Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL CCS USA Client

Certificate No: EX3-7356_Apr15

S

С

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:735	56	
Calibration procedure(s)	QA CAL-25.v6	A CAL-12.v9, QA CAL-14.v4, G dure for dosimetric E-field probe	
Calibration date:	April 22, 2015		
		onal standards, which realize the physical u obability are given on the following pages a	
All calibrations have been cond	ucted in the closed laborator	y facility: environment temperature (22 ± 3)	°C and humidity < 70%.
Calibration Equipment used (M	&TE critical for calibration)		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
		01 Apr 45 (No. 017 00108)	Mar 16

Reference 20 dB Attenuator SN: S5277 (20x) 01-Apr-15 (No. 217-02132) Mar-16 SN: S5129 (30b) 01-Apr-15 (No. 217-02133) Mar-16 Reference 30 dB Attenuator Dec-15 30-Dec-14 (No. ES3-3013_Dec14) Reference Probe ES3DV2 SN: 3013 DAE4 SN: 660 14-Jan-15 (No. DAE4-660_Jan15) Jan-16 Check Date (in house) Scheduled Check Secondary Standards ID 4-Aug-99 (in house check Apr-13) In house check: Apr-16 RF generator HP 8648C US3642U01700 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-14) In house check: Oct-15

	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Israen Charles
Approved by:	Katja Pokovic	Technical Manager	fol they
This calibration certificate	shall not be reproduced except in ful	I without written approval of the laboratory	Issued: April 23, 2015 /.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A. B. C. D o rotation around probe axis Polarization () 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7356

Manufactured: Calibrated: February 5, 2015 April 22, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.37	0.55	0.58	± 10.1 %
DCP (mV) ^B	98.7	98.6	97.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	138.6	±3.0 %
		Y	0.0	0.0	1.0		142.4	
		Z	0.0	0.0	1.0		154.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

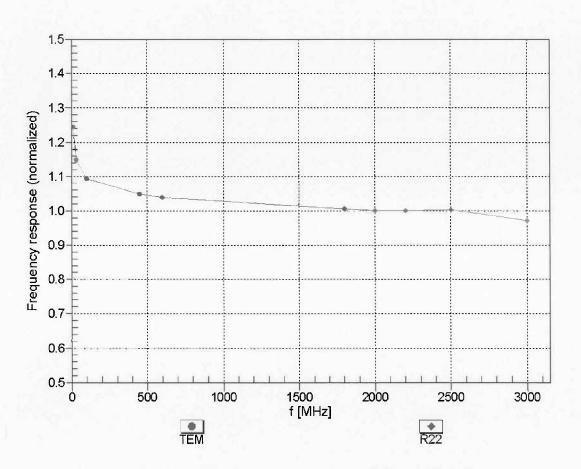
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	11.11	11.11	11.11	0.15	1.20	± 13.3 %
750	41.9	0.89	10.78	10.78	10.78	0.24	1.34	± 12.0 %
900	41.5	0.97	9.96	9.96	9.96	0.21	1.60	± 12.0 %
1450	40.5	1.20	9.30	9.30	9.30	0.22	1.27	± 12.0 %
1750	40.1	1.37	8.87	8.87	8.87	0.38	0.80	± 12.0 %
1900	40.0	1.40	8.61	8.61	8.61	0.27	0.80	± 12.0 %
2300	39.5	1.67	8.23	8.23	8.23	0.34	0.80	± 12.0 %
2450	39.2	1.80	7.89	7.89	7.89	0.25	0.89	± 12.0 %
2600	39.0	1.96	7.67	7.67	7.67	0.27	0.88	± 12.0 %
3500	37.9	2.91	7.36	7.36	7.36	0.38	1.05	± 13.1 %
3700	37.7	3.12	7.19	7.19	7.19	0.39	1.01	± 13.1 %
4950	36.3	4.40	6.32	6.32	6.32	0.30	1.80	± 13.1 %
5250	35.9	4.71	5.55	5.55	5.55	0.30	1.80	± 13.1 %
5600	35.5	5.07	5.15	5.15	5.15	0.35	1.80	± 13.1 %
5750	35.4	5.22	5.26	5.26	5.26	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

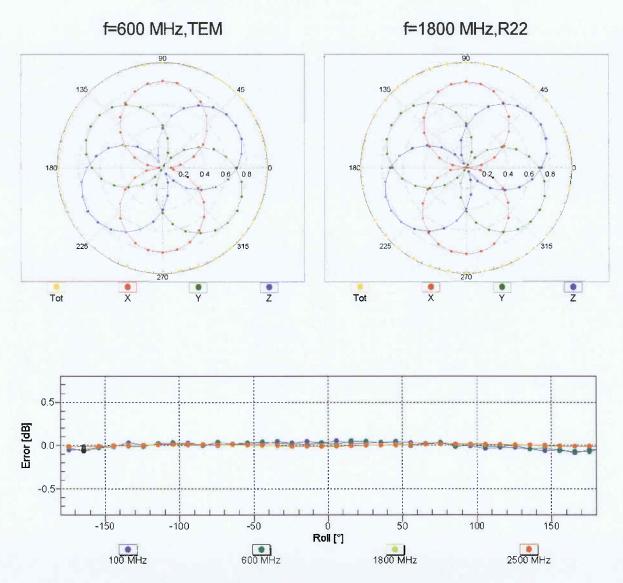
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

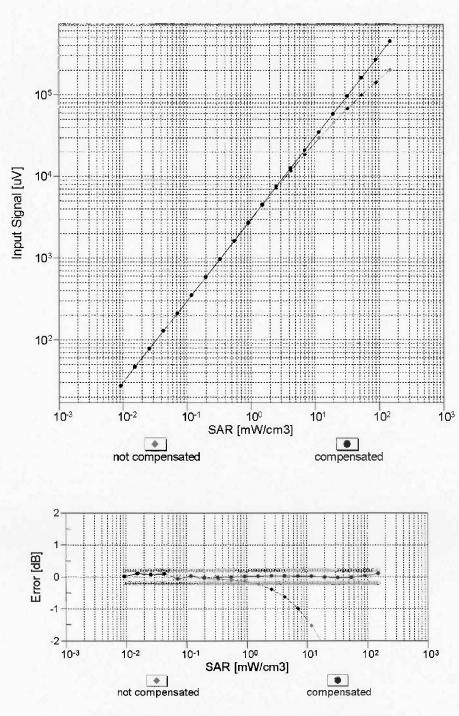

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	11.41	11.41	11.41	0.10	1.15	± 13.3 %
750	55.5	0.96	10.31	10.31	10.31	0.19	1.51	± 12.0 %
900	55.0	1.05	9.97	9.97	9.97	0.42	0.86	± 12.0 %
1450	54.0	1.30	8.78	8.78	8.78	0.22	1.54	± 12.0 %
1750	53.4	1.49	8.47	8.47	8.47	0.42	0.81	± 12.0 %
1900	53.3	1.52	7.94	7.94	7.94	0.24	1.06	± 12.0 %
2300	52.9	1.81	7.83	7.83	7.83	0.31	0.80	± 12.0 %
2450	52.7	1.95	7.54	7.54	7.54	0.29	0.94	± 12.0 %
2600	52.5	2.16	7.27	7.27	7.27	0.30	0.99	± 12.0 %
3500	51.3	3.31	6.79	6.79	6.79	0.30	1.30	± 13.1 %
3700	51.0	3.55	6.81	6.81	6.81	0.32	1.37	± 13.1 %
4950	49.4	5.01	5.19	5.19	5.19	0.50	1.90	± 13.1 %
5250	48.9	5.36	4.89	4.89	4.89	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.17	4.17	4.17	0.55	1.90	± 13.1 %
5750	48.3	5.94	4.52	4.52	4.52	0.55	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

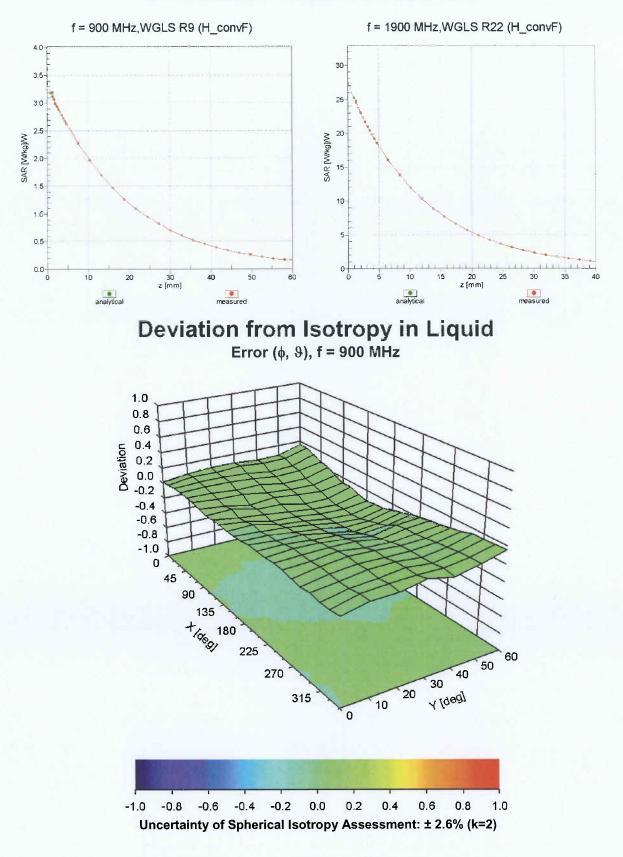
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-4.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

PHANTOM MATERIAL COMPATIBILTIY WITH SPEAG LIQUIDS

INTRODUCTION

SPEAG offers a wide range of tissue simulating liquids. These liquids are based on various ingredients depending on their frequency range. The below table shows compatibility of these tissue simulating liquids and various phantom materials.

COMPATIBILITY TABLE

- **Y**= **fully compatible** with the tissue simulating liquid. Long time exposure is not critical.
- **P**= **partially compatible**. It is essential to keep the exposure time to a minimum and to rinse and clean the item after exposure to the respective tissue simulating liquid. Liquids can have a softening effect on the material. Fiber reinforced material may reduce this effect. Continuous exposure will reduce the item life-time considerably.
- R= restricted compatibility with the respective tissue simulating liquid. Liquids can enter and damage the material structure. Short time exposure (e.g. few hours) is possible given that the item is thoroughly rinsed and dried after each exposure.
- N= not compatible with the respective tissue simulating liquid. Short time exposure can cause irreparable damage to the item exposed.

SPEAG MSDS	772	2-SLAAx	0уу	772-SL	AAx1yy	772-SL	AAx4yy	772-SL	ААхбуу	772-SL	ААхбуу
Liquid Type Phantom Material	B 900	HSL175V2 to HSL900V2	MSL300V2 to MSL900V2	HSL1450V2 to HSL2450V2	MSL1450V2 to MSL2450V2	HBBL3500-5800V5	MBBL3500-5800V5	HBBL1350-1850V3 to HBBL1900-3800V3	MBBL1350-1850V3 to MBBL1900-3800V3	HBBL30-250V3	MBBL125-250V3
PEEK	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
РОМ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
PTFE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Glass	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Phenol resin plates	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Silicone *	Y	Y	Y	Y*	Y*	Y	Y	Y	Y	Y	Y
Acrylic resin *	Y	Y	Y	Y*	Y*	Y	Y	Y	Y	Y	Y
Polyethylene	Y	Y	Y	Р	Р	Y	Y	Y	Y	Y	Y
Vinylester, glass fiber (VE-GF)	Y	Y	Y	Р	Р	Y	Y	Y	Y	Y	Y
Polypropylene, glass fiber (PP-GF)	Y	Y	Y	Р	Р	Y	Y	Y	Y	Y	Y
Epoxy resin, glass fiber reinforced	Y	Y	Y	R	R	Y	Y	Y	Y	Y	Y
PMMA (Actylic glass, Plexiglass) **	Y	Y	Y	Ν	Ν	Y	Y	Y	Y	Y	Y

NOTES:

- * Liquids may cause damage by entering adhesive joints or bonding surfaces.
- ** Damage of material macro structure possible.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL CCS USA Client

Certificate No: EX3-3749_Jan15

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3749		
Calibration procedure(s)		CAL-14.v4, QA CAL-23.v5, e for dosimetric E-field prot	
Calibration date:	January 26, 2015		
	,	standards, which realize the physical ility are given on the following pages	
All calibrations have been condu	ucted in the closed laboratory fac	ility: environment temperature (22 ± 3	3)℃ and humidity < 70%.
Calibration Equipment used (M8	TE critical for calibration)		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Bon Course
			22.21
Approved by:	Katja Pokovic	Technical Manager	Laberty
			Issued: January 27, 2015
This calibration certificate shall not	be reproduced except in full without w	ritten approval of the laboratory.	

Calibration Laboratory of Schmid & Partner

O1

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3749

Manufactured: Calibrated: March 26, 2010 January 26, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2) ± 10.1 %	
Norm $(\mu V/(V/m)^2)^A$	0.49	0.46	0.42		
DCP (mV) ^B	103.6	105.9	106.9		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊏] (k=2)
0	CW	X 0.0	0.0	1.0	0.00	158.4	±1.9 %	
		Y	0.0	0.0	1.0		157.0	
1000		Z	0.0	0.0	1.0		147.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

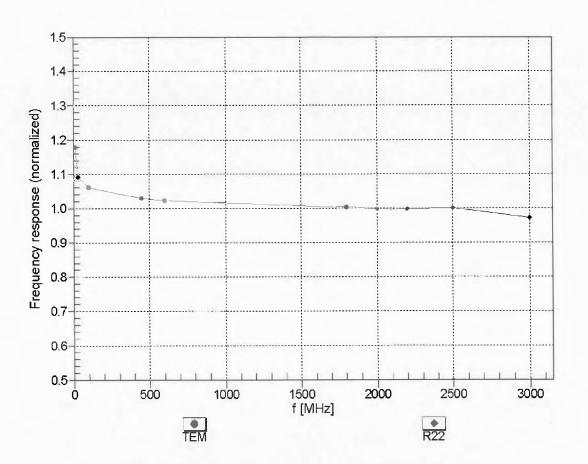
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.07	9.07	9.07	0.37	0.99	± 12.0 %
900	41.5	0.97	8.75	8.75	8.75	0.33	0.97	± 12.0 %
1750	40.1	1.37	7.53	7.53	7.53	0.66	0.66	± 12.0 %
1900	40.0	1.40	7.34	7.34	7.34	0.39	0.83	± 12.0 %
2450	39.2	1.80	6.58	6.58	6.58	0.36	0.85	± 12.0 %
2600	39.0	1.96	6.25	6.25	6.25	0.41	0.83	± 12.0 %
5250	35.9	4.71	4.62	4.62	4.62	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.22	4.22	4.22	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.41	4.41	4.41	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

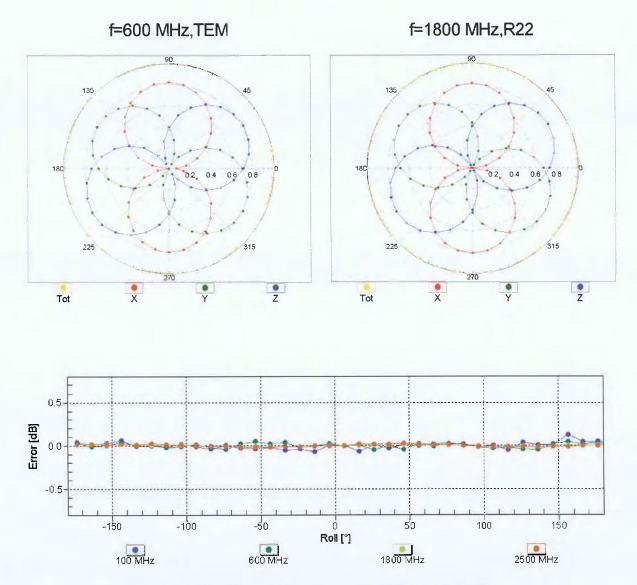
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the houndary effect of the second sec

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	8.85	8.85	8.85	0.51	0.83	± 12.0 %
900	55.0	1.05	8.61	8.61	8.61	0.38	0.98	± 12.0 %
1750	53.4	1.49	7.34	7.34	7.34	0.68	0.64	± 12.0 %
1900	53.3	1.52	7.09	7.09	7.09	0.48	0.77	± 12.0 %
2450	52.7	1.95	6.78	6.78	6.78	0.70	0.59	± 12.0 %
2600	52.5	2.16	6.56	6.56	6.56	0.80	0.57	± 12.0 %
5250	48.9	5.36	4.36	4.36	4.36	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.68	3.68	3.68	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.07	4.07	4.07	0.50	1.90	± 13.1 %

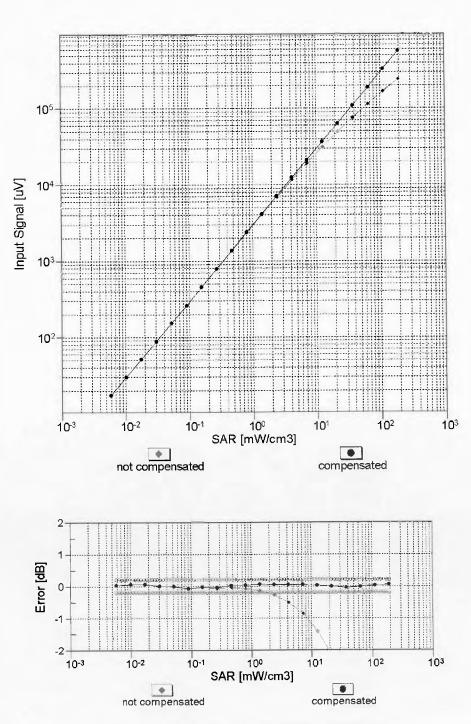
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

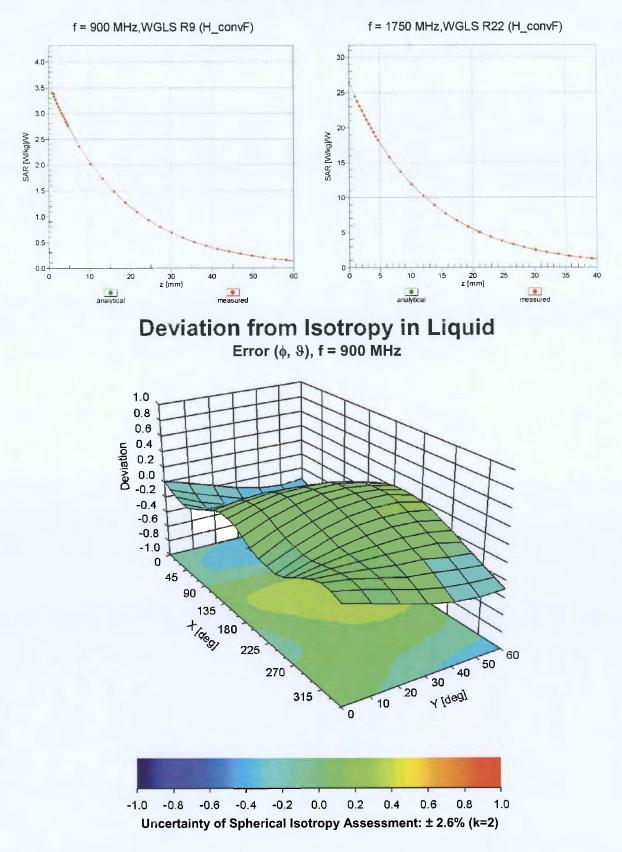

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

January 26, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-63.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm