10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	x	100.00	146.53	35.02	1.17	100.0	± 9.6 %
		Ý	100.00	95.65	15.05		100.0	
		z	100.00	112.23	21.08		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	100.00	133.98	36.90	5.30	70.0	± 9.6 %
		Y	94.91	132.14	36.35		70.0	
		Z	24.70	106.96	28.52		70.0	 -
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	8.70	95.28	25.33	1.88	100.0	± 9.6 %
		Y	4.18	83.23	21.11		100.0	+
		Ż	3.97	82.01	19.44		100.0	<u> </u>
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	3.83	83.82	21.38	1.17	100.0	± 9.6 %
		Y	2.23	74.99	17.69		100.0	
		Z	2.33	75.94	16.98	<u> </u>	100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	100.00	134.50	37.14	5.30	70.0	± 9.6 %
<u> </u>		Y	100.00	133.48	36.76		70.0	
		Z	56.60	119.91	31.85	· · · -	70.0	<u> </u>
10037- 	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	7.69	93.53	24.78	1.88	100.0	± 9.6 %
		Y	3.89	82.31	20.76		100.0	<u> </u>
10000		Z	3.40	80.12	18.77		100.0	<u> </u>
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	3.93	84.59	21.78	1.17	100.0	± 9.6 %
		Y	2.28	75.57	18.03		100.0	
		Z	2.38	76.51	17.34		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	×	2.78	78.14	18.71	0.00	150.0	± 9.6 %
		Y	1.67	70.12	14.94		150.0	
		Z	2.00	74.01	15.76		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	110.92	24.96	7.78	50.0	± 9.6 %
		Y	100.00	110.22	24.75		50.0	
		Ζ	100.00	106.01	22.46		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	112.58	4.43	0.00	150.0	± 9.6 %
		Y	0.07	121.95	9.84		150.0	
		Z	0.01	118.94	9.83		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	100.00	111.48	27.44	13.80	25.0	±9.6%
		Y	100.00	112.85	28.28		25.0	
		Ζ	18.65	86.54	19.90		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	100.00	112.40	26.75	10.79	40.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	100.00	113.42	27.38		40.0	
40050		Ζ	46.23	99.19	22.45		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	100.00	126.85	34.82	9.03	50.0	± 9.6 %
	<u> </u>	<u>Y</u>	100.00	126.84	34.96		50.0	
10058-		Z	73.14	116.99	30.84		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	4.87	79.06	26.07	6.55	100.0	± 9.6 %
		Y	4.89	78.72	25.82		100.0	
10059-		Z	3.78	74.24	23.87		100.0	
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.24	66.08	16.89	0.61	110.0	± 9.6 %
	+ ··· ··	Y	1.15	64.70	15.80		110.0	
10060-		Z	1.15	65.12	16.08		110.0	
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	_X	100.00	145.11	38.67	1.30	110.0	± 9.6 %
<u> </u>		Y	100.00	138.14	35.54		110.0	— —–
		Z	100.00	143.13	37.45		110.0	

EX3DV4- SN:7308

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	x	5.01	92.44	27.34	2.04	110.0	± 9.6 %
		Y	3.88	86.79	24.94	<u> </u>	110.0	
		Z	2.64	81.37	23.02	<u>├</u>	110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.74	66.80	16.70	0.49	100.0	±9.6 %
		Y	4.72	66.44	16.52		100.0	
		Z	4.55	66.78	16.53	·	100.0	·
10063- _CAC	IEEE 802.11a/h WiFl 5 GHz (OFDM, 9 Mbps)	X	4.76	66.90	16.81	0.72	100.0	± 9.6 %
		Y	4.74	66.55	16.64		100.0	
10064-		Z	4.57	66.86	16.62		100.0	
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.07	67.18	17.05	0.86	100.0	±9.6 %
		Y	5.06	66.88	16.91		100.0	
10065-		Z	4.83	67.08	16.83		100.0	
<u>CAC</u>	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.93	67.08	17.15	1.21	100.0	± 9.6 %
		Y	4.92	66.80	17.03		100.0	
10066-		Z	4.69	66.95	16.91		100.0	
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.95	67.11	17.33	1.46	100.0	±9.6 %
		Y	4.94	66.84	17.22		100.0	
40007		Z	4.70	66.94	17.07		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.22	67.17	17.72	2.04	100.0	± 9.6 %
		Y	5.23	66.94	17.65		100.0	
		Z	4.99	67.15	17.52		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.28	67.31	17.99	2.55	100.0	±9.6 %
		Y	5.30	67.12	17.95		100.0	
		Ż	5.01	67.08	17.69		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.36	67.24	18.15	2.67	100.0	± 9.6 %
		Y	5.38	67.05	18.11		100.0	
		Z	5.09	67.11	17.88		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.01	66.83	17.56	1.99	100.0	± 9.6 %
		Y	5.01	66.58	17.48		100.0	
		Z	4.83	66.80	17.36		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.00	67.20	17.81	2.30	100.0	± 9.6 %
		Y	5.01	66.96	17.73		100.0	
		Z	4.79	67.07	17.56		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.05	67.32	18.13	2.83	100.0	± 9.6 %
		Y	5.06	67.11	18.07		100.0	
100-1		Z	4.84	67.21	17.87		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.01	67.17	18.27	3.30	100.0	±9.6 %
		Y	5.03	66.98	18.23		100.0	
		Z	4.82	67.10	18.01		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.05	67.33	18.61	3.82	90,0	± 9.6 %
		Y	5.08	67.18	18.60		90.0	
40075		Z	4.84	67.13	18.28		90.0	
10076- CAB	IEEE 802.11g WIFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.04	67.01	18.67	4.15	90.0	± 9.6 %
		Y	5.06	66.85	18.66		90.0	
		Z	4.86	66.95	18.41		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.05	67.06	18.76	4.30	90.0	± 9.6 %
		Y	5.07	66.89	18.74		90.0	
		Z	4.89	67.03	18.52		90.0	

10081- CAB	CDMA2000 (1xRTT, RC3)	x	1.10	69.87	14.99	0.00	150.0	± 9.6 %
		Y	0.78	64.74	11.83		150.0	
		Z	0.78	66.34	11.97		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	0.69	60.00	4.39	4.77	80.0	± 9.6 %
		Y	0.71	60.00	4.39		80.0	
		Z	7.97	68.50	6.36	<u> </u>	80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	115.53	26.81	6.56	60.0	±9.6 %
		Y	100.00	114.29	26.36		60.0	
		Z	100.00	109.90	23.90		60.0	
10097- CAB	UMTS-FDD (HSDPA)	×	1.95	68.97	16.62	0.00	150.0	± 9.6 %
		Y	1.75	66.81	15.24		150.0	
10000		Z	1.87	68.90	16.13		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.91	68.95	16.60	0.00	150.0	± 9.6 %
		Y	1.71	66.77	15.20		150.0	
40000		Z	1.83	68.86	16.11		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	11.93	100.45	36.42	9.56	60.0	± 9.6 %
		Y	11.20	97.95	35.37		60.0	
40405		Z	7.96	90.99	32.84		60.0	
10100- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.40	71.76	17.45	0.00	150.0	± 9.6 %
		Y	3.10	69.82	16.33		150.0	
		Z	3.12	70.91	17.03		150.0	
10101- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.36	68.15	16.35	0.00	150.0	± 9.6 %
		Y	3.24	67.23	15.77		150.0	
		Z	3.17	67.74	16.07		150.0	
10102- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, _64-QAM)	X	3.45	68.05	16.42	0.00	150.0	± 9.6 %
		Ý	3.34	67.19	15.87		150.0	
		Z	3.28	67.71	16.16		150.0	
10103- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.86	77.75	21.56	3.98	65.0	±9.6 %
		Y	6.56	76.62	21.10		65.0	
		Z	5.69	75.27	20.45		65.0	<u> </u>
10104- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	6.41	74.58	21.07	3.98	65.0	± 9.6 %
		Y	6.33	74.04	20.86		65.0	
		Z	5.58	72.74	20.11		65.0	
10105- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	6.09	73.43	20.88	3.98	65.0	± 9.6 %
		Y	6.03	72.95	20.69		65.0	<u> </u>
40400		Z	5.24	71.29	19.75		65.0	<u> </u>
10108- CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, _QPSK)	X	2.97	70.94	17.29	0.00	150.0	± 9.6 %
		Y	2.72	69.08	16.17		150.0	
40400		Z	2.70	70.20	16.88		150.0	
10109- CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.02	68.05	16.32	0.00	150.0	± 9.6 %
		Y	2.90	67.02	15.66		150.0	
40440		Z	2.83	67.71	15.99		150.0	
10110- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	х	2.42	70.09	17.00	0.00	150.0	± 9.6 %
		Y	2.21	68.14	15.78		150.0	
404 11		Z	2.18	69.46	16.49		150.0	
10111- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.76	69.06	16.78	0.00	150.0	± 9.6 %
		Y	2.59	67.59	15.88		1	<u> </u>
			L. OO	01.00	0.00		150.0	

EX3DV4-- SN:7308

							, nuí	JUST 23, 201
10112- CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.14	67.97	16.35	0.00	150.0	± 9.6 %
		Y	3.03	67.00	15.72	<u> </u>	150.0	<u> </u>
10113-	TE EDD (SC EDMA 400% DD E MIL	Z	2.95	67.72	16.05		150.0	
CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.92	69.11	16.87	0.00	150.0	± 9.6 %
		Y	2.75	67.72	16.02		150.0	
10114-		Z	2.74	69.14	16.51		150.0	
CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	×	5.18	67.31	16.57	0.00	150.0	±9.6 %
		Y	<u>5.</u> 14	66.93	16.36		150.0	
10115-		Z	5.02	67.26	16.48		150.0	
	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	×	5.52	67.57	16.70	0.00	150.0	± 9.6 %
		Y	5.51	67.29	16.56		150.0	
10116-		_Z	5.27	67.30	16.50		150.0	
	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.29	67.56	16.61	0.00	150.0	±9.6 %
		Ý	5.27	67.21	16.43		150.0	
10117		Z	5.10	67.44	16.50		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	×	5.16	67.25	16.55	0.00	150.0	± 9.6 %
		Y	5.13	66.89	16.36		150.0	
40440		_ Z	4.99	67.15	16.44		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.59	67.74	16.79	0.00	150.0	± 9.6 %
		Y	5.60	67.49	16.67		150.0	
40440		Z	5.34	67.49	16.60		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.26	67.49	16.59	0.00	150.0	± 9.6 %
<u>.</u>		Y	5.24	67.15	16.41		150.0	
		Z	5.09	67.40	16.49		150.0	<u> </u>
10140- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.50	68.05	16.33	0.00	150.0	±9.6 %
		Y	3.39	67.19	15.79		150.0	
		Z	3.30	67.72	16.07		150.0	
10141- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.62	68.10	16.48	0.00	150.0	± 9.6 %
		Y	3.51	67.27	15.96		150.0	
		Ζ	3.43	67.85	16.25		150.0	
10142- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	x	2.22	70.35	16.88	0.00	150.0	± 9.6 %
		Y	1.98	67.98	15.45		150.0	
		Z	1.97	69.67	16.10	-	150.0	
10143- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.70	70.21	16.79	0.00	150.0	± 9.6 %
		Y	2.44	68.12	15.58		150.0	
4044:		Z	2.48	69.97	16.00		150.0	
10144- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.42	67.64	15.07	0.00	150.0	± 9.6 %
		Y	2.26	66.15	14.15		150.0	·
101.2		_Z	2.13	66.86	13.96		150.0	
10145- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.54	68.23	14.00	0.00	150.0	± 9.6 %
		Y	1.25	64.93	12.03		150.0	
10140		Z	1.00	63.72	10.21		150.0	
10146- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	×	2.38	68.67	13.30	0.00	150.0	± 9.6 %
		Y	2.63	70.03	14.41		150.0	
1011=		_ Z	1.37	62.94	8.80		150.0	
10147- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	3.01	71.74	14.81	0.00	150.0	± 9.6 %
		Y	3,44	73.73	16.16		150.0	
		Z	1.50	63.86	9.38		150.0	·

10149- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.03	68.12	16.37	0.00	150.0	± 9.6 %
		Y	2.91	67.08	15.71		150.0	
		Ż	2.84	67.78	16.04		150.0	
10150- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.15	68.03	16.39	0.00	150.0	± 9.6 %
-		Y	3.03	67.05	15.76		150.0	
		Z	2.96	67.78	16.09		150.0	
10151- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	x	7.33	80.62	22.85	3.98	65.0	± 9.6 %
		Ý	6.93	79.21	22.28	<u> </u>	65.0	
		Ż	6.07	78.22	21.74			
10152- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	5.98	74.73	20.92	3.98	65.0 65.0	±9.6 %
		Y	5.89	74.12	20.68	<u> </u>	65.0	<u> </u>
		Z	5.12	72.74	19.78		65.0	
10153- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	6.33	75.57	21.65	3.98	65.0	±9.6 %
		Y	6.23	74.94	21.41		65.0	
		Z	5.49	73.78	20.61		65.0	
10154- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.49	70.63	17.32	0.00	150.0	± 9.6 %
		Y	2.26	68.57	16.06		150.0	
		Z	2.24	69.92	16.77		150.0	
10155- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.77	69.07	16.79	0.00	150.0	±9.6 %
		Y	2.59	67.59	15.89	<u> </u>	150.0	
		Z	2.59	69.02	16.41		150.0	- <u> </u>
10156- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.11	70.85	16.93	0.00	150.0	±9.6 %
		Y	1.83	68.04	15.26		150.0	
<u> </u>		Z	1.82	69.80	15.80		150.0	
10157- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.31	68.61	15.35	0.00	150.0	± 9.6 %
		Ý	2.08	66.62	14.16		150.0	
		Z	1.98	67.47	13.92		150.0	
10158- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	Х	2.92	69.17	16.92	0.00	150.0	± 9.6 %
		Y	2.75	67.77	16.06		150.0	
		Z	2.75	69.22	16.57		150.0	
10159- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.44	69.17	15.69	0.00	150.0	± 9.6 %
		Y	2.19	67.06	14.45		150.0	<u>-</u> −−
		Z	2.09	67.96	14.21		150.0	
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.90	69.57	16.90	0.00	150.0	± 9.6 %
		Y	2.74	68.24	16.05		150.0	<u>├</u> ───┤
10461		Z	2.70	69.25	16.60		150.0	<u>├──</u> -
10161- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.05	67.98	16.35	0.00	150.0	± 9.6 %
	<u> </u>	Y	2.93	66.95	15.69		150.0	
40400		Z	2.86	67.77	16.01		150.0	
10162-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	X	3.15	68.06	16.42	0.00	150.0	± 9.6 %
CAE	64-QAM)		-					
	64-QAM)	Y	3.03	67.06	15.79		150.0	
		Z	2.97	67.06 67.96	<u>15.79</u> <u>16</u> .14		150.0 150.0	
10166- CAF	64-QAM) LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Z X	2.97 3.67			3.01		± 9.6 %
10166-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	Z X Y	2.97 3.67 3.71	67.96	16.14	3.01	150.0 150.0	±9.6 %
10166- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Z X Y Z	2.97 3.67	67.96 69.77	16.14 19.22 19.37	3.01	150.0 150.0 <u>150</u> .0	± 9.6 %
10166-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	Z X Y	2.97 3.67 3.71	67.96 69.77 69.61	<u>16.14</u> 19.22	3.01	150.0 150.0	± 9.6 %
10166- CAF 10167-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	Z X Y Z	2.97 3.67 <u>3.71</u> 3.45	67.96 69.77 69.61 70.11	16.14 19.22 19.37 19.35		150.0 150.0 150.0 150.0	

EX3DV4-SN:7308

10168-								JUSE 20, 2010
CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.13	75.25	21.12	3.01	150.0	± 9.6 %
		Y	5.05	74.54	21.07		150.0	<u> </u>
10169-		Z	<u>5</u> .13	77.22	21.87		150.0	
CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.12	70.03	19.37	3.01	150.0	± 9.6 %
		Y	3.15	69.73	19.46	<u> </u>	150.0	
		Z	2.86	69.57	19.15		150.0	
10170- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	4.58	77.10	22.08	3.01	150.0	±9.6 %
		Y	4.39	75.79	21.81		150.0	
		Z	4.44	78.23	22.53		150.0	
10171- AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.64	72.24	19.05	3.01	150.0	± 9.6 %
		Y	3.59	71.47	18.98		150.0	
		Z	3.36	72.39	19.02		150.0	
10172- CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	12.64	100.34	31.84	6.02	65.0	± 9.6 %
		Y	12.97	100.68	32.37		65.0	
40/70		_ Z	5.77	87.24	27.51		65.0	
10173- CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	36.96	114.71	33.67	6.02	65.0	±9.6 %
		Υ.	30.92	112.16	33.64		65.0	
		Z	22.36	108.00	31.61		65.0	
10174- 	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	22.92	104.35	30.17	6.02	65.0	± 9.6 %
		Y	21.96	104.04	30.70		65.0	
		Z	11.65	95.24	27.25		65.0	
10175- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.08	69.68	19.10	3.01	150.0	± 9.6 %
-		Y	3.11	69.39	19.20	<u> </u>	150.0	
		Z	2.82	69.22	18.88		150.0	
10176- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	4.59	77.13	22.09	3.01	150.0	± 9.6 %
		Y	4.40	75.82	21.82		150.0	
		Z	4.45	78.26	22.55		150.0	
10177- CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.11	69.85	19.21	3.01	150.0	± 9.6 %
		Y	3.14	69.56	19.30		150.0	
		Z	2.84	69.38	18.97		150.0	
10178- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	4.53	76.83	21.94	3.01	150.0	± 9.6 %
		Y	4.34	75.53	21.68		150.0	
		Z	4.39	77.99	22.42		150.0	
10179- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	x	4.06	74.50	20.40	3.01	150.0	± 9.6 %
		Y	3.95	73.49	20.26		150.0	
		Z	3.83	75.09	20.61		150.0	
10180- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	3.62	72.15	18.99	3.01	150.0	± 9.6 %
		Y	3.58	71.38	18.93		150.0	
		z	3.35	72.32	18.97	<u> </u>	150.0	
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	x	3.10	69.83	19.20	3.01	150.0	± 9.6 %
		Ŷ	3.13	69.54	19.29		150.0	
		Z	2.84	69.36	18.97		150.0	
10182- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	4.52	76.80	21.93	3.01	150.0	± 9.6 %
		Y	4.33	75.51	21.66		150.0	
		Z	4.38	77.96	22.40		150.0	
10183- AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.62	72.12	18.97	3.01	150.0	± 9.6 %
		Y	3.57	71.35	18.91		150.0	
		Z	3.34	72.29	18.96	-	150.0	

10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	x	3.11	69.88	19.22	3.01	150.0	+069/
CAE	QPSK)			09.00	19.22	3.01	150.0	± 9.6 %
	<u> </u>	Y	3.14	69.58	19.32		150.0	
		Z	2.85	69.41	18.99		150.0	
10185- _ <u>C</u> AE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	4.54	76.88	21.97	3.01	150.0	± 9.6 %
		Y	4.35	75.59	21.70		150.0	
		Z	4.41	78.06	22.45		150.0	
10186- AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	3.64	72.20	19.01	3.01	150.0	±9.6 %
		Y	3.59	71.42	18.95		150.0	
		Z	3.36	72.37	19.00		150.0	
10187- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.12	69.93	19.28	3.01	150.0	± 9.6 %
		Y	3.15	69.63	19.37		150.0	
		Z	2.86	69.48	19.07		150.0	[
10188- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	4.72	77.70	22.40	3.01	150.0	± 9.6 %
		Y	4.51	76.33	22.11		150.0	
		Z	4.61	78.98	22.92		150.0	
10189- AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	3.73	72.70	19.32	3.01	150.0	± 9.6 %
		Y	3.67	71.88	19.24		150.0	
		Z	3.46	72.92	19.33		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.59	66.76	16.33	0.00	150.0	± 9.6 %
		Y	4.55	66.31	16.09		150.0	
		Z	4.42	66.80	16.19		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.77	67.10	16.45	0.00	150.0	± 9.6 %
		T Y	4.74	66.66	16.21		150.0	
		Z	4.58	67.08	16.32		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.82	67.12	16.46	0.00	150.0	± 9.6 %
		Y	4.78	66.69	16.22		150.0	
		Z	4.62	67.10	16.34		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.60	66.84	16.36	0.00	150.0	±9.6 %
		Y	4.56	66.40	16.12		150.0	
		Ż	4.41	66.83	16.20		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.79	67.12	16.46	0.00	150.0	±9.6%
		Y	4.75	66.69	16.22	<u> </u>	150.0	
		Z	4.59	67.09	16.33		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.82	67.14	16.47	0.00	150.0	± 9.6 %
		Y	4.78	66.71	16.24		150.0	
		Z	4.61	67.11	16.35		150.0	├── ───-
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.55	66.86	16.33	0.00	150.0	± 9.6 %
		Y	4.51	66.41	16.08		150.0	
		7	4.37	66.86			150.0	
		Z	4.97	1 00.00	16.17			
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.79	67.10	16. <u>17</u> 16.45	0.00	150.0	±9.6 %
		X Y	4.79			0.00	150.0	±9.6 %
	QAM)	X	4.79	67.10	16.45 16.22	0.00	150.0 150.0	±9.6 %
		X Y Z X	4.79 4.75 4.58 4.83	67.10 66.67	16.45	0.00	150.0	± 9.6 %
CAC	QAM) IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-	X Y Z	4.79 4.75 4.58	67.10 66.67 67.05	16.45 16.22 16.32 16.45		150.0 150.0 150.0 150.0	
CAC 10221- CAC	QAM) IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X Y Z X	4.79 4.75 4.58 4.83	67.10 66.67 67.05 67.06 66.64	16.45 16.22 16.32 16.45 16.23		150.0 150.0 150.0 150.0 150.0	
CAC	QAM) IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-	X Y Z X Y	4.79 4.75 4.58 4.83 4.79	67.10 66.67 67.05 67.06	16.45 16.22 16.32 16.45		150.0 150.0 150.0 150.0	
CAC 10221- CAC 10222-	QAM) IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM) IEEE 802.11n (HT Mixed, 15 Mbps,	X Y Z X Y Z	4.79 4.75 4.58 4.83 4.79 4.62	67.10 66.67 67.05 67.06 66.64 67.04	16.45 16.22 16.32 16.45 16.23 16.33	0.00	150.0 150.0 150.0 150.0 150.0 150.0	± 9.6 %

EX3DV4-- SN:7308

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	X	5.45	67.43	16.65	0.00	150.0	± 9.6 %
040	QAM)	<u> </u>	<u>_</u>	<u> </u>	<u> </u>			
		Y	5.45	67.18	16.52		150.0	
10224-		Z	5.25	67.35	16.55		150.0	
CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.19	67.37	16.53	0.00	150.0	±9.6 %
	<u> </u>	Y	5.15	66.99	16.33		150.0	
40005		Z	5.01	67.26	16.42		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.89	66.55	15.78	0.00	150.0	± 9.6 %
		Y	2.80	65.71	15,24	<u>_</u>	150.0	
		Z	2.72	66.49	15.32		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	42.12	117.30	34.47	6.02	65.0	±9.6 %
		Y	34.39	114.35	34.35		65.0	
		Z	25.78	110.75	32.49		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	33.34	110.83	32.01	6.02	65.0	± 9.6 %
		Y	29.14	109.23	32.25		65.0	
		Z	23.91	107.08	30.63		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	15.66	105.06	33.38	6.02	65.0	± 9.6 %
		Y	15.84	105.37	33.95		65.0	— <u> </u>
		Z	7.75	93.33	29.68		65.0	
10229- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	37.28	114.84	33.72	6.02	65.0	± 9.6 %
		Y	31.13	112.26	33.67		65.0	
		Z	22.62	108.17	31.67		65.0	
10230- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	29.88	108.76	31.36	6.02	65.0	± 9.6 %
		Y	26.58	107.43	31.66	<u> </u>	65.0	
		Ż	20.85	104.61	29.86	· ·	65.0	
10231- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	x	14.65	103.59	32.85	6.02	65.0	± 9.6 %
		Y	14.88	103.95	33.43		65.0	
		ż	7.34	92.15	29.19		65.0	
10232- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	x	37.25	114.84	33.71	6.02	65.0	± 9.6 %
		Ŷ	31.10	112.26	33.67		65.0	
		ż	22.58	108.16	31.67			
10233- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	29.82	108.74	31.35	6.02	65.0 65.0	± 9.6 %
		Y	26.53	107.41	31.66		65.0	
		z	20.76	104.56				
10234- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	13.83	104.56	29.85 32.30	6.02	<u>65.0</u> 65.0	± 9.6 %
		YI	14.10	102.64	32.91		65.0	
		z	7.03	91.14	28.71		<u>65.0</u>	
10235- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	37.39	114.93	33.74	6.02	65.0	± 9.6 %
		Y	31.21	112.34	33.70		65.0	
		Z	22.65	108.24	31.69		65.0	
10236- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	30.43	109.05	31.43	6.02	65.0	± 9.6 %
		Y	27.03	107.71	31.73		65.0	
		Z	21.22	104.87	29.93		65.0	
10237- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	14.73	103.74	32.90	6.02	65.0	± 9.6 %
		Y	14.96	104.11	33.48		65.0	
		Z	7.35	92.21	29.22		65.0	
10238- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	37.20	114.83	33.71	6.02	65.0	± 9.6 %
		Y	31.07	112.26	33.67		65.0	
		Ż	22.51	108.13	31.66		00.0	

V 26.48 107.40 31.66 65.0 10240 LTE-TDD (SC-FDMA, 1 RB, 15 MHz, CAE X 14.67 103.68 32.88 6.02 65.0 ± 9.8 % CAE OPSK) Y 14.89 104.03 33.46 65.0 10241 LTE-TDD (SC-FDMA, 50% RB, 14 MHz, Z X 8.22 81.62 25.84 6.98 65.0 10242 LTE-TDD (SC-FDMA, 50% RB, 14 MHz, Z X 7.60 79.92 25.06 6.38 65.0 ± 9.6 % 10242 LTE-TDD (SC-FDMA, 50% RB, 14 MHz, Z X 7.60 79.92 25.06 6.38 65.0 ± 9.6 % 10243 LTE-TDD (SC-FDMA, 50% RB, 14 MHz, Z X 6.06 76.29 24.69 65.0 10.6 % 10244 LTE-TDD (SC-FDMA, 50% RB, 3 MHz, Z X 6.94 79.13 20.40 3.98 65.0 ± 9.6 % CAC 64-QAM) Y 7.63 79.32 29.0 65.0 ± 9.6 % CAA OPSK) Y <td< th=""><th>10239- CAE</th><th>LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)</th><th>X</th><th>29.73</th><th>108.72</th><th>31.35</th><th>6.02</th><th>65.0</th><th>± 9.6 %</th></td<>	10239- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	29.73	108.72	31.35	6.02	65.0	± 9.6 %
U240- CAE LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) X 14.67 103.66 32.88 6.02 65.0 10241- CAA LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, CAA X 14.89 104.03 33.46 65.0 19.6% 10241- CAA LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, CAA X 8.22 81.62 25.84 6.98 65.0 19.6% 10242- LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, CAA X 7.75 81.89 25.74 65.0 19.6% 10242- LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, CAA X 6.06 76.28 24.43 6.96 65.0 19.6% 10243- LTE-TDD (SC-FDMA, 50% RB, 3.4 MHz, CAA X 6.06 76.28 24.69 65.0 19.6% 10244- LTE-TDD (SC-FDMA, 50% RB, 3.4 MHz, CAC X 6.84 73.13 20.40 3.396 65.0 19.6% 10244- LTE-TDD (SC-FDMA, 50% RB, 3.4 MHz, CAC X 6.74 78.35 20.03 3.396 65.0 19.6% 10244- LTE-TDD (SC-FDMA, 50% RB, 3.4 MHz, CAC X 6.74 78.35 20.03 3.396 </td <td></td> <td></td> <td>Y</td> <td>26.48</td> <td>107.40</td> <td>31.66</td> <td><u> </u></td> <td>65.0</td> <td></td>			Y	26.48	107.40	31.66	<u> </u>	65.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-						· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							6.02	·	± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	14.89	104.03	33.46		65.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
CAA 16-QAM Y 8.21 21.05 0.00 12.05 0.00	10241-	LTE-TDD (SC-FDMA 50% BB 14 MHz					6.09		+ 0.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							0.90		± 9.0 %
10242- CAA LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, CAA Y 7.60 79.92 25.06 6.98 65.0 ± 9.6 % 10243- CAA Z 6.63 79.21 24.57 65.0 ± 9.6 % 10243- CAA UTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) Y 6.20 76.29 24.43 6.98 65.0 ± 9.6 % 10244- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC Y 6.20 76.29 24.69 65.0 ± 9.6 % 10245- CAC 18-QAM SC-FDMA, 50% RB, 3 MHz, CAC X 6.74 78.35 20.40 3.98 65.0 ± 9.6 % 10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC X 6.74 78.35 20.40 3.98 65.0 ± 9.6 % 10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC X 8.26 86.16 23.38 3.98 65.0 ± 9.6 % 10244- CAC CPSKJ Y 7.07 83.23 22.34 65.0 ± 9.6 % 10247- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE Y		· · · · · · · · · · · · · · · · · · ·							
CAA 64-GAM) Y 7.70 79.68 25.24 65.0 10243- CAA LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) Y 6.06 76.28 24.43 6.96 65.0 ± 9.6 % 10244- CAA LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC Y 6.20 76.29 24.69 65.0 -	10242-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							6.98		±9.6 %
10243- CAA CFT-DD (\$C-FDMA, 50% RB, 1.4 MHz, OPSK) Y 6.06 76.28 24.43 6.98 65.0 ± 9.6 % 10244- CAC LTE-TDD (\$C-FDMA, 50% RB, 3 MHz, 16-QAM) Y 6.92 75.02 23.70 65.0 ± 9.6 % 10244- CAC LTE-TDD (\$C-FDMA, 50% RB, 3 MHz, 4.6 QAM) X 6.94 79.13 20.40 3.98 65.0 ± 9.6 % 10245- CAC LTE-TDD (\$C-FDMA, 50% RB, 3 MHz, CAC X 6.74 78.35 20.03 3.98 65.0 ± 9.6 % 10245- CAC LTE-TDD (\$C-FDMA, 50% RB, 3 MHz, CAC X 6.74 78.35 20.03 3.98 65.0 ± 9.6 % 10246- CAC LTE-TDD (\$C-FDMA, 50% RB, 3 MHz, CAC X 8.26 86.11 21.28 65.0 ± 9.6 % 10247- CAE LTE-TDD (\$C-FDMA, 50% RB, 5 MHz, CAE Y 7.07 83.23 2.2.34 65.0 ± 9.6 % 10247- CAE LTE-TDD (\$C-FDMA, 50% RB, 5 MHz, CAE Y 5.37 75.65 19.66 65.0 ± 9.6 % 10248- CAE LTE-TDD (\$C-FDMA, 50% RB, 5 MHz, CAE Y 5.37 75.70 19.98 3.98								65.0	
CAA OPSK) P Car P F Car P< P< P< P< P< P< P< P<	40040							65.0	
10244- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, ACC) X 6.94 79.13 20.40 3.98 65.0 ± 9.6 % CAC 16-QAM) Y 7.61 80.93 21.65 65.0 ± 9.6 % 10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC X 6.74 78.35 20.03 3.98 65.0 ± 9.6 % 10246- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC X 8.26 86.16 23.38 3.98 65.0 ± 9.6 % 10246- CAC CFFDMA, 50% RB, 5 MHz, CAC Y 7.07 83.23 22.34 65.0 ± 9.6 % 10247- CAC LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAC Y 7.07 83.23 22.34 65.0 ± 9.6 % 10247- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE Y 7.07 83.23 2.98 65.0 ± 9.6 % CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE Y 5.54 77.71 65.0 ± 9.6 % CAE G4.24 71.91 19.86 3.98 65.0 ± 9.6 %		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)		6.06	76.28	24.43	6.98	65.0	±9.6 %
10244- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, ACC) X 6.94 78.13 20.40 3.98 65.0 ± 9.6 % 16-QAM) Y 7.81 80.93 21.65 65.0 ± 9.6 % 10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC X 6.74 78.35 20.03 3.98 65.0 ± 9.6 % 10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC X 6.74 78.35 20.03 3.98 65.0 ± 9.6 % 10246- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC X 8.26 86.16 23.38 3.98 65.0 ± 9.6 % 10247- CAC LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.60 75.50 20.35 3.98 65.0 ± 9.6 % 10247- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.64 75.70 19.96 65.0 ± 9.6 % 10248- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.54 75.70 19.96 65.0 ± 9.6 % 10249- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE 4.24 71.91<			Y	6.20	76.29	24.69		65.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							<u> </u>		
10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) Z 4.63 6.74 73.01 16.64 78.35 65.0 ± 9.6 % 10246- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC Y 7.38 80.11 21.28 65.0 10246- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC Y 7.07 83.23 22.34 65.0 10247- CAC LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAC Y 7.07 83.23 22.34 65.0 10247- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE Y 5.60 76.50 20.35 3.98 65.0 ± 9.6 % 10247- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE Y 5.37 75.45 19.96 65.0 10248- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.54 75.70 19.98 3.98 65.0 ± 9.6 % 10249- CAE QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % 10249- CAE QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % 10250- CAE QPSK			X				3.98		± 9.6 %
10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) Z 4.63 6.74 73.01 16.64 78.35 65.0 ± 9.6 % 10246- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC Y 7.38 80.11 21.28 65.0 10246- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, CAC Y 7.07 83.23 22.34 65.0 10247- CAC LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAC Y 7.07 83.23 22.34 65.0 10247- LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE Y 5.60 76.50 20.35 3.98 65.0 ± 9.6 % 10247- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE Y 5.37 75.45 19.96 65.0 10248- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.54 75.70 19.98 3.98 65.0 ± 9.6 % 10249- CAE QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % 10249- CAE QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % 10250- CAE QPSK			Y	7.61	80.93	21.65		65.0	<u> </u>
10245- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) X 6.74 78.35 20.03 3.98 65.0 ± 9.6 % 10246- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) X 8.26 86.16 23.38 3.98 65.0 ± 9.6 % 10247- CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) X 8.26 86.16 23.38 3.98 65.0 ± 9.6 % 10247- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.60 76.50 20.35 3.98 65.0 ± 9.6 % 10247- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.60 76.50 20.35 3.98 65.0 ± 9.6 % 10248- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, CAE X 5.54 75.70 19.98 3.98 65.0 ± 9.6 % CAE 64-QAM) Y 5.35 74.79 19.65 65.0 ± 9.6 % CAE GPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % CAE QPSK) Y 7.96 85.22 2.92 65.0 ± 9.6 % CAE QPSK)									†
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)					3.98		±9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	7 38	80.11	21.28	<u> </u>	65.0	
10246 CAC LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) X 8.26 86.16 23.38 3.98 65.0 ± 9.6 % V 7.07 83.23 22.34 65.0 10.0									
Y 7.07 83.23 22.34 65.0 10247- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) X 5.60 76.50 20.35 3.98 65.0 ± 9.6 % 10248- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) Y 5.37 75.45 19.96 65.0 10248- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) X 5.54 75.70 19.98 3.98 65.0 ± 9.6 % 2 4.29 75.70 19.96 65.0 ± 9.6 % CAE QPSK) Y 5.35 74.79 19.86 3.98 65.0 ± 9.6 % CAE QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % CAE QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % CAE QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % CAE QPSK) Y 6.01 76.82 21.97 65.0 ± 9.6 % ± 9.6 % <		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)					3.98		±9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				7.07		- 00.04		0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							3.98		± 9.6 %
Z 4.29 72.64 17.71 65.0 CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) X 5.54 75.70 19.98 3.98 65.0 ± 9.6 % 10249- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) Y 5.35 74.79 19.65 65.0 10249- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % 10250- CAE 16-QAM) Y 7.96 85.32 23.90 65.0 ± 9.6 % 10250- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, A-04M) X 6.20 77.76 22.32 3.98 65.0 ± 9.6 % 10251- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, A-04M) X 5.85 75.32 20.92 3.98 65.0 ± 9.6 % 10251- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 5.85 75.32 20.92 3.98 65.0 ± 9.6 % 10252- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 8.09 84.95 24.58 3.98 65.0				E 07	75.45	10.00			
10248- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) X 5.54 75.70 19.98 3.98 65.0 ± 9.6 % 10249- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) Y 5.35 74.79 19.65 65.0 - 10249- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) X 9.19 88.24 24.95 3.98 65.0 ± 9.6 % 10250- CAE 10250- 10250- CAE 17-7DD (SC-FDMA, 50% RB, 10 MHz, CAE X 6.20 77.76 22.32 3.98 65.0 ± 9.6 % 10250- CAE 102-FDMA, 50% RB, 10 MHz, CAE X 6.20 77.76 22.32 3.98 65.0 ± 9.6 % 10251- CAE 1TE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 5.85 75.32 20.92 3.98 65.0 ± 9.6 % CAE 64-QAM) Y 5.73 74.58 20.63 65.0 ± 9.6 % CAE QPSK) Y 5.73 74.58 20.63 65.0 ± 9.6 % CAE QPSK) Y 7.422		· · · · · · · · · · · · · · · · · · ·							
CAE 64-QAM Y 5.35 74.79 19.65 65.0 ± 9.6 % 10249- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) Y 5.35 74.79 19.65 65.0 17.36 65.0 19.6 % 10249- CAE LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) Y 7.96 85.32 23.90 65.0 ± 9.6 % 10250- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE Y 7.96 85.32 23.90 65.0 ± 9.6 % 10250- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 6.20 77.76 22.32 3.98 65.0 ± 9.6 % 10251- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 5.85 75.32 20.92 3.98 65.0 ± 9.6 % 10251- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 5.85 75.32 20.92 3.98 65.0 ± 9.6 % 10252- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 8.09 84.95 24.58 3.98 65.0 ± 9.6 % 10253- CAE LTE-TDD (SC	10248-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		64-QAM)	L		_		3.98	65.0	± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						19.65		65.0	
CAE QPSK) Y 7.96 85.32 23.90 65.0 10250- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) X 6.20 77.76 22.32 3.98 65.0 ±9.6 % 10251- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, AAM) X 6.20 77.76 22.32 3.98 65.0 ±9.6 % 10251- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 5.85 75.32 20.92 3.98 65.0 ±9.6 % 10251- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 5.85 75.32 20.92 3.98 65.0 ±9.6 % 10252- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 5.85 75.32 20.63 65.0 ±9.6 % 10252- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, CAE X 8.09 84.95 24.58 3.98 65.0 ±9.6 % 10253- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, CAE Y 5.72 73.40 20.39 65.0 ±9.6 % 10253- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, CAE Y						17.36		65.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		LIE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	9.19	88.24	24.95	3.98	65.0	± 9.6 %
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Y	7.96	85.32	23.90		65.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Z					05.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)					3.98	_	± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			TY	6.01	76.85	21.97		65.0	┿╼────┤
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									┼───┤
Y 5.73 74.58 20.63 65.0 10252- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) X 8.09 84.95 24.58 3.98 65.0 ± 9.6 % 10253- CAE QPSK) Y 7.42 82.94 23.81 65.0 ± 9.6 % 10253- CAE ITE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) Y 7.42 82.94 23.81 65.0 ± 9.6 % 10253- CAE ITE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) Y 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 464-QAM) Y 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE V 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE V 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE V 5.04 72.28 19.52 65.0 ± 9.6 % V 64-QAM) Y 6.05 74.22 21.07 65.0 ± 9.6 %		LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)					3.98		± 9.6 %
ID252- CAE LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) Z 4.92 73.12 19.45 65.0 V 7.42 80.9 84.95 24.58 3.98 65.0 ± 9.6 % V 7.42 82.94 23.81 65.0 10.0 <td></td> <td></td> <td>Y</td> <td>5 73</td> <td>74 58</td> <td>20.63</td> <td></td> <td>65.0</td> <td></td>			Y	5 73	74 58	20.63		65.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-						
Y 7.42 82.94 23.81 65.0 10253- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) X 5.80 74.00 20.63 3.98 65.0 ± 9.6 % 10254- CAE 16-QAM) Y 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) Y 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) X 6.14 74.84 21.30 3.98 65.0 ± 9.6 %		LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)					3.98		±9.6 %
10253- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) X 5.80 74.00 20.63 3.98 65.0 ± 9.6 % V 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, CAE X 6.14 72.28 19.52 65.0 10254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, CAE X 6.14 74.84 21.30 3.98 65.0 ± 9.6 %									
T0253- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) X 5.80 74.00 20.63 3.98 65.0 ± 9.6 % V 5.72 73.40 20.39 65.0 ± 9.6 % 10254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) X 6.14 74.84 21.30 3.98 65.0 ± 9.6 % 10254- CAE 64-QAM) Y 6.05 74.22 21.07 65.0 ± 9.6 %	10050							65.0	
I0254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) Z 5.04 72.28 19.52 65.0 Y 6.14 74.84 21.30 3.98 65.0 ± 9.6 %		LIE-IDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	5.80	74.00	20.63	3.98		± 9.6 %
I0254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) Z 5.04 72.28 19.52 65.0 Y 6.14 74.84 21.30 3.98 65.0 ± 9.6 %				5.72	73.40	20.39		65.0	<u>├ </u>
10254- CAE LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) X 6.14 74.84 21.30 3.98 65.0 ± 9.6 % Y 6.05 74.22 21.07 65.0 ± 9.6 %									<u>├-</u>
Y 6.05 74.22 21.07 65.0		LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)					3.98		± 9.6 %
				6.05	74 22	21 07		05.0	┼─────┤
			ż	5.36	73.21	21.07		65.0	<u> </u>

Certificate No: EX3-7308_Aug18

EX3DV4- SN:7308

CAE 10256- CAA 10257- CAA	QPSK)	Y Z	6.50	78.25				± 9.6 %
CAA 10257-	LTE-TDD (SC-FDMA, 100% RB, 1.4		0.50				+	+
CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4				22.16		65.0	
CAA	MHZ 16 OAM)	x	5.72	77.37	21.59		65.0	
	MHz, 16-QAM)		5.54	75.38	17.88	3.98	65.0	± 9.6 %
		Y	6.45	78.02	19.55		65.0	
		Z	3.15	67.52	12.83		65.0	
	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	5.31	74.31	17.34	3.98	65.0	± 9.6 %
		Y	6.14	76.80	18.96		65.0	T
40050		Z	3.05	66.79	12.37		65.0	†
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	6.24	81.13	20.76	3.98	65.0	± 9.6 %
		Y	5.52	78.91	19.97		65.0	
40050		Z	3.09	70.62	15.05		65.0	
10259- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	5.84	76.93	21.04	3.98	65.0	± 9.6 %
		Y	5.63	75.94	20.66		65.0	
		Z	4.68	73.82	18.92	<u> </u>	65.0	╆╍─────┤
10260- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	5.84	76.54	20.88	3.98	65.0	± 9.6 %
		Y	5.65	75.62	20.54		65.0	<u> </u>
		Ż	4.68	73.47	18.76		65.0	┢╍────┤
10261- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	7.94	85.32	24.30	3.98	65.0	± 9.6 %
		Y	7.17	83.07	23.45		65.0	<u>├</u>
		z	5.90	80.89	22.01		65.0	┼─────┤
10262- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	x	6.19	77.72	22.28	3.98	65.0	± 9.6 %
		Y	6.00	76.81	21.93		65.0	
_		Z	5.19	75.36	20.81		65.0	
10263- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	5.84	75.30	20.91	3.98	65.0	± 9.6 %
		Y	5.72	74.57	20.63		65.0	
		z	4.91	73.09	19.44		65.0	
10264- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	8.00	84.72	24.48	3.98	65.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	7.34	82.73	23.71		65.0	
		z	6.24	81.28	22.84			
10265- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	x	5.98	74.73	20.93	3.98	65.0 65.0	± 9.6 %
		Y	5.89	74.12	20.69		05.0	
		Z	5.12	74.12	10 -0		65.0	
10266- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	6.33	75.56		3.98	<u>65.0</u> 65.0	± 9.6 %
		Y	6.22	74.93	21.40		65.0	
		Z	5.49	73.76	20.60		65.0	
10267- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	7.32	80.56	22.82	3.98	65.0	± 9.6 %
		Y	6.92	79.16	22.26		65.0	┝━━━━┤
		Z	6.05	78.17	21.72		65.0	┝────┤
10268- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	×	6.52	74.24	21.04	3.98	65.0	± 9.6 %
		Y Z	6.45 5.74	73.73	20.85 20.16		65.0	
10269- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	<u> </u>	73.71	20.16	3.98	65.0 65.0	±9.6 %
		Y	6.39	73.22	20.69		65.0	
		Z	5.73	72.22	20.09			┝ ──── ┤
10270- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.79	76.82	20.02	3.98	<u>65.0</u> 65.0	± 9.6 %
		Y	6.57	75.90	-21 04		65.0	
		Z	5.88	75.90	21.04 20.59		<u>65.0</u> 65.0	┝────┤

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.66	66.98	15.73	0.00	150.0	±9.6 %
		Y	2.54	65.90	15.04		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	ZX	<u>2.55</u> 1.78	<u>67.07</u> 69.77	15.35 16.72	0.00	150.0 150.0	± 9.6 %
		Y	1.55	67.13	15.03	<u> </u>	150.0	
40077		Z	1.62	69.04	16.02		150.0	
10277- CAA	PHS (QPSK)	X	2.12	61.97	7.55	9.03	50.0	±9.6 %
		<u>Y</u>	2.25	62.30	7.96		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	Z X	<u> </u>	60.31 86.19	5.78 21.29	9.03	<u>50.0</u> 50.0	± 9.6 %
		TY I	9.64	84.41	20.95		50.0	
		Z	3.57	69.00	13.15		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	11.22	86.49	21.46	9.03	50.0	± 9.6 %
	<u> </u>	Y	9.91	<u>8</u> 4.71	21.11		50.0	
10200		Z	3.69	69.35	13.38		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	1.95	72.86	16.32	0.00	150.0	± 9.6 %
		Y	1.38	67.46	13.46		150.0	
10291-	CDMA2000, RC3, SO55, Full Rate	Z X	<u>1.34</u> 1.06	68.81	13.27		150.0	
AAB		Y Y	0.76	69.47	14.79	0.00	150.0	±9.6 %
	······································	Z	0.76	64.53 66.05	11.71		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	1.83	78.35	<u>11.81</u> 18.94	0.00	150.0 150.0	± 9.6 %
		Y	0.91	67.73	13.68		150.0	
		Z	1.34	73.93	15.68		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	4.73	93.04	24.47	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	1.31	72.72	16.40		150.0	
10295-		Z	6.43	94.81	23.11		150.0	
AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.60	89.87	26.40	9.03	50.0	± 9.6 %
		1-	10.25	88.78	26.08	<u>_</u>	50.0	
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Z X	<u>12.25</u> 2.99	89.80 71.06	24.68 17.36	0.00	<u>50.0</u> 150.0	± 9.6 %
		Y	2.73	69.18	16.24		150.0	
		Z	2.72	70.32	16.96		150.0	
10298- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.90	70.47	15.90	0.00	150.0	± 9.6 %
		Y	1.56	67.01	13.91		150.0	
10299-		Z	1.44	67.67	13.50		150.0	
10299- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	3.07	71.64	15.53	0.00	150.0	± 9.6 %
		Y	3.23	72.42	16.33		150.0	
10300-	LTE-FDD (SC-FDMA, 50% RB, 3 MHz,	Z	2.17	67.61	12.32		150.0	
AAD	64-QAM)	X	2.19	66.26	12.34	0.00	150.0	±9.6 %
	· · · · · ·	Y Z	2.31	66.80	13.02	<u>-</u>	150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	4.82	63.33 65.43	9.50 17.57	4.17	150.0 50.0	± 9.6 %
		Ý	4.87	65.32	17.50		50.0	
4000		Z	4.60	65.72	17.49		50.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.31	66.17	18.35	4.96	50.0	± 9.6 %
		Ý	5.36	66.00	18.25		50.0	
		Z	5.00	66.00	18.02		50.0	

EX3DV4-- SN:7308

10303- AAA 10304- AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	5.06	65.83 65.70	18.21	4.96	50.0	±9.6 %
			5.11	65.70	18 12	i	<u> </u>	
					1 10.12		50.0	
		Z	4.75	65.61	17.82	<u> </u>	50.0	<u> </u>
	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.87	65.69	17.69	4.17	50.0	± 9.6 %
		Ŷ	4.90	65.47	17.55		50.0	·
		Z	4.58	65.56	17.35		50.0	<u> </u>
10305-	IEEE 802.16e WIMAX (31:15, 10ms,	X	4.43	67.35	19.83	6.02	35.0	± 9.6 %
AAA	10MHz, 64QAM, PUSC, 15 symbols)	Y	4.50	07.70				
		Z	4.56	67.70	19.98		35.0	·
10306-	IEEE 802.16e WiMAX (29:18, 10ms,		4.15	67.17	19.10	<u> </u>	35.0	
AAA	10MHz, 64QAM, PUSC, 18 symbols)	X	4.77	66.43	19.36	6.02	35.0	±9.6 %
		<u>Y</u>	4.86	66.61	19.45		35.0	
10307-		Z	4.49	66.31	18.82		35.0	
AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	4.67	66.65	19.36	6.02	35.0	± 9.6 %
		Y	4.78	66.88	19.46		35.0	
40000		Z	4.37	66.39	18.75		35.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	4.64	66.81	19.48	6.02	35.0	± 9.6 %
		Y	4.74	67.03	19.58		35.0	
		Ž	4.35	66.60	18.90		35.0	
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	4.84	66.72	19.54	6.02	35.0	± 9.6 %
		Y	4.94	66.92	19.63		35.0	
		Z	4.52	66.47	18.95		35.0	
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	4.71	66.49	19.33	6.02	35.0	± 9.6 %
		ΤΥ	4.81	66.68	19.42		35.0	
		Ż	4.43	66.37	18.80		35.0	
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.36	70.26	16.95	0.00	150.0	± 9.6 %
		Y	3.08	68.46	15.91		150.0	
		z	3.08	69.51	16.57			<u> </u>
10313-	IDEN 1:3	X	5.95	81.40	19.48	6.99	150.0	
AAA		Y	4.30			0.99		±9.6 %
				76.35	17.48		70.0	
10314-	iDEN 1:6	Z	3.21	73.80	16.43		70.0	
		X	12.17	97.07	27.72	10.00	30.0	±9.6 %
<u>. </u>	+	Y	7.44	87.94	24.60		30.0	
10045			6.18	85.76	23.72		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.10	64.61	16.02	0.17	150.0	± 9.6 %
	<u> </u>	Y	1.01	<u>63.</u> 21	14.85		150.0	
40040		Z	1.05	64.14	15.48		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.65	66.81	16.47	0.17	150.0	± 9.6 %
		Y	4.62	66.42	16.27		150.0	
	<u> </u>	Z	4.46	66.78	16.31		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.65	66.81	16.47	0.17	150.0	±9.6 %
		Y_	4.62	66.42	16.27		150.0	
(0.17-		Z	4.46	66.78	16.31		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.78	67.16	16.44	0.00	150.0	±9.6 %
		Y	4.74	66.73	16.21		150.0	
		Z	4.55	67.11	16.31		150.0	
	IEEE 802.11ac WiFi (40MHz, 64-QAM,	X	5.43	67.23	16.53	0.00	150.0	± 9.6 %
10401- AAD	99pc duty cycle)				1			
		Y	5.42	66.92	16.38		150.0	

10403- AAB 10404- AAB 10406-	99pc duty cycle) CDMA2000 (1xEV-DO, Rev. 0)	Y Z	5.70	67.34	16.43		150.0	
AAB 10404- AAB 10406-	CDMA2000 (1xEV-DO, Rev. 0)	Z		07.34	1643		1 1 - 0 0	1
AAB 10404- AAB 10406-	CDMA2000 (1xEV-DO, Rev. 0)			67.48				
10404- AAB 10406-		X	<u> </u>	72.86	<u>16.4</u> 5 16.32	0.00	1 <u>50.0</u> 1 1 5.0	± 9.6 %
AAB		Y	4.00		- 40.40			
AAB			1.38	67.46	13.46		115.0	
AAB	CDMA2000 (1xEV-DO, Rev. A)	ZX	1.34	68.81	13.27		115.0	
			1.95	72.86	16.32	0.00	115.0	± 9.6 %
	·	X	1.38	67.46	13.46		115.0	
		Z	1.34	68.81	13.27		115.0	
AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	122.38	30.73	0.00	100.0	± 9.6 %
		Y	<u>81.48</u>	123.67	32.28		100.0	
		Z	100.00	114.83	26.66		100.0	
AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	123.65	31.04	3.23	80.0	± 9.6 %
		Y	100.00	127.30	33.02		80.0	
		Z	100.00	122.18	29.60		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.02	63.74	15.40	0.00	150.0	± 9.6 %
	- <u></u>	Y	0.94	62.36	14.20		150.0	
		Z	0.99	63.49	14.99		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.59	66.79	16.39	0.00	150.0	± 9.6 %
		Ý	4.55	66.36	16.15		150.0	
		Z	4.42	66.82	16.27		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.59	66.79	16.39	0.00	150.0	± 9.6 %
		Y	4.55	66.36	16.15		150.0	
		Ż	4.42	66.82	16.27		150.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	x	4.58	66.96	16.41	0.00	150.0	± 9.6 %
		Y	4.54	66.49	16.15		150.0	
		Z	4.42	67.01	16.31		150.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.61	66.90	16.41	0.00	150.0	± 9.6 %
		Y	4.56	66.45	16.16		150.0	
		Z	4.43	66.95	16.30		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.73	66.90	16.41	0.00	150.0	± 9.6 %
		Y	4.69	66.47	16.18		150.0	
		Z	4.54	66.92	16.31		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.91	67.24	16.54	0.00	150.0	± 9.6 %
		Y	4.87	66.82	16.31		150.0	<u>├</u>
		Z	4.68	67.21	16.40		150.0	
	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.82	67.19	16.51	0.00	150.0	± 9.6 %
		Y	4.79	66.76	16.28		150.0	
10.00		Z	4.61	67.16	16.38		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.41	67.47	16.65	0.00	150.0	± 9.6 %
		Y	5.40	67.17	16.50		150.0	
		Z	5.21	67.35	16.53		150.0	<u>_</u>
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.41	67.47	16.65	0.00	150.0	±9.6 %
		Y	5.40	67.19	16.50	<u></u>	150.0	
		ż	5.23	67.42	16.56		150.0	

EX3DV4- SN:7308

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,							just 23, 20 [.]
AAB	64-QAM)	×	5.42	67.47	16.64	0.00	150.0	± 9.6 %
	······································	Y	5.41	67.16	16.48	<u> </u>	150.0	
10430-		Z	5.22	67.32	16.51		150.0	† -
<u>AAC</u>	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.40	71.17	18.58	0.00	150.0	± 9.6 %
	<u>+</u>	Y	4.23	70.08	17.99		150.0	
10431-		<u>Z</u>	4.30	72.10	18.56		150.0	·
<u>AAC</u>	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.31	67.42	16.46	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.26	66.88	16.15		150.0	
10432-		Ζ	4.07	67.45	16.24		150.0	
AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.60	67.26	16.49	0.00	150.0	± 9.6 %
		Y	4.56	66.79	16.22		150.0	
10/22		Z	4.38	67.26	16.33		150.0	
10433- LTE-FDD (OFDMA, 20 AAC	LTE-FDD (OFDMA, 20 MHZ, E-1M 3.1)	X	4.84	67.23	16.53	0.00	150.0	±9.6 %
		Y	4.80	66.80	16.30		150.0	
10434-		Z	4.63	67.20	16.40		150.0	
AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.54	72.17	18.64	0.00	150.0	± 9.6 %
		Y	4.31	70.81	17.94		150.0	
10435-		Z	4.47	73.20	18.53		150.0	
AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	123.43	30.93	3.23	80.0	±9.6 %
		Y	100.00	127.09	32.93		80.0	
40447		Z	100.00	121.88	29.46		80.0	
10447- AAC	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	×	3.63	67.60	15.97	0.00	150.0	± 9.6 %
<u></u> .		_ Y [_]	3.55	66.82	15.51		150.0	
		Ζ	3.36	67.49	15.39		150.0	
10448- AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	Х	4.14	67.21	16.33	0.00	150.0	± 9.6 %
		Y	4.08	66.64	16.00		150.0	
		Z	3.93	67.24	16.11		150.0	
10449- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	х	4.40	67.10	16.39	0.00	150.0	± 9.6 %
		Y	4.35	66.60	16.11		150.0	_
		Z	4.21	67.10	16.24	_	150.0	
10450- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.59	67.00	16.40	0.00	150.0	±9.6 %
		Y	4.54	66.54	16.14		150.0	-
101-1		2	4.41	66.98	16.27		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	x	3.56	67.91	15.68	0.00	150.0	± 9.6 %
		Y	3.45	67. <u>01</u>	15.16		150.0	_
10450		Z	3.21	<u>67.</u> 51	14.85		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.26	68.01	16.78	0.00	150.0	± 9.6 %
	·	Y	6.26	67.75	16.66		150.0	
10457		Z	6.13	67.97	16.72		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.81	65.42	16.11	0.00	150.0	± 9.6 %
		Ý	3.77	64.98	15.86		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	Z X	3.73 4.16	65.50 71.37	15.98 18.08	0.00	<u>150.0</u> 150.0	± 9.6 %
		Y	3.92	60.04	17.00		450.0	
	<u>+</u>			69.91	17.32		150.0	
10459-	CDMA2000 (1xEV-DO, Rev. B, 3	Z X	4.02	72.11	17.63	0.00	150.0	
<u>AAA</u>	carriers)		5.19	68.40	18.36	0.00	150.0	± 9.6 %
		_Y Z	5.10 5.01	67.75	18.06		150.0	
	1		5.01	69.18	18.25		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	х	1.07	72.05	18.39	0.00	150.0	± 9.6 %
		Y	0.81	67.05	15.17		150.0	
		Z	0.95	70.49	17.24		150.0	
10461- 	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	129.11	33.59	3.29	80.0	± 9.6 %
	<u></u>	Y	100.00	132.68	35.56		80.0	
		Z	100.00	128.17	32.38		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	29.76	94.39	20.32	3.23	80.0	±9.6 %
		Y	100.00	112.07	25.94	<u> </u>	80.0	
10463-		Z	0.79	60.49	7.76		80.0	
AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.50	68.97	12.20	3.23	80.0	± 9.6 %
		Y	100.00	107.58	23.85		80.0	
10464-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	Z	0.77	60.00	6.89		80.0	
10464- AAB	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	126.29	32.12	3.23	80.0	± 9.6 %
		Y_	100.00	130.29	34.26		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	Z	100.00	124.25	30.42	<u>-</u>	80.0	
AAB	QAM, UL Subframe=2,3,4,7,8,9)	X	9.13	82.53	17.12	3.23	80.0	± 9.6 %
	······	<u>Y</u>	100.00	111.30	25.58		80.0	
10466-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-	Z	0.75	60.00	7.44		80.0	
AAB	QAM, UL Subframe=2,3,4,7,8,9)	X	1.98	66.71	11.27	3.23	80.0	± 9.6 %
	+··	<u>Y</u>	99.88	106.88	23.53		80.0	
10467-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	Z	0.78	60.00	6.83		80.0	
	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	126.60	32.25	3.23	80.0	± 9.6 %
	+	<u>Y</u>	100.00	130.59	34.40		_ 80.0	
10468-		Z	100.00	124.67	30.60		80.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	11.66	85.00	17.83	3.23	80.0	± 9.6 %
		Y	100.00	111.53	25.68	_	80.0	
10400		<u>Z</u>	0.75	60.09	7.51		80.0	
10469- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	×	1.98	66.75	11.28	3.23	80.0	± 9.6 %
		Y	100.00	106.90	23.54		80.0	
40470		Z	0.77	60.00	6.83		80.0	
10470- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	126.64	32.26	3.23	80.0	± 9.6 %
		Y	100.00	130.65	34.41		80.0	
10471-		Z	100.00	124.69	30.60		80.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	11.32	84.67	17.72	3.23	80.0	±9.6 %
	<u> </u>	Y	100.00	111.46	25.64		80.0	
10472-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-	Z	0.75	60.04	7.47		80.0	
AAD	QAM, UL Subframe=2,3,4,7,8,9)	X	1.96	66.63	11.22	3.23	80.0	±9.6 %
	<u> </u>	Y	100.00	106.82	23.49		80.0	
10473-		<u>Z</u>	0.77	60.00	6.81		80.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	126.60	32.24	3.23	80.0	± 9.6 %
	<u> </u>	<u>Y</u>	100.00	130.61	34.39		80.0	
10474-		Z	100.00	124.64	30.58		80.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	x	11.06	84.45	17.66	3.23	80.0	± 9.6 %
		Y	100.00	111.47	25.64		80.0	
10475		Z	0.74	60.02	7.45		80.0	
10475- AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	1.95	66.59	11.20	3.23	80.0	± 9.6 %
		Ŷ	99.99	106.84	00.50		<u> </u>	
		z	_ 33.33	100.04	23.50		80.0	

EX3DV4-SN:7308

10477-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-	x	9.10	82.47	17.07	<u> </u>		T
AAE	QAM, UL Subframe=2,3,4,7,8,9)					3.23	80.0	± 9.6 %
		Y	100.00	111.24	25.54		80.0	
10478-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-	Z	0.74	60.00	7.42		80.0	
AAE	QAM, UL Subframe=2,3,4,7,8,9)	X	1.93	66.47	11.14	3.23	80.0	± 9.6 %
	<u> </u>	Ý	96.81	106.44	23.40		80.0	
10479-		Z	0.77	60.00	6.80		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.68	90.97	25.10	3.23	80.0	± 9.6 %
		Y	13.83	97.37	27.65		80.0	
10480-		Z	12.23	94.71	25.17		80.0	
AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	11.91	88.02	22.17	3.23	80.0	± 9.6 %
		<u>Y</u>	19.25	95.65	25.10		80.0	
10404		Z	7.50	81.30	18.54		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	9.15	83.59	20.38	3.23	80.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Υ	15.12	91.18	23.39		80.0	
40400		Z	4.40	74.24	15.71		80.0	
10482- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.76	79.70	20.44	2.23	80.0	±9.6%
	<u> </u>	Y	3.53	74.74	18.45		80.0	
10400		Z	2.62	71.60	<u>16</u> .13		80.0	_
10483- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.87	78.17	19.16	2.23	80.0	± 9.6 %
		Y	8.24	83.44	21.55		80.0	
40404		Ζ	2.93	69.04	14.15		80.0	
10484- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.35	76.61	18.60	2.23	80.0	± 9.6 %
		Y	7.24	81.28	20.83		80.0	<u> </u>
		Z	2.73	67.94	13.69		80.0	
10485- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.47	78.87	21.04	2.23	80.0	±9.6 %
		Ϋ́	3.68	75.23	19.49		80.0	
		Z	3.15	74,27	18.50		80.0	
10486- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.79	72.50	18.04	2.23	80.0	± 9.6 %
		Y	3.38	70.29	17.05		80.0	
		<u>Z</u>	2.84	69.02	15.57		80.0	
10487- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.74	71.89	17.77	2.23	80.0	± 9.6 %
		Y	3.37	69.86	16.85		80.0	-
		Z	2.81	68.50	15.32		80.0	
10488- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.24	75.86	20.43	2.23	80.0	± 9.6 %
		Y	3.83	73.65	19.40		80.0	
		Z	3.28	72.72	18.85	-	80.0	
10489- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.72	70.49	18.27	2.23	80.0	± 9.6 %
		Y	3.53	69.26	17.66		80.0	
	<u> </u>	Z	3.19	68.97	17.14		80.0	
10490- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.79	70.18	18.14	2.23	80.0	± 9.6 %
	<u> </u>	Y	3.62	69.04	17.58		80.0	
10/01		Z	3.27	68.77	17.05		80.0	
10491- _AAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	4.23	73.19	19.42	2.23	80.0	± 9.6 %
	<u> </u>	Y	3.95	71.65	18.67		80.0	
10.100		_Z	3.47	70.90	18.25		80.0	
10492- AAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.97	69.24	17.95	2.23	80.0	±9.6 %
<u> </u>		Ϋ́	3.85	<u>6</u> 8.36	17.51		80.0	
		Z	3.50	68.04	17.11		80.0	-

10493-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	4.03	69.04	17.87	2.23	80.0	± 9.6 %
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)					2.20		1 9.0 %
		Y	3.92	68.21	17.46		80.0	
10494-		Z	3.56	67.90	17.04		<u>80</u> .0	
AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	4.79	75.46	20.14	2.23	80.0	± 9.6 %
		Y	4.38	73.53	19.24		80.0	
	- <u> </u>	Z	3.78	72.48	18.78		80.0	Ϊ
10495- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.03	69.76	18.19	2.23	80.0	± 9.6 %
		Y	3.90	68.85	17.73		80.0	
40.000		Z	3.53	68.35	17.31		80.0	
10496- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	×	4.08	69.35	18.04	2.23	80.0	± 9.6 %
		Y	3.97	<u>68.5</u> 1	17.62		80.0	
		Z	3.60	68.09	17.22		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.72	75.87	18.08	2.23	80.0	± 9.6 %
		Y	2.64	70.76	15.98		80.0	
10.100		Z	1.51	64.60	11.77	_	80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	2.30	66.27	12.99	2.23	80.0	± 9.6 %
		Ý	2.02	64.31	12.06		80.0	1
	-	Z	1.20	60.00	8.21		80.0	<u> </u>
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	x	2.18	65.35	12.41	2.23	80.0	± 9.6 %
		Y	1.97	63.70	11.62		80.0	
		Z	1.22	60.00	8.05		80.0	
10500- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.19	76.87	20.53	2.23	80.0	± 9.6 %
		Y	3.63	74.04	19.27		80.0	
		Z	3.15	73.35	18.54		80.0	ŧ
10501- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.74	71.57	18.07	2.23	80.0	± 9.6 %
		Y	3.44	69.83	17.26		80.0	
4050		Z	3.03	69.25	16.29		80.0	
10502- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.79	71.34	17.92	2.23	80.0	± 9.6 %
		Ý	3.50	69.66	17.14		80.0	
40505		Z	3.07	69.05	16.12		80.0	†
10503- AAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.18	75.62	20.32	2.23	80.0	± 9.6 %
		Y	3.77	73.43	19.30		80.0	
10504-		Z	3.23	72.50	18.74		80.0	
AAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	3.70	70.40	18.21	2.23	80.0	± 9.6 %
	+	Y	3.52	69.18	17.61		80.0	
10505-		Z	3.17	68.86	<u>1</u> 7.07		80.0	
<u>AAD</u>	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.77	70.08	18.09	2.23	80.0	± 9.6 %
	+	Y	3.60	68.95	17.53		80.0	
10506-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	3.25	68.67	16.99		80.0	
AAD	MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.74	75.29	20.06	2.23	80.0	±9.6 %
	+	Y	4.34	73.37	19.17		80.0	
10507-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	3.74	72.32	18.70		80.0	
10507- AAD	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	4.01	69.69	18.15	2.23	80.0	± 9.6 %
		Y Z	3.88	68.79	17.69		80.0	

10508-	LTE-TDD (SC-FDMA, 100% RB, 10		4.07					
AAD	MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.07	69.28	18.00	2.23	80.0	± 9.6 %
		† -	3.96	68.45	17.58	┼────		<u> </u>
		Ż	3.59	68.02	17.56	 	80.0	
10509- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.87	73.12	19.15	2.23	80.0 80.0	± 9.6 %
		Y	4.57	71.69	18.46		80.0	<u> </u>
		Z	4.08	70.95	18.12		80.0	
AAD N	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.46	69.19	17.97	2.23	80.0	± 9.6 %
		Y	4.36	68.46	17.61		80.0	<u>+</u>
40544		Z	3.98	67.93	17.23		80.0	
10511- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.49	68.83	17.85	2.23	80.0	± 9.6 %
		Ý	4.40	68.15	17.52		80.0	
10510		Z	4.03	67.70	17.16		80.0	
10512- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.35	75.53	19.95	2.23	80.0	± 9.6 %
		Y	4.89	73.64	19.09		80.0	
10513-		Z	4.27	72.56	18.64		80.0	
AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	4.37	69.62	18.15	2.23	80.0	± 9.6 %
		Y	4.26	68.83	17.75		80.0	
40544		Z	3.86	68.15	17.33		80.0	·
1051 4- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.36	69.04	17.95	2.23	80.0	± 9.6 %
		Y	4.26	68.32	17.60		80.0	
		<u>Z</u>	3.89	67.75	17.20		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.98	64.01	15.52	0.00	150.0	± 9.6 %
		Y	0.90	62.52	14.23		150.0	
10516-		Z	0.95	63.71	15.08		150.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.96	80.43	22.24	0.00	150.0	± 9.6 %
		Y	0.52	69.16	15.73		150.0	
10517-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	Z	0.74	75.71	19.80		150.0	
	Mbps, 99pc duty cycle)	X	0.87	66.95	16.73	0.00	150.0	±9.6 %
		Y	0.75	64.30	14.64		150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Z X	<u>0.81</u> 4.59	66.10 66.88	<u>15.98</u> 16.37	0.00	1 <u>50.0</u> 150.0	± 9.6 %
		Y	4.55	66.43	16.12		150.0	
		Ζ	4.41	66.91	16.25		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	×	4.79	67.13	16.49	0.00	150.0	± 9.6 %
		Y	4.75	66.71	16.26		150.0	
(Ζ	4.57	67.10	16.35		150.0	
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	x	4.64	67.11	16.43	0.00	150.0	± 9.6 %
<u> </u>		Y	4.60	66.67	<u>16</u> .18		150.0	
105 <mark>21-</mark> AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	Z X	<u>4.43</u> 4.57	67.05 67.12	<u>16.27</u> 16.42	0.00	150.0 150.0	± 9.6 %
		Y	4.53	66.66	16.16		150.0	<u> </u>
		Z	4.35	67.04	16.26		<u>150.0</u> 150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.63	67.16	16.48	0.00	150.0 150.0	± 9.6 %
		Y	4.59	66.70	16.22		150.0	
		Ż	4.42	67.17	16.36		150.0	

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.51	67.05	16.34	0.00	150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)							
		Y Z	4.46	66.56	16.06		150.0	
10524-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	$+\frac{2}{x}$	<u>4.33</u> 4.58	67.10 67.09	16.24	0.00	150.0	100%
AAB	Mbps, 99pc duty cycle)		_		16.46	0.00	150.0	± 9.6 %
		Y	4.53	66.64	16.20		150.0	
10525-		Z	4.37	67.10	16.33		150.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.55	66.14	16.05	0.00	150.0	± 9.6 %
		Y	4.50	65.66	15.78		150.0	
10526-		Z	4.38	66.18	15.95	L	150.0	
_AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.74	66.53	16.19	0.00	150.0	±9.6 %
		Y	4.69	66.05	15.93		150.0	
40507		Z	_ 4.52	66.50	16.07		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.66	66.50	16.15	0.00	150.0	± 9.6 %
· ·		Y	4.61	66.01	15.87		150.0	
10500		Z	4.45	66.47	16.02		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.67	66.52	16.18	0.00	150.0	± 9.6 %
		Y -	4.62	66.03	15.91		150.0	
40000		<u>Z</u>	4.47	66.48	16.05		150.0	
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.67	66.52	16.18	0.00	150.0	± 9.6 %
		Y	4.62	66.03	15.91		150.0	
10-04		Z	4.47	66.48	16.05		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.67	66.65	16.20	0.00	150.0	± 9.6 %
		Y	4.63	66.16	15.93		150.0	
		Z	4.44	66.54	16.04		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.53	66.51	16.14	0.00	150.0	± 9.6 %
		Y	4.48	66.01	15.86		150.0	
		Z	4.32	66.41	15.98		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.68	66.56	16.16	0.00	150.0	±9.6 %
		Y	4.63	66.06	15.89		150.0	
		Z	4.48	66.56	16.05		150.0	·
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.19	66.60	16.20	0.00	150.0	± 9.6 %
		Y	5.16	66.20	15.99		150.0	
		Z	5.01	66.50	16.09		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.26	66.75	16.27	0.00	150.0	± 9.6 %
		Y	5.22	66.35	16.06		150.0	<u>-</u>
10		Z	5.06	66.65	16.16		150.0	<u>⊢ ··</u> _
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.13	66.73	16.24	0.00	150.0	± 9.6 %
		Y	5.09	66.32	16.02		150.0	<u> </u>
		Z	4.95	66.64	16.13		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.19	66.69	16.22	0.00	150.0	± 9.6 %
		Y	5.15	66.30	16.01		150.0	
		Z	5.00	66.59	16.11		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.28	66.73	16.28	0.00	150.0	± 9.6 %
		Y	5.26	66.36	16.08	<u> </u>	150.0	<u> </u>
		Z	5.08	66.58	16.14		150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.21	66.72	16.29	0.00	150.0	± 9.6 %
		ΤΥ T	5.17	66.33	16.08		150.0	<u> </u>

EX3DV4- SN:7308

10541- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.18	66.60	16.22	0.00	150.0	± 9.6 %
		Y	5.14	66.20	10.04	<u> </u>		<u> </u>
		z	4.99	66.47	16.01	┝	150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.33	66.65	<u>16.09</u> 16.26	0.00	1 <u>50.0</u> 150.0	± 9.6 %
		Y	5.31	66.28	16.07		150.0	<u> </u>
		†ż	5.14	66.55	16.15		150.0	<u> </u>
10543- <u>AA</u> B	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.41	66.68	16.15	0.00	150.0 150.0	±9.6 %
		Y	5.39	66.31	16.11	<u> </u>	150.0	<u>-</u>
		Z	5.20	66.56	16.18		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.49	66.70	16.18	0.00	150.0	± 9.6 %
		Y	5.45	66.31	15.98		150.0	
		Z	5.34	66.58	16.07		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.68	67.09	16.32	0.00	150.0	± 9.6 %
		Y	5.66	66.76	16.15		150.0	
		Z	5.51	66.98	16.23		150.0	<u> </u>
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.57	66.94	16.26	0.00	150.0	± 9.6 %
		Y	5.54	66.57	16.08		150.0	
405-1-		Z	5.38	66.73	16.11		150.0	— <u> </u>
10547- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	×	5.64	66.98	16.27	0.00	150.0	±9.6 %
		Y	5.63	66.66	16.11		150.0	
		Z	5.45	66.79	16.14		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.90	67.92	16.71	0.00	150.0	±9.6%
		Y	5.97	67.87	16.68		150.0	
		Z	5.63	67.50	16.47		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.59	66.92	16.26	0.00	150.0	±9.6%
·		Y	5.55	66.54	16.07		150.0	
		Z	5.42	66.82	16.17		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.60	66.98	16.25	0.00	150.0	±9.6%
		Y	5.56	66.60	16.06		150.0	
		Z	5.40	66.75	16.10		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.51	66.77	16.16	0.00	150.0	±9.6 %
		Y	5.47	66.37	15.96		150.0	
		Ź	5.35	66.67	16.06		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.60	66.81	16.21	0.00	150.0	±9.6%
		Y	5.56	66.43	16.01		150.0	
		Z	5.41	66.65	16.08		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	×	5.89	67.05	16.26	0.00	150.0	± 9.6 %
		Y	5.86	66.69	16.08		150.0	
		Z	5.7 <u>5</u>	66.91	16.14		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.02	67.35	16.38	0.00	150.0	± 9.6 %
	·	<u> </u>	6.00	67.02	16.22		150.0	
40556		Z	5.86	67.17	16.25		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.04	67.39	16.40	0.00	150.0	± 9.6 %
	<u> </u>	Y	6.02	67.06	16.23	_	150.0	
405		Z	5.88	67.24	16.28		150.0	
10557- <u>AA</u> C	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.01	67.32	16.38	0.00	150.0	±9.6 %
		Ý	5.99	66.98	16.22		150.0	
		Z	5.85	67.13	16.24		150.0	

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.07	67.49	16.48	0.00	150.0	± 9.6 %
		Y	6.05	67.17	16.33		150.0	
		Z	5.88	67.26	16.33		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.06	67.34	16.44	0.00	150.0	± 9.6 %
		Y	6.04	66.99	16.28		150.0	
		Z	5.88	67.13	16.30		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.98	67.30	16.46	0.00	150.0	±9.6 %
		Y	5.96	66.96	16.30		150.0	
		Z	5.81	67.11	16.32		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.11	67.72	16.67	0.00	150.0	± 9.6 %
		Y	6.12	67.46	16.55		150.0	
		Z	5.89	67.37	16.45		150.0	
10563- AAC	IEEE 802.11ac WIFI (160MHz, MCS9, 99pc duty cycle)	X	6.43	68.23	16.87	0.00	150.0	±9.6 %
		Y	6.50	68.16	16.85		150.0	
		Z	5.96	67.23	16.35		150.0	
10564- 	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.91	66.93	16.51	0.46	150.0	± 9.6 %
40505	·	Y	4.88	66.54	16.31		150.0	
		Z	4.73	66.93	16.37		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	Х	5.16	67.40	16.83	0.46	150.0	± 9.6 %
		Y	5.13	67.02	16.64		150.0	
		Z	4.93	67.35	16.69		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.99	67.26	16.66	0.46	150.0	± 9.6 %
		Y	4.96	66.87	16.45		150.0	
		Z	4.77	67.18	16.50		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.02	67.67	17.02	0.46	150.0	± 9.6 %
		Y	4.98	67.25	16.79		150.0	
		Z	4.81	67.60	16.88		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.90	67.00	16.42	0.46	150.0	± 9.6 %
		Y	4.87	66.62	16.22		150.0	
		Z	4.67	66.94	16.26		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.97	67.73	17.07	0.46	150.0	± 9.6 %
		Y	4.93	67.29	16.83		150.0	
		Z	4.78	67.78	16.99	<u> </u>	150.0	
10570- <u>AA</u> A	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.01	67.57	17.00	0.46	150.0	± 9.6 %
		Y	4.97	67.15	16.77		150.0	
40554		Z	4.80	67.57	16.89		150.0	···
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.17	65.22	16.39	0.46	130.0	± 9.6 %
		Y	1.09	63.89	15.30		130.0	
40===		Z	1.10	64.48	15.68		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.19	65.91	16.81	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	1.10	64.45	15.65		130.0	
		Z	1.12	65.08	16.07	··	130.0	
			11.95	118.97	33.95	0.46	130.0	± 9.6 %
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	11.55				1	
	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	Y				<u> </u>		
<u>AAA</u>	Mbps, 90pc duty cycle)	Y	2.10	86.50	22.92		130.0	
AAA	Mbps, 90pc duty cycle)					0.46		± 9.6 %
	Mbps, 90pc duty cycle)	Y Z	2.10	86.50 93.83	22.92 26.37	0.46	<u>130.0</u> 130.0	

EX3DV4- SN:7308

.

							Aug	gust 23, 201
10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.69	66.71	16.57	0.46	130.0	± 9.6 %
<u>~~~</u>	OFDM, 6 Mbps, 90pc duty cycle)	<u> </u>						2 3.0 %
		Y	4.67	66.34	16.38		130.0	
10576-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.50	66.68	16.40		130.0	
AAA	OFDM, 9 Mbps, 90pc duty cycle)		4.72	66.88	16.64	0.46	130.0	± 9.6 %
	<u> </u>	Y	4.69	66.50	16.44		130.0	
10577-		Z	4.53	66.88	16.48		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.94	67.20	16.81	0.46	130.0	± 9.6 %
		Y	4.91	66.83	16.62		130.0	
40570		Z	4.71	67.13	16.63		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.83	67.37	16.92	0.46	130.0	± 9.6 %
		Ý	4.81	66.98	16.72		130.0	
40.570		Z	4.61	67.29	16.74		130.0	
10579- IEI AAA OF	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.60	66.66	16.24	0.46	130.0	± 9.6 %
		Y	4.57	66.30	16.05	·	130.0	
40500		Z	4.37	66.49	16.00	<u> </u>	130.0	<u> </u>
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.64	66.67	16.25	0.46	130.0	± 9.6 %
		Y	4.62	66.31	16.06		130.0	
		Z	4.41	66.55	16.03		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.73	67.42	16.87	0.46	130.0	± 9.6 %
		Y	4.70	67.02	16.65		130.0	
		Z	4.52	67.36	16.71		130.0	
10582- <u>A</u> AA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.54	66.41	16.03	0.46	130.0	± 9.6 %
		Y	4.53	66.07	15.85		130.0	
		Z	4.30	66.25	15.78		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.69	66.71	16.57	0.46	130.0	± 9.6 %
		Y	4.67	66.34	16.38		130.0	
		Ż	4.50	66.68	16.40		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.72	66.88	16.64	0.46	130.0	± 9.6 %
		Y	4.69	66.50	16.44		130.0	
-		Z	4.53	66.88	16.48		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.94	67.20	16.81	0.46	130.0	± 9.6 %
		TY	4.91	66.83	16.62		130.0	
_		Z	4.71	67.13	16.63		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.83	67.37	16.92	0.46	130.0	± 9.6 %
		Y	4.81	66.98	16.72		130.0	
		Ż	4.61	67.29	16.72		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.60	66.66	16.24	0.46	130.0	±9.6%
		Y	4.57	66.30	16.05		130.0	
		Z	4.37	66.49	16.00		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.64	66.67	16.25	0.46	130.0	±9.6 %
		Ϋ́	4.62	66.31	16.06		130.0	
		Z	4.41	66.55	16.03		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.73	67.42	16.87	0.46	130.0	±9.6 %
		Y	4.70	67.02	16.65		130.0	
		Z	4.52	67.36	16.71		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.54	66.41	16.03	0.46	130.0	± 9.6 %
		† Y	4.53	66.07	15.85		130.0	
		Z	4.30	66.25	15.78		130.0	

10591-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.84	66.77	10.00	0.40	100.0	
AAB	MCS0, 90pc duty cycle)		4.04	00.77	16.66	0.46	130.0	± 9.6 %
		Y	4.82	66.41	16.48	_	130.0	
		Z	4.66	66.76	16.51		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.01	67.12	16.79	0.46	130.0	± 9.6 %
_		Y	4.99	66.76	16.61		130.0	
		Z	4.79	67.07	16.64		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.93	67.04	16.68	0.46	130.0	± 9.6 %
_	······································	Y	4.91	66.69	16.51		130.0	
10594-	IEEE 802.11n (HT Mixed, 20MHz,	_ Z	4.71	66.95	16.50		130.0	
<u>AAB</u>	MCS3, 90pc duty cycle)		4.98	67.20	16.83	0.46	130.0	± 9.6 %
	+ ·	Y Z	<u>4.96</u> 4.76	66.84	16.65		130.0	
10595-	IEEE 802.11n (HT Mixed, 20MHz,		4.76	67. <u>13</u> 67.16	16.67 16.73	0.40	130.0	
AAB	MCS4, 90pc duty cycle)		4.95			0.46	130.0	± 9.6 %
		- T Z	4.93	66.80	16.55		130.0	
10596-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.73	67.10 67.16	16.57 16.74	0.40	130.0	
AAB	MCS5, 90pc duty cycle)					0.46	130.0	± 9.6 %
			<u>4.87</u> 4.66	66.79	16.55		130.0	
10597-	IEEE 802.11n (HT Mixed, 20MHz,	- <u>2</u> X	4.84	67.08 67.08	16.56 16.63	0.40	130.0	
AAB	MCS6, 90pc duty cycle)	- ^				0.46	130.0	±9.6 %
		Z	<u>4.82</u> 4.61	66.71	16.44		130.0	
10598-	IEEE 802.11n (HT Mixed, 20MHz,	- <u>-</u> X	4.82	66.96 67.33	16. <u>43</u> 16.90	0.46	130.0	
AAB	MCS7, 90pc duty cycle)	Y Y				0.46	130.0	± 9.6 %
			4.80	66.95	16.70		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.51	67.20 67.30	16.70 16.83	0.46	130.0 130.0	± 9.6 %
		Y	5.50	67.04	16.72		120.0	
		Z	5.31	67.18	16.69		130.0 130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.66	67.75	17.03	0.46	130.0	± 9.6 %
		Y	5.70	67.66	17.00		130.0	
		z	5.42	67.55	16.85		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.54	67.49	16.91	0.46	130.0	± 9.6 %
		Y	5.55	67.29	16.83		130.0	
		Z	5.33	67.34	16.76		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.62	67.47	16.82	0.46	130.0	± 9.6 %
	+ <u> </u>	Y	5.64	67.27	16.74		130.0	
10603-		Z	5.46	67.51	16.77		130.0	
AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.72	67.83	17.13	0.46	130.0	±9.6 %
	<u> </u>	Y	5.72	67.56	17.01		130.0	
10604-		<u>Z</u>	5.53	67.80	17.05		130.0	
AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.51	67.26	16.84	0.46	130.0	± 9.6 %
	+ <u> </u>	Y	5,51	67.00	16.72		130.0	
10605-	IEEE 802.11n (HT Mixed, 40MHz,	Z	5.40	67.44	16.85		130.0	
AAB	MCS6, 90pc duty cycle)	X	5.62	67.58	16.99	0.46	130.0	±9.6 %
		Y	5.63	67.37	16.91		130.0	
10606-		Z	5.43	67.48	16.86		130.0	
AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.39	67.04	16.59	0.46	130.0	±9.6 %
	+	_ Y	5.38	66.75	16.46		130.0	
		Z	5.18	66.82	16.39		130.0	

EX3DV4-SN:7308

40007							Au	gust 23, 201
10607- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.69	66.11	16.30	0.46	130.0	± 9.6 %
		Y	4.65	65.70	16.09	 	130.0	+
10608-		Z	4.51	66.12	16.16	<u> </u>	130.0	<u> </u>
AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.89	66.54	16.47	0.46	130.0	± 9.6 %
		Y	4.86	66.13	16.26	<u> </u>	130.0	<u> </u>
40000		Z	4.67	66.48	16.32		130.0	
10609- 	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.78	66.40	16.32	0.46	130.0	± 9.6 %
		Y	4.74	65.99	16.10		130.0	<u> </u>
10610-		Z	4.56	66.32	16.14		130.0	·
AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	×	4.83	66.56	16.48	0.46	130.0	± 9.6 %
		Y	4.80	66.15	16.27		130.0	
10611		Z	4.61	66.49	16.31		130.0	
10611- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	×	4.74	66.37	16.33	0.46	130.0	±9.6 %
		Ý	4.71	65.96	16.12		130.0	
10610		Z	4.52	66.28	16.15		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.76	66.53	16.38	0.46	130.0	± 9.6 %
		<u> </u>	4.73	66.12	16.16		130.0	
10613-		Z	4.52	66.43	16.20		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.76	66.43	16.27	0.46	130.0	±9.6 %
		<u>Y</u>	4.74	66.03	16.06	-	130.0	
10614-		Z	4.52	66.26	16.05		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	×	4.70	66.62	16.50	0.46	130.0	± 9.6 %
		Y	4.67	66.19	16.28		130.0	
10015		Z	4.48	66.49	16.31		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.74	66.19	16.10	0.46	130.0	± 9.6 %
		Y	4.72	65.79	15.90		130.0	
40040		Z	4.52	66.11	15.92		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.34	66.61	16.47	0.46	130.0	± 9.6 %
		Y	5.32	66.28	16.32		130.0	
40047		Z	5.14	66.47	16.32		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.40	66.74	16.51	0.46	130.0	± 9.6 %
		Y	5.38	66.41	16.35		130.0	
40040		Z	5.21	66.65	16.39		130.0	
10618- <u>A</u> AB	IEEE 802.11ac WIFI (40MHz, MCS2, 90pc duty cycle)	×	5.29	66.79	16.56	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.27	66.46	16.39		130.0	
10640		Z	5.11	66.70	16.43		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	×	5.31	66.61	16.40	0.46	130.0	± 9.6 %
	+	Y	5.30	66.30	16.25		130.0	
10600		_ Z	5.11	66.46	16.24		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	×	5.41	66.67	16.47	0.46	130.0	±9.6 %
_	<u> </u>	- <u>Y</u>	5.41	66.38	16.34		130.0	
10621-		Z	5.19	66.48	16.30		130.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.40	66.76	16.64	0.46	130.0	±9.6 %
	+	<u>Y</u>	5.38	66.43	16.48		130.0	
10632		<u>Z</u>	5.21	66.64	16.50		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	×	5.41	66.91	16.70	0.46	130.0	±9.6%
		Ý	5.39	66.60	16.55		130.0	
		Z	5.20	66.74	16.55		130.0	

10623-								<u> </u>
AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	5.29	66.45	16.36	0.46	130.0	± 9.6 %
		Y	5.27	66.12	16.20		400.0	
-	· · · · · · · · · · · · · · · · · · ·	Z	5.08	66.28	16.20		1 <u>30.0</u> 130.0	
10624-	IEEE 802.11ac WiFi (40MHz, MCS8,	$\frac{2}{x}$	5.48	66.64	16.19 16.51	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)		0.40	00.04	10.51	0.40	130.0	I9.0 %
		Y	5.47	66.35	16.38		130.0	
		Z	5.28	66.51	16.36		130.0	
10625-	IEEE 802.11ac WiFi (40MHz, MCS9,		5.87	67.67	17.07	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)					0.10	100.0	10.0 %
		Y	5.92	67.56	17.03		130.0	
		Z	5.48	66.99	16.66		130.0	
10626-	IEEE 802.11ac WiFi (80MHz, MCS0,	X	5.62	66.65	16.41	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)			_				
		Y	5.59	66.32	16.26		130.0	
		Z	5.46	66.52	16.28		130.0	
10627-	IEEE 802.11ac WiFi (80MHz, MCS1,	X	5.86	67.19	16.64	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)							
		<u>Y</u>	5.87	66.96	16.54		130.0	
1000		Z	5.68	67.07	16.52		130.0	
10628-	IEEE 802.11ac WiFi (80MHz, MCS2,	X	5.67	66.78	16.37	0.46	130,0	± 9.6 %
AAB	90pc duty cycle)	╉╤╤┨						
		Y	5.65	66.49	16.24		130.0	
10629-		Z	5.47	66.52	<u>16.18</u>		130.0	
AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.76	66.87	16.41	0.46	130.0	± 9.6 %
		- <u>v</u>	<u> </u>					
	+	<u>Y</u>	5.74	66.55	16.26		130.0	
10630-	IEEE 802.11ac WiFi (80MHz, MCS4,	Z	5.55	66.62	16.22		130.0	
AAB	90pc duty cycle)	X	6.21	68.41	17.17	0.46	130.0	±9.6 %
7010		Y	6.36	00 57	13 60			
		Z	<u> </u>	68.57	17.26		130.0	
10631-	IEEE 802.11ac WiFi (80MHz, MCS5,	X	<u> </u>	67.72	16.78	0.40	130.0	
AAB	90pc duty cycle)		0.11	68.22	17.27	0.46	130.0	±9.6 %
		Y	6.15	68.07	17.21		400.0	<u> </u>
		Z	5.81	67.73	16.97		130.0	
10632-	IEEE 802.11ac WiFi (80MHz, MCS6,	X	5.83	67.26	16.81	0.46	130.0	
AAB	90pc duty cycle)		0.00	07.20	10.01	0.40	130.0	± 9.6 %
		Y	5.82	66.98	16.68		130.0	
		Ż	5.67	67.19	16.73		130.0	
10633-	IEEE 802.11ac WiFi (80MHz, MCS7,	X	5.73	66.95	16.48	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)		0.10	00.00	10.40	0.40	130,0	± 9.0 %
		Y	5.72	66.66	16.35		130.0	
		Z	5.54	66.74	16.32		130.0	
10634-	IEEE 802.11ac WiFi (80MHz, MCS8,	x I	5.72	66.98	16.56	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)					0.40	100.0	± 3.0 %
		- Y	5.70	66.65	16.41		130.0	
		Z	5.52	66.78	16.40	<u>-</u>	130.0	
10635-	IEEE 802.11ac WiFi (80MHz, MCS9,	X	5.60	66.32	15.97	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)							
		Y	5.59	66.03	15.84	·	130.0	
		Z	5.39	66.04	15.76		130.0	
10636-	IEEE 802.11ac WiFi (160MHz, MCS0,	X	6.03	67.02	16.50	0.46	130.0	± 9.6 %
AAC	90pc duty cycle)					-		/0
<u>_</u>	<u> </u>	Y	6.02	66.74	16.37		130.0	
40007		Z	5.89	66.87	16.36		130.0	
10637-	IEEE 802.11ac WiFi (160MHz, MCS1,	X	6.19	67.40	16.66	0.46	130.0	±9.6 %
AAC	90pc duty cycle)							
	<u> </u>	Y	6.19	67.15	16.56		_130.0	
10620		Ż	6.02	67.21	16.51		130.0	
10638-	IEEE 802.11ac WiFi (160MHz, MCS2,	X	6.19	67.38	16.63	0.46	130.0	± 9.6 %
AAC	90pc duty cycle)							
		Y	6.19	67.12	16.52		130.0	
		Z	6.03	67.21	16.49		130.0	

40000							Λu	gust 23, 2018
10639- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.18	67.36	16.66	0.46	130.0	± 9.6 %
		Y	6.17	67.09	16.55	<u>† </u>	130.0	<u>+</u>
10640-		Z	6.00	67.13	16.50	<u> </u>	130.0	<u> </u>
AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.19	67.39	16.62	0.46	130.0	± 9.6 %
		Y	6.20	67.16	16.53	†	130.0	├── ─-
10011		Z	5.99	67.11	16.43		130.0	—
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.21	67.22	16.56	0.46	130.0	± 9.6 %
		Y	6.20	66.94	16.44		130.0	<u> </u>
100 10		Z	6.05	67.08	16.43		130.0	
10642- 	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.27	67.52	16.87	0.46	130.0	± 9.6 %
		Y	6.26	67.23	16.75		130.0	
10643-		Z	6.09	67.31	16.72		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.10	67.19	16.61	0.46	130.0	± 9.6 %
		Y	6.09	66.93	16.50		130.0	
10644-		Z	5.93	67.00	16.46		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.29	67.77	16.92	0.46	130.0	± 9.6 %
		Y	6.32	67.61	16.86		130.0	
10045		Z	6.02	67.30	16.63		130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.72	68.61	17.29	0.46	130.0	± 9.6 %
		Y	6.81	68.60	17.31		130.0	
40040		Z	6.13	67.29	16.58		130.0	
10646- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	26.22	119.06	40.53	9.30	60.0	± 9.6 %
		Y	23.98	116.77	40.23		60.0	
		Z	13.39	105.96	36.68		60.0	
10647- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	21.91	115.56	39.67	9.30	60.0	± 9.6 %
-		Ý	20.79	114.08	39.59		60.0	
		Ż	11.12	102.25	35.63		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.80	65.60	12.34	0.00	150.0	± 9.6 %
		Y	0.65	62.69	10.17		150.0	
		Z	0.58	62.96	9.61		150.0	
10652- AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.70	67.38	17.08	2.23	80.0	± 9.6 %
		Y	3.59	66.56	16.66		80.0	
		Ź	3.39	66.83	16.41		80.0	
10653- AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	4.17	66.50	17.03	2.23	80.0	± 9.6 %
		Y	4.11	65.95	16.76		80.0	
400-1		Z	3.90	66.02	16.55		80.0	
10654- AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	4.13	66.12	17.00	2.23	80.0	± 9.6 %
		Y	4.07	65.60	16.75		80.0	
(005-		Z	3.90	65.62	16.55		80.0	
10655- AAD	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	x	4.19	66.12	17.04	2.23	80.0	± 9.6 %
· · · · · · ·		Y	4.13	65.62	16.79		80.0	
10650	Dulas Maria (2001)	Z	3.96	65.57	16.58		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	X	100.00	111.27	26.15	10.00	50.0	± 9.6 %
		Y_	100.00	112.15	26.71		50.0	
40050		Z	14.35	85.50	18.40		50.0	
10659- 	Pulse Waveform (200Hz, 20%)	X	100.00	110.66	24.83	6.99	60.0	± 9.6 %
		Y	100.00	110.25	24.76		60.0	
		Z	100.00	105.29	22.07	_	60.0	

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	112.93	24.53	3.98	80.0	± 9.6 %
		Y	100.00	108.47	22.64		80.0	
		Z	100.00	104.83	20.58		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	118.71	25.68	2.22	100.0	± 9.6 %
		Y	100.00	104.33	19.70		100.0	
		Z	100.00	104.48	19.32		100.0	
10662- <u>AAA</u>	Pulse Waveform (200Hz, 80%)	X	100.00	138.66	31.49	0.97	120.0	± 9.6 %
		Y	0.19	60.00	4.09		120.0	
		Z	100.00	91.23	12.90		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to

source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

		0011			C 11550	o Equi		alloi				
Frequency (MHz)	750	750	835	835	1750	1750	1900	1900	2450- 2600	2450- 2600	5200 - 5800	5200 - 5800
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)												
Bactericide			0.1	0.1								
DGBE					47	31	44.92	29.44		26.7		
HEC	See page	See page	1	1					See page 4		See page 5	Saa paga 6
NaCl	2-3	2	1.45	0.94	0.4	0.2	0.18	0.39	See page 4	0.1	See page 5	See page 0
Sucrose			57	44.9								
Water			40.45	53.06	52.6	68.8	54.9	70.17		73.2		

Table D-I Composition of the Tissue Equivalent Matter

	FCC ID ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	1/16/19 - 02/13/19	Portable Handset			Page 1 of 6
© 201	9 PCTEST Engineering Laboratory	/, Inc.			REV 21.2 M 12/05/2018

2 Composition / Information on ingredients

I he Item is composed of	the following ingredients:
H ₂ O	Water, 35 – 58%
Sucrose	Sugar, white, refined, 40 – 60%
NaCl	Sodium Chloride, 0 – 6%
Hydroxyethyl-cellulose	Medium Viscosity (CAS# 9004-62-0), <0.3%
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing
	5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone
	0.1 – 0.7%
	Relevant for safety; Refer to the respective Safety Data Sheet*.

Figure D-1 Composition of 750 MHz Head and Body Tissue Equivalent Matter

Note: 750MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Phone + info@sp		245 97	00, Fax	< +41 4	14 245												
Meas Item Na	ame		Body	Tissu	e Sim	ulating	Liquid (M)V2)								
Produc Manufa			SL AA SPEA		5 AA (E	Batch:	170608-1)										
Manura	loturer		OFLA	u													
Measu																	_
TSL die	electric	parar	neters	meas	sured u	ising ca	alibrated D	AK pro	be.								_
Setup	Valida	tion															
			ere wi	thin ±	2.5% t	owards	the target	value	s of Me	thanol.							
Target	Parar	neters					00 1/5/	0.0000	0	l'ana-	eten-	ordo					
Target	param	eters	as def	ined ir	n the IE	:EE 15	28 and IEC	6220	9 comp	liance	stand	ards.					
Test C	onditi	on															
Ambier			Enviro	onmer	nt temp	eratur	(22 ± 3)°C	and h	umidity	< 70%							
TSL Te	empera	ature	22°C						-								
Test D	ate		20-Ju	n-17													
Operat	tor		CL														
			3														
Additi				alam	3												
TSL D	ensity		1.212	g/cm ³													
	ensity		1.212														
TSL D	ensity	pacity	1.212 3.006		g*K)	Diff.to 1	arget [%]										
TSL D	ensity eat-ca	pacity	1.212 3.006	kJ/(kg	g*K)	Diff.to ∆-eps	∆-sigma	29	10.0								
TSL D	ensity eat-ca Measu e' 57.3	red e" 25.02	1.212 3.006 sigma 0.84	KJ/(kg Target eps 56.1	g*K) sigma 0.95	∆-eps 2.2	∆-sigma -12.2	ity %	10.0 7.5 5.0								
TSL D TSL H f [MHz] 600 625	ensity eat-ca Measu e' 57.3 57.1	red e" 25.02 24.67	1.212 3.006 sigma 0.84 0.86	KJ/(kg Target eps 56.1 56.0	g*K) sigma 0.95 0.95	∆-eps 2.2 1.9	∆-sigma -12.2 -10.1		7.5 5.0 2.5								
TSL D TSL H f [MHz] 600 625 650	ensity eat-ca Measu e' 57.3 57.1 56.8	red 25.02 24.67 24.32	1.212 3.006 sigma 0.84 0.86 0.88	kJ/(kg eps 56.1 56.0 55.9	g*K) sigma 0.95 0.95 0.96	∆-eps 2.2 1.9 1.6	Δ-sigma -12.2 -10.1 -8.0		7.5 5.0 2.5 0.0	* • •	•				•••		
TSL D TSL H 600 625 650 675	ensity eat-ca Measu e' 57.3 57.1 56.8 56.6	red e" 25.02 24.67 24.32 24.02	1.212 3.006 sigma 0.84 0.86 0.88 0.90	KJ/(kg eps 56.1 56.0 55.9 55.8	g*K) sigma 0.95 0.95 0.96 0.96	∆-eps 2.2 1.9 1.6 1.3	Δ-sigma -12.2 -10.1 -8.0 -5.8	Permittivity	7.5 5.0 2.5 0.0 -2.5	•							
TSL D TSL H 600 625 650 675 700	ensity eat-ca 6 57.3 57.1 56.8 56.6 56.6 56.3	red 25.02 24.67 24.32 24.02 23.71	1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92	KJ/(kg eps 56.1 56.0 55.9 55.8 55.7	sigma 0.95 0.95 0.96 0.96 0.96	∆-eps 2.2 1.9 1.6 1.3 1.1	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8		7.5 5.0 2.5 0.0	•					•		
TSL D TSL H 600 625 650 675 700 725	ensity eat-ca 67.3 57.3 57.1 56.8 56.6 56.3 56.1	red 25.02 24.67 24.32 24.02 23.71 23.48	1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95	KJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6	g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96	∆-eps 2.2 1.9 1.6 1.3 1.1 0.8	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5	Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0		•	8			••••		
TSL D TSL H 600 625 650 675 700	ensity eat-ca 6 57.3 57.1 56.8 56.6 56.6 56.3	red 25.02 24.67 24.32 24.02 23.71	1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92	KJ/(kg eps 56.1 56.0 55.9 55.8 55.7	sigma 0.95 0.95 0.96 0.96 0.96	∆-eps 2.2 1.9 1.6 1.3 1.1	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8	Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5	650	700	750	800	850	900	950	10
TSL D TSL H 600 625 650 675 700 725 750	ensity eat-ca 6 57.3 57.1 56.8 56.6 56.3 56.1 55.9	red e" 25.02 24.67 24.32 24.02 23.71 23.48 23.25	1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97	kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5	g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96	∆-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7	Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0	650	700		800 Juency		900	950	10
TSL D TSL H 600 625 650 675 700 725 750 775	ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04	1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99	kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4	g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3	∆-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9	Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0	650	700				900	950	10
TSL D TSL H 600 625 650 675 700 725 750 775 800	ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.4	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82	1.212 3.006 sigma 0.84 0.86 0.90 0.92 0.95 0.97 0.99 1.02	KJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4 55.3	g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1	A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0	Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700				900	950	10
TSL D TSL H 600 625 650 675 700 725 750 775 800 825	ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.4 55.2	red e" 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82 22.65	1.212 3.006 sigma 0.84 0.86 0.90 0.92 0.95 0.97 0.99 1.02 1.04	kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4 55.3 55.2	g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4	A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5	Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700				900	950	100
TSL D TSL H 600 625 650 675 700 725 750 775 800 825 838 850 875	ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.6 55.6 55.2 55.1 54.9 54.7	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82 22.65 22.56 22.47 22.34	1.212 3.006 sigma 0.84 0.86 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09	KJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2	g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 1.02	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7	▲-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7	% Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700				900	950	100
TSL D TSL H 600 625 650 675 700 725 750 775 800 825 838 850 875 900	ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.6 55.6 55.2 55.1 54.9 54.7 54.5	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82 22.65 22.56 22.56 22.47 22.34 22.21	1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09 1.11	kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 1.02 1.05	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9	▲-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7 5.9	% Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700				900	950	10
TSL D TSL H 600 625 650 675 700 725 750 775 800 825 838 850 875 900 925	ensity eat-ca 57.3 57.1 56.6 56.3 56.1 55.9 55.6 55.4 55.2 55.1 54.5 54.7 54.5 54.3	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82 22.65 22.56 22.26 22.247 22.34 22.21 22.08	1.212 3.006 sigma 0.84 0.86 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09 1.11	kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.4 55.2 55.2 55.2 55.2 55.2 55.2 55.2	g*K) sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.99 1.02 1.05 1.06	∆-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3	A-sigma -12.2 -10.1 -5.8 -3.8 -1.5 0.7 2.9 6.3 6.3 6.9 7.5 6.7 5.9 6.9	% Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700				900	950	10
TSL D TSL H f [MHz] 600 625 650 675 700 725 700 725 770 775 800 825 838 850 875 900 925 950	ensity eat-ca e [*] 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.4 55.2 55.1 54.9 54.7 54.5 54.3 54.3 54.3	red 25.02 24.67 24.32 24.42 23.71 23.48 23.71 23.48 22.65 22.56 22.47 22.34 22.24 22.24 22.24 22.24 22.24 22.21 22.208	1.212 3.006 sigma 0.84 0.86 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09 1.11 1.14	kJ/(k rarget eps 56.1 56.0 55.9 55.8 55.7 55.6 55.3 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	g*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 1.02 1.05 1.06 1.08	∆-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3 -1.6	A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7 5.9 6.9 7.9 6.9 7.9	Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600 7.5 5.0 2.5 0.0 -2.5 -0.0 -2.5	650	700				900	950	10
TSL D TSL H 600 625 650 675 700 725 750 775 800 825 838 850 875 900 925	ensity eat-ca 57.3 57.1 56.6 56.3 56.1 55.9 55.6 55.4 55.2 55.1 54.5 54.7 54.5 54.3	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82 22.65 22.56 22.26 22.247 22.34 22.21 22.08	1.212 3.006 sigma 0.84 0.86 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09 1.11	kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.4 55.2 55.2 55.2 55.2 55.2 55.2 55.2	g*K) sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.99 1.02 1.05 1.06	∆-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3	A-sigma -12.2 -10.1 -5.8 -3.8 -1.5 0.7 2.9 6.3 6.3 6.9 7.5 6.7 5.9 6.9	% Dev. Permittivity	7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700				900	950	10

Figure D-2 750MHz Body Tissue Equivalent Matter

	FCC ID ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	1/16/19 - 02/13/19	Portable Handset			Page 2 of 6
© 201	9 PCTEST Engineering Laboratory	, Inc.			REV 21.2 M 12/05/2018

Schmid & Partner Engineering AG	S	p	е	a	q	
	CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWN					_

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HSL750V2)	
Product No.	SL AAH 075 AA (Batch: 170612-4)	
Manufacturer	SPEAG	

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

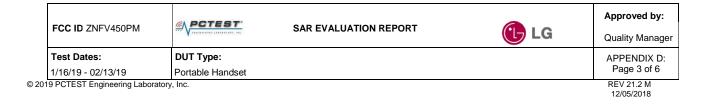
Setup Validation

Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient	Environment temperatur (22 \pm 3)°C and humidity < 70%.	
TSL Temperature	22°C	
Test Date	20-Jun-17	
Operator	CL	


Additional Information

TSL Density 1.284 g/cm³ TSL Heat-capacity 2.701 kJ/(kg*K)

	Measu	ured		Targe	t	Diff.to T	arget [%]
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma
600	45.6	22.97	0.77	42.7	0.88	6.7	-13.1
625	45.2	22.73	0.79	42.6	0.88	6.2	-10.6
650	44.9	22.49	0.81	42.5	0.89	5.6	-8.2
675	44.5	22.27	0.84	42.3	0.89	5.1	-5.8
700	44.2	22.05	0.86	42.2	0.89	4.6	-3.5
725	43.8	21.88	0.88	42.1	0.89	4.2	-1.0
750	43.5	21.72	0.91	41.9	0.89	3.8	1.4
775	43.2	21.55	0.93	41.8	0.90	3.4	3.7
800	42.9	21.38	0.95	41.7	0.90	2.9	6.0
825	42.6	21.24	0.97	41.6	0.91	2.4	7.5
838	42.5	21.17	0.99	41.5	0.91	2.2	8.2
850	42.3	21.09	1.00	41.5	0.92	2.0	8.9
875	42.0	20.98	1.02	41.5	0.94	1.2	8.3
900	41.7	20.87	1.05	41.5	0.97	0.5	7.7
925	41.5	20.76	1.07	41.5	0.98	0.0	8.7
950	41.2	20.64	1.09	41.4	0.99	-0.6	9.7
975	40.9	20.55	1.11	41.4	1.00	-1.1	10.9
1000	40.6	20.46	1.14	41.3	1.01	-1.7	12.1

Figure D-3 750MHz Head Tissue Equivalent Matter

3 Composition / Info	ormation on in	ngredients
The Item is composed of the	he following ingre	dients:
Water	50 - 73 %	
Non-ionic detergents	25 - 50 %	polyoxyethylenesorbitan monolaurate
NaCl	0 - 2%	
Preservative	0.05 - 0.1%	6 Preventol-D7
Safety relevant ingredients		
CAS-No. 55965-84-9	< 0.1 %	aqueous preparation, containing 5-chloro-2-methyl-3(2H)- isothiazolone and 2-methyvl-3(2H)-isothiazolone
CAS-No. 9005-64-5	<50 %	polyoxyethylenesorbitan monolaurate
According to international marked by symbols.	guidelines, the pr	oduct is not a dangerous mixture and therefore not required to be

Figure D-4 Composition of 2.4-2.6 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Schmic	l & Part	ner En	igineer	ing AG	6			S	р	е	а	g	
hone	usstras +41 44 peag.co	245 9	700, Fa	ax +41	44 245	5 9779							
leas	urem	nent (Certi	ficate	e / Ma	aterial	Test						
tem N Produc Manuf		r		AH 19			g Liquid (H 170619-1)	IBBL1900-380	0V3)				
	iremei												
				s mea	sured	using ca	alibrated D	AK probe.					
Satura	Valida	ation											
			vere w	ithin ±	2.5%	towards	s the targe	t values of Met	hanol.				
Targe	Para	meter											
				fined i	n the I	EEE 15	28 and IE	C 62209 compl	iance star	ndards.			
Test C	onditi	ion											
Ambie	nt			onmer	nt tem	peratur	(22 ± 3)°C	and humidity <	: 70%.				
TSL T Test D	emper-	ature	22°C 20-JL	in-17									
Opera			CL										
Additi	onal lı	oform	ation										
TSL D	ensity		1.054	g/cm									
TSL H	eat-ca Measu		3.389	Targe		Diff to T	arget [%]						
[MHz]	e'	e"	sigma			Δ-eps	Δ-sigma	10.0		-			_
1900	41.8	12.2	1.3	40.0	1.4	4.5	-8.2	A 7.5					
1950 2000	41.6	12.3	1.3	40.0	1.4	4.0	-4.6 -1.3	Aintitute 2.5 - 0.0 -		2			
2000	41.4	12.4	1.4	39.9	1.4	3.3	-0.9	E 2.5					
2100	41.1	12.7	1.5	39.8	1.5	3.1	-0.6	à -2.5 -				-	
2150 2200	40.9	12.8	1.5	39.7 39.6	1.5	2.9	-0.2	-5.0					
2250	40.6	13.0	1.6	39.6	1.6	2.5	0.5	-10.0	1125				
2300	40.4	13.2 13.3	1.7	39.5 39.4	1.7	2.3	1.1	1900	2100 2300			3300 350	0 3700 3900
2400	40.2	13.4	1.8	39.3	1.8	1.8	2.1			Frequence	y MHz		
2450	39.8	13.5	1.8	39.2	1.8	1.6	2.6						
2500 2550	39.7 39.5	13.7 13.7	1.9	39.1 39.1	1.9	1.3	2.6	Server -					
2600	39.3	13.9	2.0	39.0	2.0	0.8	2.5	10.0					
2650	39.1 39.0	14.0	2.1	38.9	2.0	0.5	2.6	8		1			
2700 2750	39.0 38.7	14.2	2.1	38.9	2.1	-0.2	2.7	10 2.5	1	~~~~	******	******	
2800	38.6	14.4	2.2	38.8	2.2	-0.4	2.5	Autophono 0.0	and a state				
2850 2900	38.4	14.5 14.6	2.3	38.7 38.6	2.2	-0.8	2.6	0 ·2.5					
2950	38.1	14.7	2.4	38.6	2.3	-1.3	2.6	-7.5					
3000 3050	37.9 37.7	14.8 14.8	2.5	38.5 38.4	2.4 2.5	-1.7	2.6	-10.0	2100 2300	2500 2700	2900 3100	3300 350	0 3700 3900
3050 3100	37.7	14.8 14.9	2.5	38.4	2.5	-2.0	2.8	100700	1996 S105 (1996)			(14) S. (15) S. (15)	
3150	37.3	15.0	2.6	38.3	2.6	-2.6	2.9			Freque	ncy MHz		
3200 3250	37.1 37.0	15.1 15.1	2.7	38.3	2.6 2.7	-3.0	2.9 3.0						
3300	36.8	15.2	2.8	38.2	2.7	-3.6	3.1						
3350 3400	36.6 36.4	15.3 15.3	2.8	38.1 38.0	2.8	-3.9	3.2 3.3						
3400 3450	36.4	15.3	3.0	38.0	2.8	-4.2	3.3 3.4						
3500	36.1	15.5	3.0	37.9	2.9	-4.8	3.5						
3550 3600	36.0 35.8	15.5 15.6	3.1 3.1	37.9 37.8	3.0 3.0	-5.0	3.6 3.8						
3650	35.8	15.0	3.2	37.8	3.1	-5.6	3.8						
3700	35.5	15.7	3.2	37.7	3,1	-5.8	3.9						
3750 3800	35.4 35.2	15.8 15.9	3.3 3.4	37.6	3.2 3.2	-6.1 -6.3	3.9 4.1						
3850	35.1	15.9	3.4	37.5	3.3	-6.6	4.1						

Figure D-5 2.4-2.6 GHz Head Tissue Equivalent Matter

	FCC ID ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	1/16/19 - 02/13/19	Portable Handset			Page 4 of 6
© 20′	9 PCTEST Engineering Laboratory	, Inc.			REV 21.2 M 12/05/2018

©

2 Composition / Information on ingredients

Figure D-6

Composition of 5 GHz Head Tissue Equivalent Matter

Note: 5 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Zurgitaustrasse 43, 8003 Auchin, Switzerland Measurement Certificate / Material Test Item Name Head Tissue Simulating Liquid (HBBL3500-5800V5) Produkt No. SL AAH 502 AG (Batch: 170613-1) Measurement Method Test Gelectric parameters measured using calibrated DAK probe. Setup Validation Weasurement Setup Validation Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Contition Tist. Temperature 20-Jun-17 Operator C. Tist. Density 9.895 g/cm ³ Tist. Data Sity 9.89 g/cm ³ Tist. Data Sity 9.89 g/cm ³ Tist. Data Sity	Schmic	i & Par	tner Er	nginee	ring AC	3			s p e a g			
Manufacturer Head Tissue Simulating Liquid (HBBL3500-5800V5) Product No. SL AAH 502 AG (Batch: 170613-1) Measurement Method TSL delectric parameters measured using calibrated DAK probe. Satup Validation Target Parameters Target Parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters Target parameters 22°C Test Condition Ambient Environment temperatur (22 ± 3)°C and humidity < 70%.	Phone	+41 44	245 9	700, F	ax +41	44 24	5 9779					
Product No. SL AAH 502 AG (Batch: 170813-1) Manufacturer SPEAG Measurement Wethod TSL delectric parameters measured using calibrated DAK probe. Satup Validation Target Parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Target parameters as defined in the IEEE 1528 and IEC	Meas	uren	nent	Certi	ficat	e/M	aterial	Test				
Measurement Method TSL delectric parameters measured using calibrated DAK probe. Setup Validation Yalidation results were within ± 2.5% towards the target values of Methanol. Target Parameters Target Parameters Target Parameters Ambient Environment temperatur (22 ± 3)°C and humidity < 70%.	Produc	ct No.	r	SL A	AH 50	ue Sir 2 AG	nulating (Batch:	g Liquid (170613-	HBBL3500-5800V5) 1)			
Setup Validation Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Test Condition Test Condition Test Date 20-Jun-17 Operator C Test Date 300 284 880 29 (Gm ³) TsL Pensity 0.985 g/Gm ³ TsL bensity 0.985 g/Gm ³ TsL bensity 0.985 g/Gm ³ Standard 28 48 80 28 77 812 14 15 0.3 Method 386 173 02 214 15 0.3 300 385 11500 280 377 132 31 3.3 36 C C C C C C <th co<="" td=""><td colspan="11">Measurement Method</td></th>	<td colspan="11">Measurement Method</td>	Measurement Method										
Target Parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Ambient Environment temperatur (22 ± 3)°C and humidity < 70%. TSL Temperature 22°C Test Date 20 Jun-17 Operator CL Additional Information TSL Density 0.985 g/cm³ TSL Heat-capacity 3.383 kJ/(kg*K) Note and the standards Measured Target Diff.to Target [25] Note as a standards 10 0 Note as a standards 10 0 Note as a standards 3800 386 1502 282 379 at 15 13 0.95 3000 381 1498 3.00 37.8 3.22 1.4 0.95 3000 381 1498 3.38 37.4 4.43 3.33 1.3 0.95 3000 37.1 13.0 3.58 3.33 1.3 0.95 3000 37.1 13.0 3.58 3.33 1.3 0.95 0.95 <	Setup	Valid	ation									
Amblent Environment temperatur (22 ± 3)°C and humidity < 70%. TESL Temperature 22°-Jun-17 Operator CL Additional Information 0.985 grcm³ TSL Density 0.985 grcm³ TSL Heat-capacity 3.83 kJ/(kg*k) Measured Target Off-fo Target (%) 19843 0 78 1.80 2.84 3000 380 18.00 2.84 3.00 2.41 1.5 3000 380 18.00 2.84 3.00 2.81 1.6 0.33 3000 380 14.89 3.00 7.75 3.22 1.4 -1.9 3000 380 14.99 3.83 7.43 1.5 -3.3 3000 3.71 1.82 3.93 1.4 -5.8 4000 7.5 1.63 0.3 3.44 1.5 -5.9 4000 7.6 1.80 3.63 1.4 -5.8 4100 7.6 1.80 3.63	Targe	Para	meter	s								
TSL Temperature 22°C Test Date 20-Jun-17 Operator CL Additional Information TSL Density 0.985 g/cm ³ TSL Heat-capacity 3.885 kJ/(kg ⁺ K) TSL Heat-capacity 3.883 sJ/(kg ⁺ K) TSL Heat-capacity 3.884 sJ/(kg ⁺ K) TSL Heat-capaci	Test C	ondit										
Additional Information TSL Density 0.985 g/cm ³ TSL Heat-capacity 3.83 kJ/(kg*K) Measured Target Diff.0 Target [%] Jimba e eigme ops sigme Aeps 3400 386 1502 2.84 380. 2.81 1.5 0.13 3900 383 14.98 3.00 2.7.8 3.02 1.4 0.9 3000 380 14.98 3.02 1.3 -1.2 0.0 -0 <td>TSL Te Test D</td> <td>emper ate</td> <td>ature</td> <td>22°C 20-Ju</td> <td></td> <td>nt tem</td> <td>peratur</td> <td>(22 ± 3)°(</td> <td>C and humidity < 70%.</td>	TSL Te Test D	emper ate	ature	22°C 20-Ju		nt tem	peratur	(22 ± 3)°(C and humidity < 70%.			
TSL Density 0.985 g/cm³ Measured: Target: Diff.to Target [%] 3400 386 15:00 2.92 379 2141 1.5 1.1 3000 381 14:98 308 37.4 31.3 -0.5 3000 381 14:98 3.83 37.4 31.4 -2.5 3000 37.5 15.0 3.60 3.7 -0.5 3007 37.0 15.29 4.0 3.68 3.44 4.5 3007 37.0 15.29 4.0 3.68 3.44 4.5 4000 37.1 3.68 3.44 4.5 -0.5 4000 37.1 1.8 3.44 4.5 -0.5 -0.5 -0.5 </td <td></td> <td></td> <td>nform</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			nform									
IJHM2 ···· ··· ··· ···<	TSL D	ensity		0.985								
1 0									10.0			
3800 3801 14.96 31.6 32.6 32.4 4.9.9 3800 380 18.8 32.8 32.4 4.4 9.9 3800 380 18.8 32.8 32.4 4.4 9.9 3800 380 18.8 33.8 32.4 14.4 9.9 3800 37.9 18.8 33.8 37.4 3.43 15 -2.8 4000 37.7 15.0 3.60 37.1 3.53 1.3 -3.55 4500 37.0 15.28 4.00 36.4 1.4 -3.55 4700 37.6 15.35 4.10 2.5 3.44 1.4 -3.55 4700 37.6 15.35 4.10 36.4 2.5 3.44 1.2 3.44 4800 36.6 15.35 4.13 36.3 4.25 1.0 3.63 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64									8 7.5			
3800 3801 14.96 31.6 32.6 32.4 4.9.9 3800 380 18.8 32.8 32.4 4.4 9.9 3800 380 18.8 32.8 32.4 4.4 9.9 3800 380 18.8 33.8 32.4 14.4 9.9 3800 37.9 18.8 33.8 37.4 3.43 15 -2.8 4000 37.7 15.0 3.60 37.1 3.53 1.3 -3.55 4500 37.0 15.28 4.00 36.4 1.4 -3.55 4700 37.6 15.35 4.10 2.5 3.44 1.4 -3.55 4700 37.6 15.35 4.10 36.4 2.5 3.44 1.2 3.44 4800 36.6 15.35 4.13 36.3 4.25 1.0 3.63 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64									2.5			
380 488 324 375 3.22 1.4 4.25 4000 379 14.98 3.28 374 3.43 1.5 2.88 4000 376 1500 3.60 37.0 3.53 1.5 2.88 4000 376 1500 3.60 37.1 3.53 1.5 2.88 4000 37.6 1500 3.60 37.1 3.53 1.5 2.88 4000 37.4 151 3.70 3.73 1.3 3.66 4000 37.4 151 3.80 3.84 1.4 3.55 4000 37.4 15.1 3.80 3.84 1.4 3.55 4000 36.6 15.39 4.44 3.01 1.4 3.55 4000 36.7 15.83 4.43 3.04 1.0 3.44 3.05 3.66 5000 36.6 15.32 4.43 35.7 1.0 3.66 3.66 3.	3700	38.2	14.96	3.08	37.7	3.12	1.3	-1.2				
4000 37.9 14.86 3.83 37.4 3.43 1.5 -2.8 4100 37.6 15.00 3.60 37.1 3.53 1.5 -3.3 4200 37.5 15.00 3.60 37.1 3.53 1.3 -3.5 4300 37.7 15.00 3.60 37.1 3.53 1.3 -3.5 4400 37.4 1.5 4.30 3.64 1.4 -3.5 4500 37.1 15.20 3.00 3.64 1.4 -3.5 4700 37.0 15.25 4.10 1.2 -3.4 4800 36.6 1.53 4.18 3.64 1.0 -3.6 4900 36.6 1.53 4.14 3.64 1.0 -3.6 500 36.5 1.53 4.18 3.64 4.25 1.0 -3.6 500 36.5 1.52 4.80 3.6. -5.7.5 -3.6 500 36.1	0000								\$ -2.5 .50			
4200 376 15.00 35.0 37.1 3.63 1.3 -3.6 4300 37.2 15.16 3.60 37.0 1.3 -3.6 3400 3900 4400 4900 5400 5900 4000 37.2 15.11 3.70 3.63 3.44 -4.6	4000	37.9	14.95									
4300 375 1508 380 370 373 13 3.5 4400 374 1511 3.00 369 3.94 1.4 3.5 4400 371 1518 3.00 369 3.94 1.4 3.5 4000 371 1524 3.00 366 3.94 1.1 3.5 4000 371 1524 3.00 367 4.04 1.2 3.5 4000 367 1535 4.10 3.4 1.4 3.5 4000 367 1538 4.30 3.4 3.4 3.4 4000 66 16.33 4.4 3.0 1.1 3.6 5000 365 1542 4.29 9.2 4.40 9.3 3.6 5100 361 1558 4.8 3.6 0.4 3.6 3.6 5100 361 1558 4.8 3.6 0.7 3.8 5200												
4500 372 1518 480 388 394 1.1 -3.5 4700 371 1529 4.00 1.2 -3.5 4700 370 1529 4.00 36. 4.14 1.2 -3.5 4700 370 1529 4.00 36. 4.14 1.2 -3.4 4800 368 153.5 4.10 3.4 4.25 1.0 -3.4 4800 368 153.5 4.10 3.4 3.0 1.1 -3.6 4900 360 65 15.4 4.29 3.4 -3.6 5000 865 15.4 4.3 3.4 -0.9 -3.6 5000 865 15.4 4.3 3.6 -4.6 -7.6 510 83.1 15.5 4.8 3.7 7.6 -3.7 5200 36.1 15.5 4.8 3.6 -3.7 5500 35.5 1.50 4.7 3												
4000 37.1 15.24 30.0 30.7 4.04 1.2 -3.5 4700 37.1 15.29 4.00 36.6 4.14 1.2 -3.5 4700 36.8 15.35 4.10 36.4 4.12 -3.6 4850 08.6 15.35 4.10 36.4 4.25 1.0 -3.6 000 86.7 15.39 4.24 3.63 -1.0 -3.66 000 86.7 15.39 4.24 3.63 -3.66 000 86.7 15.39 4.24 3.63 -3.66 000 86.7 15.30 4.44 3.84 -4.66 -3.66 0500 36.5 15.43 4.33 3.60 -5.0 -5.0 0500 36.1 15.55 4.68 3.66 -5.7 5000 36.1 15.55 4.68 3.66 -5.7 5000 36.1 15.55 4.68 3.56 5.07					00.0	0.0.1						
4700 370 1529 4.00 36.6 4.14 1.2 3.4 4800 36.5 15.5 4.10 3.4 1.2 3.4 4800 36.6 15.3 4.10 3.4 1.2 3.4 4800 36.5 15.3 4.10 3.4 1.1 3.6 4900 36.7 15.38 4.19 96.3 4.25 1.0 3.6 5000 36.5 15.42 4.29 3.6 4.40 0.9 3.6 3.6 5000 36.5 15.42 4.29 3.6 4.6 0.8 3.6 3.6 5100 36.1 15.58 4.48 3.6 0.6 -3.8 -7.5 -1.0 -3.6 5200 36.1 15.58 4.48 3.6 0.6 -3.7 -7.5 -1.0 -3.6 5200 36.1 15.58 4.83 3.6 0.4 -3.7 -7.5 -1.0 -3.7 5500 35.5 15.59 4.73 3.57 4.80 0.4 -3.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
4800 380 15.39 4.10 38.4 4.25 1.0 3.4 4800 386 36.4 15.4 4.4 4.30 1.1 3.6 4900 367 15.38 4.19 0.8 4.25 1.0 3.6 9600 366 15.34 4.19 0.8 4.30 1.1 3.6 9600 366 15.42 4.29 0.8 3.6 3.6 9500 365 15.42 4.29 0.8 3.6 3.6 9500 365 15.44 4.39 0.80 3.6 3.6 9500 365 15.44 4.39 0.80 3.6 3.6 9500 365 15.54 4.8 3.60 0.6 3.8 9500 365 15.56 4.68 3.56 3.7 9500 356 15.59 4.78 3.66 3.7 9500 356 15.59 4.78 3.66												
4800 380 15.36 4.4 4.30 1.1 3.6 9400 366 15.39 4.24 4.30 1.0 3.6 9400 366 15.39 4.24 4.35 1.0 3.6 9500 366 15.39 4.24 20.8 3.40 0.9 3.6 9500 366 15.39 4.24 20.8 4.40 0.8 3.6 9500 365 15.48 4.43 36.0 0.5 3.6 9500 36.6 15.88 4.43 36.0 0.6 -3.6 9500 36.1 15.55 4.84 36.0 0.6 -3.6 9500 36.1 15.55 4.84 3.6 0.6 -3.7 9500 36.1 15.55 4.88 0.44 -3.7 9500 35.1 15.57 4.88 0.46 0.43 -3.7 9500 35.4 15.70 4.86 0.4												
5050 368 15.43 4.44 362 4.50 0.9 -3.6 5150 364 4.84 360 4.65 0.8 -1.65 -1.05 5150 363 15.84 4.39 8.14 4.55 0.8 -3.6 5150 363 15.84 4.49 36.0 4.60 0.7 -3.8 5200 361 15.53 4.58 35.9 4.71 0.5 -3.7 5300 361 15.55 4.58 35.9 4.71 0.6 -3.7 5400 359 15.57 4.68 3.68 -4.4 -3.7 5500 356 15.59 4.78 3.68 -4.4 -3.7 5500 35.5 15.17 4.88 35.6 5.07 0.2 -3.7 5500 35.6 15.70 4.93 35.5 5.17 0.2 -3.7 5600 35.6 15.70 4.93 3.57 0.3												
Store Store <th< td=""><td>4950</td><td>36.6</td><td>15.39</td><td>4.24</td><td></td><td></td><td>0.9</td><td>-3.6</td><td>9 0.0</td></th<>	4950	36.6	15.39	4.24			0.9	-3.6	9 0.0			
Store 36.4 15.46 4.38 36.0 4.56 0.8 -3.6 5150 36.3 15.46 4.43 36.0 46.0 0.7 -3.8 5150 36.3 15.46 4.43 36.0 4.60 0.7 -3.8 5260 36.1 15.53 4.44 36.0 4.66 0.6 -3.6 3000 361.1 55.3 4.54 35.0 4.71 0.5 -3.5 3000 361.1 55.6 4.68 3.86 0.4 -3.7 5500 35.7 15.56 4.68 3.66 -3.7 5500 35.7 15.66 4.88 3.66 -3.7 5500 35.7 15.66 4.83 3.56 5.07 0.2 -3.7 5500 35.6 15.70 4.38 3.57 15.66 4.83 3.56 5.07 0.2 -3.7 5650 35.6 15.70 4.38 3.57 1.												
9800 962 15.50 4.48 96.0 4.66 0.66 -0.88 5200 36.1 15.50 4.48 36.0 4.66 0.66 -0.88 5200 36.1 15.50 4.48 35.9 4.71 0.5 -3.5 5300 36.1 15.56 4.68 3.68 4.76 0.6 -3.7 5300 36.0 15.56 4.68 3.68 0.4 -3.7 5400 35.9 15.59 4.73 3.57 4.86 0.4 -3.7 5500 35.7 15.66 4.83 3.66 -0.4 -3.7 5500 35.7 15.66 4.83 3.56 5.07 0.2 -3.7 5500 35.6 15.70 4.80 0.4 -3.7 5650 35.6 15.70 4.80 0.4 -3.7 5650 35.6 15.70 4.80 0.4 -3.7 5650 35.6 15.70<												
Jacol Frequency MHz S000 36.1 15.53 4.54 35.9 4.71 0.5 -3.5 S000 36.1 15.55 4.58 35.9 4.71 0.5 -3.7 S000 36.5 15.59 4.80 35.8 4.84 0.6 -3.7 S000 35.6 15.57 4.80 35.8 4.86 0.4 -3.7 S000 35.6 15.51 4.83 35.6 5.07 0.2 -3.7 S000 35.6 15.70 4.93 35.5 5.17 0.2 -3.7 S000 35.6 15.70 4.93 35.7 5.72 0.2 -3.7 S000 35.6 15.70 4.93 35.7	0.00											
5300 68.1 15.5 4.58 35.9 4.78 0.6 -3.7 5360 36.0 15.66 4.63 35.8 4.86 0.4 3.7 5400 35.5 15.57 4.68 35.8 4.86 0.4 3.7 5400 35.5 15.57 4.81 35.6 6.46 0.4 -3.7 5400 35.5 15.67 4.83 35.6 5.01 0.3 -3.7 5500 35.7 15.65 4.83 35.6 5.07 0.2 -3.7 5500 35.6 15.76 4.83 35.6 5.07 0.2 -3.7 5600 35.6 15.70 4.93 35.5 5.07 0.2 -3.7 5600 35.6 15.70 4.93 35.5 5.12 0.4 -3.6 5700 35.4 15.72 4.98 35.4 5.22 0.1 -3.4 5800 35.6 15.71 5.44												
5400 35.9 15.7 4.88 35.8 4.86 0.4 -3.7 5450 35.9 15.51 4.78 35.6 4.74 35.6 4.74 35.7 5500 35.7 15.61 4.78 35.6 4.74 35.7 4.74 35.7 5500 35.7 15.61 4.78 35.6 4.74 35.7 3.74 5500 35.7 15.61 4.83 35.6 5.07 6.2 3.7 5600 35.6 15.8 4.85 5.75 5.74 2.4 3.65 5700 35.5 5.12 4.83 5.17 0.2 3.6 3.67 5700 35.4 15.74 35.4 5.22 0.1 3.4 5800 35.4 15.74 5.44 5.24 0.3 3.4 5750 35.4 15.44 35.3 5.27 0.3 3.4 5800 35.6 15.44 35.3 3.44		36.1	15.55			4.76	0.6	-3.7				
5450 35.9 1.59 4.73 3.57 4.91 0.6 -3.7 5600 35.6 15.6 4.78 35.6 0.43 -3.7 5600 35.6 15.6 4.88 35.5 5.01 0.3 -3.7 5600 35.6 15.6 4.88 35.5 5.01 0.3 -3.7 5600 35.6 15.6 4.88 35.5 5.01 0.3 -3.7 5600 35.6 15.0 4.33 35.5 5.12 0.4 -3.6 5700 35.4 15.72 4.93 5.74 0.4 -3.6 5700 35.4 15.78 5.04 35.4 5.22 0.1 -3.4 5800 36.4 15.81 5.14 35.3 5.27 0.3 -3.4 5800 36.8 15.81 5.14 35.3 5.27 0.3 -3.4												
5500 36.8 15.61 47.8 35.6 4.83 36.5 9.01 0.4 -3.7 5550 35.7 15.65 4.83 35.5 5.01 0.2 -3.7 5650 35.6 15.02 4.83 35.5 5.17 0.2 -3.7 5650 35.6 15.70 4.93 35.5 5.12 0.4 -3.6 7500 35.5 15.72 4.93 35.5 5.17 0.2 -3.6 7500 35.4 15.72 4.93 35.4 5.17 0.2 -3.6 7500 35.4 15.72 5.04 35.4 5.22 0.1 -3.4 8000 36.4 15.78 5.04 35.3 5.27 0.3 -3.4 9800 35.4 15.1 4.93 5.3 5.44 0.0 -3.7												
5800 35.6 15.86 4.88 35.5 5.07 0.2 -3.7 5850 35.6 15.70 4.93 35.5 5.12 0.4 -3.6 5700 35.5 15.27 4.98 35.7 0.2 -3.6 5750 35.4 15.76 5.04 3.6 -3.6 5750 35.4 15.76 5.04 3.6 -3.6 5800 35.4 15.76 5.04 3.6 -3.6 5800 35.4 15.78 5.09 3.5 5.22 0.1 -3.4 5800 35.8 15.47 2.27 -3.7 -3.7	5500	35.8	15.61	4.78	35.6	4.96	0.4	-3.7				
5650 35.8 15.70 4.89 35.5 5.12 0.4 -3.6 5700 35.6 15.72 4.98 35.4 5.17 0.2 -3.6 5700 35.4 15.76 5.44 35.4 5.22 0.1 -3.4 6800 35.4 15.78 5.49 5.34 0.3 -3.4 6800 35.4 15.78 5.34 0.3 -3.7				122122								
5700 35.5 15.72 4.98 35.4 5.17 0.2 -3.6 5750 35.4 15.78 5.40 35.4 5.22 0.1 -3.4 5800 35.4 15.81 5.14 35.3 5.27 0.3 -3.4 5800 35.1 15.81 5.14 35.3 5.27 0.3 -3.7								1.200				
5800 35.4 15.78 5.09 35.3 5.27 0.3 -3.4 5850 35.3 15.81 5.14 35.3 5.34 0.0 -3.7	5700	35.5	15.72	4.98	35.4	5.17	0.2	-3.6				
5850 35.3 15.81 5.14 35.3 5.34 0.0 -3.7												

Figure D-7 5 GHz Head Tissue Equivalent Matter

					Approved by:
	FCC ID ZNFV450PM		SAR EVALUATION REPORT	🕑 LG	Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	1/16/19 - 02/13/19	Portable Handset			Page 5 of 6
© 201	9 PCTEST Engineering Laboratory	, Inc.			REV 21.2 M 12/05/2018

3 Composition / Information on ingredients

The Item is composed of the for	ollowing ingredients:
Water	60 - 80%
Esters, Emulsifiers, Inhibitors	20 - 40%
Sodium salt	0 - 1.5%

Figure D-8 Composition of 5 GHz Body Tissue Equivalent Matter

Note: 5 GHz Body liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Phone	ausstra +41 44 peag.c	12459	700, F	ax +41	44 24	5 9779				5	p		a	g	
tem N	lame	nent		255233		aterial	l Test g Liquid (N	ABBL:	3500-	5800	(V5)				
	ct No. lacture	r	SL A	AM 50	1 EA	(Batch:	180423-2))							
	ureme ielectri			s mea	sured	usina c	alibrated D	AK pr	obe.	_					
Setup	Valida	ation					s <u>the</u> target			Aeth	anol.				
	t Para t paran			fined i	n the H	KDB 86	5664 comp	liance	stand	dard					
	Condit	ion													
Ambie FSL T Fest D Opera	emper ate	ature	22°C 25-Aj WM		nt temp	peratur	(22 ± 3)°C	and h	umidi	y < '	70%.				
-	onal li	atorm													
SL D	ensity leat-ca		0.996	i g/cm i kJ/(k						_					
(MHz)	Measu e'	e"		Targe			arget [%]	T	10.0						_
3400	50.7	16.46	sigma 3.11	eps 51.5	3.20	∆-eps -1.5	Δ-sigma -2.7	8	7.5						
acor	50.5	16.50	3.21		3.31	-1.6			5.0 -						10000
3500				51.3			-3.1	thvil					DOM: NO	1111	
3600	50.4	16.56	3.32	51.2	3.43	-1.5	-3.2	ermittivi	2.5 -						
3600 3700								ev. Permittivity						*******	
3600 3700 3800	50.4 50.3	16.56 16.63	3.32 3.42	51.2 51.1	3.43 3.55	-1.5 -1.5	-3.2 -3.6	Dev. Permittivi	2.5 0.0 -2.5 -5.0					*******	
3600 3700 3800 3900 4000	50.4 50.3 50.2 50.1 49.9	16.56 16.63 16.72 16.81 16.93	3.32 3.42 3.53 3.65 3.77	51.2 51.1 50.9 50.8 50.6	3.43 3.55 3.66 3.78 3.90	-1.5 -1.5 -1.4 -1.3 -1.5	-3.2 -3.6 -3.7 -3.5 -3.3	Dev.	2.5 0.0 -2.5 -5.0 -7.5						
3600 3700 3800 3900 4000 4100	50.4 50.3 50.2 50.1 49.9 49.8	16.56 16.63 16.72 16.81 16.93 17.05	3.32 3.42 3.53 3.65 3.77 3.89	51.2 50.9 50.8 50.6 50.5	3.43 3.55 3.66 3.78 3.90 4.01	-1.5 -1.4 -1.3 -1.5 -1.4	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1	Dev.	2.5 0.0 -2.5 -5.0 -7.5	00	3900	4400	4000	5400	
3600 3700 3800 3900 4000 4100 4200	50.4 50.2 50.2 50.1 49.9 49.8 49.8	16.56 16.63 16.72 16.81 16.93 17.05 17.18	3.32 3.42 3.53 3.65 3.77 3.89 4.01	51.2 51.1 50.9 50.8 50.6 50.5 50.4	3.43 3.55 3.66 3.78 3.90 4.01 4.13	-1.5 -1.5 -1.4 -1.3 -1.5 -1.4 -1.5	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9	Dev.	2.5 0.0 -2.5 -5.0 -7.5	00	3900	4400 Freque	4900 ncy MHz	5400	590
3600 3700 3800 3900 4000 4100 4200 4300	50.4 50.3 50.2 50.1 49.9 49.8	16.56 16.63 16.72 16.81 16.93 17.05	3.32 3.42 3.53 3.65 3.77 3.89	51.2 50.9 50.8 50.6 50.5	3.43 3.55 3.66 3.78 3.90 4.01	-1.5 -1.4 -1.3 -1.5 -1.4 -1.5 -1.5 -1.5	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5	Dev.	2.5 0.0 -2.5 -5.0 -7.5	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14	51.2 50.9 50.8 50.6 50.5 50.4 50.2	3.43 3.55 3.66 3.78 3.90 4.01 4.13 4.25	-1.5 -1.5 -1.4 -1.3 -1.5 -1.4 -1.5	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9	Dev	2.5 0.0 -2.5 -5.0 -7.5 -10.0 34	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8	3.43 3.65 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.6 1.5 1.6 1.5 1.7	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3	Dev	2.5 0.0 -2.5 -5.0 -7.5 -10.0 34	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7	3.43 3.55 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72	1.5 1.4 1.3 1.5 1.4 1.5 1.5 1.6 1.5 1.6 1.5 1.7 1.8	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0	Sev.	2.5 0.0 -2.5 -5.0 -7.5 -10.0 34	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4600 4700 4800	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.99	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.80	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6	3.43 3.55 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83	1.5 1.4 1.3 1.5 1.4 1.5 1.4 1.5 1.5 1.6 1.5 1.5 1.7 1.8 1.9	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7	Sev.	2.5 0.0 -2.5 -5.0 -7.5 -10.0 34 10.0 7.5	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4600 4800 4850	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7	3.43 3.55 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72	1.5 1.4 1.3 1.5 1.4 1.5 1.5 1.6 1.5 1.6 1.5 1.7 1.8	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0	Sev.	2.5 0.0 -2.5 -5.0 -7.5 -10.0 34 10.0 7.5 5.0	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4850 4850 4900 4950	50.4 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6 48.5 48.4 48.5	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.59 18.05 18.11 18.17	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.87	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.5	3.43 3.55 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83 4.89	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.7 1.8 1.9 2.0	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4	Conductivity % Dev.	2.5 -0.0 -2.5 -5.0 -7.5 -10.0 34 10.0 7.5 - 5.0 -2.5 -0.0 -2.5	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4400 4500 4800 4850 4900 4900 5000	50.4 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6 48.6 48.5 48.4 48.3 48.2	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.59 17.73 17.86 17.99 18.05 18.11 18.17 18.23	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.87 4.94 5.00 5.07	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.5 49.4 49.4 49.3	3.43 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83 4.89 4.95 5.01 5.07	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.5 1.6 1.5 1.6 1.5 1.7 1.8 1.9 2.0 2.1 2.1 2.1 2.2	-3.2 -3.6 -3.7 -3.5 -3.3 -3.3 -3.3 -3.3 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4 -0.2 -0.1 0.1	Sev.	2.5 -0.0 -2.5 -5.0 -7.5 -10.0 34 10.0 7.5 - 5.0 -2.5 -0.0 -2.5 -5.0	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4200 4200 4200 4400 44	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6 48.5 48.4 48.5 48.4 48.3 48.2 48.1	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.79 18.05 18.11 18.17 18.23 18.29	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.87 4.94 5.00 5.07 5.14	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.5 49.4 49.4 49.3 49.2	3.43 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83 4.89 4.95 5.01 5.07 5.12	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.2 1.2 2.1 2.2 2.3	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4 -0.2 -0.1 0.3	Dev. Conductivity % Dev.	2.5 -0.0 -2.5 -7.5 -7.5 -7.5 -7.5 -34 10.0 7.5 -5.0 -2.5 -5.0 -7.5 -7.5	00	3900			5400	590
3600 3700 3800 3900 4000 4100 4200 4300 4400 4400 4400 4500 4800 4800 4800 48	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6 48.6 48.5 48.4 48.4 48.3 48.2 48.1 48.0	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.99 18.05 18.11 18.17 18.23 18.29 18.34	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.87 4.94 5.00 5.07 5.14 5.20	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.5 49.4 49.4 49.3 49.2 49.2	3.43 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83 4.89 4.95 5.01 5.07 5.12 5.18	1.5 1.5 1.4 1.5 1.4 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.7 1.8 1.9 2.0 2.1 2.1 2.2 2.3 -2.3	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4 -0.2 -0.1 0.1 0.3 0.3	Dev. Conductivity % Dev.	2.5 -0.0 -2.5 -5.0 -7.5 -10.0 34 10.0 7.5 - 5.0 -2.5 -0.0 -2.5 -5.0		3900	Freque	4900	5400	
3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4800 4800 4800 4900 4900 5000 5000 5100	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6 48.5 48.4 48.5 48.4 48.3 48.2 48.1	16.56 16.63 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.79 18.05 18.11 18.17 18.23 18.29	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.87 4.94 5.00 5.07 5.14	51.2 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.5 49.4 49.4 49.3 49.2	3.43 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83 4.89 4.95 5.01 5.07 5.12	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.2 1.2 2.1 2.2 2.3	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4 -0.2 -0.1 0.3	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	Incy MHz	****	
3600 3700 3800 3900 4000 4100 4200 4300 4400 4400 4400 4400 4400 44	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.5	16.56 16.63 16.72 16.81 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.99 18.05 18.11 18.05 18.39 18.39 18.39 18.39 18.39	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.87 4.94 5.00 5.07 5.14 5.20 5.27 5.24 5.24	51.2 51.1 50.9 50.8 50.6 50.5 50.4 50.2 50.4 49.5 49.6 49.5 49.4 49.3 49.2 49.2 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.1 49.2 49.2 49.1 49.2	3.43 3.55 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83 4.89 4.95 5.01 5.07 5.12 5.12 5.12 5.12 5.12 5.12	1.5 1.4 1.3 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.7 1.8 1.9 2.0 2.1 2.1 2.1 2.2 2.3 2.4 2.3 2.4 2.3	-32 -3.6 -3.5 -3.5 -3.3 -3.5 -3.3 -3.1 -2.9 -2.5 -2.9 -2.5 -1.8 -1.3 -1.0 -0.7 -0.4 -0.1 -0.7 -0.4 -0.1 0.3 0.3 0.3 0.6 0.8	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4000 4100 4200 4200 4400 4400 4400 44	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.3 49.2 49.0 48.8 48.6 48.5 48.4 48.3 48.2 48.3 48.2 48.3 48.2 48.3 48.2 48.4 47.9 47.8 47.8 47.8	16.56 16.63 16.72 16.81 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.99 18.05 18.23 18.29 18.34 18.39 18.56	3.32 3.42 3.53 3.65 3.77 4.89 4.01 4.14 4.27 4.40 4.54 4.87 4.84 5.00 5.07 5.14 5.20 5.27 5.34 5.40 5.47	51.2 51.1 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.4 49.5 49.4 49.5 49.4 49.2 49.2 49.2 49.9 48.9 48.9	3.43 3.55 3.66 3.78 4.01 4.13 4.25 4.37 4.48 4.60 4.72 4.83 4.89 5.01 5.07 5.12 5.18 5.24 5.24 5.30	-1.5 -1.4 -1.3 -1.5 -1.4 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.7 -1.8 -1.5 -1.7 -1.8 -1.5 -1.7 -1.8 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.4 -1.5 -1.6 -1.5 -1.5 -1.6 -1.5 -1.6 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	-32 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.2 -1.8 -1.0 -0.7 -0.4 -0.2 -0.1 0.3 0.3 0.3 0.6 0.8 0.8 0.8 0.8 0.8 0.8	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4000 4100 4200 4200 4300 4400 4400 4400 4400 44	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6 48.5 48.4 48.5 48.4 48.3 48.2 48.1 48.0 47.9 47.9 47.5	16.56 16.62 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 18.05 18.11 18.23 18.29 18.34 18.39 18.56 18.56	3.32 3.65 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.87 4.87 4.84 5.00 5.07 5.14 5.20 5.21 5.34 5.40 5.47 5.54	51.2 51.1 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.4 49.4 49.4 49.4 49.4 49.4 49.2 49.2 48.9	3.43 3.55 3.66 3.78 4.01 4.13 4.25 4.43 4.40 4.72 4.83 4.60 4.72 4.83 5.07 5.12 5.07 5.12 5.18 5.24 5.30 5.36 5.32 5.32	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.9 2.0 2.1 2.2 2.3 2.4 2.4 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	-32 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4 -0.1 -0.7 -0.4 -0.1 0.3 0.3 0.3 0.3 0.6 0.8 1.2	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4000 4100 4400 4400 4400 4400 4400 4	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.2 49.0 48.8 48.6 48.5 48.4 48.5 48.4 48.5 48.4 47.9 47.9 47.7 47.8 47.7 47.8 47.7 47.8 47.7 47.8 47.7 47.8 47.5 4	16.56 16.63 16.72 16.81 17.05 17.18 17.32 17.46 17.59 17.73 17.86 17.99 18.05 18.11 18.17 18.23 18.34 18.34 18.34 18.50 18.61 18.61	3.32 3.42 3.53 3.65 3.77 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.67 4.84 5.00 5.07 5.14 5.20 5.27 5.34 5.40 5.47 5.54 5.61	51.2 51.1 50.9 50.8 50.6 50.5 50.4 49.6 49.7 49.6 49.4 49.4 49.4 49.2 49.2 49.2 49.2 49.2 48.9 50.5	3.43 3.55 3.66 3.78 3.90 4.01 4.13 4.25 4.37 4.48 4.60 4.95 5.01 5.02 5.12 5.12 5.18 5.24 5.24 5.30 5.32 5.47 5.53	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.4 1.5 1.6 1.5 1.6 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.3 2.4 2.5	-32 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4 -0.2 -0.1 0.1 0.3 0.6 0.8 1.0 1.2 1.4	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4000 4100 4200 4200 4300 4400 4400 4400 4400 44	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.0 48.8 48.6 48.5 48.4 48.5 48.4 48.3 48.2 48.1 48.0 47.9 47.9 47.5	16.56 16.62 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 18.05 18.11 18.23 18.29 18.34 18.39 18.56 18.56	3.32 3.65 3.53 3.65 3.77 3.89 4.01 4.14 4.27 4.40 4.54 4.67 4.87 4.87 4.84 5.00 5.07 5.14 5.20 5.21 5.34 5.40 5.47 5.54	51.2 51.1 50.9 50.8 50.6 50.5 50.4 50.2 50.1 50.0 49.8 49.7 49.6 49.4 49.4 49.4 49.4 49.4 49.4 49.2 49.2 48.9	3.43 3.55 3.66 3.78 4.01 4.13 4.25 4.43 4.40 4.72 4.83 4.60 4.72 4.83 5.07 5.12 5.07 5.12 5.18 5.24 5.30 5.36 5.32 5.32	1.5 1.4 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.5 2.6	-32 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.4 -0.1 -0.7 -0.4 -0.1 0.3 0.3 0.3 0.3 0.6 0.8 1.2	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4000 4100 4200 4300 4400 4400 4800 4800 4800 4800 48	50.4 50.2 50.2 50.1 49.9 49.8 49.6 49.5 49.2 49.0 48.8 48.6 48.5 48.4 48.5 48.4 48.3 48.2 48.1 48.2 47.9 47.9 47.9 47.5 47.5 47.5 47.5	16.56 16.63 16.72 16.81 17.05 17.18 17.30 17.59 17.73 17.86 17.59 17.73 17.86 17.59 18.05 18.05 18.34 18.39 18.34 18.39 18.34 18.39 18.34 18.39 18.50 18.50 18.50 18.57 18.67	3.32 3.42 3.53 3.65 3.77 4.01 4.14 4.27 4.40 4.54 4.67 4.80 4.67 4.80 5.07 5.14 5.20 5.27 5.34 5.40 5.40 5.54 5.54	51.2 51.3 50.9 50.8 50.5 50.4 50.2 50.2 50.0 49.8 49.7 49.6 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.2 49.9 48.9 50.2 50.1 50.2 50.2 50.2 50.2 50.2 50.2 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.7 48.9 48.9 48.9 48.9 48.7	3.43 3.55 3.66 3.78 4.01 4.13 4.25 4.48 4.48 4.48 4.48 4.48 5.01 5.12 5.12 5.24 5.24 5.24 5.24 5.53	1.5 1.5 1.4 1.3 1.5 1.4 1.5 1.4 1.5 1.6 1.5 1.6 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.3 2.4 2.5	-32 -3.6 -3.7 -3.5 -3.3 -3.1 -2.5 -2.2 -1.3 -1.0 -0.7 -0.4 -0.1 -0.7 -0.4 -0.1 0.1 0.3 0.3 0.3 0.6 0.8 0.8 0.8 1.0 1.2 1.4 1.6	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4000 4200 4200 4300 4400 4400 4800 4800 4800 5050 5100 5100 5150 5250 5300 5350 5350 5450 5450	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.5 49.5 49.5 49.2 49.5 49.2 48.8 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.5 48.4 48.5 48.4 48.5 48.5 48.5 48.4 48.5 48.4 48.5 48.5 48.5 48.5 48.4 48.5 47.7 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.4 47.2 47.4 47.2 47.4 47.2 47.4 47.2 47.4	16.56 16.62 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 17.79 18.05 18.17 18.29 18.39 18.50 18.50 18.50 18.50 18.61 18.67 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.67 18.68 18	3.32 3.42 3.53 3.66 3.66 3.89 4.01 4.14 4.27 4.40 4.54 4.87 4.94 5.00 5.07 5.14 5.20 5.27 5.34 5.40 5.54 5.61 5.68 5.78	51.2 51.3 50.9 50.8 50.6 50.5 50.2 50.1 50.0 49.8 49.7 49.6 49.7 49.4 49.3 49.2 49.4 49.2 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.5 49.4 49.4 49.4 49.4 49.4 49.5 49.4 48.7 48.7 48.5	3.43 3.55 3.66 3.90 4.01 4.13 4.48 4.60 4.72 4.48 4.89 4.95 5.07 5.12 5.18 5.24 5.30 5.36 5.36 5.59 5.59 5.59	1.5 1.8 1.4 1.3 1.5 1.4 1.5 1.4 1.5 1.6 1.7 1.8 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	-32 -36 -37 -35 -33 -33 -33 -33 -33 -29 -25 -22 -29 -22 -1,8 -1,3 -1,0 -0,7 -0,7 -0,4 -0,2 -0,1 0,3 0,6 0,8 1,0 -0,3 0,6 1,2 1,4 -1,2 -1,2 -1,2 -1,2 -1,2 -1,2 -1,2 -1,2	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 4000 4100 4200 4200 4400 4400 4400 44	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.3 49.2 49.2 49.4 49.5 49.3 49.2 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.4 49.4 49.5 49.4 49.5 49.2 49.4 49.5 49.2 49.4 49.5 49.2 49.4 49.5 49.2 49.4 49.5 49.5 49.2 49.4 49.5 49.5 49.2 47.9 47.8 47.7 47.4	16.56 16.52 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.32 17.46 17.99 18.05 18.05 18.50 18	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.27 4.44 4.27 4.40 4.54 4.80 4.67 4.80 4.67 4.80 5.07 5.14 5.07 5.34 5.40 5.40 5.41 5.68 5.74 5.68 5.74 5.81 5.81 5.95	51.2 53.1 50.9 50.8 50.5 50.4 50.5 50.4 50.2 50.2 50.1 50.0 49.8 49.7 49.6 49.7 49.4 49.4 49.4 49.2 49.2 49.2 49.2 49.2 49.2 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.5 48.9 48.9 48.9 48.7 48.6 48.7 48.8 48.7	3.43 3.65 3.66 4.01 4.13 4.26 4.37 4.48 4.60 4.42 4.83 4.49 4.95 5.07 5.12 5.12 5.14 5.24 5.30 5.54 5.54 5.53 5.59 5.51 5.51 5.51	-1.5 -1.5 -1.4 -1.3 -1.4 -1.5 -1.6 -1.5 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.7 -1.8 -1.9 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.6 -2.7 -2.8 -2.7	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.0 -0.7 -0.4 -0.2 -0.1 0.1 0.3 0.6 0.8 1.0 0.8 1.0 0.3 0.6 1.2 1.4 1.6 1.6 2.1 1.4 1.6 2.1	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4000 4100 4200 4400 4400 4400 4400 44	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.4 49.6 49.5 49.4 49.5 49.2 49.0 48.8 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 47.7 47.8 47.5 47.5 47.5 47.5 47.3 47.2 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.4 47.3 47.5 47.4 47.3 47.5 47.4 47.3 47.5 47.4 47.3 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.4 47.3 47.2 47.1 47.3 47.2 47.1 47.3 47.2 47.3 47.2 47.1 47.3 47.5 47.4 47.5 47.4 47.5 47.5 47.4 47.5 47.5 47.4 47.5 4	16.56 16.62 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 18.05 18.11 18.23 18.50 18.56 18.54 18.56 18.54 18.59 18.56 18.54 18.59 18.55 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.55 18.54 18.55 18	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.27 4.40 4.54 4.87 4.84 4.80 4.87 4.94 5.07 5.14 5.07 5.14 5.20 5.27 5.54 5.64 5.65 5.68 5.68 5.78 5.88 5.88 5.88 5.88	51.2 S1.1 50.9 50.6 50.5 50.4 50.5 50.4 50.2 50.1 50.2 50.1 50.0 49.5 49.4 49.4 49.2 49.1 48.9 48.9 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.4 48.4 48.4 48.4 48.4	3.43 3.66 3.68 3.90 4.01 4.13 4.25 4.37 4.48 4.60 5.42 4.83 4.89 5.01 5.12 5.18 5.24 5.30 5.36 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.39	-1.5 -1.5 -1.4 -1.3 -1.4 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.7 -1.8 -1.9 -2.0 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.8	-32 -36 -3.5 -3.5 -3.3 -3.1 -3.5 -3.5 -3.2 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.7 -0.7 -0.4 -0.2 -0.1 0.3 0.6 0.8 1.0 1.2 1.4 1.6 -1.8 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	
3600 3700 3800 3900 4100 4100 4200 4300 4500 4400 4500 4900 4900 5000 5100 5100 5100 5100 5300 5300 53	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.4 49.6 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.4 49.5 49.5 49.4 49.5 49.5 49.4 49.5 49.5 49.4 49.5 49.7 47.5 47.4 47.5 47.2	16.56 16.52 16.72 16.81 16.93 17.05 17.05 17.18 17.32 17.48 17.32 17.48 17.33 17.86 18.05 18.11 18.17 18.23 18.29 18.56 18.67 18.67 18.50 18.56 18.67 18.67 18.67 18.50 18.50 18.67 18.67 18.50 18	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.54 4.54 4.54 4.54 4.54 4.54 5.00 5.27 5.34 5.40 5.27 5.54 5.61 5.54 5.61 5.65 5.64 5.65 5.64 5.65 5.64 5.65 5.65 5.65 5.66 5.65 5.66 5.65 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.67 5.54 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.67 5.54 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.67 5.54 5.66 5	51.2 51.3 50.9 50.8 50.6 50.5 50.2 49.4 49.5 49.4 49.7 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.5 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.4 49.5 49.4 49.4 49.4 49.4 49.5 49.4 49.4 49.4 49.5 49.4 49.4 49.4 49.4 49.4 49.5 48.8 48.7 48.8 48.8 48.5 48.5 48.5 48.8 48.7 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.4 48.7 48.5 48.5 48.5 48.5 48.5 48.4 48.7 48.5 48.5 48.5 48.5 48.5 48.7 48.5	3.43 3.55 3.66 3.78 3.78 3.90 4.01 4.13 4.25 4.37 4.43 4.60 4.72 4.83 4.60 4.72 4.83 5.07 5.12 5.12 5.12 5.12 5.12 5.36 5.42 5.53 5.53 5.54 5.71 5.77 5.82 5.54	15 15 14 14 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.7 2.1 2.1 2.1 2.2 2.3 2.3 2.3 2.3 2.4 2.2 2.4 2.5 2.5 2.5 2.6 2.7 2.8	-3.2 -3.6 -3.7 -3.5 -3.3 -3.1 -2.9 -2.5 -2.2 -1.8 -1.0 -0.7 -0.4 -0.2 -0.1 0.1 0.3 0.3 0.3 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 3.2 2.5	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	590
3600 3700 3800 3900 4100 4100 4200 4300 4400 4500 4800 4800 4800 4800 4800 5150 5150 5300 5300 5300 5350 5450 5500 5500 55	50.4 50.3 50.2 50.1 49.9 49.8 49.6 49.5 49.4 49.6 49.5 49.4 49.5 49.2 49.0 48.8 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 48.4 48.5 47.7 47.8 47.5 47.5 47.5 47.5 47.3 47.2 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.4 47.3 47.5 47.4 47.3 47.5 47.4 47.3 47.5 47.4 47.3 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.5 47.4 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.2 47.3 47.4 47.3 47.2 47.1 47.3 47.2 47.1 47.3 47.2 47.3 47.2 47.1 47.3 47.5 47.4 47.5 47.4 47.5 47.5 47.4 47.5 47.5 47.4 47.5 4	16.56 16.62 16.72 16.81 16.93 17.05 17.18 17.32 17.46 17.59 17.73 18.05 18.11 18.23 18.50 18.56 18.54 18.56 18.54 18.59 18.56 18.54 18.59 18.55 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.54 18.55 18.54 18.55 18	3.32 3.42 3.53 3.65 3.77 3.89 4.01 4.27 4.40 4.54 4.87 4.84 4.80 4.87 4.94 5.07 5.14 5.07 5.14 5.20 5.27 5.54 5.64 5.65 5.68 5.68 5.78 5.88 5.88 5.88 5.88	51.2 S1.1 50.9 50.6 50.5 50.4 50.5 50.4 50.2 50.1 50.2 50.1 50.0 49.5 49.4 49.4 49.2 49.1 48.9 48.9 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.7 48.8 48.4 48.4 48.4 48.4 48.4	3.43 3.66 3.68 3.90 4.01 4.13 4.25 4.37 4.48 4.60 5.42 4.83 4.89 5.01 5.12 5.18 5.24 5.30 5.36 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.32 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.35 5.39 5.39	-1.5 -1.5 -1.4 -1.3 -1.4 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.7 -1.8 -1.9 -2.0 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 -2.8	-32 -36 -3.5 -3.3 -3.5 -3.3 -3.1 -3.5 -3.5 -2.9 -2.5 -2.2 -1.8 -1.3 -1.0 -0.7 -0.7 -0.7 -0.4 -0.2 -0.1 0.3 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -1.8 -1.0 -0.3 0.8 1.0 -1.0 -0.3 0.3 0.3 0.3 0.3 0.3 0.3 -1.0 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0	Dev. Conductivity % Dev.	2.5 - 0.0 - -2.5 - -7.5 - -7.5 - -10.0 - -7.5 - -0.0 - -2.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 - -7.5 -			Freque	4900	****	

Figure D-9 5 GHz Body Tissue Equivalent Matter

	FCC ID ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	1/16/19 - 02/13/19	Portable Handset			Page 6 of 6
© 201	9 PCTEST Engineering Laboratory	, Inc.			REV 21.2 M 12/05/2018

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

CAD	F rom				-	-	Perm.	C	W VALIDATIO	N	MOD. VALIDATION		
SAR System	Freq. (MHz)	Date	Probe SN	Probe C	al Point	Cond. (σ)	erni. (Er)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
G	750	8/9/2018	7410	750	Head	0.898	41.769	PASS	PASS	PASS	N/A	N/A	N/A
G	835	8/9/2018	7410	835	Head	0.889	40.915	PASS	PASS	PASS	GMSK	PASS	N/A
Н	1750	7/16/2018	7409	1750	Head	1.331	41.186	PASS	PASS	PASS	N/A	N/A	N/A
М	1900	11/5/2018	3287	1900	Head	1.430	39.014	PASS	PASS	PASS	GMSK	PASS	N/A
G	1900	8/9/2018	7410	1900	Head	1.429	38.607	PASS	PASS	PASS	GMSK	PASS	N/A
Н	2450	8/8/2018	7409	2450	Head	1.844	40.474	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
G	2450	8/7/2018	7410	2450	Head	1.865	39.618	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
Н	2600	8/9/2018	7409	2600	Head	1.914	38.662	PASS	PASS	PASS	TDD	PASS	N/A
Н	5250	7/5/2018	7409	5250	Head	4.492	34.994	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5600	7/5/2018	7409	5600	Head	4.839	34.496	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5750	7/5/2018	7409	5750	Head	4.995	34.288	PASS	PASS	PASS	OFDM	N/A	PASS
E	750	2/6/2019	3589	750	Body	0.984	54.096	PASS	PASS	PASS	N/A	N/A	N/A
D	835	8/15/2018	7357	835	Body	1.000	53.368	PASS	PASS	PASS	GMSK	PASS	N/A
J	1750	9/5/2018	3347	1750	Body	1.454	53.515	PASS	PASS	PASS	N/A	N/A	N/A
G	1900	8/10/2018	7410	1900	Body	1.567	52.239	PASS	PASS	PASS	GMSK	PASS	N/A
E	1900	12/3/2018	3332	1900	Body	1.518	51.796	PASS	PASS	PASS	GMSK	PASS	N/A
E	1900	2/5/2019	3589	1900	Body	1.584	54.248	PASS	PASS	PASS	GMSK	PASS	N/A
К	2450	4/3/2018	3319	2450	Body	2.043	51.130	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	4/3/2018	3319	2600	Body	2.225	50.665	PASS	PASS	PASS	TDD	PASS	N/A
L	5250	10/29/2018	7308	5250	Body	5.511	48.770	PASS	PASS	PASS	OFDM	N/A	PASS
L	5600	10/29/2018	7308	5600	Body	5.994	48.200	PASS	PASS	PASS	OFDM	N/A	PASS
L	5750	10/29/2018	7308	5750	Body	6.219	47.960	PASS	PASS	PASS	OFDM	N/A	PASS

 Table E-1

 SAR System Validation Summary – 1g

	FCC ID ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX E:
	1/16/19 - 02/13/19	Portable Handset			Page 1 of 2
© 201	9 PCTEST Engineering Laboratory	, Inc.			REV 21.2 M 12/05/2018

SAR	Freg.					Cond	Cond. Perm.	C	CW VALIDATION MOD. VALIDA)N
System	Uate Probe NIPr		Probe Cal Point				SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR	
J	1750	9/5/2018	3347	1750	Body	1.454	53.515	PASS	PASS	PASS	N/A	N/A	N/A
G	1900	8/10/2018	7410	1900	Body	1.567	52.239	PASS	PASS	PASS	GMSK	PASS	N/A
E	1900	12/3/2018	3332	1900	Body	1.518	51.796	PASS	PASS	PASS	GMSK	PASS	N/A
L	5250	10/29/2018	7308	5250	Body	5.511	48.770	PASS	PASS	PASS	OFDM	N/A	PASS
L	5600	10/29/2018	7308	5600	Body	5.994	48.200	PASS	PASS	PASS	OFDM	N/A	PASS
L	5750	10/29/2018	7308	5750	Body	6.219	47.960	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-2SAR System Validation Summary – 10g

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID ZNFV450PM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX E:
	1/16/19 - 02/13/19	Portable Handset			Page 2 of 2
201	9 PCTEST Engineering Laboratory	, Inc.			REV 21.2 M 12/05/2018

©

APPENDIX G POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

G.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
1/16/19 - 02/13/19	Portable Handset			Page 1 of 2
© 2019 PCTEST Engineering Laboratory, Inc.	•			REV 20.05 M

Main Antenna Verification Summary G.3

Fower measurement vernication for main Antenna												
Mechanism(s)		Conducted Power (dBm)										
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)									
Grip	UMTS 1750	24.56	23.41									
Grip	UMTS 1900	24.72	23.65									
Grip	PCS CDMA	24.56	23.35									
Grip	LTE FDD Band 4	24.81	23.69									
Grip	LTE FDD Band 66	24.92	23.60									
Grip	LTE FDD Band 2	24.62	23.62									
Grip	LTE FDD Band 25	24.91	23.42									

Table G-1 Power Measurement Verification for Main Antenna

Table G-2 **Distance Measurement Verification for Main Antenna**

Mechanism(s)	Test Condition	Band	Distance Meas	Minimum Distance per	
wechanism(s)	Test condition	вапи	Moving Toward	Moving Away	Manufacturer (mm)
Grip	Phablet - Back Side	Mid	3	4	3
Grip	Phablet - Front Side	Mid	2	4	2
Grip	Phablet - Bottom Edge	Mid	4	6	4

*Note: Mid band refers to: CDMA BC1, UMTS B2/4, LTE B2/4/25/66

G.4 WIFI Verification Summary

Table G-3 **Power Measurement Verification WIFI**

Mechanism(s)		Conducted Power (dBm)					
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)				
Held-to-Ear	802.11b	19.44	17.22				
Held-to-Ear	802.11g	18.79	16.89				
Held-to-Ear	802.11n (2.4GHz)	17.63	17.01				

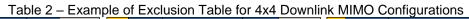
*Note: 2.4 GHz 802.11ac and MIMO WIFI modes were not evaluated due to equipment limitations.

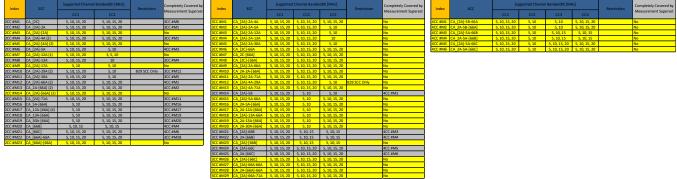
FCC ID: ZNFV450PM	SAR EVALUATION	REPORT 🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:		APPENDIX G:
1/16/19 - 02/13/19	Portable Handset		Page 2 of 2
© 2019 PCTEST Engineering Laboratory, Inc.	•		REV 20.05 M

ngineering Laboratory,

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology


SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.


LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4x4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Table 1 – Example of Exclusion Table for SISO Configurations

Note: [CC] indicates component carrier with 4x4 DL MIMO antenna configuration

C

FCC ID: ZNFV450PM	SAR EVALUATION REPORT	🕑 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:		APPENDIX H:
1/16/19 - 02/13/19	Portable Handset		Page 1 of 3
2019 PCTEST Engineering Laboratory, Inc.			REV 20.05 M 11/15/2017

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

This device supports LAA with downlink carrier aggregation only. It uses carrier aggregation in the downlink to combine LTE in the unlicensed spectrum (i.e. LTE Band 46) with LTE in the licensed band (served as PCC). All uplink communications and acknowledgements on the PCC remain identical to specifications when downlink carrier aggregation is inactive.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KBD 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Base Station Simulator	+ +	Wireless Device

Figure 1 **DL CA Power Measurement Setup**

	FCC ID: ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	1/16/19 - 02/13/19	Portable Handset			Page 2 of 3
201	9 PCTEST Engineering Laboratory, Inc.				REV 20.05 M 11/15/2017

C

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 41 as PCC

Table 1 Maximum Output Powers																							
					PCC					SCC 1			SCC 2			SCC 3			Power				
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]		SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41A-41A-41A	LTE B41	20	40620	2593	QPSK	1	0	40620	2593	LTE B41	20	41292	2660.2	LTE B41	20	41490	2680	-	-		-	25.00	25.08
CA_41A-41A-41C	LTE B41	20	40620	2593	QPSK	1	0	40620	2593	LTE B41	20	40185	2549.5	LTE B41	20	41490	2680	LTE B41	20	41292	2660.2	25.02	25.08

1.3.2 LTE Band 41 PC2 as PCC

	Table 2																						
	Maximum Output Powers																						
					PCC					SCC 1				SCC 2				SCC 3				Power	
Combination	PCC Band	PCC BW [MHz]		PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	Enabled	LTE Single Carrier Tx Power (dBm)
CA_41A-41A-41A	LTE B41 PC2	15	40185	2549.5	QPSK	1	36	40185	2549.5	LTE B41 PC2	20	41292	2660.2	LTE B41 PC2	20	41490	2680	-	-	-		27.53	27.55
CA_41A-41A-41C	LTE B41 PC2	15	40185	2549.5	QPSK	1	36	40185	2549.5	LTE B41 PC2	20	40620	2593	LTE B41 PC2	20	41490	2680	LTE B41 PC2	20	41292	2660.2	27.48	27.55

	FCC ID: ZNFV450PM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	1/16/19 - 02/13/19	Portable Handset			Page 3 of 3
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 20.05 M
					11/15/2017