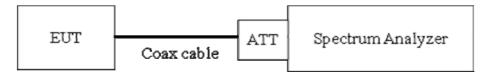


Power Spectral Density (802.11n-CH 157)

40 MHz BW

Power Spectral Density (802.11n-CH 151)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500



8.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit : 20 dBc

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. (Procedure 11.0 in KDB 558074, issued 04/09/2013)

RBW = 100 kHz(Upon 1 GHz = 1 MHz).

 $VBW \ge 3 \times RBW(Upon 1 GHz = 3 MHz).$

Set span to encompass the spectrum to be examined

Detector = Peak

Trace Mode = max hold

Sweep time = auto couple

Ensure that the number of measurement points ≥ Span/RBW

Allow trace to fully stabilize.

Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 10th harmonic range with the transmitter set to the lowest, middle, and highest channels.

Note :

- 1. The band edge results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz and 5.8 GHz range that was rounded off to the closest tenth dB. So,

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr		
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		
Dogo 9.7 of 160						

10.2 dB is offset for 2.4 GHz Band and 10.3 dB is offset for 5.8 GHz Band.

Actual value of loss for the attenuator and cable combination is below table.

Band	Frequency(MHz)	Loss(dB)
	2412	10.21
2.4 GHz	2437	10.24
	2462	10.24
	5745	10.31
	5755	10.30
5.8 GHz	5785	10.29
	5795	10.26
	5825	10.28

(Actual value of loss for the attenuator and cable combination)

4. In case of conducted spurious emissions test, please check factors blow table.

FACTORS FOR FREQUENCY

Freq(MHz)	Factor(dB)
30	9.95
100	10.01
200	10.03
300	10.04
400	10.05
500	10.04
600	10.03
700	10.09
800	10.10
900	10.08
1000	10.11
2000	10.25
2400*	10.19
2500*	10.26
3000	10.27
4000	10.22
5000	10.48
5700*	10.42
5800*	10.48
6000	10.48
7000	10.57

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

8000 9000	10.45
9000	
3000	10.50
10000	10.64
11000	10.69
12000	10.75
13000	10.92
14000	11.90
15000	11.00
16000	11.03
17000	10.93
18000	10.96
19000	10.85
20000	12.11
21000	11.17
22000	10.99
23000	11.12
24000	11.10
25000	11.42
26000	11.28
27000	10.83
28000	11.03
29000	10.99
30000	12.08
31000	10.99
32000	11.32
33000	11.33
34000	12.62
35000	14.85
36000	14.78
37000	15.73
38000	15.81
39000	13.47
40000	14.89

Note : 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Attenuator loss

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

gilent Spectrum Analyzer - Swept SA RL 1:20 PM 3429, 2013 Center Freq 2.400000000 GHz Frequency #Avg Type: RMS Avg[Hold: 1/1 RACE Trig: Free Run #Atten: 20 dB tet P P P P P P IFGain:Low Auto Tune ΔMkr1 12.69 MHz 51.236 dB Ref Offset 10.2 dB Ref 20.00 dBm to dB/ 102 Center Freq 2.40000000 GHz Start Freq 2.375000000 GHz Stop Freq 2.425000000 GHz CF Step 5.000000 MHz Man χ_2 Auto 1.16 In mary hope and a particular and a start Freq Offset 0 Hz Center 2.40000 GHz #Res BW 100 kHz Span 50.00 MHz Sweep 4.80 ms (1000 pts) #VBW 300 kHz Points changed; all traces cleared

BandEdge (802.11b-CH1)

BandEdge (802.11b-CH11)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

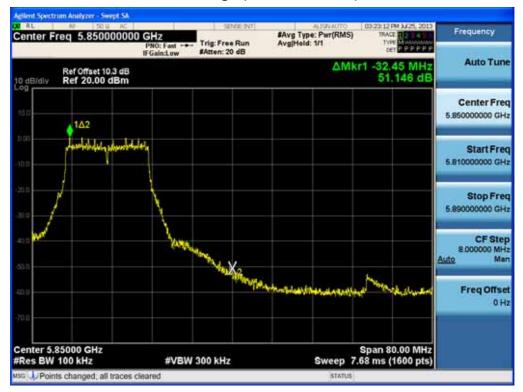
BandEdge (802.11g-CH1)

BandEdge (802.11g-CH11)

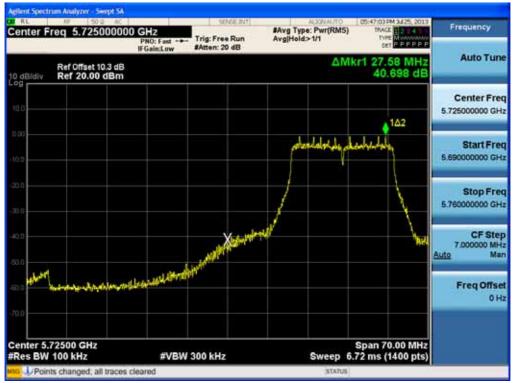

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	

BandEdge (802.11n-CH1)

BandEdge (802.11n-CH11)

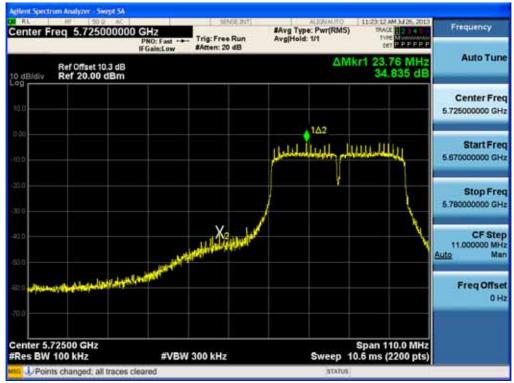

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	

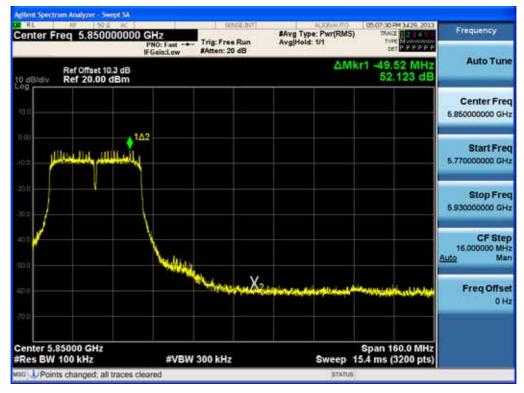
BandEdge (802.11a-CH 149)


BandEdge (802.11a-CH 165)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
		Daga 0.2 of 160		

BandEdge (802.11n-CH 149)


BandEdge (802.11n-CH 165)


FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
		Dogo 0.4 of 160		

BandEdge (802.11n-CH 151)

BandEdge (802.11n-CH 159)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
	·			

lgilent Spectrum Analyzer - Swept SA 100 PM 3429, 2013 N RL Center Freq 515.000000 MHz PNO: Fast +++ IFGain:Low Atten: 20 dB Frequency #Avg Type: RMS Avg|Hold: 1/1 CET P P P P P P Mkr1 754.30 MHz -59.853 dBm Auto Tune Ref Offset 10.2 dB Ref 20.00 dBm to dB/div Center Freq 515.000000 MHz Start Freq 30.000000 MHz Stop Freq 1.00000000 GHz CF Step 97.000000 MHz 2 Man Auto <mark>1</mark> Freq Offset 0 Hz Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 93.3 ms (20001 pts) #VBW 300 kHz SUPPoints changed; all traces cleared

Conducted Spurious Emission (802.11b-CH1)

Conducted Spurious Emission (802.11b-CH6)

Center Freq 515.000000 M	PNO: Fast +++	Trig: Free Run	#Avg Type: RMS Avg[Hold: 1/1	01:39:54 PM 3429, 20 TRACE 12 4 Tryle M	Frequency
Ref Offset 10.2 dB	IFGain:Low	Atten: 20 dB	Mk	r1 852.22 MH -59.287 dBr	z Auto Tune
100					Center Fre 515.000000 MH
0.0					Start Fre 30.000000 MH
20 0					Stop Fre 1.00000000 GH
40.0					CF Ste 97.000000 MH Auto Ma
				1	FreqOffse
		u da deliti da deleta da d	an an india da da an an india da	Constant of the line of	OH
Start 30.0 MHz Res BW 100 kHz	#VBW	300 kHz	Sweep 9	Stop 1.0000 GH 3.3 ms (20001 pt	

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500

Center Freq 515.00000		Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	01:44:20 PM 3429, 2013 TRACE 2 14 1 TYPE M	Frequency
Ref Offset 10.2 d 0 dB/div Ref 20.00 dBr	8		M	-59.466 dBm	Auto Tune
10 0					Center Fre 515.000000 MH
100				-7.82.894	Start Fre 30.000000 MH
10.0 10.0					Stop Fre 1.000000000 GH
42.0					CF Ste 97.000000 MH Auto Ma
E O MANDOR GUIND MAN	and a private	al de tramini de la de	State Charles and State State State	1	Freq Offse
70.0 100 - 100 - 100 - 100 - 100 - 100 - 100	Construction and a second	a takoni di takihi ku	an an antai ann an Anna ann an Airti	a a line à chief in é à lines in	UR
start 30.0 MHz Res BW 100 kHz	#VBW	300 kHz	Sweep 9	Stop 1.0000 GHz 3.3 ms (20001 pts)	

Conducted Spurious Emission (802.11b-CH11)

Conducted Spurious Emission (802.11g-CH1)

Frequency	09-24-01 AM 3/25, 2013 TRACE 2 4 TYPE MONITOR DET P F F F F F	#Avg Type: RMS Avg[Hold: 1/1	Trig: Free Run Atten: 20 dB	req 515.000000 MHz PNO: Fast	enter Fr
Auto Tun	-59,715 dBm	Mk		Ref Offset 10.2 dB Ref 20.00 dBm	0 dB/div
Center Fre 515.000000 MH					100
Start Fre 30.000000 MH	-12 50 455				10.0
Stop Fre 1.00000000 GH					200 306
CF Ste 97.000000 MH <u>Auto</u> Ma					40.0
Freq Offse 0 H			la constitue d'année de François d'Année de Année		-
	Stop 1.0000 GHz .3 ms (20001 pts)	Sweep 9	300 kHz		tart 30.0

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
		Daga 0.7 of 160		

Center Freq 515.000000 M	MHz	Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	TRACE DESIGN	Frequency
	PNO: Fast ++- IFGain:Low	Atten: 20 dB	Avginoid: 11	type Munorous tet P P F P P	Contraction of the second s
Ref Offset 10.2 dB			M	kr1 811.77 MH -59.233 dBr	
10.0					Center Free 515.000000 MH
0.0				-12.21 (6	Start Fre 30.000000 MH
35.0					Stop Fre 1.00000000 GH
90.0					CF Ste 97.000000 MH Auto Ma
				∮ ¹	Freq Offse
	a shift of the second second				он
Start 30.0 MHz Res BW 100 kHz	1	300 kHz		Stop 1.0000 GH	z

Conducted Spurious Emission (802.11g-CH6)

Conducted Spurious Emission (802.11g-CH11)

RL RF 50 2 AC		242.021	#Avg Type: RMS	09:40:27 AM 3J 25, 2013	Frequency
Center Freq 515.000000	PNO: Fast +++ IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hold: 1/1	type Automation tet P P P P P	data a second
Ref Offset 10.2 dB			M	kr1 620.29 MHz -58,541 dBm	Auto Tun
10.0					Center Fre 515.000000 MH
0.00 10.0				1122H Res	Start Fre 30.000000 MH
800					Stop Fre 1.000000000 GH
ion					CF Ste 97.000000 MH Auto Ma
		in stations			Freq Offse 0 H
start 30.0 MHz Res BW 100 kHz	#VBW	300 kHz	Sweep	Stop 1.0000 GHz 93.3 ms (20001 pts)	

Test Report No. Date of Issue: EUT Type:2.4G/5G Dual WIFI Tablet FCC ID: IC: HCTR1308FR14 August 06, 2013 EUT Type:2.4G/5G Dual WIFI Tablet ZNFV500 2703C-V500	FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT	www.hct.co.kr
		 EUT Type:2.4G/5G Dual WIFI Tablet	

Center Freq 515.00000		Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg[Hold: 1/1	10:04-53 AM 3/25, 2013 TRACE 2 4 TYPE MONITOR TO P P P P P	Frequency
Ref Offset 10.2 dE 0 dB/div Ref 20.00 dBm	3		M	r1 940.44 MHz -59.154 dBm	Auto Tune
og 100					Center Fre 515.000000 MH
0.00				.14 40 (8%	Start Fre 30.000000 MH
n 0					Stop Fre 1.00000000 GF
10.0					CF Ste 97.000000 Mi- Auto Ma
in a later a state to ma differentiation	di lingua ante di lingu		No. 100 Anna a marca a state	1 Representation of the second	Freq Offse
70.0	dina di dala se se della sedenti alla dalla di dalla dall Nationali dalla d	an an an an t-state and an	an a	ferni avrest i til fili i si i i i i i i i i i i i i i i i i	
start 30.0 MHz Res BW 100 kHz	#VBW	300 kHz	Sweep 9	Stop 1.0000 GHz 3.3 ms (20001 pts)	

Conducted Spurious Emission (802.11n-CH1)

Conducted Spurious Emission (802.11n-CH6)

Center Freq 515.000000	MHZ PNO: Fast	Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	10:19:47 AM 3/2 TRACE 2 TYPE Mon Det P.P.	Frequency
Ref Offset 10.2 dB	IF Galili, LOW		Mk	r1 819.24 M -59.107 d	
100					Center Fre 515.000000 MH
10.0					Start Fre 30.000000 MH
200					Stop Fre 1.000000000 GH
42.9					CF Ste 97.000000 MH <u>Auto</u> Ma
	de la contra	P			Freq Offse 0 H
70.0 Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 9	Stop 1.0000 3.3 ms (20001	GHz pts)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500

Center Freq 515.000000	MHz PNO: Fast Trig: Free Run	#Avg Type: RMS INAC	H M 25, 2013 Frequency
Ref Offset 10.2 dB	IFGain:Low Atten: 20 dB	Mkr1 194.1 -59.15	27 MHz Auto Tune 37 dBm
og 10 0			Center Fre 515.000000 MH
0.00			Start Fre 30.000000 MH
m 0			Stop Fre 1.000000000 GH
40.0			CF Ste 97.000000 Mi <u>Auto</u> Ma
ann <mark>Athrean chaile thatan i</mark>	i dan kan di kana di Frins		Freq Offse
Start 30.0 MHz Res BW 100 kHz	#VBW 300 kHz	Stop 1.0 Sweep 93.3 ms (20	000 GHz

Conducted Spurious Emission (802.11n-CH11)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

	0 🕂 IQ	Analyzer 📰			
Ref Leve Att SGL Coun	al 20.00 dBm 20 dB t 50/50		e RBW 100 kHz e VBW 300 kHz	Mode Auto FF	Ť.
10 dBm-				M1[1] M2[1]	-58,43 dB 845,7530 M -64,27 dB 1,0000000 G
-10 d8m-	01 11 740	186			
-20 d8m—					
-30 d8m-					
-40 dBm					
-50 d8m-					M1
-60 d8m	en de la com		ili ne etal etal etal etal	niki Linaki k	
Start 30.0) MHz		20001 pt	s	Stop 1.0 GH
larker	1990 Barrier		Alternation and		
Type R		Stimulus	Response	Function	Function Result
M1 M2	1	845.753 MHz 1.0 GHz	-58.43 dBm -64.27 dBm		
M3	1	1.0 GHz	-64.27 dBm		
	1			Ready	CHILLED 222 25.07.2013 16.35.45

Conducted Spurious Emission (802.11a-CH149)

Date: 29.JUL.2013 06:36:46

Conducted Spurious Emission (802.11a-CH157)

Date: 29.JUL.2013 06:37:55

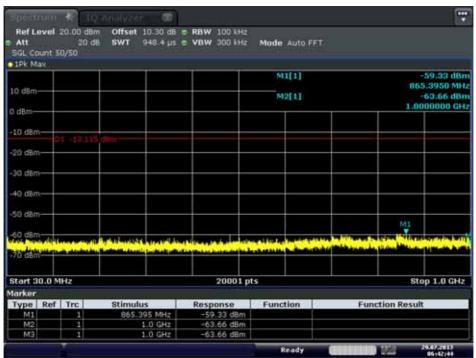
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

Conducted Spurious Emission (802.11a-CH165)

Att SGL Count	20.00 dBr 20 di 50/50		e RBW 100 kHz e VBW 300 kHz	Mode Auto FF	Ţ	
				M1[1]		-59.50 dBi 730.2810 MH
10 dBm-				M2[1]		-66.09 dBr
) dBm				-		1.0000000 GH
10 dBm	61 12 26	dem	_			
20 d8m-						
30 d8m-						
40 dBm						
50 dBm-						
60 d8ŋi			_		Mi	
and the second second			de la de la tamateri la	the state of the second		
70 d8m-	للتفارية الشارية	Chalden at , be beside details	والمراجع والمتحدية والأ			
Start 30.0	MHz		20001 pt	5		Stop 1.0 GHz
larker						
Type Ref	Trc	Stimulus 730.281 MHz	Response -59.50 dBm	Function	Fund	tion Result
M2	1	1.0 GHz	-66.09 dBm			
M3	1	1.0 GHz	-66.09 d8m			

Date: 29.JUL.2013 06:39:30

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500



Conducted Spurious Emission (802.11n-CH149)

Att SGL Count >1Pk Max	20 di 50/50	6 SWT 948.4 µs	e VBW 300 kHz	Mode Auto FF	T	
				M1[1]		-59.73 dBi 845.6560 MH
10 dBm-				M2[1]		-63.00 dB
0 d8m				the second		1.0000000 GH
10 dBm-	01 13,048	dim				
20 d8m-						
10.45						
-30 d8m-						
40 dBm			_		_	
50 d8m-						
20 04010						M1
-60 d8m	an at a state	and the second state of the	Manual and a start of	Manager Harding	And Statement Statements	the state of the s
Hi dem		Industry and a Research of			and the second	and stands of its and
Start 30.0 M	IHz		20001	pts		Stop 1.0 GHz
larker						
	Trc	Stimulus	Response	Function	Functi	on Result
M1 M2	1	845.656 MHz 1.0 GHz	-59.73 dBm -63.00 dBm			
M2 M3	1	1.0 GHz	-63.00 dBm			

Date: 29.JUL.2013 06:41:15

Conducted Spurious Emission (802.11n-CH157)

Date: 29.JUL.2013 06:42:45

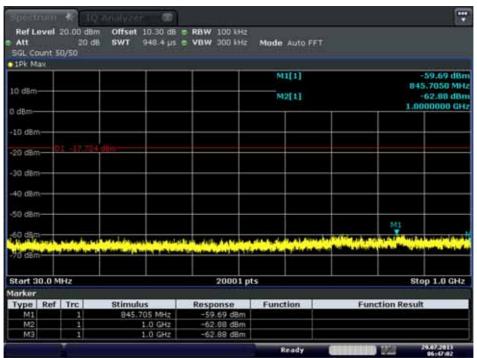
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
	°	Dogo 1.0.2 of 160	·	

Ref Level Att SGL Count	20.00 dBm 20 dB		e RBW 100 kHz e VBW 300 kHz	Mode Auto FF	Ŧ			
10 dBm				M1[1] M2[1]			-58.92 dBm B45.2680 MHz -63.24 dBm 1.0000000 GHz	
10 dBm-	01 13.169	dim						
20 d8m-								
30 d8m			_		_			
40 dBm			_					
50 dBm-						M1		
60 d8m	-		A distantia of states in		and an other designed to	ALL PROPERTY.	In the Party of Street	
70 dilimi	all sold and a state	Constant of the Res Solids	da in an an da in 188	anian data stadie b	AL MARKAGE	a handle had the second second	A Market Hards	
start 30.0 Iarker	MHZ		20001 pt	5		ste	p 1.0 GHz	
Type Ref	Tro	Stimulus	Response	Function	Fun	ction Result	-	
	1	845.268 MHz	-58.92 dBm			and the state		
M1								

Conducted Spurious Emission (802.11n-CH165)

Date: 29.JUL.2013 06:43:53

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500

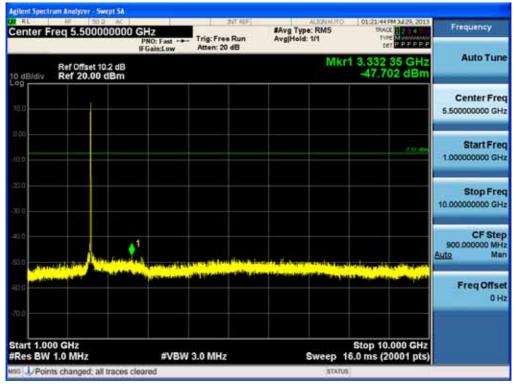


... Offset 10.30 dB = RBW 100 kHz SWT 948.4 µs = VBW 300 kHz Ref Level 20.00 dBm Att 20 dB Att Mode Auto FFT • 1Pk Max M1[1] -59.74 dBn 845.0260 MHz 10 dBr M2[1] -62.40 dBn 1.0000000 GHz 0 dBm 10 dBm -20 d8m 30 dam 40 d8m 50 dBr M1 60 d8m-All Many shares in a land in a ALC: NO. OF LA All and a solar 70 dBm 1000 10.00 Stop 1.0 GHz Start 30.0 MHz 20001 pts Marker Response Function Hz -59.74 dBm Hz -62.40 dBm Hz -62.40 dBm Type Ref Trc Stimulus **Function Result** 845.026 MHz M2 M3 1.0 GHz 1.0 GHz 1 29.47.2013 Ready

Conducted Spurious Emission (802.11n-CH151)

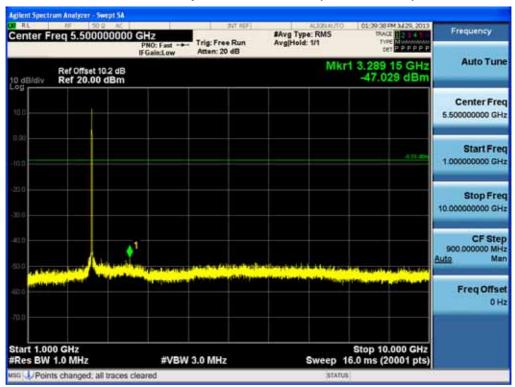
Date: 29.JUL.2013 06:45:42

Conducted Spurious Emission (802.11n-CH159)



Date: 29.JUL.2013 06:47:02

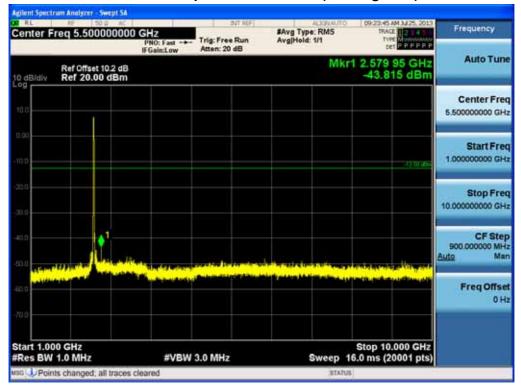
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
		Bago 1 0 5 of 160		



1 GHz ~ 10 GHz

Conducted Spurious Emission (802.11b-CH1)

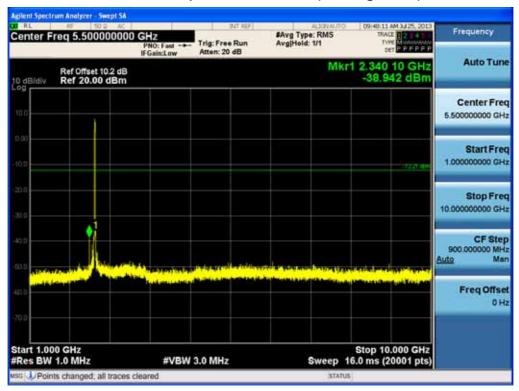
Conducted Spurious Emission (802.11b-CH6)


FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
	•			·

Center Freq 5.500000000	GHZ	Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	01-44-04 PM 3429, 2013 TRACE 22, 4 10 TWEE 22, 4 10	Frequency
	IFGain:Low	Atten: 20 dB			Auto Tune
Ref Offset 10.2 dB 0 dB/div Ref 20.00 dBm			IVIKT	1 3.133 00 GHz -47.593 dBm	
100					Center Free 5.50000000 GH
0 0) 				3.82,404	Start Free 1.00000000 GH
200					Stop Free 10.00000000 GH
	THE CONTRACTOR	nan an that the state of the st	and the second state of th		CF Step 900.000000 MH Auto Ma
	and the second		fin de di de la difficie en l	Contraction of the second s	Freq Offse 0 H
start 1.000 GHz				Stop 10.000 GHz	
Start 1.000 GHz Res BW 1.0 MHz	#VBW :	3.0 MHz	Sweep 1	Stop 10.000 GHz 6.0 ms (20001 pts)	

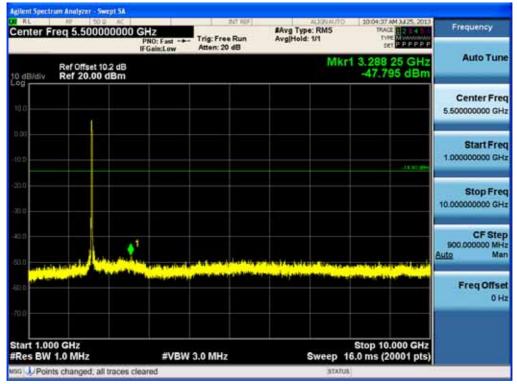
Conducted Spurious Emission (802.11b-CH11)

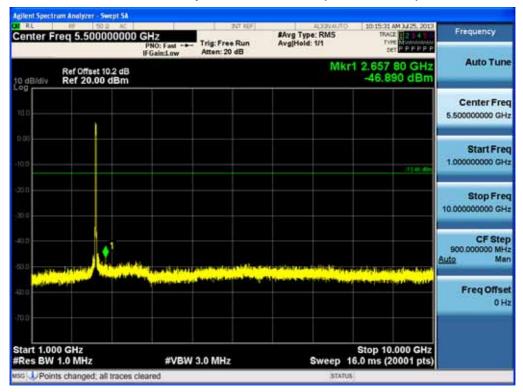
Conducted Spurious Emission (802.11g-CH1)


FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT				
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:	
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500	

Center Freq 5.500000000	GHZ PN0: Fast ++- IFGain:Low Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	09:39:42 AM 3/25, 2013 1946E 2 4 1996E 2 4 1996 MONTH P	Frequency
Ref Offset 10.2 dB		Mkr	2.520 10 GHz -44.392 dBm	Auto Tune
100				Center Free 5.500000000 GH
10.0			- F2 JN 16M	Start Free 1.000000000 GH
mo				Stop Fre 10.000000000 GH
10.0		geldinge beer stilleters (a		CF Ste 900.000000 MH Auto Ma
				Freq Offse 0 H
Start 1.000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 1	Stop 10.000 GHz 5.0 ms (20001 pts)	

Conducted Spurious Emission (802.11g-CH6)


Conducted Spurious Emission (802.11g-CH11)


FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
	·			

Conducted Spurious Emission (802.11n-CH1)

Conducted Spurious Emission (802.11n-CH6)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT				
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		

Center F	req 5.50000000	PNO: Fast	Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	10:37:56 AM 3/25, 2013 19462 2 4 4 19462 1 2 4 4 19462 1 2 4 4 19462 1 2 4 4 19462 1 2 4 4	Frequency
0 dB/div	Ref Offset 10.2 dB Ref 20.00 dBm			Mkr	1 2.374 30 GHz -47.899 dBm	Auto Tune
100						Center Free 5.500000000 GH
10.9					13.40 dbs	Start Free 1.00000000 GH
200						Stop Fre 10.00000000 GH
42.0			a da dia man	-	i terre Jain Jain Subarcana	CF Stej 900.000000 MH <u>Auto</u> Ma
10.0				freedom believe a	وي مناليد مالي مالين الله	Freq Offse 0 H
Start 1.00 #Res BW		#VBW :	3.0 MHz	Sweep 1	Stop 10.000 GHz 6.0 ms (20001 pts)	

Conducted Spurious Emission (802.11n-CH11)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			
	·		·	·			

... Ref Level 20.00 dBm Att 20 dB Offset 10.30 dB e RBW 1 MHz SWT 56 ms e VBW 3 MHz Att Mode Auto Sweep •1Pk Max M1[1] -39.49 dBm 1.538750 GHz 10 dBr M2[1] -51.20 dBn 2.546400 GHz 0 dBn -10 dBr -20 d8r 30 dB 40 08 -60 d8m 70 dBm Stop 15.0 GHz Start 1.0 GHz 30001 pts Marker Response Function 2 -39,49 dBm 2 -51.20 dBm 2 -51.10 dBm Type Ref Trc Stimulus **Function Result** 1.53875 GHz 2.5464 GHz 3.3952 GHz MI M2 M3 1 Ready 29.07.2013

Conducted Spurious Emission (802.11a-CH149)

Date: 29.JUL.2013 06:36:35

Conducted Spurious Emission (802.11a-CH157)

Date: 29.JUL.2013 06:37:44

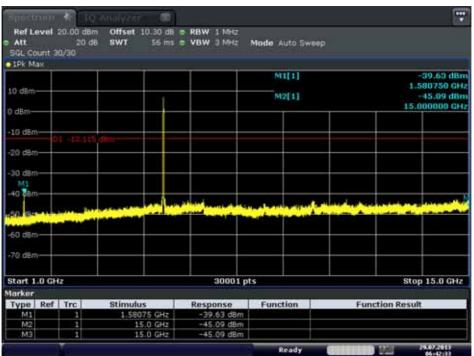
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			
	·	Bago 1 1 1 of 160					

Ref Level) Antalyzer m: Offset 1	00	e RBW 1 MHz			F
Att SGL Count	20 d		56 ms		Mode Auto Sv	veep	
10 dBm					M1[1] M2[1]		-36.55 dBr 1.622280 GH -44.69 dBr 15.000000 GH
10 dBm-							
20 d8m-		r.d≘m					
30,dam-		-					
40 dBm		and a literal			-	Adaption	
60 d8m-							
70 dBm							
Start 1.0 G	Hz			30001 p	ts		Stop 15.0 GHz
larker	14 P						In the second reason
Type Ref	Trc	Stimulu	28 GHz	Response -36.55 dBm	Function	Fu	nction Result
M2 M3	1	15	.0 GHz .0 GHz	-44.69 dBm -44.69 dBm			
	N.				Ready	and the second	29,47,2913

Conducted Spurious Emission (802.11a-CH165)

Date: 29.JUL.2013 06:39:18

FCC PT.15.247 TEST REPORT		www.hct.co.kr		
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500



Conducted Spurious Emission (802.11n-CH149)

SGL Count	20 dē 30/30	SWT	56 ms	e VBW 3 MHz	Mode Auto Sw	eep	
					M1[1]		-41.41 dE 1.541080 G
10 d8m-			1		M2[1]		-47.60 de 15.000000 g
0 dBm							15.000000 0
10.dBm-							
20 d8m-	01 13,048						
30 d8m-							
-40 8m-							
HU BEIN			-	and the state of the			The second s
						A second de	COLUMN THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE
Si) (Person		IL BALLANDING IN		ا قندها	Contraction in such distance		
50 (Brosse 60 d8m-		A defended by			كفا تتشد		
50 (Bm)				ا قند ال	تتفر		
50 (807) 60 d8m -70 d8m -70 d8m -70 d8m	Hz			30001			Stop 15.0 GH
70 dBm Start 1.0 G larker				30001			
70 dBm Start 1.0 G Jarker Type Ref	Trc	Stimulus		Response	pts Function		
70 dBm Start 1.0 G larker		1.54108	GHz GHz	Accession and a second second	pts Function		Stop 15.0 GH

Date: 29.JUL.2013 06:41:04

Conducted Spurious Emission (802.11n-CH157)

Date: 29.JUL.2013 06:42:33

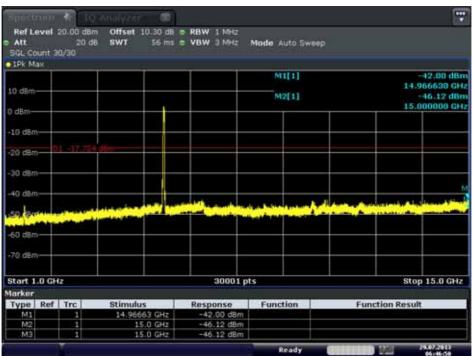
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
	·	Dogo 1 1 2 of 160		

Att	20.00 dBn 20 di		e RBW 1 MHz e VBW 3 MHz	Mode Auto Sw	eep	
SGL Count	30/30					
10 dBm				M1[1] M2[1]		-41.07 dBr 1.620880 GH -46.66 dBr 15.000000 GH
0 dBm-						
10.d8m-						
-20 d8m						
30 d8m-						
40 99m-						
		and the survey of the survey o	and the state of the last	- In the second	A day and the Party of	and the state of the state of the
sa apelant		Concession of the local division of the loca		Contraction of the local division		Contra de la contra antida
-60 d8m						
-70 dBm-						
Start 1.0 G	Hz		30001 pt	s		Stop 15.0 GHz
larker						
Type Ref	Trc	Stimulus 1.62088 GHz	Response -41.07 dBm	Function	Func	tion Result
M2	1	15.0 GHz	-46.66 dBm			
M3	1	15.0 GHz	-46.66 dBm			
	1			Ready	CHILD HARD	29.07.2013 86:13:142

Conducted Spurious Emission (802.11n-CH165)

Date: 29.JUL.2013 06:43:42

TEST REPORT	FCC & IC CERTIFICATION REPORT			
	ate of Issue: ugust 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500



Conducted Spurious Emission (802.11n-CH151)

Date: 29.JUL.2013 06:45:31

Conducted Spurious Emission (802.11n-CH159)

Date: 29.JUL.2013 06:46:50

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
	·	Dogo 1 1 5 of 160	·		

Igilent Spectrum Analyzer - Swept SA Center Freq 17.50000000 GHz PNO: Fast ----IFGain:Low Atten: 20 dB N RL 2:16 PM 3.429, 2013 Frequency #Avg Type: RMS Avg|Hold: 1/1 CET P P P P P P Auto Tune Mkr1 24.869 0 GHz -39.640 dBm Ref Offset 10.2 dB Ref 20.00 dBm to dB/div Center Freq 17.50000000 GHz Start Freq 10.00000000 GHz Stop Freq 25.00000000 GHz CF Step 1.50000000 GHz uto Man Auto Freq Offset 0 Hz Start 10.000 GHz #Res BW 1.0 MHz Stop 25.000 GHz Sweep 38.0 ms (30001 pts) #VBW 3.0 MHz Display Points changed; all traces cleared

Conducted Spurious Emission (802.11b-CH1)

Conducted Spurious Emission (802.11b-CH6)

RL NF 50.0 AC		1747 HEF	OTUNICLA	01:40 10 PM 3.429, 2013	Frequency
enter Freq 17.500000000	PNO: Fast	Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg[Hold: 1/1	TYPE NUMBER	
Ref Offset 10.2 dB			Mkr	1 24.930 5 GHz -39.863 dBm	Auto Tune
10.0					Center Free 17.500000000 GH
0.00 10.0				-011-054	Start Free
200					Stop Free 25.00000000 GH
40.0	A stability of the			ally and the second	CF Step 1.500000000 GH Auto Mar
					Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz	#VBW :	3.0 MHz	Sweep 3	Stop 25.000 GHz 8.0 ms (30001 pts)	

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
		P_{core} 1.1.6 of 160			

	eq 17.50000000	D GHz PNO: Fast	Trig: Free Run Atten: 20 dB	#Avg Type: RMS Avg Hold: 1/1	01-44:36 PM 3429, 2013 TRACE 2 2 4 4 TYPE MUNICIPALITY DET P P F P P P	Frequency
0 dB/div	Ref Offset 10.2 dB Ref 20.00 dBm	i osnicov		Mkr	1 24.888 0 GHz -39.415 dBm	Auto Tun
100						Center Fre 17.50000000 GH
10.0					.11; 64	Start Fre 10.00000000 GH
200 200						Stop Fre 25.00000000 GH
40.0 50.0		an and a street		in the second second second		CF Step 1.500000000 GH <u>Auto</u> Ma
62.0 70.0						Freq Offse 0 H
Start 10.00		#VBW	3.0 MHz	Sweep 3	Stop 25.000 GHz 8.0 ms (30001 pts)	

Conducted Spurious Emission (802.11b-CH11)

Conducted Spurious Emission (802.11g-CH1)


FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	

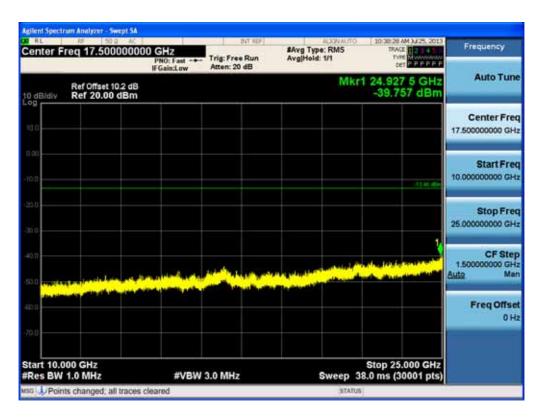
RL RF 509 AC Center Freq 17.5000000		#Avg Type: RMS Avg[Hold: 1/1	09:40:14 AM 3J25, 2013 TRACE 2 4 4 TYPE NUMBER OF PEREN	Frequency
Ref Offset 10.2 dB	a contract	Mkr	1 24.971 5 GHz -39.840 dBm	Auto Tune
10.0				Center Fre 17.500000000 GH
10.0			-12.31 BM	Start Fre 10.00000000 GH
30.0				Stop Fre 25.00000000 GH
42.0	and the second secon			CF Stej 1.500000000 GH Auto Ma
	تنار الكلي تنظن غن			Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 3	Stop 25.000 GHz 8.0 ms (30001 pts)	

Conducted Spurious Emission (802.11g-CH6)

Conducted Spurious Emission (802.11g-CH11)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
	•	Dago 1 1 9 of 160			

Conducted Spurious Emission (802.11n-CH1)

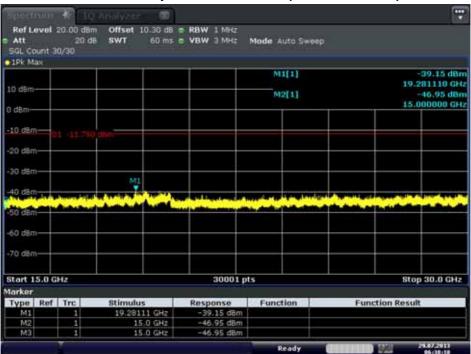


Conducted Spurious Emission (802.11n-CH6)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
		Dama 1.1.0 of 100			

Conducted Spurious Emission (802.11n-CH11)

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr		
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		



... Ref Level 20.00 dBm Att 20 dB Offset 10.30 dB e RBW 1 MHz SWT 60 ms e VBW 3 MHz Att Mode Auto Sweep 1Pk Max M1[1] -39.65 dBn 19.599600 GHz 10 dBr M2[1] -45,96 dBm 15.000000 GHz 0 dBn -10 dBr -20 d8n 30 dBn m) 40 dBm the local sets des de 100 50 dêm -60 d8m 70 dBm Start 15.0 GHz 30001 pts Stop 30.0 GHz Marker Response Function I2 -39.65 dBm I2 -45.96 dBm I2 -45.96 dBm Type Ref Trc Stimulus **Function Result** M1 19.5996 GHz 15.0 GHz 15.0 GHz M2 M3 1 29.07.2013 Ready

Conducted Spurious Emission (802.11a-CH149)

Date: 29.JUL.2013 06:37:00

Conducted Spurious Emission (802.11a-CH157)

Date: 29.JUL.2013 06:38:10

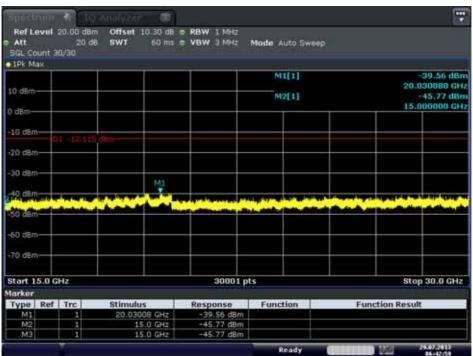
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
	·	Bage 1 3 1 of 160		

Ref Level		n Offset 10.30 dB	e RBW 1 MHz			R
Att SGL Count	20 d			Mode Auto Sw	eep	
10 dBm				M1[1] M2[1]		-39.33 dBr 19.581600 GH -47.04 dBr 15.000000 GH
10 dBm-	12 26)	dam				
20 dBm-			+			
30 d8m-						
		181				
40 dBm	Andia Aut.	A MARINE AND AND A	and the second s	Louis and the state	the shade the second	Contraction of the local division of the
SO dBm	And states	alating the second	an air ann an Anna anna anna anna anna anna a	Andrew Madeutite	ويتباليك فاعد	in the statement of the
60 d8m						
00 0010						
-70 dBm						
Start 15.0 (GHz		30001 pt	5		Stop 30.0 GHz
larker			Concerning and			
	Trc	Stimulus	Response	Function	Fund	tion Result
M1 M2 M3	1	19.5816 GHz 15.0 GHz 15.0 GHz	-39.33 dBm -47.04 dBm -47.04 dBm			
	-			Ready		25472913

Conducted Spurious Emission (802.11a-CH165)

Date: 29.JUL.2013 06:39:44

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500



Conducted Spurious Emission (802.11n-CH149)

Date: 29.JUL.2013 06:41:29

Conducted Spurious Emission (802.11n-CH157)

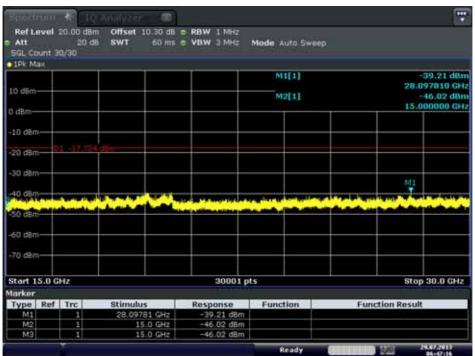
Date: 29.JUL.2013 06:42:59

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
		Dogo 1.2.2 of 160			

Conducted Spurious Emission (802.11n-CH165)

Date: 29.JUL.2013 06:44:07

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500



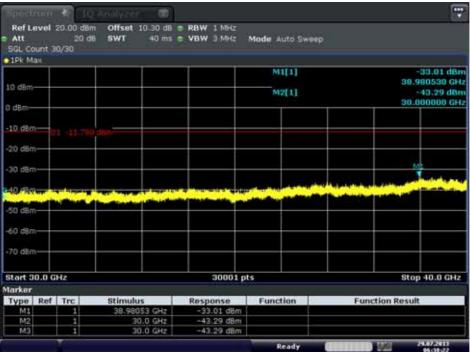
Conducted Spurious Emission (802.11n-CH151)

Date: 29.JUL.2013 06:45:56

Conducted Spurious Emission (802.11n-CH159)

Date: 29.JUL.2013 06:47:16

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT				
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		
		Bago 1.3 E of 160				



Ref Level Att SGL Count	20.00 dBn 20 dB		0.30 dB 1 40 ms 1	= RBW 1 M = VBW 3 M		юр	
10 dBm					M1[1] M2[1]		-33,62 dBi 39,029870 GH -44,43 dBi 30,000000 GH
-10 dBm		dan		-			
-20 d8m-				_			
-30 d8m-							100
49. d8m		and the second		in the second	to an an an an an and and	States and allow of	
			-	and the second s	Contraction of the little	فصلافته السا	CALCULAR CONTRACTOR
50 dBm							
-50 d8m							
-60 d8m							
-60 d8m	GHz			300	01 pts		Stop 40.0 GHz
60 dBm 70 dBm Start 30.0 larker		Ct Inter-		Statiliti			1.11.14.14.14.14.14.14.14.14.14.14.14.14
60 dBm 70 dBm Start 30.0 (larker Type Ref	Trc	Stimulus		Response	Function	Funct	Stop 40.0 GHz ion Result
60 d8m 70 d8m Start 30.0 larker	Trc	39.0298		Statiliti	Function	Funct	TANK BARRAN AND A
60 d8m 70 d8m Start 30.0 Narker Type Ref M1	Trc	39.0298 30	37 GHz	Response -33.62 d	Function IBm	Funct	TANK BARRAN AND A

Conducted Spurious Emission (802.11a-CH149)

Date: 29.JUL.2013 06:37:12

Conducted Spurious Emission (802.11a-CH157)

Date: 29.JUL:2013 06:38:22

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
	·	Dogo 1.2.6 of 160		

Ref Level		Malalyzer 00	e RBW 1 MHz			T
Att SGL Count	20 d			Mode Auto Sw	eep	
19k Max				M1[1] M2[1]		-33.51 dBr 39.047870 GH -44.42 dBr 30.000000 GH
0 dBm						30.00000 0H
-10 dBm	15 36	7.48				
20 d8m-						
30 dam						
10.080		And a state of the state of the state	adalia managina da sera	and the second second	in the sector	the second second second
S0 dBm	and the state		ية كملقة ال	تكن عف		
60 d8m-						
70 dBm-						
Start 30.0	GHZ		30001 pt	s		Stop 40.0 GHz
tarker	and the					Line Context (1995)
Type Ref	Trc	Stimulus 39.04787 GHz	Response -33.51 dBm	Function	Fun	ction Result
M2 M3	1	30.0 GHz 30.0 GHz 30.0 GHz	-44.42 dBm -44.42 dBm			
	+			Ready	ALC: NO.	29,87,2013

Conducted Spurious Emission (802.11a-CH165)

Date: 29.JUL.2013 06:39:57

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500

... Ref Level 20.00 dBm Att 20 dB Offset 10.30 dB e RBW 1 MHz SWT 40 ms e VBW 3 MHz att Mode Auto Sweep 1Pk Max M1[1] -33.54 dBm 39 428850 GHz 10 dBr M2[1] -44.44 dBn 30.000000 GHz 0 dBm -10 dBm -20 d8m M1 30 dam dBm 50 dBr -60 d8m 70 dBm Stop 40.0 GHz Start 30.0 GHz 30001 pts Marker Response Function 2 -33.54 dBm 2 -44.44 dBm Type Ref Trc Stimulus **Function Result** MI 39.42885 GHz 30.0 GHz 30.0 GHz M2 M3 1 -44.44 dBm Ready 29.07.2013 100

Conducted Spurious Emission (802.11n-CH149)

Date: 29.JUL.2013 06:41:42

Conducted Spurious Emission (802.11n-CH157)

Date: 29.JUL.2013 06:43:11

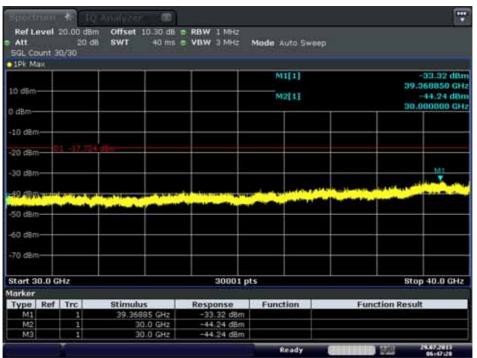
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
	°	Dogo 1.2.9 of 160			

Ref Level Att SGL Count	20.00 dBr 20 d		e RBW 1 MHz e VBW 3 MHz	Mode Auto Sw	eep	
19k Max 10 dBm				M1[1] M2[1]		-33.65 dBr 39.417520 GH -43.78 dBr 30.000000 GH
10.dBm-	AT					
20 d8m-						
-30 d8m						M3
10 dBm 50 dBm						
60 d8m					_	
70 dBm-						
Start 30.0	GHz		30001 p	s		Stop 40.0 GHz
larker						
Type Ref		Stimulus	Response	Function	Fun	ction Result
M1 M2	1	39.41752 GHz 30.0 GHz	-33.65 dBm -43.78 dBm			
M3	1	30.0 GHz	-43.78 dBm			
	140			Ready	dilling b	29.87.2013 95:44:28

Conducted Spurious Emission (802.11n-CH165)

Date: 29.JUL.2013 06:44:20

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500



... Ref Level 20.00 dBm Att 20 dB Offset 10.30 dB e RBW 1 MHz SWT 40 ms e VBW 3 MHz att Mode Auto Sweep •1Pk Max M1[1] -32.77 dBn 39.480850 GHz 10 dBr M2[1] -44.12 dBn 30.000000 GHz 0 dBm -10 dBm -20 dBm M1 30 dam 40 dBn 1 50 dBr -60 dBm 70 dBm Stop 40.0 GHz Start 30.0 GHz 30001 pts Marker Response Function Iz -32.77 dBm Iz -44.12 dBm Iz -44.12 dBm Type Ref Trc Stimulus **Function Result** 39.48085 GHz 30.0 GHz 30.0 GHz MI M2 M3 1 Ready 29.07.2013 440

Conducted Spurious Emission (802.11n-CH151)

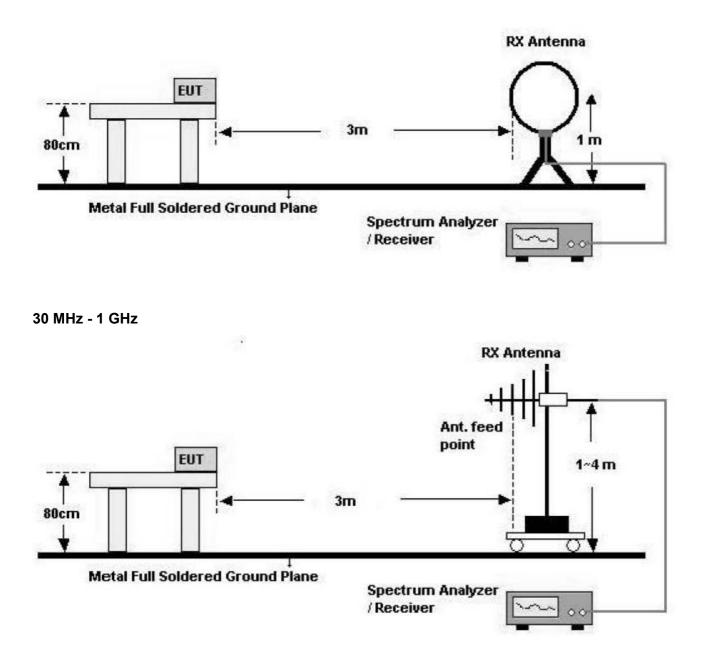
Date: 29.JUL.2013 06:46:09

Conducted Spurious Emission (802.11n-CH159)

Date: 29.JUL.2013 06:47:28

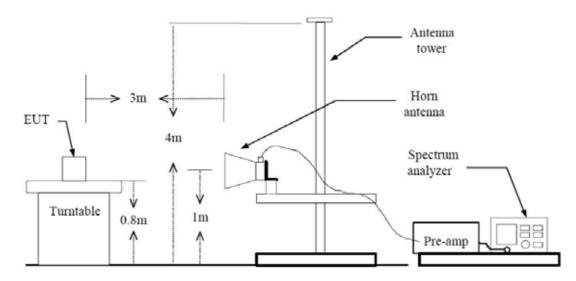
FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

8.6 RADIATED MEASUREMENT. 8.6.1 RADIATED SPURIOUS EMISSIONS.


Test Requirements and limit, §15.205, §15.209

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)		
0.009 – 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

FCC PT.15.247 TEST REPORT		www.hct.co.kr				
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		



Below 30 MHz

TEST REPORT		www.hct.co.kr
Test Report No. Date of Issue: EUT Type:2.4G/5G Dua HCTR1308FR14 August 06, 2013 EUT Type:2.4G/5G Dua	I WIFI Tablet FCC ID: ZNFV500	IC: 2703C-V500

TEST PROCEDURE USED

ANSI C63.10(2009)

Method 12.2.4 in KDB 558074, issued 04/09/2013 (Peak)

Method 12.2.5.1 in KDB 558074, issued 04/09/2013(Average Case 1)

Method 12.2.5.3 in KDB 558074, issued 04/09/2013(Average Case 2)

Spectrum Setting

- Peak

Peak emission levels are measured by setting the instrument as follows:

RBW = cf. Table 1.

VBW \geq 3 x RBW.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

(Note that the required measurement time may be longer for low duty cycle applications).

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Table 1 — RBW as a function of frequency

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			
	Page 1.2.3 of 160						

- Average

Case 1

If the EUT can be configured or modified to transmit continuously (duty cycle \geq 98 percent then the average emission levels shall be measured using the following method (with EUT transmitting continuously).

RBW = 1 MHz (unless otherwise specified).

VBW ≥3 x RBW.

Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

Averaging type = power (i.e., RMS).

- 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
- 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

Sweep time = auto.

Perform a trace average of at least 100 traces.

Case 2

If continuous transmission of the EUT (i.e., duty cycle \ge 98 percent) cannot be achieved and the duty cycle is not constant (i.e., duty cycle variations exceed ± 2 percent), then the following procedure shall be used: Set RBW = 1 MHz.

Set VBW $\geq 1/T$.

Video bandwidth mode or display mode

- 1) The instrument shall be set to ensure that video filtering is applied in the power domain. Typically, this requires setting the detector mode to RMS and setting the Average-VBW Type to Power (RMS).
- 2) As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow max hold to run for at least 50 times (1/duty cycle) traces.

Note :

- 1. We used the case 1 for 802.11b mode and the case 2 for802.11a/g/n_20/n_40 to perform the average filed strength measurements for RSE and Band Edge test.
- 2. The actual setting value of VBW for 802.11a/g/n_20/n_40.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
		Dogo 1.2.4 of 160		

Mode	Worst Data rate (Mbps)	T _{on} (ms)	T _{total} (ms)	Duty Cycle (%)	VBW(1/T) (Hz)	The actual setting value of VBW (Hz)
а	6	2.034	2.154	94.43	491.6	1000
g	6	2.034	2.154	94.43	491.6	1000
n_20	6.5	1.890	2.010	94.03	529.1	1000
n_40	13.5	0.932	0.992	93.95	1073.0	3000

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT				
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		

9 kHz – 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBµV/m	dBm /m	dBm	(H/V)	dBµV/m	dBµV/m	dB	
No Critical peaks found								

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Test Report No.Date of Issue: HCTR1308FR14EUT Type:2.4G/5G Dual WIFI TabletFCC ID: ZNFV500IC: 2703C-V500	FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT				
		 EUT Type:2.4G/5G Dual WIFI Tablet				

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBµV/m	dBm /m	dBm	(H/V)	dBµV/m	dBµV/m	dB	
No Critical peaks found								

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		www.hct.co.kr			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	

Operation Mode:	802.11 b
Transfer Rate:	1 Mbps
Operating Frequency	2412
Channel No.	01 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4824	58.85	-4.25	V	54.60	73.98	19.38	PK
4824	53.34	-4.25	V	49.09	53.98	4.89	AV
7236	52.44	5.21	V	57.65	73.98	16.33	PK
7236	40.55	5.21	V	45.76	53.98	8.22	AV
4824	59.42	-4.25	Н	55.17	73.98	18.81	PK
4824	54.52	-4.25	Н	50.27	53.98	3.71	AV
7236	52.11	5.21	Н	57.32	73.98	16.66	PK
7236	40.62	5.21	Н	45.83	53.98	8.15	AV

Operation Mode: Transfer Rate: Operating Frequency

Channel No.

802.11 g	
6 Mbps	
2412	
01 Ch	

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4824	54.05	-4.25	V	49.80	73.98	24.18	PK
4824	40.77	-4.25	V	36.52	53.98	17.46	AV
7236	52.51	5.21	V	57.72	73.98	16.26	PK
7236	38.96	5.21	V	44.17	53.98	9.81	AV
4824	54.82	-4.25	Н	50.57	73.98	23.41	PK
4824	42.01	-4.25	Н	37.76	53.98	16.22	AV
7236	52.07	5.21	Н	57.28	73.98	16.70	PK
7236	38.91	5.21	Н	44.12	53.98	9.86	AV

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr	
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	

Operation Mode:	802.11 n	
Transfer Rate:	6.5 Mbps	
Operating Frequency	2412	
Channel No.	01 Ch	

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4824	53.86	-4.25	V	49.61	73.98	24.37	PK
4824	40.22	-4.25	V	35.97	53.98	18.01	AV
7236	53.12	5.21	V	58.33	73.98	15.65	PK
7236	38.91	5.21	V	44.12	53.98	9.86	AV
4824	54.69	-4.25	Н	50.44	73.98	23.54	PK
4824	41.33	-4.25	Н	37.08	53.98	16.90	AV
7236	52.18	5.21	Н	57.39	73.98	16.59	PK
7236	38.97	5.21	Н	44.18	53.98	9.80	AV

- 11. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:	
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500	

Operation Mode:	802.11 b	
Transfer Rate:	1 Mbps	
Operating Frequency	2437	
Channel No.	06 Ch	

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4874	58.44	-3.93	V	54.51	73.98	19.47	PK
4874	51.21	-3.93	V	47.28	53.98	6.70	AV
7311	52.77	4.97	V	57.74	73.98	16.24	PK
7311	40.95	4.97	V	45.92	53.98	8.06	AV
4874	58.54	-3.93	Н	54.61	73.98	19.37	PK
4874	54.10	-3.93	Н	50.17	53.98	3.81	AV
7311	53.63	4.97	Н	58.60	73.98	15.38	PK
7311	40.92	4.97	Н	45.89	53.98	8.09	AV

Operation Mode:	802.11 g
Transfer Rate:	6 Mbps
Operating Frequency	2437
Channel No.	06 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4874	53.46	-3.93	V	49.53	73.98	24.45	PK
4874	40.08	-3.93	V	36.15	53.98	17.83	AV
7311	52.93	4.97	V	57.90	73.98	16.08	PK
7311	39.25	4.97	V	44.22	53.98	9.76	AV
4874	54.57	-3.93	Н	50.64	73.98	23.34	PK
4874	41.01	-3.93	Н	37.08	53.98	16.90	AV
7311	52.58	4.97	Н	57.55	73.98	16.43	PK
7311	39.21	4.97	Н	44.18	53.98	9.80	AV

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT				
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		

Operation Mode:	802.11 n
Transfer Rate:	6.5 Mbps
Operating Frequency	2437
Channel No.	06 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4874	53.69	-3.93	V	49.76	73.98	24.22	PK
4874	39.62	-3.93	V	35.69	53.98	18.29	AV
7311	52.84	4.97	V	57.81	73.98	16.17	PK
7311	39.40	4.97	V	44.37	53.98	9.61	AV
4874	54.14	-3.93	Н	50.21	73.98	23.77	PK
4874	40.61	-3.93	Н	36.68	53.98	17.30	AV
7311	52.86	4.97	Н	57.83	73.98	16.15	PK
7311	39.30	4.97	Н	44.27	53.98	9.71	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:	
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500	

Operation Mode:	802.11 b
Transfer Rate:	1 Mbps
Operating Frequency	2462
Channel No.	11 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4924	56.98	-3.75	V	53.23	73.98	20.75	PK
4924	50.01	-3.75	V	46.26	53.98	7.72	AV
7386	52.93	5.60	V	58.53	73.98	15.45	PK
7386	41.20	5.60	V	46.80	53.98	7.18	AV
4924	58.78	-3.75	Н	55.03	73.98	18.95	PK
4924	54.70	-3.75	Н	50.95	53.98	3.03	AV
7386	52.36	5.60	Н	57.96	73.98	16.02	PK
7386	41.14	5.60	Н	46.74	53.98	7.24	AV

Operation Mode:	802.11 g
Transfer Rate:	6 Mbps
Operating Frequency	2462
Channel No.	11 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4924	52.63	-3.75	V	48.88	73.98	25.10	PK
4924	39.55	-3.75	V	35.80	53.98	18.18	AV
7386	52.91	5.60	V	58.51	73.98	15.47	PK
7386	39.52	5.60	V	45.12	53.98	8.86	AV
4924	56.21	-3.75	Н	52.46	73.98	21.52	PK
4924	41.97	-3.75	Н	38.22	53.98	15.76	AV
7386	53.13	5.60	Н	58.73	73.98	15.25	PK
7386	39.53	5.60	Н	45.13	53.98	8.85	AV

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
		Dama 1 4 2 of 400			

Operation Mode:	802.11 n
Transfer Rate:	6.5 Mbps
Operating Frequency	2462
Channel No.	11 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4924	52.30	-3.75	V	48.55	73.98	25.43	PK
4924	39.24	-3.75	V	35.49	53.98	18.49	AV
7386	53.23	5.60	V	58.83	73.98	15.15	PK
7386	39.54	5.60	V	45.14	53.98	8.84	AV
4924	54.26	-3.75	Н	50.51	73.98	23.47	PK
4924	40.79	-3.75	Н	37.04	53.98	16.94	AV
7386	52.79	5.60	Н	58.39	73.98	15.59	PK
7386	39.47	5.60	Н	45.07	53.98	8.91	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT			
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:	
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500	

Band :	5.8 GHz
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5745 MHz
Channel No.	149 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11490	42.12	11.22	V	53.34	73.98	20.64	PK
11490	32.56	11.22	V	43.78	53.98	10.20	AV
11490	42.43	11.22	Н	53.65	73.98	20.33	PK
11490	33.14	11.22	Н	44.36	53.98	9.62	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

Band :	5.8 GHz
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5785 MHz
Channel No.	157 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11570	41.54	11.71	V	53.25	73.98	20.73	PK
11570	32.01	11.71	V	43.72	53.98	10.26	AV
11570	41.75	11.71	Н	53.46	73.98	20.52	PK
11570	32.64	11.71	Н	44.35	53.98	9.63	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

Band :	5.8 GHz
Operation Mode:	802.11 a
Transfer Rate:	6 Mbps
Operating Frequency	5825 MHz
Channel No.	165 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11650	42.11	11.34	V	53.45	73.98	20.53	PK
11650	32.15	11.34	V	43.49	53.98	10.49	AV
11650	42.32	11.34	Н	53.66	73.98	20.32	PK
11650	33.40	11.34	Н	44.74	53.98	9.24	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

Band :	5.8 GHz
Operation Mode:	802.11 n_20 MHz BW
Transfer Rate:	6.5 Mbps
Operating Frequency	5745 MHz
Channel No.	149 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11490	40.87	11.22	V	52.09	73.98	21.89	PK
11490	31.76	11.22	V	42.98	53.98	11.00	AV
11490	42.07	11.22	Н	53.29	73.98	20.69	PK
11490	33.03	11.22	Н	44.25	53.98	9.73	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

Band :	5.8 GHz
Operation Mode:	802.11 n_20 MHz BW
Transfer Rate:	6.5 Mbps
Operating Frequency	5785 MHz
Channel No.	157 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11570	41.12	11.71	V	52.83	73.98	21.15	PK
11570	31.06	11.71	V	42.77	53.98	11.21	AV
11570	41.23	11.71	Н	52.94	73.98	21.04	PK
11570	32.56	11.71	Н	44.27	53.98	9.71	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

Band :	5.8 GHz
Operation Mode:	802.11 n_20 MHz BW
Transfer Rate:	6.5 Mbps
Operating Frequency	5825 MHz
Channel No.	165 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11650	41.67	11.34	V	53.01	73.98	20.97	PK
11650	31.83	11.34	V	43.17	53.98	10.81	AV
11650	42.08	11.34	Н	53.42	73.98	20.56	PK
11650	33.28	11.34	Н	44.62	53.98	9.36	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

Band :	5.8 GHz
Operation Mode:	802.11 n_40 MHz BW
Transfer Rate:	13.5 Mbps
Operating Frequency	5755 MHz
Channel No.	151 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11510	41.59	11.53	V	53.12	73.98	20.86	PK
11510	32.54	11.53	V	44.07	53.98	9.91	AV
11510	41.72	11.53	Н	53.25	73.98	20.73	PK
11510	33.06	11.53	Н	44.59	53.98	9.39	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT					
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			

Band :	5.8 GHz
Operation Mode:	802.11 n_40 MHz BW
Transfer Rate:	13.5 Mbps
Operating Frequency	5795 MHz
Channel No.	159 Ch

Frequency	Reading	AN.+CL-AMP G	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
11590	41.29	11.64	V	52.93	73.98	21.05	PK
11590	30.63	11.64	V	42.27	53.98	11.71	AV
11590	41.49	11.64	Н	53.13	73.98	20.85	PK
11590	31.29	11.64	Н	42.93	53.98	11.05	AV

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

8.6.2 RECEIVER SPURIOUS EMISSIONS

FCC Rule(s)	§15.109 (see Table Below)
Test Requirements:	Emission Level shall not exceed §15.109 limits
Operating conditions:	Under normal test conditions
Method of testing:	Radiated
	F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)
S/A. Settings:	
	F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)
Mode of operation:	Receive

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30 – 88	100 (40 dBuV)	3
88 - 216	150 (43.5 dBuV))	3
216 – 960	200 (46 dBuV)	3
Above 960	500 (54 dBuV)	3

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBµV	dB /m	dB	(H/V)	dBµV/m	dBµV/m	dB
			No Critical p	beaks found			

Above 1 GHz

Frequency	Reading	Ant. Factor	Cable Loss	ANT POL	Total	Limit	Margin
MHz	dBuV	dB/m	dB	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500
				, ,

8.6.3 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

Operation Mode:	802.11g
Transfer Rate:	6 Mbps
Operating Frequency	2412 MHz, 2462 MHz
Channel No.	01 Ch, 11 Ch

Frequency	Reading	AN.+CL	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
2390.0	33.14	33.90	Н	67.04	73.98	6.94	PK
2390.0	14.00	33.90	Н	47.90	53.98	6.08	AV
2390.0	32.20	33.90	V	66.10	73.98	7.88	PK
2390.0	13.40	33.90	V	47.30	53.98	6.68	AV
2483.5	33.10	33.99	Н	67.09	73.98	6.89	PK
2483.5	15.29	33.99	Н	49.28	53.98	4.70	AV
2483.5	32.44	33.99	V	66.43	73.98	7.55	PK
2483.5	14.85	33.99	V	48.84	53.98	5.14	AV

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

Operation Mode:	802.11b
Transfer Rate:	1 Mbps
Operating Frequency	2412 MHz, 2462 MHz
Channel No.	01 Ch, 11 Ch

Frequency	Reading	AN.+CL	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
2390.0	26.55	33.90	Н	60.45	73.98	13.53	PK
2390.0	13.73	33.90	Н	47.63	53.98	6.35	AV
2390.0	26.69	33.90	V	60.59	73.98	13.39	PK
2390.0	13.30	33.90	V	47.20	53.98	6.78	AV
2483.5	26.71	33.99	Н	60.70	73.98	13.28	PK
2483.5	14.62	33.99	Н	48.61	53.98	5.37	AV
2483.5	25.99	33.99	V	59.98	73.98	14.00	PK
2483.5	13.05	33.99	V	47.04	53.98	6.94	AV

Operation Mode:

Transfer Rate:

Operating Frequency

Channel No.

802.11n
6.5 Mbps
2412 MHz, 2462 MHz
01 Ch, 11 Ch

Frequency	Reading	AN.+CL	ANT. POL	Total	Limit	Margin	
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
2390.0	35.81	33.90	Н	69.71	73.98	4.27	PK
2390.0	15.11	33.90	Н	49.01	53.98	4.97	AV
2390.0	34.95	33.90	V	68.85	73.98	5.13	PK
2390.0	14.39	33.90	V	48.29	53.98	5.69	AV
2483.5	33.52	33.99	Н	67.51	73.98	6.47	PK
2483.5	15.16	33.99	Н	49.15	53.98	4.83	AV
2483.5	31.04	33.99	V	65.03	73.98	8.95	PK
2483.5	13.51	33.99	V	47.50	53.98	6.48	AV

- 1. Total = Reading Value + Antenna Factor + Cable Loss
- 2. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr			
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500			
	Page 1 5 4 of 160						

8.7 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

	Limits (dBµV)			
Frequency Range (MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

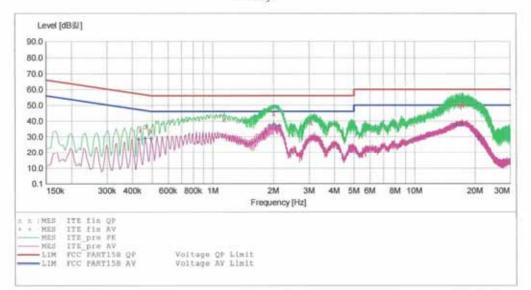
Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- 5. We are performed the AC Power Line Conducted Emission test for 11 Mbps, Ch.1 and 802.11b. Because 802.11b mode is worst case.

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500



HCT

EMC

EUT: Manufacturer: Operating Condition:	LG-V500 LG
Test Site: Operator:	SHIELD ROOM
Test Specification: Comment:	KN22 CLASS A H

SCAN TABLE		CLASS B(Y)" KN22 CLASS	в		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency				Time	Bandw.	
150.0 kHz			MaxPeak	10.0 ms	9 kHz	None
			Average			
500.0 kHz	5.0 MHz	4.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			
5.0 MHz	30.0 MHz	4.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			

MEASUREMENT RESULT: "ITE fin QP"

PE	Line	Margin	Limit	Transd	Level	Frequency
		dB	dB쐶	dB	dB 🖏	MHz
		22.9	57	9.8	34.20	0.438001
		20.0	57	9.8	36.50	0.470001
		22.4	56	9.8	33.70	0.494001
		14.9	56	9.9	41.10	1.140000
		11.2	56	9.9	44.80	2.004000
		17.0	56	10.1	39.00	3.068000
$(-,-) \in \mathbb{R}^{n}$		10.3	60	10.8	49.70	16.756000
		9.9	60	10.8	50.10	17.320000
		9.5	60	10.8	50.50	17.368000

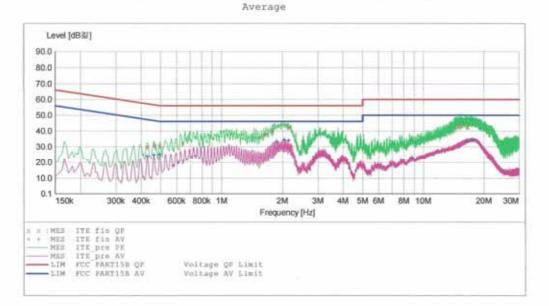
Page 1/2 2013-07-30 9:28오전 HCT EMC LAB

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr		
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500		

MEASUREMENT RESULT: "ITE_fin AV"

2013-07-30 9:	27오.전					
Frequency MHz	Level dB鴐	Transd dB	Limit dB겛	Margin dB	Line	PE
0.430001	28.40	9.8	47	18.8		
0.462001	28.80	9.8	47	17.8		
0.494001	28.80	9.8	46	17.3		
1.912000	37.20	9.9	46	8.8		
2.012000	38.00	9.9	46	8.0	-	
2.144000	37.10	10.0	46	8.9		Hee.
16.172000	37.70	10.8	50	12.3		
17.156000	38.60	10.8	50	11.4		
20.856000	29.90	11.0	50	20.1		

Page 2/2 2013-07-30 9:28오전 HCT EMC LAB


FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500

Conducted Emissions (Line 2)

HCT EMC

EUT: LG-V500 Manufacturer: LG Operating Condition: WLAN MODE SHIELD ROOM Test Site: KI YOON Operator: Test Specification: KN22 CLASS A Comment: Ν SCAN TABLE: "KN14 CLASS B(H)" Short Description: KN22 CLASS B Start Stop Step Detector M Detector Meas. IF Time Bandw. MaxPeak 10.0 ms 9 kHz Transducer Frequency Frequency Width 150.0 kHz 500.0 kHz 4.0 kHz None Average MaxPeak 500.0 kHz 5.0 MHz 4.0 kHz 10.0 ms 9 kHz None Average 5.0 MHz 30.0 MHz 4.0 kHz MaxPeak 10.0 ms 9 kHz None

MEASUREMENT RESULT: "ITE fin QP"

2013-07-30 9:	39오전					
Frequency MHz	Level dB裂	Transd dB	Limit dB裂	Margin dB	Line	PE
0.430001	30.10	10.0	57	27.2		
0.462001	31.00	10.0	57	25.7		
0.494001	30.40	10.0	56	25.7		
1.648000	37.80	10.1	56	18.2		
1.776000	40.40	10.1	56	15.6		
2.140000	42.60	10.2	56	13.4		
14.920000	43.10	11.0	60	16.9		
15.356000	43.50	11.1	60	16.5		
16,684000	42.80	11.1	60	17.2		

Page 1/2 2013-07-30 9:40오전 HCT EMC LAB

FCC PT.15.247 TEST REPORT		FCC & IC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500

MEASUREMENT RESULT: "ITE_fin AV"

Frequency MHz	dB 🖁	Transd dB	Limit dB裂	Margin dB	Line	PE
0.430001	23.90	10.0	47	23.4		-
0.462001	24.80	10.0	47	21.9		
0.494001	25.20	10.0	46	20.9	$(-\infty+1)$	
1.876000	33.30	10.1	46	12.7		-
2.040000	34.40	10.1	46	11.6		
2.140000	34.00	10.2	46	12.0		
8.756000	23.00	10.6	50	27.0	-	-
16,456000	33.70	11.1	50	16.3		
17.600000	34.50	11.1	50	15.5		

Page 2/2 2013-07-30 9:40오전 HCT EMC LAB

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID:	IC:
HCTR1308FR14	August 06, 2013		ZNFV500	2703C-V500

9. LIST OF TEST EQUIPMENT

Manufacturer	Model / Equipment	Calibration Interval	Calibration Due	Serial No.
Rohde & Schwarz	ENV216/ LISN	Annual	02/06/2014	100073
Schwarzbeck	VULB 9160/ TRILOG Antenna	Biennial	12/17/2014	3150
Rohde & Schwarz	ESI 40 / EMI TEST RECEIVER	Annual	04/16/2014	831564103
Agilent	E4440A/ Spectrum Analyzer	Annual	04/25/2014	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	Annual	05/14/2014	MY51110063
HD	MA240/ Antenna Position Tower	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	12
Rohde & Schwarz	SCU-18/ Signal Conditioning Unit	Annual	09/11/2013	10094
MITEQ	AMF-6B-180265-35-10P / POWER AMP	Annual	04/16/2014	667624
CERNEX	CBL26405040 / POWER AMP	Annual	04/16/2014	19660
Schwarzbeck	BBHA 9120D/ Horn Antenna	Biennial	10/17/2013	937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	Biennial	10/30/2014	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	Annual	02/08/2014	839117/011
Agilent	E4416A /Power Meter	Annual	11/07/2013	GB41291412
Agilent	E9327A /POWER SENSOR	Annual	04/16/2014	MY4442009
Wainwright Instrument	WHF3.0/18G-10EF / High Pass Filter	Annual	02/08/2014	F6
Wainwright Instrument	WHNX6.0/26.5G-6SS / High Pass Filter	Annual	04/16/2014	1
Wainwright Instrument	WHNX7.0/18G-8SS / High Pass Filter	Annual	04/16/2014	29
Wainwright Instrument	WRCJ2400/2483.5-2370/2520-60/14SS / Band Reject Filter	Annual	03/19/2014	1
Hewlett Packard	11636B/Power Divider	Annual	11/07/2013	11377
Agilent	87300B/Directional Coupler	Annual	12/24/2013	3116A03621
Hewlett Packard	11667B / Power Splitter	Annual	05/29/2014	05001
DIGITAL	EP-3010 /DC POWER SUPPLY	Annual	11/07/2013	3110117
ITECH	IT6720 / DC POWER SUPPLY	Annual	11/07/2013	010002156287001199
TESCOM	TC-3000C / BLUETOOTH TESTER	Annual	04/24/2014	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	Annual	04/25/2014	100422
EMCO	6502.LOOP ANTENNA	Biennial	01/11/2014	9009-2536
CERNEX	CBLU1183540 / POWER AMP	Annual	07/24/2014	21691
Agilent	8493C / Attenuator(10 dB)	Annual	07/24/2014	76649
WEINSCHEL	2-3 / Attenuator(3 dB)	Annual	11/07/2013	BR0617

FCC PT.15.247 TEST REPORT	FCC & IC CERTIFICATION REPORT			www.hct.co.kr	
Test Report No. HCTR1308FR14	Date of Issue: August 06, 2013	EUT Type:2.4G/5G Dual WIFI Tablet	FCC ID: ZNFV500	IC: 2703C-V500	
Dage $1 \in \mathcal{O}$ of 160					