

8.6 AC Conducted Emissions

Test Requirements and limit, §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Conducted Limit (dBuV)				
Frequency Range (MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and support equipment.

Test Procedure

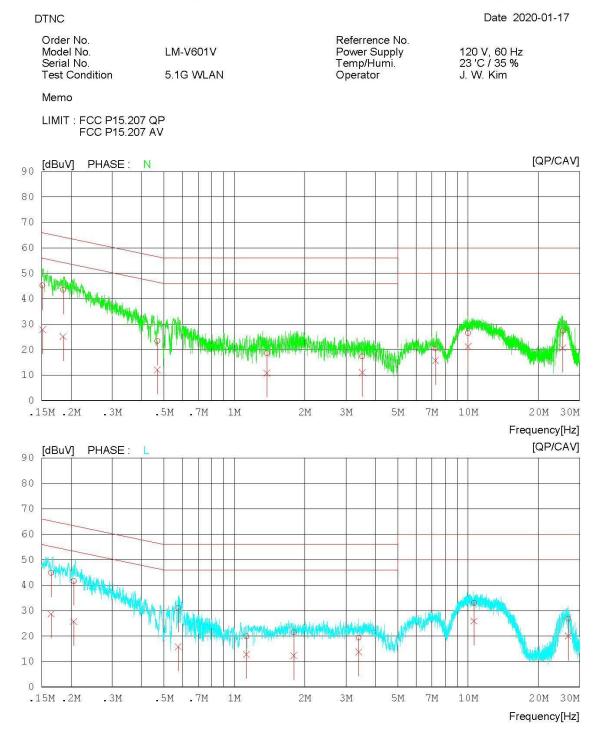
Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.

3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.


Test Results: Comply

Note 1: See next pages for actual measured spectrum plots and data for worst case result.

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 1 & 802.11a & 5180 MHz

Results of Conducted Emission

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 1 & 802.11a & 5180 MHz

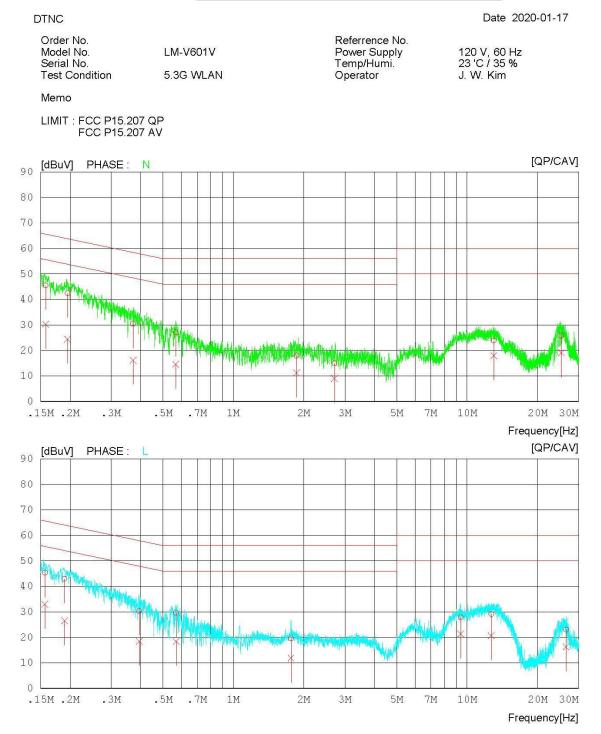
Results of Conducted Emission

Date 2020-01-17

Order No.		Referrence No.	
Model No.	LM-V601V	Power Supply	120 V, 60 Hz
Serial No.		Temp/Humi.	23 'C / 35 %
Test Condition	5.1G WLAN	Operator	J. W. Kim

Memo

DTNC


LIMIT : FCC P15.207 QP FCC P15.207 AV

NC) FREQ	READING QP CAV [dBuV][dBuV]	C.FACTOR	RESULT QP CAV [dBuV][dBuV]	QP	MIT CAV '] [dBuV]	MARGIN QP CAV [dBuV][dBuV	PHASE
		[αδαν] [αδαν	ι [αδ]	[αδυν][αδυν] [αραν	ј[авиу	Ι [αδαν][αδαν	
1	0.15138	35.30 18.00	9.94	45.24 27.94	65.92	55.92	20.6827.98	Ν
2	0.18501	33.60 15.18	9.94	43.54 25.12	64.26	54.26	20.7229.14	Ν
3	0.46870	13.44 2.17	9.95	23.3912.12	56.54	46.54	33.15 34.42	Ν
4	1.37889	8.60 0.90	9.99	18.5910.89	56.00	46.00	37.4135.11	Ν
5	3.52333	7.26 0.97	10.10	17.3611.07	56.00	46.00	38.64 34.93	Ν
6	7.25467	10.21 5.54	10.23	20.44 15.77	60.00	50.00	39.5634.23	Ν
7	9.99347	16.30 11.00	10.34	26.64 21.34	60.00	50.00	33.3628.66	Ν
8	25.39677	16.8910.06	10.66	27.5520.72	60.00	50.00	32.45 29.28	N
9	0.16450	34.9218.77	9.94	44.8628.71	65.23	55.23	20.3726.52	L
10	0.20589	31.62 15.75	9.94	41.5625.69	63.37	53.37	21.81 27.68	L
11	0.57580	21.02 5.85	9.95	30.9715.80	56.00	46.00	25.0330.20	L
12	1.12668	9.91 2.81	9.97	19.8812.78	56.00	46.00	36.12 33.22	L
13	1.79444	11.36 2.27	10.02	21.38 12.29	56.00	46.00	34.6233.71	L
14	3.40695	9.34 3.62	10.08	19.4213.70	56.00	46.00	36.58 32.30	L
15	10.59525	22.68 15.52	10.35	33.0325.87	60.00	50.00	26.9724.13	L
16	26.84084	16.10 9.33	10.66	26.7619.99	60.00	50.00	33.24 30.01	L

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 2A & 802.11a & 5320 MHz

Results of Conducted Emission

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 2A & 802.11a & 5320 MHz

Results of Conducted Emission

Date 2020-01-17

Order No.		Referrence No.	
Model No.	LM-V601V	Power Supply	120 V, 60 Hz
Serial No.		Temp/Humi.	23 'C / 35 %
Test Condition	5.3G WLAN	Operator	J. W. Kim

Memo

DTNC

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC) FREQ	READING QP CAV [dBuV] [dBuV	C.FACTOR] [dB]	RESULT QP CAV [dBuV][dBuV	QP	MIT CAV 7] [dBuV]	MARGIN QP CAV [dBuV][dBuV	PHASE
1	0.15750	35.54 20.38	9.94	45.4830.32	65.59	55.59	20.11 25.27	N
2	0.19550	32.4614.45	9.94	42.4024.39	63.80	53.80	21.40 29.41	Ν
3	0.37309	20.45 6.19	9.95	30.4016.14	58.43	48.43	28.03 32.29	Ν
4	0.56731	17.12 4.68	9.95	27.0714.63	56.00	46.00	28.93 31.37	Ν
5	1.86319	7.89 1.14	10.03	17.9211.17	56.00	46.00	38.0834.83	Ν
6	2.70400	4.91-1.00	10.05	14.96 9.05	56.00	46.00	41.04 36.95	Ν
7	12.99257	13.39 7.44	10.43	23.8217.87	60.00	50.00	36.18 32.13	Ν
8	25.28302	15.12 8.39	10.66	25.7819.05	60.00	50.00	34.22 30.95	Ν
9	0.15650	35.34 23.00	9.94	45.2832.94	65.65	55.65	20.37 22.71	L
10	0.18961	33.0216.58	9.94	42.9626.52	64.05	54.05	21.09 27.53	L
11	0.39655	20.36 8.47	9.95	30.3118.42	57.93	47.93	27.62 29.51	L
12	0.56979	19.65 8.42	9.95	29.6018.37	56.00	46.00	26.40 27.63	L
13	1.76353	9.51 1.81	10.02	19.5311.83	56.00	46.00	36.4734.17	L
14	9.38608	17.4811.09	10.32	27.80 21.41	60.00	50.00	32.20 28.59	L
15	12.67985	18.64 10.21	10.41	29.05 20.62	60.00	50.00	30.9529.38	L
16	26.50059	12.39 5.57	10.66	23.0516.23	60.00	50.00	36.9533.77	L

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 2C & 802.11a & 5500 MHz

Results of Conducted Emission

Date 2020-01-17 DTNC Order No. Referrence No. LM-V601V 120 V, 60 Hz 23 'C / 35 % Model No. Power Supply Serial No. Temp/Humi. Test Condition 5.5G WLAN Operator J. W. Kim Memo LIMIT : FCC P15.207 QP FCC P15.207 AV [QP/CAV] [dBuV] PHASE: N 90 80 70 60 50 Mid 40 Martin 30 20 10 0 .15M .2M .7M .3M .5M 1M 2M ЗM 5M 7M 10M 20M 30M Frequency[Hz] [QP/CAV] [dBuV] PHASE : 90 80 70 60 50 0 40 1 MARIO 30 20 10 0 20M 30M .15M .2M .3M .5M .7M 1M 2M ЗM 5M 7M 10M Frequency[Hz]

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 2C & 802.11a & 5500 MHz

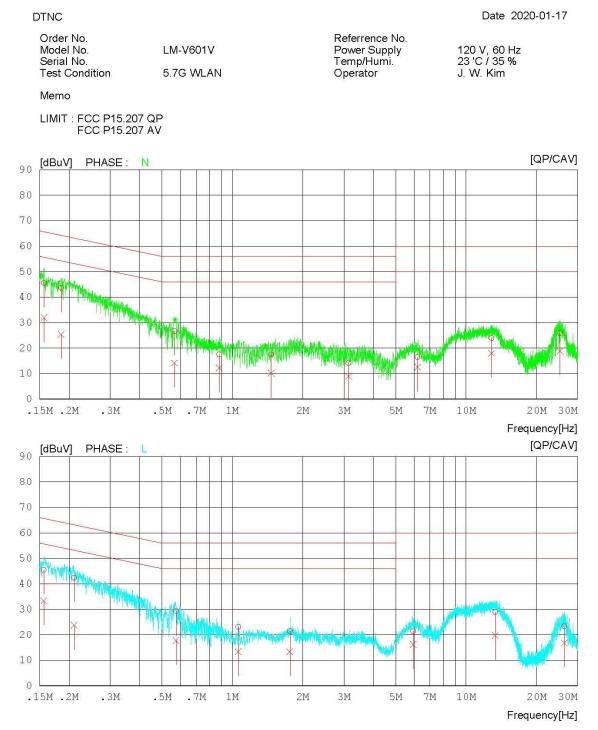
Results of Conducted Emission

Date 2020-01-17

Order No.		Referrence No.	
Model No.	LM-V601V	Power Supply	120 V, 60 Hz
Serial No.		Temp/Humi.	23 'C / 35 %
Test Condition	5.5G WLAN	Operator	J. W. Kim

Memo

DTNC


LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READING QP CA		R RESULT QP CAV	LI QP	MIT CAV	MARGIN QP CAV	PHASE
	[MHz]	[dBuV] [dB		[dBuV] [dBuV]] [dBuV]	~	
1	0.15671	35.60 21.	19 9.94	45.54 31.13	65.64	55.64	20.10 24.51	Ν
2	0.19165	33.0916.	45 9.94	43.0326.39	63.96	53.96	20.93 27.57	Ν
3	0.57250	19.40 4.	27 9.95	29.3514.22	56.00	46.00	26.6531.78	Ν
4	1.40519	6.88 0.	03 9.99	16.8710.02	56.00	46.00	39.13 35.98	Ν
5	1.93803	7.70 2.	16 10.03	17.7312.19	56.00	46.00	38.27 33.81	Ν
6	6.18865	6.44 2.	44 10.20	16.64 12.64	60.00	50.00	43.3637.36	Ν
7	12.81519	13.44 7.	40 10.43	23.8717.83	60.00	50.00	36.13 32.17	Ν
8	25.35233	15.50 9.	02 10.66	26.1619.68	60.00	50.00	33.84 30.32	Ν
9	0.19947	32.2714.	20 9.94	42.2124.14	63.63	53.63	21.42 29.49	L
10	0.33715	24.03 9.	78 9.94	33.97 19.72	59.27	49.27	25.30 29.55	L
11	0.57050	19.90 8.	03 9.95	29.8517.98	56.00	46.00	26.15 28.02	L
12	1.83034	8.92 1.	57 10.02	18.94 11.59	56.00	46.00	37.0634.41	L
13	2.13643	6.76 1.	54 10.03	16.7911.57	56.00	46.00	39.2134.43	L
14	9.39460	16.21 9.	80 10.32	26.5320.12	60.00	50.00	33.4729.88	L
15	13.01578		88 10.41	28.99 20.29	60.00	50.00	31.0129.71	L
16	28.68521	11.52 7.	33 10.70	22.2218.03	60.00	50.00	37.7831.97	L

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 3 & 802.11a & 5785 MHz

Results of Conducted Emission

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 3 & 802.11a & 5785 MHz

Results of Conducted Emission

Date 2020-01-17

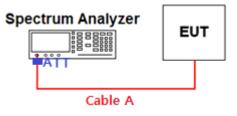
Order No.		Referrence No.	
Model No.	LM-V601V	Power Supply	120 V, 60 Hz
Serial No.		Temp/Humi.	23 'C / 35 %
Test Condition	5.7G WLAN	Operator	J. W. Kim

Memo

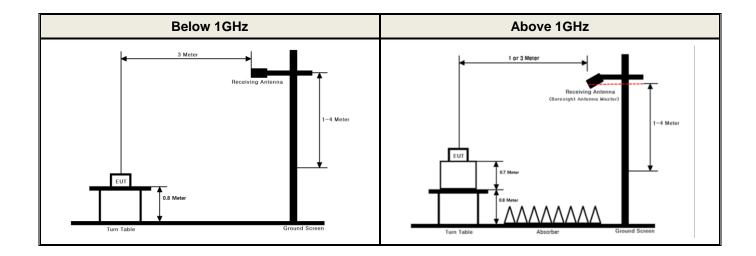
DTNC

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC) FREQ	READING QP CAV	C.FACTOR	RESULT QP CAV	LI QP	IMIT CAV	MARGIN QP CAV	PHASE
	[MHz]	[dBuV] [dBuV] [dB]	[dBuV] [dBuV] [dBu\	/] [dBuV] [dBuV][dBu ^v	/]
1	0.15652	35.60 22.07	9.94	45.54 32.01	65.65	55.65	20.1123.64	N
2	0.18525	33.7515.49	9.94	43.6925.43	64.25	54.25	20.5628.82	Ν
3	0.56542	16.82 4.26	9.95	26.7714.21	56.00	46.00	29.23 31.79	Ν
4	0.87970	7.53 2.25	9.97	17.50 12.22	56.00	46.00	38.50 33.78	Ν
5	1.46690	7.54 0.19	9.99	17.5310.18	56.00	46.00	38.47 35.82	Ν
6	3.14338	4.11 -1.10	10.07	14.18 8.97	56.00	46.00	41.8237.03	Ν
7	6.20058	6.32 2.33	10.20	16.52 12.53	60.00	50.00	43.4837.47	Ν
8	12.85742	13.52 7.53	10.43	23.9517.96	60.00	50.00	36.05 32.04	Ν
9	25.21681	15.20 8.21	10.66	25.8618.87	60.00	50.00	34.14 31.13	Ν
10	0.15607	35.50 23.44	9.94	45.44 33.38	65.67	55.67	20.23 22.29	L
11	0.21044	32.4213.81	9.94	42.3623.75	63.19	53.19	20.8329.44	L
12	0.57436	19.27 7.75	9.95	29.2217.70	56.00	46.00	26.7828.30	L
13	1.06005	13.17 3.47	9.97	23.14 13.44	56.00	46.00	32.8632.56	L
14	1.76234	11.37 3.25	10.02	21.39 13.27	56.00	46.00	34.61 32.73	L
15	5.93886	11.14 6.04	10.18	21.3216.23	60.00	50.00	38.6833.78	L
16	13.32496	18.54 9.28	10.42	28.9619.70	60.00	50.00	31.04 30.30	L
17	26.31440	12.62 6.16	10.65	23.27 16.81	60.00	50.00	36.7333.19	L


9. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/18	20/12/18	MY50410357
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/19	20/12/19	MY46471251
Spectrum Analyzer	Agilent Technologies	N9030A	19/03/15	20/03/15	MY53310140
DC Power Supply	Agilent Technologies	66332A	19/06/25	20/06/25	MY43001173
Multimeter	FLUKE	17B	19/12/16	20/12/16	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-1
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-2
Thermohygrometer	BODYCOM	BJ5478	19/07/03	20/07/03	N/A
HYGROMETER	TESTO	608-H1	19/01/31	20/01/31	34862883
Loop Antenna	ETS-Lindgren	6502	19/09/18	21/09/18	00226186
BILOG ANTENNA	Schwarzbeck	VULB 9160	19/04/23	21/03/18	9160-3362
Horn Antenna	ETS-Lindgren	3115	19/01/11	21/01/11	9202-3820
Horn Antenna	A.H.Systems Inc.	SAS-574	19/07/03	21/07/03	155
	· · · · · · · · · · · · · · · · · · ·	MLA-0118-B01-40	19/12/16	20/12/16	1852267
PreAmplifier	tsj			20/12/16	
PreAmplifier	tsj	MLA-1840-J02-45	19/06/27		16966-10728
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
Attenuator	Aeroflex/Weinschel	20515	19/06/27	20/06/27	Y2370
Attenuator	SMAJK	SMAJK-2-3	19/06/27	20/06/27	2
Attenuator	SRTechnology	F01-B0606-01	19/06/27	20/06/27	13092403
Attenuator	Hefei Shunze	SS5T2.92-10-40	19/06/27	20/06/27	16012202
Attenuator	SMAJK	SMAJK-50-10	19/08/07	20/08/07	15081901
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	19/06/27	20/06/27	3
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	19/06/26	20/06/26	8
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	19/06/26	20/06/26	1
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	19/12/16	20/12/16	1338004 1306053
EMI Receiver	ROHDE&SCHWARZ	ESW44	19/07/30	20/07/30	101645
		50017	19/01/30	20/01/30	400040
EMI Test Receiver	Rohde Schwarz	ESCI7	20/01/20	21/01/20	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	19/09/17	20/09/17	101333
LISN	SCHWARZBECK	NNLK 8121	19/03/19	20/03/19	06183
			19/01/14	20/01/14	
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-04
			19/01/14	20/01/14	
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-07
			19/01/14	20/01/14	
Cable	DT&C	Cable	20/01/13	21/01/13	G-13
Cable	DT&C	Cable	19/01/14	20/01/14	G-14
			20/01/13	21/01/13	
Cable	HUBER+SUHNER	SUCOFLEX 104	19/01/14	20/01/14	G-15
			20/01/13	21/01/13	
Cable	Radiall	TESTPRO3	19/01/16	20/01/16	M-01
			20/01/16	21/01/16	
Cable	Junkosha	MWX315	19/01/16	20/01/16	M-05
			20/01/16	21/01/16	
Cable	Junkosha	MWX221	19/01/16	20/01/16	M-06
			20/01/16	21/01/16	
Cable	DT&C	Cable	19/01/16	20/01/16	RF-82
Casie		Cable	20/01/16	21/01/16	111 02


Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017 Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

APPENDIX I

- Test set up Diagram
- Conducted Measurement

Radiated Measurement

APPENDIX II

Duty Cycle Information

Test Procedure

Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB789033 D02v02r01

- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW \geq RBW. Set detector = peak.
- 4. Note : The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (*T* = On time of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)

Test Results:

Duty	cycle

Mode	Data	Tested Frequency		aximum Achievable Cycle (<i>x</i>) = On / (On	Duty Cycle Correction	50/ <i>T</i>	
mode	Rate	[MHz]	On Time [ms]	(On+Off) Time [ms]	x	Factor [dB]	[kHz]
802.11a	6Mbps	5180	2.050	2.090	0.9809	0.08	24.39
802.11n (HT20)	MCS0	5180	5.400	5.460	0.9890	0.05	9.26
802.11n (HT40)	MCS0	5190	5.408	5.458	0.9908	0.04	9.25
802.11ac (VHT80)	MCS0	5210	5.408	5.458	0.9908	0.04	9.25

FCC ID: ZNFV601V

Single Transmit

🛈 Dt&C

Test Mode: 802.11a & Ch.36 Frequency Avg Type: Log-Pwr req Offset 0 Hz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB DET P P P P P Auto Tune ΔMkr3 2.090 ms 0.52 dE Ref 30.00 dBm **Center Freq** 5.18000000 GHz Start Freq 5.18000000 GHz Stop Freq 5.180000000 GHz Center 5.180000000 GHz Res BW 8 MHz Span 0 Hz Sweep 15.00 ms (3001 pts) CF Step 8.000000 MHz Man #VBW 8.0 MHz Auto FUNCTION FUNCTION FUNCTION VALUE (Δ) -0.03 dB 17.18 dBm 0.52 dB 17.18 dBm 2.090 ms (Δ) 800.0 μs 2.090 ms (Δ) 800.0 μs Freq Offset (Λ) 0 Hz STATUS

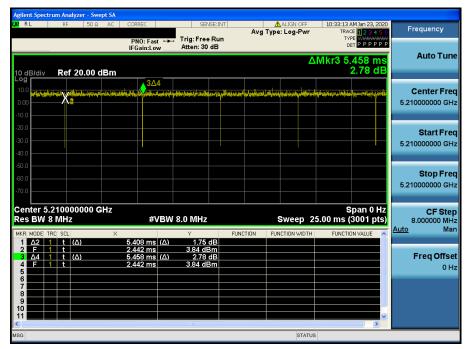
Duty Cycle

Duty Cycle

ALIGN OFF PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 40 dB DET PPPPP Auto Tune ΔMkr3 5.460 ms 1.48 dE Ref 30.00 dBm dB/div **Center Freq** 5.18000000 GHz **Start Freq** 5.18000000 GHz **Stop Freq** 5.18000000 GHz CF Step 8.000000 MHz Man Center 5.180000000 GHz Res BW 8 MHz Span 0 Hz Sweep 30.00 ms (3001 pts) #VBW 8.0 MHz <u>Auto</u> FUNCTION FUNCTION WIDTH FUNCTION VALUE 5.400 ms (Δ) 530.0 μs 5.460 ms (Δ) 530.0 μs 1.46 dB 17.43 dBm 1.48 dB 17.43 dBm t (Δ) t t (Δ) Freq Offset 1 t 0 Hz STATUS

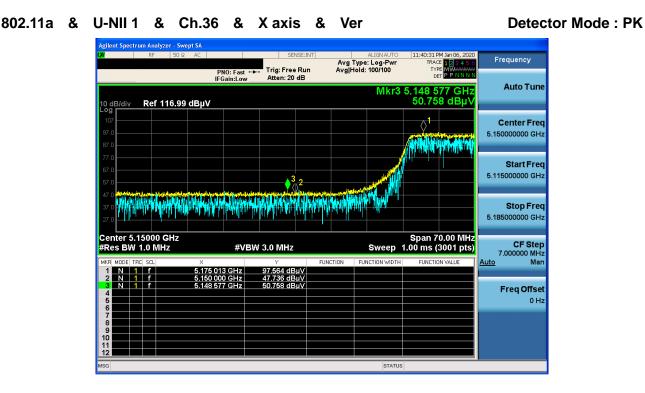
Test Mode: 802.11n HT20

& Ch.36


Duty Cycle

Test Mode: 802.11n HT40 & Ch.38

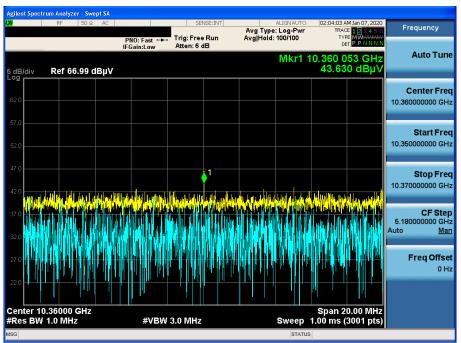
Agilent Spectrum Analyzer - Swept SA																	
L XI RL	RL RF 50Ω AC			CORREC				-	ALIGN OFF Avg Type: Log-Pwr			TR	10:34:15 AM Jan 23, 2020 TRACE 1 2 3 4 5 6 TYPE WWWWWW			Frequency	
10 dE	3/div	Ref	20.00	dBm	PNO: Fa IFGain:Lo		Atten: 30					Δ	Mkr3 (DET P	PPPPP		Auto Tune
Log 10.0 0.00 -10.0	X	2	nie fan yn waarne	ng (Tiniya ang ji	3∆4	hur poster	alaan taa May Mari	e eneeli,	n fi an an air an an air an an air	al for le par	elesjop.	Myana Asland	antis prostation of	i i i me	ti af at a the state		Center Freq 5.19000000 GHz
-20.0 -30.0 -40.0																	Start Freq 5.190000000 GHz
-50.0 -60.0 -70.0																	Stop Freq 5.190000000 GHz
Center 5.19000000 GHz Span 0 Hz Res BW 8 MHz #VBW 8.0 MHz Sweep 25.00 ms (3001 pts)													Δ	CF Step 8.000000 MHz uto Man			
			(A)	Х	5.408 ms	 (A) 	Y 4.57	dB	FUNC	CTION	FUNC	TION WIDTH	FUNC	FION VA		~	
2 3 4 5	F 1 Δ4 1 F 1	t	(Δ)		1.425 ms 5.458 ms 1.425 ms	s s (Δ)	5.47 d 2.53 5.47 d	Bm dB									Freq Offset 0 Hz
6 7 8 9 10																	
11							ш								>		
MSG												STATUS	5				


Duty Cycle

Test Mode: 802.11ac VHT80 & Ch.42

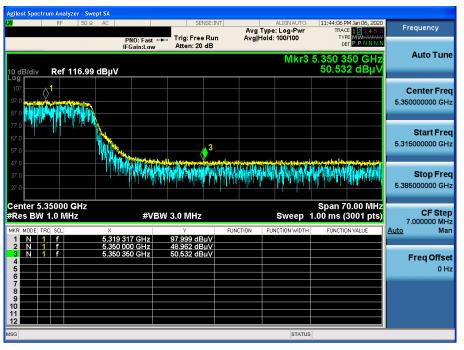
APPENDIX III

Unwanted Emissions (Radiated) Test Plot

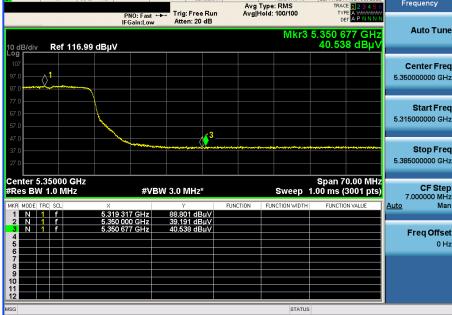

802.11a & U-NII 1 & Ch.36 & X axis & Ver

Detector Mode : PK

TDt&C

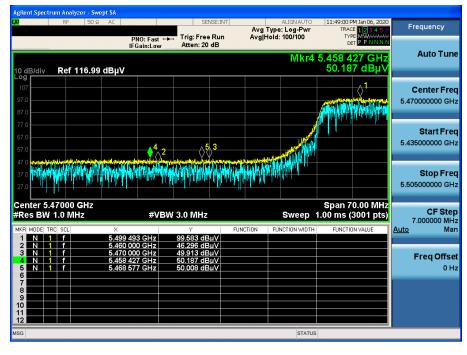

802.11a & U-NII 1 & Ch.36 & Yaxis & Ver

Detector Mode : PK


802.11a & U-NII 2A & Ch.64 & X axis & Ver

802.11a & U-NII 2A & Ch.64 & X axis & Ver

t Spectrum Analyzer - Swept SA


802.11a & U-NII 2A & Ch.60 & Z axis & Ver

	RF	50 Ω	AC		SE	NSE:INT		ALIGN AUTO		M Jan 07, 2020	Frequency
				NO: Fast ↔ Gain:Low	Trig: Free Atten: 6 d		Avg Type Avg Hold:		TYP	E 1 2 3 4 5 6 E A WWWWW T A P N N N N	Trequency
dB/div	Ref 66	i.99 dB	μV					Mkr1 1	0.600 2 33.44	40 GHz 7 dBµV	Auto Tu
52.0											Center Fr 10.600000000 G
i7.0 i2.0											Start Fr 10.590000000 G
17.0											Stop Fr 10.610000000 G
17.0	a an	and the state of the	olofi boli Mire	uleinettetenen it	http://www.com/shares/shares/shares/shares/shares/shares/shares/shares/shares/shares/shares/shares/shares/shares/	<u>ф</u> 1 "м	Segtes give file of the state	the state of the s	ely-white the	héhini makén	CF St 5.30000000 G Auto <u>M</u>
17.0											Freq Offs 0
	0.60000 1.0 MH;			#\/B\4	3.0 MHz	k.		Sween	Span 2	0.00 MHz 3001 pts)	
Res DW	T.O IVIN			#VDVV	3.0 WIHZ			aweep	1.00 IIIS (soor prs)	

802.11a & U-NII 2C & Ch.100 & Z axis & Ver

Detector Mode : PK

Detector Mode : AV

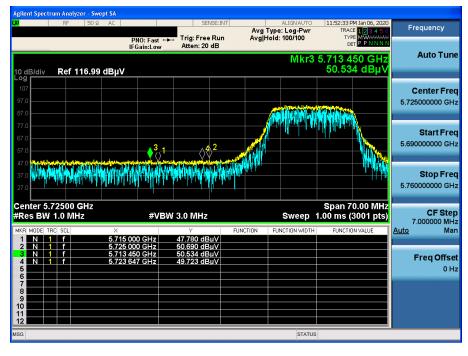
802.11a & U-NII 2C & Ch.100 & Z axis & Ver

Detector Mode : AV

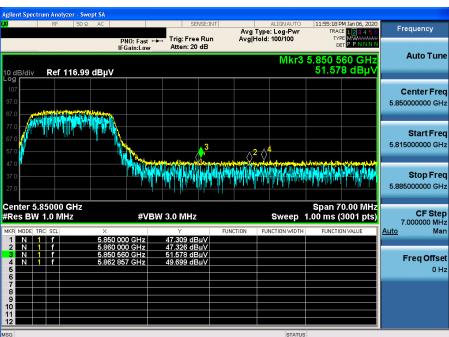
Dt&C

802.11a & U-NII 2C & Ch.120 & Yaxis & Ver

5 dB/div Log


11:08:35 PM Jan 07, 2020 TRACE 1 2 3 4 5 TYPE A WWWW DET A P N N N SE:INT Frequency Avg Type: RMS Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 6 dB Mkr1 11.199 520 GHz 33.712 dBµV Auto Tune Ref 66.99 dBµV Center Freq 11.200000000 GHz Start Freq 11.19000000 GHz **Stop Freq** 11.210000000 GHz **CF Step** 5.60000000 GHz uto <u>Man</u> Auto **Freq Offset** 0 Hz Span 20.00 MHz Sweep 1.00 ms (3001 pts) Center 11.20000 GHz #Res BW 1.0 MHz

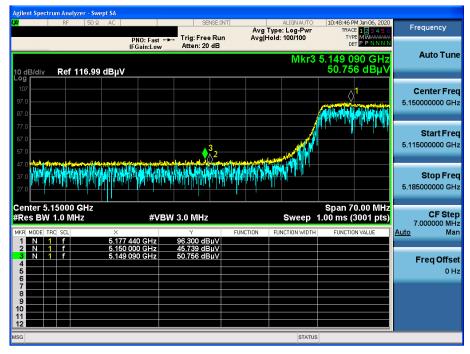
#VBW 3.0 MHz*


802.11a & U-NII 3 & Ch.149 & X axis & Ver

Detector Mode : PK

Detector Mode : PK

802.11a & U-NII 3 & Ch.165 & X axis & Ver

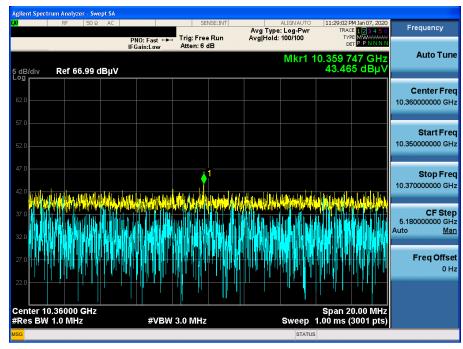


802.11a & U-NII 3 & Ch.165 & Yaxis & Ver

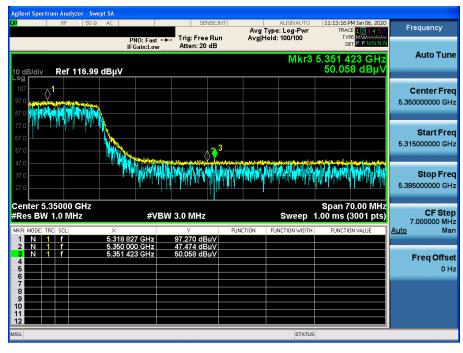
<mark>u</mark>	RF 5	50 Ω AC		SE	NSE:INT	Avg Type	ALIGN AUTO		M Jan 07, 2020	Frequency
			PNO: Fast 🕶 FGain:Low	Trig: Free Atten: 6		Avg Hold		TYI	E A WARAWAY T A P N N N N	
dB/div	Ref 66.9	9 dBµV					Mkr1	11.651 5 33.69	47 GHz 1 dBµV	Auto Tu
										Center Fr
52.0										11.650000000 G
57.0										
57.0										Start Fr
52.0										11.640000000
47.0										
47.0										Stop Fr
42.0										11.660000000 G
										CF St
37.0										5.825000000
32.0 444 4	hannad Admilitions	all and be contracted	nder gewonder wie der	n an	the lite program in the	adar may had far a	rige and provide	north front and a	Human manya	Auto <u>N</u>
										Freq Offs
27.0										o Prequis
22.0										
	1.65000 GI	Hz						Span 2	0.00 MHz	
	(1.0 MHz		#\/D\/	V 3.0 MHz	*		Sween	1.00 ms (2004 ptc)	

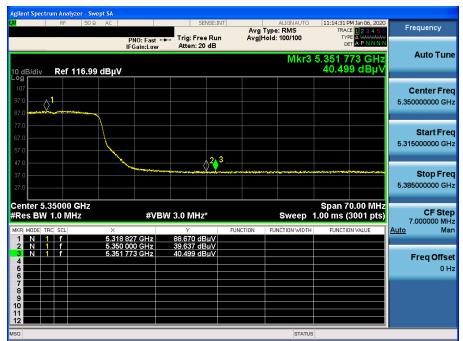
802.11n(HT20) & U-NII 1 & Ch.36 & X axis & Ver

Detector Mode : PK


802.11n(HT20) & U-NII 1 & Ch.36 & X axis & Ver

802.11n(HT20) & U-NII 1 & Ch.36 & Yaxis & Ver


Detector Mode : PK



802.11n(HT20) & U-NII 2A & Ch.64 & X axis & Ver

Detector Mode : PK

802.11n(HT20) & U-NII 2A & Ch.64 & X axis & Ver Detector Mode : AV

