

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 01/27/16 - 02/08/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1601280173-R1.ZNF

FCC ID: ZNFV521

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Tablet
Application Type: Certification
FCC Rule Part(s): CFR §2.1093

Model(s): LG-V521, LGV521, V521

Equipment	Band & Mode	Tx Frequency	SAR
Class		.xxxoque.iej	1 gm Body W/kg
PCB	UMTS 850	826.40 - 846.60 MHz	0.40
PCB	UMTS 1750	1712.4 - 1752.6 MHz	0.61
PCB	UMTS 1900	1852.4 - 1907.6 MHz	1.03
PCB	LTE Band 12	699.7 - 715.3 MHz	0.35
PCB	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.70
PCB	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	1.14
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.90
NII	U-NII-1	5180 - 5240 MHz	
NII	U-NII-2A	5260 - 5320 MHz	1.16
NII	U-NII-2C	5500 - 5700 MHz	1.19
NII	U-NII-3	5745 - 5825 MHz	1.12
DSS/DTS	Bluetooth	2402 - 2480 MHz	< 0.1
Simultaneous	SAR per KDB 690783 D01v0)1r03:	1.58

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

	FCC ID: ZNFV521	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 1 600
	0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet	Page 1 of 63
201	6 PCTEST Engineering Laboratory Inc.			REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	10
3	INTROD	JCTION	11
4	DOSIME	TRIC ASSESSMENT	12
5	TEST CO	NFIGURATION POSITIONS	13
6	RF EXPO	OSURE LIMITS	14
7	FCC ME	ASUREMENT PROCEDURES	15
8	RF CON	DUCTED POWERS	20
9	SYSTEM	VERIFICATION	41
10	SAR DA	TA SUMMARY	43
11	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	49
12	SAR ME	ASUREMENT VARIABILITY	58
13	EQUIPM	ENT LIST	59
14	MEASUF	REMENT UNCERTAINTIES	60
15	CONCLU	ISION	61
16	REFERE	NCES	62
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	IDIX G:	SENSOR TRIGGERING DATA SUMMARY	

FCC ID: ZNFV521	PCTEST NO. NO.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 2 of 63
016 PCTEST Engineering Laboratory,	Inc.	•		REV 17.0 M

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Data	826.40 - 846.60 MHz
UMTS 1750	Data	1712.4 - 1752.6 MHz
UMTS 1900	Data	1852.4 - 1907.6 MHz
LTE Band 12	Data	699.7 - 715.3 MHz
LTE Band 4 (AWS)	Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
U-NII-1	Data	5180 - 5240 MHz
U-NII-2A	Data	5260 - 5320 MHz
U-NII-2C	Data	5500 - 5700 MHz
U-NII-3	Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device uses independent power reduction mechanisms for PCB and WLAN SAR compliance. The power reduction mechanisms are activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanisms are included in the operational descriptions.

The reduced powers for the power reduction mechanisms were confirmed via conducted power measurements at the RF port (See Section 8). Detailed descriptions of the mechanisms are included in the operational description.

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 3 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

REV 17.0 M 12/1/2015

Nominal and Maximum Output Power Specifications 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 **Maximum Power**

		Modula	ted Average	e (dBm)
Mode / Band	Mode / Band		3GPP	3GPP
			HSDPA	HSUPA
UMTS Band 5 (850 MHz)	Maximum	24.7	24.7	24.7
OIVITS Ballu 5 (850 IVIHZ)	Nominal	24.2	24.2	24.2
UMTS Band 4 (1750 MHz)	Maximum	24.7	24.7	24.7
01V113 Ballu 4 (1750 IVITZ)	Nominal	24.2	24.2	24.2
UMTS Band 2 (1900 MHz)	Maximum	24.2	24.2	24.2
OIVITS BATTU 2 (1900 IVITIZ)	Nominal	23.7	23.7	23.7

Mode / Band	Modulated Average (dBm)	
LTE Band 12	Maximum	25.5
	Nominal	25.0
LTE Band 4 (AWS)	Maximum	24.7
LIE Ballu 4 (AVV3)	Nominal	24.2
LTE Band 2 (PCS)	Maximum	24.2
LIE Ballu 2 (PC3)	Nominal	23.7

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(L) LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Danie 4 of 60
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 4 of 63
16 PCTEST Engineering Laboratory,	Inc.	-		REV 17.0 M

Mode / Band	Modulated Average (dBm)				
	Ch. 1	Ch. 2-10	Ch. 11		
IEEE 802.11b (2.4 GHz)	Maximum	20.0	21.0	20.0	
TEEE 802.11b (2.4 GHZ)	Nominal	19.0	20.0	19.0	
IFFF 902 11~ (2.4 CH-)	Maximum	17.0	19.0	17.0	
IEEE 802.11g (2.4 GHz)	Nominal	16.0	18.0	16.0	
IEEE 903 44	Maximum	17.0	19.0	17.0	
IEEE 802.11n (2.4 GHz)	Nominal	16.0	18.0	16.0	
Dlustaath	Maximum	10.0			
Bluetooth	Nominal		9.0		
Divota oth LE (Dools)	Maximum		1.0		
Bluetooth LE (Peak)	Nominal		0.0		

		Modulated Average (dBm)						
			20 MHz Bandwidth			40 MHz Bandwidth		80 MHz Bandwidth
Mode / Band		ch.36/64/ 104/108/ 153/161/ 165	ch.40-60/112-149/157	ch.100				
IEEE 802.11a (5 GHz)	Maximum	16.0	19.0	15.0				
1EEE 802.11a (5 GH2)	Nominal	15.0	18.0	14.0	ch.38	ch.46/54/110/134	ch.62/102/151/159	
IEEE 802.11n (5 GHz)	Maximum	16.0	19.0	15.0	14.0	18.5	15.0	
1EEE 802.1111 (3 GHZ)	Nominal	15.0	18.0	14.0	13.0	17.5	14.0	
IEEE 802.11ac (5 GHz)	Maximum	16.0	19.0	15.0		13.0		11.0
1EEE 002.1180 (5 GHZ)	Nominal	15.0	18.0	14.0		12.0		10.0

	FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dama E of CO
	0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet	Page 5 of 63
4	6 DCTECT Engineering Laboratory Inc.			DEV/ 17 O M

1.3.2 Reduced Power (Body at 0.0 cm)

Mode / Band		Modulat	ed Average	(dBm)
		3GPP	3GPP	3GPP
		WCDMA	HSDPA	HSUPA
UMTS Band 5 (850 MHz)	Maximum	20.7	20.7	20.7
OIVITS Ballu 5 (850 IVIHZ)	Nominal	20.2	20.2	20.2
LIMITS Dand 4 (1750 MUz)	Maximum	14.7	14.7	14.7
UMTS Band 4 (1750 MHz)	Nominal	14.2	14.2	14.2
UMTS Band 2 (1900 MHz)	Maximum	12.7	12.7	12.7
OWITS BAIR 2 (1900 WITE)	Nominal	12.2	12.2	12.2

Mode / Band		Modulated Average (dBm)
LTE Band 12	Maximum	
LIE Ballu 12	Nominal	19.0
LTE Dand 4 (ANS)	Maximum	14.7
LTE Band 4 (AWS)	Nominal	14.2
LTE Band 2 (DCS)	Maximum	12.7
LTE Band 2 (PCS)	Nominal	12.2

Mode / Band		Modulated Average (dBm)
IEEE 802.11b (2.4 GHz)	Maximum	14.5
TEEE 802.110 (2.4 GHZ)	Nominal	13.5
IEEE 802.11g (2.4 GHz)	Maximum	14.5
TEEE 802.11g (2.4 GHZ)	Nominal	13.5
IEEE 802 11 n /2 4 CH2)	Maximum	14.5
IEEE 802.11n (2.4 GHz)	Nominal	13.5

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 6 of 63

Mode / Band		Modulated Average (dBm)		
, i		20 MHz Bandwidth	40 MHz Bandwidth	80 MHz Bandwidth
LEEE 902 110 /E CU-)	Maximum	11.5		
IEEE 802.11a (5 GHz)	Nominal	10.5		
IEEE 802.11n (5 GHz)	Maximum	11.5	11.5	
TEEE 802.1111 (5 GHZ)	Nominal	10.5	10.5	
IFFF 902 1100 (F CH5)	Maximum	11.5	11.5	10.5
IEEE 802.11ac (5 GHz)	Nominal	10.5	10.5	9.5

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the locations of the device antennas can be found in Appendix F. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Top	Bottom	Right	Left
UMTS 850	Yes	Yes	No	No	Yes
UMTS 1750	Yes	Yes	No	No	Yes
UMTS 1900	Yes	Yes	No	No	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	No	Yes
LTE Band 2 (PCS)	Yes	Yes	No	No	Yes
2.4 GHz WLAN	Yes	Yes	No	Yes	No
5 GHz WLAN	Yes	Yes	No	Yes	No
2.4 GHz Bluetooth	Yes	Yes	No	Yes	No

Note: Per FCC KDB 616217 D04v01, particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v06.

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(L) LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 7 -1 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 7 of 63

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-1
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2 Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Body
1	UMTS + 2.4 GHz WI-FI	Yes
2	UMTS + 5 GHz WI-FI	Yes
3	UMTS + 2.4 GHz Bluetooth	Yes
4	LTE + 2.4 GHz WI-FI	Yes
5	LTE + 5 GHz WI-FI	Yes
6	LTE + 2.4 GHz Bluetooth	Yes

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) Band gap channels are not supported

FCC ID: ZNFV521	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 0 at 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 8 of 63

(B) Licensed Transmitter(s)

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

1.7 **Guidance Applied**

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02 (3G/4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02 (Tablet SAR Considerations)

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Max Power	Reduced
	Body Serial Power Bo	
	Number	Serial Number
UMTS 850	00554	00562
UMTS 1750	00554	00562
UMTS 1900	00554	00562
LTE Band 12	00513	00539
LTE Band 4 (AWS)	00513	00539
LTE Band 2 (PCS)	00513	00539
2.4 GHz WLAN	00638	00620
5 GHz WLAN	00638	00620
2.4 GHz Bluetooth	00638	N/A

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -1 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 9 of 63

LTE INFORMATION 2

LTE Information				
FCC ID	ZNFV521			
Form Factor		Portable Tablet		
Frequency Range of each LTE transmission band	LTE	Band 12 (699.7 - 715.3 M	IHz)	
	LTE Bar	nd 4 (AWS) (1710.7 - 1754	.3 MHz)	
	LTE Ba	nd 2 (PCS) (1850.7 - 1909.	.3 MHz)	
Channel Bandwidths	LTE Band	12: 1.4 MHz, 3 MHz, 5 MH	lz, 10 MHz	
	LTE Band 4 (AWS): 1.4	4 MHz, 3 MHz, 5 MHz, 10	MHz, 15 MHz, 20 MHz	
	LTE Band 2 (PCS): 1.4	MHz, 3 MHz, 5 MHz, 10 l	MHz, 15 MHz, 20 MHz	
Channel Numbers and Frequencies (MHz)	Low	Mid	High	
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)	
LTE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)	
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)	
LTE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)	
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)	
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)	
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)	
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)	
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)	
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)	
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)	
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)	
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)	
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)	
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)	
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)	
UE Category		6		
Modulations Supported in UL		QPSK, 16QAM		
LTE MPR Permanently implemented per 3GPP TS 36.101				
section 6.2.3~6.2.5? (manufacturer attestation to be		YES		
provided)				
A-MPR (Additional MPR) disabled for SAR Testing?		YES		
LTE Carrier Aggregation Possible Combinations	The technical description includes all the possible carrier aggregation combinations			
LTE Release 10 Additional Information	This device does not support full CA features on 3GPP Release 10. It supports a maximum of 2 carriers in the downlink. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. The following LTE Release 10 Features are not supported: Relay, HetNet, Enhanced MIMO, eICI, WIFI Offloading, MDH, eMBMA, Cross-Carrier Scheduling, Enhanced SC-FDMA.			

	FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	D 10 -f 00
	0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet	Page 10 of 63
٠.	C DOTECT Engineering Laboratory Inc.			DEV 17.0 M

3

INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 11 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 11 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

REV 17.0 M 12/1/2015

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

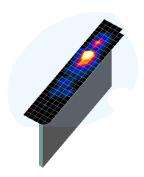


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Max	imum Zoom So Resolution (1	•	Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	Gı	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 10 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 12 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

5 TEST CONFIGURATION POSITIONS

5.1 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v05 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

5.2 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a nonreduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. The sensor does not trigger power reduction from the front of the device. Sensor triggering distance summary data is included in Appendix G.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 10 -f 00	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 13 of 63	

© 2016 PCTEST Engineering Laboratory, Inc.

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 14 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 14 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

7 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

7.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

7.4 SAR Measurement Conditions for UMTS

7.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 45 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 15 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

7.4.2 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

7.4.3 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

7.4.4 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

7.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

7.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

FCC ID: ZNFV521	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 10 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 16 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

7.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

7.5.5 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. For every supported combination of downlink only carrier aggregation, additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

7.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those

FCC ID: ZNFV521	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 17 -1 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 17 of 63
16 PCTEST Engineering Laboratory Inc	1	•		REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

7.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

7.6.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

7.6.5 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	LG LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 10 -1 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 18 of 63
16 PCTEST Engineering Laboratory, In	nc.	<u> </u>		REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.6.6 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 7.6.5).

7.6.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFV521	PCTEST BUILDING LADORATE INC.	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Danie 10 at 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 19 of 63

8 RF CONDUCTED POWERS

8.1 UMTS Conducted Powers

Table 8-1
Average RF Output Powers Maximum Power

3GPP Release	Mode	3GPP 34.121		Cellular Band [dBm]		AWS Band [dBm]			PCS Band [dBm]			3GPP
Version	Mode	Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	MPR [dB]
99	WCDMA	12.2 kbps RMC	24.63	24.46	24.49	24.50	24.57	24.64	23.98	23.93	24.12	-
6		Subtest 1	24.57	24.45	24.53	24.45	24.48	24.50	23.96	23.89	24.10	0
6	HSDPA	Subtest 2	24.50	24.49	24.52	24.43	24.47	24.44	23.89	23.78	24.08	0
6	HODEA	Subtest 3	24.13	23.99	24.04	24.02	24.01	24.00	23.45	23.25	23.52	0.5
6		Subtest 4	24.09	23.98	24.06	23.97	24.03	24.02	23.42	23.20	23.59	0.5
6		Subtest 1	24.55	24.38	24.12	24.16	24.35	23.91	23.67	23.45	23.59	0
6		Subtest 2	22.65	22.61	22.68	22.10	22.48	22.41	21.92	21.83	22.09	2
6	HSUPA	Subtest 3	23.69	23.57	23.66	23.60	23.56	23.68	22.86	22.89	23.08	1
6		Subtest 4	22.39	22.35	22.33	22.54	22.46	22.63	21.86	21.85	21.95	2
6		Subtest 5	23.94	24.08	24.10	24.22	24.10	24.31	23.80	23.78	23.50	0

Table 8-2
Average RF Output Powers Reduced Power

	Attorage in Carpari Character Charac											
3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]		AWS Band [dBm]			PCS Band [dBm]			3GPP	
Version	ersion		4132	4183	4233	1312	1412	1513	9262	9400	9538	MPR [dB]
99	WCDMA	12.2 kbps RMC	20.61	20.62	20.58	14.43	14.42	14.63	12.66	12.60	12.48	-
6		Subtest 1	20.51	20.55	20.60	14.47	14.53	14.60	12.62	12.62	12.48	0
6	HSDPA	Subtest 2	20.49	20.53	20.51	14.44	14.60	14.60	12.54	12.52	12.49	0
6	HODEA	Subtest 3	19.83	19.97	19.95	13.99	14.11	14.15	12.13	12.05	12.01	0.5
6		Subtest 4	19.85	19.78	19.87	14.01	14.14	14.13	12.01	12.06	11.97	0.5
6		Subtest 1	20.06	20.26	20.39	13.98	14.12	13.87	11.86	12.01	11.78	0
6		Subtest 2	18.47	18.43	18.45	12.35	12.41	12.57	10.54	10.52	10.34	2
6	HSUPA	Subtest 3	19.28	19.20	19.55	13.28	13.38	13.55	11.46	11.43	11.26	1
6		Subtest 4	18.52	18.51	18.57	12.27	12.39	12.51	10.61	10.56	10.51	2
6		Subtest 5	20.24	20.21	20.36	14.21	14.30	14.58	12.59	12.57	12.38	0

This device does not support DC-HSDPA.

Figure 8-1
Power Measurement Setup

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 00	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 20 of 63

8.2 **LTE Conducted Powers**

8.2.1 LTE Band 12

Table 8-3 LTE Band 12 Conducted Powers - 10 MHz Bandwidth

			LTE Band 12 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	2011 [40]	
	1	0	25.50		0
	1	25	25.49	0	0
	1	49	25.48		0
QPSK	25	0	24.50		1
	25	12	24.39	0-1	1
	25	25	24.35	0-1	1
	50	0	24.33		1
	1	0	24.22		1
	1	25	24.45	0-1	1
	1	49	24.30		1
16QAM	25	0	23.45		2
	25	12	23.44	0-2	2
	25	25	23.49	0-2	2
	50	0	23.50		2

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-4 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

	LTE Band 12										
	5 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	3 Size RB Offset	23035 (701.5 MHz)	23095 23155 (707.5 MHz) (713.5 MHz)		MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	Conducted Power [dBm]							
	1	0	25.35	25.48	25.42		0				
	1	12	25.50	25.50	25.50	0	0				
	1	24	25.42	25.43	25.35		0				
QPSK	12	0	24.33	24.47	24.50		1				
	12	6	24.48	24.39	24.46	0-1	1				
	12	13	24.48	24.50	24.44	0-1	1				
	25	0	24.38	24.43	24.35		1				
	1	0	23.99	24.23	24.50		1				
	1	12	24.49	24.50	24.43	0-1	1				
	1	24	24.05	23.95	24.50		1				
16QAM	12	0	23.40	23.42	23.39		2				
	12	6	23.45	23.41	23.50	0-2	2				
	12	13	23.47	23.42	23.46	0-2	2				
	25	0	23.29	23.44	23.37		2				

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage Of of CO
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 21 of 63
16 PCTEST Engineering Laboratory, Inc.	·.			REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-5 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

			I L Balla 12 Ool	ducted Powers	- 5 WITTE Barray	natii					
				LTE Band 12							
	3 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	25.38	25.45	25.47		0				
	1	7	25.47	25.49	25.46	0	0				
	1	14	25.37	25.41	25.44		0				
QPSK	8	0	24.40	24.50	24.50		1				
	8	4	24.32	24.50	24.38	0-1	1				
	8	7	24.36	24.49	24.50		1				
	15	0	24.37	24.50	24.39		1				
	1	0	24.39	24.44	23.73		1				
	1	7	24.31	24.48	23.93	0-1	1				
	1	14	24.41	24.27	23.98		1				
16QAM	8	0	23.29	23.50	23.30		2				
	8	4	23.20	23.48	23.29	0-2	2				
	8	7	23.18	23.49	23.41	0-2	2				
	15	0	23.25	23.44	23.49		2				

Table 8-6 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	25.35	25.48	25.37		0
	1	2	25.38	25.44	25.43		0
	1	5	25.45	25.43	25.45	0	0
QPSK	3	0	25.45	25.32	25.41		0
	3	2	25.44	25.48	25.35		0
	3	3	25.42	25.39	25.46		0
	6	0	24.46	24.35	24.33	0-1	1
	1	0	24.46	24.30	24.37		1
	1	2	24.25	24.35	24.38		1
	1	5	24.41	24.12	24.39	0-1	1
16QAM	3	0	24.28	24.01	24.43	U-1	1
	3	2	24.22	24.20	24.41		1
	3	3	24.20	24.14	24.28		1
	6	0	23.29	23.46	23.41	0-2	2

FCC ID: ZNFV521	PCTEST"	SAR EVALUATION REPORT	Reviewed by: Quality Manager			
Document S/N:	Test Dates:	DUT Type:	B 00 (00			
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet	Page 22 of 63			

Table 8-7 LTF Rand 12 Conducted Powers - 10 MHz Randwidth - Reduced Power

			LTE Band 12 10 MHz Bandwidth		
		RB Offset	Mid Channel		
Modulation	RB Size		23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	Jones (400)	
	1	0	19.16		0
	1	25	19.36	0	0
	1	49	19.12		0
QPSK	25	0	19.31		0
	25	12	19.21	0-1	0
	25	25	19.20	0-1	0
	50	0	19.25		0
	1	0	19.02		0
	1	25	19.10	0-1	0
	1	49	19.07		0
16QAM	25	0	19.19		0
	25	12	19.33	0-2	0
	25	25	19.25	0-2	0
	50	0	19.20		0

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-8 LTE Band 12 Conducted Powers - 5 MHz Bandwidth - Reduced Power

	LTE Band 12 5 MHz Bandwidth										
		RB Offset	Low Channel	Mid Channel	High Channel						
Modulation	RB Size		23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	Conducted Power [dBm]	Conducted Power [dBm]						
	1	0	19.40	19.03	19.25		0				
	1	12	19.44	19.22	19.30	0	0				
	1	24	19.40	18.92	19.31		0				
QPSK	12	0	19.21	19.27	19.24		0				
	12	6	19.33	19.37	19.39	0-1	0				
	12	13	19.29	19.19	19.33	0-1	0				
	25	0	19.24	19.30	19.24		0				
	1	0	18.99	19.26	18.96		0				
	1	12	18.95	19.36	19.02	0-1	0				
	1	24	18.91	19.04	19.00		0				
16QAM	12	0	19.06	19.15	19.01		0				
	12	6	19.27	19.32	19.17	0-2	0				
	12	13	19.11	19.06	19.03	0-2	0				
	25	0	19.18	19.22	19.14		0				

FCC ID: ZNFV521	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 23 of 63
16 PCTEST Engineering Laboratory, I	Inc.	-		REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-9 LTE Band 12 Conducted Powers - 3 MHz Bandwidth - Reduced Power

		I L Dalla	12 Conducted 1	OWEIS - 3 MINZ E	Janawiath He	adoca i owei	
				LTE Band 12			
	1	1	1	3 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	19.21	19.23	19.29		0
	1	7	19.44	19.39	19.47	0	0
	1	14	19.33	19.12	19.18		0
QPSK	8	0	19.11	19.32	19.29		0
	8	4	19.23	19.29	19.38	0-1	0
	8	7	19.09	19.34	19.31		0
	15	0	19.21	19.31	19.31		0
	1	0	18.92	19.16	19.10		0
	1	7	19.01	19.46	19.27	0-1	0
	1	14	18.89	18.96	18.96		0
16QAM	8	0	19.08	19.44	19.18		0
	8	4	19.25	19.33	19.06	0.2	0
	8	7	19.24	19.44	18.97	0-2	0
	15	0	19.20	19.25	19.11		0

Table 8-10 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth - Reduced Power

	LTE Band 12									
	1.4 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	19.16	19.16	19.32		0			
	1	2	19.19	19.16	19.44		0			
	1	5	19.25	19.30	19.41	0	0			
QPSK	3	0	19.18	19.22	19.29		0			
	3	2	19.21	19.32	19.28		0			
	3	3	19.21	19.29	19.20		0			
	6	0	19.26	19.18	19.24	0-1	0			
	1	0	19.03	19.18	19.07		0			
	1	2	18.92	19.29	18.98		0			
	1	5	19.15	19.14	18.97	0-1	0			
16QAM	3	0	19.09	18.98	18.98	U-1	0			
	3	2	19.13	19.05	18.95		0			
	3	3	19.11	19.18	18.87		0			
	6	0	19.08	19.26	18.88	0-2	0			

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 24 of 63

Table 8-11
LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

	LTE Band 4 (AWS) 20 MHzBandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	001 1 [ub]					
	1	0	24.63		0				
	1	50	24.69	0	0				
	1	99	24.63		0				
QPSK	50	0	23.47		1				
	50	25	23.57		1				
	50	50	23.56		1				
	100	0	23.42	0-1	1				
	1	0	23.23		1				
	1	50	23.41		1				
	1	99	23.27		1				
16QAM	50	0	22.37		2				
	50	25	22.49	0-2	2				
	50	50	22.46	0-2	2				
	100	0	22.51		2				

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-12 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

			- (7 tit 6) C	onducted i owe			
				LTE Band 4 (AWS)			
				15 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	20025	20175	20325	MPR Allowed per	MPR [dB]
Modulation	TID SIZE	TID Offset	(1717.5 MHz)	(1732.5 MHz)	(1747.5 MHz)	3GPP [dB]	WIFT [GD]
			(Conducted Power [dBm]		
	1	0	24.64	24.49	24.37		0
	1	36	24.39	24.62	24.36	0	0
	1	74	24.39	24.48	24.40		0
QPSK	36	0	23.67	23.45	23.61	0-1	1
	36	18	23.45	23.54	23.69		1
	36	37	23.63	23.46	23.64		1
	75	0	23.55	23.56	23.56		1
	1	0	23.63	22.88	23.60		1
	1	36	23.50	23.55	23.62	0-1	1
	1	74	23.33	22.81	23.64		1
16QAM	36	0	22.67	22.52	22.47		2
	36	18	22.56	22.67	22.55	0.2	2
	36	37	22.70	22.50	22.67	0-2	2
	75	0	22.62	22.47	22.61		2

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 05 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 25 of 63

Table 8-13 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

	LTE Band 4 (AWS) Conducted Powers - 10 Minz Bandwidth									
	LTE Band 4 (AWS)									
			Law Channal	10 MHzBandwidth	Liinh Ohannal					
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]			
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]	• •			
			(Conducted Power [dBm	1]					
	1	0	24.61	24.52	24.68		0			
	1	25	24.47	24.62	24.59	0	0			
	1	49	24.47	24.47	24.61		0			
QPSK	25	0	23.51	23.52	23.54	0-1	1			
	25	12	23.61	23.49	23.69		1			
	25	25	23.61	23.41	23.59		1			
	50	0	23.59	23.45	23.64		1			
	1	0	23.33	23.13	23.66		1			
	1	25	23.10	23.27	23.66	0-1	1			
	1	49	22.87	23.04	23.59		1			
16QAM	25	0	22.66	22.50	22.62		2			
	25	12	22.54	22.61	22.67] ,,	2			
	25	25	22.63	22.44	22.62	0-2	2			
	50	0	22.57	22.44	22.67		2			

Table 8-14 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

	LTE Band 4 (AWS) 5 MHzBandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			C	Conducted Power [dBm]					
	1	0	24.69	24.50	24.60		0			
	1	12	24.62	24.62	24.59	0	0			
	1	24	24.63	24.54	24.58		0			
QPSK	12	0	23.69	23.55	23.69	0-1	1			
	12	6	23.51	23.61	23.70		1			
	12	13	23.58	23.43	23.62		1			
	25	0	23.67	23.47	23.55	1	1			
	1	0	23.48	23.42	23.70		1			
	1	12	23.33	23.66	23.70	0-1	1			
	1	24	23.06	23.47	23.15		1			
16QAM	12	0	22.52	22.47	22.66		2			
	12	6	22.62	22.45	22.65	0-2	2			
	12	13	22.69	22.53	22.68		2			
	25	0	22.63	22.60	22.66		2			

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 00 at 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 26 of 63
016 PCTEST Engineering Laboratory,	Inc.			REV 17.0 M

Table 8-15 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth								
				LTE Band 4 (AWS)				
				3 MHzBandwidth				
			Frequency [MHz]	Frequency [MHz]	Frequency [MHz]			
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			C	Conducted Power [dBm]			
	1	0	24.59	24.46	24.63		0	
	1	7	24.64	24.64	24.59	0	0	
	1	14	24.59	24.41	24.64		0	
QPSK	8	0	23.65	23.54	23.52	0-1	1	
	8	4	23.66	23.43	23.60		1	
	8	7	23.60	23.44	23.66		1	
	15	0	23.68	23.45	23.64		1	
	1	0	23.05	23.47	23.61		1	
	1	7	23.38	23.62	23.68	0-1	1	
	1	14	22.92	23.45	23.54		1	
16QAM	8	0	22.63	22.50	22.61		2	
	8	4	22.67	22.60	22.62	0-2	2	
	8	7	22.45	22.69	22.59	0-2	2	
	15	0	22.41	22.43	22.62		2	

Table 8-16 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 4 (AWS) 1.4 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.37	24.45	24.49		0
	1	2	24.56	24.46	24.57	0	0
	1	5	24.42	24.35	24.53		0
QPSK	3	0	24.41	24.52	24.67		0
	3	2	24.43	24.55	24.62		0
	3	3	24.38	24.59	24.68		0
	6	0	23.64	23.47	23.65	0-1	1
	1	0	23.28	23.15	23.41		1
	1	2	23.23	23.33	23.51		1
	1	5	23.31	23.22	23.46	0-1	1
16QAM	3	0	23.23	23.63	23.42	U-1	1
	3	2	23.19	23.66	23.41		1
	3	3	23.23	23.62	23.39		1
	6	0	22.48	22.52	22.44	0-2	2

FCC ID: ZNFV521	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 27 of 63	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet			
16 PCTEST Engineering Laboratory,	Inc.			REV 17.0 M	

Table 8-17 LTF Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth - Reduced Power

			LTE Band 4 (AWS) 20 MHzBandwidth		
			Mid Channel		
Modulation	RB Size	RB Size RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	0011 [u5]	
	1	0	14.32		0
	1	50 14.68 0	0	0	
	1	99	14.42		0
QPSK	50	0	14.44		0
	50	25	14.40		0
	50	50	14.57		0
	100	0	14.52	0-1	0
	1	0	14.25		0
	1	50	14.29		0
	1	99	14.44		0
16QAM	50	0	14.47		0
	50	25	14.50	0-2	0
	50	50	14.45	0-2	0
	100	0	14.50		0

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-18 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth - Reduced Power

				LTE Band 4 (AWS) 15 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	14.46	14.23	14.42		0
	1	36	14.55	14.38	14.51	0 -1	0
	1	74	14.38	14.40	14.32		0
QPSK	36	0	14.46	14.47	14.39		0
	36	18	14.37	14.45	14.52		0
	36	37	14.48	14.37	14.52		0
	75	0	14.45	14.35	14.43]	0
	1	0	13.97	14.02	14.18		0
	1	36	14.57	14.18	14.52	0-1	0
	1	74	14.11	13.91	14.68]	0
16QAM	36	0	14.42	14.51	14.35		0
	36	18	14.45	14.54	14.48	0-2	0
	36	37	14.45	14.39	14.48	0-2	0
	75	0	14.43	14.38	14.41		0

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(L) LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dana 00 at 00	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 28 of 63	
016 PCTEST Engineering Laboratory,	Inc.			REV 17.0 M	

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-19 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth - Reduced Power

		Dalla + (A	WS) Conducted	POWEIS - 10 WII	iz Danawiatii -	neduced rowe	•
				LTE Band 4 (AWS)			
		1	1	10 MHzBandwidth	1		T
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]	
			(Conducted Power [dBm	1]		
	1	0	14.53	14.33	14.27		0
	1	25	14.50	14.57	14.61	0	0
	1	49	14.38	14.37	14.38		0
QPSK	25	0	14.42	14.36	14.48	0-1	0
	25	12	14.38	14.36	14.57		0
	25	25	14.32	14.44	14.43		0
	50	0	14.28	14.40	14.51		0
	1	0	13.98	14.21	14.21		0
	1	25	14.45	14.16	14.37	0-1	0
	1	49	13.93	13.72	14.30		0
16QAM	25	0	14.32	14.36	14.47		0
	25	12	14.50	14.35	14.65] ,,	0
	25	25	14.37	14.37	14.42	0-2	0
	50	0	14.35	14.34	14.53		0

Table 8-20 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth - Reduced Power

		Dana i (/	Hoddood I Ollo							
	LTE Band 4 (AWS) 5 MHzBandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	14.58	14.17	14.53		0			
	1	12	14.66	14.49	14.50	0 -1	0			
	1	24	14.46	14.26	14.38		0			
QPSK	12	0	14.51	14.33	14.42		0			
	12	6	14.45	14.50	14.38		0			
	12	13	14.38	14.39	14.32		0			
	25	0	14.37	14.37	14.28		0			
	1	0	13.77	14.35	13.98		0			
	1	12	13.98	14.23	14.45	0-1	0			
	1	24	13.69	13.96	13.93		0			
16QAM	12	0	14.30	14.22	14.32		0			
	12	6	14.27	14.39	14.50]	0			
	12	13	14.26	14.35	14.37	0-2	0			
	25	0	14.47	14.54	14.35		0			

FCC ID: ZNFV521	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	B 00 (0)	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 29 of 63
16 PCTEST Engineering Laboratory,	Inc.	-		REV 17.0 M

Table 8-21 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth - Reduced Power

	LTE Band 4 (AWS) Conducted Powers - 3 Minz Bandwidth - Reduced Power									
				LTE Band 4 (AWS) 3 MHzBandwidth						
		1								
			Frequency [MHz]	Frequency [MHz]	Frequency [MHz]					
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	14.40	14.33	14.46	0	0			
	1	7	14.52	14.55	14.67		0			
	1	14	14.40	14.54	14.59		0			
QPSK	8	0	14.45	14.31	14.58		0			
	8	4	14.43	14.38	14.69	0-1	0			
	8	7	14.38	14.47	14.58	0-1	0			
	15	0	14.38	14.44	14.64		0			
	1	0	14.14	14.02	14.42		0			
	1	7	14.27	14.62	14.53	0-1	0			
	1	14	14.10	14.57	14.42		0			
16QAM	8	0	14.06	14.43	14.24		0			
	8	4	14.14	14.63	14.43	0-2	0			
	8	7	14.10	14.58	14.41	0-2	0			
	15	0	14.32	14.53	14.50		0			

Table 8-22 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth - Reduced Power

				LTE Band 4 (AWS) 1.4 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			O	Conducted Power [dBm	1]		
	1	0	14.42	14.26	14.44		0
	1	2	14.47	14.54	14.31	0	0
ı	1	5	14.51	14.28	14.51		0
QPSK	3	0	14.56	14.36	14.56		0
	3	2	14.53	14.40	14.58		0
	3	3	14.59	14.36	14.62		0
	6	0	14.58	14.46	14.58	0-1	0
	1	0	14.31	14.16	14.45		0
	1	2	14.24	14.24	14.53		0
	1	5	14.31	14.09	14.46	0-1	0
16QAM	3	0	13.95	14.11	14.62	U-1	0
	3	2	14.00	14.15	14.31		0
	3	3	13.98	13.83	14.37		0
	6	0	14.22	14.11	14.65	0-2	0

FCC ID: ZNFV521	C PCTEST	SAR EVALUATION REPORT	SAR EVALUATION REPORT	
Document S/N:	Test Dates:	DUT Type:		D 00 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 30 of 63
16 PCTEST Engineering Laboratory,	Inc.			REV 17.0 M

LTE Band 2 (PCS) 8.2.3

Table 8-23 LTF Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

		LILD	aliu z (FCS) CO	nauctea Power	5 - 20 WILL Dall	awiatii	
				LTE Band 2 (PCS) 20 MHz Bandwidth			
			Law Ohannal		Himb Obsessed		
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700	18900	19100	MPR Allowed per	MPR [dB]
			(1860.0 MHz)	(1880.0 MHz)	(1900.0 MHz)	3GPP [dB]	
			C	Conducted Power [dBm]		
	1	0	24.04	23.95	23.90		0
	1	50	24.19	24.19	24.15	0	0
	1	99	23.83	24.00	23.97		0
QPSK	50	0	23.08	22.97	23.09	0-1	1
	50	25	22.99	23.01	23.09		1
	50	50	22.96	22.92	23.14		1
	100	0	23.04	22.99	23.09		1
	1	0	22.58	22.34	22.94		1
	1	50	22.89	22.63	23.15	0-1	1
	1	99	22.41	22.70	22.93		1
16QAM	50	0	22.16	22.14	22.07		2
	50	25	22.06	22.19	22.07	0-2	2
	50	50	21.93	21.90	21.99	0-2	2
	100	0	22.14	21.86	21.96		2

Table 8-24 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

	LTE Ballu 2 (PCS) Colludcted Powers - 13 Miriz Balluwidth									
				LTE Band 2 (PCS)						
				15 MHz Bandwidth						
			Low Channel	Mid Channel	Frequency [MHz]					
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			O	Conducted Power [dBm	1]					
	1	0	24.19	23.93	23.88		0			
	1	36	24.18	24.18	24.05	0	0			
•	1	74	24.18	24.01	24.01		0			
QPSK	36	0	23.03	22.94	23.17	0-1	1			
	36	18	23.08	22.93	23.09		1			
	36	37	22.98	22.84	23.10		1			
	75	0	23.03	22.88	23.17		1			
	1	0	23.16	22.21	23.16		1			
	1	36	23.14	22.75	23.16	0-1	1			
	1	74	23.04	22.22	23.20		1			
16QAM	36	0	22.13	22.00	22.11		2			
	36	18	22.18	22.07	22.05	0.2	2			
	36	37	21.84	21.96	22.16	0-2	2			
	75	0	22.02	21.99	22.00		2			

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 31 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-25 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

	LTE Band 2 (PCS) 10 MHz Bandwidth									
			Low Channel	Frequency [MHz]	Frequency [MHz]					
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	24.16	23.99	24.07	0	0			
	1	25	24.13	24.16	24.19		0			
	1	49	24.08	23.91	24.17		0			
QPSK	25	0	23.06	22.86	23.06		1			
	25	12	22.93	22.99	23.18	0-1	1			
	25	25	22.98	22.85	23.17		1			
	50	0	22.98	22.85	23.09]	1			
	1	0	22.35	22.71	22.83		1			
	1	25	23.07	22.83	23.00	0-1	1			
	1	49	23.09	22.73	22.74		1			
16QAM	25	0	22.07	22.05	22.20		2			
	25	12	21.89	22.13	22.18	0.0	2			
	25	25	21.93	21.85	22.12	0-2	2			
	50	0	22.02	21.91	22.07]	2			

Table 8-26 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

	LTE Band 2 (PCS) 5 MHz Bandwidth									
			Low Channel	Mid Channel	Frequency [MHz]					
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			O	Conducted Power [dBm]	1				
	1	0	23.86	23.71	24.12	0 0-1	0			
	1	12	24.07	24.01	24.17		0			
	1	24	23.78	23.64	24.13		0			
QPSK	12	0	23.01	22.92	23.14		1			
	12	6	23.07	22.97	23.15		1			
	12	13	22.89	22.88	23.10		1			
	25	0	23.00	22.89	23.09		1			
	1	0	22.49	22.22	23.05		1			
	1	12	22.78	22.78	23.16	0-1	1			
	1	24	22.27	22.21	23.15		1			
16QAM	12	0	22.07	21.70	22.20		2			
	12	6	22.20	21.78	22.13	0-2	2			
	12	13	22.02	21.80	21.92		2			
	25	0	22.19	22.07	21.76		2			

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:	D 00 (00		
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet	Page 32 of 63		
C DCTCCT Engineering Laboratory Inc.			DEV/ 17.0 M		

Table 8-27 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

	LTE Band 2 (PCS) Conducted Powers - 3 MHZ Bandwidth									
	LTE Band 2 (PCS)									
I	3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			O	Conducted Power [dBm]					
	1	0	23.99	23.87	24.14	0	0			
	1	7	23.93	23.98	24.18		0			
	1	14	23.99	23.73	24.02		0			
QPSK	8	0	23.09	22.93	23.20		1			
	8	4	22.89	22.91	23.09	0-1	1			
	8	7	23.05	22.94	23.08		1			
	15	0	23.08	22.94	23.13		1			
	1	0	23.03	22.94	22.94		1			
	1	7	23.18	23.13	22.99	0-1	1			
	1	14	23.17	22.59	22.70		1			
16QAM	8	0	21.84	21.91	22.16		2			
	8	4	21.90	22.07	22.18] , ,	2			
	8	7	21.81	22.01	22.19	0-2	2			
	15	0	21.79	22.01	22.04		2			

Table 8-28 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

	LTE Band 2 (PCS) 1.4 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	23.85	24.01	23.85	0	0			
	1	2	24.03	23.85	24.14		0			
	1	5	23.86	23.89	23.94		0			
QPSK	3	0	23.96	23.97	24.16		0			
	3	2	23.99	24.01	24.12		0			
	3	3	23.91	23.95	24.03		0			
	6	0	22.95	22.89	23.04	0-1	1			
	1	0	23.01	22.65	22.94		1			
	1	2	22.94	22.74	22.97] [1			
	1	5	22.89	22.65	22.94	0-1	1			
16QAM	3	0	22.93	22.63	22.84] "-1	1			
	3	2	22.98	23.03	22.86]	1			
	3	3	22.83	22.99	22.86		1			
	6	0	21.80	21.70	21.98	0-2	2			

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 00 -f 00		
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 33 of 63	

Table 8-29 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth - Reduced Power

	LTE Baild 2 (FCS) Collucted Fowers - 20 Minz Baildwidth - neduced Fower									
				LTE Band 2 (PCS)						
	20 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18700	18900	19100	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(1860.0 MHz)	(1880.0 MHz)	(1900.0 MHz)					
			C	Conducted Power [dBm]					
	1	0	12.16	12.59	12.21	0	0			
	1	50	12.24	12.58	12.55		0			
	1	99	12.07	12.37	12.18		0			
QPSK	50	0	12.47	12.43	12.56		0			
	50	25	12.43	12.52	12.54	0-1	0			
	50	50	12.36	12.37	12.47		0			
	100	0	12.45	12.49	12.57		0			
	1	0	12.06	12.26	12.00		0			
	1	50	11.93	12.34	12.25	0-1	0			
	1	99	12.16	12.12	12.18		0			
16QAM	50	0	12.59	12.40	12.51		0			
	50	25	12.52	12.49	12.57	0-2	0			
	50	50	12.29	12.41	12.50] 0-2	0			
	100	0	12.56	12.44	12.42		0			

Table 8-30 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth - Reduced Power

	LTE Band 2 (PCS) 15 MHz Bandwidth									
			Low Channel	Mid Channel	Frequency [MHz]					
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			C	Conducted Power [dBm	n]					
	1	0	12.57	12.48	12.44		0			
	1	36	12.69	12.41	12.50	0 -1	0			
	1	74	12.48	12.25	12.40		0			
QPSK	36	0	12.49	12.44	12.50		0			
	36	18	12.43	12.46	12.45		0			
	36	37	12.38	12.40	12.45		0			
	75	0	12.40	12.38	12.42		0			
	1	0	12.56	11.88	12.32		0			
	1	36	12.50	12.26	12.28	0-1	0			
	1	74	12.41	11.91	11.99		0			
16QAM	36	0	12.47	12.46	12.47		0			
	36	18	12.36	12.65	12.38	0-2	0			
	36	37	12.22	12.59	12.37		0			
	75	0	12.38	12.36	12.56		0			

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		B 04 (00		
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 34 of 63		
16 DCTECT Engineering Laboratory Inc.				DEV/ 17 0 M		

Table 8-31 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth - Reduced Power

		Dana 2 (1 C	o, conducted	LTE Bond 2 (BCC)	_ Danamati	neddood i Gwei	
				LTE Band 2 (PCS) 10 MHz Bandwidth			
			Low Channel	Frequency [MHz]	Frequency [MHz]		
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	12.49	12.63	12.35	0	0
	1	25	12.63	12.57	12.65		0
	1	49	12.34	12.54	12.49	1	0
QPSK	25	0	12.63	12.51	12.42		0
	25	12	12.41	12.39	12.54]	0
ĺ	25	25	12.25	12.37	12.52	0-1	0
ĺ	50	0	12.35	12.43	12.52	1	0
	1	0	12.41	12.29	12.31		0
	1	25	12.26	12.21	12.55	0-1	0
	1	49	12.14	11.81	12.51		0
16QAM	25	0	12.55	12.52	12.55		0
ĺ	25	12	12.35	12.58	12.67		0
	25	25	12.27	12.46	12.57	0-2	0
	50	0	12.32	12.33	12.60		0

Table 8-32 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth - Reduced Power

	LTE Band 2 (PCS) 5 MHz Bandwidth									
			Low Channel	Mid Channel	Frequency [MHz]					
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			C	Conducted Power [dBm]					
	1	0	12.48	12.15	12.34		0			
	1	12	12.55	12.52	12.64	0	0			
	1	24	12.26	12.32	12.40		0			
QPSK	12	0	12.58	12.45	12.57		0			
	12	6	12.59	12.41	12.68		0			
	12	13	12.44	12.40	12.55		0			
	25	0	12.58	12.38	12.61	1	0			
	1	0	12.11	12.40	12.37		0			
	1	12	11.97	12.60	12.58	0-1	0			
	1	24	11.89	11.92	12.27	1	0			
16QAM	12	0	12.66	12.26	12.48		0			
	12	6	12.68	12.24	12.49	0-2	0			
	12	13	12.53	12.49	12.39	0-2	0			
	25	0	12.69	12.30	12.62		0			

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	: DUT Type:				
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 35 of 63		
16 DCTECT Engineering Laboratory Inc.				DEV/17 O M		

Table 8-33 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth - Reduced Power

LIE Band 2 (FCS) Conducted Fowers - 3 winz Bandwidth - neduced Fower							
				LTE Band 2 (PCS)			
3 MHz Bandwidth							
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	12.65	12.26	12.52	0	0
QPSK	1	7	12.47	12.56	12.63		0
	1	14	12.59	12.50	12.40		0
	8	0	12.57	12.35	12.68	0-1	0
	8	4	12.61	12.33	12.62		0
	8	7	12.53	12.38	12.52		0
	15	0	12.57	12.36	12.57		0
16QAM	1	0	12.59	12.27	12.64	0-1	0
	1	7	12.45	12.18	12.33		0
	1	14	12.20	12.32	12.42		0
	8	0	12.40	12.19	12.61	0-2	0
	8	4	12.43	12.26	12.54		0
	8	7	12.37	12.22	12.52		0
	15	0	12.49	12.35	12.40		0

Table 8-34 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth - Reduced Power

LTE Band 2 (PCS) 1.4 MHz Bandwidth							
Modulation	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	MPR Allowed per 3GPP [dB]	MPR [dB]
			18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)		
			Conducted Power [dBm]				
	1	0	12.56	12.19	12.62	0	0
	1	2	12.68	12.27	12.63		0
	1	5	12.59	12.21	12.65		0
QPSK	3	0	12.68	12.31	12.62		0
	3	2	12.49	12.35	12.64		0
	3	3	12.54	12.31	12.58		0
	6	0	12.58	12.29	12.59	0-1	0
16QAM	1	0	12.41	12.13	12.63	0-1	0
	1	2	12.47	12.18	12.56		0
	1	5	12.40	12.07	12.56		0
	3	0	12.15	12.25	12.05		0
	3	2	12.18	12.28	12.07		0
	3	3	12.15	12.23	12.42		0
	6	0	12.24	12.06	12.56	0-2	0

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dono 26 of 62	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 36 of 63

8.2.4 LTE Carrier Aggregation Conducted Powers

Table 8-35
Maximum LTE Carrier Aggregation Conducted Powers

	maximum 212 Garrior Aggregation Conducted Towers												
	PCC						SCC				Power		
PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)
LTE B2	20	18700	1860	1	50	600	1930	LTE B12	10	5095	737.5	24.02	24.19
LTE B4	20	20175	1732.5	1	50	2175	2132.5	LTE B12	10	5095	737.5	24.63	24.69

Table 8-36
Reduced LTE Carrier Aggregation Conducted Powers

													
	PCC						SCC			Power			
PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)
LTE B2	15	18675	1857.5	1	36	675	1937.5	LTE B12	10	5095	737.5	12.58	12.69
LTE B4	3	20385	1753.5	8	4	2385	2153.5	LTE B12	10	5095	737.5	14.70	14.69

Notes:

- The device only supports downlink Carrier Aggregation. Uplink Carrier Aggregation is not supported. For
 every supported combination of downlink carrier aggregation, power measurements were performed with
 the downlink carrier aggregation active for the configuration with highest measured maximum conducted
 power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation,
 and RB combinations in each frequency band.
- 2. All control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.

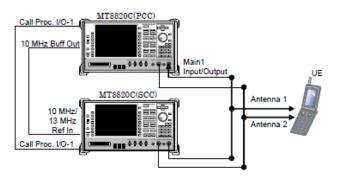


Figure 8-2
Power Measurement Setup

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 07 -f 00	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 37 of 63	

8.3 **WLAN Conducted Powers**

Table 8-37 2.4 GHz Average RF Maximum Power

		2.4GHz C	Conducted Por	wer [dBm]			
Freq [MHz]	Channel	IEEE Transmission Mode					
		802.11b	802.11g	802.11n			
2412	1	19.31	15.53	15.91			
2437	2	20.15	16.85	16.90			
2437	6	20.39	18.30	18.73			
2462	10	20.14	16.77	16.96			
2462	11	19.84	16.27	16.70			

Table 8-38 5 GHz Average RF Maximum Power

		5GHz (20MHz	z) Conducted F	Power [dBm]
Freq [MHz]	Channel	IEEE	Transmission	Mode
		802.11a	802.11n	802.11ac
5180	36	14.45	14.75	14.42
5200	40	18.15	18.73	18.33
5220	44	18.16	18.61	18.45
5240	48	18.35	18.74	18.43
5260	52	18.39	18.82	18.44
5280	56	18.30	18.81	18.51
5300	60	18.44	18.92	18.51
5320	64	14.72	15.24	14.74
5500	100	14.42	14.71	14.48
5580	116	18.05	18.52	18.11
5660	132	17.82	18.15	18.21
5700	140	18.23	18.37	18.20
5745	149	18.42	18.71	18.35
5785	157	18.46	18.85	18.56
5825	165	14.63	15.19	14.73

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(L) LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 29 of 62	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 38 of 63	
16 PCTEST Engineering Laboratory,	Inc.	-		REV 17.0 M	

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-39 2.4 GHz Average RF Reduced Power

		2.4GHz Conducted Power [dBm]					
Freq [MHz]	Channel	IEEE Transmission Mode					
		802.11b	802.11g	802.11n			
2412	1	14.46	14.41	14.22			
2437	6	14.46	14.25	14.15			
2462	11	14.41	14.22	14.41			

Table 8-40 5 GHz Average RF Reduced Power

Evo er [MU=1	Channel	5GHz (40MHz) Conducted Power [dBm] IEEE Transmission Mode			
Freq [MHz]	Chamilei				
		802.11n	802.11ac		
5190	38	10.21	10.26		
5230	46	10.26	10.64		
5270	54	10.45	10.57		
5310	62	10.54	10.58		
5510	102	10.20	10.30		
5550	110	10.21	10.27		
5670	134	10.02	10.31		
5755	151	10.20	10.32		
5795	159	10.41	10.59		

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

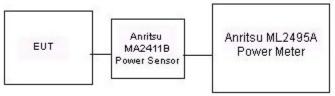


Figure 8-3 **Power Measurement Setup for Bandwidths**

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 00 -4 00	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 39 of 63	

8.4 **Bluetooth Conducted Powers**

Table 8-41 Bluetooth RF Conducted Powers

	Data		Avg Con Pow	
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	1.0	0	8.12	6.480
2441	1.0	39	9.90	9.782
2480	1.0	78	8.33	6.801
2402	2.0	0	5.98	3.963
2441	2.0	39	7.89	6.150
2480	2.0	78	6.21	4.180
2402	3.0	0	6.08	4.056
2441	3.0	39	7.93	6.202
2480	3.0	78	6.28	4.248

Note: The bolded data rate and channel above was tested for SAR.

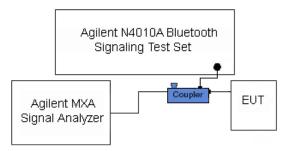


Figure 8-4 **Power Measurement Setup**

FCC ID: ZNFV521	COPCTEST:	SAR EVALUATION REPORT	(L)	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dana 40 at 00	
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 40 of 63	
016 PCTEST Engineering Laboratory,	nc.			REV 17.0 M	

9.1 Tissue Verification

Table 9-1
Measured Tissue Properties

Calibrated for		Tissue Temp During	Measured	Measured	Measured	TARGET	TARGET		
Tests Performed on:	Tissue Type	Calibration (C°)	Frequency (MHz)	Conductivity, σ (S/m)	Dielectric Constant, ε	Conductivity, σ (S/m)	Dielectric Constant, ε	% dev σ	% dev ε
			700	0.914	54.377	0.959	55.726	-4.69%	-2.42%
			710	0.923	54.276	0.960	55.687	-3.85%	-2.53%
2/2/2016	750B	22.7	725	0.938	54.132	0.961	55.629	-2.39%	-2.69%
			740	0.952	53.980	0.963	55.570	-1.14%	-2.86%
			755	0.966	53.813	0.964	55.512	0.21%	-3.06%
			820	0.990	55.592	0.969	55.258	2.17%	0.60%
2/2/2016	835B	22.8	835	1.004	55.452	0.970	55.200	3.51%	0.46%
			850	1.018	55.321	0.988	55.154	3.04%	0.30%
			1710	1.421	51.650	1.463	53.537	-2.87%	-3.52%
1/28/2016	1750B	22.5	1750	1.462	51.492	1.488	53.432	-1.75%	-3.63%
			1790	1.505	51.329	1.514	53.326	-0.59%	-3.74%
			1850	1.488	53.374	1.520	53.300	-2.11%	0.14%
1/27/2016	1900B	24.1	1880	1.516	53.154	1.520	53.300	-0.26%	-0.27%
			1910	1.564	53.117	1.520	53.300	2.89%	-0.34%
			1850	1.520	51.526	1.520	53.300	0.00%	-3.33%
2/8/2016	1900B	22.0	1880	1.551	51.378	1.520	53.300	2.04%	-3.61%
			1910	1.585	51.289	1.520	53.300	4.28%	-3.77%
			2400	1.916	51.963	1.902	52.767	0.74%	-1.52%
2/3/2016	2450B	23.0	2450	1.984	51.839	1.950	52.700	1.74%	-1.63%
			2500	2.049	51.617	2.021	52.636	1.39%	-1.94%
			5260	5.496	48.035	5.369	48.933	2.37%	-1.84%
			5300	5.552	48.025	5.416	48.879	2.51%	-1.75%
			5320	5.598	47.934	5.439	48.851	2.92%	-1.88%
			5500	5.813	47.623	5.650	48.607	2.88%	-2.02%
			5540	5.864	47.541	5.696	48.553	2.95%	-2.08%
02/01/2016	5200B-5800B	21.2	5560	5.890	47.507	5.720	48.526	2.97%	-2.10%
02/01/2016	3200B-3600B	21.2	5580	5.914	47.465	5.743	48.499	2.98%	-2.13%
			5600	5.949	47.422	5.766	48.471	3.17%	-2.16%
			5700	6.091	47.288	5.883	48.336	3.54%	-2.17%
			5745	6.149	47.204	5.936	48.275	3.59%	-2.22%
			5785	6.205	47.134	5.982	48.220	3.73%	-2.25%
			5800	6.221	47.132	6.000	48.200	3.68%	-2.22%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 44 6 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 41 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

9.2 **Test System Verification**

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 9-2 **System Verification Results**

	System verification results													
						System Ve								
					TA	RGET & M	IEASURE)						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)		
Н	750	BODY	02/02/2016	24.1	22.7	0.200	1054	3263	1.750	8.530	8.750	2.58%		
G	835	BODY	02/02/2016	24.3	22.8	0.200	4d119	3334	1.990	9.200	9.950	8.15%		
K	1750	BODY	01/28/2016	23.8	22.5	0.100	1051	3022	3.820	37.100	38.200	2.96%		
1	1900	BODY	01/27/2016	23.5	24.1	0.100	5d149	3333	4.240	40.400	42.400	4.95%		
G	1900	BODY	02/08/2016	22.0	21.2	0.100	5d149	3334	4.180	40.400	41.800	3.47%		
J	2450	BODY	02/03/2016	22.5	23.0	0.100	719	3319	5.260	51.900	52.600	1.35%		
D	5300	BODY	02/01/2016	21.1	20.8	0.050	1120	7357	3.730	75.200	74.600	-0.80%		
D	5500	BODY	02/01/2016	21.3	20.8	0.050	1120	7357	3.830	79.500	76.600	-3.65%		
D	5600	BODY	02/01/2016	21.3	20.8	0.050	1120	7357	3.950	77.400	79.000	2.07%		
D	5800	BODY	02/01/2016	21.3	20.8	0.050	1120	7357	3.710	76.300	74.200	-2.75%		

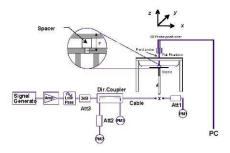


Figure 9-1 **System Verification Setup Diagram**

Figure 9-2 **System Verification Setup Photo**

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 42 of 63

10 SAR DATA SUMMARY

10.1 **Standalone Body SAR Data**

Table 10-1 UMTS Body SAR Data

						UREME								
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	. 00. [0.2]	5 (45)		144111201	0,0.0		(W/kg)		(W/kg)	
836.60	4183	UMTS 850	RMC	24.7	24.46	0.02	18 mm	00554	1:1	back	0.043	1.057	0.045	
836.60	4183	UMTS 850	RMC	24.7	24.46	-0.01	10 mm	00554	1:1	top	0.374	1.057	0.395	A1
836.60	4183	UMTS 850	RMC	24.7	24.46	-0.03	5 mm	00554	1:1	left	0.247	1.057	0.261	
836.60	4183	UMTS 850	RMC	20.7	20.62	0.02	0 mm	00562	1:1	back	0.294	1.019	0.300	
836.60	4183	UMTS 850	RMC	20.7	20.62	-0.02	0 mm	00562	1:1	top	0.336	1.019	0.342	
836.60	4183	UMTS 850	RMC	20.7	20.62	-0.05	0 mm	00562	1:1	left	0.279	1.019	0.284	
1732.40	1412	UMTS 1750	RMC	24.7	24.57	0.01	18 mm	00554	1:1	back	0.284	1.030	0.293	
1732.40	1412	UMTS 1750	RMC	24.7	24.57	-0.07	10 mm	00554	1:1	top	0.590	1.030	0.608	A2
1732.40	1412	UMTS 1750	RMC	24.7	24.57	0.10	5 mm	00554	1:1	left	0.530	1.030	0.546	
1732.40	1412	UMTS 1750	RMC	14.7	14.42	-0.03	0 mm	00562	1:1	back	0.388	1.067	0.414	
1732.40	1412	UMTS 1750	RMC	14.7	14.42	-0.07	0 mm	00562	1:1	top	0.257	1.067	0.274	
1732.40	1412	UMTS 1750	RMC	14.7	14.42	-0.10	0 mm	00562	1:1	left	0.106	1.067	0.113	
1880.00	9400	UMTS 1900	RMC	24.2	23.93	-0.07	18 mm	00554	1:1	back	0.405	1.064	0.431	
1852.40	9262	UMTS 1900	RMC	24.2	23.98	0.05	10 mm	00554	1:1	top	0.682	1.052	0.717	
1880.00	9400	UMTS 1900	RMC	24.2	23.93	-0.04	10 mm	00554	1:1	top	0.762	1.064	0.811	
1907.60	9538	UMTS 1900	RMC	24.2	24.12	0.01	10 mm	00554	1:1	top	1.010	1.019	1.029	A3
1880.00	9400	UMTS 1900	RMC	24.2	23.93	0.02	5 mm	00554	1:1	left	0.583	1.064	0.620	
1880.00	9400	UMTS 1900	RMC	12.7	12.60	0.16	0 mm	00562	1:1	back	0.393	1.023	0.402	
1880.00	9400	UMTS 1900	RMC	12.7	12.60	0.19	0 mm	00562	1:1	top	0.334	1.023	0.342	
1880.00	9400	UMTS 1900	RMC	12.7	12.60	-0.04	0 mm	00562	1:1	left	0.124	1.023	0.127	
		ANSI / IEE						Body W/kg (mW/g) ged over 1 gra						

FCC ID: ZNFV521	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 600
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 43 of 63
16 PCTEST Engineering Laboratory,	Inc.			REV 17.0 M

Table 10-2 LTE Band 12 Body SAR

									UREMENT	Decuir									
								WEAS	UKEMENI	RESULIS									
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power (dBm)	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHZ]	Power [dBm]	Power [abm]	Drift [aB]		Number							(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.05	0	00513	QPSK	1	0	18 mm	back	1:1	0.292	1.000	0.292	
707.50	23095	Mid	LTE Band 12	10	24.5	24.50	-0.11	1	00513	QPSK	25	0	18 mm	back	1:1	0.228	1.000	0.228	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.07	0	00513	QPSK	1	0	10 mm	top	1:1	0.341	1.000	0.341	
707.50	23095	Mid	LTE Band 12	10	24.5	24.50	0.03	1	00513	QPSK	25	0	10 mm	top	1:1	0.281	1.000	0.281	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.02	0	00513	QPSK	1	0	0 mm	right	1:1	0.109	1.000	0.109	
707.50	23095	Mid	LTE Band 12	10	24.5	24.50	-0.10	1	00513	QPSK	25	0	0 mm	right	1:1	0.095	1.000	0.095	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.00	0	00513	QPSK	1	0	5 mm	left	1:1	0.217	1.000	0.217	
707.50	23095	Mid	LTE Band 12	10	24.5	24.50	-0.08	1	00513	QPSK	25	0	5 mm	left	1:1	0.177	1.000	0.177	
707.50	23095	Mid	LTE Band 12	10	19.5	19.36	-0.12	0	00539	QPSK	1	25	0 mm	back	1:1	0.342	1.033	0.353	A4
707.50	23095	Mid	LTE Band 12	10	19.5	19.31	0.00	0	00539	QPSK	25	0	0 mm	back	1:1	0.320	1.045	0.334	
707.50	23095	Mid	LTE Band 12	10	19.5	19.36	0.13	0	00539	QPSK	1	25	0 mm	top	1:1	0.329	1.033	0.340	
707.50	23095	Mid	LTE Band 12	10	19.5	19.31	-0.08	0	00539	QPSK	25	0	0 mm	top	1:1	0.336	1.045	0.351	
707.50	23095	Mid	LTE Band 12	10	19.5	19.36	0.03	0	00539	QPSK	1	25	0 mm	left	1:1	0.277	1.033	0.286	
707.50								0	00539	QPSK	25	0	0 mm	left	1:1	0.279	1.045	0.292	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									•		•	•	Body		•			
	Spatial Peak													//kg (mW	•				
	Uncontrolled Exposure/General Population												average	ed over 1	gram				

Table 10-3 LTE Band 4 (AWS) Body SAR

	ETE Balla 4 (AWS) Body SAIT																		
								MEAS	UREMENT	RESULTS	3								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cl	1.		[MITE]	Power [dBm]	rower [dbiii]	Drift [db]		Number							(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.7	24.69	0.02	0	00513	QPSK	1	50	18 mm	back	1:1	0.267	1.002	0.268	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.7	23.57	0.01	1	1 00513 QPSK 50 25 18				18 mm	back	1:1	0.206	1.030	0.212	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.7	24.69	-0.02	0	0 00513 QPSK 1 50 10 mm to						1:1	0.684	1.002	0.685	A5
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.7	23.57	-0.09	1	00513	QPSK	50	25	10 mm	top	1:1	0.536	1.030	0.552	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.7	24.69	-0.05	0	00513	QPSK	1	50	5 mm	left	1:1	0.553	1.002	0.554	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.7	23.57	-0.18	1	00513	QPSK	50	25	5 mm	left	1:1	0.448	1.030	0.461	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.68	0.02	0	00539	QPSK	1	50	0 mm	back	1:1	0.666	1.005	0.669	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.57	0.04	0	00539	QPSK	50	50	0 mm	back	1:1	0.682	1.030	0.702	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.68	-0.14	0	00539	QPSK	1	50	0 mm	top	1:1	0.340	1.005	0.342	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.57	-0.08	0	00539	QPSK	50	50	0 mm	top	1:1	0.340	1.030	0.350	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.68	-0.13	0	00539	QPSK	1	50	0 mm	left	1:1	0.157	1.005	0.158	
1732.50	1732.50 20175 Md LTE Band 4 (AWS) 20 14.7 14.57 0.14							0	00539	QPSK	50	50	0 mm	left	1:1	0.163	1.030	0.168	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											·		Body	<u> </u>		·	·	
	Spatial Peak												1.6 W	/kg (mW	//g)				
	Uncontrolled Exposure/General Population										-		average	d over 1	gram				

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Page 44 of 63		
0Y1601280173-R1.ZNF						
16 DCTECT Engineering Laboratory Inc.				DEV/ 17 O M		

Table 10-4 LTE Band 2 (PCS) Body SAR

								MEAS		RESULTS									
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[WITZ]	Power [dBm]	rower [ubili]	Driit [ubj		Number							(W/kg)		(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.19	0.06	0	00513	QPSK	1	50	18 mm	back	1:1	0.347	1.002	0.348	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	23.14	0.05	1	00513	QPSK	50	50	18 mm	back	1:1	0.308	1.014	0.312	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.19	-0.12	0	00513	QPSK	1	50	10 mm	top	1:1	0.964	1.002	0.966	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.2	24.19	-0.12	0	00513	QPSK	1	50	10 mm	top	1:1	1.080	1.002	1.082	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.15	-0.01	0	00513	QPSK	1	50	10 mm	top	1:1	1.130	1.012	1.144	A6
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.2	23.08	0.00	1	00513	QPSK	50	0	10 mm	top	1:1	0.807	1.028	0.830	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.01	-0.11	1	00513	QPSK	50	25	10 mm	top	1:1	0.821	1.045	0.858	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	23.14	-0.07	1	00513	QPSK	50	50	10 mm	top	1:1	0.863	1.014	0.875	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	23.09	-0.19	1	00513	QPSK	100	0	10 mm	top	1:1	0.857	1.026	0.879	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.19	0.03	0	00513	QPSK	1	50	5 mm	left	1:1	0.578	1.002	0.579	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	23.14	-0.06	1	00513	QPSK	50	50	5 mm	left	1:1	0.465	1.014	0.472	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	12.7	12.59	0.11	0	00539	QPSK	1	0	0 mm	back	1:1	0.583	1.026	0.598	
1900.00	19100	High	LTE Band 2 (PCS)	20	12.7	12.56	0.12	0	00539	QPSK	50	0	0 mm	back	1:1	0.605	1.033	0.625	
1900.00	19100	High	LTE Band 2 (PCS)	20	12.7	12.57	0.11	0	00539	QPSK	100	0	0 mm	back	1:1	0.581	1.030	0.598	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	12.7	12.59	-0.12	0	00539	QPSK	1	0	0 mm	top	1:1	0.457	1.026	0.469	
1900.00	19100	High	LTE Band 2 (PCS)	20	12.7	12.56	-0.12	0	00539	QPSK	50	0	0 mm	top	1:1	0.493	1.033	0.509	
1900.00	19100	High	LTE Band 2 (PCS)	20	12.7	12.57	-0.13	0	00539	QPSK	100	0	0 mm	top	1:1	0.489	1.030	0.504	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	12.7	12.59	0.09	0	00539	QPSK	1	0	0 mm	left	1:1	0.124	1.026	0.127	
1900.00	19100	High	LTE Band 2 (PCS)	20	12.7	12.56	0.12	0	00539	QPSK	50	0	0 mm	left	1:1	0.120	1.033	0.124	
1900.00	19100	High	LTE Band 2 (PCS)	20	12.7	12.57	0.19	0	00539	QPSK	100	0	0 mm	left	1:1	0.119	1.030	0.123	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.15	0.00	0	00513	QPSK	1	50	10 mm	top	1:1	0.994	1.012	1.006	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							,						Body	•				
	Spatial Peak													//kg (mW	•				
			Incontrolled Expo	sure/Genera							average	ed over 1	gram						

Note: Blue entries represent variability measurement

Table 10-5 Bluetooth Body SAR

	2.00.00														
						MEASU	REMENT	RESUI	LTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)		(W/kg)	
2441	39	Bluetooth	FHSS	10.0	9.90	-0.03	0 mm	00638	1	back	1:1	0.064	1.023	0.065	
2441	39	Bluetooth	FHSS	10.0	9.90	0.02	0 mm	00638	1	top	1:1	0.077	1.023	0.079	A7
2441	39	Bluetooth	FHSS	10.0	9.90	0.16	0 mm	00638	1	right	1:1	0.036	1.023	0.037	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Е	Body			
	Spatial Peak										1.6 W/l	kg (mW/g)			
		Uncontrolled						averaged	over 1 gram						

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 45 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 45 of 63

Table 10-6 WLAN Body SAR

								JREMEN									
FREQU	IFNCY			D day labe	Maximum	0			Device			Duty	SAR (1g)	0	0	Reported SAR	
MHz	Ch.	Mode	Service	Bandwidth [MHz]	Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Serial Number	Data Rate (Mbps)	Side	Cycle (%)	(W/kg)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	(1g) (W/kg)	Plot #
2437	6	802.11b	DSSS	22	21.0	20.39	-0.19	12 mm	00638	1	back	99.0	0.272	1.151	1.010	0.316	
2437	6	802.11b	DSSS	22	21.0	20.39	0.02	5 mm	00638	1	top	99.0	0.555	1.151	1.010	0.645	
2437	6	802.11b	DSSS	22	21.0	20.39	0.05	10 mm	00638	1	top	99.0	0.263	1.151	1.010	0.306	
2437	6	802.11b	DSSS	22	21.0	20.39	0.00	6 mm	00638	1	right	99.0	0.485	1.151	1.010	0.564	
2412	1	802.11b	DSSS	22	14.5	14.46	0.05	0 mm	00620	1	back	99.0	0.824	1.009	1.010	0.839	
2437	6	802.11b	DSSS	22	14.5	14.46	0.03	0 mm	00620	1	back	99.0	0.873	1.009	1.010	0.890	
2462	11	802.11b	DSSS	22	14.5	14.41	0.05	0 mm	00620	1	back	99.0	0.874	1.021	1.010	0.901	A8
2437	6	802.11b	DSSS	22	14.5	14.46	0.18	0 mm	00620	1	top	99.0	0.635	1.009	1.010	0.647	
2437	6	802.11b	DSSS	22	14.5	14.46	0.07	0 mm	00620	1	right	99.0	0.392	1.009	1.010	0.400	
2462	11	802.11b	DSSS	22	14.5	14.41	-0.11	0 mm	00620	1	back	99.0	0.797	1.021	1.010	0.822	
5300	60	802.11a	OFDM	20	19.0	18.44	0.18	12 mm	00638	6	back	95.5	0.080	1.138	1.047	0.095	
5260	52	802.11a	OFDM	20	19.0	18.39	0.05	5 mm	00638	6	top	95.5	0.965	1.151	1.047	1.163	
5300	60	802.11a	OFDM	20	19.0	18.44	0.11	5 mm	00638	6	top	95.5	0.969	1.138	1.047	1.155	A9
5300	60	802.11a	OFDM	20	19.0	18.44	0.02	10 mm	00638	6	top	95.5	0.504	1.138	1.047	0.601	
5300	60	802.11a	OFDM	20	19.0	18.44	0.21	6 mm	00638	6	right	95.5	0.169	1.138	1.047	0.201	
5310	62	802.11n	OFDM	40	11.5	10.54	0.01	0 mm	00620	13.5	back	90.7	0.398	1.247	1.103	0.547	
5270	54	802.11n	OFDM	40	11.5	10.45	0.17	0 mm	00620	13.5	top	90.7	0.558	1.274	1.103	0.784	
5310	62	802.11n	OFDM	40	11.5	10.54	0.14	0 mm	00620	13.5	top	90.7	0.635	1.247	1.103	0.874	
5310	62	802.11n	OFDM	40	11.5	10.54	0.17	0 mm	00620	13.5	right	90.7	0.084	1.247	1.103	0.116	
5700	140	802.11a	OFDM	20	19.0	18.23	0.10	12 mm	00638	6	back	95.5	0.143	1.194	1.047	0.179	
5580	116	802.11a	OFDM	20	19.0	18.05	0.02	5 mm	00638	6	top	95.5	0.502	1.245	1.047	0.654	
5700	140	802.11a	OFDM	20	19.0	18.23	0.08	5 mm	00638	6	top	95.5	0.955	1.194	1.047	1.194	
5700	140	802.11a	OFDM	20	19.0	18.23	0.05	10 mm	00638	6	top	95.5	0.471	1.194	1.047	0.588	
5700	140	802.11a	OFDM	20	19.0	18.23	0.18	6 mm	00638	6	right	95.5	0.212	1.194	1.047	0.265	
5550	110	802.11n	OFDM	40	11.5	10.21	0.01	0 mm	00620	13.5	back	90.7	0.223	1.346	1.103	0.331	
5550	110	802.11n	OFDM	40	11.5	10.21	0.16	0 mm	00620	13.5	top	90.7	0.218	1.346	1.103	0.323	
5550	110	802.11n	OFDM	40	11.5	10.21	0.16	0 mm	00620	13.5	right	90.7	0.051	1.346	1.103	0.076	
5785	157	802.11a	OFDM	20	19.0	18.46	0.14	12 mm	00638	6	back	95.5	0.161	1.132	1.047	0.191	
5745	149	802.11a	OFDM	20	19.0	18.42	0.02	5 mm	00638	6	top	95.5	0.932	1.143	1.047	1.115	
5785	157	802.11a	OFDM	20	19.0	18.46	0.03	5 mm	00638	6	top	95.5	0.944	1.132	1.047	1.119	
5785	157	802.11a	OFDM	20	19.0	18.46	0.05	10 mm	00638	6	top	95.5	0.479	1.132	1.047	0.567	
5785	157	802.11a	OFDM	20	19.0	18.46	0.14	6 mm	00638	6	right	95.5	0.216	1.132	1.047	0.257	
5795	159	802.11n	OFDM	40	11.5	10.41	-0.10	0 mm	00620	13.5	back	90.7	0.400	1.285	1.103	0.567	
5795	159	802.11n	OFDM	40	11.5	10.41	-0.17	0 mm	00620	13.5	top	90.7	0.421	1.285	1.103	0.597	
5795	159	802.11n	OFDM	40	11.5	10.41	0.09	0 mm	00620	13.5	right	90.7	0.104	1.285	1.103	0.148	
5300	60	802.11a	OFDM	20	19.0	18.44	0.10	5 mm	00638	6	top	95.5	0.965	1.138	1.047	1.150	
5700	140	802.11a	OFDM	20	19.0	18.23	0.11	5 mm	00638	6	top	95.5	0.927	1.194	1.047	1.159	
5785	157	802.11a	OFDM	20	19.0	18.46	0.06	5 mm	00638	6	top	95.5	0.934	1.132	1.047	1.107	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Body				
		Uncontro		atial Peak sure/Gene	ral Population	1							1.6 W/kg (mW eraged over 1 o				

Note: Blue entries represent variability measurement

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 46 of 63
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Fage 46 01 63
016 PCTEST Engineering Laboratory, Ir	ic.			REV 17.0 M

10.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 12 for variability analysis.
- 7. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determine SAR test exclusion for adjacent edge configurations.

UMTS Notes:

- 1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.6.4 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 7.6.5 for more information.

FCC ID: ZNFV521	PCTEST NOTATION INC.	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 47 of C2
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 47 of 63
16 PCTEST Engineering Laboratory Inc	·	·		REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 5. Per manufacturer request, WLAN SAR was additionally tested at maximum power at 10mm for top edge.

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 at 60
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 48 of 63

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

11.3 Body Simultaneous Transmission Analysis

Table 11-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.342	0.901	1.243
	UMTS 1750	0.414	0.901	1.315
Body	UMTS 1900	0.402	0.901	1.303
Войу	LTE Band 12	0.353	0.901	1.254
	LTE Band 4 (AWS)	0.702	0.901	See Table 11-2
	LTE Band 2 (PCS)	0.625	0.901	1.526

Table 11-2
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 0.0 cm)

Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	Back	0.702	0.901	See Note 1	0.03
	Тор	0.350	0.647	0.997	N/A
Body SAR	Bottom	0.400	0.400	0.800	N/A
	Right	0.400	0.400	0.800	N/A
	Left	0.168	0.400	0.568	N/A

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 49 of 63

Table 11-3 Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.342	0.874	1.216
	UMTS 1750	0.414	0.874	1.288
Body	UMTS 1900	0.402	0.874	1.276
Бойу	LTE Band 12	0.353	0.874	1.227
	LTE Band 4 (AWS)	0.702	0.874	1.576
	LTE Band 2 (PCS)	0.625	0.874	1.499

Table 11-4 Simultaneous Transmission Scenario with Bluetooth (Body at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.342	0.079	0.421
	UMTS 1750	0.414	0.079	0.493
Pody	UMTS 1900	0.402	0.079	0.481
Body	LTE Band 12	0.353	0.079	0.432
	LTE Band 4 (AWS)	0.702	0.079	0.781
	LTE Band 2 (PCS)	0.625	0.079	0.704

Table 11-5 Simultaneous Transmission Scenario with 2.4 GHz (Back Side at 1.2 cm)

officialization of the control of th					
Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
Back Side	UMTS 850	0.300	0.316	0.616	
Back Side	UMTS 1750	0.414	0.316	0.730	
Back Side	UMTS 1900	0.402	0.316	0.718	
Back Side	LTE Band 12	0.353	0.316	0.669	
Back Side	LTE Band 4 (AWS)	0.702	0.316	1.018	
Back Side	LTE Band 2 (PCS)	0.625	0.316	0.941	

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 50 of 63

Table 11-6 Simultaneous Transmission Scenario with 5 GHz (Back Side at 1.2 cm)

Jilliultarieous	Dack Slac a	at 1.2 Ciii <i>)</i>		
Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	UMTS 850	0.300	0.191	0.491
Back Side	UMTS 1750	0.414	0.191	0.605
Back Side	UMTS 1900	0.402	0.191	0.593
Back Side	LTE Band 12	0.353	0.191	0.544
Back Side	LTE Band 4 (AWS)	0.702	0.191	0.893
Back Side	LTE Band 2 (PCS)	0.625	0.191	0.816

Table 11-7 Simultaneous Transmission Scenario with 2.4 GHz (Back Side at 1.8 cm)

Cilitata i Codo Tranomico i Cochano With 211 Gill (Back Ciae at 110 cili)					
Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
Back Side	UMTS 850	0.045	0.316	0.361	
Back Side	UMTS 1750	0.293	0.316	0.609	
Back Side	UMTS 1900	0.431	0.316	0.747	
Back Side	LTE Band 12	0.292	0.316	0.608	
Back Side	LTE Band 4 (AWS)	0.268	0.316	0.584	
Back Side	LTE Band 2 (PCS)	0.348	0.316	0.664	

Table 11-8 Simultaneous Transmission Scenario with 5 GHz (Back Side at 1.8 cm)

Official Cous	Duon Cluc t	at 1.0 0111 <i>)</i>		
Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	UMTS 850	0.045	0.191	0.236
Back Side	UMTS 1750	0.293	0.191	0.484
Back Side	UMTS 1900	0.431	0.191	0.622
Back Side	LTE Band 12	0.292	0.191	0.483
Back Side	LTE Band 4 (AWS)	0.268	0.191	0.459
Back Side	LTE Band 2 (PCS)	0.348	0.191	0.539

FCC ID: ZNFV521	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Danie 51 - 600
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 51 of 63
16 PCTEST Engineering Laboratory, I	Inc.	-		REV 17.0 M

Table 11-9 Simultaneous Transmission Scenario with Bluetooth (Back Side at 1.8 cm)

ominantaneous transmission occinano with blactooth (back olde at 1:0 om)						
Configuration	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)		
Back Side	UMTS 850	0.045	0.065	0.110		
Back Side	UMTS 1750	0.293	0.065	0.358		
Back Side	UMTS 1900	0.431	0.065	0.496		
Back Side	LTE Band 12	0.292	0.065	0.357		
Back Side	LTE Band 4 (AWS)	0.268	0.065	0.333		
Back Side	LTE Band 2 (PCS)	0.348	0.065	0.413		

Table 11-10 Simultaneous Transmission Scenario with 2.4 GHz (Top Edge at 0.5 cm)

Cimulational Transmission Sections With Err Girl (10p Lage at 610 cm)					
Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
Top Edge	UMTS 850	0.342	0.645	0.987	
Top Edge	UMTS 1750	0.274	0.645	0.919	
Top Edge	UMTS 1900	0.342	0.645	0.987	
Top Edge	LTE Band 12	0.351	0.645	0.996	
Top Edge	LTE Band 4 (AWS)	0.350	0.645	0.995	
Top Edge	LTE Band 2 (PCS)	0.509	0.645	1.154	

Table 11-11 Simultaneous Transmission Scenario with 5 GHz (Top Edge at 0.5 cm)

Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
Top Edge	UMTS 850	0.342	1.194	1.536	N/A
Top Edge	UMTS 1750	0.274	1.194	1.468	N/A
Top Edge	UMTS 1900	0.342	1.194	1.536	N/A
Top Edge	LTE Band 12	0.351	1.194	1.545	N/A
Top Edge	LTE Band 4 (AWS)	0.350	1.194	1.544	N/A
Top Edge	LTE Band 2 (PCS)	0.509	1.194	See Note 1	0.03

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(L) LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 52 of 63
16 PCTEST Engineering Laboratory, I	nc.			REV 17.0 M

Table 11-12 Simultaneous Transmission Scenario with 2.4 GHz (Top Edge at 1.0 cm)

emilitario de l'anomico de l'an					
Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
Top Edge	UMTS 850	0.395	0.306	0.701	
Top Edge	UMTS 1750	0.608	0.306	0.914	
Top Edge	UMTS 1900	1.029	0.306	1.335	
Top Edge	LTE Band 12	0.341	0.306	0.647	
Top Edge	LTE Band 4 (AWS)	0.685	0.306	0.991	
Top Edge	LTE Band 2 (PCS)	1.144	0.306	1.450	

Table 11-13 Simultaneous Transmission Scenario with 5 GHz (Top Edge at 1.0 cm)

Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
Top Edge	UMTS 850	0.395	0.601	0.996	N/A
Top Edge	UMTS 1750	0.608	0.601	1.209	N/A
Top Edge	UMTS 1900	1.029	0.601	See Note 1	0.03
Top Edge	LTE Band 12	0.341	0.601	0.942	N/A
Top Edge	LTE Band 4 (AWS)	0.685	0.601	1.286	N/A
Top Edge	LTE Band 2 (PCS)	1.144	0.601	See Note 1	0.03

Table 11-14 Simultaneous Transmission Scenario with Bluetooth (Top Edge at 1.0 cm)

omiditariosas i tarismosism eseriario mitri bidetestii (16p 24g at 116 cm)						
Configuration	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)		
Top Edge	UMTS 850	0.395	0.079	0.474		
Top Edge	UMTS 1750	0.608	0.079	0.687		
Top Edge	UMTS 1900	1.029	0.079	1.108		
Top Edge	LTE Band 12	0.341	0.079	0.420		
Top Edge	LTE Band 4 (AWS)	0.685	0.079	0.764		
Top Edge	LTE Band 2 (PCS)	1.144	0.079	1.223		

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 53 of 63
16 PCTEST Engineering Laboratory, In	nc.			REV 17.0 M

Table 11-15 Simultaneous Transmission Scenario with 2.4 GHz (Left Edge at 0.5 cm)

emanario da manomo e e e e e e e e e e e e e e e e e e					
Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
Left Edge	UMTS 850	0.261	0.400	0.661	
Left Edge	UMTS 1750	0.546	0.400	0.946	
Left Edge	UMTS 1900	0.620	0.400	1.020	
Left Edge	LTE Band 12	0.217	0.400	0.617	
Left Edge	LTE Band 4 (AWS)	0.554	0.400	0.954	
Left Edge	LTE Band 2 (PCS)	0.579	0.400	0.979	

Table 11-16 Simultaneous Transmission Scenario with 5 GHz (Left Edge at 0.5 cm)

Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Left Edge	UMTS 850	0.261	0.400	0.661
Left Edge	UMTS 1750	0.546	0.400	0.946
Left Edge	UMTS 1900	0.620	0.400	1.020
Left Edge	LTE Band 12	0.217	0.400	0.617
Left Edge	LTE Band 4 (AWS)	0.554	0.400	0.954
Left Edge	LTE Band 2 (PCS)	0.579	0.400	0.979

Table 11-17 Simultaneous Transmission Scenario with Bluetooth (Left Edge at 0.5 cm)

Configuration	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Left Edge	UMTS 850	0.261	0.400	0.661
Left Edge	UMTS 1750	0.546	0.400	0.946
Left Edge	UMTS 1900	0.620	0.400	1.020
Left Edge	<u> </u>		0.400	0.617
Left Edge	Left Edge LTE Band 4 (AWS)		0.400	0.954
Left Edge	Left Edge LTE Band 2 (PCS)		0.400	0.979

FCC ID: ZNFV521	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Danie 54 at 60
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 54 of 63
16 PCTEST Engineering Laboratory, I	nc.			REV 17.0 M

Table 11-18
Simultaneous Transmission Scenario with 2.4 GHz (Right Edge at 0.6 cm)

	(9			
Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Right Edge	UMTS 850	0.400	0.564	0.964
Right Edge	UMTS 1750	0.400	0.564	0.964
Right Edge	UMTS 1900	0.400	0.564	0.964
Right Edge	LTE Band 12	0.109	0.564	0.673
Right Edge	LTE Band 4 (AWS)	0.400	0.564	0.964
Right Edge	LTE Band 2 (PCS)	0.400	0.564	0.964

Table 11-19
Simultaneous Transmission Scenario with 5 GHz (Right Edge at 0.6 cm)

Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Right Edge	UMTS 850	0.400	0.265	0.665
Right Edge	UMTS 1750	0.400	0.265	0.665
Right Edge	UMTS 1900	0.400	0.265	0.665
Right Edge	LTE Band 12	0.109	0.265	0.374
Right Edge	LTE Band 4 (AWS)	0.400	0.265	0.665
Right Edge	LTE Band 2 (PCS)	0.400	0.265	0.665

Table 11-20
Simultaneous Transmission Scenario with Bluetooth (Right Edge at 0.6 cm)

Configuration	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Right Edge	UMTS 850	0.400	0.037	0.437
Right Edge	UMTS 1750	0.400	0.037	0.437
Right Edge	UMTS 1900	0.400	0.037	0.437
Right Edge			0.037	0.146
Right Edge	Right Edge LTE Band 4 (AWS)		0.037	0.437
Right Edge	LTE Band 2 (PCS)	0.400	0.037	0.437

Note 1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v05. See Section 11.4 for detailed SPLS ratio analysis.

Note 2: For SAR summations for some simultaneous scenarios, the reported SAR values at more conservative distances were used for simultaneous transmission analysis when SAR testing was not performed at the distance specified.

Note 3: When the antenna separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine the simultaneous transmission SAR exclusion for test positions excluded per FCC KDB Publication 447498 D01v06.

•	100 2011001				
	FCC ID: ZNFV521	@ PCTEST	SAR EVALUATION REPORT		Reviewed by:
		Y SMOINTERING CAROKATORY, INC.			Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Done EE of CO
	0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 55 of 63
~ 4	O DOTTOT Familia and all alternations last				DEV 47.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

11.4 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v05r02, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g and 4 W/kg for 10g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is

≤ 0.04 for 1g and ≤0.10 for 10g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

SPLS Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$

SPLSR Evaluation and Analysis 11.4.1

Table 11-18 Peak SAR Locations for Back Side and Top Edge

Mode/Band	x (mm)	y (mm)	Reported SAR (W/kg)
5 GHz WLAN Top Edge Max 5 mm	-15.50	43.00	1.194
LTE Band 2 (PCS) Top Edge Reduced 0 mm	-20.00	-30.00	0.509
LTE Band 4 (AWS) Back Side Reduced 0 mm	-17.00	-27.00	0.702
2.4 GHz WLAN Back Side Reduced 0 mm	-26.40	50.40	0.901
UMTS 1900 Top Edge Max 10 mm	-18.50	-34.50	1.029
LTE Band 2 (PCS) Top Edge Max 10 mm	-17.00	-38.00	1.144
5 GHz WLAN Top Edge Max 10 mm	-15.00	44.00	0.601

Table 11-19 Back Side and Top Edge SAR Sum to Peak Location Separation Ratio Calculations

Antenna Pair			ne 1g SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	a b		D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
LTE Band 4 (AWS) Back Side Reduced 0 mm	2.4 GHz WLAN Back Side Reduced 0 mm	0.702	0.901	1.603	77.97	0.03	1
LTE Band 2 (PCS) Top Edge Reduced 0 mm 5 GHz WLAN Top Edge Max 5 mm		0.509	1.194	1.703	73.14	0.03	2
UMTS 1900 Top Edge Max 10 mm 5 GHz WLAN Top Edge Max 10 mm		1.029	0.601	1.63	78.58	0.03	3
LTE Band 2 (PCS) Top Edge Max 10 mm 5 GHz WLAN Top Edge Max 10 mm		1.144	0.601	1.745	82.02	0.03	4

FCC ID: ZNFV521	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 56 of 63

Table 11-20
Back Side and Top Edge SAR Sum to Peak Location Separation Ratio Plots

12.4 GHz WIAN Task ride Reduced 0 mm

15 GHz WIAN Task ride Reduced 0 mm

15 GHz WIAN Task ride Reduced 0 mm

1 TE Band 4 Back Side Reduced 0 mm

1 TE Band 2 (PCS) Top Edge Reduced 0 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

1 TE Band 2 (PCS) Top Edge Max 10 mm

11.5 Simultaneous Transmission Conclusion

3

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 57 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 57 of 63

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 12-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS													
Band	FREQUENCY		Mode Service Dat	Data Rate (Mbps)	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio	
	MHz	Ch.			((W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1900.00	19100	LTE Band 2 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	N/A	top	10 mm	1.130	0.994	1.14	N/A	N/A	N/A	N/A
2450	2462.00	11	802.11b, 22 MHz Bandwidth	DSSS	1	back	0 mm	0.874	0.797	1.10	N/A	N/A	N/A	N/A
5300	5300.00	60	802.11a, 20 MHz Bandwidth	OFDM	6	top	5 mm	0.969	0.965	1.00	N/A	N/A	N/A	N/A
5600	5700.00	140	802.11a, 20 MHz Bandwidth	OFDM	6	top	5 mm	0.955	0.927	1.03	N/A	N/A	N/A	N/A
5800	5785.00	157	802.11a, 20 MHz Bandwidth	OFDM	6	top	5 mm	0.944	0.934	1.01	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									Во	dy			
	Spatial Peak								1.6 W/kg	(mW/g)				
			Uncontrolled Exposure/General	Population					a	veraged o	ver 1 gram			

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFV521	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 58 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

13

EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/15/2015	Annual	3/15/2016	MY45470194
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8648D	(9kHz-4GHz) Signal Generator	3/15/2015	Annual	3/15/2016	3629U00687
Agilent	E4438C	ESG Vector Signal Generator	3/13/2015	Annual	3/13/2016	MY42082385
Agilent	E4432B	ESG-D Series Signal Generator	3/16/2015	Annual	3/16/2016	US40053896
Agilent	N9020A	MXA Signal Analyzer	11/5/2015	Annual	11/5/2016	US46470561
Agilent	N5182A	MXG Vector Signal Generator	3/16/2015	Annual	3/16/2016	MY47420800
Agilent	8753ES	Network Analyzer	3/20/2015	Annual	3/20/2016	MY40001472
Agilent	8753ES	S-Parameter Network Analyzer	3/12/2015	Annual	3/12/2016	MY40000670
Agilent	E5515C	Wireless Communications Test Set	6/18/2015	Biennial	6/18/2017	GB41450275
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433977
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433978
Anritsu	ML2438A	Power Meter	3/13/2015	Annual	3/13/2016	1070030
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2016	1328004
Anritsu	ML2496A	Power Meter	3/13/2015	Annual	3/13/2016	1351001
Anritsu	MA2481A	Power Sensor	3/10/2015	Annual	3/10/2016	2400
Anritsu	MA2481A	Power Sensor	3/10/2015	Annual	3/10/2016	5821
Anritsu	MA2411B	Pulse Power Sensor	8/3/2015	Annual	8/3/2016	1126066
Anritsu	MA2411B	Pulse Power Sensor	3/13/2015	Annual	3/13/2016	1207470
Anritsu	MT8820C	Radio Communication Analyzer	6/12/2015	Annual	6/12/2016	6201240328
Anritsu	MT8820C	Radio Communication Analyzer	12/4/2015	Annual	12/4/2016	6201300731
Anritsu	MA24106A	USB Power Sensor	5/29/2015	Annual	5/29/2016	1231535
Anritsu	MA24106A	USB Power Sensor	5/29/2015	Annual	5/29/2016	1231538
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Control Company	4040	Digital Thermometer	3/18/2015	Biennial	3/18/2017	150194895
Control Company	4040	Digital Thermometer	3/18/2015	Biennial	3/18/2017	150194896
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053029
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053025
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMW500	Radio Communication tester	5/5/2015	Annual	5/5/2016	140144
Rohde & Schwarz	CMW500	Radio Communication Tester	4/8/2015	Annual	4/8/2016	140148
Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	22313
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/20/2015	Annual	10/20/2016	1091
SPEAG	D750V3	750 MHz Dipole	3/11/2015	Annual	3/11/2016	1054
SPEAG	D835V2	835 MHz SAR Dipole	4/13/2015	Annual	4/13/2016	4d119
SPEAG	D1750V2	1750 MHz SAR Dipole	4/15/2015	Annual	4/15/2016	1051
SPEAG	D1900V2	1900 MHz SAR Dipole	7/14/2015	Annual	7/14/2016	5d149
SPEAG	D2450V2	2450 MHz SAR Dipole	8/20/2015	Annual	8/20/2016	719
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/17/2015	Annual	2/17/2016	1120
SPEAG	ES3DV3	SAR Probe	5/20/2015	Annual	5/20/2016	3263
SPEAG	ES3DV3	SAR Probe	11/17/2015	Annual	11/17/2016	3334
SPEAG	ES3DV2	SAR Probe	8/26/2015	Annual	8/26/2016	3022
SPEAG	ES3DV3	SAR Probe	10/29/2015	Annual	10/29/2016	3333
SPEAG	ES3DV3	SAR Probe	3/19/2015	Annual	3/19/2016	3319
SPEAG	EX3DV4	SAR Probe	4/23/2015	Annual	4/23/2016	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/17/2015	Annual	6/17/2016	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/11/2015	Annual	11/11/2016	1415
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/18/2015	Annual	2/18/2016	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/27/2015	Annual	10/27/2016	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2015	Annual	3/13/2016	1368
	DAE4	Dasy Data Acquisition Electronics	4/20/2015	Annual	4/20/2016	1407
SPEAG						

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFV521		SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 59 of 63

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

14 **MEASUREMENT UNCERTAINTIES**

Measurement System	a	С	d	e=	f	g	h =	i =	k	
Measurement System				f(d,k)			c x f/e	c x g/e		
Measurement System		Tol.	Prob.		Ci	Ci	1gm	10gms		
Measurement System 6.50 N. 1. 0. 1. 0. 1. 0. <td>Uncertainty Component</td> <td>(± %)</td> <td>Dist.</td> <td>Div.</td> <td>1gm</td> <td>10 gms</td> <td>u:</td> <td>u:</td> <td>V:</td>	Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u:	u:	V:	
Probe Calibration 6.55 N		. —,								
Axial Isotropy 0.25 N 1 0.7 0.7 0.2 0.2 ∞ Hemishperical Isotropy 1.3 N 1 0.7 0.7 0.9 0.9 ∞ Boundary Effect 2.0 R 1.73 1.0 1.0 1.2 1.2 ∞ Linearity 0.3 N 1 1.0 1.0 0.3 ∞ System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Measurement System									
Hemishperical Isotropy	Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞	
Boundary Effect 2.0 R 1.73 1.0 1.0 1.2 1.2 ∞	Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	∞	
Linearity 0.3 N 1 1.0 1.0 0.3 0.3 ∞ System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.1 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 8 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Noise 8 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 <td< td=""><td>Hemishperical Isotropy</td><td>1.3</td><td>Ν</td><td>1</td><td>0.7</td><td>0.7</td><td>0.9</td><td>0.9</td><td>∞</td></td<>	Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞	
System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.1 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 0.2 ∞ Probe Positioning w/respect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.0 1.0 1.0 <td>Boundary Effect</td> <td>2.0</td> <td>R</td> <td>1.73</td> <td>1.0</td> <td>1.0</td> <td>1.2</td> <td>1.2</td> <td>∞</td>	Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞	
Readout Electronics 0.3 N 1 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning Wrespect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 2.3 Test Sample Related Test Sample Positioning 2.7 N 1	Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	∞	
Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 0.2 ∞ Probe Positioning W/respect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation R 1.73 1.0 1.0 0.2 0.23 2.3 \$ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation R 1.73 1.0 1.0 1.0 2.3 2.3 \$ Test Sample Related 1.0 </td <td>System Detection Limits</td> <td>0.25</td> <td>R</td> <td>1.73</td> <td>1.0</td> <td>1.0</td> <td>0.1</td> <td>0.1</td> <td>∞</td>	System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞	
Integration Time	Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞	
RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning w/ respect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 2.3 ∞ Test Sample Related Test Sam	Response Time	8.0	R	1.73	1.0	1.0	0.5	0.5	×	
RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning w/ respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 2.3 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 2.3 ∞ Test Sample Related 5.0 R 1.73 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 1.7 5 Output Power Variation - SAR driff measurement 5.0 R 1.7	Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞	
Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning w/ respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Con	RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1. <i>7</i>	1.7	∞	
Probe Positioning w/ respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Erisance Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 1.5 <td colspan="2">RF Ambient Conditions - Reflections</td> <td>R</td> <td>1.73</td> <td>1.0</td> <td>1.0</td> <td>1.<i>7</i></td> <td>1.7</td> <td>œ</td>	RF Ambient Conditions - Reflections		R	1.73	1.0	1.0	1. <i>7</i>	1.7	œ	
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 © Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.78 0.71 1.5 1.4 ∞ Liquid Con	Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞	
Max. SAR Evaluation 4.0 R 1.73 1.0 2.3 2.3 2.3 Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - devi	Probe Positioning w/ respect to Phantom		R	1.73	1.0	1.0	3.9	3.9	× ×	
Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty		4.0	R	1.73	1.0	1.0	2.3	2.3	∞	
Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.64 0.43 1.8 1.2 ∞ Liq	Test Sample Related									
Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ <	Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35	
SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5	Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5	
Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - Temperature Unceritainty 0.6 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6 1.0 1.0 1.0 1.0 <td< td=""><td>Output Power Variation - SAR drift measurement</td><td>5.0</td><td>R</td><td>1.73</td><td>1.0</td><td>1.0</td><td>2.9</td><td>2.9</td><td>∞</td></td<>	Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞	
Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty 23.0 22.6 1 23.0 22.6 1	SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞	
Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Phantom & Tissue Parameters									
Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8	
Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.5 11.3 60 Expanded Uncertainty	Liquid Conductivity - measurement uncertainty	4.2	Ν	1	0.78	0.71	3.3	3.0	10	
Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.5 11.3 60 Expanded Uncertainty	Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10	
Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.5 11.3 60 Expanded Uncertainty 11.5 1		3.4	R	1.73	0.78	0.71	1.5	1.4	œ	
Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.5 11.3 60 Expanded Uncertainty 11.5 1	Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	œ	
Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6 □	, , , , , , , , , , , , , , , , , , , ,	5.0	R	1.73	0.64	0.43	1.8	1.2	×	
Combined Standard Uncertainty (k=1) Expanded Uncertainty k=2 11.5 11.3 60 22.6	7 0	5.0	R	1.73	0.60	0.49	1.7	1.4	×	
Expanded Uncertainty k=2 23.0 22.6	, ,		RSS			1	11.5	11.3	60	
, , , , , , , , , , , , , , , , , , , ,	<u>'</u>							22.6		
	(95% CONFIDENCE LEVEL)		·· -							

FCC ID: ZNFV521		SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet	Page 60 of 63

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFV521	PCTEST'	SAR EVALUATION REPORT ELG		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 01 -f 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 61 of 63

16 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano. Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFV521	PCTEST INDIVIDUAL TO THE POPULATION OF THE POPUL	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		, ,
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 62 of 63
16 PCTEST Engineering Laboratory	, Inc.			REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFV521	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -4 00
0Y1601280173-R1.ZNF	01/27/16 - 02/08/16	Portable Tablet		Page 63 of 63

APPENDIX A: SAR TEST DATA

DUT: ZNFV521; Type: Portable Tablet; Serial: 00554

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.005$ S/m; $\epsilon_r = 55.438$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

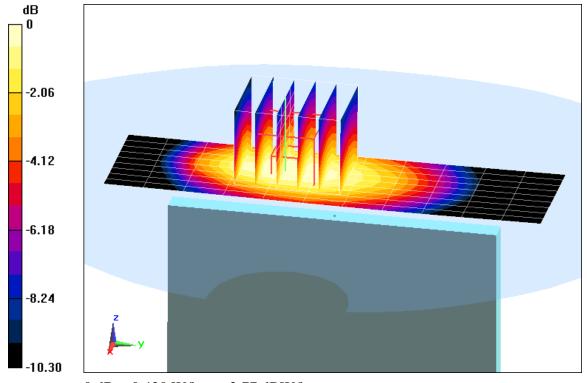
Test Date: 02-02-2016; Ambient Temp: 24.3°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(6.24, 6.24, 6.24); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Top Edge, Mid.ch


Area Scan (10x12x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.22 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.496 W/kg

SAR(1 g) = 0.374 W/kg

0 dB = 0.420 W/kg = -3.77 dBW/kg

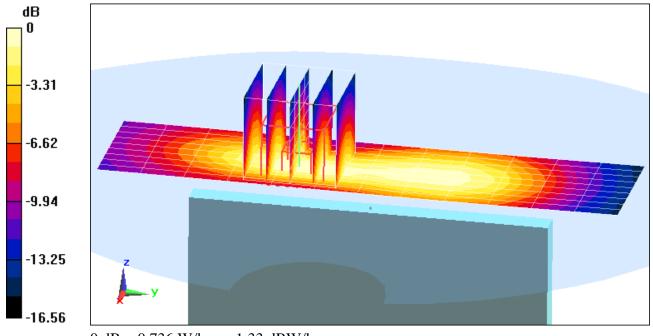
DUT: ZNFV521; Type: Portable Tablet; Serial: 00554

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.444$ S/m; $\epsilon_r = 51.562$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-28-2016; Ambient Temp: 23.8°C; Tissue Temp: 22.5°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: AWS UMTS, Body SAR, Top Edge, Mid.ch


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.54 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.590 W/kg

0 dB = 0.736 W/kg = -1.33 dBW/kg

DUT: ZNFV521; Type: Portable Tablet; Serial: 00554

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.582$ S/m; $\epsilon_r = 51.296$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

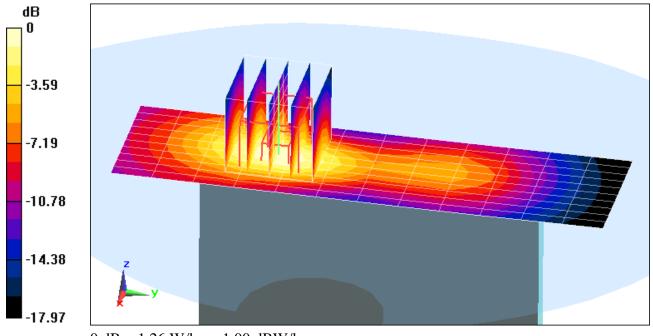
Test Date: 02-08-2016; Ambient Temp: 22.0°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3334; ConvF(4.84, 4.84, 4.84); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Top Edge, High.ch


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.79 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 1.01 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

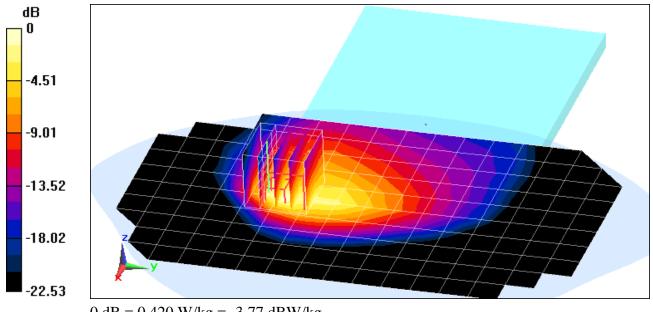
DUT: ZNFV521; Type: Portable Tablet; Serial: 00539

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body, Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.921 \text{ S/m}; \ \epsilon_r = 54.301; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-02-2016; Ambient Temp: 24.1°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.07, 6.07, 6.07); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.17 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.342 W/kg

0 dB = 0.420 W/kg = -3.77 dBW/kg

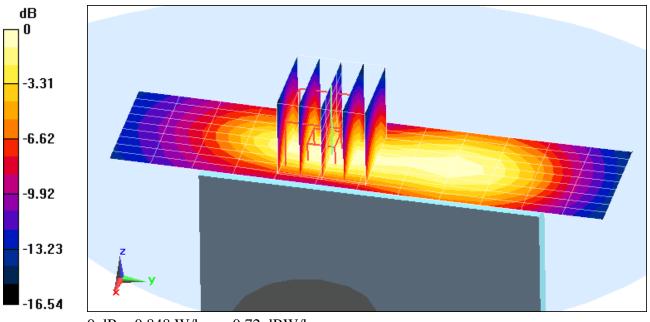
DUT: ZNFV521; Type: Portable Tablet; Serial: 00513

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.444 \text{ S/m}; \ \epsilon_r = 51.561; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-28-2016; Ambient Temp: 23.8°C; Tissue Temp: 22.5°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Top Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.52 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.684 W/kg

0 dB = 0.848 W/kg = -0.72 dBW/kg

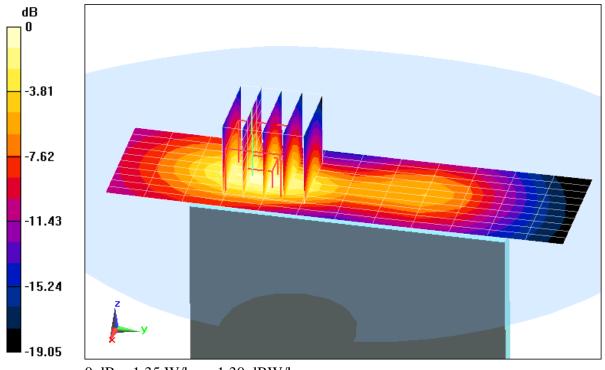
DUT: ZNFV521; Type: Portable Tablet; Serial: 00513

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.548 \text{ S/m}; \ \epsilon_r = 53.129; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-27-2016; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Top Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.25 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 1.13 W/kg

0 dB = 1.35 W/kg = 1.30 dBW/kg

DUT: ZNFV521; Type: Portable Tablet; Serial: 00638

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 1.972 \text{ S/m}; \ \epsilon_r = 51.861; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02-03-2016; Ambient Temp: 22.5°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Top Edge


Area Scan (11x16x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.600 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.077 W/kg

0 dB = 0.113 W/kg = -9.47 dBW/kg

DUT: ZNFV521; Type: Portable Tablet; Serial: 00620

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2 \text{ S/m}; \ \epsilon_r = 51.786; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

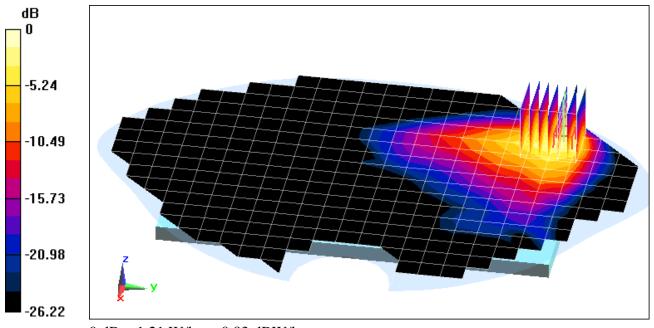
Test Date: 02-03-2016; Ambient Temp: 22.5°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Back Side


Area Scan (18x24x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.76 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.60 W/kg

SAR(1 g) = 0.874 W/kg

0 dB = 1.21 W/kg = 0.83 dBW/kg

DUT: ZNFV521; Type: Portable Tablet; Serial: 00638

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: $f = 5300 \text{ MHz}; \ \sigma = 5.552 \text{ S/m}; \ \epsilon_r = 48.025; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.5 cm

Test Date: 02-01-2016; Ambient Temp: 21.1°C; Tissue Temp: 20.8°C

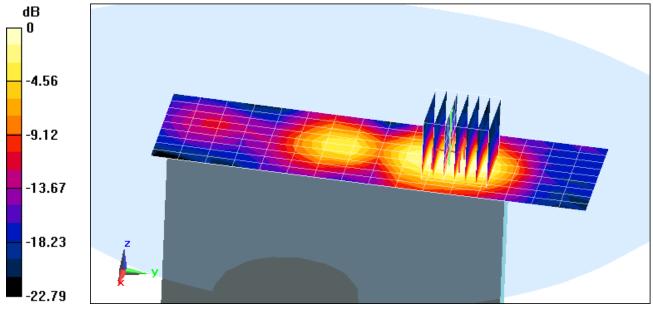
Probe: EX3DV4 - SN7357; ConvF(4.11, 4.11, 4.11); Calibrated: 4/23/2015;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/20/2015

Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Body SAR, Ch 60, 6 Mbps, Top Edge


Area Scan (10x17x1): Measurement grid: dx=5mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 13.88 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 0.969 W/kg

0 dB = 2.19 W/kg = 3.40 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.961 \text{ S/m}$; $\epsilon_r = 53.869$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

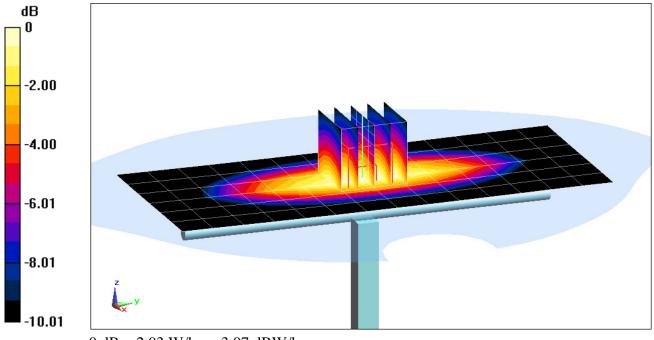
Test Date: 02-02-2016; Ambient Temp: 24.1°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.07, 6.07, 6.07); Calibrated: 5/20/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 6/17/2015

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.53 W/kg

SAR(1 g) = 1.75 W/kg

Deviation(1 g) = 2.58%

0 dB = 2.03 W/kg = 3.07 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

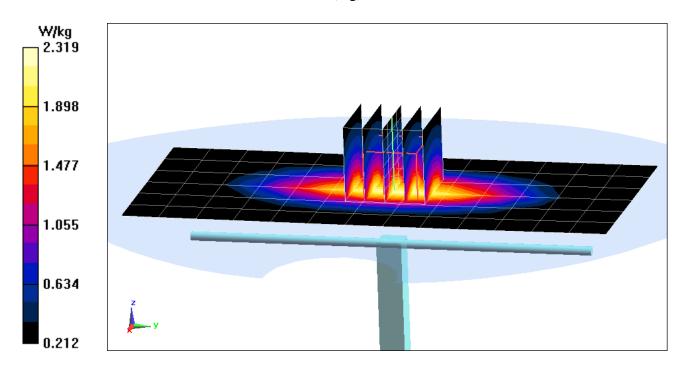
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 1.004 \text{ S/m}; \ \epsilon_r = 55.452; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-02-2016; Ambient Temp: 24.3°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(6.24, 6.24, 6.24); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.91 W/kg

SAR(1 g) = 1.99 W/kg

Deviation(1 g) = 8.15%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.462$ S/m; $\varepsilon_r = 51.492$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-28-2016; Ambient Temp: 23.8°C; Tissue Temp: 22.5°C

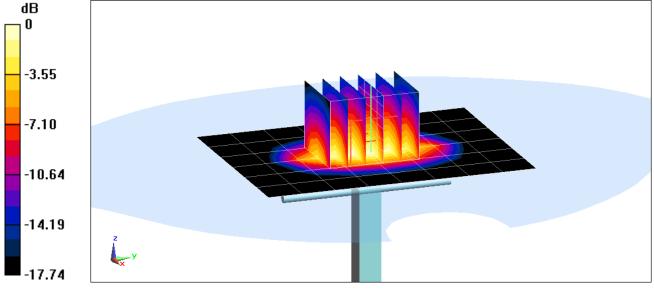
Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/18/2015

Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.82 W/kg

SAR(1 g) = 3.82 W/kg

Deviation(1 g) = 2.96%

0 dB = 4.80 W/kg = 6.81 dBW/kg

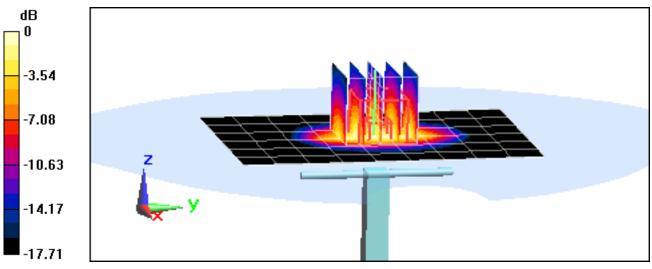
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.548 \text{ S/m}$; $\varepsilon_r = 53.129$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-27-2016; Ambient Temp: 23.5°C; Tissue Temp: 24.1°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.55 W/kg

SAR(1 g) = 4.24 W/kg

Deviation(1 g) = 4.95%

0 dB = 5.36 W/kg = 7.29 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

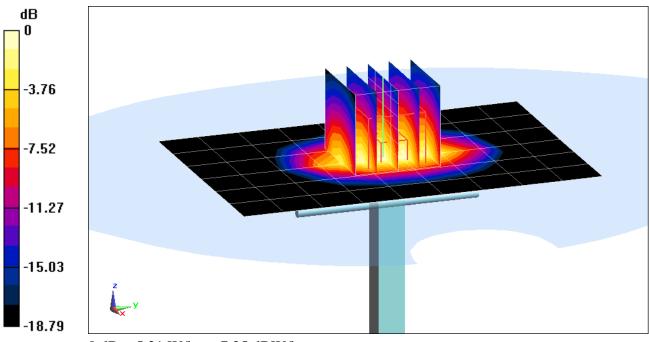
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.574 \text{ S/m}$; $\epsilon_r = 51.319$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-08-2016; Ambient Temp: 22.0°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3334; ConvF(4.84, 4.84, 4.84); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.63 W/kg

SAR(1 g) = 4.18 W/kg

Deviation(1 g) = 3.47%

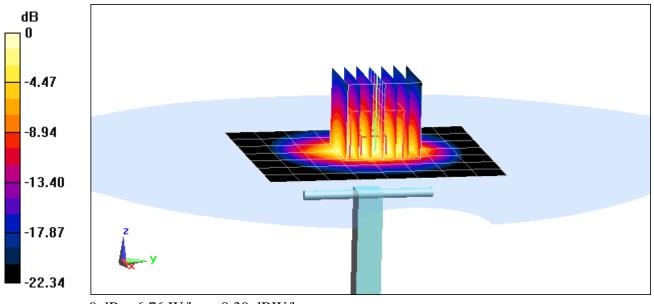
0 dB = 5.31 W/kg = 7.25 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.984 \text{ S/m}; \ \epsilon_r = 51.839; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-03-2016; Ambient Temp: 22.5°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015;


Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.26 W/kg Deviation(1 g) = 1.35%

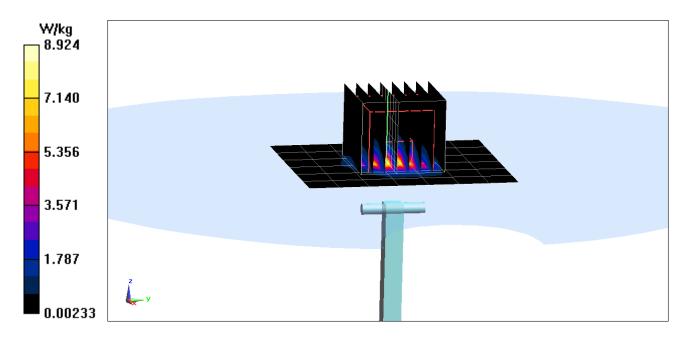
0 dB = 6.76 W/kg = 8.30 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5300 MHz; $\sigma = 5.552$ S/m; $\epsilon_r = 48.025$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-01-2016; Ambient Temp: 21.1°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7357; ConvF(4.11, 4.11, 4.11); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)


5300 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.4 W/kg

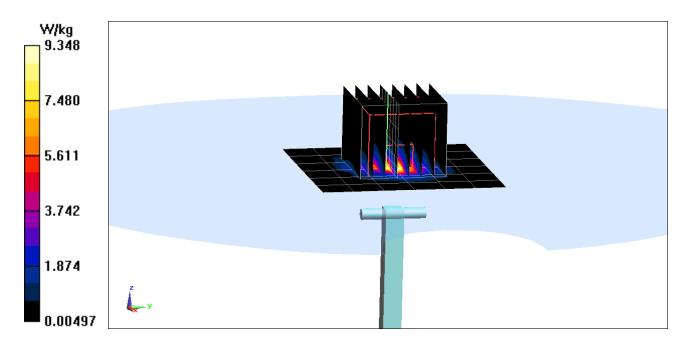
SAR(1 g) = 3.73 W/kgDeviation (1g) = -0.80 %

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5500 MHz; $\sigma = 5.813$ S/m; $\varepsilon_r = 47.623$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-01-2016; Ambient Temp: 21.3°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7357; ConvF(3.83, 3.83, 3.83); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


5500 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 3.83 W/kg Deviation(1 g) = -3.65%

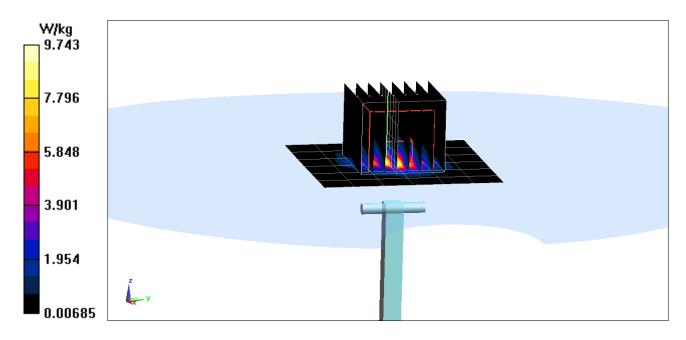
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5600 MHz; $\sigma = 5.949 \text{ S/m}$; $\varepsilon_r = 47.422$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-01-2016; Ambient Temp: 21.3°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7357; ConvF(3.72, 3.72, 3.72); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 3.95 W/kg

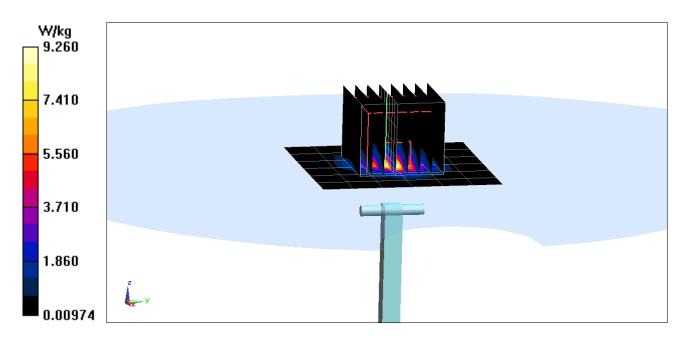
SAR(1 g) = 3.95 W/kg Deviation(1 g) = 2.07%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5800 MHz; $\sigma = 6.221$ S/m; $\varepsilon_r = 47.132$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-01-2016; Ambient Temp: 21.3°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7357; ConvF(3.82, 3.82, 3.82); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)


5800 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 3.71 W/kg Deviation(1 g) = -2.75%

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D750V3-1054_Mar15

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 11, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Michael Weber Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: March 11, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054_Mar15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

The following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and saliculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Page 3 of 8 Certificate No: D750V3-1054_Mar15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω - 0.6 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 2.6 jΩ
Return Loss	- 30.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
· · · · · · · · · · · · · · · · · · ·	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 08, 2011

Certificate No: D750V3-1054_Mar15

DASY5 Validation Report for Head TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

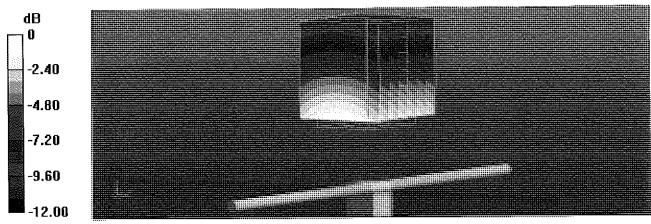
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

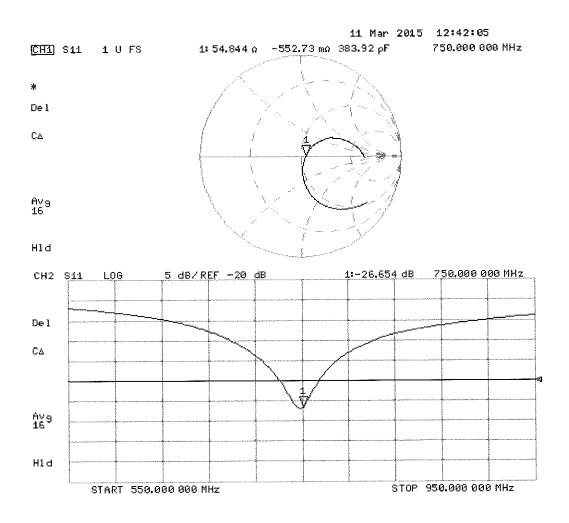
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.06 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.46 W/kg

0 dB = 2.46 W/kg = 3.91 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

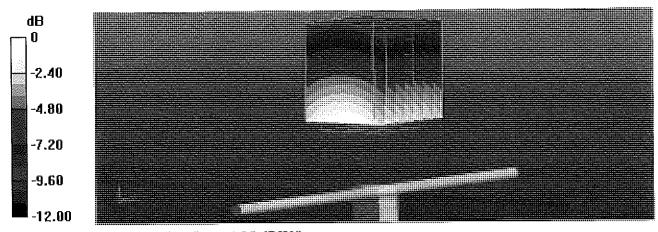
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

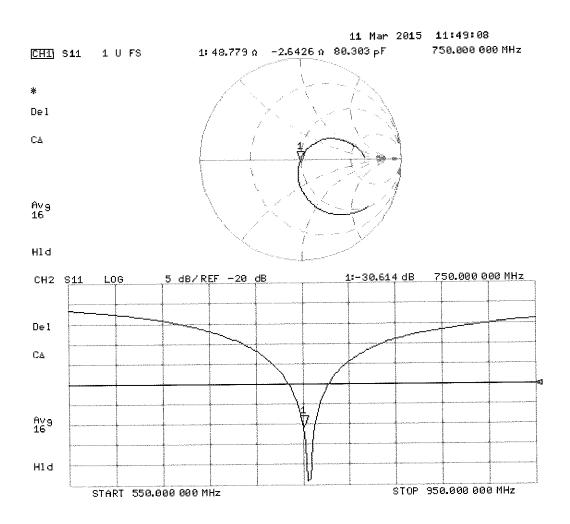
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.35 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.20 W/kg


SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.05 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d119_Apr15

Object	D835V2 - SN:4d	119 military described a symmetric describe	·
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	RN ove 700 MHz 4/29
Calibration date:	April 13, 2015		e sa seria artik artik 1905-en alem
The measurements and the tince	rtainties with confidence p	ional standards, which realize the physical unprobability are given on the following pages are facility: environment temperature $(22 \pm 3)^{\circ}$ 0	nd are part of the certificate.
Primary Standards	ID #	Cal Data (0, 115	
Power meter EPM-442A	GB37480704	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02020)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Oct-14 (No. 217-02021)	Oct-15
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02131)	Mar-16
Reference Probe ES3DV3	SN: 3205	01-Apr-15 (No. 217-02134)	Mar-16
DAE4	SN: 601	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
, ·	514. 001	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Mreen Chaecee
Approved by:	Katja Pokovic	Technical Manager	Ally-
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laboratory.	Issued: April 13, 2015

Certificate No: D835V2-4d119_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d119_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	V OZ0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	with opacer
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.20 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.06 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 2.2 jΩ
Return Loss	- 33.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 4.9 ϳΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Flectrical Doloy (one dispetion)	
Electrical Delay (one direction)	1 000
	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr15

DASY5 Validation Report for Head TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

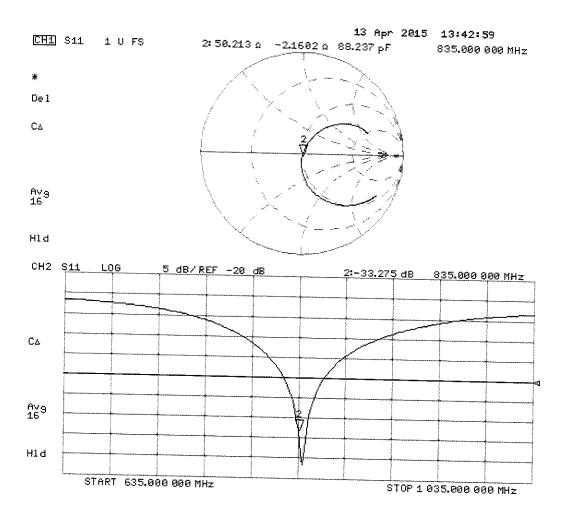
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.77 V/m P

Reference Value = 56.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

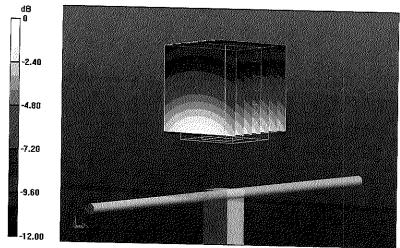
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

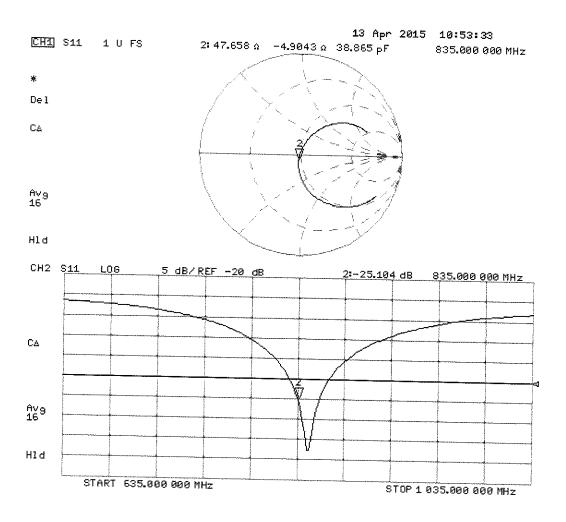
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.52 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1750V2-1051 Apr15

CALIBRATION CERTIFICATE

Object D1750V2 - SN:1051

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date:

April 15, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1.0-
Approved by:	Katja Pokovic	Technical Manager	

Issued: April 15, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1051_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1051_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	VJZ.0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	with Opacei
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	250 mW input power	4.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
	250 mW input power	9.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	250 mW input power	5.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1051_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω - 0.2 jΩ
Return Loss	- 37.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω + 0.3 jΩ
Return Loss	- 29.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
= comodi Belay (one difection)	1.221 ns
	1.221118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
Manadactared by	SPEAG
Manufactured on	Fobruary 10, 0040
	February 19, 2010

Certificate No: D1750V2-1051_Apr15

DASY5 Validation Report for Head TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

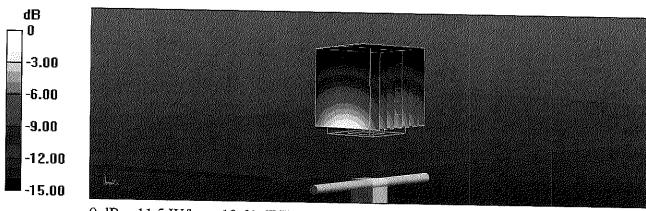
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

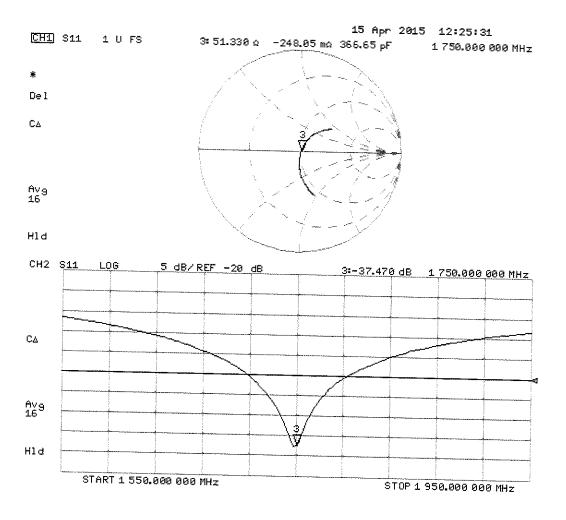
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.99 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.3 W/kg


SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

0 dB = 11.5 W/kg = 10.61 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

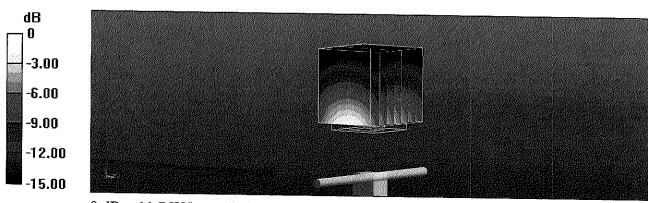
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

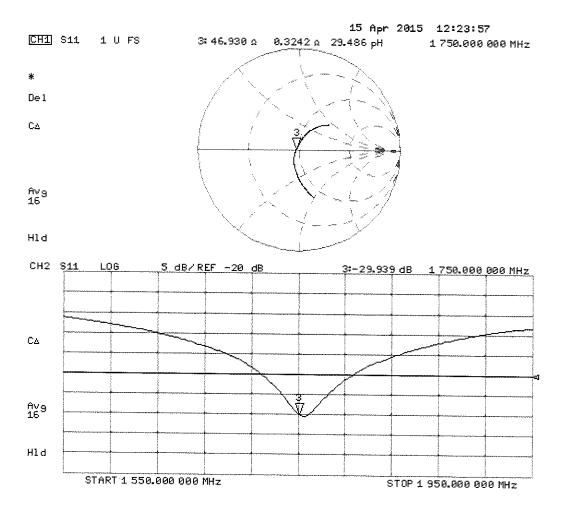
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.87 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.32 W/kg; SAR(10 g) = 5.01 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d149 Jul15

1	CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d149

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

UU√ 8/4/1°

Calibration date:

July 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature

Calibrated by:

Leif Klysner

Function

Laboratory Technician

Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: July 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d149_Jul15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d149_Jul15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω + 5.6 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 6.1 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Florida de Dalace / como Pro (U. A.)	
Electrical Delay (one direction)	1.197 ns
(1111)	11107 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

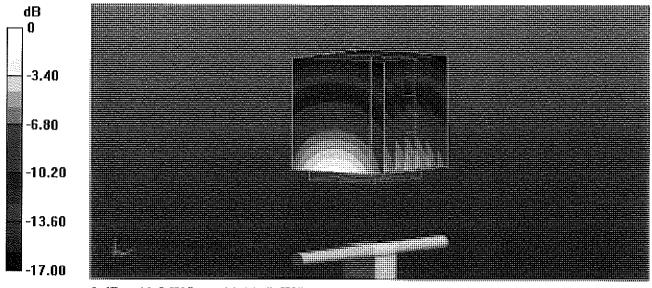
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

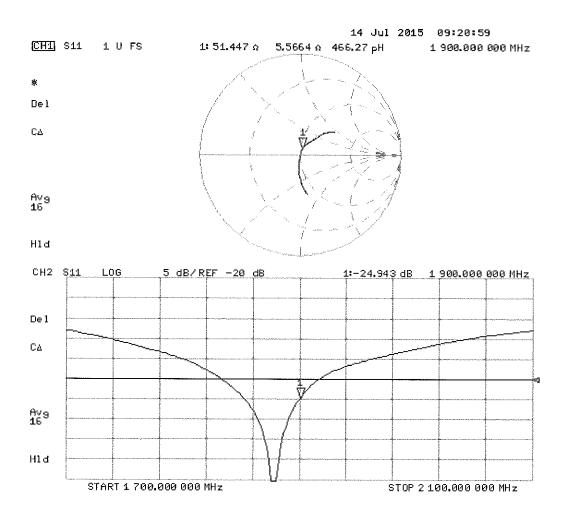
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.22 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.3 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ S/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

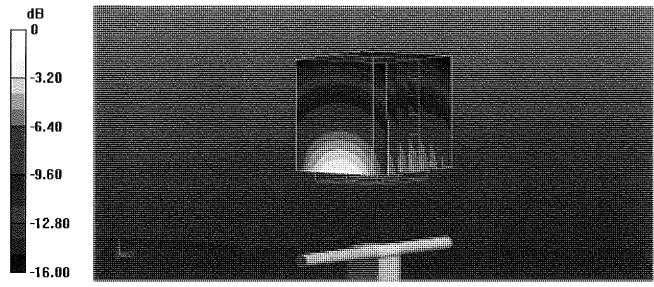
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

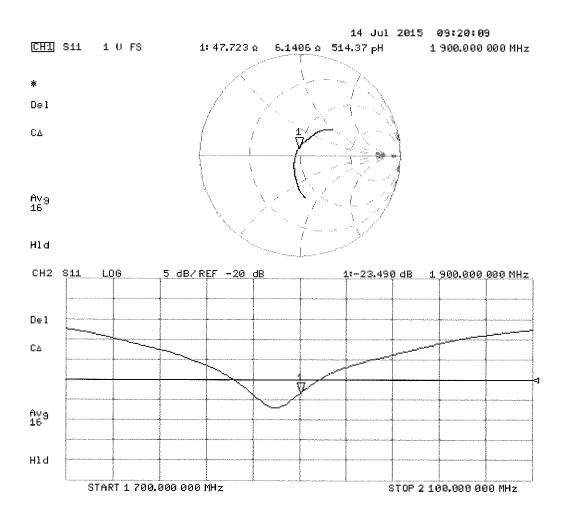
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.96 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg


SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.49 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

