

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN (HT20) + NFC WITH WIRELESS BACK COVER

MODEL NUMBER: LG-VS930 and VS930

FCC ID: ZNFVS930

REPORT NUMBER: 12U14331-2, Revision A

ISSUE DATE: MAY 15, 2012

Prepared for

LG ELECTRONICS INC. 60-39 GASAN-DONG, GEUMCHEON-GU SEOUL, KOREA 153-801, SOUTH KOREA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 12U14331-2A EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN

Revision History

DATE: May 15, 2012

FCC ID: ZNFVS930

Rev.	Issue Date	Revisions	Revised By
	4/23/12	Original	T. LEE
A	05/15/12	Updated section 5.7	A. Zaffar

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	5
2. T	EST METHODOLOGY	6
3. F	ACILITIES AND ACCREDITATION	6
4. C	CALIBRATION AND UNCERTAINTY	6
4.1.	. MEASURING INSTRUMENT CALIBRATION	6
4.2	. SAMPLE CALCULATION	6
4.3	. MEASUREMENT UNCERTAINTY	6
5. E	QUIPMENT UNDER TEST	7
5.1.	. DESCRIPTION OF EUT	7
5.2	. MAXIMUM OUTPUT POWER	7
5.3	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.4	SOFTWARE AND FIRMWARE	7
5.5	MODIFICATIONS	7
5.6		
5.7		
5.8		
	EST AND MEASUREMENT EQUIPMENT	
	NTENNA PORT TEST RESULTS	
7.1.		
	.1.1. 6 dB BANDWIDTH	
	.1.2. 99% BANDWIDTH	
	.1.3. OUTPUT POWER	
	.1.4. AVERAGE POWER	
	.1.6. CONDUCTED SPURIOUS EMISSIONS	
7.2	. 802.11g MODE IN THE 2.4 GHz BAND	29
•	.2.1. 6 dB BANDWIDTH	29
	.2.2. 99% BANDWIDTH	
	2.4. AVERAGE POWER	
	.2.5. POWER SPECTRAL DENSITY	39
7	.2.6. CONDUCTED SPURIOUS EMISSIONS	42
7.3		46
	.3.1. 6 dB BANDWIDTH	
7		
	.3.2. 99% BANDWIDTH	49
7 7	.3.2. 99% BANDWIDTH	49 52 55

EUT: C	ELL P	HONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN	FCC ID: ZNFVS930
	3.6.	CONDUCTED SPURIOUS EMISSIONS	59
7.4.	802	.11a MODE IN THE 5.8 GHz BAND	63
7.	4.1.	6 dB BANDWIDTH	63
7.	4.2.	99% BANDWIDTH	66
7.	4.3.	OUTPUT POWER	69
7.	4.4.	AVERAGE POWER	
7.	4.5.	POWER SPECTRAL DENSITY	
7.	4.6.	CONDUCTED SPURIOUS EMISSIONS	76
7.1.	802	.11n HT20 MODE IN THE 5.8 GHz BAND	80
	1.1.	6 dB BANDWIDTH	
7.	1.2.	99% BANDWIDTH	83
7.	1.3.	OUTPUT POWER	86
	1.4.	AVERAGE POWER	
	1.5.	POWER SPECTRAL DENSITY	90
7.	1.6.	CONDUCTED SPURIOUS EMISSIONS	93
8. R	ADIAT	ED TEST RESULTS	97
8.1.	LIM	ITS AND PROCEDURE	97
8.2.	TRA	ANSMITTER ABOVE 1 GHz	98
8.	2.1.	802.11b MODE IN THE 2.4 GHz BAND	98
8.	2.2.	802.11g MODE IN THE 2.4 GHz BAND	113
8.	2.3.	802.11n HT20 SISO MODE IN THE 2.4 GHz BAND	
8.	2.4.	802.11a MODE IN THE 5.8 GHz BAND	
8.	2.5.	802.11n HT20 MODE IN THE 5.8 GHz BAND	146
9. W	ORST	-CASE BELOW 1 GHz	149
10.	AC PO	OWER LINE CONDUCTED EMISSIONS	158
11.	SETU	P PHOTOS	171

REPORT NO: 12U14331-2A DATE: May 15, 2012 EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN FCC ID: ZNFVS930

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: LG ELECTRONICS INC.

60-39 GASAN-DONG, GEUMCHEON-GU SEOUL, KOREA 153-801, SOUTH KOREA

EUT DESCRIPTION: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT

LE+802.11ABGN (HT20) WITH WIRELESS BACK COVER

MODEL: LG-VS930 and VS930

SERIAL NUMBER: 990000760004152

DATE TESTED: MARCH 25-APRIL 20, 2012

APPLICABLE STANDARDS

STANDARD TEST RESULTS

Pass

CFR 47 Part 15 Subpart C

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

TIM LEE

STAFF ENGINEER

UL CCS

CHIN PANG EMC ENGINEER

Chin Pany

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, and FCC CFR 47 Part 15.

DATE: May 15, 2012

FCC ID: ZNFVS930

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Cell Phone with GSM/CDMA/WCDMA/LTE+BT LE+802.11abgn (HT20) + NFC with Wireless Back Cover

DATE: May 15, 2012

FCC ID: ZNFVS930

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
· · · · · · · · · · · · · · · · · · ·			
2412-2462	802.11b	18.37	68.1
2412-2462	802.11g	21.13	129.72
2412-2462	802.11n HT20 SISO	19.82	95.94
5745-5825	802.11a	20.89	122.74
5745-5825	802.11n HT20 SISO	20.52	112.72

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA (Planar Inverted F Antenna) with a maximum peak gain as follow:

Frequency Band	Peak Gain (dBi)
2.4GHz	-2.44
5.2GHz	-2.59
5.3GHz	-2.28
5.5GHz	0.95
5.8GHz	0.43

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was VS930_0311

The test utility software used during testing was FCC Test - LG.

The firmware used during testing was 3.0.8.00001_g114383

5.5. MODIFICATIONS

A ferrite was added on the Charging Pad's AC Adapter in order to pass 30-1000MHz emissions test. Ferrite: Manufacture: TDK, Serial Number: ZCAT 2035-0930.

5.6. MODEL DIFFERNECE

Model LS-VS930 is identical to Model VS930 except for model designation.

5.7. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1 GHz and power line conducted emissions were performed with the EUT set to the channel with highest output power.

For the fundamental investigation, since the EUT is a portable device that has three orientations; X, Y and Z orientations have been investigated, also with AC/DC adapter, and earphone, and the worst case was found to be at Y orientation with AC adapter and earphone for both 2.4GHz and 5GHz band.

Based on the manufacturer's attestation that the nominal output power is reduced as the data rate increases, the data rates tested represent the highest power and worst-case with respect to EMC performance.

Worst-case data rates were as follows:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n mode: MCS0 802.11a, 6Mbps

.

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

STANDARD AND INDUCTIVE COVER

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Numb						
AC ADAPTER	LG ELECTRONICS	MCS-01WT	TA1Z0000522			
HEADSET	LG ELECTRONICS	NA	N/A			

INDUCTIVE CHARGER WITH INDUCTIVE COVER

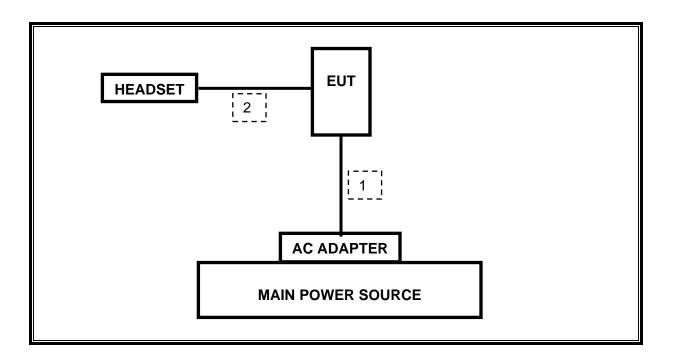
PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number						
AC ADAPTER	LG ELECTRONICS	WCAD01WT	TA120012180			
HEADSET	LG ELECTRONICS	NA	N/A			
INDUCTIVE CHARGER PAD	LG ELECTRONICS	WCP-700	A1108WP000002			

I/O CABLES

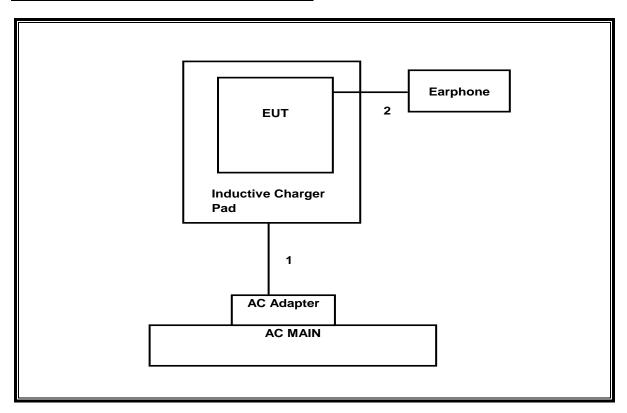
STANDARD OND INDUCTIVE COVER

Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC	1	MINI USB	UN-SHELDED	1.0m	N/A
2	AUDIO	1	MINI JACK	UN-SHELDED	1.0m	Volume control on cable

INDUCTIVE CHARGER WITH INDUCTIVE COVER


	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	DC	1	MINI USB	UN-SHELDED	1.0m	External ferrite added		
2	AUDIO	1	MINI JACK	UN-SHELDED	1.0m	Volume control on cable		

TEST SETUP


• The EUT is sat on inductive charger was tested with AC adapter and earphones.

SETUP DIAGRAM FOR TESTS

STANDARD AND INDUCTIVE COVER

INDUCTIVE CHARGER AND INDUCTIVE COVER

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: May 15, 2012

FCC ID: ZNFVS930

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	07/12/12		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	11/11/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00783	06/29/12		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/12/12		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	07/28/12		
Highpass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR		
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	C00981	06/14/12		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01161	12/16/12		
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	08/02/12		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	09/02/12		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/12		
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI 7	1000741	07/06/12		
Peak Power Meter	Agilent / HP	E4416A	C00963	03/22/13		
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/12		

REPORT NO: 12U14331-2A EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN DATE: May 15, 2012

FCC ID: ZNFVS930

7. ANTENNA PORT TEST RESULTS

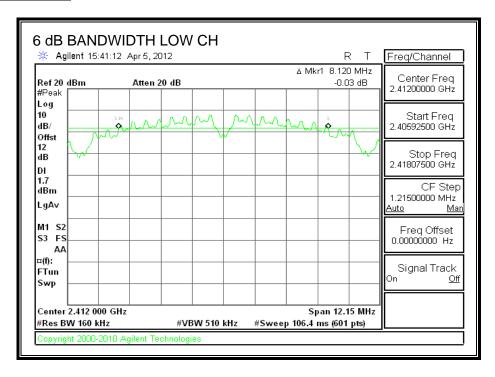
7.1. 802.11b MODE IN THE 2.4 GHz BAND

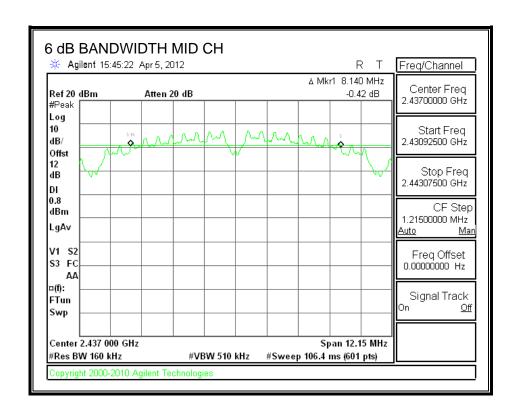
7.1.1. 6 dB BANDWIDTH

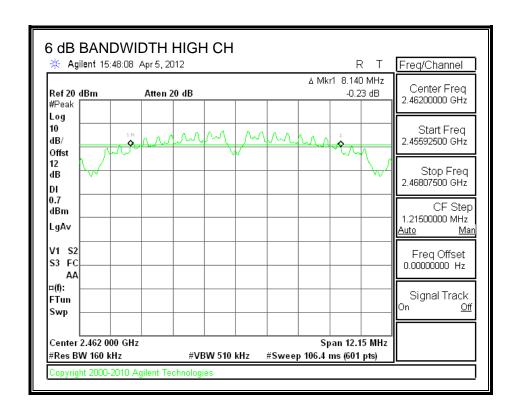
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

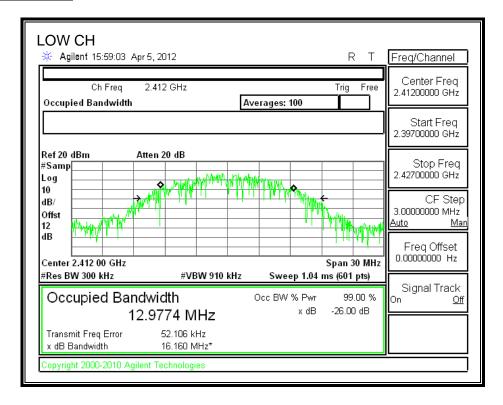
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	8.120	0.5
Middle	2437	8.140	0.5
High	2462	8.140	0.5

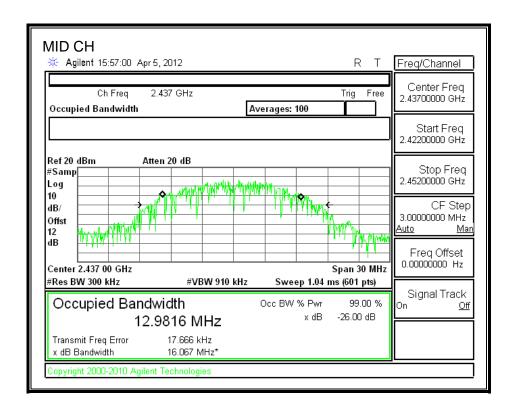
6 dB BANDWIDTH

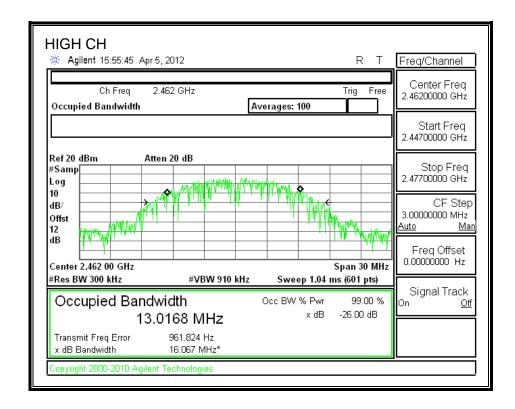
LIMITS

None; for reporting purposes only.

7.1.2. 99% BANDWIDTH


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


DATE: May 15, 2012 FCC ID: ZNFVS930

Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	2412	12.9774		
Middle	2437	12.9816		
High	2462	13.0168		

99% BANDWIDTH

DATE: May 15, 2012 FCC ID: ZNFVS930

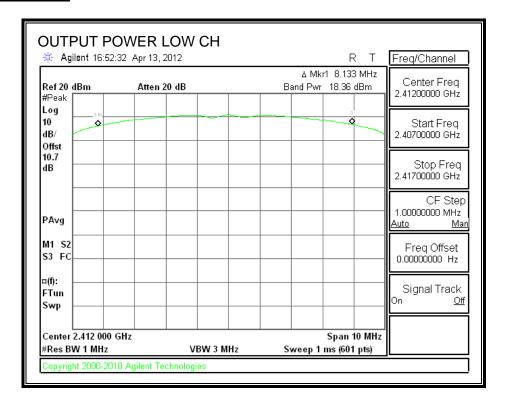
7.1.3. OUTPUT POWER

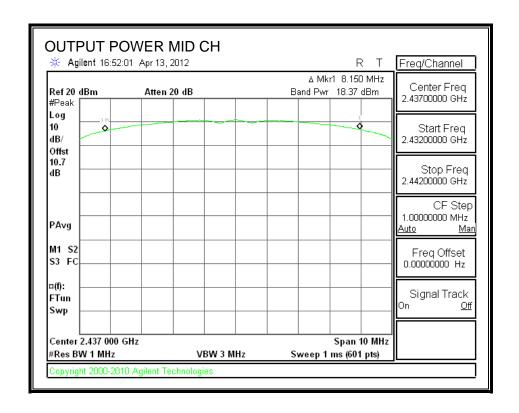
LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

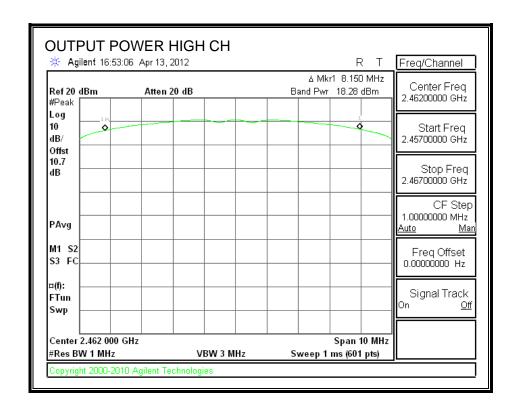

TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	18.36	30	-11.64
Middle	2437	18.37	30	-11.63
High	2462	18.28	30	-11.72

OUTPUT POWER



DATE: May 15, 2012

FCC ID: ZNFVS930

TEL: (510) 771-1000

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	15.35	
Middle	2437	14.91	
High	2462	14.85	

7.1.5. POWER SPECTRAL DENSITY

LIMITS

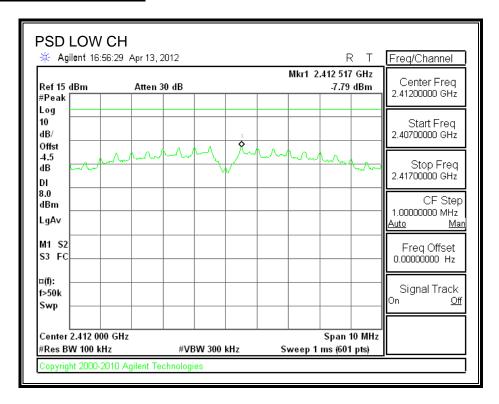
FCC §15.247 (e)

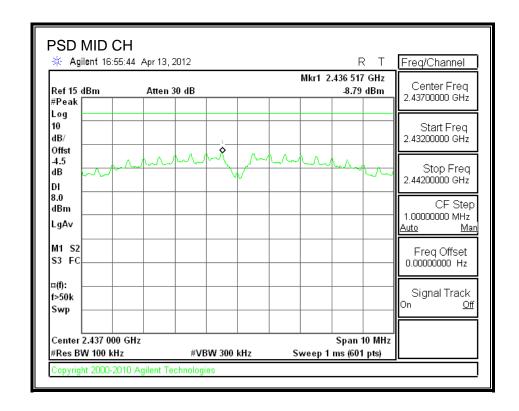
IC RSS-210 A8.2 (b)

TEST PROCEDURE

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

DATE: May 15, 2012

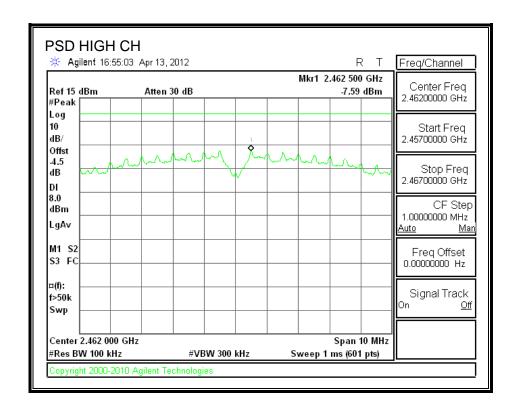

FCC ID: ZNFVS930


RESULTS

Note: Offset = Attenuation + Cable Loss – 10log (3 KHz/100KHz) = -4.5

Channel	Frequency	PPSD Limit		Margin	
	(MHz)	(dBm)	(dBm)	(dB)	
Low	2412	-7.79	8	-15.79	
Middle	2437	-8.79	8	-16.79	
High	2462	-7.59	8	-15.59	

POWER SPECTRAL DENSITY



DATE: May 15, 2012

FCC ID: ZNFVS930

TEL: (510) 771-1000

REPORT NO: 12U14331-2A EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

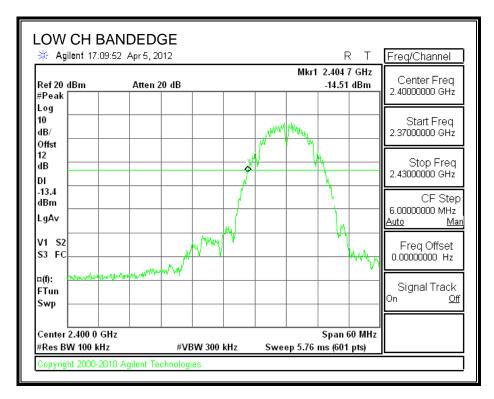
FCC §15.247 (d)

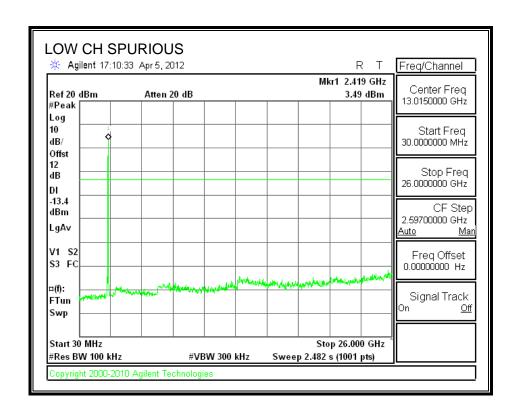
IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

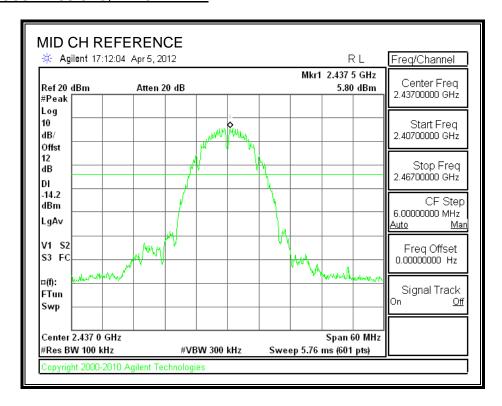
DATE: May 15, 2012

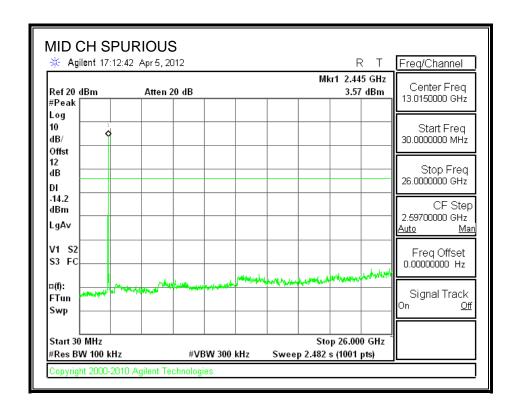
FCC ID: ZNFVS930


TEST PROCEDURE

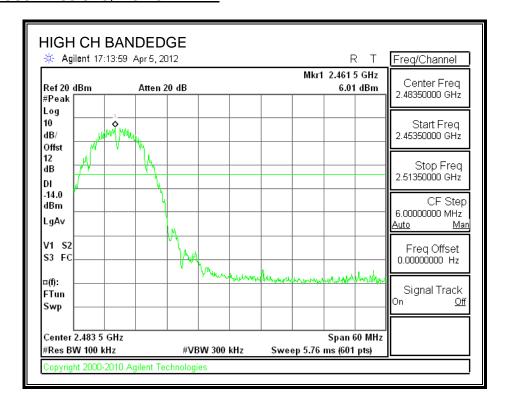

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

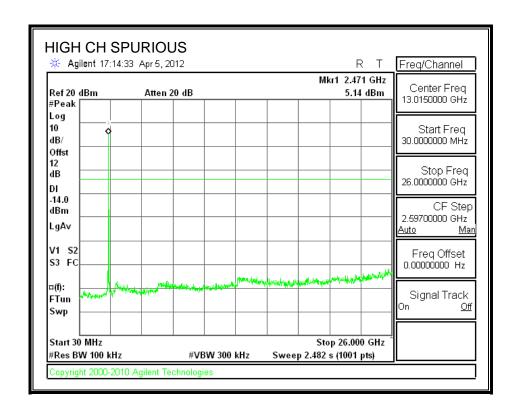
"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL





DATE: May 15, 2012

FCC ID: ZNFVS930

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: May 15, 2012

FCC ID: ZNFVS930

TEL: (510) 771-1000

REPORT NO: 12U14331-2A EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN

DATE: May 15, 2012

FCC ID: ZNFVS930

7.2. 802.11g MODE IN THE 2.4 GHz BAND

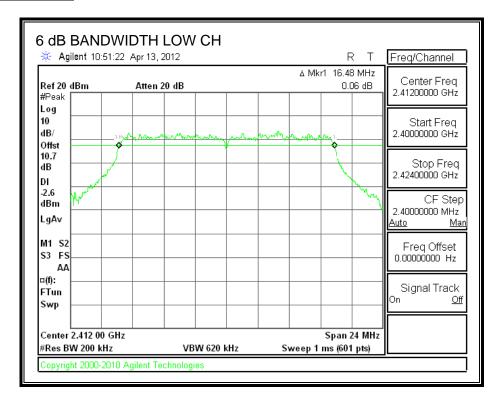
7.2.1. 6 dB BANDWIDTH

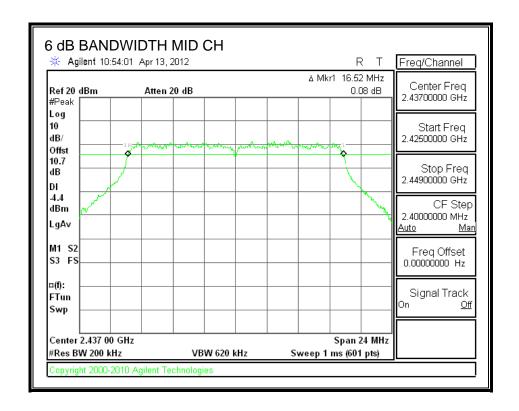
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2412	16.48	0.5
Middle	2437	16.52	0.5
High	2462	16.48	0.5

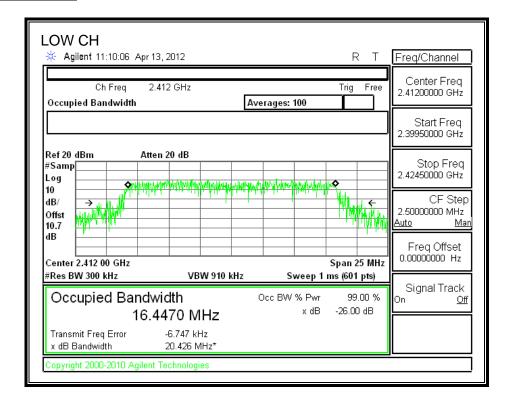
6 dB BANDWIDTH

7.2.2. 99% BANDWIDTH

LIMITS

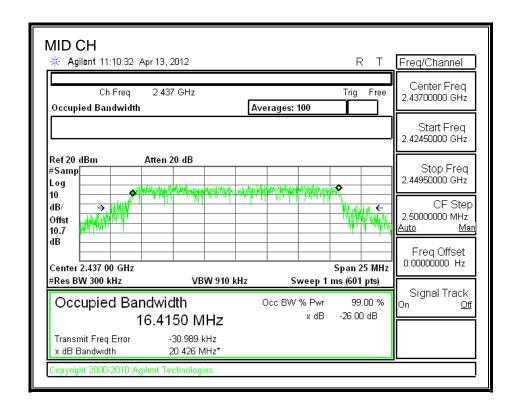
None; for reporting purposes only.

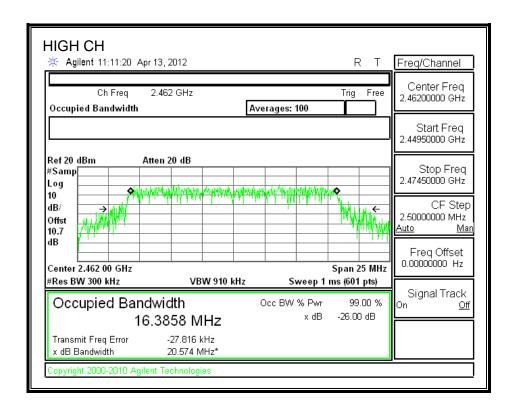
TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: May 15, 2012

FCC ID: ZNFVS930


Channel	Frequency	99% Bandwidth
	(M H z)	(M H z)
Low	2 4 1 2	16.4470
Middle	2 4 3 7	16.4150
High	2 4 6 2	16.3858


99% BANDWIDTH

DATE: May 15, 2012

FCC ID: ZNFVS930

7.2.3. OUTPUT POWER

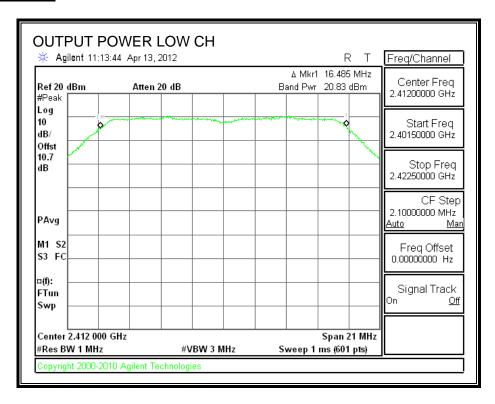
LIMITS

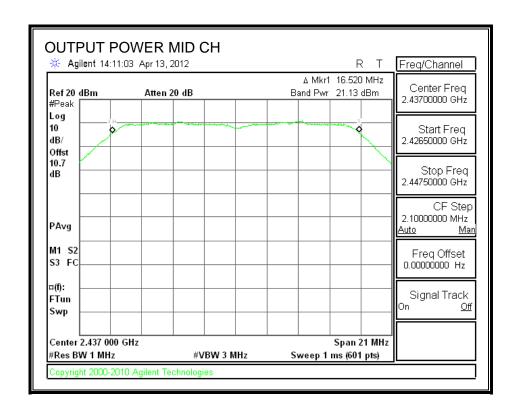
FCC §15.247 (b)

IC RSS-210 A8.4

The maximum effective legacy gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

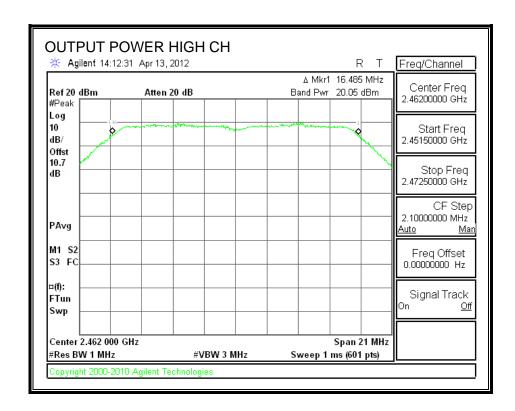
DATE: May 15, 2012


FCC ID: ZNFVS930


TEST PROCEDURE

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


Channel	Frequency	Peak Power	Output	Limit	Margin
		Reading	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	20.83	20.83	30	-9.17
Middle	2437	21.13	21.13	30	-8.87
High	2462	20.05	20.05	30	-9.95

DATE: May 15, 2012

FCC ID: ZNFVS930

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	12.08
Middle	2437	11.78
High	2462	11.71

REPORT NO: 12U14331-2A DATE: May 15, 2012 EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN FCC ID: ZNFVS930

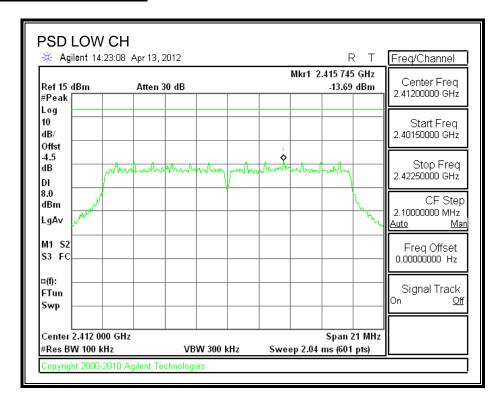
7.2.5. POWER SPECTRAL DENSITY

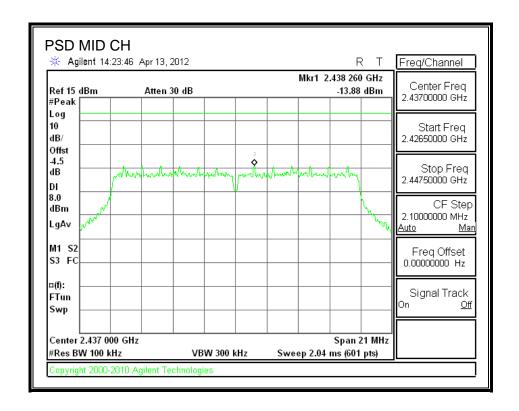
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

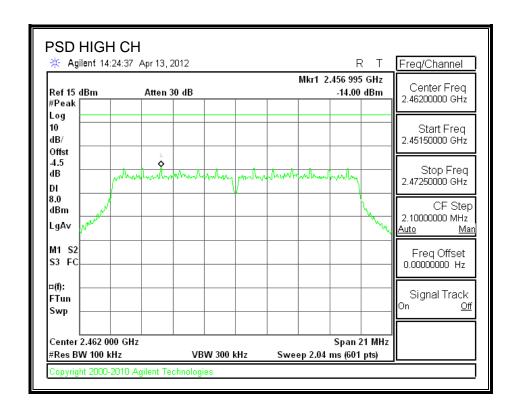
TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS

Note: Offset = Attenuation + Cable Loss – 10log (3 KHz/100KHz) = -4.5

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-13.69	8	-21.69
Middle	2437	-13.88	8	-21.88
High	2462	-14.00	8	-22.00


POWER SPECTRAL DENSITY

DATE: May 15, 2012

FCC ID: ZNFVS930

REPORT NO: 12U14331-2A EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

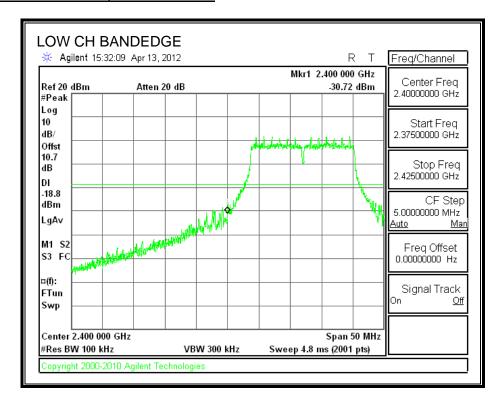
FCC §15.247 (d)

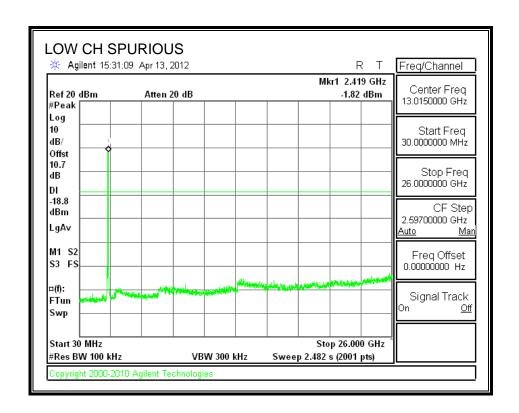
IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

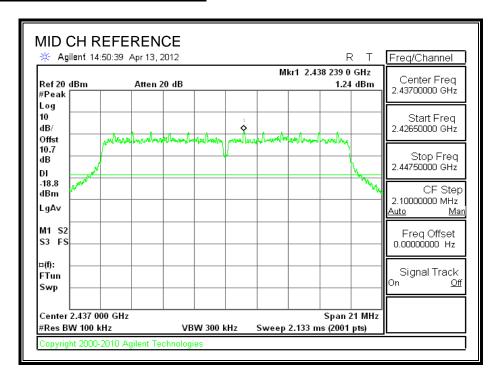
DATE: May 15, 2012

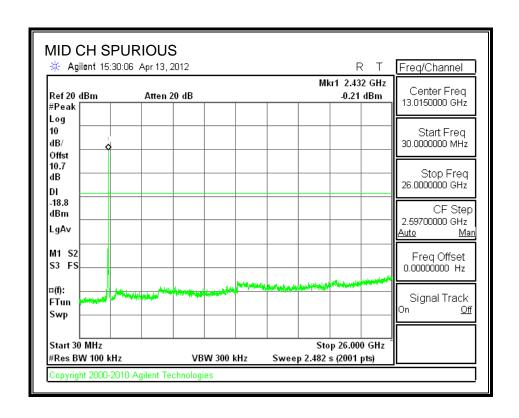
FCC ID: ZNFVS930


TEST PROCEDURE

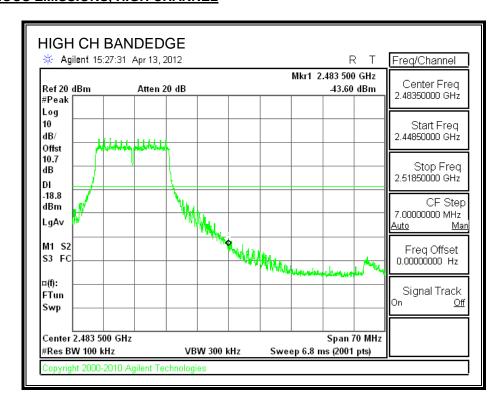

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

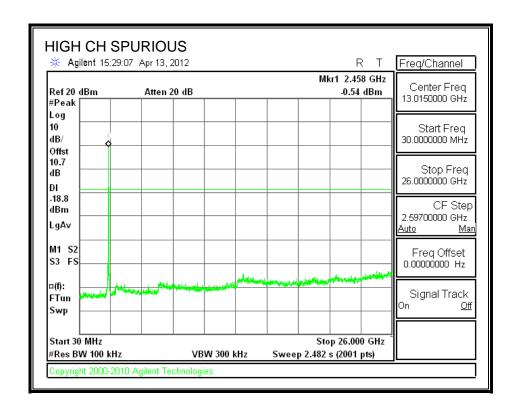
"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL





DATE: May 15, 2012

FCC ID: ZNFVS930

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: May 15, 2012

FCC ID: ZNFVS930

7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND

7.3.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

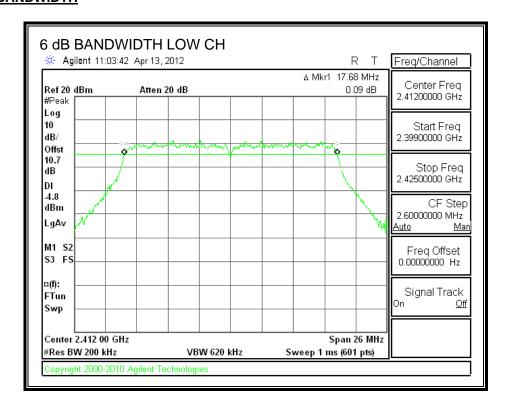
IC RSS-210 A8.2 (a)

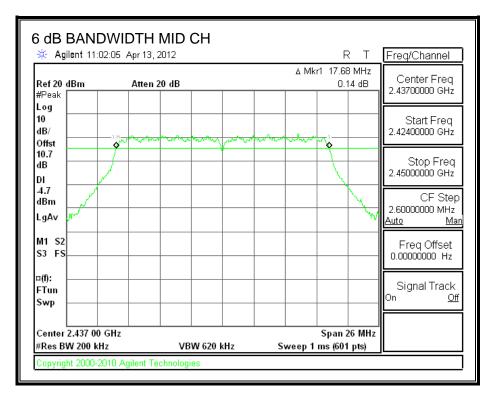
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

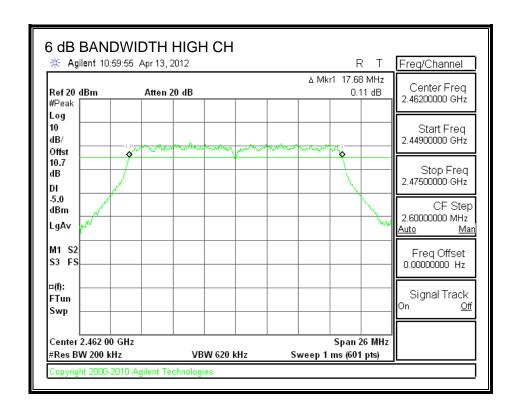
"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


DATE: May 15, 2012


FCC ID: ZNFVS930

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	17.68	0.5
Middle	2437	17.68	0.5
High	2462	17.68	0.5


6 dB BANDWIDTH

DATE: May 15, 2012

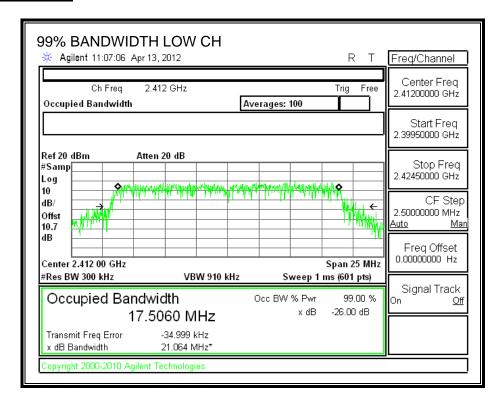
FCC ID: ZNFVS930

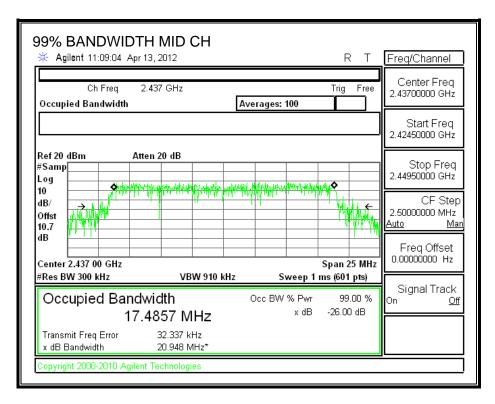
REPORT NO: 12U14331-2A DATE: May 15, 2012 EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN FCC ID: ZNFVS930

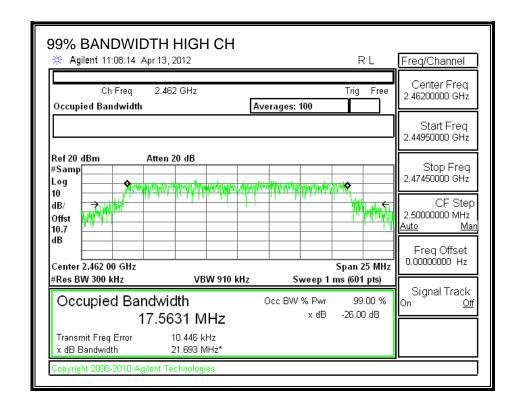
7.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.5060
Middle	2 4 3 7	17.4857
High	2 4 6 2	17.5631

99% BANDWIDTH

7.3.3. OUTPUT POWER

LIMITS

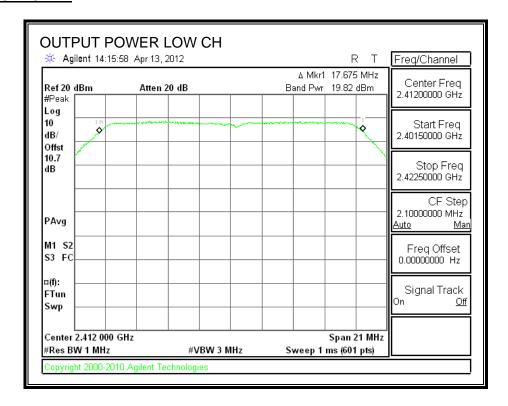
FCC §15.247 (b)

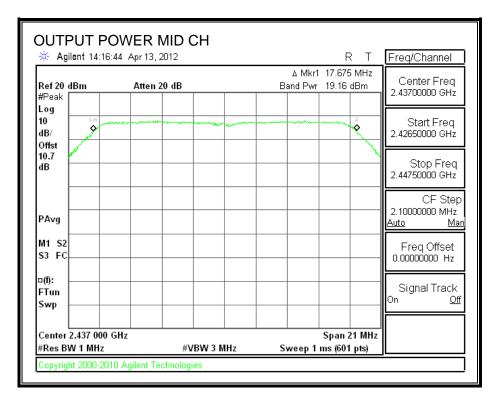
IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

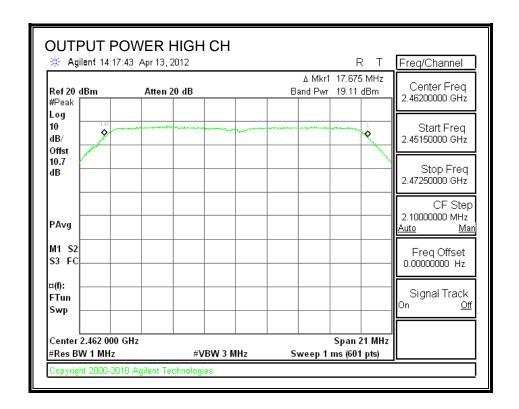
KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


DATE: May 15, 2012


FCC ID: ZNFVS930

RESULTS

Channel	Frequency	Peak Power	Output	Limit	Margin
		Reading	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	19.82	19.82	30	-10.18
Middle	2437	19.16	19.16	30	-10.84
High	2462	19.11	19.11	30	-10.89


OUTPUT POWER

DATE: May 15, 2012

FCC ID: ZNFVS930

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	11.22
Middle	2437	10.78
High	2462	10.82

REPORT NO: 12U14331-2A DATE: May 15, 2012 EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN FCC ID: ZNFVS930

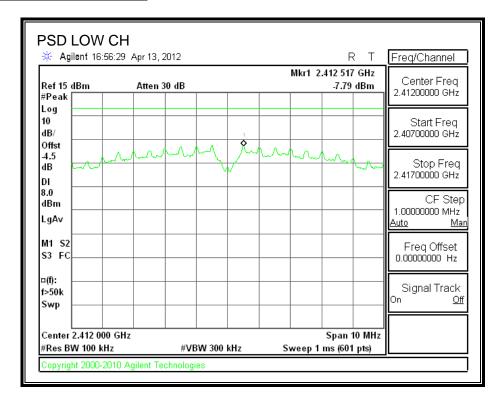
7.3.5. POWER SPECTRAL DENSITY

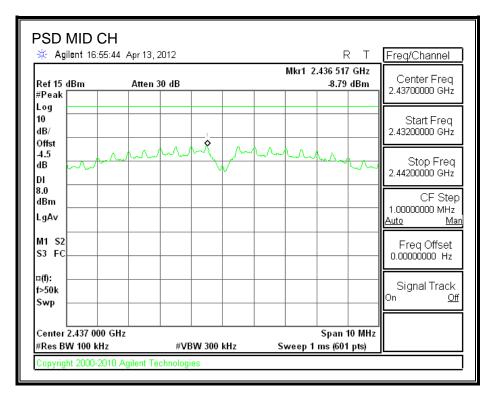
LIMITS

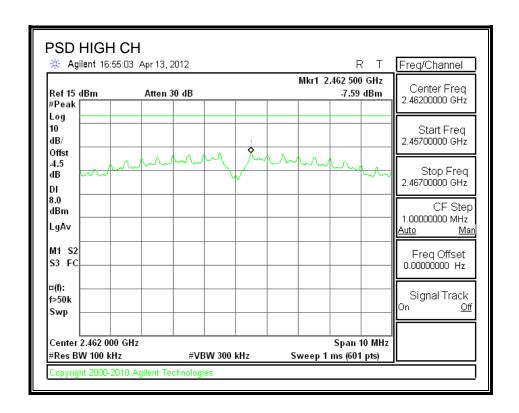
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS


Note: Offset = Attenuation + Cable Loss – 10log (3 KHz/100KHz) = -4.5

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-7.79	8	-15.79
Middle	2437	-8.79	8	-16.79
High	2462	-7.59	8	-15.59

POWER SPECTRAL DENSITY

REPORT NO: 12U14331-2A EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

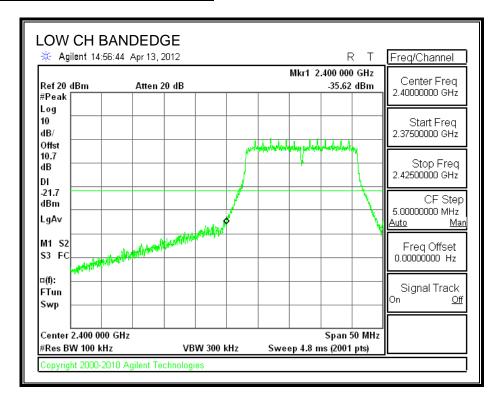
FCC §15.247 (d)

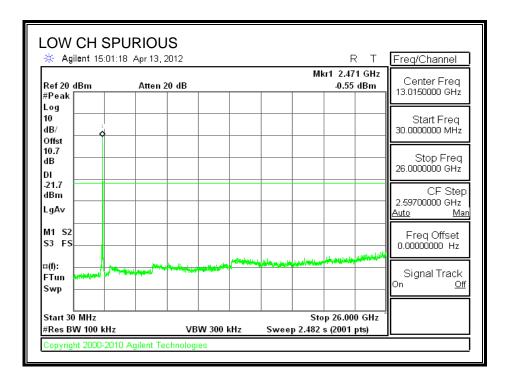
IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: May 15, 2012

FCC ID: ZNFVS930

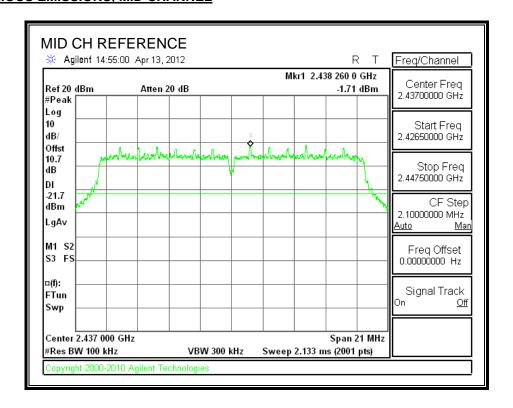

TEST PROCEDURE

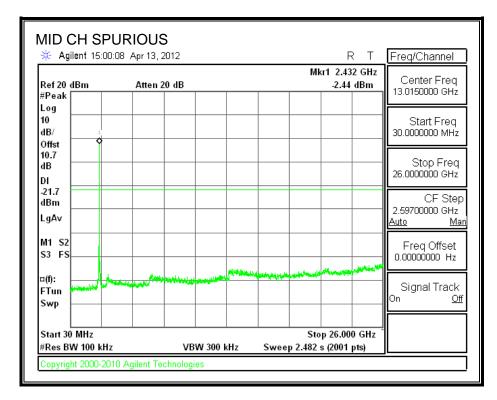

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

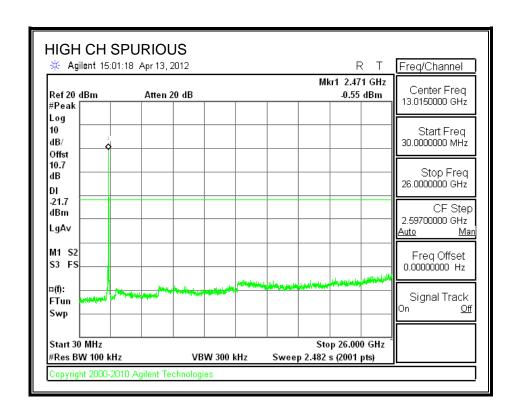




DATE: May 15, 2012

FCC ID: ZNFVS930

SPURIOUS EMISSIONS, MID CHANNEL



DATE: May 15, 2012

FCC ID: ZNFVS930

HIGH CH BANDEDGE Agilent 15:05:19 Apr 13, 2012 R Τ Freq/Channel Mkr1 2.483 500 GHz Center Frea Ref 20 dBm Atten 20 dB 46.04 dBm 2.48350000 GHz #Peak Log 10 Start Freq dB/2.44850000 GHz Offst 10.7 Stop Freq dΒ 2.51850000 GHz DΙ 21.7 CF Step dBm 7.00000000 MHz LgA∨ M1 S2 Freq Offset S3 FC 0.000000000 Hz □(f): Signal Track FTun <u>Off</u> Swp Span 70 MHz Center 2.483 500 GHz #Res BW 100 kHz VBW 300 kHz Sweep 6.8 ms (2001 pts) opyright 2000-2010 Agilent Technolog

DATE: May 15, 2012

FCC ID: ZNFVS930

7.4. 802.11a MODE IN THE 5.8 GHz BAND

7.4.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

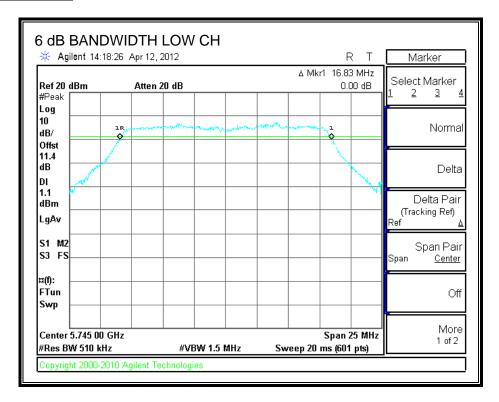
IC RSS-210 A8.2 (a)

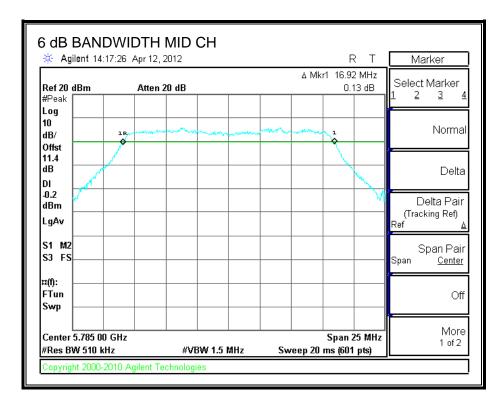
The minimum 6 dB bandwidth shall be at least 500 kHz.

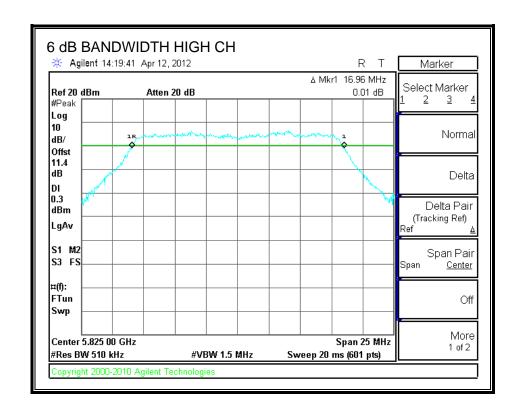
TEST PROCEDURE

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


DATE: May 15, 2012


FCC ID: ZNFVS930


RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5745	16.83	0.5
Middle	5785	16.92	0.5
High	5825	16.96	0.5

6 dB BANDWIDTH

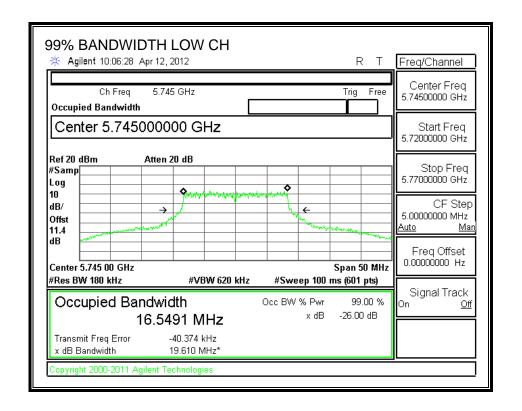
7.4.2. 99% BANDWIDTH

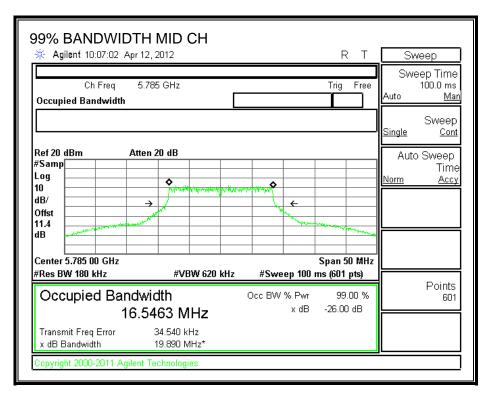
LIMITS

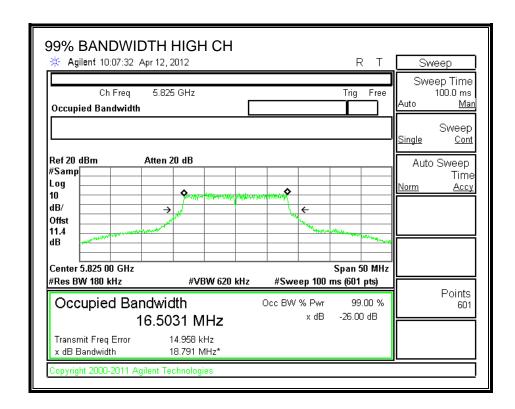
None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


DATE: May 15, 2012


FCC ID: ZNFVS930


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	16.5491
Middle	5785	16.5463
High	5825	16.5031

99% BANDWIDTH

7.4.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

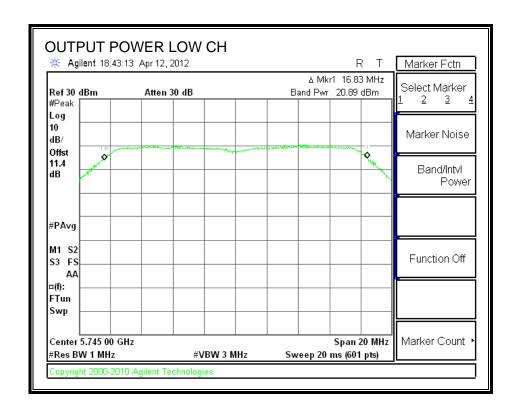
IC RSS-210 A8.4

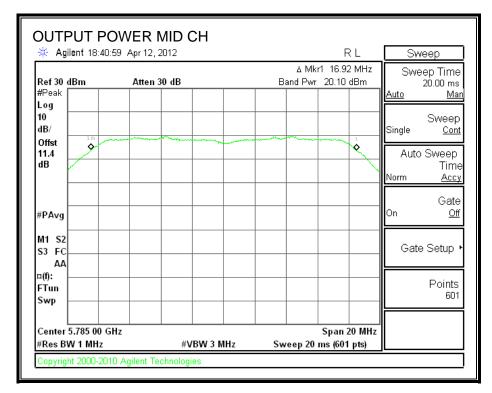
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

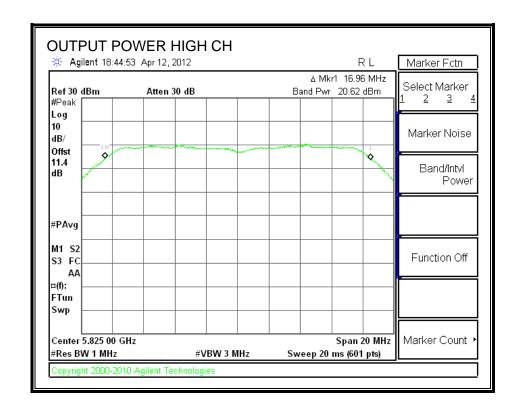
TEST PROCEDURE

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

RESULTS


Channel	Frequency	Peak Power	Output	Lim it	Margin
		Reading	Power		
	(MHz)	(d B m)	(d B m)	(d B m)	(dB)
Low	5745	20.89	20.89	3 0	-9.11
Middle	5785	20.10	20.10	3 0	-9.90
High	5825	20.62	20.62	3 0	-9.38


DATE: May 15, 2012


FCC ID: ZNFVS930

This report shall not be reproduced except in full, without the written approval of UL CCS.

OUTPUT POWER

DATE: May 15, 2012 FCC ID: ZNFVS930

7.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5745	11.90
Middle	5785	11.60
High	5825	11.90

REPORT NO: 12U14331-2A DATE: May 15, 2012 EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN FCC ID: ZNFVS930

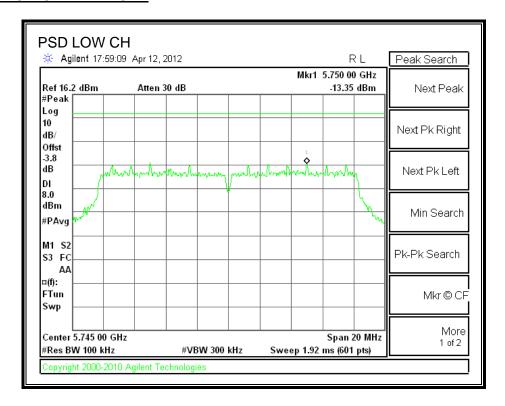
7.4.5. POWER SPECTRAL DENSITY

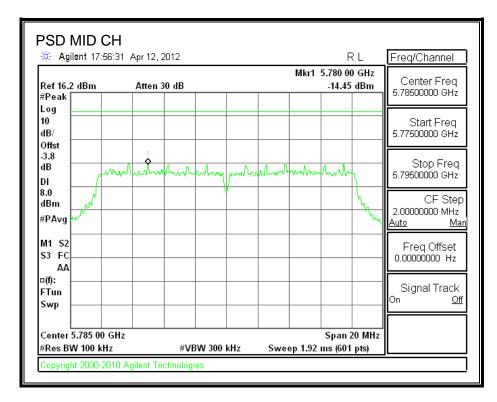
LIMITS

FCC §15.247 (e)

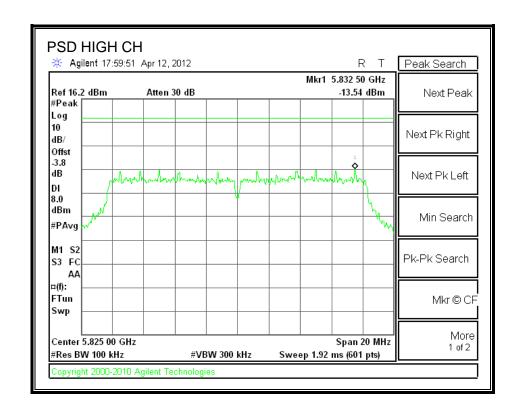
IC RSS-210 A8.2 (b)

TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS

Note: Offset = Attenuation + Cable Loss – 10log (3 KHz/100KHz) = -3.8


Channel	Frequency	PPSD	Limit	M argin
	(MHz)	(d B m)	(dBm)	(dB)
Low	5745	-13.35	8	-21.35
Middle	5785	-14.45	8	-22.45
High	5825	-13.54	8	-21.54

POWER SPECTRAL DENSITY

DATE: May 15, 2012

REPORT NO: 12U14331-2A EUT: CELL PHONE WITH GSM/CDMA/WCDMA/LTE+BT LE+802.11ABGN

7.4.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

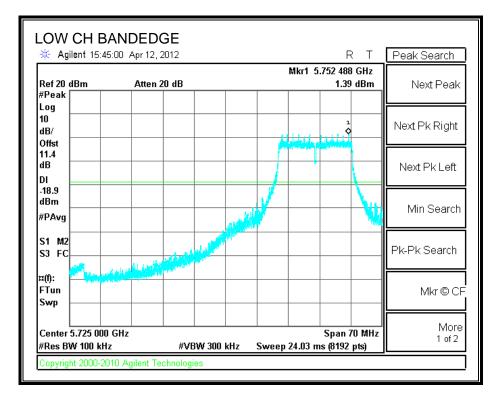
FCC §15.247 (d)

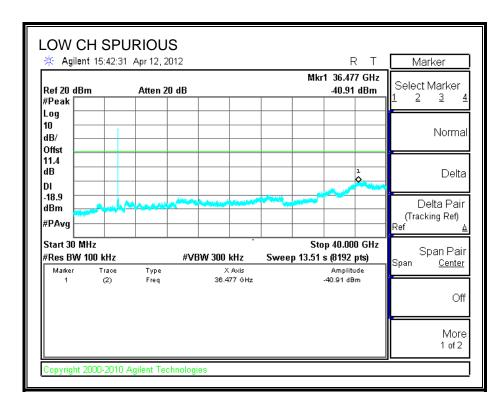
IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

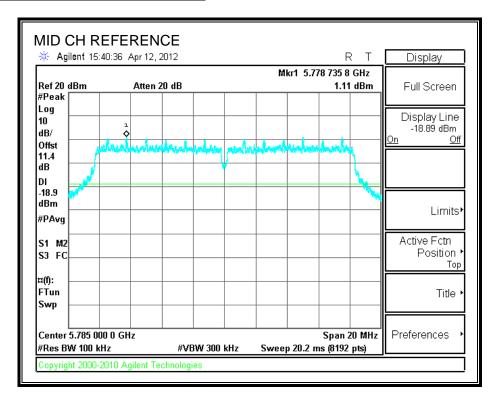
DATE: May 15, 2012

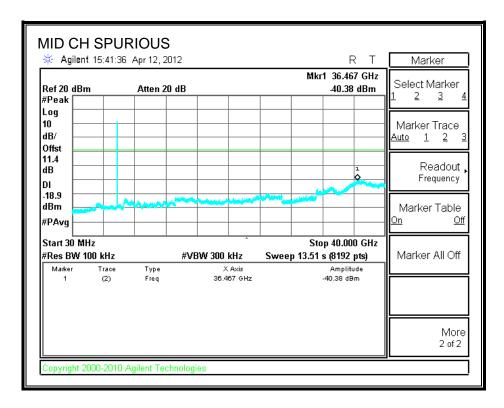
FCC ID: ZNFVS930

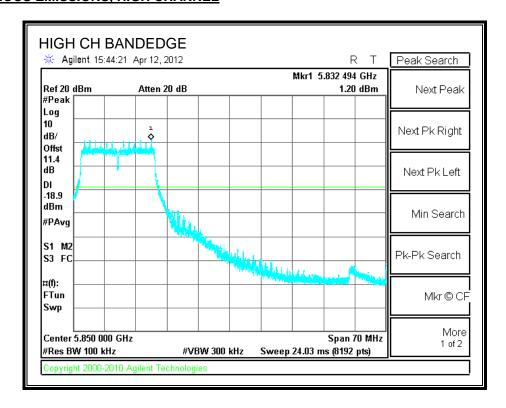

TEST PROCEDURE

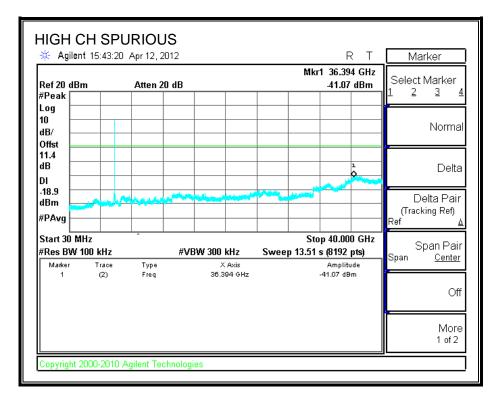

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: May 15, 2012

FCC ID: ZNFVS930

TEL: (510) 771-1000

7.1. 802.11n HT20 MODE IN THE 5.8 GHz BAND

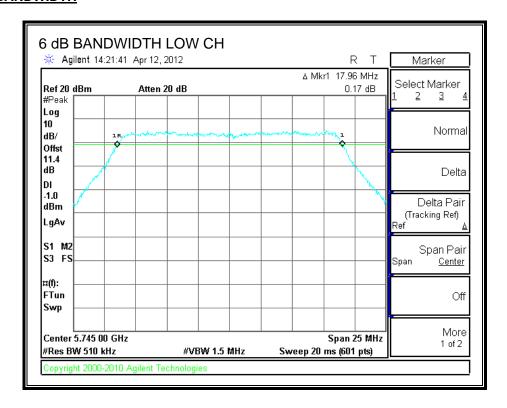
7.1.1. 6 dB BANDWIDTH

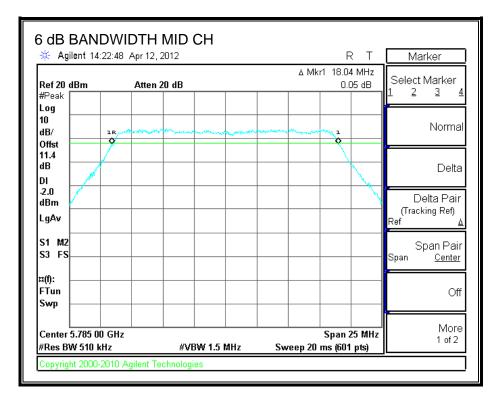
LIMITS

FCC §15.247 (a) (2)

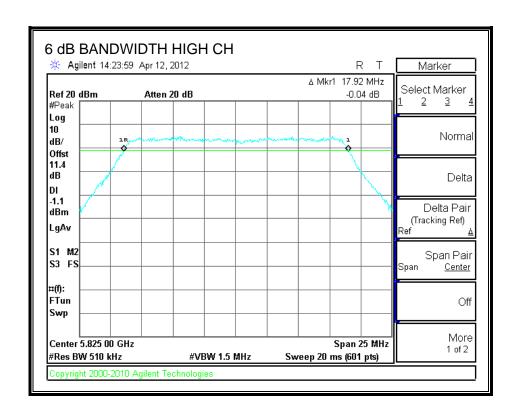
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

RESULTS


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(M H z)	(M H z)
Low	5745	17.96	0.5
Middle	5785	18.04	0.5
High	5825	17.92	0.5

6 dB BANDWIDTH

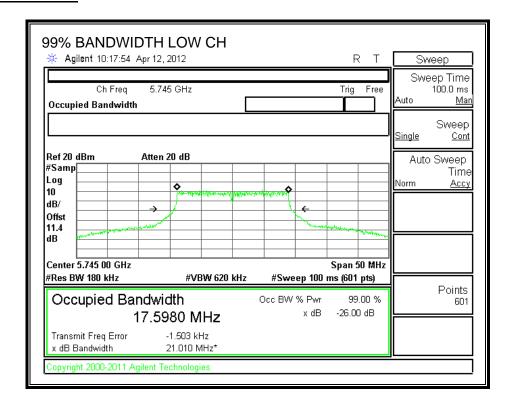
DATE: May 15, 2012

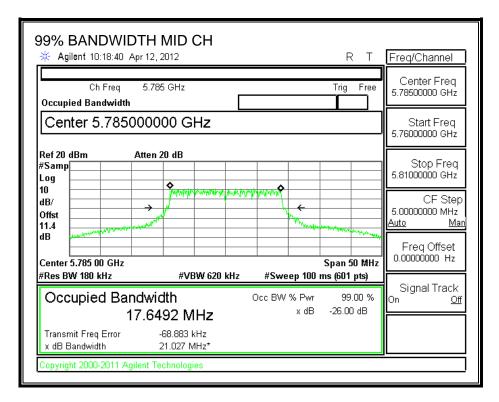
DATE: May 15, 2012 FCC ID: ZNFVS930

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

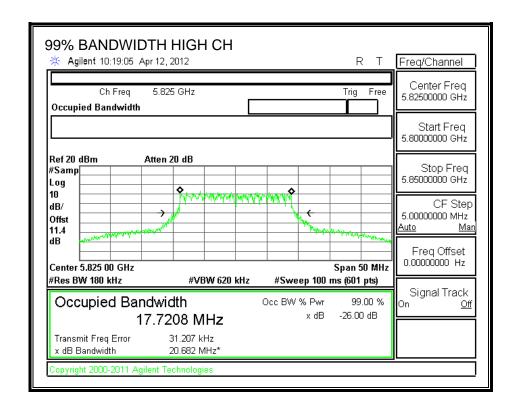

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	17.5980
Middle	5785	17.6492
High	5825	17.7208

99% BANDWIDTH



DATE: May 15, 2012

FCC ID: ZNFVS930

This report shall not be reproduced except in full, without the written approval of UL CCS.

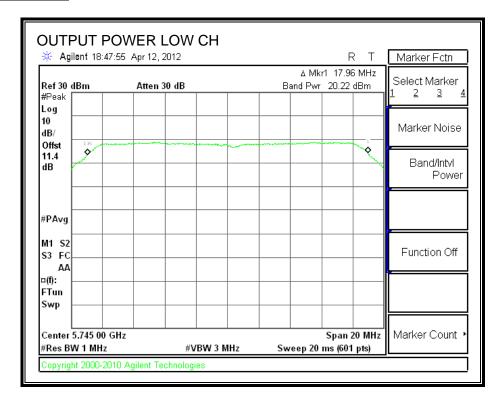
DATE: May 15, 2012 FCC ID: ZNFVS930

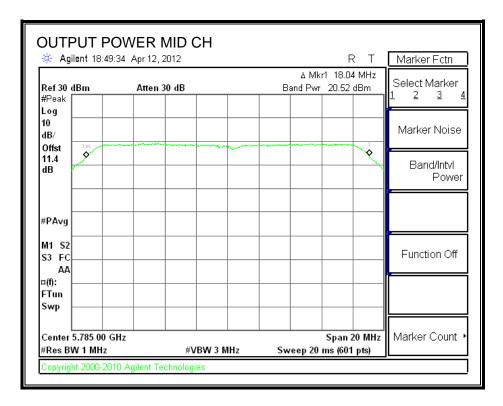
7.1.3. OUTPUT POWER

LIMITS

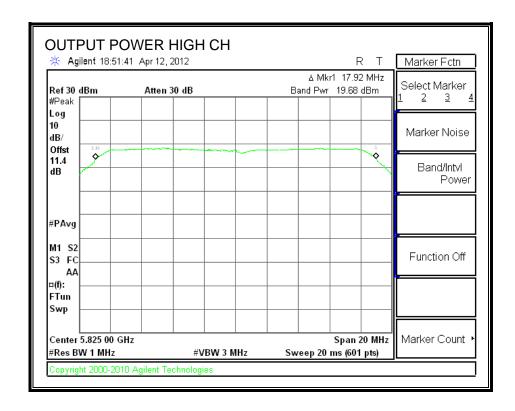
FCC §15.247 (b)

IC RSS-210 A8.4


TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."

RESULTS


Channel	Frequency	Output	Limit	M argin	
		Power			
	(M H z)	(dBm)	(d B m)	(dB)	
Low	5745	20.22	30	-9.78	
Middle	5785	20.52	3 0	-9.48	
High	5825	19.68	3 0	-10.32	

OUTPUT POWER

DATE: May 15, 2012

DATE: May 15, 2012 FCC ID: ZNFVS930

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5745	10.90
Middle	5785	10.50
High	5825	10.80

DATE: May 15, 2012 FCC ID: ZNFVS930

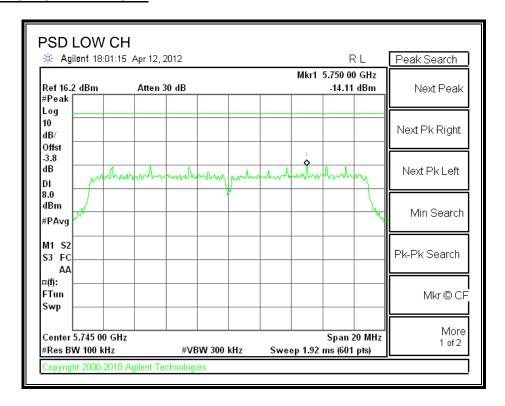
7.1.5. POWER SPECTRAL DENSITY

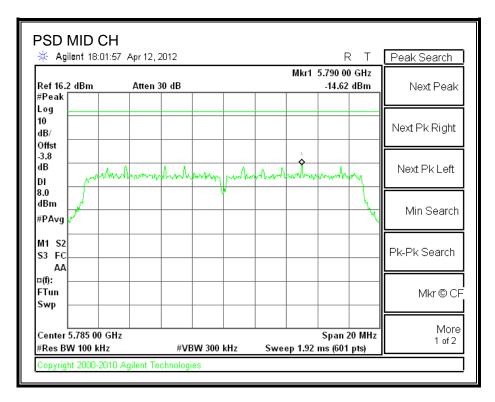
LIMITS

FCC §15.247 (e)

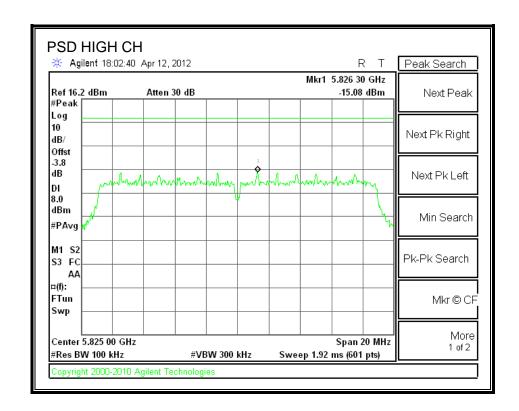
IC RSS-210 A8.2 (b)

TEST PROCEDURE


KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012: "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS

Note: Offset = Attenuation + Cable Loss – 10log (3 KHz/100KHz) = -3.8


Channel	Frequency	PPSD	Lim it	M argin
	(MHz)	(d B m)	(dBm)	(dB)
Low	5745	-14.11	8	-22.11
Middle	5785	-14.62	8	-22.62
High	5825	-15.08	8	-23.08

POWER SPECTRAL DENSITY

DATE: May 15, 2012 FCC ID: ZNFVS930

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

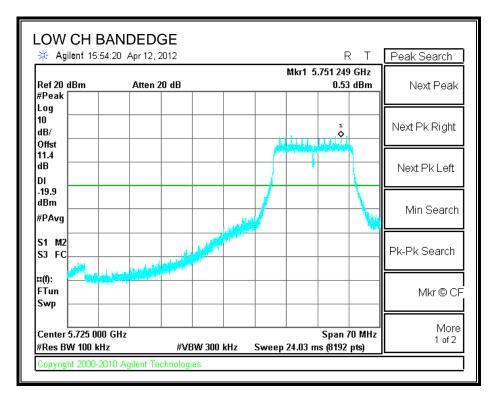
FCC §15.247 (d)

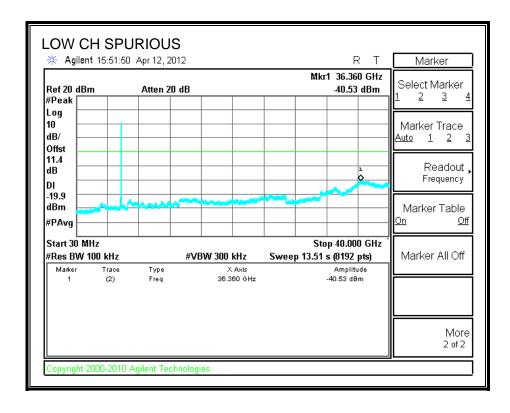
IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

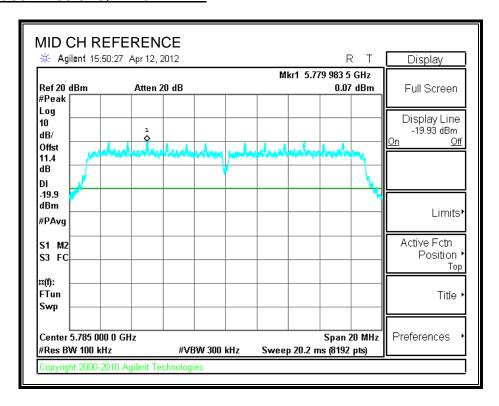
DATE: May 15, 2012

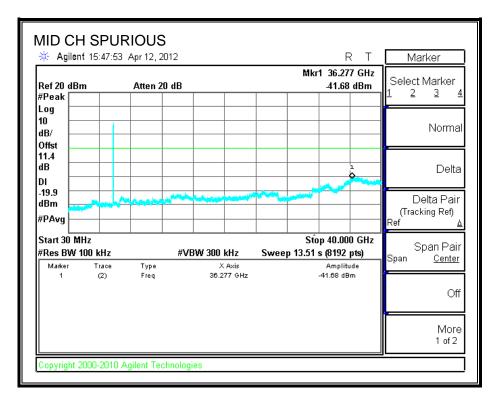
FCC ID: ZNFVS930

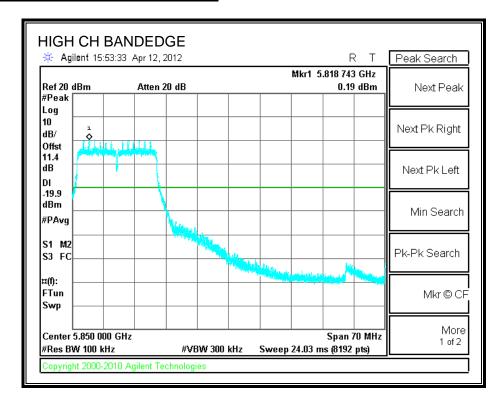

TEST PROCEDURE

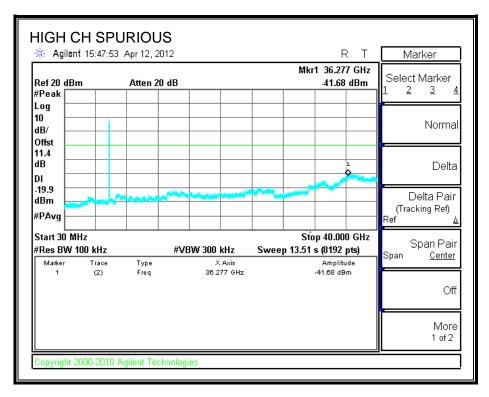

KDB 558074 D01 DTS Meas Guidance v01, dated 1/18/2012:

"Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247."


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL


SPURIOUS EMISSIONS, MID CHANNEL



DATE: May 15, 2012

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

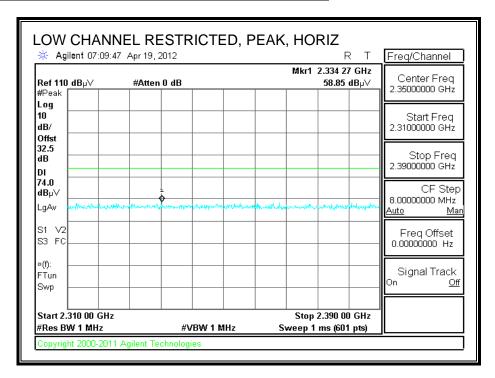
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

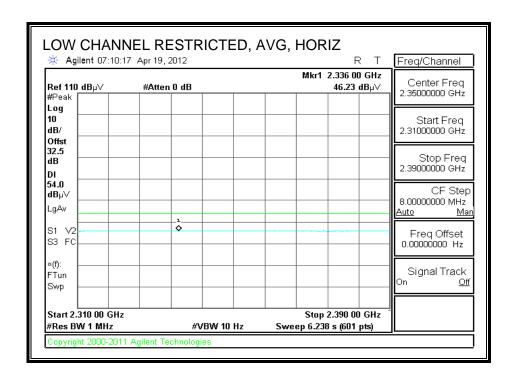
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

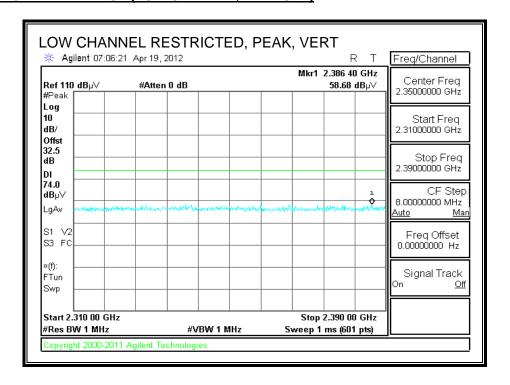
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

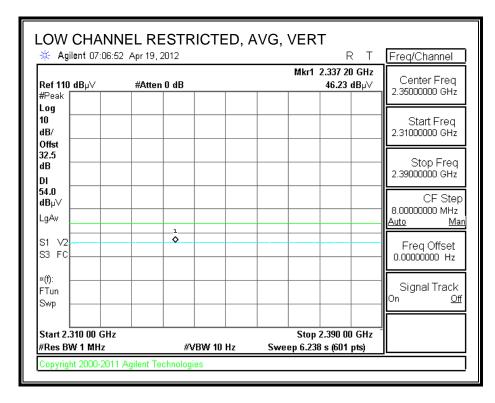
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

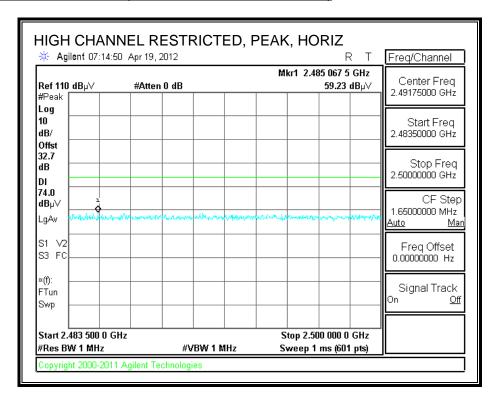

8.2. TRANSMITTER ABOVE 1 GHz

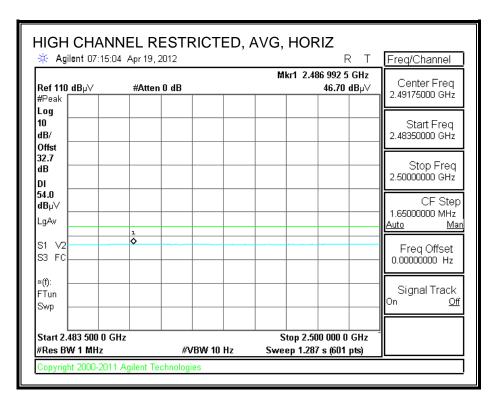
8.2.1. 802.11b MODE IN THE 2.4 GHz BAND


STANDARD COVER


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

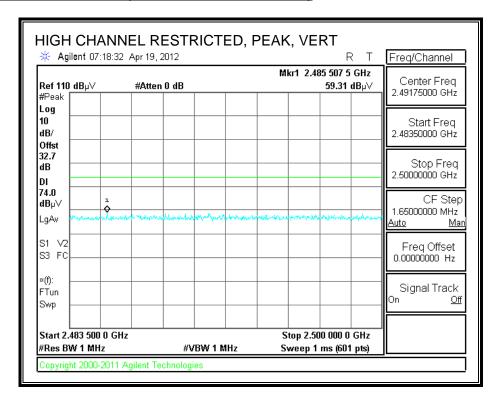
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

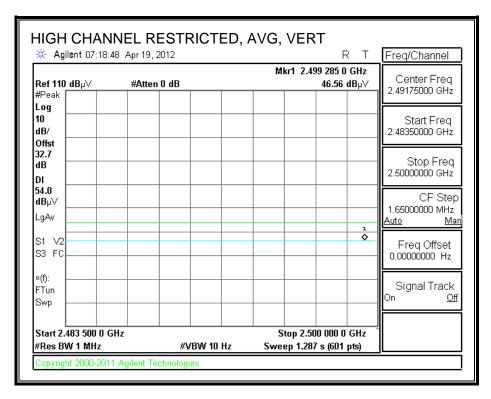



DATE: May 15, 2012

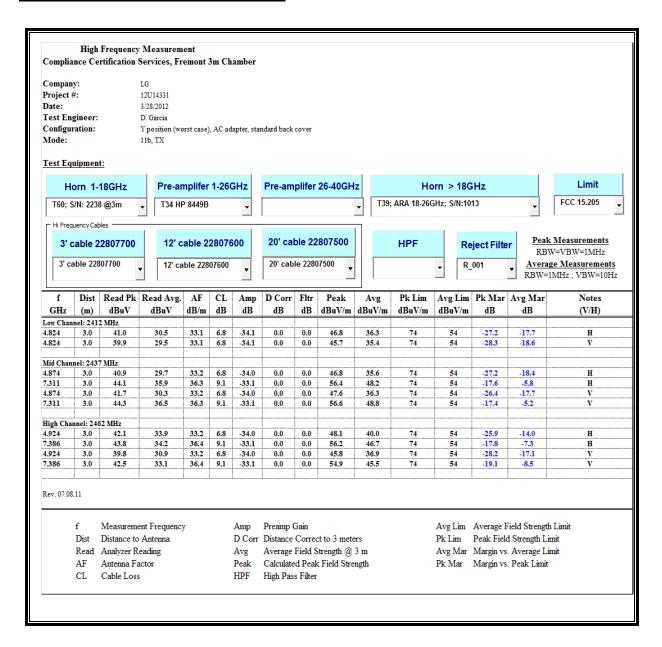
FCC ID: ZNFVS930

TEL: (510) 771-1000

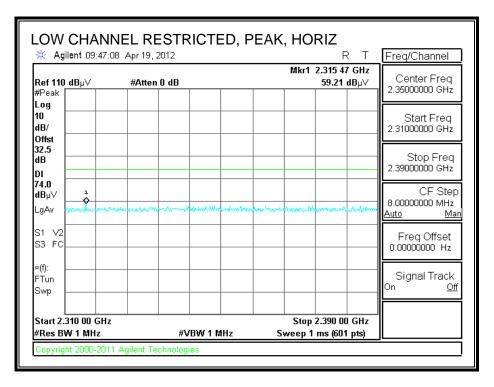

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

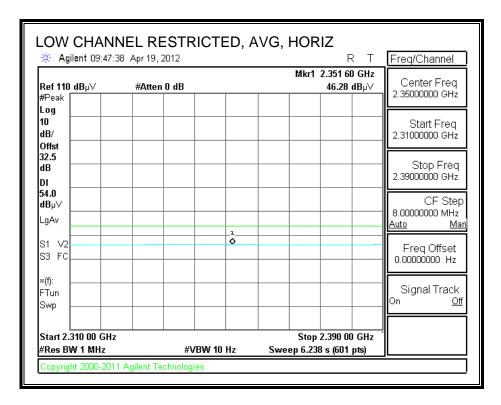


DATE: May 15, 2012

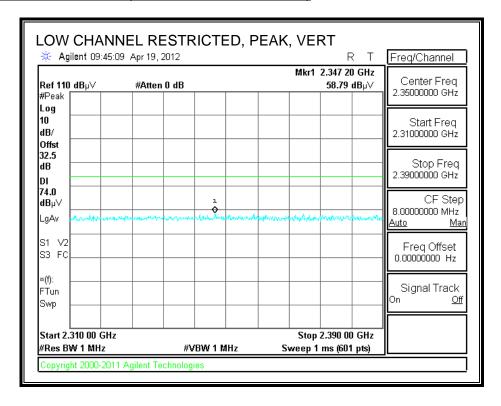

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

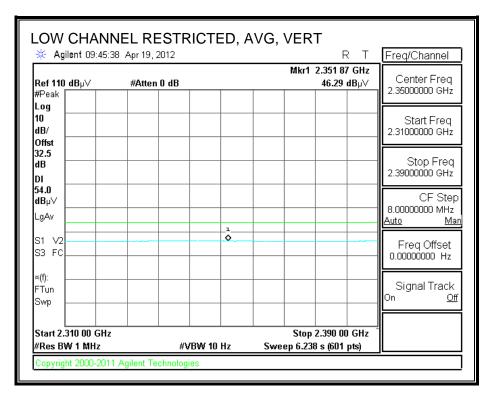
DATE: May 15, 2012

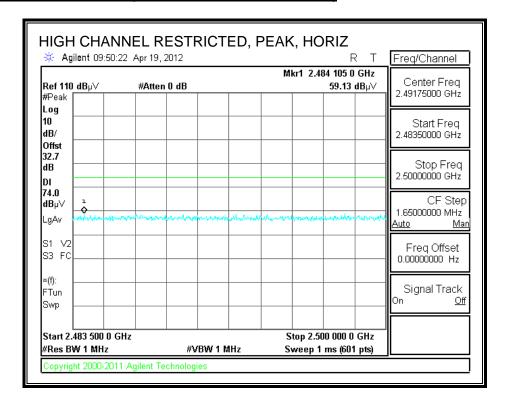

HARMONICS AND SPURIOUS EMISSIONS

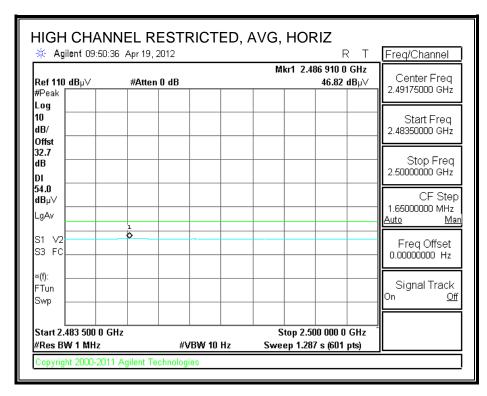


DATE: May 15, 2012

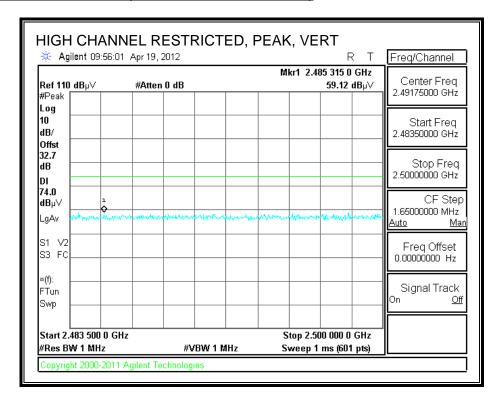

INDUCTIVE COVER

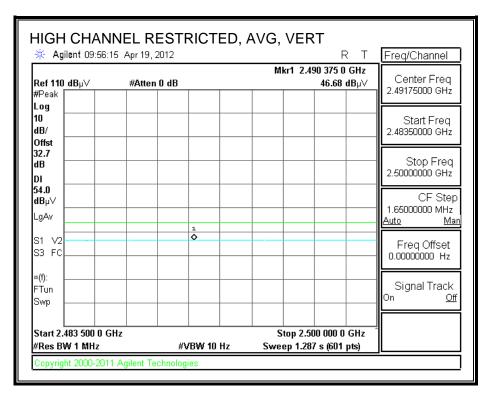

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



DATE: May 15, 2012


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



DATE: May 15, 2012

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: May 15, 2012

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

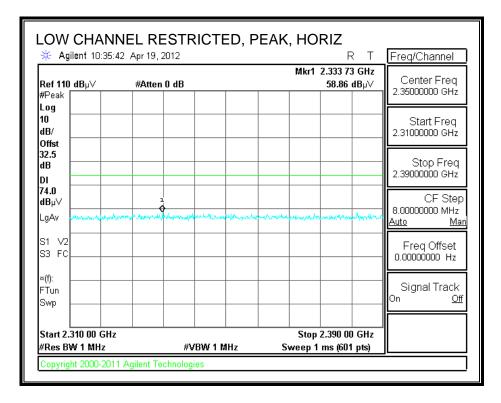
Compliance Certification Services, Fremont 5m Chamber

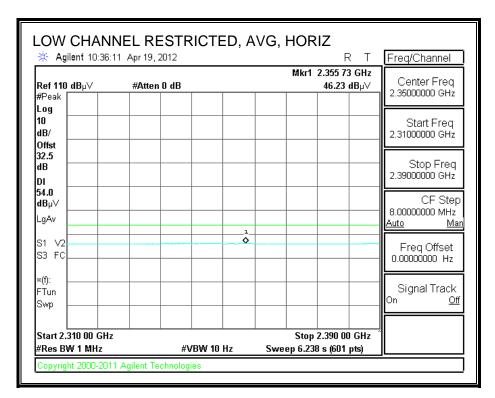
Test Engr: Chin Pang 04/19/12 Date: 12U14331 Project #: Company: LG Test Target: FCC 15.247

Configuration: EUT(Inductive Cover)

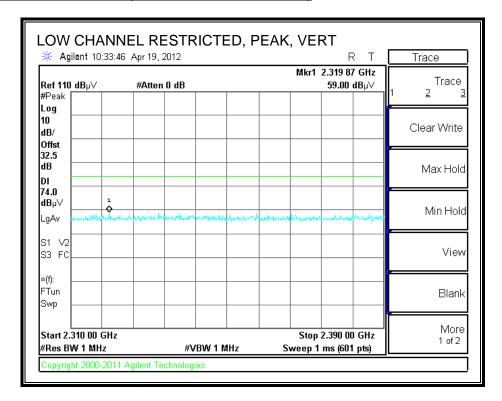
Mode Oper: b mode, TX

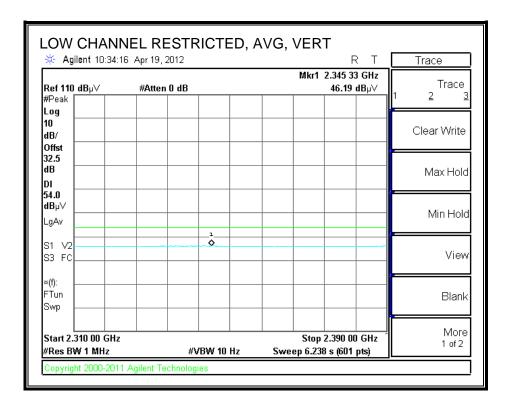
> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Average Limit Margin vs. Peak Limit

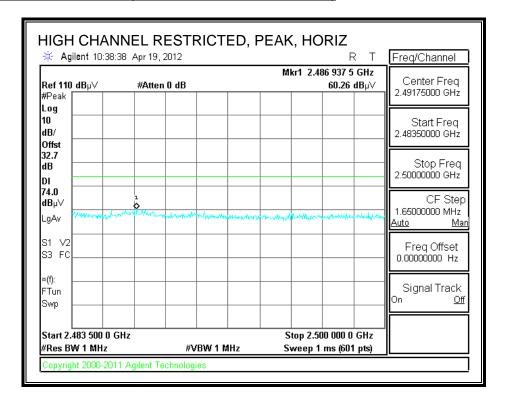

f	Dist	Read	AF	CL	Amp	D Corr		Corr.			Ant. Pol.		Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 2	2412MH:	z											
4.824	3.0	37.7	33.4	6.2	-35.5	0.0	0.0	41.9	74.0	-32.1	H	P	
4.824	3.0	27.0	33.4	6.2	-35.5	0.0	0.0	31.1	54.0	-22.9	H	A	
4.824	3.0	37.2	33.4	6.2	-35.5	0.0	0.0	41.4	74.0	-32.6	V	P	
4.824	3.0	25.8	33.4	6.2	-35.5	0.0	0.0	29.9	54.0	-24.1	V	A	
Mid Ch, 2	437MHz	Z											
4.874	3.0	36.9	33.5	6.2	-35.5	0.0	0.0	41.2	74.0	-32.8	H	P	
4.874	3.0	26.6	33.5	6.2	-35.5	0.0	0.0	30.8	54.0	-23.2	H	A	
7.311	3.0	38.5	35.7	8.4	-35.4	0.0	0.0	47.1	74.0	-26.9	H	P	
7.311	3.0	29.9	35.7	8.4	-35.4	0.0	0.0	38.6	54.0	-15.4	H	A	
4.874	3.0	36.5	33.5	6.2	-35.5	0.0	0.0	40.7	74.0	-33.3	V	P	
4.874	3.0	25.3	33.5	6.2	-35.5	0.0	0.0	29.5	54.0	-24.5	V	A	
7.311	3.0	38.1	35.7	8.4	-35.4	0.0	0.0	46.8	74.0	-27.2	V	P	
7.311	3.0	29.4	35.7	8.4	-35.4	0.0	0.0	38.0	54.0	-16.0	V	A	
High Ch.	2462MF	Ιz											
4.924	3.0	38.1	33.5	6.3	-35.5	0.0	0.0	42.4	74.0	-31.6	H	P	
4.924	3.0	27.5	33.5	6.3	-35.5	0.0	0.0	31.8	54.0	-22.2	H	A	
7.386	3.0	41.0	35.8	8.4	-35.5	0.0	0.0	49.8	74.0	-24.2	Н	P	
7.386	3.0	32.5	35.8	8.4	-35.5	0.0	0.0	41.3	54.0	-12.7	H	A	
4.924	3.0	36.5	33.5	6.3	-35.5	0.0	0.0	40.8	74.0	-33.2	V	P	
4.924	3.0	25.8	33.5	6.3	-35.5	0.0	0.0	30.1	54.0	-23.9	V	A	
7.386	3.0	38.8	35.8	8.4	-35.5	0.0	0.0	47.6	74.0	-26.4	V	P	
7.386	3.0	30.1	35.8	8.4	-35.5	0.0	0.0	38.9	54.0	-15.1	V	A	
•••••										•			

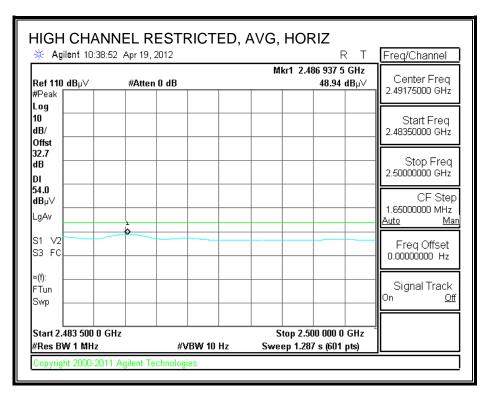

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.


INDUCTIVE CHARGER WITH INDUCTIVE COVER

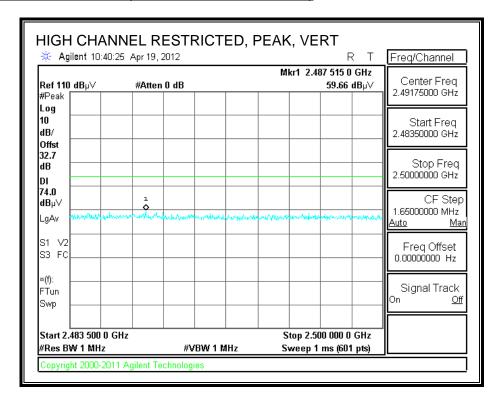

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

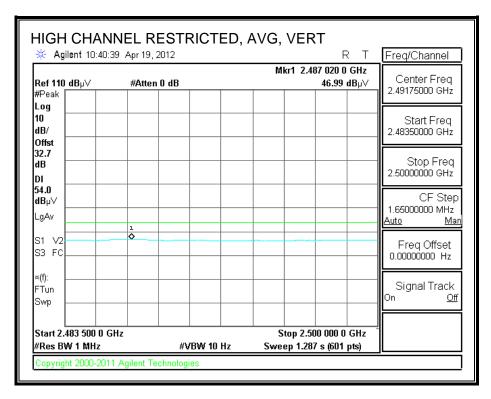

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



DATE: May 15, 2012 FCC ID: ZNFVS930

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)




DATE: May 15, 2012

FCC ID: ZNFVS930

TEL: (510) 771-1000

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: May 15, 2012

FCC ID: ZNFVS930

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

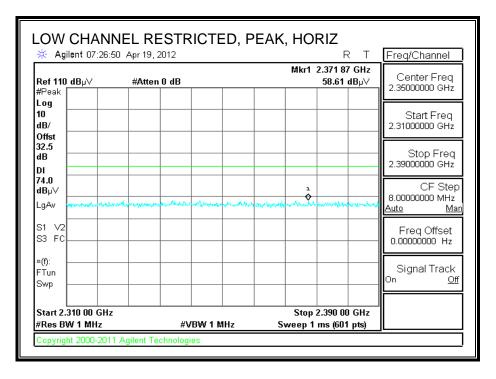
Compliance Certification Services, Fremont 5m Chamber

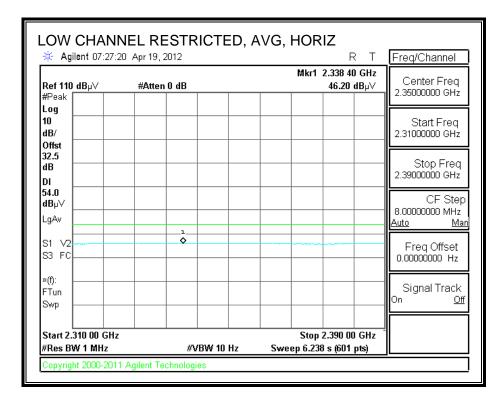
Test Engr: Chin Pang 04/19/12 Date: 12U14331 Project #: Company: LG Test Target: FCC 15.247

Configuration: EUT(On Inductive Charging Pad)

Mode Oper: b mode, TX

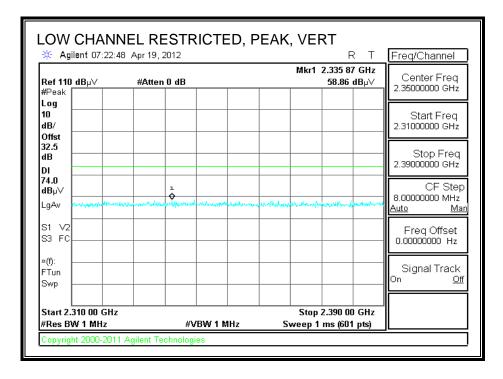
> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m AF Antenna Factor Peak Calculated Peak Field Strength Read Analyze Analyze Peak Calculate HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

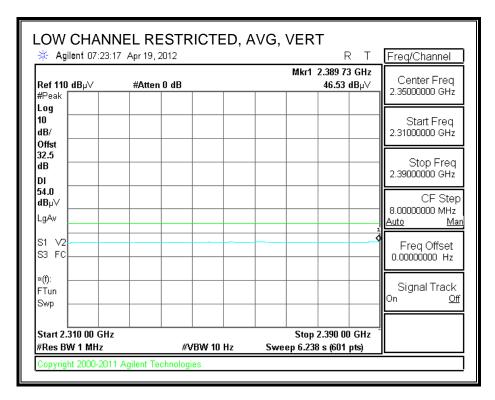

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 2	412MH:	Z											
4.824	3.0	38.2	33.4	6.2	-35.5	0.0	0.0	42.3	74.0	-31.7	H	P	
4.824	3.0	30.5	33.4	6.2	-35.5	0.0	0.0	34.6	54.0	-19.4	H	A	
4.824	3.0	40.4	33.4	6.2	-35.5	0.0	0.0	44.5	74.0	-29.5	V	P	
4.824	3.0	34.9	33.4	6.2	-35.5	0.0	0.0	39.1	54.0	-15.0	V	A	
Mid Ch, 2	437MH2	 E											
4.874	3.0	38.1	33.5	6.2	-35.5	0.0	0.0	42.4	74.0	-31.6	H	P	
4.874	3.0	29.2	33.5	6.2	-35.5	0.0	0.0	33.5	54.0	-20.5	H	A	
7.311	3.0	38.2	35.7	8.4	-35.4	0.0	0.0	46.8	74.0	-27.2	H	P	
7.311	3.0	28.9	35.7	8.4	-35.4	0.0	0.0	37.6	54.0	-16.4	H	A	
4.874	3.0	40.3	33.5	6.2	-35.5	0.0	0.0	44.5	74.0	-29.5	V	P	
4.874	3.0	34.6	33.5	6.2	-35.5	0.0	0.0	38.9	54.0	-15.1	V	A	
7.311	3.0	41.4	35.7	8.4	-35.4	0.0	0.0	50.0	74.0	-24.0	V	P	
7.311	3.0	35.1	35.7	8.4	-35.4	0.0	0.0	43.8	54.0	-10.2	V	A	
High Ch.	2462MF	T-2											
4.924	3.0	37.3	33.5	6.3	-35.5	0.0	0.0	41.6	74.0	-32.4	H	P	
4.924	3.0	26.5	33.5	6.3	-35.5	0.0	0.0	30.9	54.0	-23.1	H	A	
7.386	3.0	39.6	35.8	8.4	-35.5	0.0	0.0	48.4	74.0	-25.6	Н	P	
7.386	3.0	31.8	35.8	8.4	-35.5	0.0	0.0	40.6	54.0	-13.4	H	A	
1.924	3.0	37.2	33.5	6.3	-35.5	0.0	0.0	41.5	74.0	-32.5	V	P	
4.924	3.0	26.7	33.5	6.3	-35.5	0.0	0.0	31.1	54.0	-23.0	V	A	
7.386	3.0	41.7	35.8	8.4	-35.5	0.0	0.0	50.5	74.0	-23.5	V	P	
7.386	3.0	35.5	35.8	8.4	-35.5	0.0	0.0	44.3	54.0	-9.7	V	A	

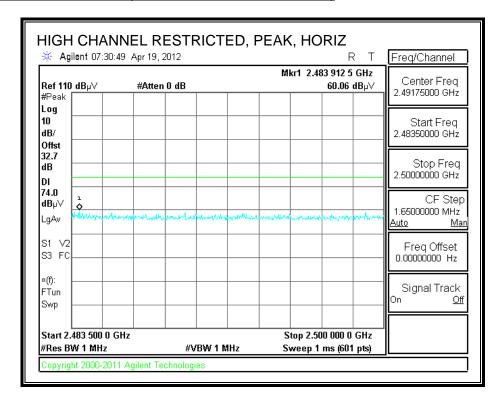

Note: No other emissions were detected above the system noise floor.

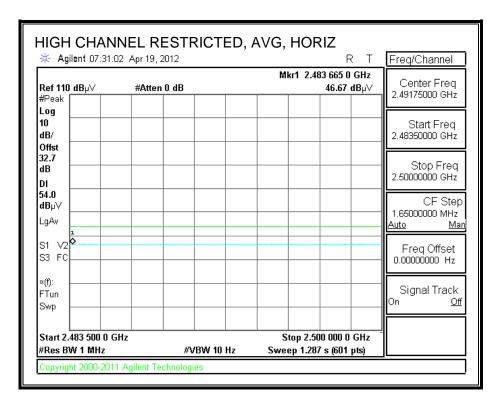
8.2.2. 802.11g MODE IN THE 2.4 GHz BAND

STANDARD COVER

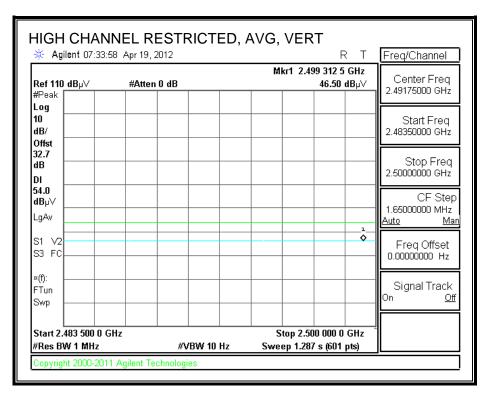

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




DATE: May 15, 2012

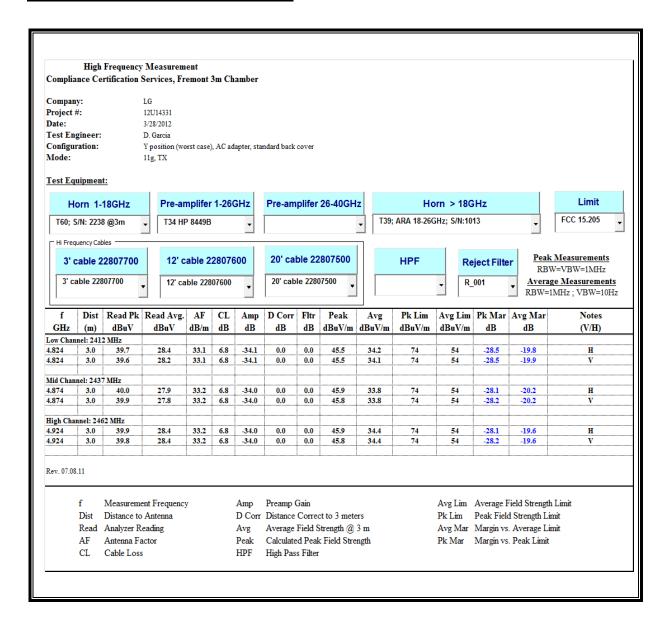

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

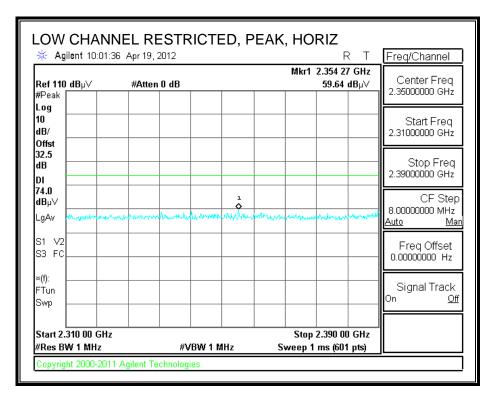


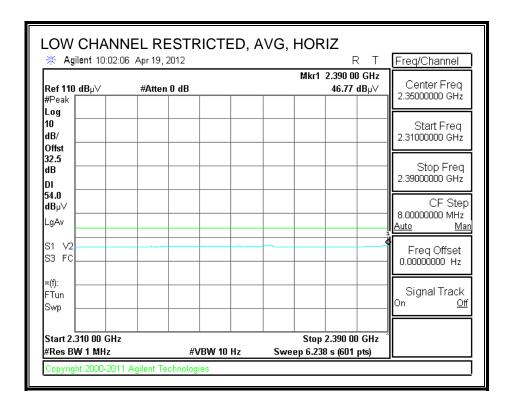
DATE: May 15, 2012

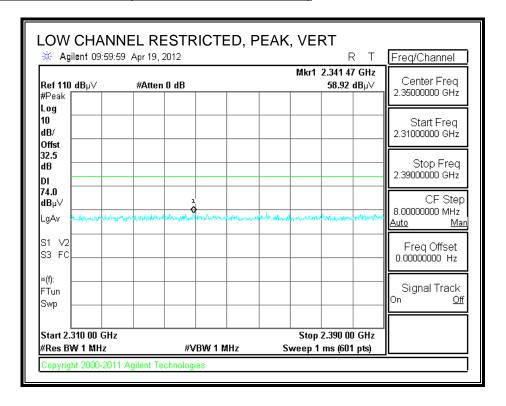
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

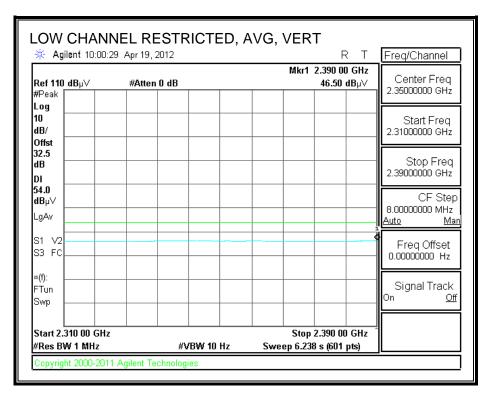


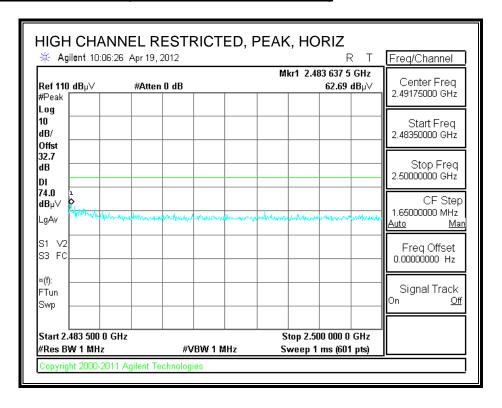
DATE: May 15, 2012

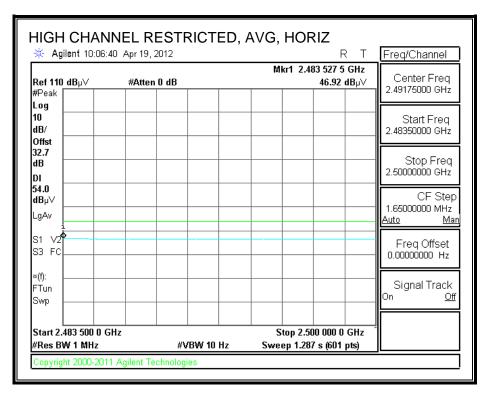

DATE: May 15, 2012 FCC ID: ZNFVS930


HARMONICS AND SPURIOUS EMISSIONS

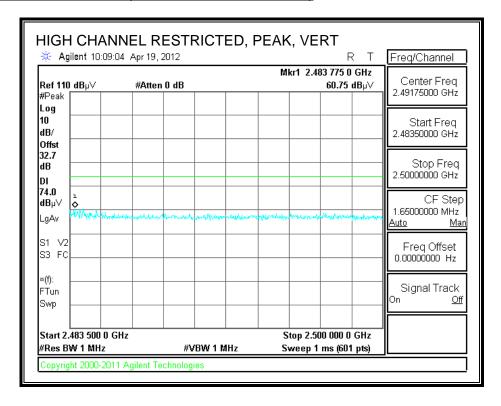

INDUCTIVE COVER

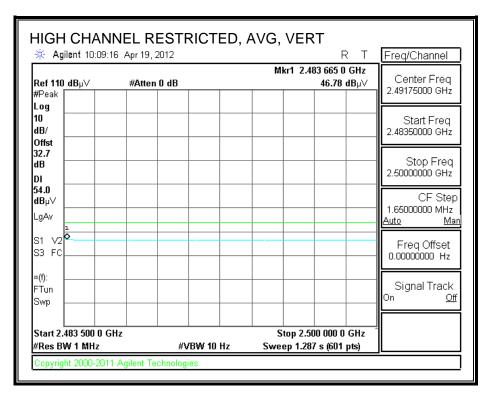

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



DATE: May 15, 2012


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



DATE: May 15, 2012

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: May 15, 2012

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

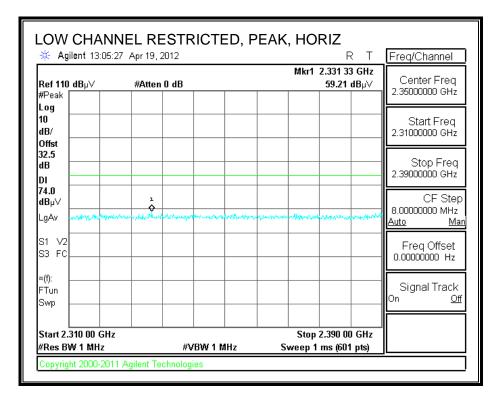
Compliance Certification Services, Fremont 5m Chamber

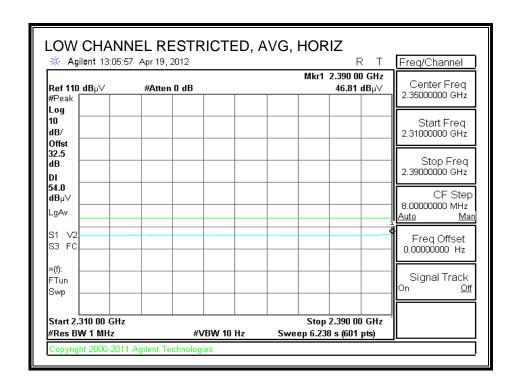
Test Engr: Chin Pang Date: 04/19/12 12U14331 Project #: LG Company:

FCC 15.247 Test Target:

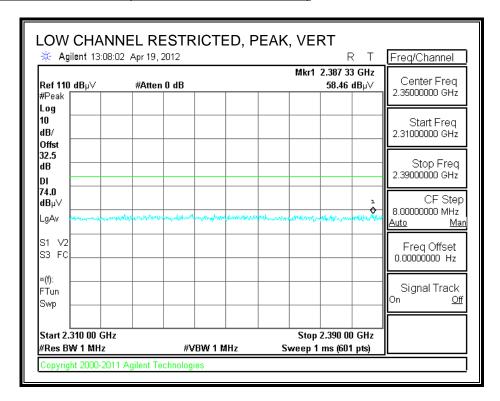
Configuration: EUT(Inductive Cover)

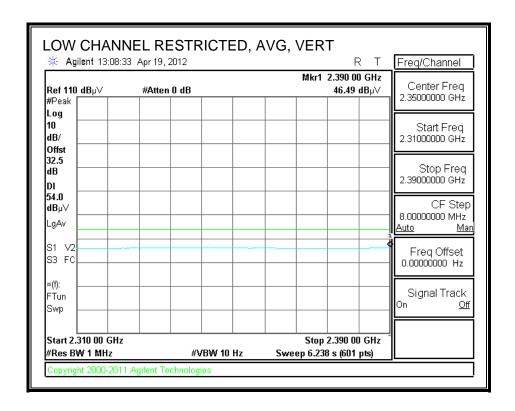
Mode Oper: g mode, TX

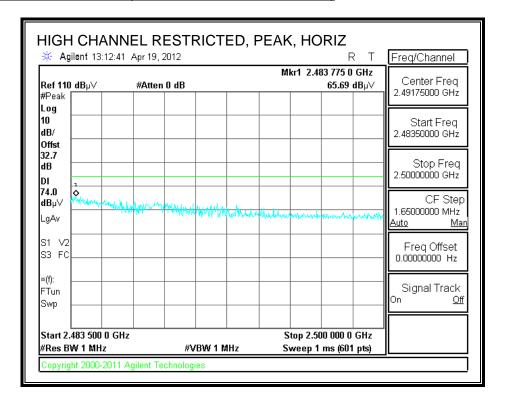

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

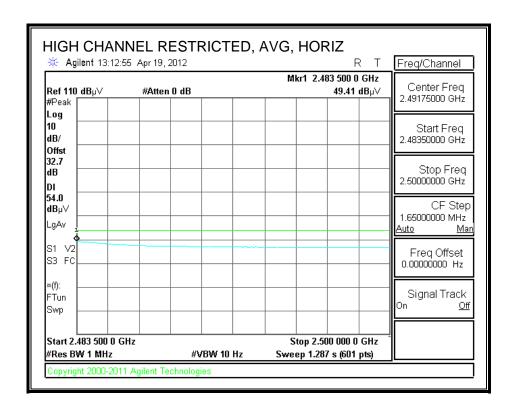

f GHz	Dist (m)	Read dBuV	AF dB/m	CL	Amp dB	D Corr dB		: :	Limit dBuV/m		Ant. Pol. V/H	Det. P/A/OP	Notes
	· (/		uD/M	uD	uD	uD	uD	uDuV/III	иБи V/М	uD	V/II	FINIQE	
Low Ch, 2			22.								•••		
4.824	3.0	37.4	33.4	6.2	-35.5	0.0	0.0	41.5	74.0	-32.5	V	P	
4.824	3.0	25.1	33.4	6.2	-35.5	0.0	0.0	29.2	54.0	-24.8	V	A	
4.824	3.0	37.1	33.4	6.2	-35.5	0.0	0.0	41.2	74.0	-32.8	H	P	
4.824	3.0	25.1	33.4	6.2	-35.5	0.0	0.0	29.2	54.0	-24.8	H	A	
Mid Ch, 2	437MH2	 Z			•••••								
4.874	3.0	36.7	33.5	6.2	-35.5	0.0	0.0	41.0	74.0	-33.0	V	P	
4.874	3.0	24.5	33.5	6.2	-35.5	0.0	0.0	28.7	54.0	-25.3	V	A	
7.311	3.0	36.1	35.7	8.4	-35.4	0.0	0.0	44.8	74.0	-29.2	V	P	
7.311	3.0	24.2	35.7	8.4	-35.4	0.0	0.0	32.9	54.0	-21.1	V	A	
4.874	3.0	37.4	33.5	6.2	-35.5	0.0	0.0	41.7	74.0	-32.4	H	P	
4.874	3.0	24.5	33.5	6.2	-35.5	0.0	0.0	28.8	54.0	-25.2	H	A	
7.311	3.0	36.0	35.7	8.4	-35.4	0.0	0.0	44.7	74.0	-29.3	H	P	
7.311	3.0	24.2	35.7	8.4	-35.4	0.0	0.0	32.8	54.0	-21.2	H	A	
High Ch,	2462MH	z											
1.924	3.0	36.9	33.5	6.3	-35.5	0.0	0.0	41.2	74.0	-32.8	V	P	
1.924	3.0	24.8	33.5	6.3	-35.5	0.0	0.0	29.1	54.0	-24.9	V	A	
7.386	3.0	36.5	35.8	8.4	-35.5	0.0	0.0	45.3	74.0	-28.7	V	P	
7.386	3.0	24.1	35.8	8.4	-35.5	0.0	0.0	32.9	54.0	-21.1	V	A	
4.924	3.0	37.4	33.5	6.3	-35.5	0.0	0.0	41.7	74.0	-32.3	H	P	
4.924	3.0	24.9	33.5	6.3	-35.5	0.0	0.0	29.2	54.0	-24.8	Н	A	
7.386	3.0	36.6	35.8	8.4	-35.5	0.0	0.0	45.4	74.0	-28.6	H	P	
7.386	3.0	24.2	35.8	8.4	-35.5	0.0	0.0	33.0	54.0	-21.0	H	A	
	· · · · · ·											•	

Note: No other emissions were detected above the system noise floor.

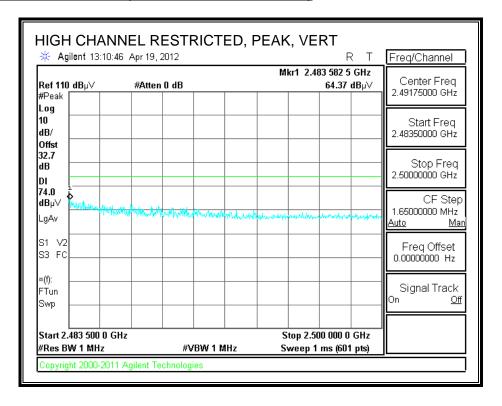

EUT ON INDUCTIVE CHARGER

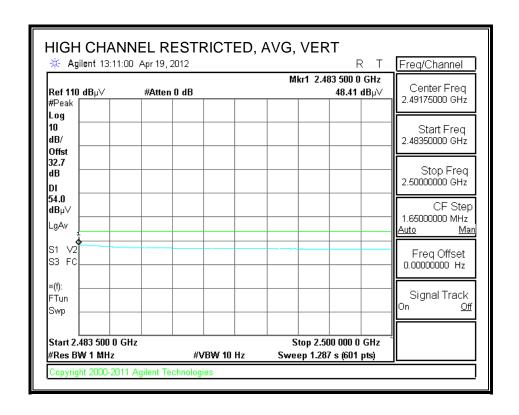

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



DATE: May 15, 2012


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



DATE: May 15, 2012

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: May 15, 2012

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

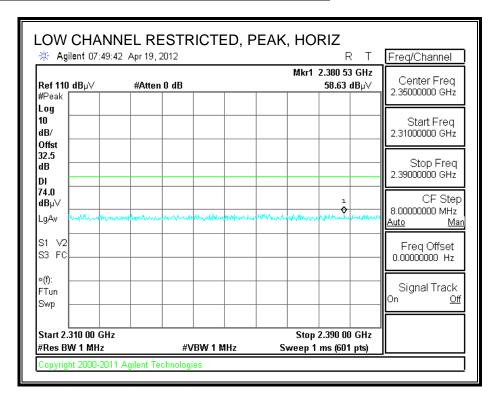
Test Engr: Chin Pang 04/19/12 Date: 12U14331 Project #: Company: LG Test Target: FCC 15.247

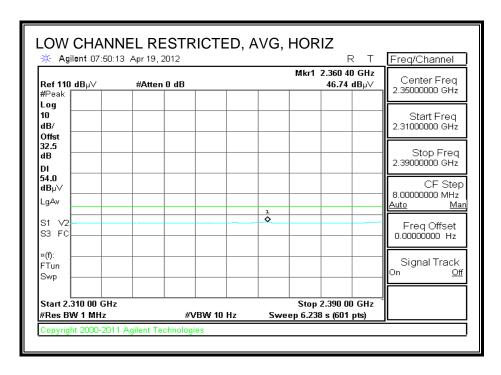
Configuration: EUT(On Inductive Charging Pad)

Mode Oper: g mode, TX

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m
>
> AF Antenna Factor Peak Calculated Peak Field Strength
>
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

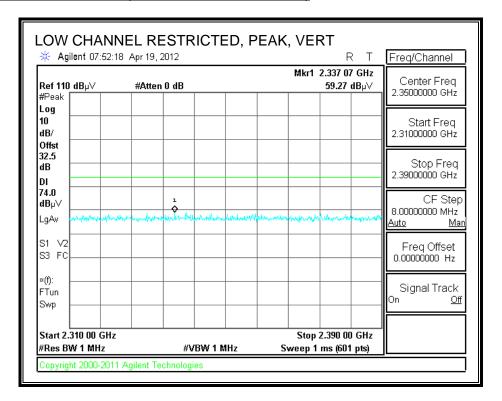
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
ow Ch, 2	412MHz												
4.824	3.0	37.0	33.4	6.2	-35.5	0.0	0.0	41.1	74.0	-32.9	V	P	
4.824	3.0	25.0	33.4	6.2	-35.5	0.0	0.0	29.2	54.0	-24.8	V	A	
4.824	3.0	37.1	33.4	6.2	-35.5	0.0	0.0	41.3	74.0	-32.7	H	P	
4.824	3.0	25.0	33.4	6.2	-35.5	0.0	0.0	29.1	54.0	-24.9	Н	A	
Mid Ch, 2	437MH2	<u>.</u>											
4.874	3.0	37.0	33.5	6.2	-35.5	0.0	0.0	41.3	74.0	-32.7	V	P	
4.874	3.0	24.5	33.5	6.2	-35.5	0.0	0.0	28.7	54.0	-25.3	V	A	
7.311	3.0	35.8	35.7	8.4	-35.4	0.0	0.0	44.5	74.0	-29.5	V	P	
7.311	3.0	24.3	35.7	8.4	-35.4	0.0	0.0	32.9	54.0	-21.1	V	A	
4.874	3.0	37.5	33.5	6.2	-35.5	0.0	0.0	41.7	74.0	-32.3	H	P	
4.874	3.0	24.5	33.5	6.2	-35.5	0.0	0.0	28.7	54.0	-25.3	H	A	
7.311	3.0	35.6	35.7	8.4	-35.4	0.0	0.0	44.3	74.0	-29.7	H	P	
7.311	3.0	24.0	35.7	8.4	-35.4	0.0	0.0	32.7	54.0	-21.3	H	A	
High Ch,	2462MH	[z											
4.924	3.0	37.7	33.5	6.3	-35.5	0.0	0.0	42.0	74.0	-32.0	V	P	
4.924	3.0	24.8	33.5	6.3	-35.5	0.0	0.0	29.1	54.0	-24.9	V	A	
7.386	3.0	36.5	35.8	8.4	-35.5	0.0	0.0	45.3	74.0	-28.7	V	P	
7.386	3.0	24.1	35.8	8.4	-35.5	0.0	0.0	32.9	54.0	-21.1	V	A	
4.924	3.0	37.5	33.5	6.3	-35.5	0.0	0.0	41.8	74.0	-32.2	H	P	
4.924	3.0	24.8	33.5	6.3	-35.5	0.0	0.0	29.1	54.0	-24.9	H	A	
7.386	3.0	36.4	35.8	8.4	-35.5	0.0	0.0	45.2	74.0	-28.8	H	P	
7.386	3.0	24.0	35.8	8.4	-35.5	0.0	0.0	32.8	54.0	-21.2	H	A	

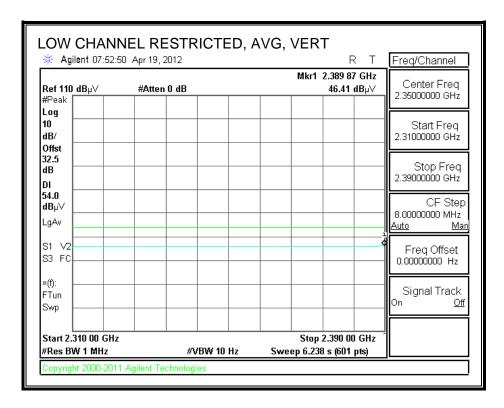

Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

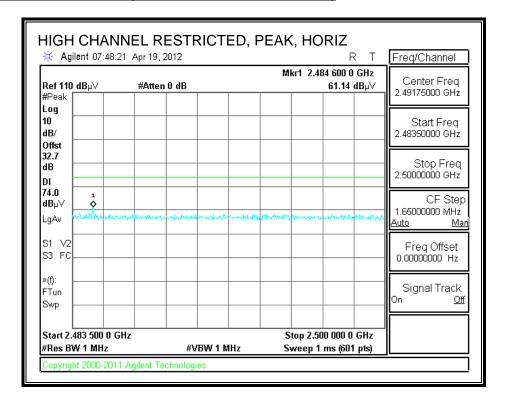
8.2.3. 802.11n HT20 SISO MODE IN THE 2.4 GHz BAND

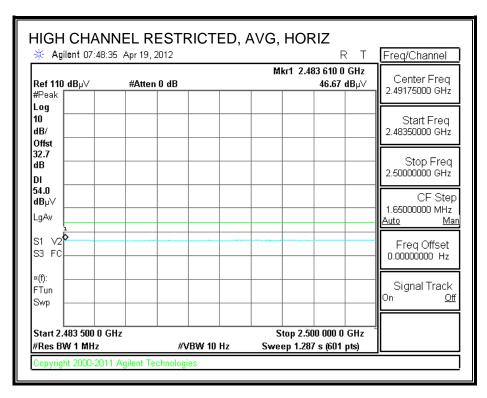
STANDARD COVER


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

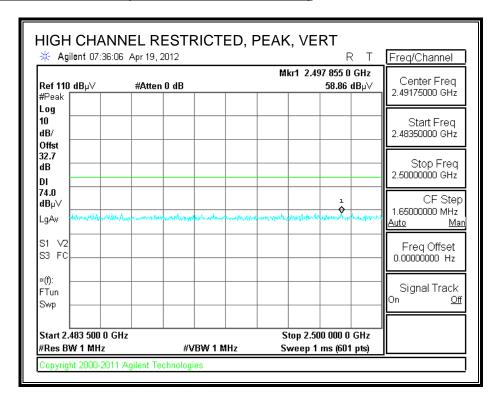


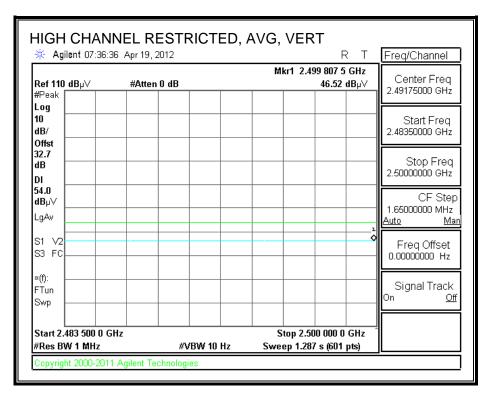
DATE: May 15, 2012


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



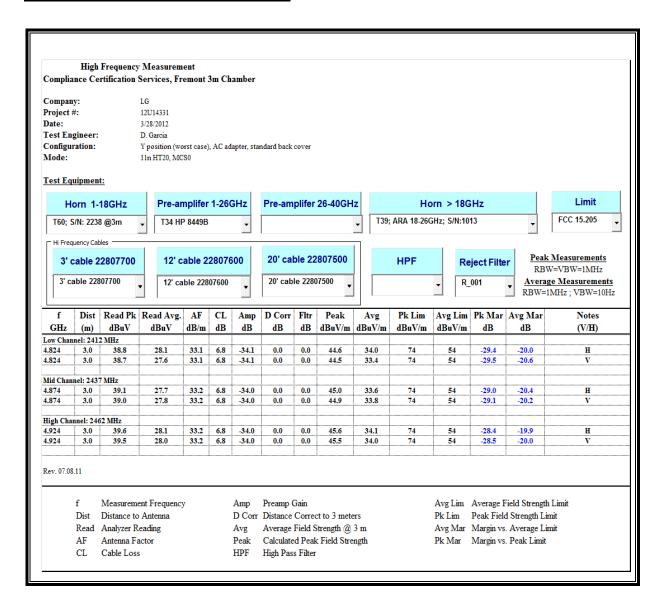
DATE: May 15, 2012


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

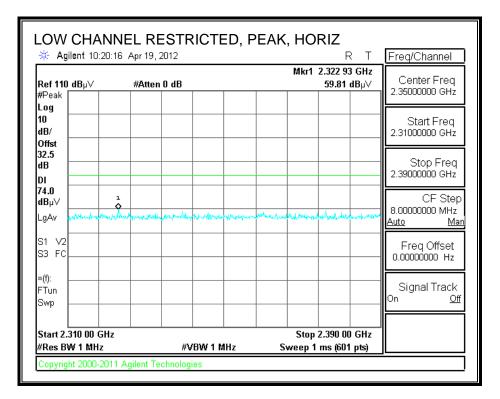


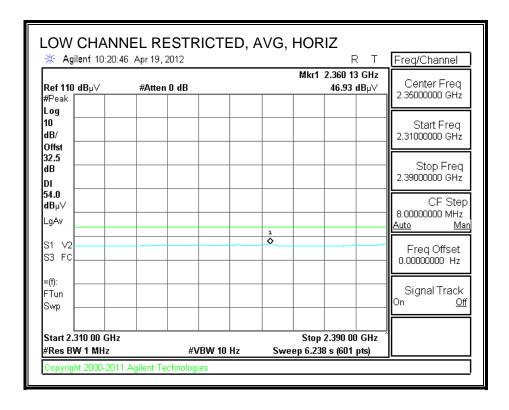
DATE: May 15, 2012

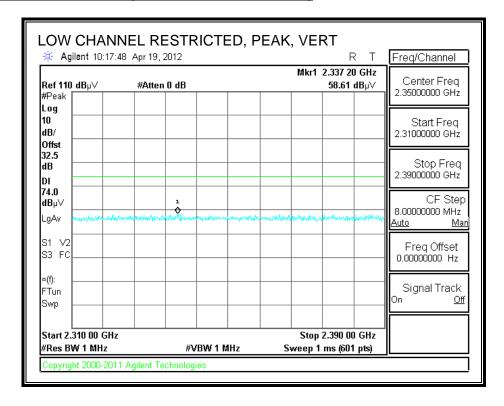
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

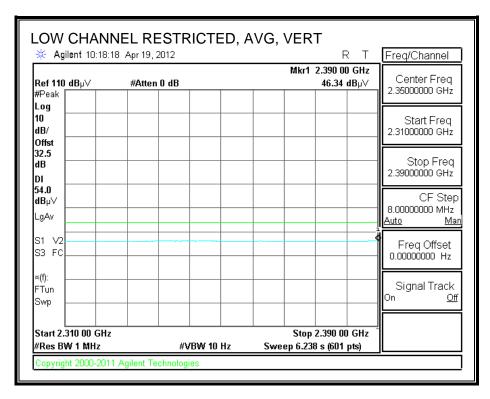


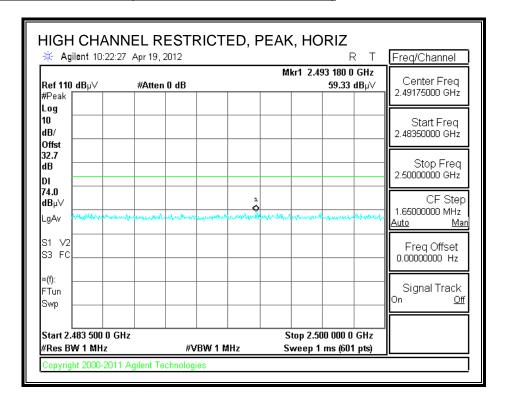
DATE: May 15, 2012

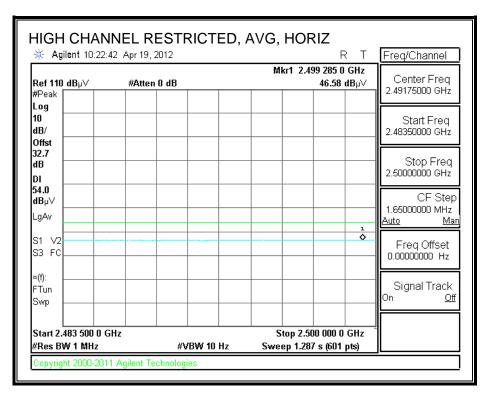

DATE: May 15, 2012 FCC ID: ZNFVS930


HARMONICS AND SPURIOUS EMISSIONS

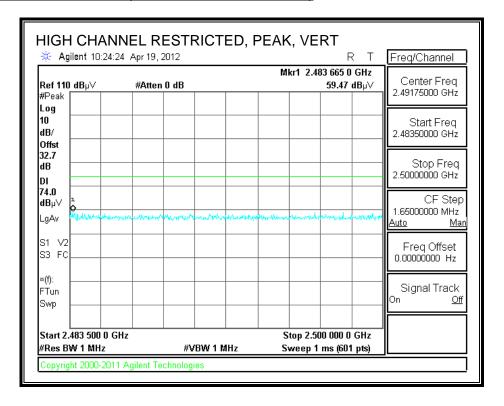

INDUCTIVE COVER

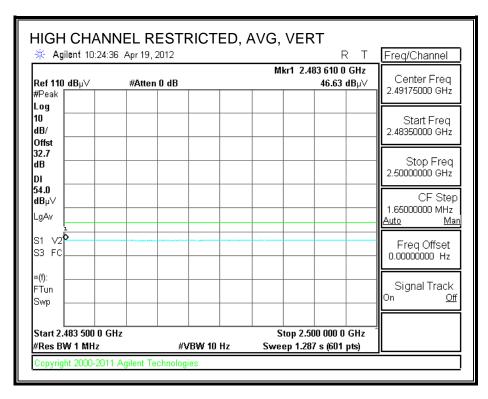

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



DATE: May 15, 2012


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



DATE: May 15, 2012

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: May 15, 2012

HARMONICS AND SPURIOUS EMISSIONS

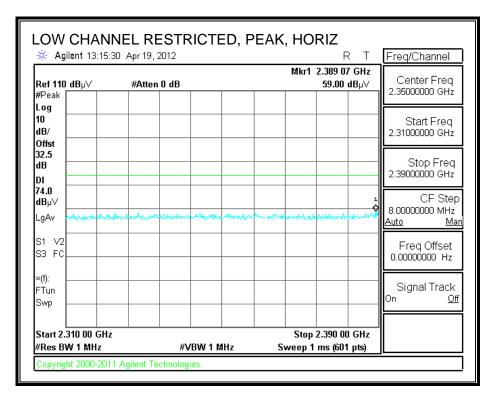
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang 04/19/12 Date: Project #: 12U14331 Company: LG Test Target: FCC 15.247

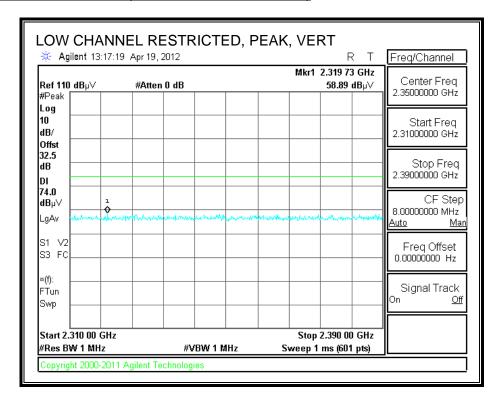
Configuration: EUT(Inductive Cover) Mode Oper: HT20 mode, TX

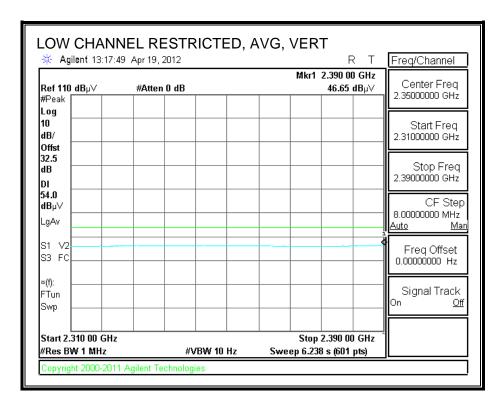
> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

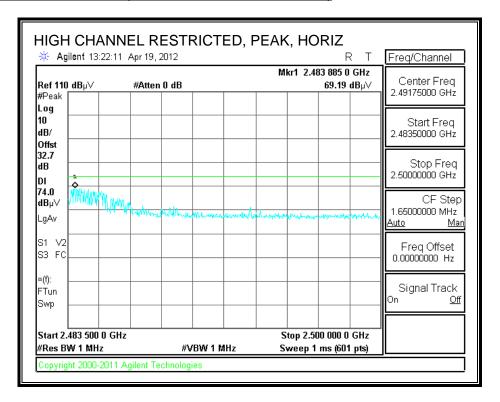

f	Dist	Read	AF	CL	•	D Corr		Corr.			Ant. Pol.		Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 2	2412MH:	z											
4.824	3.0	37.5	33.4	6.2	-35.5	0.0	0.0	41.7	74.0	-32.3	H	P	
4.824	3.0	25.2	33.4	6.2	-35.5	0.0	0.0	29.3	54.0	-24.7	H	A	
4.824	3.0	37.3	33.4	6.2	-35.5	0.0	0.0	41.5	74.0	-32.5	V	P	
4.824	3.0	25.2	33.4	6.2	-35.5	0.0	0.0	29.3	54.0	-24.7	V	A	
Mid Ch, 2	437MH2	z											
4.874	3.0	36.9	33.5	6.2	-35.5	0.0	0.0	41.2	74.0	-32.8	H	P	
4.874	3.0	24.5	33.5	6.2	-35.5	0.0	0.0	28.7	54.0	-25.3	H	A	
7.311	3.0	35.9	35.7	8.4	-35.4	0.0	0.0	44.5	74.0	-29.5	H	P	
7.311	3.0	24.1	35.7	8.4	-35.4	0.0	0.0	32.7	54.0	-21.3	H	A	
4.874	3.0	36.3	33.5	6.2	-35.5	0.0	0.0	40.5	74.0	-33.5	V	P	
4.874	3.0	24.4	33.5	6.2	-35.5	0.0	0.0	28.7	54.0	-25.3	V	A	
7.311	3.0	35.7	35.7	8.4	-35.4	0.0	0.0	44.3	74.0	-29.7	V	P	
7.311	3.0	24.0	35.7	8.4	-35.4	0.0	0.0	32.7	54.0	-21.3	V	A	
High Ch.	2462MH	Tz											
4.924	3.0	37.0	33.5	6.3	-35.5	0.0	0.0	41.4	74.0	-32.6	H	P	
4.924	3.0	24.9	33.5	6.3	-35.5	0.0	0.0	29.2	54.0	-24.8	H	A	
7.386	3.0	36.4	35.8	8.4	-35.5	0.0	0.0	45.2	74.0	-28.8	H	P	
7.386	3.0	24.1	35.8	8.4	-35.5	0.0	0.0	32.9	54.0	-21.1	H	A	
4.924	3.0	37.2	33.5	6.3	-35.5	0.0	0.0	41.5	74.0	-32.5	V	P	
4.924	3.0	25.0	33.5	6.3	-35.5	0.0	0.0	29.3	54.0	-24.7	V	A	
7.386	3.0	36.3	35.8	8.4	-35.5	0.0	0.0	45.1	74.0	-28.9	V	P	
7.386	3.0	24.1	35.8	8.4	-35.5	0.0	0.0	32.9	54.0	-21.1	V	A	

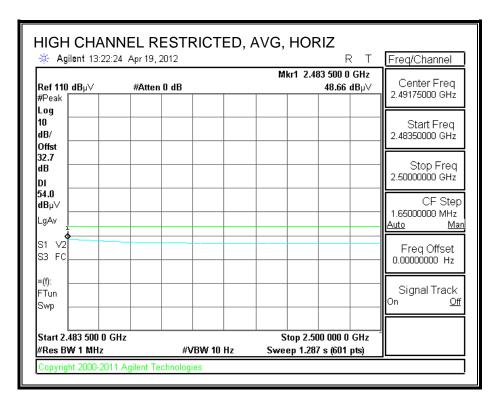
Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

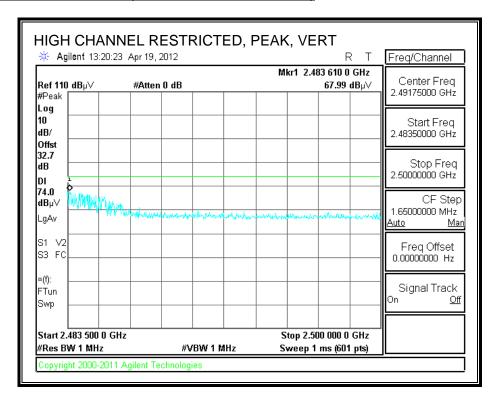

INDUCTIVE CHARGER WITH INDUCTIVE COVER

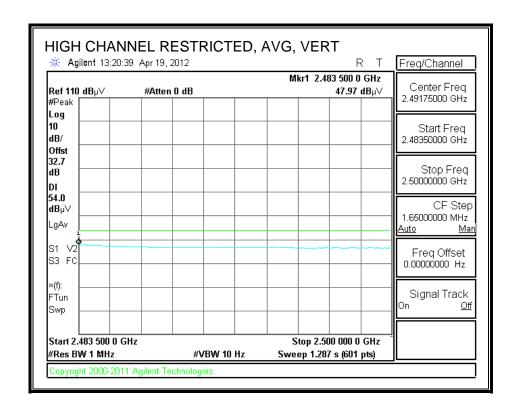

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



DATE: May 15, 2012


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



DATE: May 15, 2012

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: May 15, 2012

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

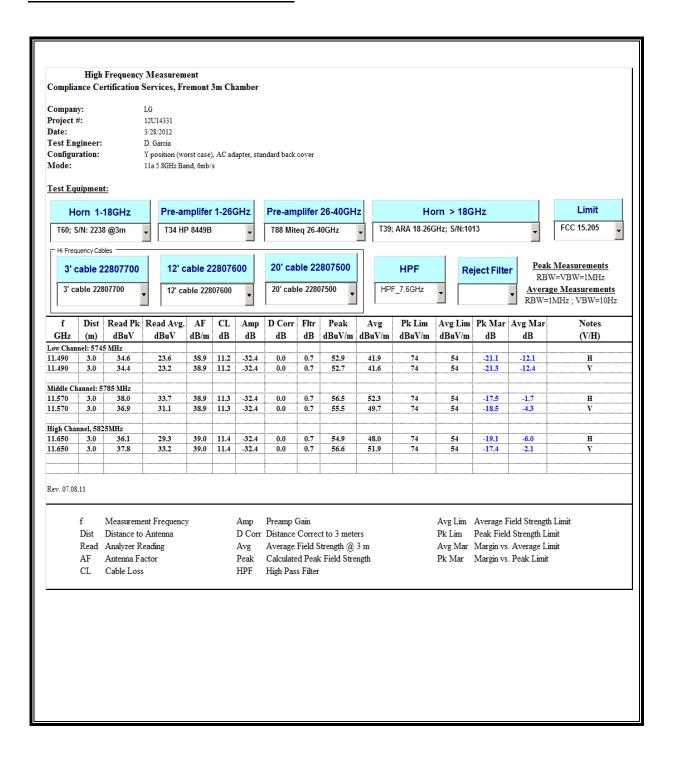
Test Engr: Chin Pang 04/19/12 Date: 12U14331 Project #: Company: LGTest Target: FCC 15.247

Configuration: EUT(On Inductive Charging Pad)

Mode Oper: HT20, TX

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

f	Dist	Read	AF	CL	Amp	D Corr					Ant. Pol.		Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 2	412MH:	Z											
4.824	3.0	37.0	33.4	6.2	-35.5	0.0	0.0	41.1	74.0	-32.9	H	P	
4.824	3.0	25.0	33.4	6.2	-35.5	0.0	0.0	29.1	54.0	-24.9	H	A	
4.824	3.0	37.6	33.4	6.2	-35.5	0.0	0.0	41.8	74.0	-32.2	V	P	
4.824	3.0	25.0	33.4	6.2	-35.5	0.0	0.0	29.1	54.0	-24.9	V	A	
d Ch, 243	7MHz												
4.874	3.0	36.7	33.5	6.2	-35.5	0.0	0.0	40.9	74.0	-33.1	H	P	
4.874	3.0	24.4	33.5	6.2	-35.5	0.0	0.0	28.6	54.0	-25.4	H	A	
7.311	3.0	36.0	35.7	8.4	-35.4	0.0	0.0	44.7	74.0	-29.3	H	P	
7.311	3.0	24.0	35.7	8.4	-35.4	0.0	0.0	32.7	54.0	-21.3	H	A	
4.874	3.0	36.2	33.5	6.2	-35.5	0.0	0.0	40.4	74.0	-33.6	V	P	
4.874	3.0	24.4	33.5	6.2	-35.5	0.0	0.0	28.6	54.0	-25.4	V	A	
7.311	3.0	36.8	35.7	8.4	-35.4	0.0	0.0	45.5	74.0	-28.5	V	P	
7.311	3.0	24.0	35.7	8.4	-35.4	0.0	0.0	32.7	54.0	-21.3	V	A	
High Ch.	2462MF	7											
4.924	3.0	36.7	33.5	6.3	-35.5	0.0	0.0	41.0	74.0	-33.0	Н	P	
4.924	3.0	24.8	33.5	6.3	-35.5	0.0	0.0	29.2	54.0	-24.8	Н	A	
7.386	3.0	37.2	35.8	8.4	-35.5	0.0	0.0	46.0	74.0	-28.0	Н	P	
7.386	3.0	24.1	35.8	8.4	-35.5	0.0	0.0	32.9	54.0	-21.1	H	A	
4.924	3.0	36.9	33.5	6.3	-35.5	0.0	0.0	41.2	74.0	-32.8	V	P	
4.924	3.0	24.8	33.5	6.3	-35.5	0.0	0.0	29.2	54.0	-24.8	V	A	
7.386	3.0	36.3	35.8	8.4	-35.5	0.0	0.0	45.1	74.0	-28.9	v	P	
7.386	3.0	24.1	35.8	8.4	-35.5	0.0	0.0	32.9	54.0	-21.1	V	A	
										·		···········	


Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.4. 802.11a MODE IN THE 5.8 GHz BAND

STANDARD COVER

HARMONICS AND SPURIOUS EMISSIONS

DATE: May 15, 2012

INDUCTIVE COVER

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Test Engr: Dennis Huang Date: 04/11/12 12U14331 Project #: LG Company: Test Target: FCC 15.247

Mode Oper: 802.11a Tx Mode (Inductive Cover)

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Char	nnel - 57	45MHz											
11.490	3.0	36.3	38.9	11.2	-33.1	0.0	0.7	54.0	74.0	-20.0	V	P	
11.490	3.0	27.6	38.9	11.2	-33.1	0.0	0.7	45.3	54.0	-8.7	V	A	
11.490	3.0	39.1	38.9	11.2	-33.1	0.0	0.7	56.8	74.0	-17.2	H	P	
11.490	3.0	35.6		11.2	-33.1	0.0	0.7	53.3	54.0	-0.7	H	A	
Mid Char	inel - 57	85MHz											
11.570	3.0	34.9	38.9	11.3	-33.0	0.0	0.7	52.9	74.0	-21.1	V	P	
11.570	3.0	26.4	38.9	11.3	-33.0	0.0	0.7	44.4	54.0	-9.6	V	A	
11.570	3.0	38.1	38.9	11.3	-33.0	0.0	0.7	56.1	74.0	-17.9	H	P	
11.570	3.0	34.0	38.9	11.3	-33.0	0.0	0.7	52.0	54.0	-2.0	H	A	
High Cha	innel - 5	825MHz											
11.650	3.0	36.1	39.0	11.4	-32.9	0.0	0.7	54.3	74.0	-19.7	V	P	
11.650	3.0	30.7	39.0	11.4	-32.9	0.0	0.7	48.9	54.0	-5.1	V	A	
11.650	3.0	38.7	39.0	11.4	-32.9	0.0	0.7	57.0	74.0	-17.0	H	P	
11.650	3.0	35.1	39.0	11.4	-32.9	0.0	0.7	53.3	54.0	-0.7	H	A	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

INDUCTIVE CHARGER WITH INDUCTIVE COVER

HARMONICS AND SPURIOUS EMISSIONS (High Channel)

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang 04/19/12 Date: 12U14331 Project #: Company: LG FCC 15.247 Test Target:

Configuration: EUT(Inductive Charging Pad) Mode Oper: 5.8GHz Band, a mode, TX

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL		: :		: :			Ant. Pol.		Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch,	745MH	z											
11.490	3.0	35.8	38.8	10.7	-35.5	0.0	0.7	50.6	74.0	-23.4	V	P	
11.490	3.0	26.8	38.8	10.7	-35.5	0.0	0.7	41.5	54.0	-12.5	V	A	
11.490	3.0	37.4	38.8	10.7	-35.5	0.0	0.7	52.1	74.0	-21.9	H	P	
11.490	3.0	31.1	38.8	10.7	-35.5	0.0	0.7	45.8	54.0	-8.2	H	A	
Mid Ch, 5	785MH2	Z											
11.570	3.0	36.9	38.9	10.8	-35.5	0.0	0.7	51.8	74.0	-22.2	V	P	
11.570	3.0	28.8	38.9	10.8	-35.5	0.0	0.7	43.7	54.0	-10.3	V	A	
11.570	3.0	37.9	38.9	10.8	-35.5	0.0	0.7	52.8	74.0	-21.2	H	P	
11.570	3.0	31.1	38.9	10.8	-35.5	0.0	0.7	46.0	54.0	-8.0	H	A	
										į			
11.650	3.0	37.0	39.0	10.9	-35.5	0.0	0.7	52.1	74.0	-21.9	V	P	
11.650	3.0	30.8	39.0	10.9	-35.5	0.0	0.7	45.9	54.0	-8.1	V	A	
11.650	3.0	38.7	39.0	10.9	-35.5	0.0	0.7	53.8	74.0	-20.2	H	P	
11.650	3.0	32.8	39.0	10.9	-35.5	0.0	0.7	47.9	54.0	-6.1	H	A	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.5. 802.11n HT20 MODE IN THE 5.8 GHz BAND

STANDARD COVER

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Chin Pang Test Engr: 04/19/12 Date: 12U14331 LG Project #: Company: Test Target: FCC 15.247

Configuration: EUT(Standard Cover)

Mode Oper: 5.8GHz Band, HT20 mode, TX

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter

Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	$dBuV/\mathbf{m}$	dΒ	V/H	P/A/QP	
745MH:	z											
3.0	35.6	38.8	10.7	-35.5	0.0	0.7	50.3	74.0	-23.7	V	P	
3.0	27.5	38.8	10.7	-35.5	0.0	0.7	42.3	54.0	-11.7	V	A	
3.0	37.4	38.8	10.7	-35.5	0.0	0.7	52.1	74.0	-21.9	H	P	
3.0	29.8	38.8	10.7	-35.5	0.0	0.7	44.5	54.0	-9.5	H	A	
785MH:	Z											
3.0	36.5	38.9	10.8	-35.5	0.0	0.7	51.4	74.0	-22.6	V	P	
3.0	29.7	38.9	10.8	-35.5	0.0	0.7	44.6	54.0	-9.4	V	A	
3.0	36.9	38.9	10.8	-35.5	0.0	0.7	51.8	74.0	-22.2	H	P	
3.0	30.2	38.9	10.8	-35.5	0.0	0.7	45.1	54.0	-8.9	H	A	
5825MI	[z											
3.0	36.9	39.0	10.9	-35.5	0.0	0.7	52.0	74.0	-22.0	V	P	
3.0	29.2	39.0	10.9	-35.5	0.0	0.7	44.2	54.0	-9.8	V	A	
3.0	36.6	39.0	10.9	-35.5	0.0	0.7	51.7	74.0	-22.3	H	P	
3.0	30.2	39.0	10.9	-35.5	0.0	0.7	45.3	54.0	-8.7	H	A	
	(m) 745MH: 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	(m) dBuV 745MHz 3.0 35.6 3.0 27.5 3.0 37.4 3.0 29.8 785MHz 3.0 36.5 3.0 29.7 3.0 36.9 3.0 30.2 5825MHz 3.0 36.9 3.0 36.9 3.0 36.9 3.0 36.9 3.0 36.9	(m) dBuV dB/m 745MHz 3.0 35.6 38.8 3.0 27.5 38.8 3.0 37.4 38.8 3.0 29.8 38.8 *** *** *** *** *** *** ***	(m) dBuV dB/m dB 745MHz 3.0 35.6 38.8 10.7 3.0 27.5 38.8 10.7 3.0 37.4 38.8 10.7 3.0 29.8 38.8 10.7 85MHz 3.0 36.5 38.9 10.8 3.0 29.7 38.9 10.8 3.0 36.9 38.9 10.8 5825MHz 3.0 36.9 39.0 10.9 3.0 29.2 39.0 10.9 3.0 36.6 39.0 10.9	(m) dBuV dB/m dB dB 745MHz 3.0 35.6 38.8 10.7 35.5 3.0 27.5 38.8 10.7 35.5 3.0 37.4 38.8 10.7 35.5 3.0 29.8 38.8 10.7 35.5 8581Hz 3.0 36.5 38.9 10.8 35.5 3.0 29.7 38.9 10.8 35.5 3.0 36.9 38.9 10.8 35.5 3.0 30.2 38.9 10.8 35.5 \$825MHz 3.0 36.9 38.9 10.8 35.5 \$825MHz 3.0 36.9 38.9 10.8 35.5 \$825MHz 3.0 36.9 39.0 10.9 35.5 3.0 29.2 39.0 10.9 35.5 3.0 36.6 39.0 10.9 35.5	(m) dBuV dB/m dB dB dB 745MHz 30 35.6 38.8 10.7 -35.5 0.0 3.0 27.5 38.8 10.7 -35.5 0.0 3.0 37.4 38.8 10.7 -35.5 0.0 3.0 29.8 38.8 10.7 -35.5 0.0 785MHz 30 36.5 38.9 10.8 -35.5 0.0 3.0 36.5 38.9 10.8 -35.5 0.0 3.0 36.9 38.9 10.8 -35.5 0.0 3.0 36.9 38.9 10.8 -35.5 0.0 3.0 36.9 38.9 10.8 -35.5 0.0 3.0 36.9 39.0 10.9 -35.5 0.0 3.0 29.2 39.0 10.9 -35.5 0.0 3.0 36.6 39.0 10.9 -35.5 0.0	(m) dBuV dB/m dB <	(m) dBuV dB/m dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB d	(m) dBuV dB/m dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB d	(m) dBuV dB/m dB dB dB dB dB dB dB dB uV/m dBuV/m dBuV/m dB 745MHz 3.0 35.6 38.8 10.7 -35.5 0.0 0.7 50.3 74.0 -23.7 3.0 27.5 38.8 10.7 -35.5 0.0 0.7 42.3 54.0 -11.7 3.0 37.4 38.8 10.7 -35.5 0.0 0.7 52.1 74.0 -21.9 3.0 29.8 38.8 10.7 -35.5 0.0 0.7 44.5 54.0 -9.5 785MHz 3.0 36.5 38.9 10.8 -35.5 0.0 0.7 51.4 74.0 -22.6 3.0 36.9 38.9 10.8 -35.5 0.0 0.7 51.4 74.0 -22.2 3.0 36.9 38.9 10.8 -35.5 0.0 0.7 51.8 74.0 -22.2	(m) dBuV dB/m dB dB dB dB dB dBuV/m dBuV/m dB V/H 745MHz 3.0 35.6 38.8 10.7 -35.5 0.0 0.7 50.3 74.0 -23.7 V 3.0 27.5 38.8 10.7 -35.5 0.0 0.7 42.3 54.0 -11.7 V 3.0 37.4 38.8 10.7 -35.5 0.0 0.7 52.1 74.0 -21.9 H 3.0 29.8 38.8 10.7 -35.5 0.0 0.7 44.5 54.0 -9.5 H 3.0 36.5 38.9 10.8 -35.5 0.0 0.7 51.4 74.0 -22.6 V 3.0 36.9 38.9 10.8 -35.5 0.0 0.7 51.4 74.0 -22.6 V 3.0 36.9 38.9 10.8 -35.5 0.0 0.7 51.8 74.0 -22.2 H 3.0 36.9 38.9 10.8 -35.5 0.0 0.7 45.1 54.0 -8.9 H \$825MHz 3.0 36.9 39.0 10.9 -35.5 0.0 0.7 52.0 74.0 -22.0 V 3.0 30 29.2 39.0 10.9 -35.5 0.0 0.7 44.2 54.0 -9.8 V 3.0 36.6 39.0 10.9 -35.5 0.0 0.7 51.7 74.0 -22.3 H	(m) dBuV dB/m dB dB dB dB dB dBuV/m dBuV/m dB V/H P/A/QP 745MHz 3.0 35.6 38.8 10.7 -35.5 0.0 0.7 50.3 74.0 -23.7 V P 3.0 37.4 38.8 10.7 -35.5 0.0 0.7 42.3 54.0 -11.7 V A 3.0 37.4 38.8 10.7 -35.5 0.0 0.7 52.1 74.0 -21.9 H P 3.0 29.8 38.8 10.7 -35.5 0.0 0.7 44.5 54.0 -9.5 H A 858MHz 3.0 36.5 38.9 10.8 -35.5 0.0 0.7 51.4 74.0 -22.6 V P 3.0 30.9 38.9 10.8 -35.5 0.0 0.7 51.4 74.0 -22.6 V P 3.0 36.9 38.9 10.8 -35.5 0.0 0.7 51.8 74.0 -22.2 H P 3.0 30.9 36.9 38.9 10.8 -35.5 0.0 0.7 51.8 74.0 -22.2 H P 3.0 30.9 36.9 38.9 10.8 -35.5 0.0 0.7 45.1 54.0 -8.9 H A S825MHz 3.0 36.9 39.0 10.9 -35.5 0.0 0.7 44.2 54.0 -9.8 V A 3.0 30.6 39.0 10.9 -35.5 0.0 0.7 44.2 54.0 -9.8 V A 3.0 36.6 39.0 10.9 -35.5 0.0 0.7 51.7 74.0 -22.3 H P

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: May 15, 2012

FCC ID: ZNFVS930

This report shall not be reproduced except in full, without the written approval of UL CCS.

INDUCTIVE COVER

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Test Engr: Dennis Huang 04/11/12 Date: 12U14331 Project #: Company: LG FCC 15.47 Test Target:

Mode Oper: 802.11n HT20 Tx Mode (Inductive Cover)

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Char	nel - 57	45MHz											
11.490	3.0	37.6	38.9	11.2	-33.1	0.0	0.7	55.3	74.0	-18.7	V	P	
11.490	3.0	31.6	38.9	11.2	-33.1	0.0	0.7	49.3	54.0	-4.7	V	A	
11.490	3.0	39.0	38.9	11.2	-33.1	0.0	0.7	56.7	74.0	-17.3	H	P	
11.490	3.0	33.4	38.9	11.2	-33.1	0.0	0.7	51.1	54.0	-2.9	H	A	
Mid Char	nel - 57	85MHz											
11.570	3.0	38.0	38.9	11.3	-33.0	0.0	0.7	56.0	74.0	-18.0	V	P	
11.570	3.0	31.3	38.9	11.3	-33.0	0.0	0.7	49.3	54.0	-4.7	V	A	
11.570	3.0	38.3	38.9	11.3	-33.0	0.0	0.7	56.3	74.0	-17.7	H	P	
11.570	3.0	31.8	38.9	11.3	-33.0	0.0	0.7	49.8	54.0	-4.2	H	A	
High Cha	nnel - 5	825MHz											
11.650	3.0	38.0	39.0	11.4	-32.9	0.0	0.7	56.3	74.0	-17.7	V	P	
11.650	3.0	31.1	39.0	11.4	-32.9	0.0	0.7	49.3	54.0	-4.7	V	A	
11.650	3.0	39.4	39.0	11.4	-32.9	0.0	0.7	57.6	74.0	-16.4	H	P	
11.650	3.0	34.1	39.0	11.4	-32.9	0.0	0.7	52.4	54.0	-1.6	H	A	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: May 15, 2012 FCC ID: ZNFVS930

INDUCTIVE CHARGER WITH INDUCTIVE COVER

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang
Date: 04/19/12
Project #: 12U14331
Company: LG
Test Target: FCC 15.247

Configuration: EUT(Inductive Charger Pad)
Mode Oper: 5.8GHz Band, HT20, TX

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit

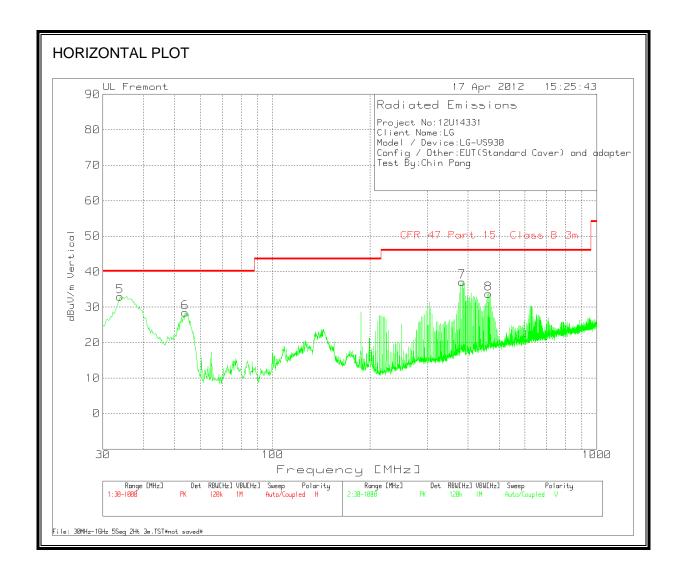
Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

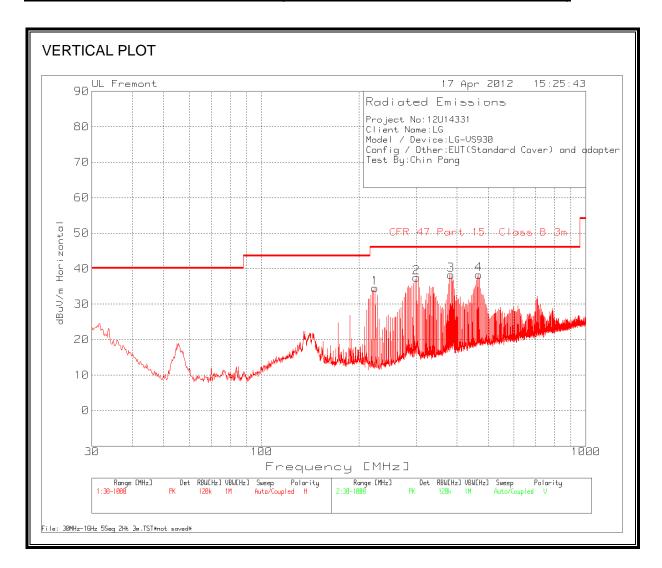
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit

CL Cable Loss HPF High Pass Filter

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		:	Limit dBuV/m	: :	Ant. Pol. V/H	Det. P/A/QP	Notes
Low Ch,	745MH:	z											
11.490	3.0	37.5	38.8	10.7	-35.5	0.0	0.7	52.2	74.0	-21.8	H	P	
11.490	3.0	30.7	38.8	10.7	-35.5	0.0	0.7	45.5	54.0	-8.5	H	A	
11.490	3.0	35.2	38.8	10.7	-35.5	0.0	0.7	49.9	74.0	-24.1	V	P	
11.490	3.0	26.6	38.8	10.7	-35.5	0.0	0.7	41.3	54.0	-12.7	V	A	
Mid Ch, 5	785MH2	Z											
11.570	3.0	37.6	38.9	10.8	-35.5	0.0	0.7	52.5	74.0	-21.5	H	P	
11.570	3.0	32.3	38.9	10.8	-35.5	0.0	0.7	47.2	54.0	-6.8	H	A	
11.570	3.0	36.3	38.9	10.8	-35.5	0.0	0.7	51.2	74.0	-22.8	V	P	
11.570	3.0	28.0	38.9	10.8	-35.5	0.0	0.7	42.9	54.0	-11.1	V	A	
High Ch,	5825MF	Iz											
11.650	3.0	38.8	39.0	10.9	-35.5	0.0	0.7	53.9	74.0	-20.1	H	P	
11.650	3.0	33.3	39.0	10.9	-35.5	0.0	0.7	48.4	54.0	-5.6	H	A	
11.650	3.0	38.1	39.0	10.9	-35.5	0.0	0.7	53.2	74.0	-20.8	V	P	
11.650	3.0	30.4	39.0	10.9	-35.5	0.0	0.7	45.4	54.0	-8.6	V	A	

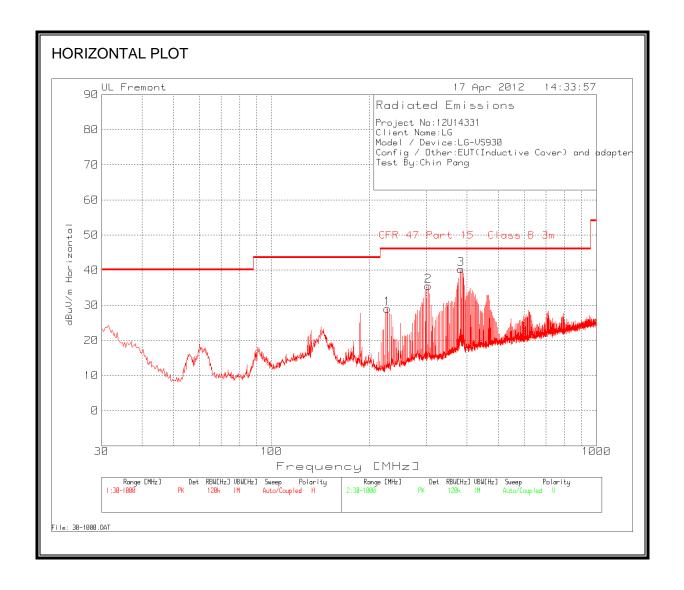

Rev. 4.1.2.7

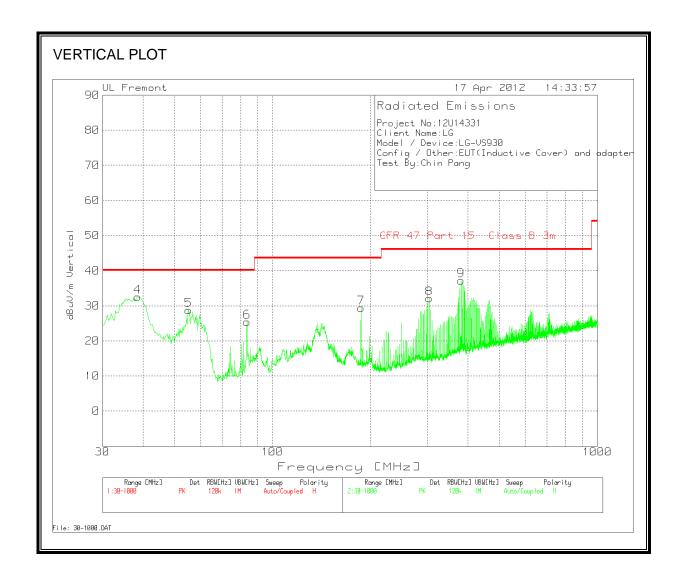
Note: No other emissions were detected above the system noise floor.


9. WORST-CASE BELOW 1 GHz

STANDARD COVER

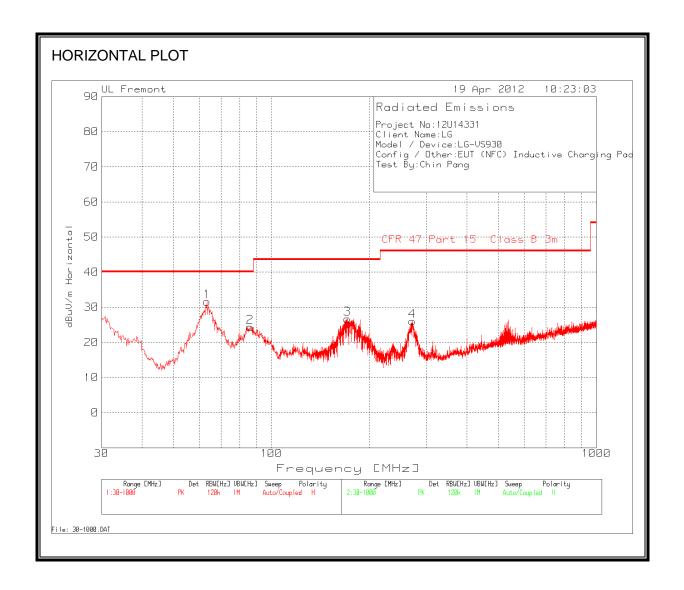
SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

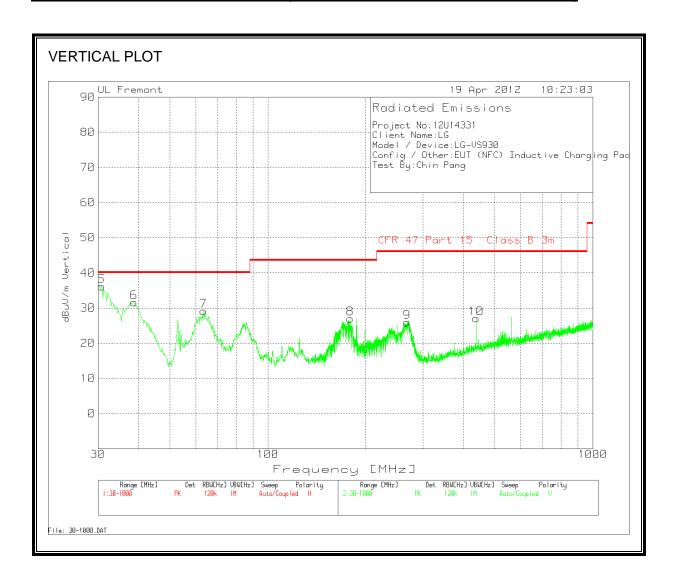

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)


Project No:12l	J14331								
Client Name:L	G								
Model / Device	e:LG-VS930								
Config / Other	:EUT(Standard	Cover) and a	dapter						
Test By:Chin P	ang								
Range 1 30 - 10	00MHz								
Test Frequency	Meter Reading	Detector	25MHz-1GHz ChmbrA Amplified.TX [dB]	T243 Sunol Bilog.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
223.8449	49.94	PK	-26	10.6	34.54	46	-11.46	100	Horz
300.8014	50.08	PK	-25.8	13.2	37.48	46	-8.52	100	Horz
383.9608	48.56	PK	-25.3	15	38.26	46	-7.74	100	Horz
467.3141	46.31	PK	-25.1	17.1	38.31	46	-7.69	200	Horz
Range 2 30 - 10	00MHz								
Test Frequency	Meter Reading	Detector	25MHz-1GHz ChmbrA Amplified.TX [dB]	T243 Sunol Bilog.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
33.8769	42.17	PK	-27.6	18.4	32.97	40	-7.03	109	Vert
53.8429	48.43	PK	-27.3	7.3	28.43	40	-11.57	109	Vert
383.9608	47.45	PK	-25.3	15	37.15	46	-8.85	109	Vert
464.0188	41.9	PK	-25	16.9	33.8	46	-12.2	109	Vert

INDUCTIVE COVER

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)


Project No:12l	J14331								
Client Name:L	G								
Model / Device	e:LG-VS930								
Config / Other	:EUT(Inductive	e Cover) and a	dapter						
Test By:Chin P	ang								
Range 1 30 - 10	000MHz								
Test Frequency	Meter Reading	Detector	25MHz-1GHz ChmbrA Amplified.TX [dB]	T243 Sunol Bilog.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
227.3341	44.48	PK	-26.1	10.7	29.08	46	-16.92	91	Horz
303.9029	48.06	PK	-25.8	13.3	35.56	46	-10.44	91	Horz
383.9608	50.54	PK	-25.3	15	40.24	46	-5.76	91	Horz
Range 2 30 - 10	000MHz								
Test Frequency	Meter Reading	Detector	25MHz-1GHz ChmbrA Amplified.TX [dB]	T243 Sunol Bilog.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
38.5292	44.9	PK	-27.4	15	32.5	40	-7.5	100	Vert
55.1998	49	PK	-27.3	7.1	28.8	40	-11.2	200	Vert
83.5012	45	PK	-27	7.4	25.4	40	-14.6	200	Vert
187.4021	44.43	PK	-26.3	11.3	29.43	43.5	-14.07	200	Vert
303.9029	44.58	PK	-25.8	13.3	32.08	46	-13.92	100	Vert
380.6655	47.37	PK	-25.3	15.1	37.17	46	-8.83	100	Vert

INDUCTIVE CHARGER WITH INDUCTIVE COVER

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Project No:12L	14331								
Client Name:L	G								
Model / Device	e:LG-VS930								
Config / Other	EUT (NFC) Ind	luctive Chargi	ng Pad						
Test By:Chin P	ang								
Range 1 30 - 10	00MHz								
Test Frequency	Meter Reading	Detector	25MHz-1GHz ChmbrA Amplified.TX [dB]	T243 Sunol Bilog.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
63.3413	51.23	PK	-27.2	7.6	31.63	40	-8.37	300	Horz
86.0212	44.01	PK	-27	7.4	24.41	40	-15.59	200	Horz
171.313	41.58	PK	-26.5	11.6	26.68	43.5	-16.82	200	Horz
271.7246	38.76	PK	-25.8	13.1	26.06	46	-19.94	100	Horz
Range 2 30 - 10	00MHz								
Test Frequency	Meter Reading	Detector	25MHz-1GHz ChmbrA Amplified.TX [dB]	T243 Sunol Bilog.TXT [dB]	dBuV/m	CFR 47 Part 15 Class B 3m	Margin	Height [cm]	Polarity
30.7754	43.09	PK	-27.5	20.6	36.19	40	-3.81	100	Vert
30.7754	41.41	QP	-27.5	21.1	35.01	40	-4.99	242	Vert
38.723	44.18	PK	-27.4	14.9	31.68	40	-8.32	100	Vert
63.3413	48.79	PK	-27.2	7.6	29.19	40	-10.81	300	Vert
179.0667	42.13	PK	-26.4	11.2	26.93	43.5	-16.57	100	Vert
268.0416	38.8	PK	-25.8	12.9	25.9	46	-20.1	100	Vert
437.6559	35.63	PK	-25.3	16.7	27.03	46	-18.97	100	Vert

10. **AC POWER LINE CONDUCTED EMISSIONS**

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

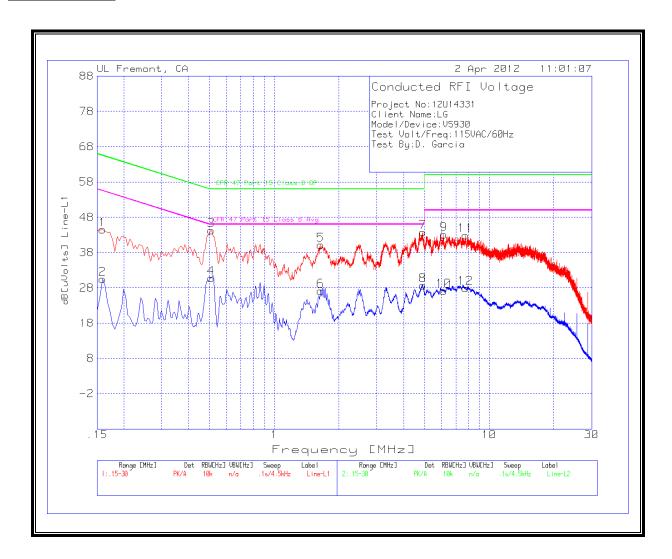
ANSI C63.4

DATE: May 15, 2012

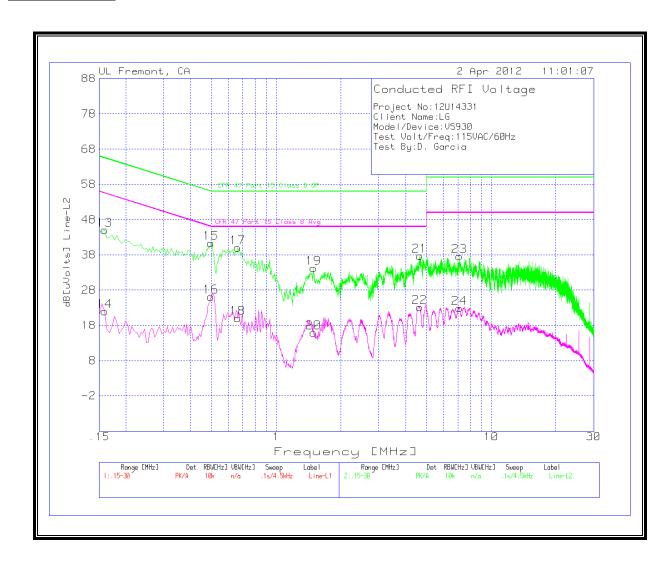
FCC ID: ZNFVS930

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

DATE: May 15, 2012 FCC ID: ZNFVS930


RESULTS

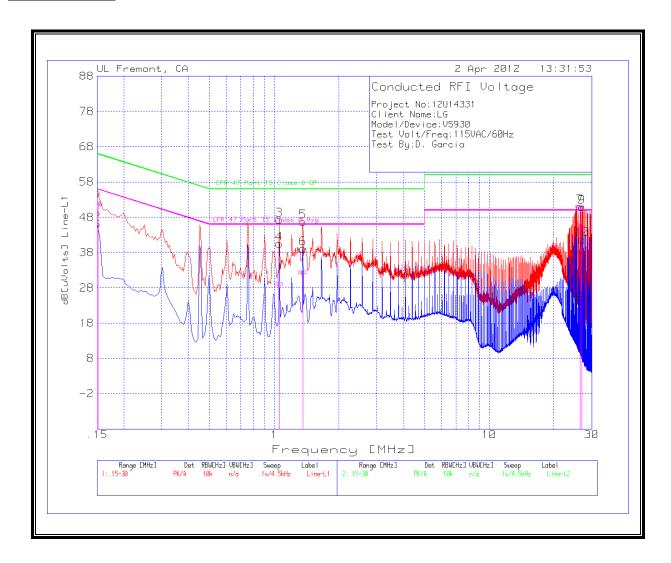
STANDARD COVER


6 WORST EMISSIONS

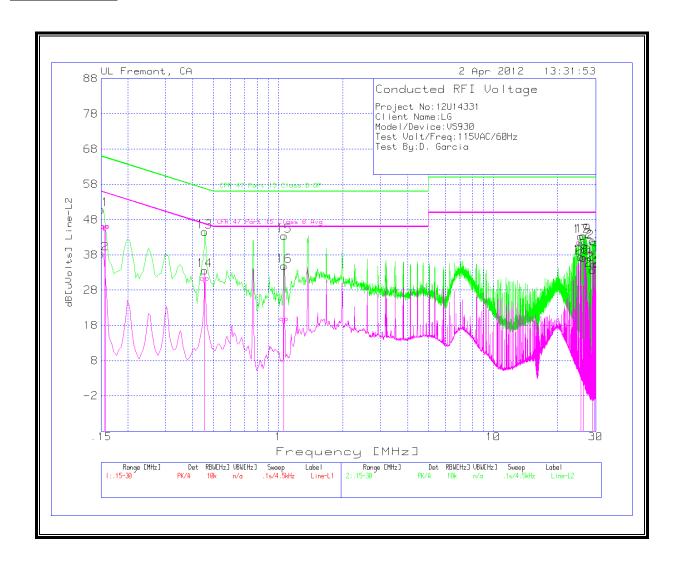
Project No		12U14331							
Client Nam		LG							
Model/Dev	/ice:	VS930 wit	h Standard	Back Cove	r				
Test Volt/F	req:	115VAC/6	0Hz						
Test By:		D. Garcia							
Line-L1 .15	- 30MHz								
						CFR 47		CFR 47	
			T24 IL	LC Cables		Part 15		Part 15	
Test	Meter		L1.TXT	1&3.TXT	dB[uVolt	Class B		Class B	
Frequency		Detector	[dB]	[dB]	s]	QP	Margin	Avg	Margin
0.159			0.1	0	44.49	65.5	-21.01		-
0.159	30.36		0.1	0	30.46		-	55.5	-25.
0.51	44.23		0.1	0	44.33		-11.67		-
0.51	30.67		0.1	0	30.77		-	46	-15.
1.6485	39.93		0.1	0.1	40.13	56	-15.87		-
1.6485	26.98		0.1	0.1	27.18		-	46	-18.
4.9155	43.53		0.1	0.1	43.73	56	-12.27		-
4.9155	28.48		0.1	0.1	28.68		-	46	-17.
6.153	42.88		0.1	0.1	43.08	60	-16.92		-
6.153	26.99		0.1	0.1	27.19		-	50	-22.
7.764	42.72		0.1	0.1	42.92	60	-17.08		-
7.764	27.74	Av	0.1	0.1	27.94	-	-	50	-22.
Line-L2 .15		511			45.05		22.45	<u> </u>	
0.159			0.1	0	45.05		-20.45		-
0.159	21.88		0.1	0	21.98		14.00	55.5	-33.
0.4965 0.4965	41.17 25.98		0.1	0	41.27 26.08	56.1	-14.83	46.1	- 20
0.4963	39.96		0.1	0	40.06	56	-15.94		-20.
0.663			0.1				-15.94	46	-25.
1.491	34.06		0.1	0.1	34.26		-21.74		-23.
1.491			0.1		15.94		-21.74	46	-30.
4.65	37.46	 	0.1	0.1	37.66		-18.34		-30.
4.65	22.97		0.1	0.1	23.17		- 10.34	46	-22.
7.116			0.1		37.59		-22.41		- 22.
7.116		-	0.1		22.85		- 22,71	50	-27.

LINE 1 RESULTS

LINE 2 RESULTS


DATE: May 15, 2012 FCC ID: ZNFVS930

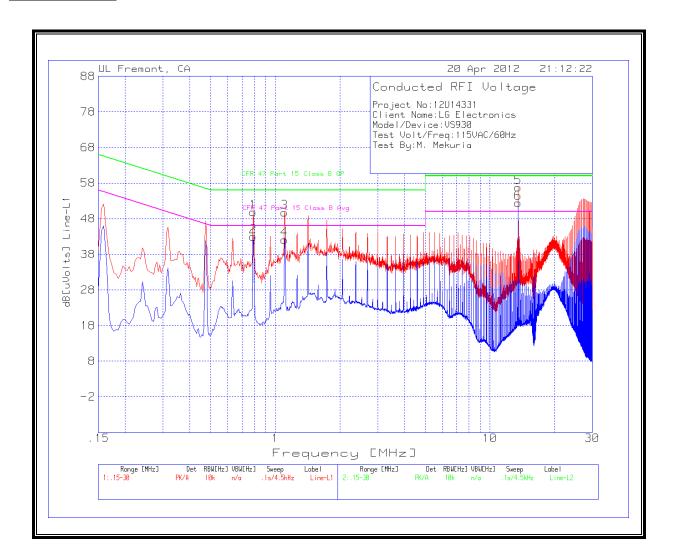
INDUCTIVE COVER


6 WORST EMISSIONS

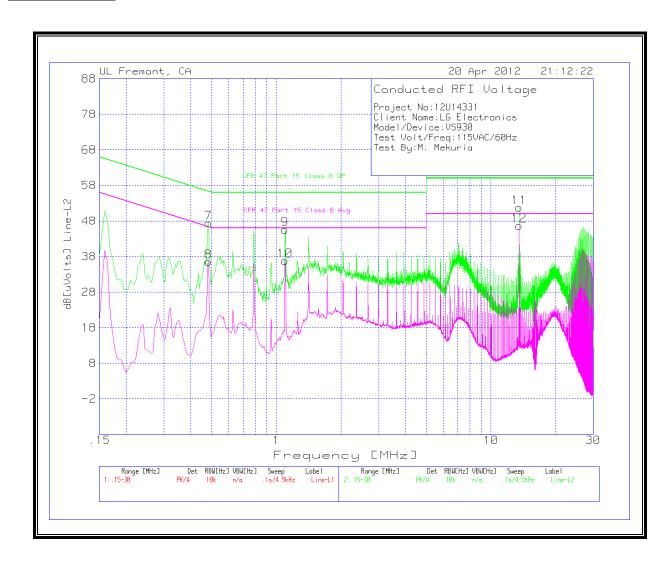
Project No		12U14331							
Client Nam	ie:	LG							
Model/Dev	vice:	VS930 w/I	NDUCTIVE	COVER					
Test Volt/F	req:	115VAC/6	0Hz						
Test By:		D. Garcia							
Line-L1 .15	- 30MHz								
						CFR 47		CFR 47	
			T24 IL	LC Cables		Part 15		Part 15	
Test	Meter		L1.TXT	1&3.TXT	dB[uVolt	Class B		Class B	
Frequency			[dB]	[dB]	s]	QP	Margin	Avg	Margin
0.15			0.1	0	54.93	66	-11.07		-
0.15			0.1	0	46.12		-	56	-9.8
1.0545			0.1	0	47.32	56	-8.68	-	-
1.0545			0.1	0	40.49		-	46	-5.5
1.3605			0.1	0.1	46.79	56	-9.21	-	-
1.3605			0.1	0.1	39.14	-	-	46	-6.8
26.4705	50.2	PK	0.5	0.3	51.00	60	-9.00	-	-
26.4705	22.38	Av	0.5	0.3	23.18	-	-	50	-26.8
26.934	50.04	PK	0.5	0.3	50.84	60	-9.16	-	-
26.934	40.92	Av	0.5	0.3	41.72	-	-	50	-8.2
Line-L2.15									
0.15			0.1	0	50.84	66	-15.16	-	-
0.15	38.2	Av	0.1	0	38.30	-	-	56	-17.7
0.456			0.1	0	44.50	56.8	-12.30	-	-
0.456			0.1	0	33.64		-	46.8	-13.1
1.068			0.1	0.1	43.38	56	-12.62	-	-
1.068			0.1	0.1	34.92		-	46	-11.0
25.6065			0.5	0.3	43.26		-16.74		-
25.6065			0.5	0.3			-	50	-12.5
26.2185	42.55	PK	0.5			60	-16.65	-	-
26.2185			0.5				-	50	-12.8
29.0625	41.17	PK	0.5		41.97	60	-18.03	-	-
29.0625	32.92	Av	0.5	0.3	33.72	-	-	50	-16.2
29.6745	40.82	PK	0.5	0.3	41.62	60	-18.38	-	-
29.6745	34.62	Av	0.5	0.3	35.42	-	-	50	-14.5

LINE 1 RESULTS

LINE 2 RESULTS

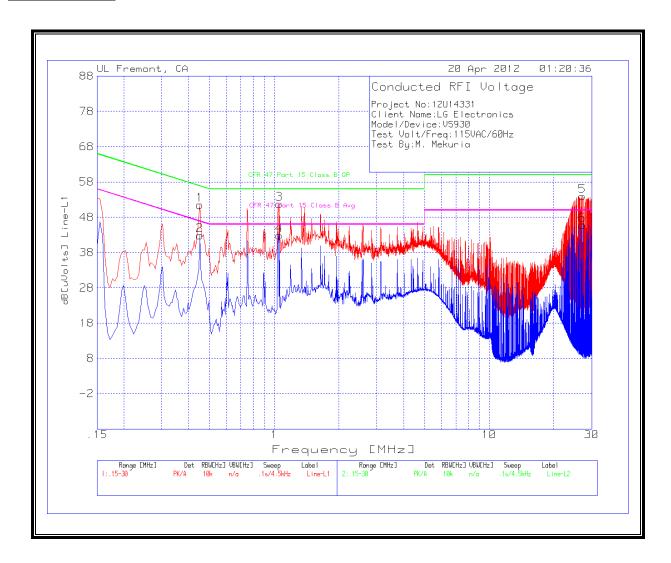

INDUCTIVE CHARGER WITH INDUCTIVE COVER

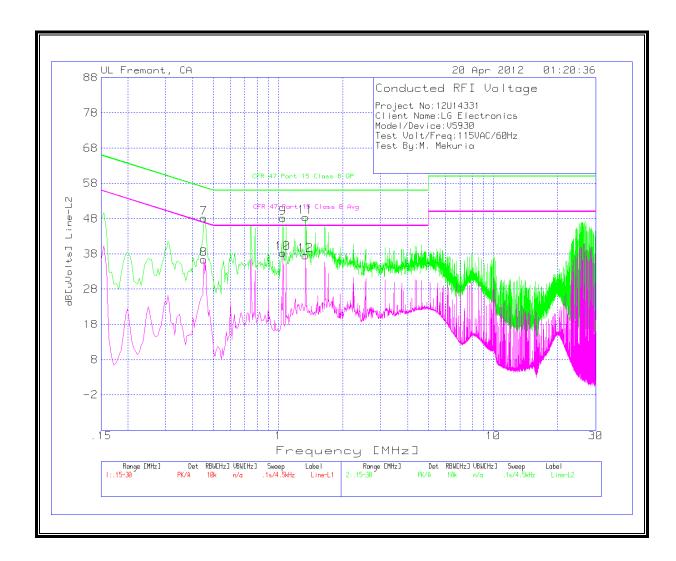
WORST EMISSIONS - With antenna


Project No:12U1	4331								
Client Name:LG	Electronics								
Model/Device:VS	S930								
Test Volt/Freq:1	15VAC/60Hz								
Test By:M. Mek	uria								
Line-L1 .15 - 30N	MHz								
Test Frequency	Meter Reading	Detector	T24 IL L1.	LC Cables	dB[uVolts]	Part 15B QP	Margin	Part 15B Avg	Margin
0.789	49.83	PK	0.1	0	49.93	56	-6.07	-	-
0.789	42.89	Av	0.1	0	42.99	-	-	46	-3.01
1.104	49.71	PK	0.1	0	49.81	56	-6.19	-	-
1.104	42.04	Av	0.1	0	42.14	-	-	46	-3.86
13.56	56.35	PK	0.2	0.2	56.75	60	-3.25	-	-
13.56	52.01	Av	0.2	0.2	52.41	-	-	50	2.41
Line-L2 .15 - 30	MHz								
Test Frequency	Meter Reading	Detector	T24 IL L1.	LC Cables	dB[uVolts]	Part 15B QP	Margin	Part 15B Avg	Margin
0.483	47.4	PK	0.1	0	47.5	56.3	-8.8	-	-
0.483	36.51	Av	0.1	0	36.61	-	-	46.3	-9.69
1.0995	45.4	PK	0.1	0.1	45.6	56	-10.4	-	-
1.0995	36.67	Av	0.1	0.1	36.87	-	-	46	-9.13
13.56	51.45	PK	0.2	0.2	51.85	60	-8.15	-	-
13.56	46.33	Av	0.2	0.2	46.73	_	-	50	-3.27

Emission at 13.56 MHz is over the limit because the NFC mode was active. (NFC transmits at 13.56 MHz.) The next conducted emission scan shows unit with antenna terminated with 50 ohm load which has compliance results at 13.56 MHz.

LINE 1 RESULTS


LINE 2 RESULTS


WORST EMISSIONS - With 50 Ohm Load

Project No:12									
Client Name:L									
Model/Device	:VS930								
Test Volt/Freq	:115VAC/60Hz								
Test By:M. Me	kuria								
Line-L1 .15 - 30	MHz								
Test Frequency	Meter Reading	Detector	T24 IL L1.TXT [dB]	LC Cables 1&3.TXT [dB]	dB[uVolts]	CFR 47 Part 15 Class B QP	Margin	CFR 47 Part 15 Class B Avg	Margin
0.4515	51.38	PK	0.1	0	51.48	56.8	-5.32	-	-
0.4515	42.77	Av	0.1	0	42.87	-	-	46.8	-3.93
1.059	51.72	PK	0.1	0	51.82	56	-4.18	-	-
1.059	42.79	Av	0.1	0	42.89	-	-	46	-3.11
27.1275	53.22	PK	0.5	0.3	54.02	60	-5.98	-	-
27.1275	45.01	Av	0.5	0.3	45.81	-	-	50	-4.19
e-L2 .15 - 30MI	Hz								
Test Frequency	Meter Reading	Detector	T24 IL L1.TXT [dB]	LC Cables 1&3.TXT [dB]	dB[uVolts]	CFR 47 Part 15 Class B QP	Margin	CFR 47 Part 15 Class B Avg	Margin
0.4515	48.03	PK	0.1	0	48.13	56.8	-8.67	-	-
0.4515	36.34	Av	0.1	0	36.44	-	-	46.8	-10.36
1.05	48.05	PK	0.1	0	48.15	56	-7.85	-	-
1.05	38.07	Av	0.1	0	38.17	-	-	46	-7.83
1.3425	48.33	PK	0.1	0	48.43	56	-7.57	-	-
1.3425	37.48	Av	0.1	0	37.58	-	-	46	-8.42

LINE 1 RESULTS

LINE 2 RESULTS

