

SAR TEST REPORT

HCT CO., LTD

EUT Type:	2.4G/5G Dual WIFI Tablet
FCC ID:	ZNFV700
IC ID:	2703C-V700
Model:	LG-V700
Additional Model:	LGV700, V700
Date of Issue:	May. 29, 2014
Test report No.:	HCT-A-1405-F006-1
Test Laboratory:	HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea TEL: +82 31 645 6300 FAX: +82 31 645 6401
Applicant :	LG Electronics, MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs NJ 07632
Testing has been carried out in accordance with:	RSS-102 Issue 4; Health Canada Safety Code 6 47CFR §2.1093 ANSI/ IEEE C95.1 – 1992 IEEE 1528-2003
Test result:	The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.
Signature	Report prepared by : Young-Soo, Jang Test Engineer of SAR Part Approved by : Dong-seob, Kim Manager of SAR Part

Revision History

Rev.	Issue DATE	DESCRIPTION
HCT-A-1405-F006	May. 22, 2014	Initial Issue
HCT-A-1405-F006-1	May. 29, 2014	Sec. 10.1 was revised (Typo)

Table of Contents

1. INTRODUCTION	
2. TEST METHODOLOGY	5
3. DESCRIPTION OF DEVICE	6
4. DESCRIPTION OF TEST EQUIPMENT	7
4.1 SAR MEASUREMENT SETUP	7
4.4 SAM Phantom	1 2
4.5 Device Holder for Transmitters	1 2
4.6 Tissue Simulating Mixture Characterization	1 3
4.7 SAR TEST EQUIPMENT	1 4
6. DESCRIPTION OF TEST POSITION	1 7
6.1 HEAD POSITION	1 7
6.2 Body Holster/Belt Clip Configurations	1 8
7. MEASUREMENT UNCERTAINTY	
8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	2 1
9. SAR SYSTEM VALIDATION	2 2
10. SYSTEM VERIFICATION	2 3
10.1 Tissue Verification	2 3
10.2 System Verification	2 3
10.3 System Verification Procedure	
11. RF CONDUCTED POWER MEASUREMENT	
11.1 Output Power Specifications.	2 6
11.2 WiFi	
11.3 Test Exclusions Applied	3 1
11.3.1 BT	
12. SAR Test configuration & Antenna Information	
12.1 SAR Testing configurations	
12.2 Antenna and Device Information	
13. SAR TEST DATA SUMMARY	
13. 1-1 Measurement Results (WLAN SAR)	
13.2 SAR Test Notes	
14. SAR Measurement Variability and Uncertainty	
15. CONCLUSION	
15. REFERENCES	
Attachment 1. – SAR Test Plots	
Attachment 2. – Dipole Verification Plots	
Attachment 3. – Probe Calibration Data	
Attachment 4. – Dipole Calibration Data	7 3

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy(dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dV) of a given density(r). It is also defined as the rate RF energy absorption per unit mass at a point in an absorbing body.

 $SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg)

$$SAR = \sigma E^2 / \rho$$

Where:

 σ = conductivity of the tissue-simulant material (S/m)

 ρ = mass density of the tissue-simulant material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB Procedure, IEEE Standard 1528-2003 & IEEE 1528a-2005 and the following published KDB procedures.

- FCC KDB Publication 248227 D01v01r02(SAR Considerationa for 802.11 Devices)
- FCC KDB Publication 447498 D01v05r02 (General SAR Guidance)
- FCC KDB Publication 616217 D04 (Tablet SAR Considerations)
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- FCC KDB Publication 865664 D02 SAR Reporting v01r01

3. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	2.4G/5G Dual W	/IFI Tablet								
FCC ID:	ZNFV700	ZNFV700								
IC ID:	2703C-V700	2703C-V700								
Model:	LG-V700									
Additional Model:	LGV700, V700									
Trade Name	LG Electronics,	MobileComm U.S.A.,	Inc.							
Application Type	Certification									
Mode(s) of Operation	802.11a/b/g/n									
Tx Frequency	2 412 - 2 462 M	2 412 - 2 462 MHz (802.11b/g/n) / 5 180 - 5 825 MHz (802.11a/n)								
Production Unit or Identical Prototype	Prototype	Prototype								
	Band	Tx Frequency	Equipment Class	Reported 1g SAR (W/Kg)						
	Dallu	(MHz)	Equipment Class	Body						
	802.11b	2 412 - 2 462	DTS	0.84						
Max. SAR	802.11a	5 745 - 5 825	DTS	0.32						
Max. SAR	802.11a	5 180 - 5 240	UNII	0.34						
	802.11a	5 260 - 5 320	UNII	0.32						
	802.11a	5 500 - 5 700	UNII	0.34						
	Bluetooth	2 402 – 2 480	DSS/DTS	-						
Date(s) of Tests	May. 08, 2014 ~	May. 14, 2014								
Antenna Type	Integral Antenna	a								

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

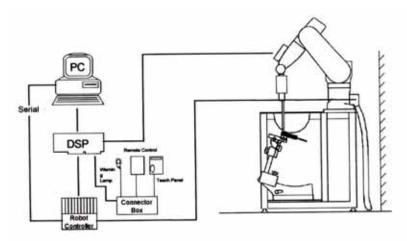


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

4.2 DASY E-FIELD PROBE SYSTEM

4.1 ET3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System

Built-in shielding against static charges

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and

1.8 GHz (accuracy: 8 %)

Frequency 10 MHz to > 3 GHz; Linearity: \pm 0.2 dB

(30 MHz to 3 GHz)

Directivity \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal probe axis)

Dynamic 5 μ W/g to > 100 mW/g;

Range Linearity: \pm 0.2 dB

Surface \pm 0.2 mm repeatability in air and clear liquids

Detection over diffuse reflecting surfaces.

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dissymmetry up to 3 GHz

Compliance tests of WCDMA/LTE Phones Fast automatic scanning in arbitrary phantoms

Figure 3. Photograph of the probe and the Phantom

Figure 4. ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric probe ET3DV6, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

4.2.1 EX3DV4 Probe Specification

Construction Symmetrical design with triangular core Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity \pm 0.2 dB in HSL (rotation around probe axis)

 \pm 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Figure 5. Photograph of the probe and the Phantom

Figure 6. EX3DV4 E-field Probe

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

4.3 PROBE CALIBRATION PROCESS

4.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than \pm 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 Δt = exposure time (30 seconds), C = heat capacity of tissue (brain or muscle), ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

$$SAR = \frac{|E^2| \cdot \sigma}{\rho}$$

where:

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

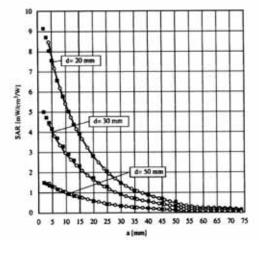


Figure 7. E-Field and Temperature measurements at 900 MHz

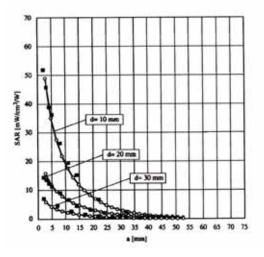


Figure 8. E-Field and temperature measurements at 1.8 GHz

4.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$egin{array}{lll} oldsymbol{V_i} &= oldsymbol{U_i} + oldsymbol{U_i^2} & \cdot rac{cf}{dcp_i} \end{array}$$
 with $egin{array}{lll} oldsymbol{V_i} &= ext{compensated signal of channel i} & (i=x,y,z) \\ oldsymbol{U_i} &= ext{input signal of channel i} & (i=x,y,z) \\ oldsymbol{cf} &= ext{crest factor of exciting field} & (DASY parameter) \\ oldsymbol{dcp_i} &= ext{diode compression poing} & (DASY parameter) \\ \end{array}$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with V_i = compensated signal of channel i (i=x,y,z) $Norm_i$ = sensor sensitivity of channel i (i=x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = E_x^2 + E_y^2 + E_z^2$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{\ 2} \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with $SAR = \text{local specific absorption rate in W/g}$ $E_{tot} = \text{total field strength in V/m}$ $\sigma = \text{conductivity in [mho/m] or [Siemens/m]}$ $\rho = \text{equivalent tissue density in g/cm}^3$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in w/cm}^2$ $E_{tot} = \text{total electric field strength in V/m}$

4.4 SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Figure 9. SAM Phantom

Shell Thickness 2.0 mm \pm 0.2 mm (6 \pm 0.2 mm at ear point)

Filling Volume about 25 L

Dimensions 810 mm x 1 000 mm x 500 mm (H x L x W)

Triple Modular Phantom consists of tree identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids. The MFP V5.1 will be delivered including wooden support only (**non**-standard SPEAG support).

Applicable for system performance check from 700 MHz to 6 GHz (MFP V5.1C) or 800 MHz - 6 GHz (MFP V5.1A) as well as dosimetric evaluations for body-worn operation.

Dimensions 830 mm x 500 mm (L x W)

Figure 10. MFP V5.1 Triple Modular Phantom

4.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 11. Device Holder

4.6 Tissue Simulating Mixture Characterization

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to mach within 5%, per the FCC recommendations

Ingredients	Frequency (MHz)										
(% by weight)	8	35	1 9	900	2 450	~ 2 700	5 200 - 5 800				
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body			
Water	40.45	53.06	54.9	70.17	71.88	73.2	65.52	78.66			
Salt (NaCl)	1.45	0.94	0.18	0.39	0.16	0.1	0.0	0.0			
Sugar	57.0	44.9	0.0	0	0.0	0.0	0.0	0.0			
HEC	1.0	1.0	0.0	0	0.0	0.0	0.0	0.0			
Bactericide	0.1	0.1	0.0	0	0.0	0.0	0.0	0.0			
Triton X-100	0.0	0.0	0.0	0.0	19.97	0.0	17.24	10.67			
DGBE	0.0	0.0	44.92	29.44	7.99	26.7	0.0	0.0			
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	10.67			

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 4.1 Composition of the Tissue Equivalent Matter

4.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
SPEAG	Triple Modular Phantom	-	N/A	N/A	N/A
Staubli	Robot RX60L	F10/5D1CA1/A101	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F10/5D1CA1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	SE UKS 030 AA	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D21142605	N/A	N/A	N/A
SPEAG	DAE4	1417	Jan.03, 2014	Annual	Jan.03, 2015
SPEAG	E-Field Probe ET3DV6	1609	Sep.23, 2013	Annual	Sep.23, 2014
SPEAG	E-Field Probe EX3DV4	3797	Nov. 29, 2013	Annual	Nov. 29, 2014
SPEAG	Dipole D2450V2	743	Aug. 23, 2013	Annual	Aug. 23, 2014
SPEAG	Dipole D5GHzV2	1107	Jan. 27, 2014	Annual	Jan. 27, 2015
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 01, 2013	Annual	Nov. 01, 2014
Agilent	Power Sensor(G) 8481	MY41090680	Oct. 30, 2013	Annual	Oct. 30, 2014
HP	Dielectric Probe Kit 85070C	00721521	СВТ		
HP	Dual Directional Coupler	16072	Oct. 31, 2013	Annual	Oct. 31, 2014
Agilent	Base Station E5515C	GB44400269	Feb. 10, 2014	Annual	Feb. 10, 2015
HP	Signal Generator 8664A	3744A02069	Nov. 04, 2013	Annual	Nov. 04, 2014
Hewlett Packard	11636B/Power Divider	11377	Nov. 10. 2013	Annual	Nov. 11. 2014
Agilent	N9020A/ SIGNAL ANALYZER	MY51110020	Jul. 18, 2013	Annual	Jul. 18, 2014
TESCOM	TC-3000C / BLUETOOTH	3000C000276	Apr. 11, 2014	Annual	Apr. 11. 2015
HP	Network Analyzer 8753ES	JP39240221	Mar. 21, 2014	Annual	Mar. 21, 2015

NOTE:

^{1.} The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

^{2.} CBT(Calibrating Before Testing). Prior to testing, the dielectric probe kit was calibrated via the network analyzer, with the specified procedure(calibrated in pure water) and calibration kit(standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - **a.** The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - **b.** The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - **c.** All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

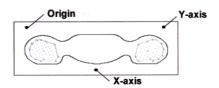


Figure 12. SAR Measurement Point in Area Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extend, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the hightest E-field value to determine the averaged SASR-distribution over 10g.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r03 quoted below

			≤ 3 GHz	> 3 GHz		
patial resolution, ormal to phantom urface graded grid \[\frac{\Delta Z Z z comm}{\Delta Z Z z comm} (n > 1): between two points closest two points closest two phantom surface are phantom surface. \[\frac{\Delta Z z z comm}{\Delta Z Z z comm} (n > 1): between two points closest two points clos			5 ± 1 mm	½-δ-ln(2) ± 0.5 mm		
		xis to phantom surface	30° ± 1° 20° ± 1°			
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$		
Maximum area scan spa	itial resolutio	оп: Δх.Агеа, Ду.Агеа	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device wi point on the test device.	, is smaller than the above, the e ≤ the corresponding x or y		
Maximum zoom scan sp	oatial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm ⁴ 4 – 6 GHz: ≤ 4 mm ⁴		
	uniform g	rid: ∆z _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Z_{0000}}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. DESCRIPTION OF TEST POSITION

6.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

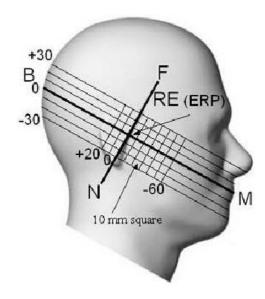


Figure 13. Side view of the phantom

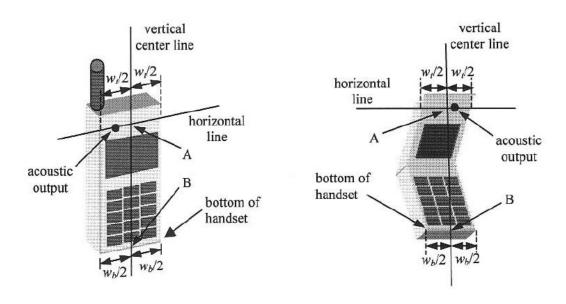


Figure 14. Handset vertical and horizontal reference lines

6.2 Body Holster/Belt Clip Configurations

Body operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Body dielectric parameters are used.

Accessories for Body operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body accessories may not always be supplied or available as options for some Devices intended to be authorized for Body use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

7. MEASUREMENT UNCERTAINTY

Error	Tol	Prob.			Standard	
Description	<u>'</u>	dist.	Div.	Ci	Uncertainty	V _{eff}
	(± %)				(± %)	
1. Measurement System	•		•			•
Probe Calibration	6.00	N	1	1	6.00	
Axial Isotropy	4.70	R	1.73	0.7	1.90	
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	
Boundary Effects	1.00	R	1.73	1	0.58	
Linearity	4.70	R	1.73	1	2.71	
System Detection Limits	1.00	R	1.73	1	0.58	
Readout Electronics	0.30	N	1.00	1	0.30	
Response Time	0.8	R	1.73	1	0.46	
Integration Time	2.6	R	1.73	1	1.50	
RF Ambient Conditions	3.00	R	1.73	1	1.73	
Probe Positioner	0.40	R	1.73	1	0.23	
Probe Positioning	2.90	R	1.73	1	1.67	
Max SAR Eval	1.00	R	1.73	1	0.58	
2.Test Sample Related			•			
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	
3.Phantom and Setup	·					•
Phantom Uncertainty	4.00	R	1.73	1	2.31	
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	
Liquid Conductivity(meas.)	2.07	N	1	0.64	1.32	9
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	
Liquid Permitivity(meas.)	5.02	N	1	0.6	3.01	9
Combind Standard Uncertai	inty				11.13	
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					22.25	

Table 7.1 Uncertainty (800 MHz - 2 450 MHz)

Error	Tol	Prob.			Standard	
Description		dist.	Div.	Ci	Uncertainty	V _{eff}
	(± %)				(± %)	
1. Measurement System						
Probe Calibration	6.55	N	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2.Test Sample Related						
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	∞
3.Phantom and Setup						
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.07	N	1	0.64	1.32	9
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	5.02	N	1	0.6	3.01	9
Combind Standard Uncertainty	•	•	<u> </u>		11.43	•
Coverage Factor for 95 %					k=2	
Expanded STD Uncertainty					22.86	

Table 7.2 Uncertainty (5 000 - 5 900 MHz)

8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

9. SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01r01, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01v01r03. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System	Probe	probe	Probe Calibration Point						Dipole	Date	Dielectric	Parameters	CV	V Validatior	1	Modula	ation Valid	dation
#	riobe	Туре			Dipole	Date	Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR				
2	1609	ET3DV6	Body	2450	743	Oct.10,2013	51.9	1.97	PASS	PASS	PASS	OFDM	N/A	PASS				
3	3797	EX3DV4	Body	5200	1107	Feb.11,2014	49.6	5.38	PASS	PASS	PASS	OFDM	N/A	PASS				
3	3797	EX3DV4	Body	5300	1107	Feb.11,2014	49.1	5.44	PASS	PASS	PASS	OFDM	N/A	PASS				
3	3797	EX3DV4	Body	5600	1107	Feb.11,2014	48.7	5.88	PASS	PASS	PASS	OFDM	N/A	PASS				
3	3797	EX3DV4	Body	5800	1107	Feb.11,2014	48.5	6.11	PASS	PASS	PASS	OFDM	N/A	PASS				

SAR System Validation Summary

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table bove represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r03. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r03.

10. SYSTEM VERIFICATION

10.1 Tissue Verification

Freq. [MHz]	Date	Probe	Dipole	Liquid	Liquid Temp. [°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]	
2 450	May. 08,	1609	743	Body	19.3	εr	52.7	51.816	- 1.68	± 5	
2 450	2014	1009	743	Бойу	Body 19.3	σ	1.95	1.946	- 0.21	± 5	
5 200	May. 09,			Body	Darky 40.0	3ody 19.6	εr	49.01	48.642	- 0.75	± 5
3 200	2014			Бойу	19.0	σ	5.3	5.201	- 1.87	± 5	
5 300	May. 12,			Dody	19.8	8 _r	48.88	48.364	- 1.06	± 5	
5 300	2014	3797	1107	Body	19.0	σ	5.42	5.368	- 0.96	± 5	
5 600	May. 13,	3/9/	1107	Pody	19.6	8 _r	48.47	47.52	- 1.96	± 5	
3 000	2014			Body 19.6	Body 19.6	σ	5.77	5.858	+ 1.53	± 5	
5 900	May. 14,			Pody	10.7	8 _r	48.2	46.98	- 2.53	± 5	
5 800	2014			Body	19.7	σ	6.00	6.189	+ 3.15	± 5	

The Tissue dielectronic parameters were measured prior to the SAR evaluation using an Agilent 85070C Dielectronic Probe Kit and Agilent Network Analyzer.

10.2 System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 2 450MHz / 5 200 MHz / 5 300 MHz / 5 800 MHz by using the system Verification kit. (Graphic Plots Attached)

System Verification Results

Freq. [MHz]	Date	Probe (SN)	Dipole (SN)	Liquid	Amb. Temp. [°C]	Liquid Temp. [°C]	1 W Target SAR _{1q} (SPEAG) (mW/g)	Measured SAR _{1q} (mW/g)	1 W Normalized SAR _{1q} (mW/g)	Deviation [%]	Limit [%]
2 450	May. 08, 2014	1609	743	Body	19.5	19.3	50.5	5.05	50.5	+ 0.00	± 10
2 450	May. 08, 2014	1609	743	Body	19.5	19.3	52.4 ^{*1)}	5.05	50.5	- 3.63	± 10
5 200	May. 09, 2014			Body	19.8	19.6	74.7	7.57	75.7	+ 1.34	± 10
5 300	May. 12, 2014	3797 1107	1107	Body	20.0	19.8	75.8	7.79	77.9	+ 2.77	± 10
5 600	May. 13, 2014		1107	Body	19.8	19.6	80.2	8.18	81.8	+ 2.00	± 10
5 800	May. 14, 2014			Body	19.9	19.7	74.4	7.52	75.2	+ 1.08	± 10

^{*}Note 1 : Per RSS-102, 2450MHz body 1W target value(52.4 mW/g) is added for IC.

10.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the ± 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

Note;

SAR Verification was performed according to the FCC KDB 865664 D01v01r03.

11. RF CONDUCTED POWER MEASUREMENT

Power measurements were performed using a base station simulator under digital average power. The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more then 5 % occurred, the tests were repeated.

11.1 Output Power Specifications.

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v05r02.

Wifi

Wifi		Mode / Band										
(Average		2.4 GHz		5 GHz								
Power)		802.11 g	802.11 n	802.11 a	802.11 n (20MHz)	802.11 n (40MHz)						
Maximum	11 dBm	10 dBm	10 dBm	11 dBm	10.5 dBm	11.5 dBm						
Nominal	10 dBm	9 dBm	9 dBm	10 dBm	9.5 dBm	10.5 dBm						

BT.

Bluetooth	Mode / Band					
(Average Power)	Bluetooth	LE				
Maximum	8 dBm	1 dBm				
Nominal	7 dBm	-				

11.2 WiFi

11.2.1 SAR Testing for 802.11a/b/g/n modes

General Device Setup

Normal Network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

Frequency Channel Configurations

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11.802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; Channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz § 15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11,15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels. These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

				т. 1		"Default Tes	t Channels"	
M	ode	GHz	Channel	Turbo Channel		.247	UN	TTT
				Channel	802.11b	802.11g	UN	(11
		2.412	1#		V			
802.	.11b/g	2.437	6	6	V			
		2.462	11#		V			
		5.18	36				V	
		5.20	40	42 (5.21 GHz)				*
		5.22	44	42 (3.21 GHZ)				*
		5.24	48	50 (5.25 GHz)			$\sqrt{}$	
		5.26	52	30 (3.23 GHZ)			V	
		5.28	56	58 (5.29 GHz)				*
		5.30	60	36 (3.29 GHZ)				*
	UNII	5.32	64				√	
		5.500	100					*
		5.520	104				V	
		5.540	108					*
802.11a		5.560	112					*
802.11a		5.580	116				V	
		5.600	120	Unknown				*
		5.620	124				V	
		5.640	128					*
		5.660	132					*
		5.680	136				V	
		5.700	140					*
	TINIT	5.745	149		V		V	
	UNII	5.765	153	152 (5.76 GHz)		*		*
	or §15.247	5.785	157		V			*
	813.24/	5.805	161	160 (5.80 GHz)		*	V	
	§15.247	5.825	165		V			

802.11 Test Channels per FCC Requirements

IEEE 802.11b Average RF Power

Mode	Freq.	802.11b (2.4 GHz) Conducted Power [dBm] Channel Data Rate (Mbps)						
	[MHz]		1	2	5.5	11		
	2412	1	10.42	10.21	10.61	10.29		
802.11b	2437	6	10.39	10.58	10.59	10.35		
	2462	11	10.53	10.33	10.38	10.41		

IEEE 802.11g Average RF Power

Mode	Freq.	Channel	802.11g (2.4 GHz) Conducted Power [dBm] Data Rate (Mbps)								
	[MHz]		6	9	12	18	24	36	48	54	
	2412	1	9.85	9.61	9.58	9.62	9.59	9.67	9.63	9.55	
802.11g	2437	6	9.73	9.72	9.59	9.64	9.59	9.66	9.66	9.58	
	2462	11	9.53	9.54	9.54	9.56	9.50	9.56	9.58	9.52	

IEEE 802.11n Average RF Power

	Freg.				802.11n (2.			ower [dBm			
Mode	•	[MHz] Channel	Data Rate (Mbps)								
	[IVIHZ]		6.5	13	19.5	26	39	52	58.5	65	
	2412	1	8.50	8.89	8.61	8.58	8.81	8.54	8.59	8.62	
802.11n	2437	6	8.58	8.66	8.62	8.56	8.54	8.69	8.63	8.58	
	2462	11	8.50	8.88	8.56	8.55	8.56	8.71	8.58	8.64	

IEEE 802.11a Average RF Power- 20 MHz Bandwidth

	IEEE OOETTA AVOIAGO NET OWOT TO WITE BATTANIA										
_	Freq.				802.11a (5	GHz) Con		wer [dBm]	•		
Mode	[MHz]	Channel					e (Mbps)				
			6	9	12	18	24	36	48	54	
	5180	36	10.76	10.67	10.66	10.70	10.48	10.59	10.58	10.47	
	5200	40	10.98	10.96	10.96	10.95	10.96	10.99	10.92	10.97	
	5220	44	10.94	10.92	10.91	10.93	10.87	10.93	10.90	10.84	
	5240	48	10.97	10.99	10.95	10.97	10.86	10.88	10.86	10.82	
	5260	52	10.83	10.81	10.74	10.78	10.73	10.76	10.69	10.54	
	5280	56	10.85	10.87	10.83	10.86	10.88	10.85	10.77	10.62	
	5300	60	10.92	10.99	11.00	11.00	10.97	10.99	10.92	10.83	
	5320	64	10.98	10.99	10.98	10.96	10.8	10.93	10.95	10.8	
	5500	100	9.98	10.08	10.06	10.10	10.01	9.95	9.95	9.87	
	5520	104	9.96	10.18	10.04	10.00	9.87	10.04	9.92	9.89	
802.11a	5540	108	10.54	10.43	10.43	10.50	10.43	10.48	10.37	10.29	
	5560	112	10.57	10.55	10.48	10.39	10.35	10.46	10.43	10.40	
	5580	116	9.80	9.70	9.70	9.80	9.77	9.83	9.76	9.67	
	5660	132	10.13	10.15	9.97	10.00	9.82	9.86	9.84	9.80	
	5680	136	10.10	10.20	10.15	10.10	10.03	10.13	9.92	9.89	
	5700	140	10.25	10.15	10.13	10.18	10.03	10.08	10.06	9.95	
	5745	149	9.40	9.45	9.44	9.55	9.30	9.31	9.37	9.19	
	5765	153	9.70	9.67	9.72	9.61	9.48	9.62	9.41	9.28	
	5785	157	10.00	10.04	9.83	9.69	9.65	9.78	9.65	9.48	
	5805	161	9.81	9.65	9.68	9.54	9.58	9.60	9.53	9.41	
	5825	165	9.67	9.68	9.79	9.69	9.69	9.70	9.42	9.46	

IEEE 802.11n Average RF Power – 20 MHz Bandwidth

	Freq.			20 MH	lz BW 802.			ed Power	[dBm]	
Mode	[MHz]	Channel	_			Data Rat				_
			6.5	13	19.5	26	39	52	58.5	65
	5180	36	9.40	9.45	9.48	9.19	9.28	9.31	9.40	9.23
	5200	40	9.77	9.81	9.81	9.65	9.75	9.73	9.71	9.51
	5220	44	9.68	9.67	9.64	9.51	9.53	9.59	9.51	9.54
	5240	48	9.71	9.76	9.74	9.68	9.69	9.66	9.57	9.58
	5260	52	9.61	9.86	9.57	9.54	9.54	9.69	9.49	9.36
	5280	56	9.73	9.74	9.62	9.63	9.51	9.60	9.43	9.34
	5300	60	9.80	9.71	9.70	9.74	9.65	9.71	9.69	9.77
	5320	64	9.60	9.87	9.67	9.63	9.56	9.65	9.49	9.59
	5500	100	8.76	8.73	8.72	8.71	8.68	8.57	8.59	8.70
	5520	104	8.67	8.73	8.70	8.64	8.63	8.52	8.54	8.64
802.11n	5540	108	8.70	8.61	8.65	8.60	8.47	8.42	8.38	8.40
	5560	112	9.10	9.15	9.12	9.07	9.06	9.03	8.91	8.92
	5580	116	9.12	9.2	9.17	9.07	9.09	9.07	8.95	8.94
	5660	132	8.97	8.94	8.92	9.02	9.06	9.01	8.92	8.91
	5680	136	8.98	9.06	9.08	9.11	9.14	9.03	8.87	8.92
	5700	140	9.00	9.22	9.12	9.12	9.10	8.99	8.87	9.05
	5745	149	8.15	7.98	8.08	7.83	7.73	7.70	7.62	7.62
	5765	153	8.36	8.21	8.17	7.82	7.75	7.77	7.62	7.68
	5785	157	8.74	8.63	8.70	8.36	8.42	8.41	8.14	8.33
	5805	161	8.53	8.57	8.62	8.49	8.28	8.31	8.24	8.21
	5825	165	8.61	8.61	8.61	8.52	8.35	8.47	8.37	8.28

IEEE 802.11n Average RF Power - 40 MHz Bandwidth

	Freq.			40 MHz BW 802.11n (5 GHz) Conducted Power [dBm]									
Mode	•	Channel				Data Rat	te (Mbps)						
	[MHz]		13.5	27	40.5	54	81	108	121.5	135			
	5190	38	10.64	10.77	10.64	10.73	10.64	10.51	10.52	10.57			
	5230	46	10.57	10.94	10.85	10.62	10.63	10.37	10.36	10.38			
	5270	54	10.77	10.60	10.55	10.55	10.33	10.41	10.27	10.22			
	5310	62	10.27	10.09	10.00	10.10	9.89	9.84	9.69	9.78			
802.11n	5510	102	11.12	10.81	11.06	11.07	10.94	10.86	10.89	10.94			
	5550	110	11.21	11.16	10.51	10.94	11.07	10.86	10.88	11.00			
	5670	134	10.74	10.78	10.74	10.62	10.69	10.48	10.46	10.53			
	5755	151	10.18	9.98	9.84	9.87	9.82	9.68	9.61	9.69			
	5795	159	10.24	10.14	10.17	10.10	9.93	9.87	9.88	9.89			

11.3 Test Exclusions Applied

11.3.1 BT

BT

Per FCC KDB 447498 D01v05r02, The SAR exclusion threshold for distance < 50 mm is defined by the following equation:

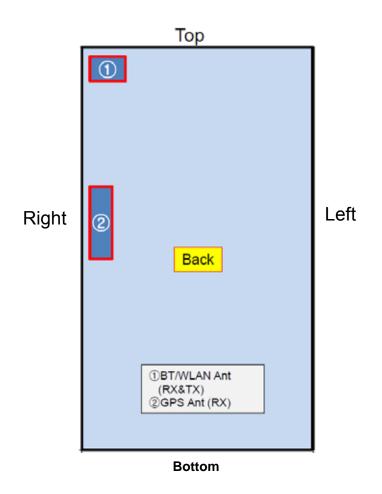
$$\frac{\textit{Max Power of Channel(mW)}}{\textit{Test Separation Distance (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Mode	Frequency	Maximum Allowed Power	Seperation Distance	≤ 3.0
	[MHz]	[mW]	[mm]	
Bluetooth	2441	6	5	1.87

Based on the maximum conducted power of Bluetooth and antenna to use separation distance, Bluetooth SAR was not required $[(6/5)^*\sqrt{2.441}] = 1.87 < 3.0$.

Note

1) Per RSS-102 issue 4 Sec. 2.5.1, The BT SAR evaluation is not reuired for IC. BT Max target Power is less than 20mW.



12. SAR Test configuration & Antenna Information

12.1 SAR Testing configurations

Mode	Rear	Front	Left	Right	Bottom	Тор
2.4 GHz WLAN	Yes	No	No	Yes	No	Yes
5 GHz WLAN	Yes	No	No	Yes	No	Yes

12.2 Antenna and Device Information

Note;

^{1.} Particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v05r01

^{*}Please see the LG-V700_Antenna distance for futher information.

13. SAR TEST DATA SUMMARY

13. 1-1 Measurement Results (WLAN SAR)

Frequency			Power (dBm)		Power			0	Measured Corrected		Coolin	Scaled	Dist
MHz	Ch.	Mode	Tune-Up	Conducted	Drift	Configuration	Data Rate	Separation Distance	SAR	SAR	Scaling Facor	SAR	Plot No.
141112	OII.		Limit	Power	(dB)			2.0.000	(mW/g)	(mW/g)		(mW/g)	110.
2 412	1	802.11b	11	10.42	-0.03	Rear	1Mbps	0 cm	0.494	N/A	1.143	0.565	-
2 437	6		11	10.39	-0.04	Rear	1Mbps	0 cm	0.543	N/A	1.151	0.625	-
2 462	11		11	10.53	-0.07	Rear	1Mbps	0 cm	0.757	N/A	1.114	0.844	1
2 462	11		11	10.53	-0.04	Right	1Mbps	0 cm	0.081	N/A	1.114	0.090	-
2 462	11		11	10.53	-0.14	Тор	1Mbps	0 cm	0.167	N/A	1.114	0.186	-
2 437	6	802.11n	10	8.58	-0.06	Rear	6.5Mbps	0 cm	0.434	N/A	1.387	0.602	
5 785	157	802.11a	11	10.00	0.02	Rear	6Mbps	0 cm	0.191	0.193	1.259	0.240	-
5 785	157		11	10.00	0.07	Right	6Mbps	0 cm	0.254	0.257	1.259	0.320	2
5 785	157		11	10.00	0.04	Тор	6Mbps	0 cm	0.166	0.168	1.259	0.209	-
5 795	159	802.11n	10.5	10.24	0.18	Right	13.5Mbps	0 cm	0.220	0.222	1.062	0.234	-
5 200	40	802.11a	11	10.98	0.13	Rear	6Mbps	0 cm	0.315	0.318	1.005	0.316	-
5 200	40		11	10.98	0.05	Right	6Mbps	0 cm	0.233	0.235	1.005	0.234	-
5 200	40		11	10.98	0.11	Тор	6Mbps	0 cm	0.239	0.241	1.005	0.240	-
5 190	38	802.11n	10.5	10.64	0.18	Rear	13.5Mbps	0 cm	0.350	0.353	0.968	0.339	3
5 320	64	802.11a	11	10.98	0.01	Rear	6Mbps	0 cm	0.312	0.315	1.005	0.313	-
5 320	64		11	10.98	-0.06	Right	6Mbps	0 cm	0.270	0.272	1.005	0.271	-
5 320	64		11	10.98	0.07	Тор	6Mbps	0 cm	0.321	0.324	1.005	0.322	4
5 270	54	802.11n	10.5	10.77	0.05	Тор	13.5Mbps	0 cm	0.333	0.336	0.940	0.313	-
5 560	112		11	10.57	-0.17	Rear	6Mbps	0 cm	0.304	0.307	1.104	0.336	5
5 560	112		11	10.57	0.08	Right	6Mbps	0 cm	0.280	0.283	1.104	0.309	-
5 560	112		11	10.57	0.14	Тор	6Mbps	0 cm	0.178	0.180	1.104	0.197	-
5 550	110	802.11n	10.5	11.21	0.16	Rear	13.5Mbps	0 cm	0.252	0.254	0.849	0.214	-
ANSI/ IEEE C95.1 - 1992- Safety Limit							Body						
Spatial Peak							1.6 W/kg (mW/g)						
Uncontrolled Exposure/ General Population							Averaged over 1 gram						

13.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC KDB Procedure.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v05r02.
- 6. Per FCC KDB 865664 D01v01r03, variability SAR tests were not performed since the measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 14 for variability analysis information.

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB 248227 D01v01r02 and Oct. 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11 g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. Justification for reduced test configurations for WIFI channels per KDB 248227 D01v01r02 and Oct. 2012 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11 n 20MHz and 40 MHz bandwidths) were not investigated since the average output power over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data of IEEE 802.11a mode.
- 3. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel was ≤ 1.6 W/kg and the reported 1g averaged SAR was < 0.8 W/kg, SAR testing on other default channels was not required.
- 4. According to IC Notice 2012-DRS0529, corrected SAR is added. For 2.4 GHz, SAR is positive, so it doesn't neet to calculated corrected SAR.
- 5. 802.11 n SAR measurement per Apr. 2014 TCBC workshop: SAR testing be conducted on channel with the highest output power and highest channel BW configuration with highest output power.

14. SAR Measurement Variability and Uncertainty

In accordance with published RF Exposure KDB procedure 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10 % from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

15. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

15. REFERENCES

- [1] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, July 2001.
- [2] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [3] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [4] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [5] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9]K. Pokovi°, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zörich, Dosimetric Evaluation of the Cellular Phone.
- [21] SAR Evaluation of Handsets with Multiple Transmitters and Antennas #648474.
- [22] SAR Measurement Procedure for 802.11 a/b/g Transmitters #KDB 248227.

Attachment 1. - SAR Test Plots

Test Laboratory: HCT CO., LTD

EUT Type: 2.4G/5G Dual WIFI Tablet

Liquid Temperature: 19.3 Ambient Temperature: 19.5

Test Date: May.08, 2014

Plot No. 1

DUT: LG-V700

Communication System: UID 0, 2450MHz FCC (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.966$ S/m; $\epsilon_r = 51.823$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

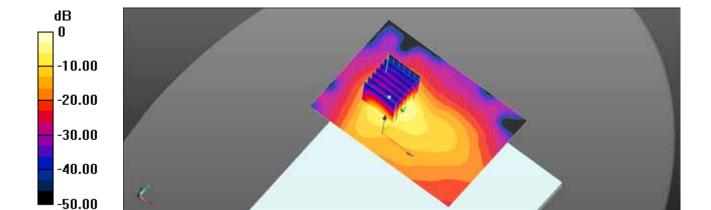
• Probe: ET3DV6 - SN1609; ConvF(4.2, 4.2, 4.2); Calibrated: 2013-09-23;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1417; Calibrated: 2014-01-03

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)


LG-V700/802.11b Body Rear CH11/Area Scan (111x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.01 W/kg

LG-V700/802.11b Body Rear CH11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.7550 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 2.69 W/kg

SAR(1 g) = 0.757 W/kg; SAR(10 g) = 0.292 W/kg Maximum value of SAR (measured) = 0.862 W/kg

0 dB = 1.01 W/kg = 0.05 dBW/kg

Test Laboratory: HCT CO., LTD

EUT Type: 2.4G/5G Dual WIFI Tablet

Liquid Temperature: 19.7 Ambient Temperature: 19.9

Test Date: May.14, 2014

Plot No. 2

DUT: LG-V700

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 6.166 \text{ S/m}$; $\varepsilon_r = 47.014$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3797; ConvF(4.23, 4.23, 4.23); Calibrated: 2013-11-29;

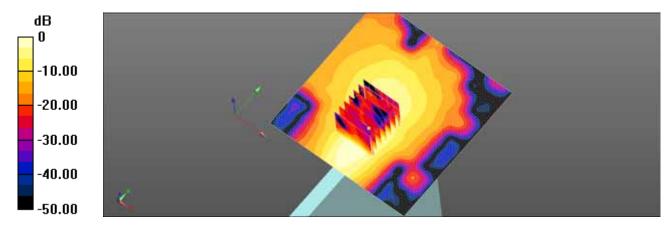
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn652; Calibrated: 2014-03-26

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

LG-V700/802.11a Body Right CH157 6Mbps/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.516 W/kg

LG-V700/802.11a Body Right CH157 6Mbps/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.030 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.254 W/kg; SAR(10 g) = 0.071 W/kg Maximum value of SAR (measured) = 0.713 W/kg

0 dB = 0.516 W/kg = -2.87 dBW/kg

Test Laboratory: HCT CO., LTD

EUT Type: 2.4G/5G Dual WIFI Tablet

Liquid Temperature: 19.6 Ambient Temperature: 19.8

Test Date: May.09, 2014

Plot No. 3

DUT: LG-V700

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5190 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5190 MHz; $\sigma = 5.186 \text{ S/m}$; $\epsilon_r = 48.671$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

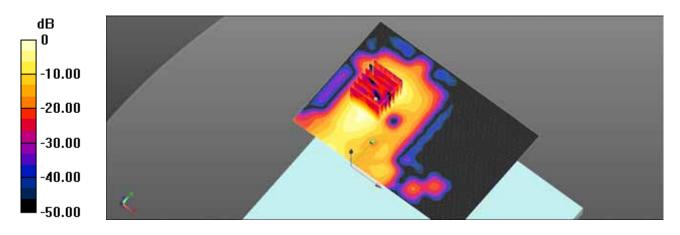
Probe: EX3DV4 - SN3797; ConvF(4.42, 4.42, 4.42); Calibrated: 2013-11-29;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn652; Calibrated: 2014-03-26

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)


LG-V700/802.11n Body Rear CH38/Area Scan (131x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.989 W/kg

LG-V700/802.11n Body Rear CH38/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.350 W/kg; SAR(10 g) = 0.113 W/kg Maximum value of SAR (measured) = 0.924 W/kg

0 dB = 0.989 W/kg = -0.05 dBW/kg

Test Laboratory: HCT CO., LTD

EUT Type: 2.4G/5G Dual WIFI Tablet

Liquid Temperature: 19.8 Ambient Temperature: 20.0

Test Date: May.12, 2014

Plot No. 4

DUT: LG-V700

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5320 MHz; $\sigma = 5.398 \text{ S/m}$; $\varepsilon_r = 48.303$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3797; ConvF(4.17, 4.17, 4.17); Calibrated: 2013-11-29;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn652; Calibrated: 2014-03-26

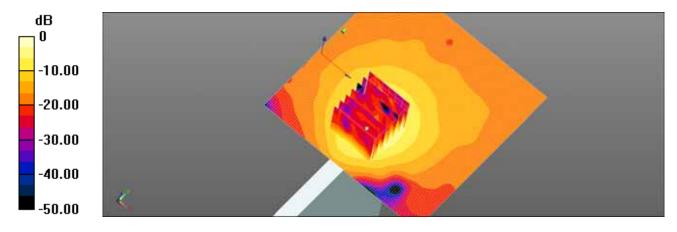
Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

LG-V700/802.11a Body Top CH38 6Mbps/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000

Maximum value of SAR (interpolated) = 0.850 W/kg

LG-V700/802.11a Body Top CH38 6Mbps/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=1.4mm

Reference Value = 1.296 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.095 W/kg

Maximum value of SAR (measured) = 0.819 W/kg

0 dB = 0.850 W/kg = -0.71 dBW/kg

Test Laboratory: HCT CO., LTD

EUT Type: 2.4G/5G Dual WIFI Tablet

Liquid Temperature: 19.6 Ambient Temperature: 19.8

Test Date: May.13, 2014

Plot No. 5

DUT: LG-V700

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5560 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5560 MHz; $\sigma = 5.803 \text{ S/m}$; $\varepsilon_r = 47.634$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3797; ConvF(3.67, 3.67, 3.67); Calibrated: 2013-11-29;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

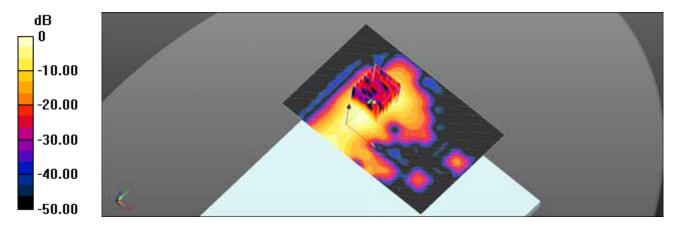
• Electronics: DAE4 Sn652; Calibrated: 2014-03-26

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)

LG-V700/802.11a Body Rear CH112 6Mbps/Area Scan (131x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.857 W/kg


LG-V700/802.11a Body Rear CH112 6Mbps/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 0.3310 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.304 W/kg; SAR(10 g) = 0.098 W/kg Maximum value of SAR (measured) = 0.828 W/kg

0 dB = 0.857 W/kg = -0.67 dBW/kg

Attachment 2. – Dipole Verification Plots

■ Verification Data (2 450 MHz Body)

Test Laboratory: HCT CO., LTD Input Power 100 mW (20 dBm)

Liquid Temp: 19.3

Test Date: May. 08, 2014

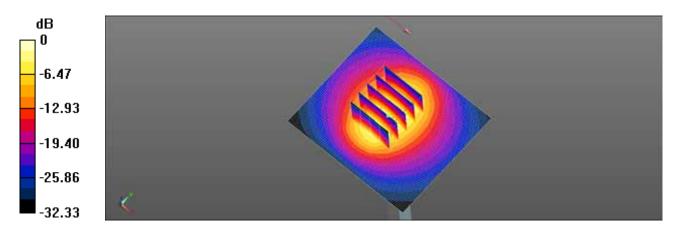
DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:743

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.946$ S/m; $\epsilon_r = 51.816$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ET3DV6 SN1609; ConvF(4.2, 4.2, 4.2); Calibrated: 2013-09-23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1417; Calibrated: 2014-01-03
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7331)


2450MHz Verification/Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 5.72 W/kg

2450MHz Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.52 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 13.9 W/kg

SAR(1 g) = 5.05 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 5.41 W/kg

0 dB = 5.72 W/kg = 7.57 dBW/kg

■ Verification Data (5 200 MHz Body)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 19.6

Test Date: May. 09, 2014

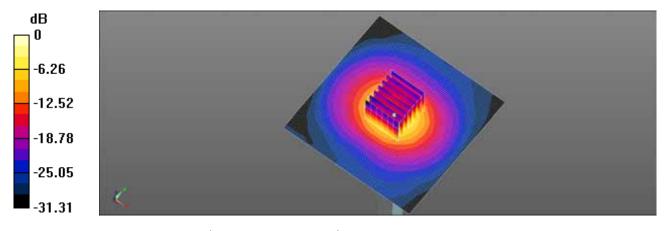
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1107

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; $\sigma = 5.201$ S/m; $\epsilon_r = 48.642$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3797; ConvF(4.42, 4.42, 4.42); Calibrated: 2013-11-29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2014-03-26
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


5200MHz Verification/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.2 W/kg

5200MHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 40.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

■ Verification Data (5 300 MHz Body)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 19.8

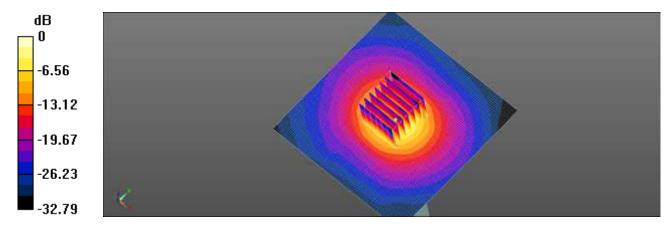
Test Date: May. 12, 2014

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1107

Communication System: UID 0, CW (0); Frequency: 5300 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; $\sigma = 5.368$ S/m; $\epsilon_r = 48.364$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3797; ConvF(4.17, 4.17, 4.17); Calibrated: 2013-11-29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2014-03-26
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5300MHz Verification/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.8 W/kg

5300MHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 41.29 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 18.8 W/kg = 12.75 dBW/kg

Verification Data (5 600 MHz Body)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 19.6

Test Date: May. 13, 2014

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1107

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.858$ S/m; $\varepsilon_r = 47.52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3797; ConvF(3.67, 3.67, 3.67); Calibrated: 2013-11-29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2014-03-26
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600MHz Verification/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.4 W/kg

5600MHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 41.01 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 36.9 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 20.4 W/kg = 13.09 dBW/kg

■ Verification Data (5 800 MHz Body)

Test Laboratory: HCT CO., LTD
Input Power 100 mW (20 dBm)

Liquid Temp: 19.7

Test Date: May. 14, 2014

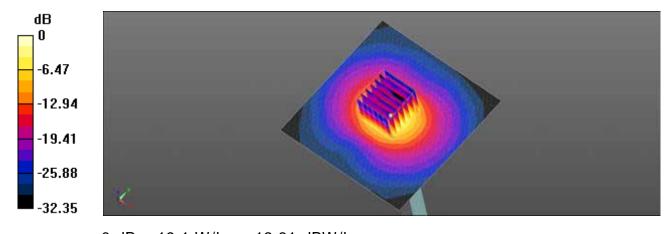
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1107

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 6.189$ S/m; $\varepsilon_r = 46.98$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3797; ConvF(4.23, 4.23, 4.23); Calibrated: 2013-11-29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2014-03-26
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


5800MHz Verification/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.1 W/kg

5800MHz Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 36.92 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 38.3 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 20.6 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Attachment 3. – Probe Calibration Data

ZNFV700 May. 29, 2014 Issue Date:

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

HCT (Dymstec)

Certificate No: ET3-1609_Sep13

C

S

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

ET3DV6 - SN:1609 Object

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: September 23, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660, Sep13)	Apr-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-0-
Approved by:	Katja Pokovic	Technical Manager	De KG
			Issued: September 24, 2013

Certificate No: ET3-1609_Sep13

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1609_Sep13 Page 2 of 11

ZNFV700 Issue Date: May. 29, 2014 FCC ID:

ET3DV6 - SN:1609

September 23, 2013

Probe ET3DV6

SN:1609

Manufactured:

July 27, 2001

Calibrated:

September 23, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1609_Sep13

Page 3 of 11

> ET3DV6-SN:1609 September 23, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.99	1.79	1.80	± 10.1 %
DCP (mV) ⁸	98.3	98.3	98.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k≈2)
0	CW	X	0.0	0.0	1.0	0.00	146.6	±2.5 %
		Y	0.0	0.0	1.0		151.1	
		Z	0.0	0.0	1.0		144.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1609_Sep13

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

The uncertainties of NormX,Y,Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter, uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

> ET3DV6- SN:1609 September 23, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^f	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.69	6.69	6.69	0.36	2.56	± 12.0 %
835	41.5	0.90	6.43	6.43	6.43	0.26	3.00	± 12.0 %
900	41.5	0.97	6.28	6.28	6.28	0.31	2.78	± 12.0 %
1450	40,5	1,20	5.79	5.79	5.79	0.58	2.37	± 12.0 %
1750	40.1	1.37	5,50	5.50	5.50	0.80	2.02	± 12.0 %
1900	40.0	1.40	5.28	5.28	5.28	0.80	2.07	± 12.0 %
1950	40.0	1.40	5.15	5.15	5.15	0.80	1.99	± 12.0 %
2300	39.5	1.67	4.98	4.98	4.98	0.80	1.84	± 12.0 %
2450	39.2	1.80	4.64	4.64	4.64	0.80	1.70	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ZNFV700 Issue Date: May. 29, 2014 FCC ID:

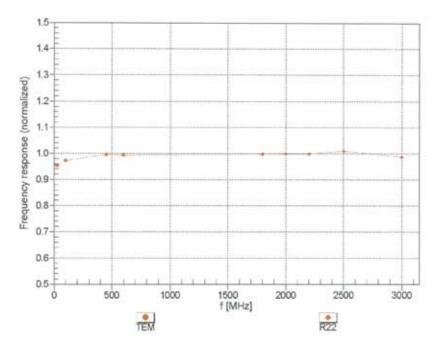
> ET3DV6-SN:1609 September 23, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.31	2.76	± 12.0 %
835	55.2	0.97	6.22	6.22	6.22	0.42	2.34	± 12.0 %
1750	53.4	1.49	4.90	4.90	4.90	0.80	2.34	± 12.0 %
1900	53.3	1.52	4,69	4.69	4.69	0.80	2.27	± 12.0 %
2450	52.7	1.95	4.20	4.20	4.20	0.68	1.21	± 12.0 %

Certificate No: ET3-1609_Sep13


^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

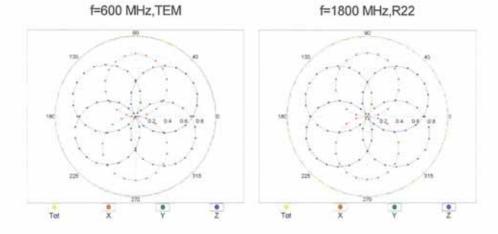
The frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

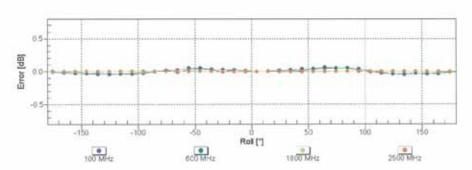
ET3DV6- SN:1609 September 23, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1609_Sep13

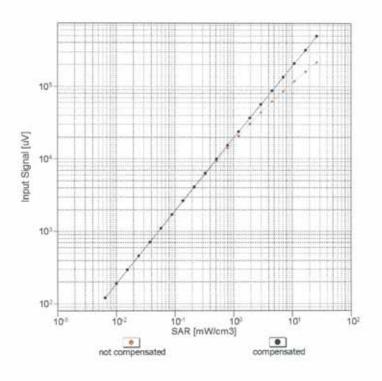

Page 7 of 11

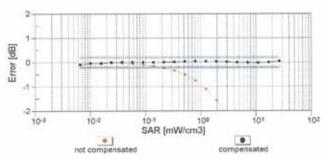


ET3DV6- SN:1609 September 23, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

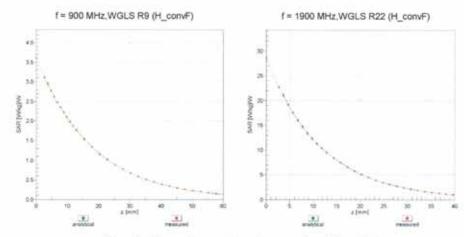

Certificate No: ET3-1609_Sep13


Page 8 of 11

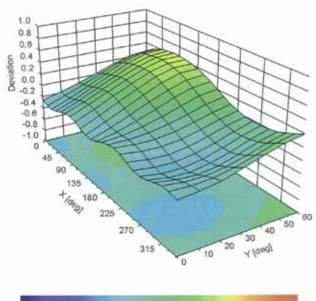
ET3DV6- SN:1609 September 23, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1609_Sep13

Page 9 of 11


ET3DV6- SN:1609 September 23, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1609_Sep13

Page 10 of 11

ET3DV6-- SN:1609

September 23, 2013

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (")	-105.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1609_Sep13

Page 11 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

HCT (Dymstec)

Certificate No: EX3-3797_Nov13

Accreditation No.: SCS 108

C

S

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3797

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 29, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID	Cal Date (Certificate No.)	Scheduled Calibration
GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Sep-14
3D	Check Date (in house)	Scheduled Check
US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660	GB41293874 04-Apr-13 (No. 217-01733) MY41498087 04-Apr-13 (No. 217-01733) SN: S5054 (3c) 04-Apr-13 (No. 217-01737) SN: S5277 (20x) 04-Apr-13 (No. 217-01735) SN: S5129 (30b) 04-Apr-13 (No. 217-01738) SN: 3013 28-Dec-12 (No. ES3-3013_Dec12) SN: 660 4-Sep-13 (No. DAE4-660_Sep13) ID Check Date (in house) US3642U01700 4-Aug-99 (in house check Apr-13)

Calibrated by:

Name

Function

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: November 30, 2013
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3797_Nov13

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013.
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 3 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3797_Nov13

Page 2 of 11

EX3DV4 - SN:3797

November 29, 2013

Probe EX3DV4

SN:3797

Manufactured: April 5, 2011

Calibrated:

November 29, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3797_Nov13

Page 3 of 11

EX3DV4-SN:3797 November 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.63	0.58	0.57	± 10.1 %
DCP (mV) ⁸	98.7	97.9	96.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	135.5	±2.7 %
		Y	0.0	0.0	1.0		175.4	
		Z	0.0	0.0	1.0		176.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.</sup>

EX3DV4-SN:3797 November 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41,9	0.89	9.33	9.33	9.33	0.59	0.73	± 12.0 %
835	41.5	0.90	9.04	9.04	9.04	0.71	0.66	± 12.0 %
900	41.5	0.97	8.89	8.89	8.89	0.35	0.98	± 12.0 %
1450	40.5	1.20	8.27	8.27	8,27	0.80	0.68	± 12.0 %
1750	40.1	1.37	8.02	8.02	8.02	0.69	0.62	± 12.0 %
1900	40.0	1.40	7.73	7.73	7.73	0.64	0.65	± 12.0 %
1950	40.0	1.40	7.48	7.48	7.48	0.60	0.66	± 12.0 9
2300	39.5	1.67	7.27	7.27	7.27	0.31	0.92	± 12.0 9
2450	39.2	1.80	6.94	6.94	6.94	0.51	0.71	± 12.0 9
2600	39.0	1.96	6.76	6.76	6.76	0.34	0.89	± 12.0 9
5200	36.0	4.66	5.00	5.00	5.00	0.33	1.80	± 13.1 9
5300	35.9	4.76	4.77	4.77	4.77	0.35	1.80	± 13.1 %
5500	35.6	4.96	4,70	4.70	4.70	0.37	1.80	± 13.1 9
5600	35.5	5.07	4.43	4.43	4.43	0.40	1.80	± 13.1 9
5800	35.3	5.27	4.64	4.64	4.64	0.35	1.80	± 13.1 9

Certificate No: EX3-3797_Nov13

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-8 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4-SN:3797

November 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

Calibration Parameter Determined in Body Tissue Simulating Media

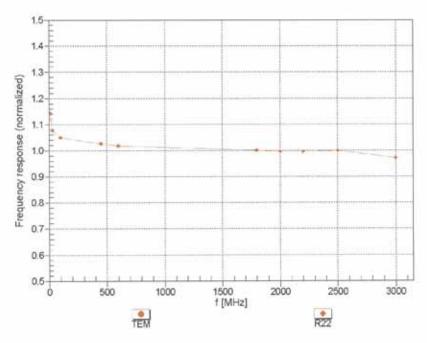
f (MHz) ^C	Relative Permittivity [#]	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.03	9.03	9.03	0.53	0.76	± 12.0 %
835	55.2	0.97	9.03	9.03	9.03	0.43	0.87	± 12.0 %
900	55.0	1.05	8.73	8.73	8.73	0.33	1.01	± 12.0 %
1750	53.4	1.49	7.61	7.61	7.61	0.31	1.20	± 12.0 %
1900	53.3	1.52	7.14	7.14	7.14	0.28	1.17	± 12.0 %
1950	53.3	1.52	7.33	7.33	7.33	0.27	1,11	± 12.0 %
2450	52.7	1,95	6.75	6.75	6.75	0.80	0.59	± 12.0 %
2600	52.5	2.16	6.45	6.45	6.45	0.80	0.60	± 12.0 %
5200	49.0	5.30	4.42	4.42	4.42	0.42	1.90	± 13.1 %
5300	48.9	5.42	4.17	4.17	4.17	0.45	1.90	± 13.1 %
5500	48.6	5.65	4.01	4.01	4.01	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.67	3.67	3.67	0.55	1.90	± 13.1 %
5800	48.2	6.00	4.23	4.23	4.23	0.45	1.90	± 13.1 %

Certificate No: EX3-3797_Nov13

Page 6 of 11

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

The frequencies below 3 GHz, the validity of tissue parameters (c and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and e) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

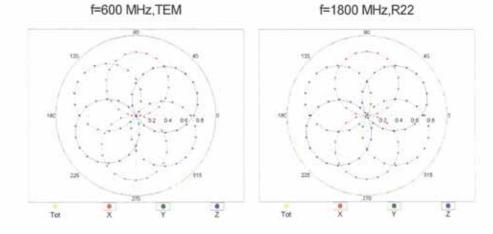
ZNFV700 Issue Date: May. 29, 2014 FCC ID:

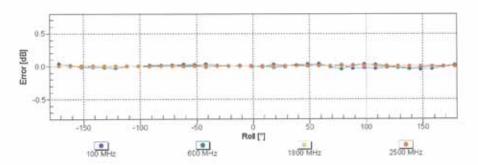
November 29, 2013 EX3DV4-SN:3797

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3797_Nov13

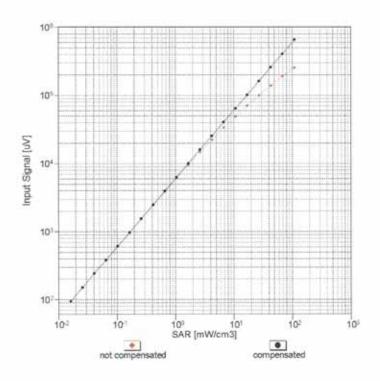

Page 7 of 11

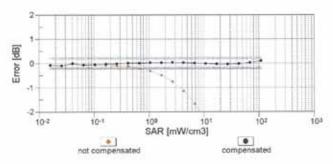


EX3DV4- SN:3797 November 29, 2013

Receiving Pattern (ϕ), $9 = 0^{\circ}$

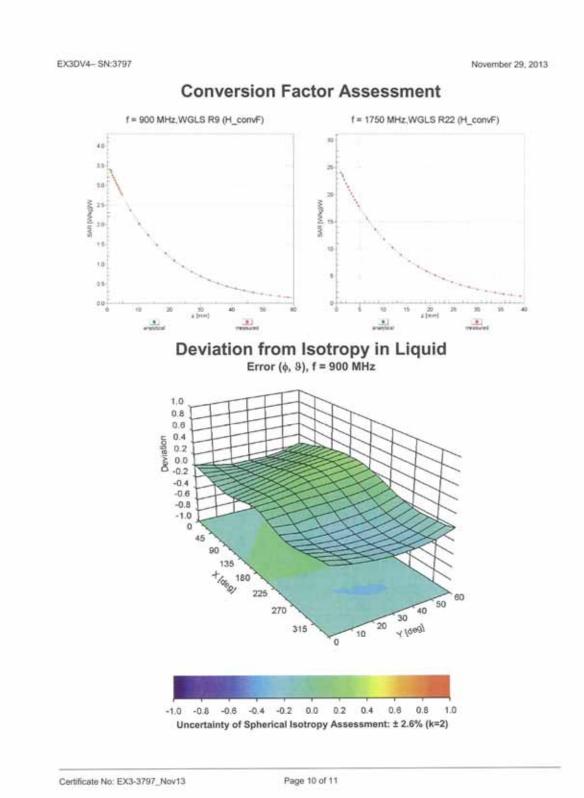
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3797_Nov13


Page 8 of 11

EX3DV4- SN:3797 November 29, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3797_Nov13

Page 9 of 11

EX3DV4-SN:3797 November 29, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3797

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-111.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3797_Nov13

Page 11 of 11

Attachment 4. – Dipole Calibration Data

ZNFV700 Issue Date: May. 29, 2014

> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION	CERTIFICATE		: D2450V2-743_Aug
Object	D2450V2 - SN; 7	43	K I H HE TH
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	August 23, 2013		
	ā	robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	W. Transport
	A&TE critical for calibration)		
alibration Equipment used (1	A SAID.	Cai Date (Certificate No.)	Scheduled Calibration
alibration Equipment used (I	A&TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	Scheduled Calibration Oct-13
sitiration Equipment used (1 imary Standards over meter EPM-442A	ID#	The state of the s	
alibration Equipment used (I imany Standards over meter EPM-442A over sensor HP 8481A	ID # GB37480704 US37292783 SN: 5058 (20k)	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	Oct-13 Oct-13 Apr-14
alibration Equipment used (I rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Oct-13 Oct-13 Apr-14 Apr-14
alibration Equipment used (I rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
talibration Equipment used (I brimary Standards cower meter EPM-842A cower sensor HP 8481A leference 20 dB Attenuator type-N mismatch combination leference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14
Calibration Equipment used (1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 JAE4	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check
Calibration Equipment used (1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (In house)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13
Calibration Equipment used (I Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 JAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB374B0704 US37292783 SN: 5058 (20N) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (II Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 JAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (In house)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (I Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB374B0704 US37292783 SN: 5058 (20N) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check
Calibration Equipment used (I Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 508 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13

Certificate No: D2450V2-743_Aug13

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-743_Aug13

Page 2 of 8

ZNFV700 Issue Date: May. 29, 2014 FCC ID:

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1,80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1,80 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1444	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-743_Aug13

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9 Ω + 4.2 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω + 5.5 jΩ	
Return Loss	- 25.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.159 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

Certificate No: D2450V2-743_Aug13

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 22,08,2013

Test Laboratory: SPEAG, Zurich, Switzerland

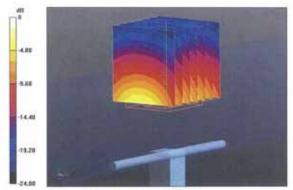
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

Communication System: UID 0 - CW; Frequency: 2450 MHz.

Medium parameters used: f = 2450 MHz; $\sigma = 1.8$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

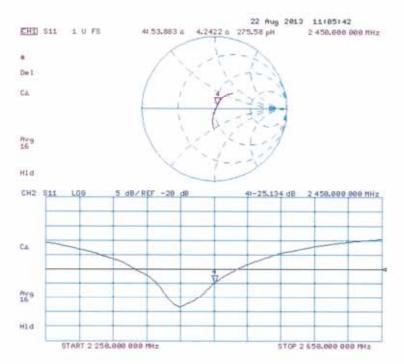

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.4 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 16.9 W/kg


0 dB = 16.9 W/kg = 12.28 dBW/kg

Certificate No: D2450V2-743_Aug13

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-743_Aug13

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 23.08.2013

Test Laboratory: SPEAG, Zurich, Switzerland

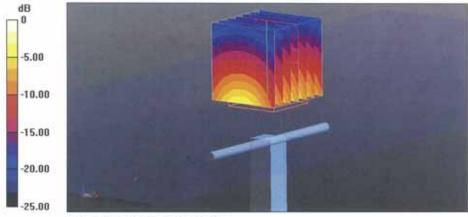
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 50.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

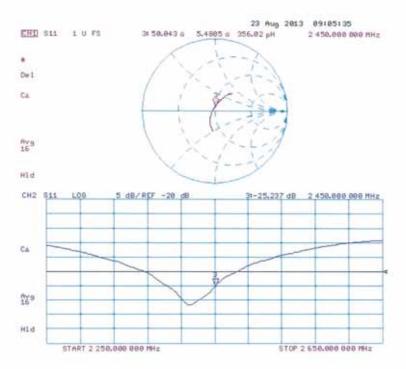

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.835 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 16.8 W/kg


0 dB = 16.8 W/kg = 12.25 dBW/kg

Certificate No: D2450V2-743_Aug13

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-743_Aug13

Page 8 of 8

ZNFV700 Issue Date: May. 29, 2014

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

			ALL SECTION AND A SECTION AND ASSESSMENT OF THE SECTION AND ASSESSMENT OF THE SECTION ASSESSMENT
CALIBRATION C	ERTIFICATE		
Object	D5GHzV2 - SN: 1107		
Calibration procedure(s)	QA CAL-22.v2 Calibration proces	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	January 27, 2014		
		onal standards, which realize the physical un robability are given on the following pages an	
		y facility: environment temperature (22 \pm 3)*(C and humidity < 70%.
Calibration Equipment used (M&1		ry facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&1	TE critical for calibration)		
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
Calibration Equipment used (M&1 Primary Standards Power moter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
Calibration Equipment used (M&1 Primary Standards Power moter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. EX3-3503_Dec13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14
Calibration Equipment used (M&1 Primary Standards Power moter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX30V4 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. EX3-3503_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. EX3-3503_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292763 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. EX3-3503_Dec13) 25-Apr-13 (No. DAE4-601_Apr13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check
All calibrations have been conduct Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-08 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. EX3-3503_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5056 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. EX3-3503_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5056 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. EX3-3503_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D5GHzV2-1107_Jan14

Page 1 of 16

Calibration Laboratory of Schmid & Partner Engineering AG

ilac-MRA

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1107_Jan14

Page 2 of 16

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.45 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1107_Jan14

Page 3 of 16

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.9 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.74 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		and a

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1107_Jan14

Page 4 of 16

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1107_Jan14

Page 5 of 16

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	47.3 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.52 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	222	Hame

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.63 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1107_Jan14

Page 6 of 16

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.84 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1107_Jan14

Page 7 of 16

ZNFV700 Issue Date: May. 29, 2014

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1107_Jan14

Page 8 of 16

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.9 Ω - 10.5 jΩ	
Return Loss	- 19.5 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	49.2 Ω - 7.4 jΩ
Return Loss	- 22.6 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	51.0.Ω - 5.4 jΩ
Return Loss	- 25.3 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.7 Ω - 5.7 jΩ	
Return Loss	- 23.7 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.0 Ω - 5.8 jΩ
Return Loss	- 22.8 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.2 Ω - 9.7 jΩ
Return Loss	- 20.2 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.6 Ω - 6.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.0 Ω - 4.7 jΩ
Return Loss	- 26.5 dB

Certificate No: D5GHzV2-1107_Jan14

Page 9 of 16

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	54.6 Ω - 4.6 jΩ	
Return Loss	- 24.1 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.1 Ω - 4.2 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

- //w//CC**/W/
1.196 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D5GHzV2-1107_Jan14

Page 10 of 16

DASY5 Validation Report for Head TSL

Date: 27.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1107

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.45$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.74$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.86$ S/m; $\epsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.07$ S/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2);
 Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86);
 Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.171 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.166 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.35 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.499 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 8.47 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: D5GHzV2-1107_Jan14 Page 11 of 16

Report No. HCT-A-1405-F006-1

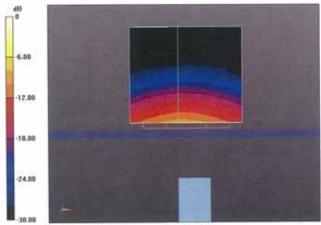
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.691 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 32.8 W/kg

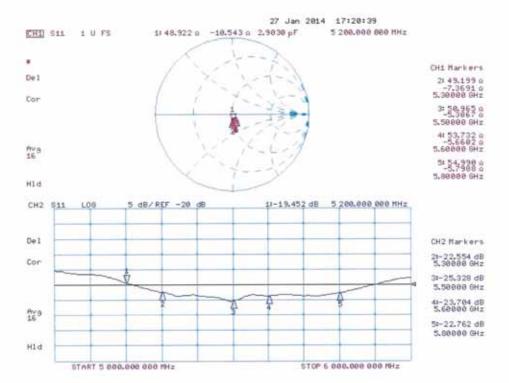
SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.39 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.600 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.0 W/kg


SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.28 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1107_Jan14

Page 13 of 16

DASY5 Validation Report for Body TSL

Date: 24.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1107

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.44$ S/m; $\epsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.57$ S/m; $\epsilon_r = 47.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.84$ S/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.98$ S/m; $\epsilon_r = 46.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.23$ S/m; $\epsilon_r = 46.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.992 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.567 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.0 W/kg

SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.552 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: D5GHzV2-1107_Jan14

Page 14 of 16

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.338 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

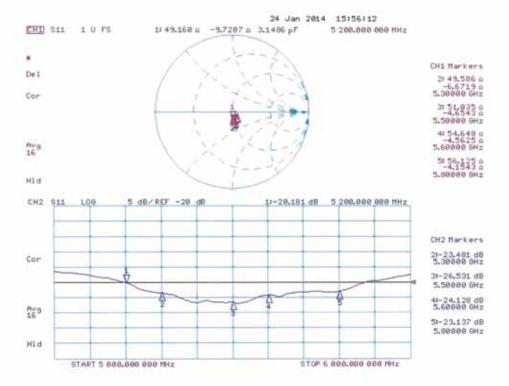
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.156 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 34.8 W/kg

SAR(1 g) = 7.49 W/kg; SAR(10 g) = 2.07 W/kg


Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1107_Jan14

Page 16 of 16