

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

CDMA/LTE Phone + Bluetooth & DTS/UNII a/b/g/n + NFC

MODEL NUMBER: LG-VS880, VS880, LGVS880

FCC ID: ZNFVS880

REPORT NUMBER: 14U17222-2 ISSUE DATE: MARCH 28, 2014

Prepared for

LG ELECTRONICS MOBILECOMM U.S.A., INC 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY, 07632, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	3/28/14	Initial Issue	P. Kim

TABLE OF CONTENTS

1. A	ATTESTATION OF TEST RESULTS	5
2. T	TEST METHODOLOGY	6
3. F	FACILITIES AND ACCREDITATION	6
4. C	CALIBRATION AND UNCERTAINTY	6
4.1.	. MEASURING INSTRUMENT CALIBRATION	6
4.2.	. SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	6
5. E	EQUIPMENT UNDER TEST	7
5.1.	. DESCRIPTION OF EUT	7
5.2.	. MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.4.	. WORST-CASE CONFIGURATION AND MODE	8
5.5.	DESCRIPTION OF TEST SETUP	9
6. T	EST AND MEASUREMENT EQUIPMENT	11
7. S	SUMMARY TABLE	12
8. A	ANTENNA PORT TEST RESULTS	13
8.1.	OO JD AND OOK DANDINIDTH	
	. 20 dB AND 99% BANDWIDTH	
_	3.1.1. BASIC DATA RATE GFSK MODULATION	13
8	3.1.1. BASIC DATA RATE GFSK MODULATION	13 13
8.2.	3.1.1. BASIC DATA RATE GFSK MODULATION	13 13
8.2. 8.3.	3.1.1. BASIC DATA RATE GFSK MODULATION	13 13 22
8.2. 8.3. 8.4.	3.1.1. BASIC DATA RATE GFSK MODULATION	13 22 24
8.2. 8.3. 8.4. 8.5.	3.1.1. BASIC DATA RATE GFSK MODULATION	13222427
8.2. 8.3. 8.4. 8.5. 8	3.1.1. BASIC DATA RATE GFSK MODULATION	1322242731
8.2. 8.3. 8.4. 8.5. 8	3.1.1. BASIC DATA RATE GFSK MODULATION	132224313131
8.2. 8.3. 8.4. 8.5. 8 8.6. 8	3.1.1. BASIC DATA RATE GFSK MODULATION	13222431313636
8.2. 8.3. 8.4. 8.5. 8 8.6. 8	3.1.1. BASIC DATA RATE GFSK MODULATION	1322243131313636
8.2. 8.3. 8.4. 8.5. 8.6. 8.6. 8.7.	3.1.1. BASIC DATA RATE GFSK MODULATION 3.1.1. ENHANCED DATA RATE 8PSK MODULATION 4. HOPPING FREQUENCY SEPARATION 5. NUMBER OF HOPPING CHANNELS 6. AVERAGE TIME OF OCCUPANCY 6. OUTPUT POWER 6. 3.5.1. BASIC DATA RATE GFSK MODULATION 6. AVERAGE POWER 6. AVERAGE POWER 6. 6.1. BASIC DATA RATE GFSK MODULATION 6. AVERAGE POWER 6.6.1. BASIC DATA RATE SPSK MODULATION 6. AVERAGE POWER 6.6.1. BASIC DATA RATE SPSK MODULATION 6. AVERAGE POWER 6.6.2. ENHANCED DATA RATE 8PSK MODULATION 6. CONDUCTED SPURIOUS EMISSIONS	132224313131363636
8.2. 8.3. 8.4. 8.5. 8 8.6. 8 8.7. 8	3.1.1. BASIC DATA RATE GFSK MODULATION	13222431313636363737
8.2. 8.3. 8.4. 8.5. 8.6. 8.6. 8.7. 8.8.	3.1.1. BASIC DATA RATE GFSK MODULATION 3.1.1. ENHANCED DATA RATE 8PSK MODULATION 4. HOPPING FREQUENCY SEPARATION 5. NUMBER OF HOPPING CHANNELS 6. AVERAGE TIME OF OCCUPANCY 6. OUTPUT POWER 6. S.5.1. BASIC DATA RATE GFSK MODULATION 6. AVERAGE POWER 6. AVERAGE POWER 6. AVERAGE POWER 6. AVERAGE POWER 6. CONDUCTED SPURIOUS EMISSIONS 6. CONDUCTED SPURIOUS EMISSIONS 6. AND	13222431313636363738
8.2. 8.3. 8.4. 8.5. 8.6. 8.6. 8.7. 8.8.	3.1.1. BASIC DATA RATE GFSK MODULATION. 3.1.1. ENHANCED DATA RATE 8PSK MODULATION. 4. HOPPING FREQUENCY SEPARATION. 5. NUMBER OF HOPPING CHANNELS. 6. AVERAGE TIME OF OCCUPANCY. 6. OUTPUT POWER. 6. 3.5.1. BASIC DATA RATE GFSK MODULATION. 6. AVERAGE POWER. 6. AVERAGE POWER. 6. 6.1. BASIC DATA RATE GFSK MODULATION. 6. AVERAGE POWER. 6. 6.2. ENHANCED DATA RATE 8PSK MODULATION. 6. CONDUCTED SPURIOUS EMISSIONS. 6.7.1. BASIC DATA RATE GFSK MODULATION. 6.7.1. ENHANCED DATA RATE 8PSK MODULATION.	1322243131363636373838
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8 9. R	3.1.1. BASIC DATA RATE GFSK MODULATION. 3.1.1. ENHANCED DATA RATE 8PSK MODULATION. 4. HOPPING FREQUENCY SEPARATION. 5. NUMBER OF HOPPING CHANNELS. 6. AVERAGE TIME OF OCCUPANCY. 6. OUTPUT POWER. 6. 3.5.1. BASIC DATA RATE GFSK MODULATION. 6. AVERAGE POWER. 6. AVERAGE POWER. 6. AVERAGE POWER. 6. ASIC DATA RATE GFSK MODULATION. 6. AVERAGE POWER. 6. CONDUCTED SPURIOUS EMISSIONS. 6. ATT. BASIC DATA RATE GFSK MODULATION. 6. ATT. BASIC DATA RATE SPSK MODULATION. 6. AND PROCEDURE. 6. CONDUCTED SPURIOUS EMISSIONS.	13222431313636373836363736

		BASIC DATA RATE GFSK MODULATIONENHANCED DATA RATE 8PSK MODULATION	
9.3	. WC	DRST-CASE BELOW 1 GHz	73
10.	AC P	OWER LINE CONDUCTED EMISSIONS	76
11	SETU	IP PHOTOS	80

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: LG ELECTRONICS MOBILECOMM U.S.A., INC

EUT DESCRIPTION: CDMA/LTE Phone + Bluetooth & DTS/UNII a/b/g/n + NFC

MODEL: LG-VS880, VS880, LGVS880

SERIAL NUMBER: 1838501 (Conducted), 1838500 (Radiated)

DATE TESTED: MARCH 21-27 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Min f.

Tested By:

PHILIP KIM

CONSUMER TECHNOLOGY DIVISION

PROGRAM MANAGER

UL Verification Services Inc.

CHARLES VERGONIO

CONSUMER TECHNOLOGY DIVISION

LAB TECHNICIAN

UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 18000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a CDMA/LTE Phone + Bluetooth & DTS/UNII a/b/g/n + NFC.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	12.13	16.33
2402 - 2480	Enhanced 8PSK	11.72	14.86

Note: GFSK, Pi/4-DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on this mode to showing compliance. For average power data please refer to section 8.6.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of -6.9dBi

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
AC Adapter	LG Electronics	MCS-01WD	DB3Y0094683	N/A			
Earphone	LG Electronics	N/A	N/A	N/A			

I/O CABLES

	I/O Cable List							
No		ports	Туре		(m)			
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A		
2	Audio	1	Mini-Jack	Unshielded	1m	N/A		

TEST SETUP

The EUT is continuously communicating to the Bluetooth tester during the tests. EUT was set in the Hidden menu mode to enable BT communications.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	02/13/15			
Antenna, Horn, 18GHz	EMCO	3115	C00783	10/25/14			
Antenna, Horn, 25.5 GHz	ARA	MWH-1826/B	C00980	11/14/14			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	01/28/15			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	10/22/14			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/14			
CBT Bluetooth Tester	R & S	CBT	None	07/12/14			
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/14			
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/14			
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/15			
Reject Filter, 2.4GHz	Micro-Tronics	BRM50702	N02684	CNR			

7. SUMMARY TABLE

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
2.1049	RSS-GEN 4.6	Occupied Band width (99%)	N/A		Pass	1.2301MHz
2.1051, 15.247 (d)	RSS-210 A8.5	Band Edge / Conducted Spurious Emission	-20dBc		Pass	-50.05dBm
15.247 (b)(1)	RSS-210 A8.4	TX conducted output power	<21dBm		Pass	12.13dBm
15.247 (a)(1)	RSS-210 A8.1(b)	Hopping frequency separation	> 25KHz	Conducted	Pass	1MHz
15.247 (a)(1)(iii)	RSS-210 A8.1(d)	Number of Hopping channels	More than 15 non- overlapping channels		Pass	79
15.247 (a)(1)(iii)	RSS-210 A8.1(d)	Avg Time of Occupancy	< 0.4sec		Pass	0.374sec
15.207 (a)	RSS-GEN 7.2.2	AC Power Line conducted emissions	Section 10		Pass	41.29dBuV(AV)
15.205, 15.209	RSS-210 Clause 2.6, RSS-210 Clause 6	Radiated Spurious Emission	< 54dBuV/m	Radiated	Pass	42.22dBuV/m

8. ANTENNA PORT TEST RESULTS

8.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer. The RBW is set to ≥ 1% of the 20 dB bandwidth. The VBW is set to ≥ RBW. The sweep time is coupled.

RESULTS

8.1.1. BASIC DATA RATE GFSK MODULATION

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.995	0.85
Middle	2441	0.999	0.864
High	2480	0.934	0.886
Worst		0.999	0.886

8.1.1. ENHANCED DATA RATE 8PSK MODULATION

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.333	1.1823
Middle	2441	1.303	1.226
High	2480	1.334	1.2301
Worst		1.334	1.2301

GFSK 20 dB BANDWIDTH

FAX: (510) 661-0888

GFSK 99% BANDWIDTH

8PSK 20 dB BANDWIDTH

8PSK 99% BANDWIDTH

8.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

8.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

Normal Mode: 79 Channels observed.

NUMBER OF HOPPING CHANNELS

8.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

RESULTS

DH Packet	Pulse Width	Number of Pulses in	Average Time of Occupancy	Limit	Margin		
	(msec)	3.16	(sec)	(sec)	(sec)		
		seconds					
GFSK Norma	l Mode						
DH1	0.382	31	0.118	0.4	-0.282		
DH3	1.638	17	0.278	0.4	-0.122		
DH5	2.88	13	0.374	0.4	-0.026		
		-	-				
DH Packet	Pulse	Number of	Average Time	Limit	Margin		
	Width	Pulses in	of Occupancy				
	(msec)	0.8	(sec)	(sec)	(sec)		
		seconds					
GFSK AFH M	GFSK AFH Mode						
DH1	0.382	8	0.031	0.4	-0.369		
DH3	1.638	5	0.082	0.4	-0.318		
DH5	2.88	4	0.115	0.4	-0.285		

DATE: MARCH 28, 2014

PULSE WIDTH - DH1

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH1

PULSE WIDTH – DH3

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH3

PULSE WIDTH - DH5

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD - DH5

Page 30 of 84

8.5. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 21 dBm.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

8.5.1. BASIC DATA RATE GFSK MODULATION

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.92	21	-9.08
Middle	2441	12.13	21	-8.87
High	2480	11.57	21	-9.43
Worst		12.13		-8.87

8.5.2. ENHANCED DATA RATE 8PSK MODULATION

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.37	21	-9.63
Middle	2441	11.72	21	-9.28
High	2480	11.16	21	-9.84
Worst		11.72		-9.28

GFSK OUTPUT POWER

REPORT NO: 14U17222-2 FCC ID: ZNFVS880

8PSK OUTPUT POWER

REPORT NO: 14U17222-2 FCC ID: ZNFVS880

8.6. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and 0.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

8.6.1. BASIC DATA RATE GFSK MODULATION

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	11.20
Middle	2441	11.20
High	2480	10.90
Worst		11.20

8.6.2. ENHANCED DATA RATE 8PSK MODULATION

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	8.20	
Middle	2441	8.40	
High	2480	7.90	
Worst		8.40	

8.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

8.7.1. BASIC DATA RATE GFSK MODULATION

SPURIOUS EMISSIONS, LOW CHANNEL

Page 38 of 84

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH GFSK HOPPING ON

8.7.1. ENHANCED DATA RATE 8PSK MODULATION

SPURIOUS EMISSIONS, LOW CHANNEL

DATE: MARCH 28, 2014

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH 8PSK HOPPING ON

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For band edge measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 1/T (on time) for average measurement. GFSK = 1/T = 1 / 0.0038S = 260Hz.

The spectrum from 1GHzHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

9.2. TRANSMITTER ABOVE 1 GHz

9.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	Corrected Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
2	* 2.362	43.22	PK	32	-22.9	52.32	-	-	74	-21.68	273	230	н
4	* 2.389	30.82	VB1T	32.1	-22.9	41.12	54	-12.88	-		273	230	н
1	* 2.39	40.15	PK	32.1	-22.9	49.35	-	-	74	-24.65	273	230	н
3	* 2.39	30.61	VB1T	32.1	-22.9	40.91	54	-13.09	-	-	273	230	н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.357	41.9	PK	31.9	-22.9	50.9	-	-	74	-23.1	234	290	V
1	* 2.39	39.5	PK	32.1	-22.9	48.7	-	-	74	-25.3	234	290	V
3	* 2.39	30.3	VB1T	32.1	-22.9	40.6	54	-13.4	-	-	234	290	V
4	* 2.39	30.5	VB1T	32.1	-22.9	40.8	54	-13.2	-	-	234	290	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	39.83	PK	32.4	-22.6	49.63	-	-	74	-24.37	259	269	Н
3	* 2.484	31.23	VB1T	32.4	-22.6	42.13	54	-11.87	-	-	259	269	н
4	* 2.484	31.32	VB1T	32.4	-22.6	42.22	54	-11.78	•	-	259	269	Н
2	2.548	42.61	PK	32.5	-22.6	52.51	-	-	74	-21.49	259	269	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

DATE: MARCH 28, 2014

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	Corrected Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
1	2.484	39.68	PK	32.4	-22.6	49.48		-	74	-24.52	214	355	٧
3	2.484	30.81	VB1T	32.4	-22.6	41.71	54	-12.29	-	-	214	355	٧
4	2.484	30.86	VB1T	32.4	-22.6	41.76	54	-12.24	•	-	214	355	٧
2	2.487	42.55	PK	32.4	-22.6	52.35	-	-	74	-21.65	214	355	٧

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL HORIZONTAL

VERTICAL

LOW CHANNEL DATA

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/CbI/F Itr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 4.807	39.41	PK2	34.2	-28.9	44.71	54	-9.29	74	-29.29	359	100	Н
* 9.138	35.45	PK2	36.3	-24.9	46.85	54	-7.15	74	-27.15	359	100	Н
* 3.831	39.73	PK2	33.7	-30.3	43.13	54	-10.87	74	-30.87	359	100	V
* 7.737	37.17	PK2	35.7	-26	46.87	54	-7.13	74	-27.13	359	100	V
6.721	39	PK2	35.7	-28.8	45.9	54	-8.10	74	-28.10	359	100	V
6.863	39.15	PK2	35.6	-27.4	47.35	54	-6.65	74	-26.65	359	100	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MID CHANNEL HORIZONTAL

VERTICAL

MID CHANNEL DATA

Frequency	Meter	Det	AF T345 (dB/m)	Amp/Cbl/F ltr/Pad	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	PK Margin	Azimuth	Height	Polarity
(GHz)	Reading			(dB)	Reading		(dB)		(dB)	(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
* 3.846	39.85	PK2	33.7	-30.2	43.35	54	-10.65	74	-30.65	359	100	V
* 4.882	39.66	PK2	34.2	-30.6	43.26	54	-10.74	74	-30.74	359	100	V
6.853	38.31	PK2	35.6	-27.6	46.31	54	-7.69	74	-27.69	359	100	Н
7.769	37.36	PK2	35.7	-26	47.06	54	-6.94	74	-26.94	359	100	V
8.538	36.55	PK2	35.8	-26.5	45.85	54	-8.18	74	-28.18	359	100	Н
9.95	34.6	PK2	37	-23.9	47.7	54	-6.30	74	-26.30	359	100	Н

PK2 - KDB558074 Method: Maximum Peak

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

HIGH CHANNEL HORIZONTAL

VERTICAL

HIGH CHANNEL DATA

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 3.848	40.01	PK2	33.7	-30.2	43.51	54	-10.49	74	-30.49	359	100	н
* 4.959	39.69	PK2	34.2	-30.2	43.69	54	-10.31	74	-30.31	359	100	V
4.485	38.79	PK2	34	-29.2	43.59	54	-10.41	74	-30.41	359	100	V
6.221	39.03	PK2	35.4	-27.8	46.63	54	-7.37	74	-27.37	359	100	V
7.824	37.27	PK2	35.7	-26.7	46.27	54	-7.73	74	-27.73	359	100	Н
9.737	34.49	PK2	36.9	-24	47.39	54	-6.61	74	-26.61	359	100	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

9.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Corrected Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
2	* 2.368	42.48	PK	32	-22.8	51.68	-	-	74	-22.32	295	359	н
4	* 2.381	30.54	VB1T	32	-22.9	40.74	54	-13.26	-	-	295	359	н
1	* 2.39	38.78	PK	32.1	-22.9	47.98	-	-	74	-26.02	295	359	н
3	* 2.39	30.34	VB1T	32.1	-22.9	40.64	54	-13.36	-	-	295	359	н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.347	42.47	PK	31.9	-23	51.37	•	-	74	-22.63	232	293	٧
1	* 2.39	38.39	PK	32.1	-22.9	47.59	-	-	74	-26.41	232	293	٧
3	* 2.39	30.21	VB1T	32.1	-22.9	40.51	54	-13.49	-	-	232	293	٧
4	* 2.39	30.29	VB1T	32.1	-22.9	40.59	54	-13.41	-	-	232	293	٧

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

DATE: MARCH 28, 2014

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/Fit r/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.82	PK	32.4	-22.6	50.62	-	-	74	-23.38	260	268	Н
3	* 2.484	30.93	VB1T	32.4	-22.6	41.83	54	-12.17	-	-	260	268	н
4	* 2.484	30.93	VB1T	32.4	-22.6	41.83	54	-12.17	-	-	260	268	н
2	2.559	42.51	PK	32.5	-22.8	52.21	-	-	74	-21.79	260	268	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency (GHz)	Meter Reading	Det	AF T345 (dB/m)	Amp/Cbl/Flt r/Pad (dB)	Corrected Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
1	2.484	40.39	PK	32.4	-22.6	50.19	-	-	74	-23.81	232	353	٧
3	2.484	30.57	VB1T	32.4	-22.6	41.47	54	-12.53	-	-	232	353	٧
4	2.484	30.57	VB1T	32.4	-22.6	41.47	54	-12.53	•	-	232	353	٧
2	2.496	42.74	PK	32.4	-22.7	52.44	-	-	74	-21.56	232	353	٧

PK - Peak detector

VB1T - FHSS Method: VB=1/Ton, Voltage Averaging Max Hold where: Ton is the duration of the packet

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL HORIZONTAL

VERTICAL

LOW CHANNEL DATA

Frequency	Meter	Det	AF T345 (dB/m)	Amp/Cbl/F ltr/Pad	Corrected	Avg Limit (dBuV/m)	Margin	Peak Limit (dBuV/m)	PK Margin	Azimuth	Height	Polarity
(GHz)	Reading			(dB)	Reading		(dB)		(dB)	(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
* 8.088	36.81	PK2	35.7	-25.8	46.71	54	-7.29	74	-27.29	359	100	Н
* 9.13	35.23	PK2	36.3	-24.9	46.63	54	-7.37	74	-27.37	359	100	Н
* 3.855	39.82	PK2	33.7	-30.2	43.32	54	-10.68	74	-30.68	359	100	V
5.219	40.24	PK2	34.4	-30.3	44.34	54	-9.66	74	-29.66	359	100	V
6.211	39.17	PK2	35.4	-27.8	46.77	54	-7.23	74	-27.23	359	100	V
7.755	36.81	PK2	35.7	-26.1	46.41	54	-7.59	74	-27.59	359	100	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

VERTICAL

MID CHANNEL DATA

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 3.838	39.42	PK2	33.7	-30.2	42.92	54	-11.08	74	-31.08	360	100	Н
* 7.743	37.72	PK2	35.7	-26	47.42	54	-6.58	74	-26.58	360	100	V
4.464	38.91	PK2	33.9	-29	43.81	54	-10.19	74	-30.19	360	100	Н
6.213	39.03	PK2	35.4	-27.8	46.63	54	-7.37	74	-27.37	360	100	Н
8.68	36.84	PK2	35.9	-25.7	47.04	54	-6.96	74	-26.96	360	100	V
9.786	34.18	PK2	36.9	-23.5	47.58	54	-6.42	74	-26.42	360	100	V

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

HIGH CHANNEL HORIZONTAL

VERTICAL

HIGH CHANNEL DATA

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl/F ltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 3.71	41.11	PK2	33.4	-31.1	43.41	54	-10.59	74	-30.59	359	100	Н
5.46	39.53	PK2	34.5	-29.7	44.33	54	-9.67	74	-29.67	359	100	V
6.228	39.15	PK2	35.4	-27.9	46.65	54	-7.35	74	-27.35	359	100	Н
7.132	38.32	PK2	35.6	-27.1	46.82	54	-7.18	74	-27.18	359	100	V
7.754	37.37	PK2	35.7	-26	47.07	54	-6.93	74	-26.93	359	100	V
9.782	34.72	PK2	36.9	-23.6	48.02	54	-5.98	74	-25.98	359	100	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

9.3.

WORST-CASE BELOW 1 GHz

GFSK SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: MARCH 28, 2014

DATA

Marker	Frequency	Meter	Det	AF T477 (dB/m)	Amp/Cbl (dB)	Corrected	QPk Limit (dBuV/m)	Margin	Azimuth	Height	Polarity
	(MHz)	Reading				Reading		(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
5	* 243.4	39.86	PK	11.5	-26.5	24.86	46.02	-21.16	0-360	200	V
1	55.2875	53.32	PK	7	-28.6	31.72	40	-8.28	0-360	101	V
2	84.0175	41.46	PK	7.4	-28.3	20.56	40	-19.44	0-360	400	Н
3	92.56	42.11	PK	8.3	-28.1	22.31	43.52	-21.21	0-360	101	V
4	184.3175	43.47	PK	11.3	-27.1	27.67	43.52	-15.85	0-360	200	Н
6	556	38.31	PK	17.7	-25.6	30.41	46.02	-15.61	0-360	200	Н

Frequency	Meter	Det	AF T477	Amp/Cbl	Corrected	QPk Limit	Margin	Azimuth	Height	Polarity
(MHz)	Reading		(dB/m)	(dB)	Reading	(dBuV/m)	(dB)	(Degs)	(cm)	
	(dBuV)				(dBuV/m)					
84.6813	41.9	PK	7.4	-28.2	21.1	40	-18.9	359	100	Н

^{* -} indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

DATE: MARCH 28, 2014

6 WORST EMISSIONS

Line-L1 .15 - 30MHz

Trace Markers											
Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L1 (dB)	LC Cables 1&3 (dB)	Corrected Reading dBuV	CISPR 22 Class B QP	Margin to Limit (dB)	CISPR 22 Class B Avg	Margin to Limit (dB)		
.1815	40.45	PK	1.1	0	41.55	64.4	-22.85	-	-		
.1815	32.3	Av	1.1	0	33.4	-	-	54.4	-21		
.4245	51.58	PK	.4	0	51.98	57.4	-5.42	-	-		
.4245	40.89	Av	.4	0	41.29	-	-	47.4	-6.11		
.6405	47.48	PK	.3	0	47.78	56	-8.22	-	-		
.6405	36.69	Av	.3	0	36.99	-	-	46	-9.01		
.888	47.57	PK	.3	0	47.87	56	-8.13	-	-		
.888	34.46	Av	.3	0	34.76	-	-	46	-11.24		
2.103	47.43	PK	.2	.1	47.73	56	-8.27	-	-		
2.103	31.69	Av	.2	.1	31.99	-	-	46	-14.01		
19.113	39.81	PK	.3	.2	40.31	60	-19.69	-	-		
19.113	16.79	Av	.3	.2	17.29	-	-	50	-32.71		
	Frequency (MHz) .1815 .1815 .4245 .4245 .6405 .6405 .888 2.103 2.103 19.113	Frequency (MHz) Meter Reading (dBuV) .1815 40.45 .1815 32.3 .4245 51.58 .4245 40.89 .6405 47.48 .6405 36.69 .888 47.57 .888 34.46 2.103 47.43 2.103 31.69 19.113 39.81	Frequency (MHz) Meter Reading (dBuV) .1815	Frequency (MHz) Meter Reading (dBuV) Det (dB) .1815	Frequency (MHz) Meter Reading (dBuV) Det (dB) (dB) (dB) (dB) .1815	Frequency (MHz) Meter Reading (dBuV) Det (dB) T24 IL L1 (dB) LC Cables 1&3 (dB) Corrected Reading dBuV .1815 40.45 PK 1.1 0 41.55 .1815 32.3 Av 1.1 0 33.4 .4245 51.58 PK .4 0 51.98 .4245 40.89 Av .4 0 41.29 .6405 47.48 PK .3 0 47.78 .6405 36.69 Av .3 0 36.99 .888 47.57 PK .3 0 47.87 .888 34.46 Av .3 0 34.76 2.103 47.43 PK .2 .1 47.73 2.103 31.69 Av .2 .1 31.99 19.113 39.81 PK .3 .2 40.31	Frequency (MHz) Meter Reading (dBuV) PK 1.1 L1 (dB) Corrected (dBuV) Reading dBuV Corrected (dBuV) Reading dBuV Corrected (dB) Reading dBuV Corrected Reading dB	Frequency (MHz) Meter Reading (dBuV) PK 1.1	Frequency (MHz) Meter Reading (dBuV) Det (dB) T24 L1 (dB) LC Cables 1&3 Corrected Reading dBuV CISPR 22 Class Margin to Limit (dB) B Avg 1815		

Line-L2 .15 - 30MHz

Marker Frequency		Meter Reading	Det	T24 IL L2	LC Cables 2&3	Corrected	CISPR 22 Class	Margin to	CISPR 22 Class		
	(MHz)	(dBuV)		(dB)	(dB)	Reading dBuV	B QP	Limit (dB)	B Avg	Limit (dB)	
.3	.168	40.02	PK	1.3	0	41.32	65.1	-23.78	-	-	
4	.168	19.32	Av	1.3	0	20.62	-	-	55.1	-34.48	
.5	.42	48.82	PK	.4	0	49.22	57.4	-8.18	-	-	
.6	.42	35.85	Av	.4	0	36.25	-		47.4	-11.15	
.7	1.2255	42.42	PK	.2	.1	42.72	56	-13.28		-	
.8	1.2255	24.89	Av	.2	.1	25.19	-		46	-20.81	
.9	1.9815	42.97	PK	.2	.1	43.27	56	-12.73		-	
20	1.9815	27.4	Av	.2	.1	27.7	-		46	-18.3	
1	16.7685	32.2	PK	.3	.2	32.7	60	-27.3		-	
2	16.7685	8.92	Av	.3	.2	9.42	-	-	50	-40.58	

PK - Peak detector

Av - average detection

LINE 1 RESULTS

LINE 2 RESULTS

