and not normal traffic. Additional close-up observations show that the observed signal has a different pattern than the normal traffic.

Page 191 of 201

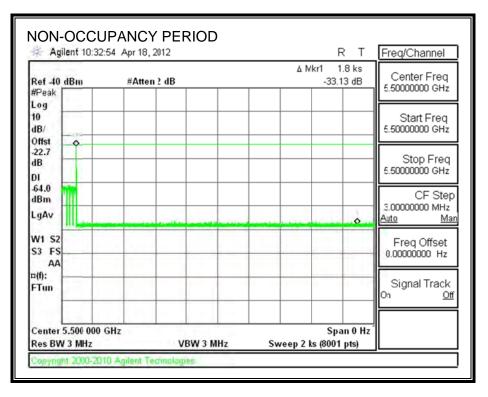

right 2000-2010 Agilent Teo

CLOSING TIME Agilent 09:52:42 Apr 18, 2012 R T Freq/Channel ∆ Mkr1 200 ms Center Freq Ref 40 dBm #Atten 2 dB -38.03 dB 5.50000000 GHz #Peak Log 10 Start Freq dB/ 5.50000000 GHz Offst -22.7 dB Stop Freq 5.50000000 GHz DI -64.0 CF Step dBm 3.00000000 MHz LgAv Auto <u>Man</u> W1 S2 Freq Offset 0.00000000 Hz \$3 VS AA =(f): Signal Track FTun On <u>Off</u> Span 0 Hz Center 5.500 000 GHz Res BW 3 MHz VBW 3 MHz Sweep 600 ms (8001 pts)

Page 192 of 201

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.



Page 193 of 201

10.2.5. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

