

FCC CFR47 PART 22 SUBPART H FCC CFR47 PART 24 SUBPART E

CERTIFICATION TEST REPORT

FOR

CDMA WATCH + Bluetooth, DTS b/g

MODEL NUMBER: LG-VC110, LGVC110, VC110

FCC ID: ZNFVC110

REPORT NUMBER: 15I21068-E1 REVISION A

ISSUE DATE: AUGUST 10, 2015

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY, 07632, U.S.A

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	7/27/15	Initial Issue	
	8/10/15	Updated Section 5.2, 7 & 8.12	D. Coronia

Page 2 of 39

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS 5
2.	TEST METHODOLOGY
3.	FACILITIES AND ACCREDITATION 6
4.	CALIBRATION AND UNCERTAINTY6
4.1.	MEASURING INSTRUMENT CALIBRATION
4.2.	SAMPLE CALCULATION
4.3.	MEASUREMENT UNCERTAINTY7
5.	EQUIPMENT UNDER TEST 8
5.1.	DESCRIPTION OF EUT
5.2.	MAXIMUM OUTPUT POWER 8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS
5.4.	DESCRIPTION OF TEST SETUP10
6.	TEST AND MEASUREMENT EQUIPMENT13
7.	SUMMARY TABLE
8.1.	CDMA2000
8.	1.1. 1xRTT15
8.	1.2. CDMA2000 OUTPUT POWER RESULT16
9.	PEAK TO AVERAGE RATIO17
9.1.	CONDUCTED PEAK TO AVERAGE RESULT17
10.	LIMITS AND CONDUCTED RESULTS18
10.1	0 OCCUPIED BANDWIDTH
10	0.1.1. OCCUPIED BANDWIDTH RESULTS18
	0.1.1. OCCUPIED BANDWIDTH PLOTS19
10.2	BAND EDGE EMISSIONS
10	0.2.1. BAND EDGE PLOTS21
10.3	B. OUT OF BAND EMISSIONS
10	0.3.1. OUT OF BAND EMISSIONS RESULT
10	0.3.2. OUT OF BAND EMISSIONS PLOTS24
10.4	P. FREQUENCY STABILITY
10	0.4.1. FREQUENCY STABILITY RESULTS
10.5	5. RADIATED POWER (ERP & EIRP)28
10	0.5.1. ERP/EIRP RESULTS
	Page 3 of 39

11.	SET	TUP	PHOTOS	
	10.6.1	•	SPURIOUS RADIATION PLOTS	
1	10.6.	FIE	ELD STRENGTH OF SPURIOUS RADIATION	
	10.5.2		ERP/EIRP PLOTS	

Page 4 of 39

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: EUT DESCRIPTION: MODEL: SERIAL NUMBER: DATE TESTED: LG ELECTRONICS MOBILECOMM U.S.A., INC. CDMA WATCH + Bluetooth, DTS b/g LG-VC110, LGVC110, VC110 1Z822 (Conducted), 1Z821 (Radiated) JUNE 24-30, 2015

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
FCC PART 22H and 24E	PASS				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

DAN CORONIA CONSUMER TECHNOLOGY DIVISION WISE PROJECT LEAD UL VERIFICATION SERVICES INC Tested By:

STEVEN TRAN CONSUMER TECHNOLOGY DIVISION WISE LAB ENGINEER UL VERIFICATION SERVICES INC

Page 5 of 39

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-C, FCC CFR 47 Part 22, and FCC CFR Part 24.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi) ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

Page 6 of 39

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB
Radiated Disturbance, 1GHz to 40GHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 39

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is CDMA WATCH + Bluetooth, DTS b/g

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted and radiated ERP / EIRP output powers as follows:

ducted	Dadi		
Conducted		Radiated	
AVG(mW)	AVG(dBm)	AVG(mW)	
229.09	24.626	290.13	
141.15	24.116	257.99	
	229.09	229.09 24.626	

Page 8 of 39

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a LMA antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
BC0, 824~849MHz	-3.58
BC1, 1850~1910MHz	-1.50

Page 9 of 39

5.4. DESCRIPTION OF TEST SETUP

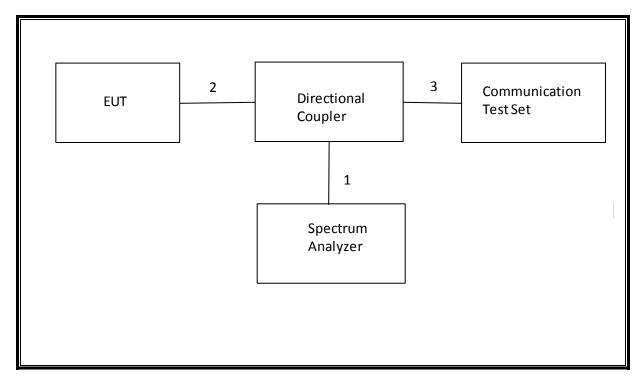
SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer Model		Serial Number	FCC ID		
AC Adapter	LG	STA-U17WD	DS542312055	N/A		

I/O CABLES (CONDUCTED SETUP)

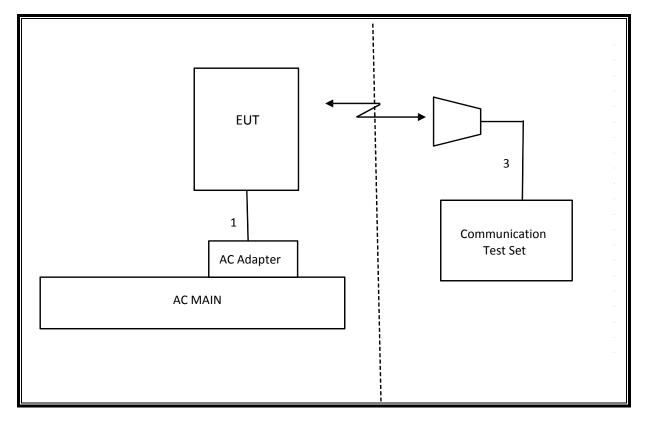
	I/O Cable List								
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	RF Out	1	Spectrum Analyzer	Shielded	None	NA			
2	Antenna Port	1	EUT	Shielded	0.1m	NA			
3	RF In/Out	1	Communication Test Set	Shielded	1m	NA			

I/O CABLES (RADIATED SETUP)


	I/O CABLE LIST							
Cable No.	Port	# of Identical	Connector Type	Cable Type	Cable Length	Remarks		
		Ports						
1	USB	1	AC Adapter	Un-shielded	1.2m	NA		
2	Jack	1	Headset	Shielded	1m	NA		
3	RF In/out	1	Communication Test Set	Un-shielded	2m	NA		

TEST SETUP

The EUT is continuously communicated to the call box during the tests.


Page 10 of 39

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

Page 11 of 39

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

Page 12 of 39

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Due			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01179	02/26/16			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	08/14/15			
Antenna, Horn, 18 GHz	EMCO	3115	C00783	10/25/15			
Antenna, Horn, 18 GHz	EMCO	3115	C00784	10/25/15			
Highpass Filter, 2.7 GHz	Micro-Tronics	HPM13194	N02687	CNR			
Highpass Filter, 1.5 GHz	Micro-Tronics	HPM13193	N02688	CNR			
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	01/09/16			
Communications Test Set	R&S	CMW500	T159	07/02/16			
DC power supply, 8 V @ 3 A or 15 V	Agilent / HP	E3610A	None	CNR			
Vector signal generator, 6 GHz	Agilent / HP	E4438C	None	07/06/16			
Antenna, Tuned Dipole 400~1000	ETS	3121C DB4	C00993	02/14/16			
Directional Coupler	RF-Lambda	RFDC5M06G15	None	CNR			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	12/17/15			
Multimeter	Fluke	26111	74320701	4/15/2016			

Page 13 of 39

7. SUMMARY TABLE

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Note
2.1049	N/A	Occupied Band width (99%)	N/A		Pass	1.28MHz
22.917(a) 24.238(a) 27.53(g) 90.691	RSS-132(4.5.1) RSS-133(6.5.1) RSS-139(6.5.1)	Band Edge / Conducted Spurious Emission	-13dBm	Conducted	Pass	-24.3dBm
2.1046	N/A	Conducted output power	N/A	Conducted	Pass	23.6dBm
22.355 24.235 27.54 90.213	RSS-132(4.3) RSS-133(6.3) RSS-139(6.3) RSS-199(4.3)	Frequency Stability	2.5PPM		Pass	0.016ppm
22.913(a)(2)	RSS-132(4.4)	Effective Radiated Power	38 dBm		Pass	24.1dBm
24.232(c) 27.50(h)(2)	RSS-133(6.4) RSS-199(4.4)	Equivalent Isotropic Radiated Power	33dBm	Radiated	Pass	24.6dBm
22.917(a) 24.238(a) 27.53(g)	RSS-132(4.5.1) RSS-133(6.5.1) RSS-139(6.5.1)	Radiated Spurious Emission	-13dBm	Taulateu	Pass	46.4dBm

Page 14 of 39

8.1. CDMA2000

8.1.1. 1xRTT

TEST PROCEDURE

This procedure assumes the Agilest 8960 Test Set has the following applications installed and with valid license.

Application Rev, License

CDMA2000 Mobile Test B.13.08, L

- Call Setup > Shift & Preset
- Cell Info > Cell Parameters > System ID (SID) > 7

> Network ID (NID) > 1

- Protocol Rev > 6 (IS-2000-0)
- Radio Config (RC) > Please see following table or details
- FCH Service Option (SO) Setup > Please see following table or details
- Traffic Data Rate > Full
- TDSO SCH Info > F-SCH Parameters > F-SCH Data Rate > 153.6 kbps
 - > R-SCH Parameters > R-SCH Data Rate > 153.6 kbps
- Rvs Power Ctrl > Active bits
 - Rvs Power Ctrl > All Up bits (Maximum TxPout)

8.1.2. CDMA2000 OUTPUT POWER RESULT

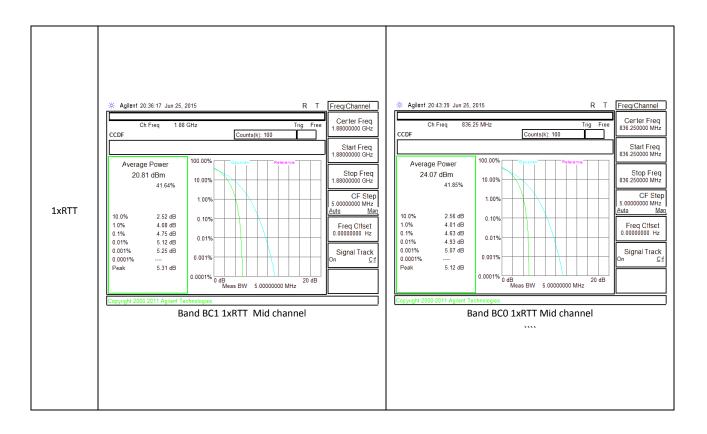
Band	Mode	Ch	Freq. (MHz)	Avg Pwr (dBm)
	D04 0055	1013	824.70	23.3
	RC1, SO55 (Loopback)	384	836.52	23.5
	(LOOPDACK)	777	848.31	23.3
	B00 0055	1013	824.70	23.6
BC0	RC3, SO55 (Loopback)	384	836.52	23.3
	(LOOPDACK)	777	848.31	23.2
	DOD 0000	1013	824.70	23.4
	RC3, SO32 (+F-SCH)	384	836.52	23.3
		777	848.31	23.2

Band	Mode	Ch	Freq. (MHz)	Avg Pwr (dBm)
	D04 0055	25	1851.25	21.5
	RC1, SO55 (Loopback)	600	1880.00	21.3
	(LOOPDACK)	1175	1908.75	21.3
		25	1851.25	21.3
BC1	RC3, SO55 (Loopback)	600	1880.00	21.4
	(LOOPDACK)	1175	1908.75	21.1
	D 00 0000	25	1851.25	21.5
	RC3, SO32 (+F-SCH)	600	1880.00	21.3
		1175	1908.75	21.1

Page 16 of 39

9. PEAK TO AVERAGE RATIO

Test Procedure


Per KDB 971168 D01 Power Meas License Digital Systems v02r02

Test Spec

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

9.1. CONDUCTED PEAK TO AVERAGE RESULT

RESULTS

Page 17 of 39

10. LIMITS AND CONDUCTED RESULTS

10.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049 IC: RSS-132, 4.5; RSS-133, 6.5

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v02r02)

RESULTS

Band	Mode	Channel	f (MHz)	99% BW (MHz)	-26dB BW (MHz)
		1013	824.7	1.2425	1.403
BCO		384	836.52	1.2724	1.412
	1xRTT	777	848.31	1.2536	1.408
		25	1851.25	1.2713	1.420
BC1		600	1880	1.2804	1.405
		1175	1908.75	1.2551	1.403

10.1.1. OCCUPIED BANDWIDTH RESULTS

10.1.1. OCCUPIED BANDWIDTH PLOTS

Page 19 of 39

10.2. BAND EDGE EMISSIONS

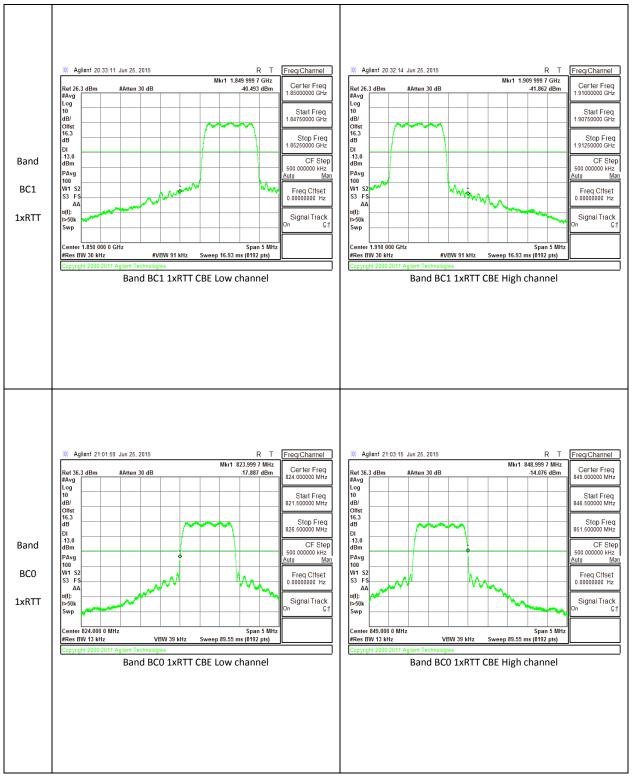
RULE PART(S)

FCC: §22.359, §24.238

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE


Per KDB 971168 D01 Power Meas License Digital Systems v02r02

The transmitter output was connected to an Agilent 8960 or a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

RESULTS

Page 20 of 39

10.2.1. BAND EDGE PLOTS

10.3. OUT OF BAND EMISSIONS

RULE PART(S)

FCC: §2.1051, §22.901, §22.917, §24.238,

<u>LIMITS</u>

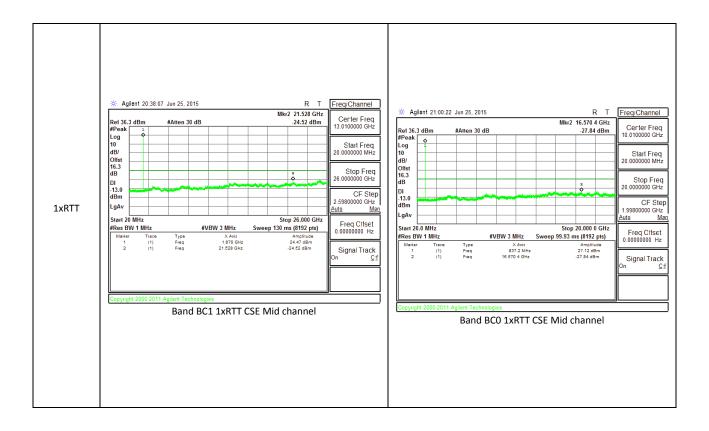
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r02

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

RESULTS


Page 22 of 39

10.3.1. OUT OF BAND EMISSIONS RESULT

Band	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
		824.7	-27.61	-13	-14.61
BCO		836.52	-27.84	-13	-14.84
	1xRTT	848.31	-24.30	-13	-11.30
	TXULL	1851.25	-25.29	-13	-12.29
BC1		1880	-24.52	-13	-11.52
		1908.75	-24.70	-13	-11.70

Page 23 of 39

10.3.2. OUT OF BAND EMISSIONS PLOTS

Page 24 of 39

10.4. FREQUENCY STABILITY

RULE PART(S)

FCC: §2.1055, §22.355, §24.235

LIMITS

§22.355 - The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm for mobile stations.

§24.235 - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r02

RESULTS

See the following pages.

Page 25 of 39

10.4.1. FREQUENCY STABILITY RESULTS

Re	ference Frequency: Limit: to	PCS Mid Channel stay +- 2.5 ppm =	836.52 2091.300	MHz @ 20°C Hz
Power Supply	Environment	Frequency Dev	iation Measureed w	ith Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	50	836.519992	0.016	2.5
3.80	40	836.520007	-0.001	2.5
3.80	30	836.520006	0.000	2.5
3.80	20	836.520006	0	2.5
3.80	10	836.520003	0.003	2.5
3.80	0	836.520004	0.002	2.5
3.80	-10	836.519994	0.015	2.5
3.80	-20	836.520007	-0.002	2.5
3.80	-30	836.519995	0.014	2.5

RTT BC0 CELL BAND, MID CHANNEL 384, Frequency 836.52 MHz

Re	ference Frequency:	PCS Mid Channel	836.52	MHz @ 20°C
	Limit: to	stay +- 2.5 ppm =	2091.300	Hz
Power Supply	Environment	Frequency Dev	viation Measureed wi	th Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	20	836.520006	0	2.5
4.37	20	836.5200052	0.001	2.5
3.23	20	836.5200066	-0.001	2.5

Page 26 of 39

RTT BC1, Mid Channel 600 Freq: 1880MHz

Re	ference Frequency: Limit: to	PCS Mid Channel stay +- 2.5 ppm =	1880 4700.000	MHz @ 20°C Hz
Power Supply	Environment	Frequency Dev	viation Measureed wi	th Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	50	1879.999988	-0.001	2.5
3.80	40	1879.999992	-0.003	2.5
3.80	30	1879.999992	-0.003	2.5
3.80	20	1879.999987	0	2.5
3.80	10	1879.999991	-0.002	2.5
3.80	0	1879.999993	-0.003	2.5
3.80	-10	1880.000005	-0.010	2.5
3.80	-20	1880.000006	-0.010	2.5
3.80	-30	1879.999991	-0.002	2.5

Re	ference Frequency:	PCS Mid Channel	1880	MHz @ 20°C
	Limit: to	stay +- 2.5 ppm =	4700.000	Hz
Power Supply	Environment	Frequency Dev	viation Measureed wi	th Time Elapse
(Vdc)	Temperature (°C)	(MHz)	Delta (ppm)	Limit (ppm)
3.80	20	1879.999987	0	2.5
4.37	20	1879.999991	-0.002	2.5
3.23	20	1879.999992	-0.003	2.5

Page 27 of 39

10.5. RADIATED POWER (ERP & EIRP)

RULE PART(S)

FCC: §2.1046, §22.913, §24.232

LIMITS

22.913(a) - The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(c) - Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13dB.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17; PSA setting reference to 971168 D01 v02r02

For peak power measurement with a PSA:

a) Set the RBW \geq OBW; b) Set VBW \geq 3 × RBW; c) Set span \geq 2 x RBW; d) Sweep time = auto couple; e) Detector = peak; f) Ensure that the number of measurement points \geq span/RBW; g) Trace mode = max hold;

For average power measurement with a PSA:

a) Set span to at least 1.5 times the OBW; b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz; c) Set VBW \geq 3 x RBW; d) Set number of points in sweep \geq 2 × span / RBW; e) Sweep time = auto-couple; f) Detector = RMS (power averaging); g) Use free run trigger If burst duty cycle \geq 98; h) Use trigger to capture bursts If burst duty cycle < 98; i) Trace average at least 100 traces in power averaging (*i.e.*, RMS) mode. j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function.

TEST RESULTS

Page 28 of 39

10.5.1. ERP/EIRP RESULTS

Band	Mode	Channel	f(MHz)	ERP /	' EIRP
				dBm	mW
		25	1851.25	23.946	248.08
BC1	1xRTT	600	1880	24.626	290.13
		1175	1908.75	23.506	224.18
		1013	824.7	24.116	257.99
BCO	1xRTT	384	836.52	23.975	249.75
		777	848.31	23.926	246.94

Page 29 of 39

10.5.2. ERP/EIRP PLOTS

Company:		LG Electronics						
Project #:		15 21068						
Date:		06/30/15						
Test Engi	neer:	A. Escamilla						
Configura		EUT only						
Jonngura Node:	uon.	CDMA RTT BC	4					
noue.		COMATCH DC	•					
Substituti		Substitution, 4	4ft SMA Cable W					
Substituti	on: Horn T60 SG reading	Substitution, 4	4ft SMA Cable W	Antenna Gain	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Substituti f GHz	on: Horn T60	Substitution, 4	4ft SMA Cable W		EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Substituti f GHz Low Ch	on: Horn T60 SG reading (dBm)	Substitution, 4 Ant. Pol. (H/V)	4ft SMA Cable W Cable Loss (dB)	Antenna Gain (dBi)	(dBm)	(dBm)	(dB)	Notes
Substituti f GHz	on: Horn T60 SG reading	Substitution, 4	4ft SMA Cable W	Antenna Gain	(dBm) 22.78			Note
f GHz Low Ch 1.85125 1.85125 Mid Ch	on: Horn T60 SG reading (dBm) 14.4 15.6	Substitution, 4 Ant. Pol. (H/V) V H	tft SMA Cable W Cable Loss (dB) 0.85 0.85	Antenna Gain (dBi) 9.20 9.20	(dBm) 22.78 23.95	(dBm) 33.0 33.0	(dB) -10.2 -9.1	Note
f GHz Low Ch 1.85125 1.85125 Mid Ch 1.880	on: Horn T60 SG reading (dBm) 14.4 15.6 13.6	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable W Cable Loss (dB) 0.85 0.85 0.85	Antenna Gain (dBi) 9.20 9.20 9.10	(dBm) 22.78 23.95 21.88	(dBm) 33.0 33.0 33.0 33.0	(dB) -10.2 -9.1 -11.1	Notes
f GHz Low Ch 1.85125 1.85125 Mid Ch 1.880 1.880	on: Horn T60 SG reading (dBm) 14.4 15.6	Substitution, 4 Ant. Pol. (H/V) V H	tft SMA Cable W Cable Loss (dB) 0.85 0.85	Antenna Gain (dBi) 9.20 9.20	(dBm) 22.78 23.95	(dBm) 33.0 33.0	(dB) -10.2 -9.1	Note
f GHz Low Ch 1.85125 1.85125 Mid Ch 1.880 1.880 High Ch	on: Horn T60 SG reading (dBm) 14.4 15.6 13.6 16.4	Substitution, 4 Ant. Pol. (H/V) V H V H	4ft SMA Cable W Cable Loss (dB) 0.85 0.85 0.85	Antenna Gain (dBi) 9.20 9.20 9.10 9.10	(dBm) 22.78 23.95 21.88 24.63	(dBm) 33.0 33.0 33.0 33.0 33.0	(dB) -10.2 -9.1 -11.1 -8.4	Note
f GHz Low Ch 1.85125 1.85125 Mid Ch 1.880 1.880	on: Horn T60 SG reading (dBm) 14.4 15.6 13.6	Substitution, 4 Ant. Pol. (H/V) V H V	4ft SMA Cable W Cable Loss (dB) 0.85 0.85 0.85	Antenna Gain (dBi) 9.20 9.20 9.10	(dBm) 22.78 23.95 21.88	(dBm) 33.0 33.0 33.0 33.0	(dB) -10.2 -9.1 -11.1	Note

Page 30 of 39

		UL	verification a	Services, Inc. C	namper	A		
Company	:	LG Electronics	6					
Project #:		15 21068						
Date:		07/01/15						
Test Engi	neer:	A. Escamilla						
Configura	ation:	EUT Only						
Node:		CDMA BC0 R	TT FUND					
	g: Sunol T130, on: Dipole T2 SG reading (dBm)	73, 4ft SMA (Cable Wareho		ERP (dBm)	Limit (dBm)	Margin (dB)	Notes
Receiving Substituti f	on: Dipole T2 SG reading	73, 4ft SMA (Ant. Pol.	Cable Wareho	use. Antenna Gain		1		Notes
Receiving Substituti f <u>MHz</u> Low Ch	on: Dipole T2 SG reading (dBm)	73, 4ft SMA (Ant. Pol. (H/V)	Cable Wareho Cable Loss (dB)	use. Antenna Gain (dBd)	(dBm)	(dBm)	(dB)	Notes
Receiving Substituti f MHz Low Ch 824.70	on: Dipole T2 SG reading (dBm) 19.25	73, 4ft SMA (Ant. Pol. (H/V) V	Cable Wareho Cable Loss (dB) 0.9	use. Antenna Gain (dBd) 0.0	(dBm) 18.35	(dBm) 38.5	(dB) -20.1	Note
Receiving Substituti f MHz Low Ch 824.70 824.70	on: Dipole T2 SG reading (dBm)	73, 4ft SMA (Ant. Pol. (H/V)	Cable Wareho Cable Loss (dB)	use. Antenna Gain (dBd)	(dBm)	(dBm)	(dB)	Note
Receiving Substituti f MHz Low Ch 824.70	on: Dipole T2 SG reading (dBm) 19.25	73, 4ft SMA (Ant. Pol. (H/V) V	Cable Wareho Cable Loss (dB) 0.9	use. Antenna Gain (dBd) 0.0	(dBm) 18.35	(dBm) 38.5	(dB) -20.1	Note
Receiving Substituti f MHz Low Ch 824.70 824.70 Mid Ch 836.52 836.52	on: Dipole T2 SG reading (dBm) 19.25 25.02	73, 4ft SMA (Ant. Pol. (H/V) V H	Cable Wareho Cable Loss (dB) 0.9 0.9	use. Antenna Gain (dBd) 0.0 0.0	(dBm) 18.35 24.12	(dBm) 38.5 38.5	(dB) -20.1 -14.3	Note
Receiving Substituti f MHz Low Ch 824.70 Mid Ch 836.52 836.52 High Ch	on: Dipole T2 SG reading (dBm) 19.25 25.02 18.83 24.87	73, 4ft SMA (Ant. Pol. (H/V) V H V H	Cable Wareho Cable Loss (dB) 0.9 0.9 0.9 0.9	use. Antenna Gain (dBd) 0.0 0.0 0.0 0.0	(dBm) 18.35 24.12 17.93 23.98	(dBm) 38.5 38.5 38.5 38.5 38.5	(dB) -20.1 -14.3 -20.5 -14.5	Note
Receiving Substituti f MHz Low Ch 824.70 824.70 Mid Ch 836.52 836.52	on: Dipole T2 SG reading (dBm) 19.25 25.02 18.83	73, 4ft SMA (Ant. Pol. (H/V) V H V	Cable Wareho Cable Loss (dB) 0.9 0.9 0.9	use. Antenna Gain (dBd) 0.0 0.0 0.0	(dBm) 18.35 24.12 17.93	(dBm) 38.5 38.5 38.5	(dB) -20.1 -14.3 -20.5	Note

Page 31 of 39

10.6. FIELD STRENGTH OF SPURIOUS RADIATION

RULE PART(S)

FCC: §2.1053, §22.917, §24.238

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

RESULTS

UL VERIFICATION SERVICES INC.FORM NO: CCSUP4701H47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 32 of 39

10.6.1. SPURIOUS RADIATION PLOTS

		Abo	ve 1GHz Hig	₋ Verificatio gh Frequen			asureme	nt			
Company	:	LG Electronics									
Project #		15/21068									
Date:	Date:		6/30/2015								
Test Eng	ineer:	A. Escamilla									
_	Configuration: Location: Mode:		EUT + AC Adapter Chamber A								
_											
			BC1 Harmonics								
f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes		
Low Ch, 1	851.25										
3702.50	-17.6	V	3.0	35.9	1.0	-52.4	-13.0	-39.4			
5553.75	-16.3	V	3.0	35.5	1.0	-50.7	-13.0	-37.7			
7405.00	-12.1	V	3.0	35.7	1.0	-46.8	-13.0	-33.8			
3702.50	-17.2	H	3.0	35.9	1.0	-52.0	-13.0	-39.0			
5553.75	-12.5	H	3.0	35.5	1.0	-47.0	-13.0	-34.0			
7405.00	-12.8	Н	3.0	35.7	1.0	-47.5	-13.0	-34.5			
	Mid Ch, 1880 3760.00 -16.3		3.0	35.8	1.0	-51.1	-13.0	-38.1			
5640.00	-10.3	V V	3.0	35.5	1.0	-31.1	-13.0	-36.7			
	-13.2	v	3.0	35.7	1.0	-46.4	-13.0	-33.4			
	-15.9	Ĥ	3.0	35.8	1.0	-50.7	-13.0	-37.7			
7520.00		H	3.0	35.5	1.0	-49.0	-13.0	-36.0			
7520.00 3760.00					1.0	-47.2	-13.0	-34.2			
7520.00	-14.5 -12.4	H	3.0	35.7	1.0						
7520.00 3760.00 5640.00 7520.00	-14.5 -12.4		3.0	35.7	1.0	-11.2					
7520.00 3760.00 5640.00 7520.00 High Ch, 1 3817.50	-14.5 -12.4 908.75 -18.0	H V	3.0	35.8	1.0	-52.8	-13.0	-39.8			
7520.00 3760.00 5640.00 7520.00 High Ch, 1 3817.50 5726.25	-14.5 -12.4 908.75 -18.0 -16.4	H V V	3.0 3.0	35.8 35.5	1.0 1.0	-52.8 -50.9	-13.0	-37.9			
7520.00 3760.00 5640.00 7520.00 High Ch, 1 3817.50 5726.25 7635.00	-14.5 -12.4 908.75 -18.0 -16.4 -13.5	H V V V	3.0 3.0 3.0	35.8 35.5 35.8	1.0 1.0 1.0	-52.8 -50.9 -48.2	-13.0 -13.0	-37.9 -35.2			
7520.00 3760.00 5640.00 7520.00 High Ch, 1 3817.50 5726.25 7635.00 3817.50	-14.5 -12.4 908.75 -18.0 -16.4 -13.5 -16.6	H V V V H	3.0 3.0 3.0 3.0 3.0	35.8 35.5 35.8 35.8 35.8	1.0 1.0 1.0 1.0	-52.8 -50.9 -48.2 -51.4	-13.0 -13.0 -13.0	-37.9 -35.2 -38.4			
7520.00 3760.00 5640.00 7520.00 High Ch, 1 3817.50 5726.25 7635.00	-14.5 -12.4 908.75 -18.0 -16.4 -13.5	H V V V	3.0 3.0 3.0	35.8 35.5 35.8	1.0 1.0 1.0	-52.8 -50.9 -48.2	-13.0 -13.0	-37.9 -35.2			

Page 33 of 39

			ve 1GHz Hig		-,					
Company:		LG Electronics								
Project #:		15/21068 6/30/2015 A. Escamilla EUT + AC Adapter Chamber A								
Date:										
Test Engi	neer:									
Configura										
Location:										
Mode:			BC0 Harmonics							
f	SG reading	Ant. Pol.	Distance	Preamp	Filter	EIRP	Limit	Delta	Notes	
MHz	(dBm)	(H/V)	(m)	(dB)	(dB)	(dBm)	(dBm)	(dB)		
Low Ch, 82										
1649.40	-29.3	V	3.0	37.4	1.0	-65.7	-13.0	-52.7		
2474.10	-25.5	V	3.0	36.4	1.0	-60.9	-13.0	-47.9		
3298.80	-21.2	V	3.0	35.8	1.0	-56.0	-13.0	-43.0		
1649.40	-29.7	H	3.0	37.4	1.0	-66.1	-13.0	-53.1		
2474.10	-24.8	H	3.0	36.4	1.0	-60.2	-13.0	-47.2		
3298.80	-20.9	H	3.0	35.8	1.0	-55.7	-13.0	-42.7		
Mid Ch, 83 1673.04	-29.9	V	3.0	37.3	1.0	-66.2	-13.0	-53.2		
2509.56	-29.9	v	3.0	36.4	1.0	-60.2	-13.0	-33.2 -48.5		
3346.08	-20.1	v	3.0	35.8	1.0	-57.1	-13.0	-44.1		
1673.04	-28.6	Ĥ	3.0	37.3	1.0	-64.9	-13.0	-51.9		
2509.56	-24.6	H	3.0	36.4	1.0	-60.0	-13.0	-47.0		
3346.08	-20.9	Н	3.0	35.8	1.0	-55.7	-13.0	-42.7		
High Ch, 84	48.31		•							
1696.62	-28.5	V	3.0	37.3	1.0	-64.8	-13.0	-51.8		
2544.93	-24.9	V	3.0	36.3	1.0	-60.2	-13.0	-47.2		
3393.24	-21.1	V	3.0	35.7	1.0	-55.8	-13.0	-42.8		
	-30.4	H	3.0	37.3	1.0	-66.7	-13.0	-53.7		
1696.62	-24.0	H H	3.0	36.3	1.0	-59.3	-13.0	-46.3		
	-19.7		3.0	35.7	1.0	-54.4	-13.0	-41.4		

Page 34 of 39