EMI CERTIFICATION REPORT

Applicant:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs NJ 07632 Date of Receipt: June 29, 2015 Date of Issue: July 17, 2015 Test Report No. HCT-E-1507-F024

HCT FRN: 0005866421

FCC ID:

ZNFV930

Rule Part(s) / Standard(s): FCC CFR 47 PART 15 Subpart B Class B

FCC Classification: JBP (Part 15 B – Class B Computing Device Peripheral)

EUT Type: Potable Tablet

Model Name: LG-V930

Additional Model Name: LGV930, V930,

Test Port: USB / Earphone Port

Date of Test: July 06, 2015 - July 14, 2015

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003. (See Test Report if any modifications were made for compliance)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

HCT certifies that no party to application has been denial the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 862

Tested By

Gu-Cheol Yoon Test Engineer

EMC Team

Certification Division

Reviewed By

Jin-Pyo Hong Technical Manager

EMC Team

Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

DOCUMENT HISTORY

The revision history for this document is shown in table.

Version	Date	Description
HCT-E-1507-F024	July 17, 2015	Initial Release

TABLE OF CONTENTS

	PAGE
1. GENERAL INFORMATION	4
1.1 Description of EUT	4
1.2 Related Submittal(s) / Grant(s)	4
1.3 Test Facility	5
1.4 Tested System Details	6
1.5 Cable Description	7
1.6 Noise Suppression Parts on Cable. (I/O Cable)	7
2. DESCRIPTION OF TEST	8
3. PRELIMINARY TEST	11
3.1 Conducted Emission Test	11
3. 2 Radiated Emission Test	11
4. CONDUCTED AND RADIATED EMISSION TEST SUMMARY	12
4.1 Conducted Emission Test	12
4.2 Radiated Emission Test	19
5. LIST OF TEST EQUIPMENT	21
6 CONCLUSION	22

ATTACHMENT: TEST SETUP PHOTOGRAPHS

1. GENERAL INFORMATION

1.1 Description of EUT

Equipment Under Test is manufactured by **LG Electronics MobileComm U.S.A.**, **Inc.** Its basic purpose is used for communications.

Model	LG-V930	
FCC ID	ZNFV930	
Additional Model	LGV930, V930,	
EUT Type	Potable Tablet	
TX Frequency	826.40 Mb to 846.60 Mb (WCDMA 850) 1 852.4 Mb to 1 907.6 Mb (WCDMA 1 900) 1 850.7 Mb to 1 909.3 Mb (LTE B2) 1 710 Mb to 1 755 Mb (LTE B4) 824 Mb to 849 Mb (LTE B5) 2 496 Mb to 2570 Mb (LTE B7) 704 Mb to 716 Mb (LTE B17)	
RX Frequency	871.40 Mbz to 891.60 Mbz (WCDMA 850) 1 932.4 Mbz to 1 987.6 Mbz (WCDMA 1 900) 1 930.00 Mbz to 1 990.00 Mbz (LTE B2) 2 110 Mbz to 2 155 Mbz (LTE B4) 869 Mbz to 894 Mbz (LTE B5) 2 516 Mbz to 2690 Mbz (LTE B7) 734 Mbz to 746 Mbz (LTE B17)	

1.2 Related Submittal(s) / Grant(s)

Original submittal only.

1.3 Test Facility

Test site is located at 74, SEOICHEON-RO, 578BEON-GIL, MAJANG-MYEON, ICHEON-SI, GYEONGGI-DO, SOUTH KOREA. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4-2003.

Measurement Facilities	Reg. No.
Radiated Field strength measurement facility (3 m)	90661 (February 28, 2014)
Radiated Field strength measurement facility (10 m)	90661 (February 28, 2014)

1.4 Tested System Details

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Model Name	Manufacturer	FCC ID / DoC	Connected To
EUT	LG-V930	LG	ZNFV930	Notebook PC, Earphone
USB cable	EAD62589001	CRESYN	-	EUT, Notebook PC
USB cable	EAD62567001	Ningbo broad	-	EUT, Notebook PC
Earphone	EAB62209301	I-SOUND	-	EUT
Notebook PC	ProBook6560b	НР	DoC	EUT, Notebook PC adaptor
Notebook PC adaptor	PPP009D	DELTA Electronics (Jiangsu) LTD	-	Notebook PC
Gateway	MV440	Axesstel	PH7MV440	Notebook PC, Adaptor
Serial mouse	Serial 2 button mouse	Radio shack	FSUGMZE3	Notebook PC
Adaptor	DA-60M12	Yang Ming Industrial	-	Gateway
RJ45 cable	-	-	-	Notebook PC, Gateway
Micro SD card	16 GB	Samsung	-	EUT

1.5 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
EUT	Micro USB	Y	Y	(P,D)1.2
	Earphone	N/A	Y	(D)1.2
Notebook PC	RJ 45	N/A	N	(D)1.5
	Serial (Mouse)	N/A	Y	(D)1.8
	DC in	N	N/A	(P)1.8
Gateway	DC in	N	N/A	(P)1.8

^{*} The marked "(D)" means the data cable and "(P)" means the power cable.

1.6 Noise Suppression Parts on Cable. (I/O Cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
EUT	Micro USB	N	N/A	Y	Both End
EUI	Earphone	N	N/A	Y	EUT End
Notabaali DC	RJ 45	N	N/A	N	N/A
Notebook PC	Serial (Mouse)	N	N/A	Y	Notebook PC End

***NOTE:** This tablet device does not contain the minimum number of ports required for personal computer testing per ANSI C63.4, but the EUT is attached to a computer through its only available port, which represents worst case emissions. All other aspects of ANSI C63.4 testing requirements were maintained.

2. DESCRIPTION OF TEST

2.1 Measurement of Conducted Emission

The test procedure was in accordance with ANSI C63.4-2003, Clause 7

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly
 - If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly connected to a line impedance stabilization network (LISN).
 - Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both conducted lines are measured in Quasi-Peak and Average mode, including the worst-case data points for each tested configuration.
- c. The frequency range from 150 kHz to 30 MHz was searched.

[Conducted Emission Limits]

Frequency (MHz)	Resolution Bandwidth (kHz)	Quasi-Peak (dBµV)	Average (dΒμV)
0.15 to 0.5	9	66 to 56*	56 to 46*
0.5 to 5	9	56	46
5 to 30	9	60	50

^{*}Decreases with the logarithm of the frequency.

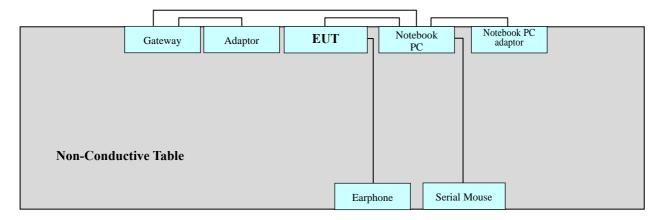
2.2 Measurement of Radiated Emission

The test procedure was in accordance with ANSI C63.4-2003, Clause 8

- a. The EUT was placed on the top of a turn table 0.8 meters above the ground at a semi anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 m to 4 m and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to Peak and Average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- g. The antenna height scans apply for both horizontal and vertical polarizations, except that for vertical polarization, the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the lowest antenna element clears the site reference ground plane by at least 25 cm. (below 1 GHz)

[Radiated Emission Limits]

Frequency (MHz)	Antenna Distance (m)	Field Strength (μV/m)	Quasi-Peak (dBμV/m)
30 to 88	3	100	40.0
88 to 216	3	150	43.5
216 to 960	3	200	46.0
Above 960	3	500	54.0
Frequency (MHz)	Antenna Distance (m)	Peak (dBμV/m)	Average (dBμV/m)
Above 1 000	3	74	54



2.2.1 Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5 th harmonic of the highest frequency or 40 때, whichever is lower

2.3 Configuration of Tested System

Power Line: 120 VAC, 60 Hz

3. PRELIMINARY TEST

3.1 Conducted Emission Test

It was tested Data Communication mode, after connecting all peripheral device	ces.
---	------

Operation Mode:

☐ Data Communication mode

3. 2 Radiated Emission Test

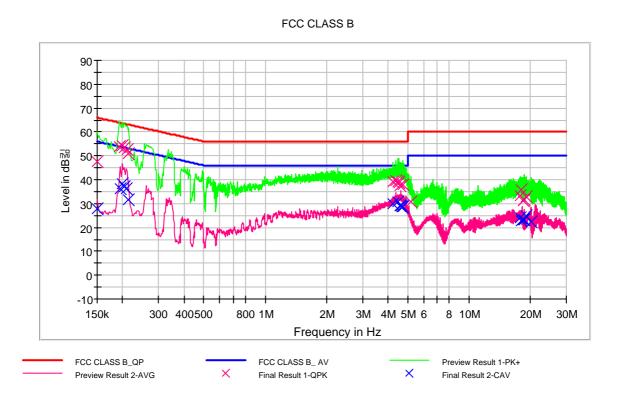
It was tested Data Communication mode, after connecting all peripheral devices.

Operation Mode: \square Data Communication mode

4. CONDUCTED AND RADIATED EMISSION TEST SUMMARY

4.1 Conducted Emission Test

The test results of conducted emission at mains ports provide the following information:


Rule Part / Standard	FCC PART 15 Subpart B Class B
Detector	Quasi-Peak, CISPR-Average
Bandwidth	9 kHz (6 dB)
Operation Mode	Data Communication mode
USB Cable Type	CRESYN (EAD62589001) **NOTE: The worst-case emissions are reported.
Kind of Test Site	Shielded Room
Temperature	23.5 °C
Relative Humidity	54.9 %
Test Date	July 14, 2015

- Calculation Formula:

- 1. Conductor L1 = Hot, Conductor N = Neutral
- 2. Corr. = LISN Factor + Cable Loss
- 3. QuasiPeak or CAverage= Receiver Reading + Corr.
- 4. Margin = Limit QuasiPeak or CAverage

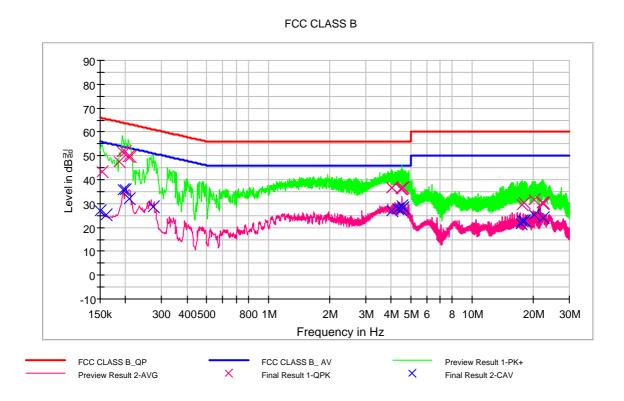
Figure 1: Spectral Diagrams, Conducted Emission, AC Main Port, Line (L1)

Page: 14 of 22

QuasiPeak Final Result, Line (L1)

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	47.5	9.000	L1	9.6	18.5	66.0
0.192000	54.0	9.000	L1	9.6	9.9	63.9
0.198000	54.4	9.000	L1	9.6	9.3	63.7
0.204000	53.6	9.000	L1	9.6	9.8	63.4
0.210000	52.8	9.000	L1	9.6	10.4	63.2
0.214000	51.0	9.000	L1	9.6	12.0	63.0
4.248000	39.1	9.000	L1	9.8	16.9	56.0
4.390000	39.7	9.000	L1	9.8	16.3	56.0
4.462000	39.1	9.000	L1	9.8	16.9	56.0
4.532000	38.9	9.000	L1	9.8	17.2	56.0
4.596000	37.6	9.000	L1	9.8	18.4	56.0
4.748000	37.9	9.000	L1	9.8	18.1	56.0
5.172000	30.6	9.000	L1	9.8	29.4	60.0
17.906000	33.1	9.000	L1	10.2	26.9	60.0
18.034000	35.7	9.000	L1	10.2	24.3	60.0
18.336000	31.1	9.000	L1	10.2	28.9	60.0
18.728000	31.5	9.000	L1	10.3	28.5	60.0
19.128000	32.7	9.000	L1	10.3	27.3	60.0

Page: 15 of 22


CAverage Final Result, Line (L1)

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	28.0	9.000	L1	9.6	28.0	56.0
0.194000	36.4	9.000	L1	9.6	17.5	53.9
0.200000	38.3	9.000	L1	9.6	15.3	53.6
0.204000	37.2	9.000	L1	9.6	16.2	53.4
0.208000	36.2	9.000	L1	9.6	17.1	53.3
0.214000	31.7	9.000	L1	9.6	21.3	53.0
4.248000	29.9	9.000	L1	9.8	16.1	46.0
4.462000	30.8	9.000	L1	9.8	15.2	46.0
4.596000	29.2	9.000	L1	9.8	16.8	46.0
4.620000	29.2	9.000	L1	9.8	16.8	46.0
4.694000	28.7	9.000	L1	9.8	17.3	46.0
4.748000	28.6	9.000	L1	9.8	17.4	46.0
17.906000	24.1	9.000	L1	10.2	25.9	50.0
18.034000	22.8	9.000	L1	10.2	27.2	50.0
18.336000	23.2	9.000	L1	10.2	26.8	50.0
18.740000	23.3	9.000	L1	10.3	26.7	50.0
19.128000	24.8	9.000	L1	10.3	25.2	50.0
20.148000	22.4	9.000	L1	10.3	27.6	50.0

FCC ID: ZNFV930

Figure 2: Spectral Diagrams, Conducted Emission, AC Main Port, Line (N)

Page: 17 of 22

QuasiPeak Final Result, Line (N)

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.154000	43.3	9.000	N	9.6	22.5	65.8
0.186000	47.7	9.000	N	9.6	16.5	64.2
0.192000	52.0	9.000	N	9.6	11.9	63.9
0.198000	51.6	9.000	N	9.6	12.1	63.7
0.206000	49.7	9.000	N	9.6	13.7	63.4
0.210000	49.7	9.000	N	9.6	13.5	63.2
4.038000	36.6	9.000	N	9.8	19.4	56.0
4.044000	36.6	9.000	N	9.8	19.4	56.0
4.464000	36.3	9.000	N	9.8	19.7	56.0
4.532000	36.3	9.000	N	9.8	19.7	56.0
4.560000	36.7	9.000	N	9.8	19.3	56.0
4.578000	36.5	9.000	N	9.8	19.5	56.0
17.650000	29.6	9.000	N	10.2	30.4	60.0
18.064000	30.4	9.000	N	10.2	29.6	60.0
20.134000	31.6	9.000	N	10.3	28.4	60.0
22.098000	30.4	9.000	N	10.3	29.6	60.0
22.320000	30.2	9.000	N	10.3	29.8	60.0
22.380000	30.0	9.000	N	10.3	30.0	60.0

Page: 18 of 22

CAverage Final Result, Line (N)

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	27.0	9.000	N	9.6	29.0	56.0
0.160000	25.4	9.000	N	9.6	30.1	55.5
0.194000	35.8	9.000	N	9.6	18.1	53.9
0.200000	35.9	9.000	N	9.6	17.7	53.6
0.208000	31.8	9.000	N	9.6	21.5	53.3
0.272000	28.8	9.000	N	9.6	22.3	51.1
4.038000	26.9	9.000	N	9.8	19.1	46.0
4.316000	27.8	9.000	N	9.8	18.2	46.0
4.464000	27.2	9.000	N	9.8	18.8	46.0
4.532000	28.9	9.000	N	9.8	17.1	46.0
4.560000	28.4	9.000	N	9.8	17.6	46.0
4.578000	28.4	9.000	N	9.8	17.6	46.0
17.426000	21.7	9.000	N	10.2	28.3	50.0
17.650000	22.7	9.000	N	10.2	27.3	50.0
17.970000	22.9	9.000	N	10.2	27.1	50.0
18.064000	23.0	9.000	N	10.2	27.0	50.0
20.134000	25.2	9.000	N	10.3	24.8	50.0
22.320000	24.0	9.000	N	10.3	26.0	50.0

4.2 Radiated Emission Test

The test results of radiated emission provide the following information:

Rule Part / Standard	FCC PART 15 Subpart B Class B
Detector	Quasi-Peak
Bandwidth	120 kHz (6 dB)
Operation Mode	Data Communication mode
USB Cable Type	CRESYN (EAD62589001) **NOTE: The worst-case emissions are reported.
Kind of Test Site	3 m semi anechoic chamber
Temperature	23.7 – 24.1 °C
Relative Humidity	48.9 – 51.1 %
Test Date	July 06, 2015 - July 07, 2015

Frequency (MHz)	Quasi Peak (dBuV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
73.165531	31.4	212.0	Н	304.0	13.4	8.6	40.0
122.122725	32.7	250.0	Н	148.0	15.8	10.8	43.5
162.824369	34.9	194.0	Н	105.0	17.1	8.6	43.5

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. QuasiPeak = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor + Cable Loss
- 4. Margin = Limit QuasiPeak

Rule Part / Standard	FCC PART 15 Subpart B Class B
Detector	Peak mode: Peak (RBW: 1 Mb, VBW: 3 Mb) CISPR-Average mode: Peak (RBW: 1 Mb, VBW: 10 Hz)
Highest Operating Frequency	2.26 GHz
Testing Frequency Range	1 GHz to 11.3 GHz
Operation Mode	Data Communication mode
USB Cable Type	CRESYN (EAD62589001) **NOTE: The worst-case emissions are reported.
Kind of Test Site	3 m semi anechoic chamber
Temperature	23.7 °C
Relative Humidity	51.1 %
Test Date	July 07, 2015

Frequency (MHz)	Peak (dBuV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
1331.513026	51.0	100.0	V	59.0	-9.7	23.0	74.0
1992.234469	58.1	100.0	V	55.0	-7.9	15.9	74.0
2656.262525	51.5	100.0	V	60.0	-5.4	22.5	74.0

Frequency (MHz)	CAverage (dBuV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
1331.513026	32.7	100.0	V	59.0	-9.7	21.3	54.0
1992.234469	39.6	100.0	V	55.0	-7.9	14.4	54.0
2656.262525	33.9	100.0	V	60.0	-5.4	20.1	54.0

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. Peak or CAverage = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor+ Cable Loss Amplifier Gain
- 4. Margin = Limit Peak or CAverage

FCC ID: ZNFV930

5. LIST OF TEST EQUIPMENT

<u>Manufacturer</u>	Model Name	Serial Number	Calibration Cycle	CAL Date
Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	ESCI ESH3-Z5 ENV216 EMC32	100584 100282 100073	1 year 1 year 1 year	01.13.2015 06.11.2015 01.13.2015
w 1 GHz				
EMCO EMCO Rohde & Schwarz INNCO Systems INNCO Systems Rohde & Schwarz	ESI40 VULB9160 MA240 HD 100 1060-2M 2090 ESU 26 MA4000-EP DT3000-3T EMC32	831564103 3301 240/520 100/637 - 9702-1224 100241 MA4000/283 DT3000/69	1 year 2 year N/A N/A N/A N/A 1 year N/A N/A	04.01.2015 11.17.2014 - - - - 06.05.2015 - -
Rohde & Schwarz HD GmbH HD GmbH EMCO EMCO CERNEX CERNEX Schwarzbeck Rohde & Schwarz INNCO Systems	ESI40 MA240 HD 100 1060-2M 2090 CBLU1183540 CBLU5183530 BBHA 9120D ESU 26 DT3000-3T	831564103 240/520 100/637 - 9702-1224 21691 24348 296 100241 DT3000/69	1 year N/A N/A N/A N/A 1 year 1 year 2 year 1 year N/A	04.01.2015 07.06.2015 06.15.2015 10.07.2014 06.05.2015 -
	Rohde & Schwarz Schwarzbeck HD GmbH HD GmbH EMCO EMCO Rohde & Schwarz INNCO Systems INNCO Systems Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz HD GmbH HD GmbH EMCO EMCO CERNEX CERNEX Schwarzbeck Rohde & Schwarz	Rohde & Schwarz EMC32 Rohde & Schwarz ESI40 VULB9160 MA240 HD GmbH HD 100 EMCO Rohde & Schwarz INNCO Systems Rohde & Schwarz Rohde & Schwarz ESU 26 INNCO Systems Rohde & Schwarz Rohde & Schwarz EMC32 Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz ESI40 MA4000-EP DT3000-3T Rohde & Schwarz ESI40 HD GmbH HD 100 EMC0 EMCO 1060-2M EMCO CERNEX CBLU1183540 CERNEX CBLU1183530 BBHA 9120D ESU 26 INNCO Systems Rohde & Schwarz ESU 26 ESU 26 ENOCO Systems Rohde & Schwarz ESU 26 ESU 26 ENOCO Systems Rohde & Schwarz ESU 26 E	Rohde & Schwarz	Rohde & Schwarz ESCI 100584 1 year Rohde & Schwarz ENV216 100073 1 year Rohde & Schwarz ENV216 100073 1 year Rohde & Schwarz EMC32

6. CONCLUSION

The data collected shows that the EUT Type: Potable Tablet, FCC ID: ZNFV930, Model: LG-V930 complies with §15.107 and §15.109 of the FCC rules.