

### SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For CDMA/BT/BLE & WLAN b/g WATCH

FCC ID: ZNFVC110 Model Name: LG-VC110, LGVC110, VC110

> Report Number: 15I21068-S1A Issue Date: 7/29/2015

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY 07632

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

### **Revision History**

| Rev. | Date      | Revisions         | Revised By      |
|------|-----------|-------------------|-----------------|
|      | 7/27/2015 | Initial Issue     |                 |
| А    | 7/29/2015 | Updated Section 7 | Coltyce Sanders |
|      |           |                   |                 |
|      |           |                   |                 |

### **Table of Contents**

| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Attestation of Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 5                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Specification, Methods and Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 6                                                                                                                                |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facilities and Accreditation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 6                                                                                                                                |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAR Measurement System & Test Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 7                                                                                                                                |
| 4.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAR Measurement System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 7                                                                                                                                |
| 4.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAR Scan Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 8                                                                                                                                |
| 4.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                 |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measurement Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                 |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Device Under Test (DUT) Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                 |
| 6.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DUT Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                 |
| 6.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wireless Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                 |
| 6.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nominal and Maximum Output Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                 |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RF Exposure Conditions (Test Configurations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                 |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dielectric Property Measurements & System Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                 |
| 8.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dielectric Property Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                 |
| 8.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | System Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                 |
| 0.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cystem Check.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                    |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conducted Output Power Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                 |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conducted Output Power Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>16</b><br>16                                                                                                                    |
| <b>9.</b><br>9.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conducted Output Power Measurements<br>CDMA<br>Wi-Fi 2.4GHz (DTS Band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>16</b><br>16<br>16                                                                                                              |
| <b>9.</b><br>9.1.<br>9.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conducted Output Power Measurements<br>CDMA<br>Wi-Fi 2.4GHz (DTS Band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>16</b><br>16<br>16<br>16                                                                                                        |
| <b>9.</b><br>9.1.<br>9.2.<br>9.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conducted Output Power Measurements<br>CDMA<br>Wi-Fi 2.4GHz (DTS Band)<br>Bluetooth<br>Measured and Reported (Scaled) SAR Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16<br>16<br>16<br>16                                                                                                               |
| 9.<br>9.1.<br>9.2.<br>9.3.<br>10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conducted Output Power Measurements<br>CDMA<br>Wi-Fi 2.4GHz (DTS Band)<br>Bluetooth<br>Measured and Reported (Scaled) SAR Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>16</b><br>16<br>16<br>16<br><b>17</b>                                                                                           |
| 9.<br>9.1.<br>9.2.<br>9.3.<br><b>10.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conducted Output Power Measurements<br>CDMA<br>Wi-Fi 2.4GHz (DTS Band)<br>Bluetooth<br>Measured and Reported (Scaled) SAR Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>16</b><br>16<br>16<br>16<br><b>17</b><br>17                                                                                     |
| 9.<br>9.1.<br>9.2.<br>9.3.<br><b>10.</b><br>10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conducted Output Power Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>16</b><br>16<br>16<br>17<br>17<br>17                                                                                            |
| 9.<br>9.1.<br>9.2.<br>9.3.<br><b>10.</b><br>10.<br>10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conducted Output Power Measurements.       CDMA         CDMA       Wi-Fi 2.4GHz (DTS Band)         Bluetooth       Bluetooth         Measured and Reported (Scaled) SAR Results       Find the second se | <b>16</b><br>16<br>16<br>17<br>17<br>17<br>18<br><b>20</b>                                                                         |
| <ol> <li>9.1.</li> <li>9.2.</li> <li>9.3.</li> <li>10.</li> <li>10.2</li> <li>10.3</li> <li>11.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conducted Output Power Measurements.       CDMA         CDMA       Wi-Fi 2.4GHz (DTS Band)         Bluetooth       Bluetooth         Measured and Reported (Scaled) SAR Results.       CDMA BCO.         CDMA BCO.       CDMA BC1.         Wi-Fi (DTS Band) and Bluetooth       SAR Measurement Variability.         Simultaneous Transmission SAR Analysis       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16<br>16<br>16<br>17<br>17<br>17<br>18<br>20<br>21                                                                                 |
| <ul> <li>9.</li> <li>9.1.</li> <li>9.2.</li> <li>9.3.</li> <li>10.</li> <li>10.2</li> <li>10.2</li> <li>10.3</li> <li>11.</li> <li>12.</li> <li>12.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conducted Output Power Measurements.       CDMA         CDMA       Wi-Fi 2.4GHz (DTS Band)         Bluetooth       Bluetooth         Measured and Reported (Scaled) SAR Results.       CDMA BCO.         CDMA BCO.       CDMA BCO.         CDMA BC1.       Simultaneous Transmission SAR Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>16</li> <li>16</li> <li>16</li> <li>17</li> <li>17</li> <li>18</li> <li>20</li> <li>21</li> </ol>                         |
| <ol> <li>9.1.</li> <li>9.2.</li> <li>9.3.</li> <li>10.</li> <li>10.2</li> <li>10.3</li> <li>11.</li> <li>12.</li> <li>12.</li> <li>Appen</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conducted Output Power Measurements.       7         CDMA.       7         Wi-Fi 2.4GHz (DTS Band)       7         Bluetooth       7         Measured and Reported (Scaled) SAR Results.       7         1.       CDMA BCO.         2.       CDMA BC1.         3.       Wi-Fi (DTS Band) and Bluetooth         3.       Wi-Fi (DTS Band) and Bluetooth         SAR Measurement Variability.       7         Simultaneous Transmission SAR Analysis       7         1.       Sum of the SAR for WWAN & Wi-Fi & BT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>16</li> <li>16</li> <li>16</li> <li>17</li> <li>17</li> <li>18</li> <li>20</li> <li>21</li> <li>21</li> <li>22</li> </ol> |
| <ol> <li>9.1.</li> <li>9.2.</li> <li>9.3.</li> <li>10.</li> <li>10.2</li> <li>10.2</li> <li>10.3</li> <li>11.</li> <li>12.</li> <li>12.</li> <li>Appending A_1</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conducted Output Power Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>16</b><br>16<br>16<br><b>17</b><br>17<br>17<br>18<br><b>20</b><br><b>21</b><br>21<br>21<br>22                                   |
| <ol> <li>9.1.</li> <li>9.2.</li> <li>9.3.</li> <li>10.</li> <li>10.2</li> <li>10.2</li> <li>10.3</li> <li>11.</li> <li>12.</li> <li>Appen</li> <li>A_1</li> <li>B_1</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conducted Output Power Measurements.       CDMA         CDMA       Wi-Fi 2.4GHz (DTS Band)         Bluetooth       Bluetooth         Measured and Reported (Scaled) SAR Results       1         CDMA BC0       1         CDMA BC1       1         Wi-Fi (DTS Band) and Bluetooth       1         SAR Measurement Variability       1         Simultaneous Transmission SAR Analysis       1         Sum of the SAR for WWAN & Wi-Fi & BT       1         Star Measurement Variability       1         Sum of the SAR for WWAN & Wi-Fi & BT       1         Star Measurement Variability       1         Sum of the SAR for WWAN & Wi-Fi & BT       1         Star Measurement Variability       1         Sum of the SAR for WWAN & Wi-Fi & BT       1         Star Measurement Variability       1         Sum of the SAR for WWAN & Wi-Fi & BT       1         Star Measurement Variability       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>16</b><br>16<br>16<br><b>17</b><br>17<br>18<br><b>20</b><br><b>21</b><br>21<br>21<br>22<br>22<br>22                             |
| <ul> <li>9.</li> <li>9.1.</li> <li>9.2.</li> <li>9.3.</li> <li>10.</li> <li>10.2</li> <li>10.2</li></ul> | Conducted Output Power Measurements.       CDMA         CDMA       Wi-Fi 2.4GHz (DTS Band)         Bluetooth       Bluetooth         Measured and Reported (Scaled) SAR Results       CDMA BCO         CDMA BCO       CDMA BC1         CDMA BC1       Sand) and Bluetooth         SAR Measurement Variability       Simultaneous Transmission SAR Analysis         Sum of the SAR for WWAN & Wi-Fi & BT       Size 1068v0 SAR Photos & Ant. Locations         5/21068v0 SAR System Check Plots       Size 1005 SAR System Check Plots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>16</b><br>16<br>16<br>17<br>17<br>18<br><b>20</b><br><b>21</b><br>21<br>22<br>22<br>22<br>22                                    |

This report shall not be reproduced without the written approval of UL Verification Services Inc.

| Issue Date: 7/29/2015 | Report No.: 15I21068-S1A                  |
|-----------------------|-------------------------------------------|
|                       | E_15l21068v0 SAR Probe Cal. Certificates  |
|                       | F_15l21068v0 SAR Dipole Cal. Certificates |

Page 4 of 22

# 1. Attestation of Test Results

| Applicant Name                                |               | LG ELECTRONICS MOBILECOMM U.S.A., INC. |                   |                                                              |                    |  |
|-----------------------------------------------|---------------|----------------------------------------|-------------------|--------------------------------------------------------------|--------------------|--|
| FCC ID                                        |               | ZNFVC110                               |                   |                                                              |                    |  |
| Model Name                                    |               | LG-VC110, LGVC11                       | I0, VC110         |                                                              |                    |  |
| Applicable Standards                          |               | FCC 47 CFR § 2.10                      | 93                |                                                              |                    |  |
|                                               |               | Published RF expos                     | ure KDB procedure | S                                                            |                    |  |
|                                               |               | IEEE Std 1528-2013                     | 3                 |                                                              |                    |  |
|                                               |               | SAR L                                  | imits (W/Kg)      |                                                              |                    |  |
| Exposure Category                             |               | Peak spatial-average(1g of tissue)     |                   | Extremities (hands, wrists, ankles, etc.)<br>(10g of tissue) |                    |  |
| General population /<br>Uncontrolled exposure |               | 1.6                                    |                   | 4                                                            |                    |  |
|                                               |               | The Highest R                          | eported SAR (W/kg | )                                                            |                    |  |
|                                               | anditiona     | Equipment Class                        |                   |                                                              |                    |  |
| RF Exposure Conditions                        |               | Licensed                               | DTS               | U-NII                                                        | DSS (BT)           |  |
| Extremity                                     |               | <mark>3.583</mark>                     | N/A               | N1/A                                                         | N/A                |  |
| Next To Mouth                                 |               | 0.989                                  |                   |                                                              | IN/A               |  |
| Simultaneous<br>Tx                            | Extremity     | 3.717                                  | 3.667             | - N/A                                                        | 3.717              |  |
|                                               | Next To Mouth | 1.156                                  | 1.094             |                                                              | <mark>1.156</mark> |  |
| Date Tested                                   |               | 6/23/2015 to 6/26/2015                 |                   |                                                              |                    |  |
| Test Results                                  |               | Pass                                   |                   |                                                              |                    |  |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

| Approved & Released By:       | Prepared By:                  |
|-------------------------------|-------------------------------|
| JenCarg                       | Celles Sund                   |
| Devin Chang                   | Coltyce Sanders               |
| Senior Engineer               | Laboratory Engineer           |
| UL Verification Services Inc. | UL Verification Services Inc. |

## 2. Test Specification, Methods and Procedures

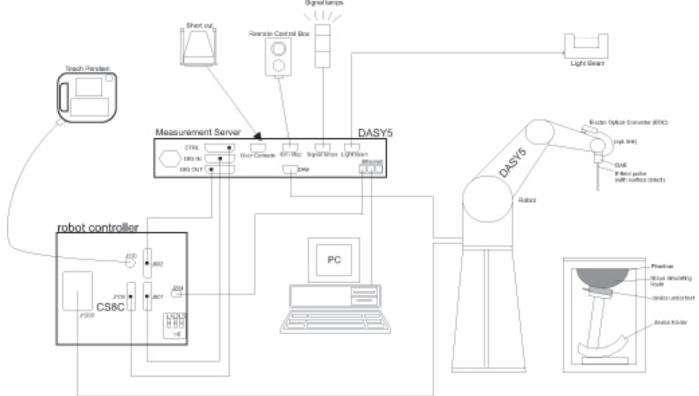
The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02
- o 447498 D01 General RF Exposure Guidance v05r02
- 690783 D01 SAR Listings on Grants v01r03
- $\circ$   $\phantom{-}$  865664 D01 SAR measurement 100 MHz to 6 GHz v01r03  $\phantom{-}$
- o 865664 D02 RF Exposure Reporting v01r01
- o 941225 D01 3G SAR Procedures v03

## 3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

| 47173 Benicia Street | 47266 Benicia Street |
|----------------------|----------------------|
| SAR Lab A            | SAR Lab 1            |
| SAR Lab B            | SAR Lab 2            |
| SAR Lab C            | SAR Lab 3            |
| SAR Lab D            | SAR Lab 4            |
| SAR Lab E            | SAR Lab 5            |
| SAR Lab F            |                      |
| SAR Lab G            |                      |
| SAR Lab H            |                      |


UL Verification Services Inc. is accredited by <u>NVLAP</u>, Laboratory Code 200065-0.

Page 6 of 22

# 4. SAR Measurement System & Test Equipment

## 4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

### 4.2. SAR Scan Procedures

#### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

#### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                                                           | $\leq$ 3 GHz                                                                                                                                                                                                                                                           | > 3 GHz                                                                                                               |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$                                                                                                                                                                                                                                                   | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                                            |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location                 | $30^\circ\pm1^\circ$                                                                                                                                                                                                                                                   | $20^\circ\pm1^\circ$                                                                                                  |
|                                                                                                           | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 – 3 GHz: $\leq$ 12 mm                                                                                                                                                                                                                  | $\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$ |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                               | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                                                                       |

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

|                                                                             |                                    |                                                                                      | $\leq$ 3 GHz $>$ 3 GHz                                                        |                                                                                                                   |
|-----------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$ |                                    |                                                                                      | $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$   | $3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$                                   |
|                                                                             | uniform grid: $\Delta z_{Zoom}(n)$ |                                                                                      | $\leq$ 5 mm                                                                   | $3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$ |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface    | graded                             | $\Delta z_{Zoom}(1)$ : between 1 <sup>st</sup> two points closest to phantom surface | $\leq$ 4 mm                                                                   | $3 - 4$ GHz: $\leq 3$ mm<br>$4 - 5$ GHz: $\leq 2.5$ mm<br>$5 - 6$ GHz: $\leq 2$ mm                                |
|                                                                             | grid                               | Δz <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                            | ≤1.5·∆z                                                                       | <sub>Zoom</sub> (n-1)                                                                                             |
| Minimum zoom scan<br>volume x, y, z                                         |                                    | $\geq$ 30 mm                                                                         | $3-4$ GHz: $\geq 28$ mm<br>$4-5$ GHz: $\geq 25$ mm<br>$5-6$ GHz: $\geq 22$ mm |                                                                                                                   |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

<sup>\*</sup> When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is  $\leq 1.4 \text{ W/kg}$ ,  $\leq 8 \text{ mm}$ ,  $\leq 7 \text{ mm}$  and  $\leq 5 \text{ mm}$  zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

#### Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

## 4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

| Name of Equipment                        | Manufacturer    | Type/Model             | Serial No.    | Cal. Due Date |
|------------------------------------------|-----------------|------------------------|---------------|---------------|
| Network Analyzer                         | Agilent         | E753ES                 | MY40000980    | 4/17/2016     |
| Dielectric Probe kit                     | SPEAG           | DAK-3.5                | 1082          | 9/16/2015     |
| Shorting block                           | SPEAG           | DAK-3.5 Short          | SM DAK 200 BA | N/A           |
| Thermometer                              | Control Company | Traceable              | 122529163     | 10/8/2015     |
| System Check                             |                 |                        |               |               |
| Name of Equipment                        | Manufacturer    | Type/Model             | Serial No.    | Cal. Due Date |
| Synthesized Signal Generator             | Agilent         | 8665B                  | 3438A00633    | 7/10/2015     |
| Power Meter                              | HP              | 437B                   | 3125U09516    | 8/27/2015     |
| Power Meter                              | HP              | 437B                   | 3125U11347    | 10/6/2015     |
| Power Sensor                             | HP              | 8481A                  | 3318A95392    | 10/6/2015     |
| Power Sensor                             | HP              | 8481A                  | 1926A16917    | 10/10/2015    |
| Amplifier                                | MITEQ           | AMF-4D-00400600-50-30P | 1808938       | N/A           |
| Bi-directional coupler                   | Werlatone, Inc. | C8060-102              | 2710          | N/A           |
| DC Power Supply                          | HP              | 6296A                  | 2841A-05955   | N/A           |
| E-Field Probe (SAR Lab 1)                | SPEAG           | EX3DV4                 | 3929          | 4/22/2016     |
| E-Field Probe (SAR Lab 3)                | SPEAG           | EX3DV4                 | 3749          | 1/26/2016     |
| Data Acquisition Electronics (SAR Lab 1) | SPEAG           | DAE4                   | 1352          | 11/7/2015     |
| Data Acquisition Electronics (SAR Lab 3) | SPEAG           | DAE4                   | 1380          | 7/23/2015     |
| System Validation Dipole                 | SPEAG           | D835V2                 | 4d117         | 5/18/2016     |
| System Validation Dipole                 | SPEAG           | D1900V2                | 5d163         | 9/11/2015     |
| Thermometer (SAR Lab 1)                  | EXTECH          | 445703                 | CCS-205       | 3/20/2016     |
| Thermometer (SAR Lab 3)                  | EXTECH          | 445703                 | CCS-237       | 6/5/2016      |
| <u>Other</u>                             |                 |                        |               |               |
| Name of Equipment                        | Manufacturer    | Type/Model             | Serial No.    | Cal. Due Date |
|                                          |                 |                        |               |               |

Dielectric Property Measurements

## 5. Measurement Uncertainty

Base Station Simulator

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

CMW500

135387

4/20/2016

R & S

# 6. Device Under Test (DUT) Information

## 6.1. DUT Description

| Device Dimension          | Overall (Length x Width): 56 mm x 41.5 mm<br>Overall Diagonal: 53.8 mm<br>Display Diagonal: 45 mm                                                    |                             |                  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|--|--|
| Back Cover                | The rechargeable batte                                                                                                                               | ery is not user accessible. |                  |  |  |
| Battery Options           | The rechargeable batte                                                                                                                               | ery is not user accessible. |                  |  |  |
| Wireless Router (Hotspot) | Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices.<br>Wi-Fi Hotspot mode is NOT SUPPORTED |                             |                  |  |  |
| Wi-Fi Direct              | Fi Direct Wi-Fi Direct enabled devices transfer data directly between each other<br>Wi-Fi Direct is NOT SUPPORTED                                    |                             |                  |  |  |
|                           | S/N                                                                                                                                                  | IMEI                        | Notes            |  |  |
| Test sample information   | 1ZS1X                                                                                                                                                | A1000040E03D46              | Conducted Sample |  |  |
|                           | 1ZS1V                                                                                                                                                | A1000040E03D44              | SAR Sample       |  |  |

## 6.2. Wireless Technologies

| Wireless<br>technologies | Frequency bands | Operating mode       | Duty Cycle used for SAR testing |
|--------------------------|-----------------|----------------------|---------------------------------|
| CDMA (CDMA2000)          | BC0<br>BC1      | 1xRTT (Voice & Data) | 100%                            |
| Wi-Fi                    | 2.4 GHz         | 802.11b<br>802.11g   | 100%                            |
| Bluetooth                | 2.4 GHz         | Version 4.0 LE       | 77.5% (DH5)                     |

## 6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

| Upper limit (dB): | -1.5 ~ 0.5 | Max. RF Outpu               | t Pow er (dBm)                  |  |  |  |
|-------------------|------------|-----------------------------|---------------------------------|--|--|--|
| RF Air interface  | Mode       | Target                      | Max. tune-up<br>tolerance limit |  |  |  |
| CDMA BC0          | 1xRTT      | 23.7                        | 24.2                            |  |  |  |
| CDMA BC1          | 1xRTT      | 21.2                        | 21.7                            |  |  |  |
| Upper limit (dB): | 1.0        | Max. RF Output Pow er (dBm) |                                 |  |  |  |
| RF Air interface  | Mode       | Target                      | Max. tune-up<br>tolerance limit |  |  |  |
| WiFi 2.4 GHz      | 802.11b    | 6.0                         | 7.0                             |  |  |  |
|                   | 802.11g    | 5.0                         | 6.0                             |  |  |  |
| Blue              | etooth     | 8.0                         | 9.0                             |  |  |  |
| Blueto            | ooth LE    | 7.0                         | 8.0                             |  |  |  |

Page 11 of 22 UL Verification Services Inc. Doc. No.: 1.0 This report shall not be reproduced without the written approval of UL Verification Services Inc.

# 7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

| Wireless<br>technologies | RF Exposure<br>Conditions       | DUT-to-User<br>Separation | Test<br>Position | Antenna-to-<br>edge/surface | SAR<br>Required |
|--------------------------|---------------------------------|---------------------------|------------------|-----------------------------|-----------------|
| WLAN                     | Extremity<br>(Hand/Wrist/Ankle) | 0                         | Rear             | N/A                         | Yes             |
|                          | Next to Mouth                   | 10                        | Front            | N/A                         | Yes             |

The neck region of the SAM phantom was chosen for wrist-worn extremity SAR testing in accordance with KDB 447498 §6.2.

A non-standard setup was used for SAR testing based on guidance from the FCC. The operational description contains additional information.

# 8. Dielectric Property Measurements & System Check

## 8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within  $18^{\circ}$ C to  $25^{\circ}$ C and within  $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

#### **Tissue Dielectric Parameters**

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

| Target Frequency (MHz) | H              | lead    | Boo            | dy      |
|------------------------|----------------|---------|----------------|---------|
|                        | ۶ <sub>۲</sub> | σ (S/m) | ε <sub>r</sub> | σ (S/m) |
| 150                    | 52.3           | 0.76    | 61.9           | 0.80    |
| 300                    | 45.3           | 0.87    | 58.2           | 0.92    |
| 450                    | 43.5           | 0.87    | 56.7           | 0.94    |
| 835                    | 41.5           | 0.90    | 55.2           | 0.97    |
| 900                    | 41.5           | 0.97    | 55.0           | 1.05    |
| 915                    | 41.5           | 0.98    | 55.0           | 1.06    |
| 1450                   | 40.5           | 1.20    | 54.0           | 1.30    |
| 1610                   | 40.3           | 1.29    | 53.8           | 1.40    |
| 1800 – 2000            | 40.0           | 1.40    | 53.3           | 1.52    |
| 2450                   | 39.2           | 1.80    | 52.7           | 1.95    |
| 3000                   | 38.5           | 2.40    | 52.0           | 2.73    |
| 5000                   | 36.2           | 4.45    | 49.3           | 5.07    |
| 5100                   | 36.1           | 4.55    | 49.1           | 5.18    |
| 5200                   | 36.0           | 4.66    | 49.0           | 5.30    |
| 5300                   | 35.9           | 4.76    | 48.9           | 5.42    |
| 5400                   | 35.8           | 4.86    | 48.7           | 5.53    |
| 5500                   | 35.6           | 4.96    | 48.6           | 5.65    |
| 5600                   | 35.5           | 5.07    | 48.5           | 5.77    |
| 5700                   | 35.4           | 5.17    | 48.3           | 5.88    |
| 5800                   | 35.3           | 5.27    | 48.2           | 6.00    |

#### IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

#### **Dielectric Property Measurements Results:**

#### SAR Lab 1

| Date      | Freq. (MHz)                                                                                                                      |                            | Liq                                        | uid Parameters                             | Measured | Target | Delta (%) | Limit ±(%) |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|--------------------------------------------|----------|--------|-----------|------------|
|           | Body 835         e'         53.2800           e"         21.4600           6/24/2015         Body 820         e'         53.4000 | e'                         | 53.2800                                    | Relative Permittivity ( $\varepsilon_r$ ): | 53.28    | 55.20  | -3.48     | 5          |
|           |                                                                                                                                  | Conductivity ( $\sigma$ ): | 1.00                                       | 0.97                                       | 2.72     | 5      |           |            |
| 6/24/2015 |                                                                                                                                  | e'                         | 53.4000                                    | Relative Permittivity ( $\varepsilon_r$ ): | 53.40    | 55.28  | -3.40     | 5          |
| 0/24/2013 | Body 020                                                                                                                         | e"                         | 21.5900                                    | Conductivity ( $\sigma$ ):                 | 0.98     | 0.97   | 1.64      | 5          |
|           | Body 850 e'                                                                                                                      | 53.0600                    | Relative Permittivity ( $\varepsilon_r$ ): | 53.06                                      | 55.16    | -3.80  | 5         |            |
|           | Body 850                                                                                                                         | e"                         | 21.5400                                    | Conductivity ( $\sigma$ ):                 | 1.02     | 0.99   | 3.13      | 5          |

#### SAR Lab 3

| Date      | Freq. (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | Liq                        | uid Parameters                             | Measured | Target | Delta (%) | Limit ±(%) |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------------|----------|--------|-----------|------------|
|           | Head 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 38.4800                    | Relative Permittivity ( $\varepsilon_r$ ): | 38.48    | 40.00  | -3.80     | 5          |
|           | Tieau 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e"                         | 13.0500                    | Conductivity ( $\sigma$ ):                 | 1.38     | 1.40   | -1.52     | 5          |
| 6/22/2015 | Hood 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 38.6800                    | Relative Permittivity ( $\varepsilon_r$ ): | 38.68    | 40.00  | -3.30     | 5          |
| 0/22/2015 | Head 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e"                         | 13.0000                    | Conductivity ( $\sigma$ ):                 | 1.34     | 1.40   | -4.48     | 5          |
|           | Hood 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 38.4500                    | Relative Permittivity ( $\varepsilon_r$ ): | 38.45    | 40.00  | -3.87     | 5          |
|           | $\begin{array}{c ccccc} & \begin{array}{c} e' & 38.4800 \\ \hline e'' & 13.0500 \\ \hline e'' & 13.0500 \\ \hline e'' & 13.0500 \\ \hline e'' & 13.0000 \\ \hline e'' & 13.0000 \\ \hline e'' & 13.0200 \\ \hline e'' & 14.4600 \\ \hline e'' & 14.4600 \\ \hline e'' & 14.4600 \\ \hline e'' & 14.2200 \\ \hline e'' & 14.5400 \\ \hline e'' & 14.5400 \\ \hline e'' & 14.5400 \\ \hline e'' & 19.9200 \\ \hline e'' & 19.92$ | Conductivity ( $\sigma$ ): | 1.38                       | 1.40                                       | -1.23    | 5      |           |            |
|           | Body 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 51.8300                    | Relative Permittivity ( $\varepsilon_r$ ): | 51.83    | 53.30  | -2.76     | 5          |
|           | BOUY 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e"                         | 14.4600                    | Conductivity (σ):                          | 1.53     | 1.52   | 0.50      | 5          |
| 6/22/2015 | Rody 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 51.9100                    | Relative Permittivity (c <sub>r</sub> ):   | 51.91    | 53.30  | -2.61     | 5          |
| 0/23/2015 | BOUY 1850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e"                         | 14.2200                    | Conductivity ( $\sigma$ ):                 | 1.46     | 1.52   | -3.77     | 5          |
|           | Rody 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 51.8900                    | Relative Permittivity ( $\varepsilon_r$ ): | 51.89    | 53.30  | -2.65     | 5          |
|           | Body 1910 e"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e"                         | 14.5400                    | Conductivity ( $\sigma$ ):                 | 1.54     | 1.52   | 1.59      | 5          |
|           | Hood 925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e'                         | 43.0400                    | Relative Permittivity ( $\varepsilon_r$ ): | 43.04    | 41.50  | 3.71      | 5          |
|           | Head 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e"                         | 19.9200                    | Conductivity ( $\sigma$ ):                 | 0.92     | 0.90   | 2.76      | 5          |
| 6/24/2015 | Hood 820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e'                         | 43.2500                    | Relative Permittivity ( $\varepsilon_r$ ): | 43.25    | 41.60  | 3.96      | 5          |
| 0/24/2015 | Head 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e"                         | 20.0100                    | Conductivity ( $\sigma$ ):                 | 0.91     | 0.90   | 1.55      | 5          |
|           | Hood 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e'                         | 42.7500                    | Relative Permittivity (c <sub>r</sub> ):   | 42.75    | 41.50  | 3.01      | 5          |
|           | Head 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e"                         | 19.8700                    | Conductivity (σ):                          | 0.94     | 0.92   | 2.63      | 5          |
|           | Head 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 39.3600                    | Relative Permittivity (c <sub>r</sub> ):   | 39.36    | 40.00  | -1.60     | 5          |
|           | Head 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e"                         | 13.4000                    | Conductivity (σ):                          | 1.42     | 1.40   | 1.12      | 5          |
| 6/26/2014 | 6/26/2014 Head 1850 e'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e'                         | 39.5900                    | Relative Permittivity (c <sub>r</sub> ):   | 39.59    | 40.00  | -1.02     | 5          |
| 0/20/2014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.2900                    | Conductivity ( $\sigma$ ): | 1.37                                       | 1.40     | -2.35  | 5         |            |
|           | Head 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e'                         | 39.3100                    | Relative Permittivity (c <sub>r</sub> ):   | 39.31    | 40.00  | -1.72     | 5          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e"                         | 13.4100                    | Conductivity (o):                          | 1.42     | 1.40   | 1.73      | 5          |

## 8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

#### System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
   For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

#### **Reference Target SAR Values**

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

| System Dipole | Serial No.                       | Cal. Date |             | Target SAR Values (W/kg) |      |      |  |  |
|---------------|----------------------------------|-----------|-------------|--------------------------|------|------|--|--|
| System Dipole | sstem Dipole Senar No. Cai. Date |           | Freq. (MHz) | 1g/10g                   | Head | Body |  |  |
| D835\/2       | D835V2 4d117 5/18/2015           |           | 835         | 1g                       | 9.08 | 9.38 |  |  |
| 000072        | 40117                            | 5/10/2015 | 000         | 10g                      | 5.93 | 6.20 |  |  |
| D1900V2       | 5d163                            | 9/11/2014 | 1900        | 1g                       | 40.8 | 40.6 |  |  |
| D1900V2       | 50105                            | 5/11/2014 | 1900        | 10g                      | 21.2 | 21.4 |  |  |

#### System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

#### SAR Lab 1

|             | System              | n Dipole     | T.S.<br>Liquid |     | Measured               | Results             | Torret                 | Dalta          | Diet        |
|-------------|---------------------|--------------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------|
| Date Tested | Туре                | Serial #     |                |     | Zoom Scan to<br>100 mW | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | Plot<br>No. |
| 6/24/2015   | D835V2              | D835V2 4d117 | Body           | 1g  | 1.02                   | 10.2                | 9.38                   | 8.74           | 1,2         |
| 0/24/2013   | 4/2015 065572 40117 |              | Body           | 10g | 0.675                  | 6.8                 | 6.2                    | 8.87           | 1,2         |

#### SAR Lab 3

|             | System  | n Dipole | то             |     | Measured               | d Results           | Terret                 | Dalta          | Dist        |
|-------------|---------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------|
| Date Tested | Туре    | Serial # | T.S.<br>Liquid |     | Zoom Scan to<br>100 mW | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | Plot<br>No. |
| 6/22/2015   | D1900V2 | 5d163    | Head           | 1g  | 4.00                   | 40.0                | 40.8                   | -1.96          |             |
| 0/22/2013   | D1900V2 | 50105    | Tieau          | 10g | 2.07                   | 20.7                | 21.2                   | -2.36          |             |
| 6/23/2015   | D1900V2 | 5d163    | Body           | 1g  | 4.17                   | 41.7                | 40.60                  | 2.71           | 3,4         |
| 0/23/2013   | D1900V2 | 50105    | Body           | 10g | 2.16                   | 21.6                | 21.4                   | 0.93           | 3,4         |
| 6/24/2015   | D835V2  | 4d117    | Head           | 1g  | 0.97                   | 9.7                 | 9.08                   | 6.94           | 5,6         |
| 0/24/2013   | D033V2  | 40117    | Tieau          | 10g | 0.64                   | 6.4                 | 5.93                   | 7.76           | 5,0         |
| 6/26/2015   | D1900V2 | 5d163    | Head           | 1g  | 3.91                   | 39.1                | 40.8                   | -4.17          | 7,8         |
| 0/20/2013   | D1300V2 | 50105    | rieau          | 10g | 2.02                   | 20.2                | 21.2                   | -4.72          | 7,0         |

## 9. Conducted Output Power Measurements

## 9.1. CDMA

#### **CDMA BC0 Measured Results**

| Band |       | Mode                   | Ch No. | Freq.<br>(MHz) | Max. Pwr<br>(dBm) |
|------|-------|------------------------|--------|----------------|-------------------|
|      |       | <b>DO1 0055</b>        | 1013   | 824.70         | 23.3              |
|      |       | RC1 SO55<br>(Loopback) | 384    | 836.52         | 23.5              |
|      |       | (LOOPDack)             | 777    | 848.31         | 23.3              |
|      |       |                        | 1013   | 824.70         | 23.6              |
| BC 0 | 1xRTT | RC3 SO55<br>(Loopback) | 384    | 836.52         | 23.3              |
|      |       | (LOOPDack)             | 777    | 848.31         | 23.2              |
|      |       | 500 0000               | 1013   | 824.70         | 23.4              |
|      |       | RC3 SO32<br>(+F-SCH)   | 384    | 836.52         | 23.3              |
|      |       |                        | 777    | 848.31         | 23.2              |

#### **CDMA BC1 Measured Results**

| Band |       | Mode                   | Ch No. | Freq.<br>(MHz) | Max. Pwr<br>(dBm) |
|------|-------|------------------------|--------|----------------|-------------------|
|      |       | <b>DO1 0055</b>        | 25     | 1851.25        | 21.5              |
|      |       | RC1 SO55<br>(Loopback) | 600    | 1880.00        | 21.5              |
|      |       | (LOOPDack)             | 1175   | 1908.75        | 21.5              |
|      |       |                        | 25     | 1851.25        | 21.5              |
| BC 1 | 1xRTT | RC3 SO55<br>(Loopback) | 600    | 1880.00        | 21.5              |
|      |       | (LOOPDack)             | 1175   | 1908.75        | 21.5              |
|      |       | 500 0000               | 25     | 1851.25        | 21.5              |
|      |       | RC3 SO32<br>(+F-SCH)   | 600    | 1880.00        | 21.4              |
|      |       |                        | 1175   | 1908.75        | 21.4              |

## 9.2. Wi-Fi 2.4GHz (DTS Band)

Maximum tune-up tolerance limit is 7.00 dBm. This power level qualifies for exclusion of SAR testing. Please refer to Section 10.3 for further details.

## 9.3. Bluetooth

Maximum tune-up tolerance limit is 9.00 dBm. This power level qualifies for exclusion of SAR testing. Please refer to Section 10.3 for further details.

# 10. Measured and Reported (Scaled) SAR Results

#### SAR Test Reduction criteria are as follows:

#### KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

#### KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is  $\leq \frac{1}{4}$  dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is  $\leq 1.2$  W/kg, SAR measurement is not required for the secondary mode

## 10.1. CDMA BC0

| RF Exposure                  |                     | Dist.         |       |             | Freq.            | Power | (dBm) | 1-g SAF | R (W/kg) | 10-g SA | R (W/kg) | Plot |
|------------------------------|---------------------|---------------|-------|-------------|------------------|-------|-------|---------|----------|---------|----------|------|
| Conditions Mode              | (mm)                | Test Position | Ch #. | Ch #. (MHz) | Tune-up<br>limit | Meas. | Meas. | Scaled  | Meas.    | Scaled  | No.      |      |
|                              | 4. DTT              |               |       | 1013        | 824.7            | 24.2  | 23.4  |         |          | 2.980   | 3.583    | 1    |
| Extremity                    | 1xRTT<br>(RC3 SO32) | 0             | Neck  | 384         | 836.5            | 24.2  | 23.3  |         |          | 2.900   | 3.568    |      |
|                              | (100 0002)          |               |       | 777         | 848.3            | 24.2  | 23.2  |         |          | 1.910   | 2.405    |      |
|                              | 4.077               |               |       | 1013        | 824.7            | 24.2  | 23.6  | 0.856   | 0.983    |         |          |      |
| Next - to - Mouth (RC3 SO55) | 10 Fla              | Flat          | 384   | 836.5       | 24.2             | 23.3  | 0.804 | 0.989   |          |         | 2        |      |
|                              | (100 0000)          |               |       | 777         | 848.3            | 24.2  | 23.2  | 0.550   | 0.692    |         |          |      |

## 10.2. CDMA BC1

| RF Exposure<br>Conditions Mode |                     | Dist. |               |       | Freq.  | Power            | (dBm) | 1-g SAF | R (W/kg) | 10-g SAR (W/kg) |        | Plot |
|--------------------------------|---------------------|-------|---------------|-------|--------|------------------|-------|---------|----------|-----------------|--------|------|
|                                | Mode                | (mm)  | Test Position | Ch #. | (MHz)  | Tune-up<br>limit | Meas. | Meas.   | Scaled   | Meas.           | Scaled | No.  |
| Extremity                      | 1xRTT<br>(RC3 SO32) | 0     | Neck          | 600   | 1880.0 | 21.7             | 21.4  |         |          | 1.480           | 1.586  | 3    |
| Next - to - Mouth              | 1xRTT<br>(RC3 SO55) | 10    | Flat          | 600   | 1880.0 | 21.7             | 21.5  | 0.605   | 0.634    |                 |        | 4    |

## 10.3. Wi-Fi (DTS Band) and Bluetooth

### Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances  $\leq$  50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[ $\sqrt{f}(GHz)$ ]  $\leq$  3.0, for 1-g SAR and  $\leq$  7.5 for 10-g extremity SAR, where

- f<sub>(GHz)</sub> is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is  $\leq$  50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f<sub>(GH2)</sub>/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

#### **Extremity Exposure Conditions:**

#### WLAN

| Max. tune-up | Max. tune-up tolerance limit |                             | Frequency<br>(GHz) | SAR test<br>exclusion | Test<br>Configuration | Estimated<br>10-g SAR |  |
|--------------|------------------------------|-----------------------------|--------------------|-----------------------|-----------------------|-----------------------|--|
| (dBm)        | (mVV)                        | separation<br>distance (mm) | · · · ·            | Result*               | Configuration         | (W/kg)                |  |
| 7.0          | 5                            | 5                           | 2.462              | 1.6                   | Neck                  | 0.084                 |  |
| Conclusion:  |                              |                             |                    |                       |                       |                       |  |

Conclusion:

\*: The computed value is ≤ 7.5; therefore, Wi-Fi 2.4GHz qualifies for Extremity SAR test exclusion.

#### Bluetooth

| Max. tune-up tolerance limit |      | Min. test<br>separation | Frequency<br>(GHz) | SAR test<br>exclusion | Test<br>Configuration | Estimated<br>10-g SAR |  |
|------------------------------|------|-------------------------|--------------------|-----------------------|-----------------------|-----------------------|--|
| (dBm)                        | (mW) | distance (mm)           | · · ·              | Result*               | Connguration          | (W/kg)                |  |
| 9.0                          | 8    | 5                       | 2.480              | 2.5                   | Neck                  | 0.134                 |  |
| Conclusion:                  |      |                         |                    |                       |                       |                       |  |

\*: The computed value is ≤ 7.5; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

### Next to Mouth Exposure Conditions:

#### WLAN

| Max. tune-up tolerance limit |      | Min. test<br>separation | Frequency<br>(GHz) | SAR test<br>exclusion | Test<br>Configuration | Estimated<br>1-g SAR |  |
|------------------------------|------|-------------------------|--------------------|-----------------------|-----------------------|----------------------|--|
| (dBm)                        | (mW) | distance (mm)           | · · · ·            | Result*               | Configuration         | (W/kg)               |  |
| 7.0                          | 5    | 10                      | 2.462              | 0.8                   | Flat                  | 0.105                |  |
| Conclusion:                  |      |                         |                    |                       |                       |                      |  |

#### Conclusion:

\*: The computed value is  $\leq$  3; therefore, Wi-Fi 2.4GHz qualifies for Next to Mouth SAR test exclusion.

#### Bluetooth

| Max. tune-up tolerance limit |      | Min. test<br>separation | Frequency<br>(GHz) | SAR test<br>exclusion | Test<br>Configuration | Estimated<br>1-g SAR |
|------------------------------|------|-------------------------|--------------------|-----------------------|-----------------------|----------------------|
| (dBm)                        | (mW) | distance (mm)           | `` '               | Result*               | Configuration         | (W/kg)               |
| 9.0                          | 8    | 10                      | 2.462              | 1.3                   | Flat                  | 0.167                |
| Conclusion:                  |      |                         |                    |                       |                       |                      |

\*: The computed value is  $\leq$  3; therefore, Wi-Fi 2.4GHz qualifies for Next to Mouth SAR test exclusion.

## 11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <1.6 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or 3 (1-g or 10-g respectively) or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 or 3 (1-g or 10-g respectively).

#### Extremity

| Frequency<br>Band<br>(MHz) | Air Interface | RF Exposure Conditions          | Test Position | Repeated<br>SAR<br>(Yes/No) | Highest<br>Measured SAR<br>(W/kg) | Repeated<br>Measured SAR<br>(W/kg) | Largest to<br>Smallest<br>SAR Ratio |
|----------------------------|---------------|---------------------------------|---------------|-----------------------------|-----------------------------------|------------------------------------|-------------------------------------|
| 850                        | CDMA BC0      | Extremity<br>(Hand/Wrist/Ankle) | Neck          | Yes                         | 2.98                              | 2.94                               | 1.01                                |
| 1900                       | CDMA BC1      | Extremity<br>(Hand/Wrist/Ankle) | Neck          | No                          | 1.48                              | N/A                                | 1.00                                |

#### Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 3.

#### Next to Mouth

| Frequency<br>Band<br>(MHz) | Air Interface | RF Exposure Conditions | Test Position | Repeated<br>SAR<br>(Yes/No) | Highest<br>Measured SAR<br>(W/kg) | Repeated<br>Measured SAR<br>(W/kg) | Largest to<br>Smallest<br>SAR Ratio |
|----------------------------|---------------|------------------------|---------------|-----------------------------|-----------------------------------|------------------------------------|-------------------------------------|
| 850                        | CDMA BC0      | Next to Mouth          | Flat          | Yes                         | 0.856                             | 0.848                              | 1.01                                |
| 1900                       | CDMA BC1      | Next to Mouth          | Flat          | No                          | 0.605                             | N/A                                | N/A                                 |
| Note(s):                   |               |                        |               |                             |                                   |                                    |                                     |

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

# 12. Simultaneous Transmission SAR Analysis

### **Simultaneous Transmission Condition**

| RF Exposure Condition                                 | ltem                                                | Capable Transmit Configurations |   |     |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------|---------------------------------|---|-----|--|--|--|--|
| Extremity                                             | 1                                                   | CDMA                            | + | DTS |  |  |  |  |
| Extremity                                             | 2                                                   | CDMA                            | + | BT  |  |  |  |  |
| Next to Mouth                                         | 3                                                   | CDMA                            | + | DTS |  |  |  |  |
| Notes:                                                |                                                     |                                 |   |     |  |  |  |  |
| 1. 1xCDMA (BC0/BC1)                                   | only                                                |                                 |   |     |  |  |  |  |
| 2. Wi-Fi Hotspot and W                                | 2. Wi-Fi Hotspot and Wi-Fi Direct are not supported |                                 |   |     |  |  |  |  |
| 3. VolP is not supported                              |                                                     |                                 |   |     |  |  |  |  |
| 4. Bluetooth and Wi-Fi cannot transmit simultabeously |                                                     |                                 |   |     |  |  |  |  |

## 12.1. Sum of the SAR for WWAN & Wi-Fi & BT

## **Extremity**

| RF Treat               | Taat             | Test      |          |         | (1) + (2)<br>WWAN + DTS |                   | (1) + (3)<br>WWAN + BT  |                   |
|------------------------|------------------|-----------|----------|---------|-------------------------|-------------------|-------------------------|-------------------|
| Exposure<br>conditions | Test<br>Position | ①<br>WWAN | ②<br>DTS | ③<br>BT | ∑ 10-g<br>SAR<br>(mW/g) | SPLSR<br>(Yes/No) | ∑ 10-g<br>SAR<br>(mW/g) | SPLSR<br>(Yes/No) |
| Extremity              | Neck             | 3.583     | 0.084    | 0.134   | 3.667                   | No                | 3.717                   | No                |

#### **Conclusion:**

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 10-g SAR is < 4.0 W/kg or the SPLSR is  $\leq$  0.04 for all circumstances that require SPLSR calculation.

## Next to Mouth

| RF Exposure   | Test     | 1     | 2 3   | 3     | ① + ②<br>WWAN + DTS     |                   | (1) + (3)<br>WWAN + BT  |                   |
|---------------|----------|-------|-------|-------|-------------------------|-------------------|-------------------------|-------------------|
| conditions    | Position | WWAN  | DTS   | BT    | ∑ 10-g<br>SAR<br>(mW/g) | SPLSR<br>(Yes/No) | ∑ 10-g<br>SAR<br>(mW/g) | SPLSR<br>(Yes/No) |
| Next To Mouth | Flat     | 0.989 | 0.105 | 0.167 | 1.094                   | No                | 1.156                   | No                |

#### **Conclusion:**

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is  $\leq$  0.04 for all circumstances that require SPLSR calculation.

## **Appendixes**

Refer to separated files for the following appendixes.

- A\_15I21068v0 SAR Photos & Ant. Locations
- B\_15I21068v0 SAR System Check Plots
- C\_15I21068v0 SAR Highest Test Plots
- D\_15I21068v0 SAR Tissue Ingredients
- E\_15I21068v0 SAR Probe Cal. Certificates
- F\_15I21068v0 SAR Dipole Cal. Certificates

#### **END OF REPORT**