

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT LTE and NR Band n41 (ENDC)

Applicant Name:

LG Electronics USA, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 1/16 - 2/11/2019 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1901150004-03-R2.ZNF

FCC ID:

ZNFV450PM

APPLICANT:

LG Electronics USA, Inc.

Application Type:	Class II Permissive Change
Model:	LM-V450PM
Additional Model(s):	LMV450PM, V450PM, LM-V500XM, LMV500XM, V500XM
EUT Type:	Portable Handset
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
FCC Rule Part(s):	22, 24, & 27
Test Procedure(s):	ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 648474 D03 v01r04
Class II Permissive Change:	Please see FCC change document

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M1901150004-03-R2.ZNF) supersedes and replaces the previously issued test report (S/N: 1M1901150004-03-R1.ZNF) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 1 of 74	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

TABLE OF CONTENTS

1.0	INTR	ODUCTION	.6
	1.1	Scope	.6
	1.2	PCTEST Test Location	.6
	1.3	Test Facility / Accreditations	.6
2.0	PRO	DUCT INFORMATION	.7
	2.1	Equipment Description	.7
	2.2	Device Capabilities	.7
	2.3	Test Configuration	.7
	2.4	EMI Suppression Device(s)/Modifications	.7
3.0	DESC	CRIPTION OF TESTS	.8
	3.1	Measurement Procedure	.8
	3.2	Block C Frequency Range	.8
	3.3	Block A Frequency Range	.8
	3.4	Cellular - Base Frequency Blocks	.9
	3.5	Cellular - Mobile Frequency Blocks	.9
	3.6	PCS - Base Frequency Blocks	.9
	3.7	PCS - Mobile Frequency Blocks	.9
	3.8	AWS - Base Frequency Blocks	10
	3.9	AWS - Mobile Frequency Blocks	10
	3.10	BRS/EBS Frequency Block	10
	3.11	Radiated Power and Radiated Spurious Emissions	11
4.0	MEAS	SUREMENT UNCERTAINTY	12
5.0	TEST	EQUIPMENT CALIBRATION DATA	13
6.0	SAM	PLE CALCULATIONS	14
7.0	TEST	RESULTS	15
-	7.1	Summary	
	7.2	Radiated Power (ERP/EIRP)	
	7.3	Radiated Spurious Emissions Measurements	
	7.4	Uplink Carrier Aggregation Radiated Measurements	
	7.5	NR Band n41 (ENDC) Test Results	
8.0		CLUSION	

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset			
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

MEASUREMENT REPORT FCC Part 22, 24, & 27

			ERP		EII	RP	
Mode	FCC Rule Part	Tx Frequency (MHz)	Max. Power (W)	Max. Power (dBm)	Max. Power (W)	Max. Power (dBm)	Modulation
LTE Band 71	27	665.5 - 695.5	0.047	16.76			QPSK
LTE Band 71	27	665.5 - 695.5	0.038	15.80			16QAM
LTE Band 71	27	665.5 - 695.5	0.030	14.82			64QAM
LTE Band 71	27	668 - 693	0.044	16.43			QPSK
LTE Band 71	27	668 - 693	0.034	15.37			16QAM
LTE Band 71	27	668 - 693	0.000	0.00			64QAM
LTE Band 71	27	670.5 - 690.5	0.053	17.22			QPSK
LTE Band 71	27	670.5 - 690.5	0.042	16.20			16QAM
LTE Band 71	27	670.5 - 690.5	0.034	15.30			64QAM
LTE Band 71	27	673 - 688	0.055	17.39			QPSK
LTE Band 71	27	673 - 688	0.044	16.40			16QAM
LTE Band 71	27	673 - 688	0.035	15.48			64QAM
LTE Band 12	27	699.7 - 715.3	0.064	18.06	0.105	20.21	QPSK
LTE Band 12	27	699.7 - 715.3	0.050	17.03	0.083	19.18	16QAM
LTE Band 12	27	699.7 - 715.3	0.040	16.00	0.065	18.15	64QAM
LTE Band 12	27	700.5 - 714.5	0.061	17.84	0.100	19.99	QPSK
LTE Band 12	27	700.5 - 714.5	0.048	16.82	0.079	18.97	16QAM
LTE Band 12	27	700.5 - 714.5	0.038	15.80	0.062	17.95	64QAM
LTE Band 12/17	27	701.5 - 713.5	0.061	17.89	0.101	20.04	QPSK
LTE Band 12/17	27	701.5 - 713.5	0.049	16.93	0.081	19.08	16QAM
LTE Band 12/17	27	701.5 - 713.5	0.039	15.95	0.065	18.10	64QAM
LTE Band 12/17	27	704 - 711	0.065	18.13	0.107	20.28	QPSK
LTE Band 12/17	27	704 - 711	0.050	17.03	0.083	19.18	16QAM
LTE Band 12/17	27	704 - 711	0.040	16.01	0.065	18.16	64QAM
LTE Band 13	27	779.5 - 784.5	0.051	17.07	0.084	19.22	QPSK
LTE Band 13	27	779.5 - 784.5	0.040	16.07	0.066	18.22	16QAM
LTE Band 13	27	779.5 - 784.5	0.032	15.06	0.053	17.21	64QAM
LTE Band 13	27	782	0.069	18.37	0.113	20.52	QPSK
LTE Band 13	27	782	0.052	17.12	0.085	19.27	16QAM
LTE Band 13	27	782	0.041	16.13	0.067	18.28	64QAM
LTE Band 26/5	22H	824.7 - 848.3	0.091	19.61	0.150	21.76	QPSK
LTE Band 26/5	22H	824.7 - 848.3	0.071	18.53	0.117	20.68	16QAM
LTE Band 26/5	22H	824.7 - 848.3	0.058	17.61	0.095	19.76	64QAM
LTE Band 26/5	22H	825.5 - 847.5	0.113	20.54	0.186	22.69	QPSK
LTE Band 26/5	22H	825.5 - 847.5	0.085	19.31	0.140	21.46	16QAM
LTE Band 26/5	22H	825.5 - 847.5	0.067	18.26	0.110	20.41	64QAM
LTE Band 26/5	22H	826.5 - 846.5	0.118	20.73	0.194	22.88	QPSK
LTE Band 26/5	22H	826.5 - 846.5	0.090	19.57	0.148	21.72	16QAM
LTE Band 26/5	22H	826.5 - 846.5	0.069	18.42	0.114	20.57	64QAM
LTE Band 26/5	22H	829 - 844	0.116	20.66	0.191	22.81	QPSK
LTE Band 26/5	22H	829 - 844	0.087	19.40	0.143	21.55	16QAM
LTE Band 26/5	22H	829 - 844	0.069	18.40	0.114	20.55	64QAM
LTE Band 26	22H	831.5 - 841.5	0.133	21.23	0.218	23.38	QPSK
LTE Band 26	22H	831.5 - 841.5	0.110	20.43	0.181	22.58	16QAM
LTE Band 26	22H	831.5 - 841.5	0.110	20.43	0.181	22.58	64QAM

EUT Overview (<1GHz)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset	Page 3 of 74
0 2010 DOTECT Engineering Labore	V 0 0 11/10/2010		

			El	RP	
Mode	FCC Rule	Tx Frequency (MHz)	Max. Power	Max. Power	Modulation
	Part		(W)	(dBm)	
LTE Band 66/4	27	1710.7 - 1779.3	0.090	19.53	QPSK
LTE Band 66/4	27	1710.7 - 1779.3	0.074	18.68	16QAM
LTE Band 66/4	27	1710.7 - 1779.3	0.063	18.00	64QAM
LTE Band 66/4	27	1711.5 - 1778.5	0.126	21.00	QPSK
LTE Band 66/4	27	1711.5 - 1778.5	0.096	19.83	16QAM
LTE Band 66/4	27	1711.5 - 1778.5	0.078	18.90	64QAM
LTE Band 66/4	27	1712.5 - 1777.5	0.129	21.10	QPSK
LTE Band 66/4	27	1712.5 - 1777.5	0.102	20.07	16QAM
LTE Band 66/4	27	1712.5 - 1777.5	0.080	19.05	64QAM
LTE Band 66/4	27	1715 - 1775	0.114	20.58	QPSK
LTE Band 66/4	27	1715 - 1775	0.088	19.44	16QAM
LTE Band 66/4	27	1715 - 1775	0.071	18.49	64QAM
LTE Band 66/4	27	1717.5 - 1772.5	0.117	20.67	QPSK
LTE Band 66/4	27	1717.5 - 1772.5	0.088	19.44	16QAM
LTE Band 66/4	27	1717.5 - 1772.5	0.071	18.49	64QAM
LTE Band 66/4	27	1720 - 1770	0.116	20.65	QPSK
LTE Band 66/4	27	1720 - 1770	0.091	19.59	16QAM
LTE Band 66/4	27	1720 - 1770	0.070	18.47	64QAM
LTE Band 25/2	24E	1850.7 - 1914.3	0.119	20.74	QPSK
LTE Band 25/2	24E	1850.7 - 1914.3	0.102	20.08	16QAM
LTE Band 25/2	24E	1850.7 - 1914.3	0.083	19.18	64QAM
LTE Band 25/2	24E	1851.5 - 1913.5	0.153	21.86	QPSK
LTE Band 25/2	24E	1851.5 - 1913.5	0.124	20.92	16QAM
LTE Band 25/2	24E	1851.5 - 1913.5	0.102	20.08	64QAM
LTE Band 25/2	24E	1852.5 - 1912.5	0.172	22.36	QPSK
LTE Band 25/2	24E	1852.5 - 1912.5	0.140	21.45	16QAM
LTE Band 25/2	24E	1852.5 - 1912.5	0.114	20.58	64QAM
LTE Band 25/2	24E	1855 - 1910	0.167	22.23	QPSK
LTE Band 25/2	24E	1855 - 1910	0.128	21.07	16QAM
LTE Band 25/2	24E	1855 - 1910	0.103	20.13	64QAM
LTE Band 25/2	24E	1857.5 - 1907.5	0.191	22.82	QPSK
LTE Band 25/2	24E	1857.5 - 1907.5	0.145	21.61	16QAM
LTE Band 25/2	24E	1857.5 - 1907.5	0.116	20.64	64QAM
LTE Band 25/2	24E	1860 - 1905	0.168	22.25	QPSK
LTE Band 25/2	24E	1860 - 1905	0.135	21.29	16QAM
LTE Band 25/2	24E	1860 - 1905	0.103	20.12	64QAM

EUT Overview (Mid Bands)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 4 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

			EI	RP	
Mode	FCC Rule Part	Tx Frequency (MHz)	Max. Power (W)	Max. Power (dBm)	Modulation
LTE Band 41	27	2498.5 - 2687.5	0.622	27.94	QPSK
LTE Band 41	27	2498.5 - 2687.5	0.567	27.54	16QAM
LTE Band 41	27	2498.5 - 2687.5	0.494	26.94	64QAM
LTE Band 41	27	2501 - 2685	0.608	27.84	QPSK
LTE Band 41	27	2501 - 2685	0.574	27.59	16QAM
LTE Band 41	27	2501 - 2685	0.494	26.94	64QAM
LTE Band 41	27	2503.5 - 2682.5	0.616	27.90	QPSK
LTE Band 41	27	2503.5 - 2682.5	0.548	27.39	16QAM
LTE Band 41	27	2503.5 - 2682.5	0.466	26.69	64QAM
LTE Band 41	27	2506 - 2680	0.525	27.20	QPSK
LTE Band 41	27	2506 - 2680	0.439	26.43	16QAM
LTE Band 41	27	2506 - 2680	0.371	25.69	64QAM

EUT Overview (High Bands)

		Channel	EI	RP	
Mode	FCC Rule Part	Bandwidth (MHz)	Max. Power (W)	Max. Power (dBm)	Modulation
NR Band n41	27	60	0.109	20.37	QPSK
NR Band n41	27	60	0.044	16.40	16QAM
NR Band n41	27	60	0.055	17.39	64QAM
NR Band n41	27	40	0.117	20.68	QPSK
NR Band n41	27	40	0.078	18.94	16QAM
NR Band n41	27	40	0.053	17.22	64QAM

EUT Overview (NR Band n41)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset			
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018				

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege C of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 6 of 74
© 2010 PCTEST Engineering Labora	V 8 8 11/10/2018			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFV450PM**. The test data contained in this report pertains only to the emissions due to the EUT's LTE function.

Test Device Serial No.: 01956, 01857, 01849

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1, BC10), 850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

LTE Band 12 (698 - 716 MHz) overlaps the entire frequency range of LTE Band 17 (704 - 716 MHz). Therefore, test data provided in this report covers Band 17 as well as Band 12.

LTE Band 26 (814.7 – 849 MHz) overlaps the entire frequency range of LTE Band 5 (824 – 849 MHz). Therefore, test data provided in this report covers Band 5 and the portion of Band 26 subject to Part 22.

LTE Band 66 (1710 - 1780 MHz) overlaps the entire frequency range of LTE Band 4 (1710 - 1755 MHz). Therefore, test data provided in this report covers Band 4 as well as Band 66.

LTE Band 25 (1850 - 1915 MHz) overlaps the entire frequency range of LTE Band 2 (1850 - 1910 MHz). Therefore, test data provided in this report covers Band 2 as well as Band 25.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) FCC ID: PWMA-W815A while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 7 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 7 of 74
2019 PCTEST Engineering Laboratory Inc				V 8 8 11/19/2018

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

3.2 Block C Frequency Range

Two paired channels of 11 megahertz each are available for assignment in Block C in the 746-757 MHz and 776-787 MHz bands. In the event that no licenses for two channels in this Block C are assigned based on the results of the first auction in which such licenses were offered because the auction results do not satisfy the applicable reserve price, the spectrum in the 746-757 MHz and 776-787 MHz bands will instead be made available for assignment at a subsequent auction as follows: (i) Two paired channels of 6 megahertz each available for assignment in Block C1 in the 746-752 MHz and 776-782 MHz bands. (ii) Two paired channels of 5 megahertz each available for assignment in Block C2 in the 752-757 MHz and 782-787 MHz bands.

3.3 Block A Frequency Range

<u>698-746 MHz band</u>. The following frequencies are available for licensing pursuant to this part in the 698-746 MHz band: (1) Three paired channel blocks of 12 megahertz each are available for assignment as follows:

Block A: 698-704 MHz and 728-734 MHz; Block B: 704-710 MHz and 734-740 MHz; and Block C: 710-716 MHz and 740-746 MHz.

3.4 600 MHz Frequency Range

§27.5(I)

<u>698-746 MHz band</u>. The following frequencies are available for licensing pursuant to this part in the 698-746 MHz band: (1) Three paired channel blocks of 12 megahertz each are available for assignment as follows:

600 MHz band. The following frequencies are available for licensing pursuant to this part in the 600 MHz band: (1) Seven paired channel blocks of 5 megahertz each are available for assignment as follows:

Block A: 617-622 MHz and 663-668 MHz;

Block B: 622-627 MHz and 668-673 MHz;

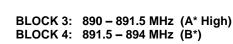
Block C: 627-632 MHz and 673-678 MHz;

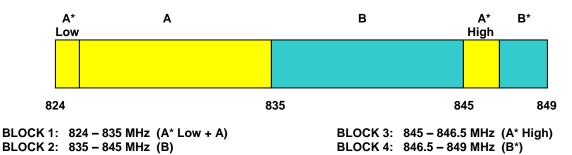
Block D: 632-637 MHz and 678-683 MHz;

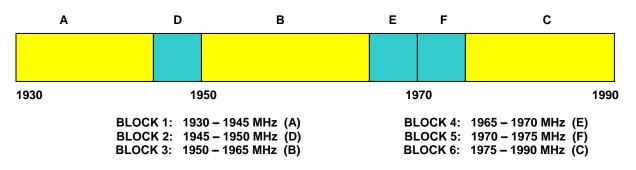
Block E: 637-642 MHz and 683-688 MHz;

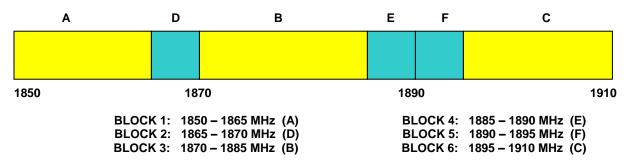
Block F: 642-647 MHz and 688-693 MHz; and

Block G: 647-652 MHz and 693-698 MHz;

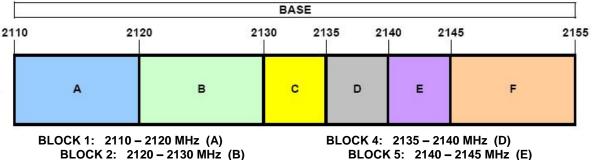

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 8 of 74
2019 PCTEST Engineering Laboratory Inc				V 8 8 11/10/2018


3.5 Cellular - Base Frequency Blocks

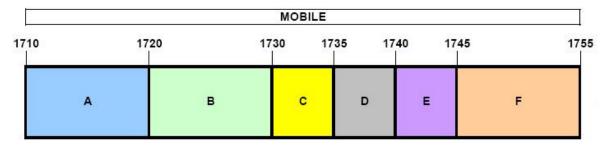

BLOCK 1: 869 – 880 MHz (A* Low + A) BLOCK 2: 880 – 890 MHz (B)


3.6 Cellular - Mobile Frequency Blocks

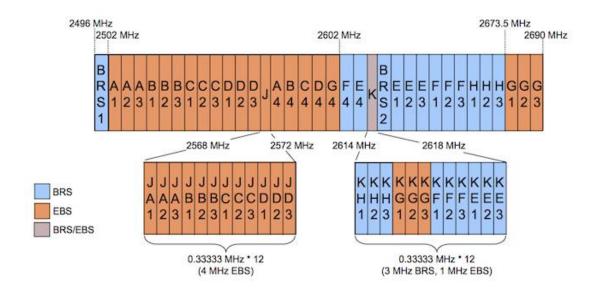
3.7 PCS - Base Frequency Blocks


3.8 PCS - Mobile Frequency Blocks

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 9 of 74
2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018


3.9 **AWS - Base Frequency Blocks**

BLOCK 3: 2130 - 2135 MHz (C)


BLOCK 5: 2140 - 2145 MHz (E) BLOCK 6: 2145 - 2155 MHz (F)

3.10 **AWS - Mobile Frequency Blocks**

BLOCK 1: 1710 - 1720 MHz (A) BLOCK 2: 1720 - 1730 MHz (B) BLOCK 3: 1730 - 1735 MHz (C) BLOCK 4: 1735 - 1740 MHz (D) BLOCK 5: 1740 - 1745 MHz (E) BLOCK 6: 1745 – 1755 MHz (F)

3.11 **BRS/EBS Frequency Block**

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 10 of 74
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018

3.12 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03r01.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$$P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]). For Band 7 and 41, the calculated P_d levels are compared to the absolute spurious emission limit of -25dBm which is equivalent to the required minimum attenuation of 55 + 10log₁₀(Power [Watts]).

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 11 of 74
2019 PCTEST Engineering Laboratory, Inc.				V 8 8 11/19/2018

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 12 of 74
2019 PCTEST Engineering Laboratory Inc				V 8 8 11/19/2018

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N9030A	PXA Signal Analyzer (44GHz)	5/25/2018	Annual	5/25/2019	MY52350166
Anritsu	MT8820C	Radio Communication Analyzer	1/30/2018	Annual	1/30/2019	6201300731
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/9/2018	Biennial	8/9/2020	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/28/2018	Biennial	3/28/2020	128337
Huber + Suhner	Sucoflex 102A	40GHz Radiated Cable Set	1/23/2018	Annual	1/23/2019	251425001
Mini Circuits	TVA-11-422	RF Power Amp		N/A		QA1317001
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	3/30/2018	Annual	3/30/2019	11401010036
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator		N/A		11208010032
Rohde & Schwarz	TC-TA18	Vivaldi Antenna	8/17/2018	Biennial	8/17/2020	101072
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	1/24/2018	Annual	1/24/2019	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/21/2018	Annual	5/21/2019	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/9/2018	Annual	8/9/2019	100348
Rohde & Schwarz	CMW500	Radio Communication Tester	11/14/2018	Annual	11/14/2019	100976
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 13 of 74
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018

6.0 SAMPLE CALCULATIONS

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was –81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of –81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of –30.9 dBm yielding –24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80).

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 14 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 14 of 74
2019 PCTEST Engineering Laboratory Inc				V 8 8 11/19/2018

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics USA, Inc.
FCC ID:	ZNFV450PM
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>LTE</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
22.913(a)(5)	Effective Radiated Power / Equivalent Isotropic Radiated Power (Band 26/5)	< 7 Watts max. ERP			Section 7.2
27.50(b)(10) 27.50(c)(10)	Effective Radiated Power / Equivalent Isotropic Radiated Power (Band 71, 12/17, 13)	< 3 Watts max. ERP			Section 7.2
24.232(c) 27.50(h)(2)	Equivalent Isotropic Radiated Power (Band 25/2, 41)	< 2 Watts max. EIRP			Section 7.2
27.50(d)(4)	Equivalent Isotropic Radiated Power (Band 66/4)	< 1 Watts max. EIRP	RADIATED	PASS	Section 7.2
2.1053 22.917(a) 24.238(a) 27.53(c) 27.53(g) 27.53(h)	Undesirable Emissions	> 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions			Section 7.3
27.53(f)	Undesirable Emissions (Band 13)	 -70 dBW/MHz (for wideband signals) -80 dBW (for discrete emissions less than 700Hz BW) For all emissions in the band 1559 – 1610 MHz 			Section 7.3
27.53(m)	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 27.53(m)			Section 7.3

Table 7-1. Summary of Radiated Test Results

Notes:

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)				
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 74		
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 15 of 74		
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018					

7.2 Radiated Power (ERP/EIRP)

Test Overview

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized tuned broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \ge 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 16 of 74
© 2019 PCTEST Engineering Labora	atory. Inc.			V 8.8 11/19/2018

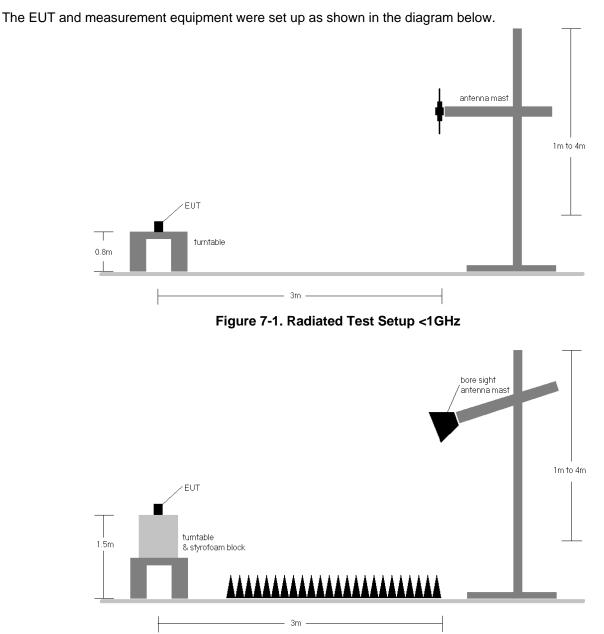


Figure 7-2. Radiated Test Setup >1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daria 47 of 74		
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 17 of 74		
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/201						

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
665.50	5	QPSK	Н	194	332	1 / 24	13.53	3.84	15.22	0.033	34.77	-19.56
680.50	5	QPSK	Н	194	332	1 / 24	15.00	3.91	16.76	0.047	34.77	-18.01
695.50	5	QPSK	Н	100	313	1 / 24	13.84	3.98	15.67	0.037	34.77	-19.10
680.50	5	16-QAM	Н	194	332	1 / 24	14.04	3.91	15.80	0.038	34.77	-18.97
680.50	5	64-QAM	Н	194	332	1 / 24	13.06	3.91	14.82	0.030	34.77	-19.95
668.00	10	QPSK	Н	100	317	1 / 49	14.07	3.85	15.77	0.038	34.77	-19.00
680.50	10	QPSK	Н	100	317	1 / 49	14.53	3.91	16.29	0.043	34.77	-18.48
693.00	10	QPSK	Н	100	317	1 / 49	14.61	3.97	16.43	0.044	34.77	-18.34
693.00	10	16-QAM	Н	100	317	1 / 49	13.55	3.97	15.37	0.034	34.77	-19.40
693.00	10	64-QAM	Н	100	317	1 / 49	12.56	3.97	14.38	0.027	34.77	-20.39
670.50	15	QPSK	Н	202	337	1 / 74	15.04	3.86	16.75	0.047	34.77	-18.02
680.50	15	QPSK	Н	202	337	1 / 74	14.97	3.91	16.73	0.047	34.77	-18.04
690.50	15	QPSK	Н	202	337	1 / 74	15.41	3.96	17.22	0.053	34.77	-17.56
690.50	15	16-QAM	Н	202	337	1 / 74	14.39	3.96	16.20	0.042	34.77	-18.58
690.50	15	64-QAM	Н	202	337	1 / 74	13.49	3.96	15.30	0.034	34.77	-19.48
673.00	20	QPSK	Н	184	138	1 / 99	14.68	3.87	16.40	0.044	34.77	-18.37
680.50	20	QPSK	Н	184	138	1 / 99	15.63	3.91	17.39	0.055	34.77	-17.38
688.00	20	QPSK	Н	184	138	1 / 99	15.52	3.94	17.31	0.054	34.77	-17.46
680.50	20	16-QAM	Н	184	138	1 / 99	14.64	3.91	16.40	0.044	34.77	-18.37
680.50	20	64-QAM	Н	184	138	1 / 99	13.72	3.91	15.48	0.035	34.77	-19.29
680.50	20	QPSK	V	204	357	1 / 99	13.58	3.91	15.34	0.034	34.77	-19.43
680.50	20 (WCP)	QPSK	Н	146	111	1 / 99	14.34	3.91	16.10	0.041	34.77	-18.67

Table 7-2. ERP Data (Band 71)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 18 of 74
© 2019 PCTEST Engineering Labora	tory. Inc.			V 8.8 11/19/2018

	EST [®]															
Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
699.70	1.4	QPSK	н	188	321	1/5	14.67	4.00	16.52	0.045	34.77	-18.25	18.67	0.074	36.99	-18.32
707.50	1.4	QPSK	н	188	321	1/5	15.74	4.22	17.81	0.060	34.77	-16.97	19.96	0.099	36.99	-17.03
715.30	1.4	QPSK	н	101	318	1/5	15.77	4.44	18.06	0.064	34.77	-16.71	20.21	0.105	36.99	-16.78
715.30	1.4	16-QAM	н	101	318	1 / 5	14.74	4.44	17.03	0.050	34.77	-17.74	19.18	0.083	36.99	-17.81
715.30	1.4	64-QAM	н	101	318	1/5	13.71	4.44	16.00	0.040	34.77	-18.77	18.15	0.065	36.99	-18.84
700.50	3	QPSK	н	195	311	1/0	15.65	4.01	17.51	0.056	34.77	-17.26	19.66	0.093	36.99	-17.33
707.50	3	QPSK	н	195	311	1 / 14	15.53	4.22	17.60	0.057	34.77	-17.18	19.75	0.094	36.99	-17.24
714.50	3	QPSK	н	195	311	1/0	15.58	4.41	17.84	0.061	34.77	-16.93	19.99	0.100	36.99	-17.00
714.50	3	16-QAM	н	195	311	1/0	14.56	4.41	16.82	0.048	34.77	-17.95	18.97	0.079	36.99	-18.02
714.50	3	64-QAM	н	195	311	1 / 0	13.54	4.41	15.80	0.038	34.77	-18.97	17.95	0.062	36.99	-19.04
701.50	5	QPSK	н	180	322	1 / 24	15.70	4.04	17.59	0.057	34.77	-17.18	19.74	0.094	36.99	-17.25
707.50	5	QPSK	н	180	322	1/0	15.71	4.22	17.78	0.060	34.77	-17.00	19.93	0.098	36.99	-17.06
713.50	5	QPSK	н	180	322	1/0	15.65	4.39	17.89	0.061	34.77	-16.88	20.04	0.101	36.99	-16.95
713.50	5	16-QAM	н	180	322	1/0	14.69	4.39	16.93	0.049	34.77	-17.84	19.08	0.081	36.99	-17.91
713.50	5	64-QAM	н	180	322	1/0	13.71	4.39	15.95	0.039	34.77	-18.82	18.10	0.065	36.99	-18.89
704.00	10	QPSK	н	189	317	1/0	15.93	4.12	17.90	0.062	34.77	-16.88	20.05	0.101	36.99	-16.94
707.50	10	QPSK	н	189	317	1/0	15.86	4.22	17.93	0.062	34.77	-16.85	20.08	0.102	36.99	-16.91
711.00	10	QPSK	н	189	317	1/0	15.96	4.32	18.13	0.065	34.77	-16.65	20.28	0.107	36.99	-16.71
711.00	10	16-QAM	н	189	317	1/0	14.86	4.32	17.03	0.050	34.77	-17.75	19.18	0.083	36.99	-17.81
711.00	10	64-QAM	н	189	317	1/0	13.84	4.32	16.01	0.040	34.77	-18.77	18.16	0.065	36.99	-18.83
711.00	10	QPSK	V	195	347	1/0	12.88	4.32	15.05	0.032	34.77	-19.73	17.20	0.052	36.99	-19.79
711.00	10 (WCP)	QPSK	н	111	111	1/0	15.44	4.32	17.61	0.058	34.77	-17.17	19.76	0.095	36.99	-17.23

(c

Table 7-3. ERP Data (Band 12/17)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
779.50	5	QPSK	н	101	370	1 / 24	12.98	6.18	17.01	0.050	34.77	-17.77	19.16	0.082	36.99	-17.83
782.00	5	QPSK	н	101	370	1/0	12.98	6.24	17.07	0.051	34.77	-17.70	19.22	0.084	36.99	-17.77
784.50	5	QPSK	н	101	6	1 / 24	12.68	6.30	16.83	0.048	34.77	-17.94	18.98	0.079	36.99	-18.01
782.00	5	16-QAM	н	101	370	1/0	11.98	6.24	16.07	0.040	34.77	-18.70	18.22	0.066	36.99	-18.77
782.00	5	64-QAM	н	101	370	1/0	10.97	6.24	15.06	0.032	34.77	-19.71	17.21	0.053	36.99	-19.78
782.00	10	QPSK	н	271	347	1/0	14.28	6.24	18.37	0.069	34.77	-16.40	20.52	0.113	36.99	-16.47
782.00	10	16-QAM	н	271	347	1/0	13.03	6.24	17.12	0.052	34.77	-17.65	19.27	0.085	36.99	-17.72
782.00	10	64-QAM	н	271	347	1/0	12.04	6.24	16.13	0.041	34.77	-18.64	18.28	0.067	36.99	-18.71
782.00	10	QPSK	V	101	6	1/0	13.48	6.24	17.57	0.057	34.77	-17.20	19.72	0.094	36.99	-17.27
782.00	10 (WCP)	QPSK	н	392	92	1/0	13.75	6.24	17.84	0.061	34.77	-16.93	19.99	0.100	36.99	-17.00

Table 7-4. ERP Data (Band 13)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 19 of 74
© 2019 PCTEST Engineering Labora	tory Inc			V 8 8 11/19/2018

	EST [®]															
Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
824.70	1.4	QPSK	н	202	137	1/0	15.01	6.75	19.61	0.091	38.45	-18.84	21.76	0.150	40.61	-18.85
836.50	1.4	QPSK	н	209	135	1/0	14.11	6.78	18.74	0.075	38.45	-19.72	20.89	0.123	40.61	-19.72
848.30	1.4	QPSK	н	193	109	1/0	13.09	6.80	17.74	0.059	38.45	-20.71	19.89	0.097	40.61	-20.72
824.70	1.4	16-QAM	н	202	137	1/0	13.93	6.75	18.53	0.071	38.45	-19.92	20.68	0.117	40.61	-19.93
824.70	1.4	64-QAM	н	202	137	1/0	13.01	6.75	17.61	0.058	38.45	-20.84	19.76	0.095	40.61	-20.85
825.50	3	QPSK	н	202	128	1/0	15.94	6.75	20.54	0.113	38.45	-17.91	22.69	0.186	40.61	-17.91
836.50	3	QPSK	н	206	131	1/0	15.11	6.78	19.74	0.094	38.45	-18.72	21.89	0.154	40.61	-18.72
847.50	3	QPSK	н	110	193	1/0	13.67	6.80	18.32	0.068	38.45	-20.13	20.47	0.111	40.61	-20.14
825.50	3	16-QAM	н	202	128	1/0	14.71	6.75	19.31	0.085	38.45	-19.14	21.46	0.140	40.61	-19.14
825.50	3	64-QAM	н	202	128	1 / 0	13.66	6.75	18.26	0.067	38.45	-20.19	20.41	0.110	40.61	-20.19
826.50	5	QPSK	н	207	126	1/0	16.10	6.76	20.71	0.118	38.45	-17.75	22.86	0.193	40.61	-17.75
836.50	5	QPSK	н	207	133	1 / 0	16.10	6.78	20.73	0.118	38.45	-17.73	22.88	0.194	40.61	-17.73
846.50	5	QPSK	н	212	110	1/0	14.32	6.80	18.97	0.079	38.45	-19.49	21.12	0.129	40.61	-19.49
826.50	5	16-QAM	н	207	126	1 / 0	14.96	6.76	19.57	0.090	38.45	-18.89	21.72	0.148	40.61	-18.89
826.50	5	64-QAM	н	207	126	1 / 0	13.81	6.76	18.42	0.069	38.45	-20.04	20.57	0.114	40.61	-20.04
829.00	10	QPSK	н	201	110	1/0	16.05	6.76	20.66	0.116	38.45	-17.79	22.81	0.191	40.61	-17.80
836.50	10	QPSK	Н	209	119	1 / 0	15.46	6.78	20.09	0.102	38.45	-18.37	22.24	0.167	40.61	-18.37
844.00	10	QPSK	Н	209	102	1 / 0	14.78	6.79	19.42	0.088	38.45	-19.03	21.57	0.144	40.61	-19.04
829.00	10	16-QAM	н	201	110	1 / 0	14.79	6.76	19.40	0.087	38.45	-19.05	21.55	0.143	40.61	-19.06
829.00	10	64-QAM	н	201	110	1 / 0	13.79	6.76	18.40	0.069	38.45	-20.05	20.55	0.114	40.61	-20.06

Table 7-5. ERP Data (Band 26/5)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
831.50	15	QPSK	н	205	107	1 / 0	16.61	6.77	21.23	0.133	38.45	-17.23	23.38	0.218	40.61	-17.23
836.50	15	QPSK	н	204	98	1/0	15.90	6.78	20.53	0.113	38.45	-17.93	22.68	0.185	40.61	-17.93
841.50	15	QPSK	н	209	122	1/0	15.76	6.79	20.40	0.110	38.45	-18.06	22.55	0.180	40.61	-18.06
831.50	15	16-QAM	н	205	107	1 / 0	15.81	6.77	20.43	0.110	38.45	-18.03	22.58	0.181	40.61	-18.03
831.50	15	64-QAM	Н	205	107	1/0	15.81	6.77	20.43	0.110	38.45	-18.03	22.58	0.181	40.61	-18.03

Table 7-6. ERP Data (Band 26)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 20 of 74
© 2019 PCTEST Engineering Labora	atory. Inc.			V 8.8 11/19/2018

(cel	PCTEST
\	ENGINEERING LABORATORY, INC.

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1710.70	1.4	QPSK	Н	168	220	1 / 0	10.75	8.16	18.91	0.078	30.00	-11.09
1745.00	1.4	QPSK	Н	165	221	1 / 0	10.62	8.19	18.81	0.076	30.00	-11.19
1779.30	1.4	QPSK	н	220	155	1 / 0	11.28	8.25	19.53	0.090	30.00	-10.47
1779.30	1.4	16-QAM	н	220	155	1 / 0	10.43	8.25	18.68	0.074	30.00	-11.32
1779.30	1.4	64-QAM	н	220	155	1 / 0	9.75	8.25	18.00	0.063	30.00	-12.00
1711.50	3	QPSK	н	166	217	1 / 0	11.23	8.16	19.39	0.087	30.00	-10.61
1745.00	3	QPSK	н	163	226	1 / 0	11.58	8.19	19.77	0.095	30.00	-10.23
1778.50	3	QPSK	н	119	216	1 / 0	12.75	8.25	21.00	0.126	30.00	-9.00
1778.50	3	16-QAM	н	119	216	1 / 0	11.58	8.25	19.83	0.096	30.00	-10.17
1778.50	3	64-QAM	н	119	216	1 / 0	10.65	8.25	18.90	0.078	30.00	-11.10
1712.50	5	QPSK	н	115	218	1 / 0	12.44	8.16	20.60	0.115	30.00	-9.40
1745.00	5	QPSK	н	122	216	1 / 0	12.08	8.19	20.27	0.107	30.00	-9.73
1777.50	5	QPSK	Н	118	223	1 / 0	12.85	8.25	21.10	0.129	30.00	-8.90
1777.50	5	16-QAM	Н	118	223	1 / 0	11.82	8.25	20.07	0.102	30.00	-9.93
1777.50	5	64-QAM	н	118	223	1 / 0	10.80	8.25	19.05	0.080	30.00	-10.95
1715.00	10	QPSK	Н	117	217	1 / 0	12.14	8.16	20.30	0.107	30.00	-9.70
1745.00	10	QPSK	Н	122	221	1 / 0	12.20	8.19	20.39	0.110	30.00	-9.61
1775.00	10	QPSK	Н	224	115	1 / 0	12.34	8.24	20.58	0.114	30.00	-9.42
1775.00	10	16-QAM	Н	224	115	1 / 0	11.20	8.24	19.44	0.088	30.00	-10.56
1775.00	10	64-QAM	Н	224	115	1 / 0	10.25	8.24	18.49	0.071	30.00	-11.51
1717.50	15	QPSK	Н	122	218	1 / 0	12.18	8.16	20.34	0.108	30.00	-9.66
1745.00	15	QPSK	Н	124	221	1 / 0	12.42	8.19	20.61	0.115	30.00	-9.39
1772.50	15	QPSK	Н	117	220	1 / 0	12.43	8.24	20.67	0.117	30.00	-9.33
1772.50	15	16-QAM	Н	117	220	1 / 0	11.20	8.24	19.44	0.088	30.00	-10.56
1772.50	15	64-QAM	Н	117	220	1 / 0	10.25	8.24	18.49	0.071	30.00	-11.51
1720.00	20	QPSK	Н	126	215	1 / 0	11.63	8.17	19.80	0.095	30.00	-10.20
1745.00	20	QPSK	Н	123	219	1/0	12.20	8.19	20.39	0.110	30.00	-9.61
1770.00	20	QPSK	Н	119	230	1 / 0	12.42	8.23	20.65	0.116	30.00	-9.35
1770.00	20	16-QAM	Н	119	230	1 / 0	11.36	8.23	19.59	0.091	30.00	-10.41
1770.00	20	64-QAM	Н	119	230	1/0	10.24	8.23	18.47	0.070	30.00	-11.53
1777.50	5	QPSK	V	120	232	1 / 0	10.69	8.25	18.94	0.078	30.00	-11.06
1777.50	5 (WCP)	QPSK	Н	229	117	1/0	11.90	8.25	20.15	0.103	30.00	-9.85

Table 7-7. EIRP Data (Band 66/4)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 21 of 74
© 2010 PCTEST Engineering Labora	tory Inc			V 8 8 11/10/2018

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1850.70	1.4	QPSK	Н	145	227	1 / 5	12.37	8.37	20.74	0.119	33.01	-12.27
1882.50	1.4	QPSK	Н	144	238	1 / 5	12.16	8.42	20.58	0.114	33.01	-12.43
1914.30	1.4	QPSK	Н	138	236	1 / 5	11.81	8.47	20.28	0.107	33.01	-12.73
1850.70	1.4	16-QAM	Н	145	227	1 / 5	11.71	8.37	20.08	0.102	33.01	-12.93
1850.70	1.4	64-QAM	Н	145	227	1 / 5	10.81	8.37	19.18	0.083	33.01	-13.83
1851.50	3	QPSK	Н	102	225	1 / 14	13.49	8.37	21.86	0.153	33.01	-11.15
1882.50	3	QPSK	Н	100	229	1 / 14	13.23	8.42	21.65	0.146	33.01	-11.36
1913.50	3	QPSK	Н	138	232	1 / 14	12.43	8.47	20.90	0.123	33.01	-12.11
1851.50	3	16-QAM	Н	102	225	1 / 14	12.55	8.37	20.92	0.124	33.01	-12.09
1851.50	3	64-QAM	Н	102	225	1 / 14	11.71	8.37	20.08	0.102	33.01	-12.93
1852.50	5	QPSK	Н	100	226	1 / 24	13.99	8.37	22.36	0.172	33.01	-10.65
1882.50	5	QPSK	Н	100	229	1 / 24	13.87	8.42	22.29	0.169	33.01	-10.72
1912.50	5	QPSK	Н	135	233	1 / 24	12.77	8.47	21.24	0.133	33.01	-11.77
1852.50	5	16-QAM	Н	100	226	1 / 24	13.08	8.37	21.45	0.140	33.01	-11.56
1852.50	5	64-QAM	Н	100	226	1 / 24	12.21	8.37	20.58	0.114	33.01	-12.43
1855.00	10	QPSK	Н	100	227	1 / 49	13.33	8.37	21.70	0.148	33.01	-11.31
1882.50	10	QPSK	Н	102	230	1 / 49	13.81	8.42	22.23	0.167	33.01	-10.78
1910.00	10	QPSK	Н	100	234	1 / 49	12.28	8.46	20.74	0.119	33.01	-12.27
1882.50	10	16-QAM	Н	102	230	1 / 49	12.65	8.42	21.07	0.128	33.01	-11.94
1882.50	10	64-QAM	Н	102	230	1 / 49	11.71	8.42	20.13	0.103	33.01	-12.88
1857.50	15	QPSK	Н	100	227	1 / 74	13.76	8.38	22.14	0.164	33.01	-10.87
1882.50	15	QPSK	Н	100	231	1 / 74	14.40	8.42	22.82	0.191	33.01	-10.19
1907.50	15	QPSK	Н	100	238	1 / 74	12.32	8.46	20.78	0.120	33.01	-12.23
1882.50	15	16-QAM	Н	100	231	1 / 74	13.19	8.42	21.61	0.145	33.01	-11.40
1882.50	15	64-QAM	Н	100	231	1 / 74	12.22	8.42	20.64	0.116	33.01	-12.37
1860.00	20	QPSK	Н	108	229	1 / 99	13.59	8.38	21.97	0.157	33.01	-11.04
1882.50	20	QPSK	Н	100	234	1 / 99	13.83	8.42	22.25	0.168	33.01	-10.76
1905.00	20	QPSK	Н	100	236	1 / 99	12.38	8.45	20.83	0.121	33.01	-12.18
1882.50	20	16-QAM	Н	100	234	1 / 99	12.87	8.42	21.29	0.135	33.01	-11.72
1882.50	20	64-QAM	Н	100	234	1 / 99	11.70	8.42	20.12	0.103	33.01	-12.89
1882.50	15	QPSK	V	149	339	1 / 74	12.04	8.42	20.46	0.111	33.01	-12.55
1882.50	15 (WCP)	QPSK	Н	140	232	1 / 74	12.11	8.42	20.53	0.113	33.01	-12.48
				Tabla	7 0 EIE	RP Data (Pand 25	2)		•	¢	

Table 7-8. EIRP Data (Band 25/2)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕚 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset	Handset	
© 2010 DCTEST Engineering Labora	ton/ Inc			1/ 0 0 11/10/2010

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
2498.50	5	QPSK	Н	146	301	1 / 24	20.04	7.90	27.94	0.622	33.01	-5.07
2593.00	5	QPSK	Н	115	307	1 / 24	19.95	7.71	27.66	0.583	33.01	-5.35
2687.50	5	QPSK	Н	115	262	1 / 24	18.61	7.52	26.13	0.410	33.01	-6.88
2593.00	5	16-QAM	Н	115	307	1 / 24	19.83	7.71	27.54	0.567	33.01	-5.47
2593.00	5	64-QAM	Н	115	307	1 / 24	19.23	7.71	26.94	0.494	33.01	-6.07
2501.00	10	QPSK	Н	149	315	1 / 49	19.85	7.90	27.75	0.595	33.01	-5.26
2593.00	10	QPSK	Н	119	314	1 / 49	20.13	7.71	27.84	0.608	33.01	-5.17
2685.00	10	QPSK	Н	147	260	1 / 49	18.96	7.53	26.49	0.445	33.01	-6.52
2593.00	10	16-QAM	Н	119	314	1 / 49	19.88	7.71	27.59	0.574	33.01	-5.42
2593.00	10	64-QAM	Н	119	314	1 / 49	19.23	7.71	26.94	0.494	33.01	-6.07
2503.50	15	QPSK	Н	155	312	1 / 74	19.97	7.89	27.86	0.611	33.01	-5.15
2593.00	15	QPSK	Н	141	322	1 / 74	20.19	7.71	27.90	0.616	33.01	-5.11
2682.50	15	QPSK	н	146	249	1 / 74	19.03	7.53	26.56	0.453	33.01	-6.45
2593.00	15	16-QAM	н	141	322	1 / 74	19.68	7.71	27.39	0.548	33.01	-5.62
2593.00	15	64-QAM	н	141	322	1 / 74	18.98	7.71	26.69	0.466	33.01	-6.32
2506.00	20	QPSK	н	117	306	1 / 99	19.01	7.89	26.90	0.489	33.01	-6.11
2593.00	20	QPSK	н	141	326	1 / 99	19.49	7.71	27.20	0.525	33.01	-5.81
2680.00	20	QPSK	н	100	261	1 / 99	19.23	7.54	26.77	0.475	33.01	-6.25
2593.00	20	16-QAM	Н	141	326	1 / 99	18.72	7.71	26.43	0.439	33.01	-6.58
2593.00	20	64-QAM	Н	141	326	1 / 99	17.98	7.71	25.69	0.371	33.01	-7.32
2498.50	5	QPSK	V	152	206	1 / 24	18.29	7.90	26.19	0.416	33.01	-6.82
2593.00	15	QPSK	Н	119	316	1 / 24	17.03	7.90	24.93	0.311	33.01	-8.08

Table 7-9. EIRP Data (Band 41), PC2

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 23 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
2593.00	15	QPSK	Н	115	303	1 / 74	17.39	7.71	25.10	0.323	33.01	-7.91
2593.00	15	16-QAM	Н	115	303	1 / 74	16.39	7.71	24.10	0.257	33.01	-8.91
2593.00	15	64-QAM	Н	115	303	1 / 74	15.37	7.71	23.08	0.203	33.01	-9.93
2593.00	15	QPSK	V	400	303	1 / 74	15.78	7.71	23.49	0.223	33.01	-9.52

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 24 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 24 of 74
© 2019 PCTEST Engineering Labora	tory Inc			V 8 8 11/19/2018

7.3 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

ANSI/TIA-603-E-2016 - Section 2.2.12

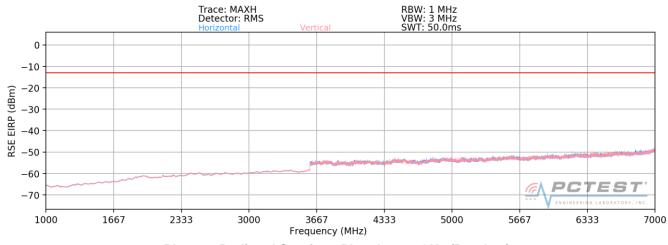
Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points \geq 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 25 of 74
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018

EUT turntable & styrofoam block

The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 5) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 26 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

OPERATING FREQUENCY:	673.00	Ν	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	20.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1346.00	Н	-	-	-78.46	8.20	-70.26	-57.3
2019.00	Н	132	239	-71.89	8.54	-63.34	-50.3
2692.00	Н	-	-	-73.30	7.51	-65.79	-52.8

 Table 7-11. Radiated Spurious Data (Band 71 – Low Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 74	
1M1901150004-03-R2.ZNF 1/16 - 2/11/2019		Portable Handset		Page 27 of 74	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

OPERATING FREQUENCY:	680	0.50 MHz
MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	20.0	MHz
DISTANCE:	3	meters
LIMIT:	-13	dBm

	equency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1	361.00	Н	116	227	-77.40	8.17	-69.24	-56.2
2	2041.50	Н	125	54	-69.75	8.48	-61.28	-48.3
2	2722.00	Н	-	-	-73.33	7.45	-65.88	-52.9

Table 7-12. Radiated Spurious Data (Band 71 – Mid Channel)

688.00

OPERATING FREQUENCY:

MODULATION SIGNAL:

MHz

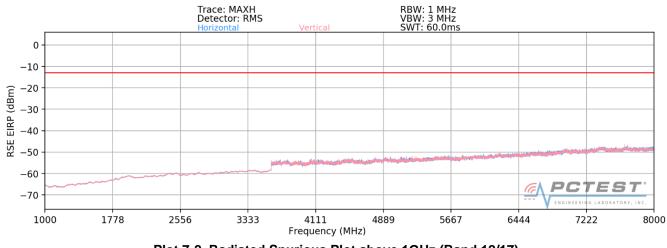
ULATION SIGNAL:	QPSK	_
BANDWIDTH:	20.0	MHz
DISTANCE:	3	meters

	3	
LIMIT:	-13	dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1376.00	Н	161	236	-78.00	8.14	-69.87	-56.9
2064.00	Н	114	164	-70.38	8.41	-61.97	-49.0
2752.00	Н	-	-	-72.97	7.40	-65.58	-52.6

Table 7-13. Radiated Spurious Data (Band 71 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 74	
1M1901150004-03-R2.ZNF 1/16 - 2/11/2019		Portable Handset		Page 28 of 74	
© 2019 PCTEST Engineering Laboratory. Inc. V 8.8 11/19/2018					


OPERATING FREQUENCY:	680	0.50 N	1Hz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	20.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1361.00	Н	195	196	-66.62	8.17	-58.46	-45.5
2041.50	Н	280	41	-68.91	8.48	-60.44	-47.4
2722.00	Н	-	-	-73.34	7.45	-65.89	-52.9

Table 7-14. Radiated Spurious Data with WCP (Band 71 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 74	
1M1901150004-03-R2.ZNF 1/16 - 2/11/2019		Portable Handset		Page 29 of 74	
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/20					

Plot 7-2. Radiated Spurious Plot above 1GHz (Band 12/17)

OPERATING FREQUENCY:	704	4.00	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	10.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1408.00	Н	-	-	-79.08	8.07	-71.00	-58.0
2112.00	Н	-	-	-76.75	8.28	-68.48	-55.5

Table 7-15. Radiated Spurious Data (Band 12/17 – Low Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	9 Portable Handset		Page 30 of 74
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

OPERATING FREQUENCY:	70	7.50 N	ЛНz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	10.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	_dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1415.00	Н	-	-	-79.37	8.06	-71.31	-58.3
2122.50	Н	-	-	-76.92	8.25	-68.67	-55.7

Table 7-16. Radiated Spurious Data (Band 12/17 – Mid Channel)

71	1.00 MHz
QPSK	_
10.0	MHz
3	meters
-13	dBm
	QPSK 10.0 3

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1422.00	Н	-	-	-79.03	8.05	-70.98	-58.0
2133.00	Н	-	-	-76.81	8.22	-68.60	-55.6

Table 7-17. Radiated Spurious Data (Band 12/17 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 31 of 74
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

OPERATING FREQUENCY:	711	I.00 MHz
MODULATION SIGNAL:	QPSK	
BANDWIDTH:	10.0	MHz
DISTANCE:	3	meters
LIMIT:	-13	dBm

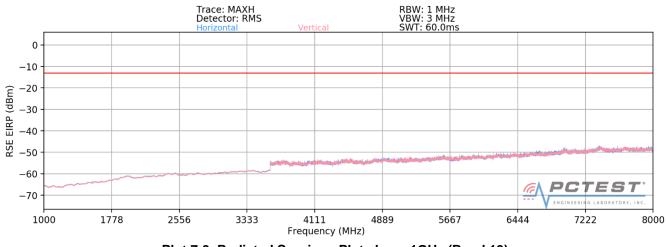

	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
	1422.00	Н	101	258	-76.09	8.05	-68.04	-55.0
	2133.00	Н	102	155	-73.86	8.22	-65.65	-52.6
Γ	2844.00	Н	-	-	-76.66	7.25	-69.41	-56.4

Table 7-18. Radiated Spurious Data with WCP (Band 12/17 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 32 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

OPERATING FREQUENCY:	78	2.00	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	10.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
2346.00	Н	-	-	-75.89	7.90	-67.99	-55.0
3128.00	Н	-	-	-71.79	7.00	-64.79	-51.8

Table 7-19. Radiated Spurious Data (Band 13 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 33 of 74	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	10.00	MHz
DISTANCE:	3	meters
NARROWBAND EMISSION LIMIT:	-50	dBm
WIDEBAND EMISSION LIMIT:	-40	dBm/MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1564.00	Н	-	-	-78.64	7.98	-70.66	-30.7

782.00

MHz

meters

MHz

Table 7-20. Radiated Spurious Data (Band 13 - 1559-1610MHz Band)

QPSK

OPERATING FREQUENCY:

MODULATION SIGNAL:

BANDWIDTH: 10.0 DISTANCE: 3

LIMIT: -13 dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
2346.00	Н	113	140	-74.63	7.90	-66.73	-53.7
3128.00	Н	-	-	-75.99	7.00	-68.99	-56.0

Table 7-21. Radiated Spurious Data with WCP (Band 13 – Mid Channel)

MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	10.00	MHz
DISTANCE:	3	meters
NARROWBAND EMISSION LIMIT:	-50	dBm
WIDEBAND EMISSION LIMIT:	-40	dBm/MHz
		_

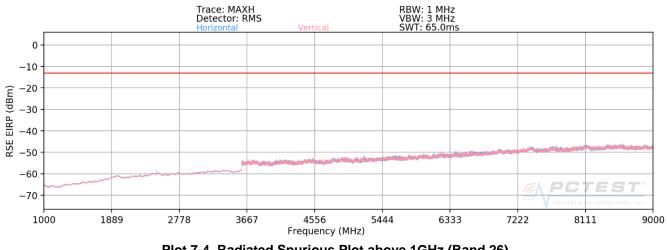

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1564.00	Н	153	327	-77.33	7.98	-69.35	-29.3

Table 7-22. Radiated Spurious Data with WCP (Band 13 - 1559-1610MHz Band)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 24 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 34 of 74	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

Plot 7-4. Radiated Spurious Plot above 1GHz (Band 26)

OPERATING FREQUENCY:	83	1.50	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1663.00	Н	143	286	-78.38	8.09	-70.29	-57.3
2494.50	Н	236	247	-73.66	7.90	-65.76	-52.8
3326.00	Н	-	-	-71.15	7.00	-64.15	-51.2

Table 7-23. Radiated Spurious Data (Band 26 – Low Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	019 Portable Handset		Page 35 of 74
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

OPERATING FREQUENCY:	830	6.50 MHz
MODULATION SIGNAL:	QPSK	_
BANDWIDTH:	15.0	MHz
DISTANCE:	3	meters
LIMIT:	-13	dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1673.00	Н	204	291	-76.77	8.11	-68.65	-55.7
2509.50	Н	188	239	-72.30	7.88	-64.42	-51.4
3346.00	Н	-	-	-70.91	7.00	-63.91	-50.9

Table 7-24. Radiated Spurious Data (Band 26 – Mid Channel)

841.50

OPERATING FREQUENCY:

MHz

MODULATION SIGNAL: QPSK

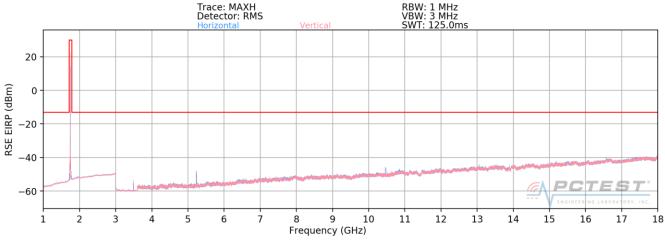
> BANDWIDTH: 15.0 MHz DISTANCE: 3 meters

LIMIT: -13 dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1683.00	Н	287	121	-76.79	8.13	-68.66	-55.7
2524.50	Н	124	49	-72.64	7.83	-64.81	-51.8
3366.00	Н	-	-	-70.95	7.00	-63.95	-51.0

Table 7-25. Radiated Spurious Data (Band 26 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager	
Test Report S/N: Test Dates: 1M1901150004-03-R2.ZNF 1/16 - 2/11/2019		EUT Type: Portable Handset		Page 36 of 74	


OPERATING FREQUENCY:	831	.50 MHz
MODULATION SIGNAL:	QPSK	
BANDWIDTH:	15.0	MHz
DISTANCE:	3	meters
LIMIT:	-13	dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
1663.00	Н	169	7	-81.77	8.11	-73.65	-60.7
2494.50	Н	104	137	-77.44	7.88	-69.56	-56.6
3326.00	Н	-	-	-75.74	7.00	-68.74	-55.7

Table 7-26. Radiated Spurious Data with WCP (Band 26 – Low Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 37 of 74	
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018	

Plot 7-5. Radiated Spurious Plot above 1GHz (Band 66/4)

OPERATING FREQUENCY:	1712.50		
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3425.00	Н	116	190	-61.88	7.00	-54.88	-41.9
5137.50	Н	112	27	-67.23	8.65	-58.58	-45.6
6850.00	Н	-	-	-68.59	9.84	-58.75	-45.7

Table 7-27. Radiated Spurious Data (Band 66/4 – Low Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕕 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 74			
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 38 of 74			
© 2019 PCTEST Engineering Laboratory. Inc.							

OPERATING FREQUENCY:	1745.00		
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3490.00	Н	135	212	-67.44	7.00	-60.44	-47.4
5235.00	Н	114	248	-68.77	8.44	-60.34	-47.3
6980.00	н	-	-	-68.93	9.89	-59.04	-46.0

Table 7-28. Radiated Spurious Data (Band 66/4 – Mid Channel)

QPSK

OPERATING FREQUENCY:

1777.50

MHz

MHz

MODULATION SIGNAL:

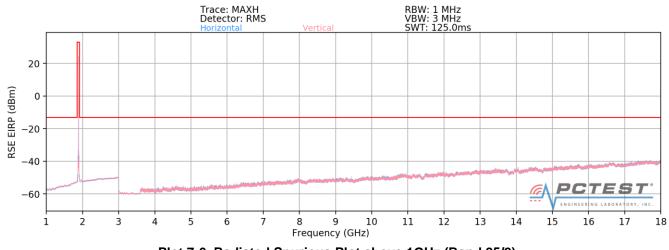
BANDWIDTH: 5.0 DISTANCE: 3

meters -13 LIMIT: dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3555.00	Н	116	19	-69.46	6.61	-62.85	-49.9
5332.50	Н	-	-	-69.71	8.67	-61.04	-48.0

Table 7-29. Radiated Spurious Data (Band 66/4 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Page 39 of 74			
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset					
© 2019 PCTEST Engineering Laboratory. Inc.							


OPERATING FREQUENCY:	177	7.50	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	5.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3555.00	Н	-	-	-75.28	7.00	-68.28	-55.3
5332.50	Н	-	-	-74.86	8.44	-66.43	-53.4

Table 7-30. Radiated Spurious Data with WCP (Band 66/4 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 40 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

Plot 7-6. Radiated Spurious Plot above 1GHz (Band 25/2)

OPERATING FREQUENCY:	185	57.50	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	_dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3715.00	Н	-	-	-68.55	5.36	-63.19	-50.2
5572.50	Н	-	-	-69.48	9.51	-59.98	-47.0

Table 7-31. Radiated Spurious Data (Band 25/2 - Low Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Page 41 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019				
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

OPERATING FREQUENCY:	188	32.50	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3765.00	Н	-	-	-67.30	5.11	-62.19	-49.2
5647.50	Н	-	-	-69.40	9.72	-59.69	-46.7

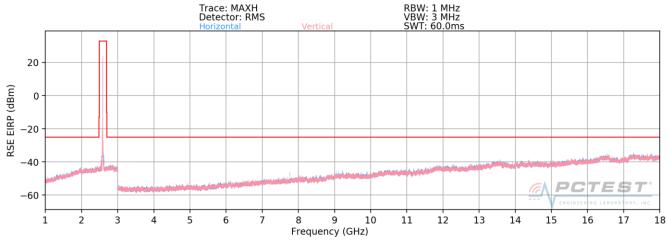
Table 7-32. Radiated Spurious Data (Band 25/2 - Mid Channel)

OPERATING FREQUENCY:	190	7.50	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3815.00	Н	-	-	-67.06	5.13	-61.94	-48.9
5722.50	Н	-	-	-70.08	9.92	-60.15	-47.2

Table 7-33. Radiated Spurious Data (Band 25/2 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	/2019 Portable Handset		Page 42 of 74
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			


OPERATING FREQUENCY:	188	2.50	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-13	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
3765.00	н	395	254	-66.85	5.11	-61.74	-48.7
5647.50	Н	-	-	-69.38	9.72	-59.67	-46.7

Table 7-34. Radiated Spurious Data with WCP (Band 25/2 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 43 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

ACLRResults

Ref Level 0	00 dBm	RBW 1	MH7					
Att			MHz Mode Au	to Sweep				
Frequency								o1Pk Ma
							M1[1]	
								24.946710 0
27841 0 dBm								
							M1	
A Designabilitation of the	h ni artikan ta katik	And the strength of the streng	na tractic and a second	alle partification and a like	Statistics (Section Section)	أخل فالمعرب ويعراب ويغواه في		
ARCHINES AND			and the second		and the second	and the second		
3.0 GHz			18001 p	ts	85	50.0 MHz/		26.5 0

19:20:34 13.02.2019

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 44 of 74
© 2019 PCTEST Engineering Labora	atory, Inc.	•		V 8.8 11/19/2018

ACLRResults

MultiView	Spectrum								1
Ref Level 0.0		• RBW 1							
Att		4 ms 🗢 VBW 3	MHz Mode Au	to Sweep					
Frequency S	Sweep							M1[1]	• 1Pk Max -65.08 dB
									25.085060 G
40 dBm									
								M1	
ر مى مەلكەر يېرىكە ئەركە ئەركەر يەركەر مەلكەر يېرىكە ئەركەر يەركەر يەركەر يەركەر يەركەر يەركەر يەركەر يەركەر يەرك	le teles en generale til det på skippelse.	hill a trade of the first of the second	in and built of a state of the state of		ورجابة والمتركبين والمراقفة والمترك	and the land of the state of the		ali dikani <mark>kana kana kana k</mark> ana kana kana kana kana	a tradición de la fisica de la fisica
a and a first state of the stat	a second s	and the state of the	a de la calegia de la caleg	مقدم بين يا يكنه بي المنظلمات المناسط ا لتأسير . التي يسرين المنظلم الم			من ا العربيات الكليمي بنيال العليون		A STATE OF THE REAL OF THE
30 dBm									
8.0 GHz			18001 p	ts	85	50.0 MHz/			26.5 Gł
	*					~	Measuring		13.02.201 18:52:5

18:52:52 13.02.2019

Plot 7-9. Radiated Spurious Plot 18GHz – 26.5GHz (Band 41), V Pol.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 45 of 74
© 2019 PCTEST Engineering Labora	tory Inc			V 8 8 11/19/2018

OPERATING FREQUENCY:	250	7.50	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5015.00	Н	164	353	-63.18	10.90	-52.28	-27.3
7522.50	Н	115	67	-57.45	11.12	-46.33	-21.3
10030.00	н	-	-	-62.63	11.99	-50.64	-25.6

Table 7-35. Radiated Spurious Data (Band 41 – Low Channel)

OPERATING FREQUENCY:	259	3.00	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5186.00	Н	212	49	-61.79	10.74	-51.05	-26.0
7779.00	Н	338	55	-56.52	11.44	-45.08	-20.1
10372.00	Н	-	-	-61.40	12.42	-48.97	-24.0

Table 7-36. Radiated Spurious Data (Band 41 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 46 of 74
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018

OPERATING FREQUENCY:	268	2.50 MH	z
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5365.00	Н	174	106	-64.69	10.69	-53.99	-29.0
8047.50	Н	163	316	-55.02	11.16	-43.86	-18.9
10730.00	н	-	-	-62.25	12.60	-49.65	-24.6

Table 7-37. Radiated Spurious Data (Band 41 – High Channel)

OPERATING FREQUENCY:	259	93.00	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5186.00	Н	-	-	-70.63	10.74	-59.89	-34.9
7779.00	Н	128	193	-64.04	11.44	-52.60	-27.6
10372.00	Н	-	-	-65.91	12.42	-53.49	-28.5

Table 7-38. Radiated Spurious Data with WCP (Band 41 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	s: EUT Type:		Dega 47 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 47 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

OPERATING FREQUENCY:2507.50MHzMODULATION SIGNAL:QPSKBANDWIDTH:15.0MHzDISTANCE:3metersLIMIT:-25dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5015.00	Н	-	-	-66.69	10.90	-55.79	-30.8
7522.50	Н	133	3	-56.83	11.12	-45.71	-20.7
10030.00	Н	-	-	-62.59	11.99	-50.60	-25.6

Table 7-39. Radiated Spurious Data (Band 41 – Low Channel)

OPERATING FREQUENCY:	2593.00	MHz
MODULATION SIGNAL:	QPSK	
BANDWIDTH:	15.0	MHz
DISTANCE:	3	meters
LIMIT:	-25	dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5186.00	Н	-	-	-65.28	10.74	-54.54	-29.5
7779.00	Н	258	146	-60.28	11.44	-48.84	-23.8
10372.00	Н	-	-	-61.32	12.42	-48.89	-23.9

Table 7-40. Radiated Spurious Data (Band 41 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 48 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

OPERATING FREQUENCY:2682.50MHzMODULATION SIGNAL:QPSKBANDWIDTH:15.0MHzDISTANCE:3metersLIMIT:-25dBm

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5365.00	Н	-	-	-65.02	10.69	-54.32	-29.3
8047.50	Н	352	100	-61.42	11.16	-50.26	-25.3
10730.00	Н	-	-	-61.70	12.60	-49.10	-24.1

Table 7-41. Radiated Spurious Data (Band 41 – High Channel)

OPERATING FREQUENCY:	2593.00		MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	15.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5186.00	Н	-	-	-71.82	10.74	-61.08	-36.1
7779.00	Н	297	15	-64.77	11.44	-53.33	-28.3
10372.00	Н	-	-	-67.52	12.42	-55.10	-30.1

Table 7-42. Radiated Spurious Data with WCP (Band 41 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	ites: EUT Type:		Page 49 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			

7.4 Uplink Carrier Aggregation Radiated Measurements §2.1053, §27.53(m)

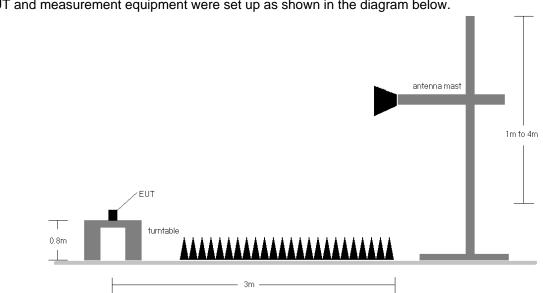
Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v02r02 - Section 5.8

ANSI/TIA-603-D-2010 - Section 2.2.12

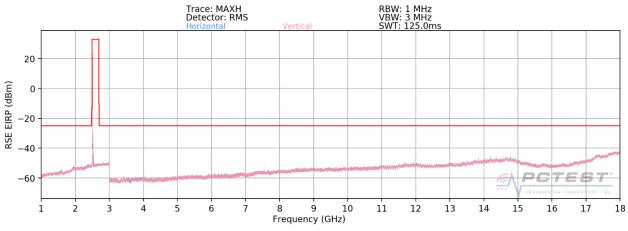

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. No. of sweep points > 2 x span / RBW
- 4. Detector = RMS
- 5. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 6. The trace was allowed to stabilize

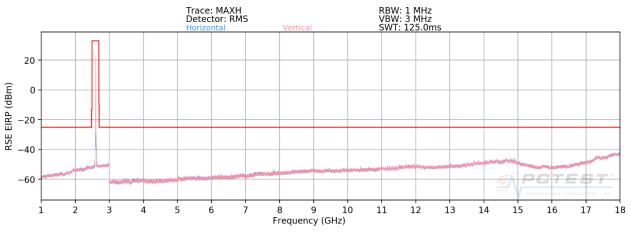
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 50 of 74
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

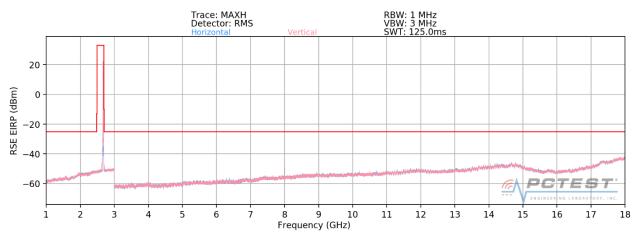
The EUT and measurement equipment were set up as shown in the diagram below.

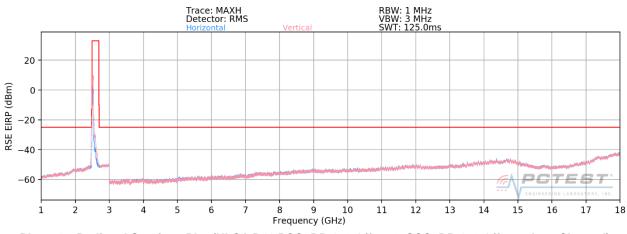

Figure 7-4. Test Instrument & Measurement Setup

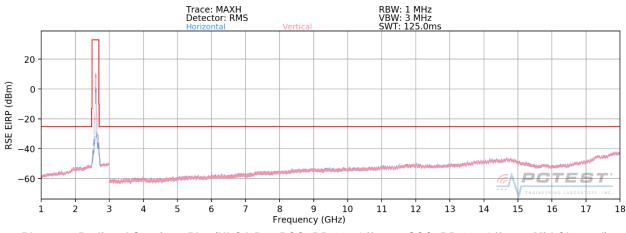
Test Notes


- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) Radiated spurious emissions measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. The worst case (highest) emissions were found while operating with QPSK modulation with both carriers set to transmit using 1RB.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) No significant emissions were found as a result of two uplink carriers operating contiguously.

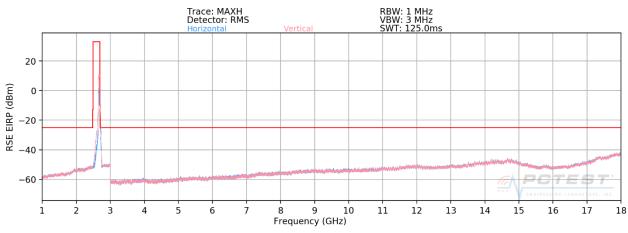
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕕 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 51 of 74	
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018				






Plot 7-45. Radiated Spurious Plot (ULCA B41 PCC: RB 1 Offset 0, SCC: RB 1 Offset 99-High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 52 of 74
© 2019 PCTEST Engineering Labora	atory. Inc.	•		V 8.8 11/19/2018



Plot 7-46. Radiated Spurious Plot (ULCA B41 PCC: RB 100 Offset 0, SCC: RB 100 Offset 0-Low Channel)

Plot 7-48. Radiated Spurious Plot (ULCA B41 PCC: RB 100 Offset 0, SCC: RB 100 Offset 0-High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 53 of 74	
© 2019 PCTEST Engineering Labora	atory. Inc.			V 8.8 11/19/2018	

OPERATING FREQUENCY (PCC):	250	06.00	MHz
OPERATING FREQUENCY(SCC):	252	25.80	MHz
CHANNEL:	39	9750	
CHANNEL:	39	948	
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	20.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5012.00	Н	-	-	-71.19	10.90	-60.29	-35.3
7513.00	Н	-	-	-67.48	11.10	-56.38	-31.4

Plot 7-49. Radiated Spruious Plot (ULCA B41 PCC: RB 1 Offset 99, SCC: RB 1 Offset 0)

OPERATING FREQUENCY (PCC):	259	93.00	MHz
OPERATING FREQUENCY(SCC):	26	12.80	MHz
CHANNEL(PCC):	40	620	
CHANNEL(SCC):	40)818	
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	20.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5186.00	Н	-	-	-70.12	10.74	-59.38	-34.4
7779.00	Н	-	-	-67.80	11.44	-56.36	-31.4

Plot 7-50. Radiated Spruious Plot (ULCA B41 PCC: RB 100 Offset 0, SCC: RB 100 Offset 0)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 54 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 54 of 74
© 2019 PCTEST Engineering Labora	tory. Inc.			V 8.8 11/19/2018

OPERATING FREQUENCY (PCC):	268	30.00	MHz	
OPERATING FREQUENCY(SCC):	266	60.20	MHz	
CHANNEL(PCC):	41	490		
CHANNEL(SCC):	41	292		
MODULATION SIGNAL:	QPSK	_		
BANDWIDTH:	20.0	MHz		
DISTANCE:	3	meters		
LIMIT:	-25	dBm		

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5360.00	H	-	-	-70.80	10.70	-60.10	-35.1
8045.00	Н	-	-	-66.75	11.16	-55.59	-30.6

Plot 7-51. Radiated Spruious Data (ULCA B41 PCC: RB 1 Offset 0, SCC: RB 1 Offset 99)


FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage FE of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 55 of 74
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018

7.5 NR Band n41 (ENDC) Test Results

Plot 10. Occupied Bandwidth Plot (n41 60MHz CP-QPSK - Full RB Configuration)

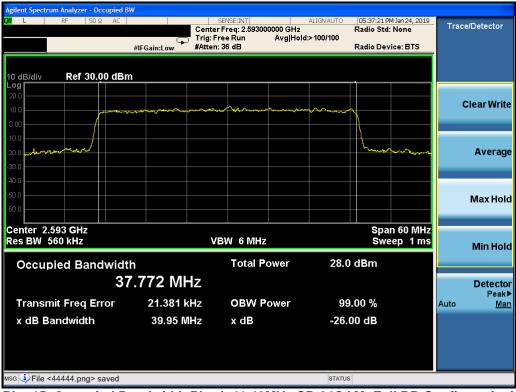
Plot 11. Occupied Bandwidth Plot (n41 60MHz CP-16QAM - Full RB Configuration)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage FC of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 56 of 74
© 2019 PCTEST Engineering Labora	tory, Inc.			V 8.8 11/19/2018

L RF 50Ω AC		SENSE:INT Freq: 2.593000000 GHz	ALIGN AUTO	05:31:32 PM Jan 24, 2019 Radio Std: None	Trac	e/Detector
		ree Run Avg Ho	ld:>100/100	Radio Std: None Radio Device: BTS	-	
O dB/div Ref 30.00 dBm						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Clear Writ
						A
						Averag
						Max Ho
				0		
enter 2.593 GHz es BW 820 kHz	V	BW 8 MHz		Span 90 MHz Sweep 1 ms		Min Ho
Occupied Bandwidth	1	Total Power	28.7	l dBm		
57	.869 MHz					Detect
Transmit Freq Error	-3.035 kHz	OBW Power	99	9.00 %	Auto	Peal <u>M</u> a
x dB Bandwidth	60.72 MHz	x dB	-26.	00 dB		
G 🕹 File <000000.png> saved			STATU	-		

Plot 12. Occupied Bandwidth Plot (n41 60MHz CP-64QAM - Full RB Configuration)

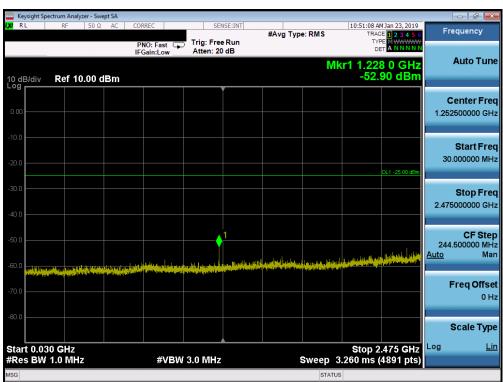



Plot 13. Occupied Bandwidth Plot (n41 40MHz CP-QPSK - Full RB Configuration)

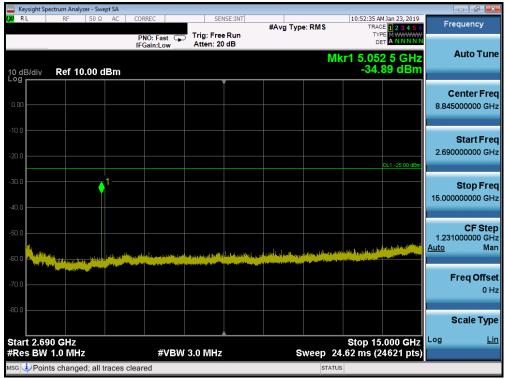
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 57 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 57 of 74
© 2019 PCTEST Engineering Labora	tory. Inc.			V 8.8 11/19/2018



Agilent Spectru											
LXI L	RF 50 \$	Ω AC			NSE:INT req: 2.59300		ALIGNAUTO	Radio Std	M Jan 24, 2019 None	Trac	e/Detector
		#IE	Gain:Low	Trig: Fre #Atten: 3		Avg Hold	:>100/100	Radio Dev	rice: BTS		
		#16	3411.LUW	#riccent o				Than bei			
10 dB/div	Ref 30.	00 dBm									
Log 20.0											
10.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon	1 month	•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~			Clear Write
0.00	/							<u> </u>			
-10.0	/							\			
-20.0	mm							h	$\sim$		Average
-30.0											
-40.0											
-50.0											Max Hold
-60.0											
Center 2.5	593 GHz							Sna	n 60 MHz		
Res BW 5				VB	N 6 MHz				ep 1 ms		Min Hold
Occup	ied Band	dwidth			Total P	ower	28.5	i dBm			
		37.7	02 MF	-Iz							Detector
Transm	nit Freq Er	ror	70.428 k	Hz	OBW P	ower	99	0.00 %		Auto	Peak▶ <u>Man</u>
x dB Ba	andwidth		39.92 M	Hz	x dB		-26.	00 dB			
MSG							STATUS	5			


Plot 14. Occupied Bandwidth Plot (n41 40MHz CP-16QAM - Full RB Configuration)




Plot 15. Occupied Bandwidth Plot (n41 40MHz CP-64QAM- Full RB Configuration)

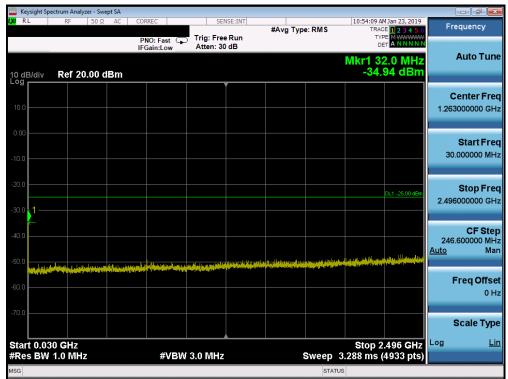
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 59 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 58 of 74
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018





Plot 16. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 -Low Channel)




Plot 17. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 – Low Channel)

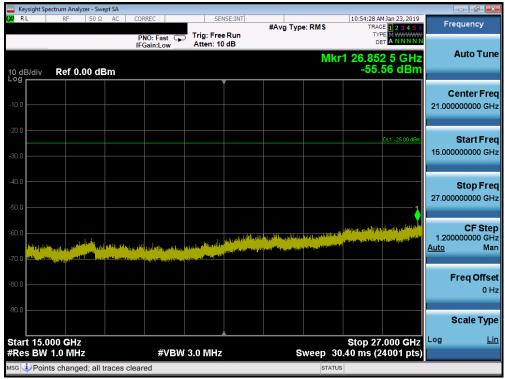
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 59 of 74
© 2019 PCTEST Engineering Labora	tory, Inc.			V 8.8 11/19/2018



	ctrum Analyzer -									
L <mark>XI</mark> RL	RF 50	Ω AC (	ORREC	SEI	NSE:INT	#Avg Typ	e: RMS		M Jan 23, 2019 E <b>1 2 3 4 5 6</b>	Frequency
			PNO: Fast 🕞 FGain:Low	Trig: Free Atten: 10						
			I Gam.Low	,			Mk	r1 26.86	8 0 GHz	Auto Tune
10 dB/div	Ref 0.00	dBm						-55.	35 dBm	
					Ĭ					Center Freq
-10.0										21.000000000 GHz
-20.0									DL1 -25.00 dBm	Start Freq
-30.0										15.000000000 GHz
-30.0										
-40.0										Stop Freq
										27.000000000 GHz
-50.0										
-60.0								ومراجعا والمراجع الروادي	and the second s	CF Step
and the party of the	المحمد والمعدد	والمتعادية والمتعادية والم	والمعمدان وأورير وأطر	والمراجعة المتروان		a na ang mang na ang la na ang la na ang la na ang mang mang mang mang mang mang m	and the second secon	 مول 200 مارند ، برمون از وطالع طالب		1.20000000 GHz Auto Man
ىلەرىدى مىلىر	and the part of the second	and the second second		allo alca						
										Freq Offset
-80.0										0 Hz
-90.0										
										Scale Type
Start 15.0	00 GHz				<u>.</u>			Stop 27	.000 GHz	Log <u>Lin</u>
#Res BW			#VBW	/ 3.0 MHz		S	weep 3	0.40 ms (2	4001 pts)	
мsg 🧼 Point	s changed; a	II traces cle	ared				STAT	US		

Plot 18. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 – Low Channel)




Plot 19. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 -Mid Channel)

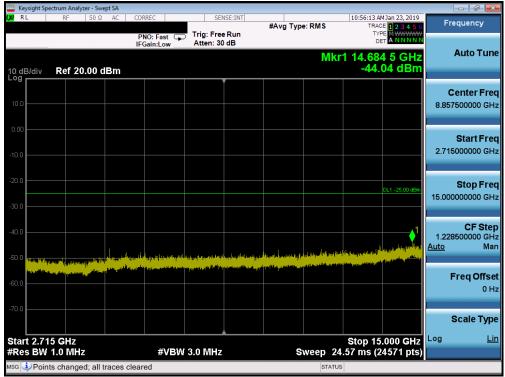
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 60 of 74
© 2019 PCTEST Engineering Labora	atory Inc			V 8 8 11/19/2018



	ctrum Analyze	er - Swept	SA									
LXI RL	RF	50 Ω	AC CO	RREC	SEI	NSE:INT	#Avg Typ	e: RMS	TRAC	M Jan 23, 2019 DE <b>1 2 3 4 5 6</b>	Fre	equency
			F	NO:Fast Gain:Low	Trig: Free Atten: 30				TY D	ET A N N N N N		
				Gamee				Mk	r1 14.74	6 0 GHz		Auto Tune
10 dB/div	Ref 20.	00 dB	m						-44.	01 dBm		
						Ĭ					-	enter Fred
10.0												6000000 GHz
0.00												Start Freq
											2.690	000000 GHz
-10.0												
-20.0												Stop Freq
										DL1 -25.00 dBm	15.000	000000 GHz
-30.0												
(0.0)										.1		CF Step
-40.0											1.231 Auto	000000 GHz Man
-50.0		darah Laliki	al and and		Printpare	ha fala sha ya	ana ang ang ang ang ang ang ang ang ang	ner in bereiter	anterpreselta partes	and a second	Auto	Wan
	n ser al de la contra de la contr La contra de la contr	1	ال بن الألكرية. الأربق الألكرية	a terrest and the	ter free a surger a she	to ask a side pro-	at he with the second street, a	اللقور وشماع وشماعة و	أنتطر إنقالاهن ويضيلو منبا		F	req Offset
-60.0												0 Hz
-70.0												
-70.0											;	Scale Type
											Log	Lin
Start 2.69 #Res BW				#VB	W 3.0 MHz		s	weep 2	Stop 15 4.62 ms (2	.000 GHz 4621 pts)		<u></u>
MSG 🕕 Poin		l: all tra	ces clea					STATU				

Plot 20. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 – Mid Channel)




Plot 21. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 61 of 74
© 2019 PCTEST Engineering Labora	atory, Inc.	·		V 8.8 11/19/2018



	ectrum Analyze												
(XV) RL	RF	50 Ω	AC	CORREC			ISE:INT	#Avg Typ	e: RMS	TRA	M Jan 23, 2019 CE <b>1 2 3 4 5 6</b>	Fr	equency
				PNO: Fa IFGain:Lo	st 🖵	Trig: Free Atten: 30				TY D	PE MWWWWW ET A N N N N N		
				in Games						Mkr1 9	9.0 MHz		Auto Tune
10 dB/div Log	Ref 20.	00 dE	3m							-37.	12 dBm		
												C	enter Freq
10.0													8000000 GHz
0.00													Start Freq
-10.0												30	.000000 MHz
-20.0													Stop Freq
											DL1 -25.00 dBm	2.496	5000000 GHz
-30.0													
-40.0													CF Step
												246 <u>Auto</u>	.600000 MHz Man
-50.0	and design the state of the state	Constant and	Mary March	ATA IN A PARAMA					the sector when the sector				
and a second second		aboli meter ret	فتعطيف أعيداته									F	req Offset
-60.0													0 Hz
-70.0													
												\$	Scale Type
Start 0.03	0 GHz									Stop 2	2.496 GHz	Log	Lin
#Res BW				#	VBW :	3.0 MHz			Sweep	3.288 ms	(4933 pts)		
MSG									STAT	US			

Plot 22. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 -High Channel)



Plot 23. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 62 of 74
© 2019 PCTEST Engineering Labora	tory, Inc.			V 8.8 11/19/2018



🛄 Keysight Sp	ectrum Analyz	zer - Swep	ot SA										
LXI RL	RF	50 Ω	AC	CORREC		SE	NSE:INT	#Avg Typ	e: RMS		:22 AM Jan 23, 2019 TRACE 1 2 3 4 5 6	F	requency
				PNO: Fa		Trig: Fre Atten: 1							
				IFGain:L	.ow	Atten. I	U U D		M	kr1 26	926 0 GHz		Auto Tune
10 dB/div	Ref 0.0	n de	m						IVI	KI I 20. -{	54.64 dBm		
	Ker v.						Y						
													Center Freq
-10.0												21.00	0000000 GHz
-20.0											DL1 -25.00 dBm		Start Freq
-30.0												15.00	0000000 GHz
-30.0													
-40.0													Oton Enon
												27.00	Stop Freq
-50.0											<u>1</u>	27.00	0000000 GHZ
-60.0							n na Waltifat.	alle second and a second as		Ling Barrison	A DESCRIPTION OF THE OWNER OF THE	1 20	CF Step 0000000 GHz
No Carpelio	and the last the state	an a	-definition of the	dil	In the second second	bear, we fe	A REAL PROPERTY LAND	a an fina datti a a gui data a	National States	the state of the s	and the first second	Auto	Man
-70.0 <mark>(414, 114)</mark>	a Angeographic and a statistical pro-	<b>.</b>	ر يەھىر يەلىك		مانان شارس	and the second secon							
													Freq Offset
-80.0													0 Hz
-90.0													
-90.0													Scale Type
Start 15.0										Stop	27.000 GHz	Log	<u>Lin</u>
#Res BW					FABM	3.0 MHz		8			s (24001 pts)		
мsg 🔱 Poin	ts change	d; all tr	aces cle	eared					STA	ATUS			

Plot 24. Conducted Spurious Plot (NR Band n41 (ENDC mode) 60MHz CP-QPSK - RB Size 1, RB Offset 81 – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 63 of 74
© 2019 PCTEST Engineering Labora	tory Inc			V 8 8 11/19/2018



E Keysig I <mark>X</mark> I L	ht Spectrum R	i Analyzer - Spur F 50 Ω	ious Emissio AC	ns		SENSE:INT er Freq: 2.50600 Free Run	0000 GI	Ηz	09:45:27 Radio Sto	AM Jan 23, 2019 <b>1: None</b>	Fr	equency
PASS				FGain:Low	· • · · · · · · ·	n: 32 dB			Radio De	vice: BTS		
10 dB/d		Ref Offset 1 Ref 31.09										
Log												
21.1												enter Free
11.1											2.506	5000000 GH
1.09						_						
-8.91						/						
-18.9												
-28.9			_									
-38.9												
-48.9	1											
-58.9												
Start	2.475 0	Hz							Stop 2	2.517 GHz		05.04
											5	CF Step .000000 MH:
Spur	Range	Start Freq	Stop	Freq	RBW	Frequency	A	mplitude	∆ Limit		<u>Auto</u>	Mar
1	1	2.4750 GHz	2.490	)5 GHz	1.000 MHz	2.490448333	GHz -2	9.33 dBm	-4.331 d	B		
_		2.4905 GHz		50 GHz		2.494452500			-14.69 d			Freq Offse
-		2.4950 GHz		60 GHz		2.495996667			-13.73 d			0 Hz
4	4	2.4960 GHz	2.517	'0 GHz	1.000 MHz	2.514935000	GHz 1.	491 dBm	-23.51 d	3		
	_		_		_							
/ISG								ST/	TUS			



Plot 25. Lower Band Edge Plot (n41 - 60MHz CP-QPSK - Full RB Configuration)

Plot 26. Upper Band Edge Plot (n41 - 60MHz CP-QPSK - Full RB Configuration)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 64 of 74
© 2019 PCTEST Engineering Labora	tory, Inc.	·		V 8.8 11/19/2018



Keysight S	pectrum A RF	nalyzer - Spuri 50 Ω	ious Emiss	ions		SENSE:INT			00-44-42 41	1 Jan 23, 2019	
, <mark>//</mark> L	KF	50 52	AC			er Freq: 2.50600	0000 GH	İz	Radio Std:		Frequency
PASS				IFGain:Lov		Free Run n: 32 dB			Radio Devi	ce: BTS	
				IFGall.LOV	v #/ttte				Rudio Ber		
		ef Offset 1									
10 dB/div Log	R	ef 31.09	авт								
21.1											Center Fre
11.1											2.506000000 GH
1.09											
-8.91											
-18.9											
-28.9											
-38.9	1										
-48.9											
-58.9											
Start 2.4	175 CH	47							Stop 2	517 GHz	
Start 2.4	+/ J GI	12							Stop 2		CF Stej 5.000000 MH
Spur   Ra	ange   S	Start Freq	Sto	p Freq	RBW	Frequency		mplitude	∆ Limit		<u>Auto</u> Ma
1 1		.4750 GHz		905 GHz		2.490293333			-4.980 dB		
2 2		.4905 GHz		950 GHz		2.494737500			-14.55 dB		Freq Offse
3 3 4 4		.4950 GHz .4960 GHz		960 GHz 170 GHz		2.495948333 2.515320000			-13.90 dB -23.29 dB		. он
4 4	2	.4900 GHZ	2.0		1.000 MINZ	2.515520000		14 ubili	-23.29 UD		
ISG	_		_				_	STA	TUS		
			_	Edara	Dist (v						



Plot 27. Lower Band Edge Plot (n41 - 60MHz CP-16QAM - Full RB Configuration)

Plot 28. Upper Band Edge Plot (n41 - 60MHz CP-16QAM - Full RB Configuration)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage (E of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 65 of 74
© 2019 PCTEST Engineering Labora	tory, Inc.			V 8.8 11/19/2018



U L	F	n Analyzer - Spu RF 50 Ω	rious Emissi AC	ions		SENSE:INT r Freq: 2.50600 Free Run	00000 G	Hz	09:45:59 Radio Sto	AM Jan 23, 2019 1: None	Frequer	a 💌
PASS				IFGain:Lo		n: 32 dB			Radio De	vice: BTS		
		Ref Offset										
I0 dB/₀ ₋og	div	Ref 31.09	a BM									
21.1											Cente	r Fre
11.1											2.50600000	
											2.5060000	JU Gr
1.09 —												
8.91												
18.9												
28.9												
38.9												
	Jerry Market											
48.9 —												
58.9 🛹	and the second s											
start	2.475 (	GHZ							Stop 2	2.517 GHz		= Ste
											5.0000	
Spur	Range	Start Freq	Sto	p Freq	RBW	Frequency		mplitude	∆ Limit		Auto	Ma
1	1	2.4750 GH	z 2.49	05 GHz	1.000 MHz	2.490500000	GHz -3	30.99 dBm	-5.985 di	В		
2	2	2.4905 GH		950 GHz		2.494437500			-16.32 dl		Freq	Offs
3	3	2.4950 GH		60 GHz		2.495990000			-14.91 dl			0 +
4	4	2.4960 GH	z 2.51	70 GHz	1.000 MHz	2.516475000	GHz 1	.167 dBm	-23.83 di	В		01
									TUS			



Plot 29. Lower Band Edge Plot (n41 - 60MHz CP-64QAM - Full RB Configuration)

Plot 30. Upper Band Edge Plot (n41 - 60MHz CP-64QAM - Full RB Configuration)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 66 of 74
© 2019 PCTEST Engineering Labora	atory, Inc.	·		V 8.8 11/19/2018



XI L	R	n Analyzer - Spur F 50 Ω	rious Emissio AC	ons		SENSE:INT Freq: 2.50600 Free Run	0000 GHz		10:03:57 A Radio Std	M Jan 23, 2019 : None	_	uency
PASS			1	FGain:Lov		n: 34 dB			Radio Dev	rice: BTS		
10 dB/d		Ref Offset 7 Ref 31.09										
Log 21.1												
												nter Fre
11.1										~	2.5060	00000 GH
1.09												
-8.91												
-18.9												
-28.9						/						
-38.9	and the second											
-48.9												
-58.9 🛩	<i></i>											
	2.475 G								<b>O</b> t a 0			
Start	2.4796	θHZ							Stop 2	.517 GHz	5.0	CF Step
Spur	Range	Start Freq	Sto	p Freq	RBW	Frequency	Am	plitude	∆ Limit		<u>Auto</u>	Mai
1	-	2.4750 GHz		05 GHz		2.490448333			-3.418 dE			
2		2.4905 GHz		50 GHz		2.494760000			-13.32 dE		Er	eq Offse
3		2.4950 GHz		60 GHz		2.495991667			-13.01 dE			0 H
4	4	2.4960 GHz	2.51	70 GHz	1.000 MHz	2.515775000	GHZ   6.84	10 dBm	-18.16 dE	5		
				_								
ISG								STA	TUS			



Plot 31. Lower Band Edge Plot (n41 - 40MHz CP-QPSK - Full RB Configuration)

Plot 32. Upper Band Edge Plot (n41 - 40MHz CP-QPSK - Full RB Configuration)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 67 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 67 of 74
© 2019 PCTEST Engineering Labora	tory, Inc.			V 8.8 11/19/2018



Keysight Spectru	m Analyzer - Spuri RF 50 Ω	AC		SENSE:INT r Freq: 2.506000000 Free Run	GHz	10:03:28 AM Jan 23, 201 Radio Std: None	9 Frequency
PASS		IFGain:Lov	· • · · · · · · · · · · · · · · · · · ·	n: 34 dB		Radio Device: BTS	
0 dB/div	Ref Offset 1 Ref 31.09						
<b>-og</b> 21.1							Center Fre
11.1							2.506000000 GH
1.09							
3.91							
				—/			
18.9							
28.9							
38.9	and the second s						
48.9							
58.9							
start 2.475	GHz					Stop 2.517 GH	5.000000 MH
Spur   Range	Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	Auto Ma
1	2.4750 GHz			2.488665833 GHz		-4.001 dB	
2	2.4905 GHz			2.494662500 GHz		-13.62 dB	Freq Offs
3 3	2.4950 GHz			2.495996667 GHz		-13.27 dB	0+
4	2.4960 GHz	2.5170 GHz	1.000 MHz	2.516230000 GHz	6.832 dBm	-18.17 dB	





Plot 34. Upper Band Edge Plot (n41 - 40MHz CP-16QAM - Full RB Configuration)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 69 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 68 of 74
© 2019 PCTEST Engineering Labora	tory. Inc.			V 8.8 11/19/2018

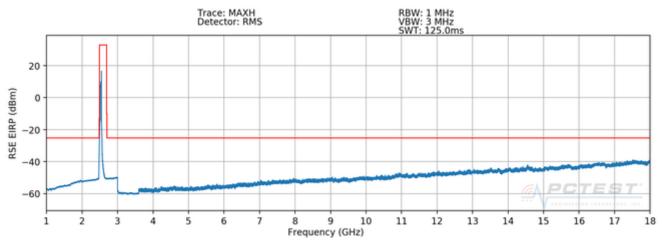


		n Analyzer - Spurio RF 50 Ω	AC		SENSE:INT		10:02:54 AM Jan 2	23 2019
PASS		0 001	IFGain:Lo	Trig: F	r Freq: 2.506000000 Free Run h: 34 dB	) GHz	Radio Std: Non Radio Device: E	Frequency
10 dB/		Ref Offset 1. Ref 31.09						
21.1 -								Center Fre 2.506000000 GH
1.09								
28.9								
58.9	2.475 0						Otop 2 547	
start	2.475 0	sπz					Stop 2.517	5.000000 MH
Spur	Range	Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	Auto Ma
	1	2.4750 GHz	2.4905 GHz	1.000 MHz	2.490319167 GHz	-29.82 dBm	-4.824 dB	
	2	2.4905 GHz	2.4950 GHz	1.000 MHz	2.493905000 GHz	-27.77 dBm	-14.77 dB	Freq Offs
	2			4 000 1411-	2.495933333 GHz	-26 81 dBm	-13.81 dB	· · · · · · · · · · · · · · · · · · ·
	_	2.4950 GHz	2.4960 GHz	1.000 MHZ	2.430300000 0112			
	_	2.4950 GHz 2.4960 GHz	2.4960 GHz 2.5170 GHz		2.515845000 GHz		-18.93 dB	0
	3						-18.93 dB	





Plot 36. Upper Band Edge Plot (n41 - 40MHz CP-64QAM - Full RB Configuration)


FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 69 of 74
© 2019 PCTEST Engineering Labora	atory. Inc.			V 8.8 11/19/2018

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
2526.00	60	QPSK	Н	121	83	81/40	11.43	7.85	19.28	0.085	33.01	-13.73
2592.99	60	QPSK	Н	142	103	81/40	10.42	7.71	18.13	0.065	33.01	-14.88
2659.98	60	QPSK	Н	123	87	81/40	10.02	7.57	17.59	0.057	33.01	-15.42
2592.99	60	QPSK	Н	115	97	1/1	11.98	7.71	19.69	0.093	33.01	-13.32
2550.00	60	QPSK	Н	121	116	1/81	12.66	7.71	20.37	0.109	33.01	-12.64
2592.99	60	16-QAM	Н	113	287	1/0	8.83	7.57	16.40	0.044	33.01	-16.61
2592.99	60	64-QAM	Н	101	230	81/0	9.82	7.57	17.39	0.055	33.01	-15.62
2516.01	40	QPSK	Н	159	91	53/26	12.81	7.87	20.68	0.117	33.01	-12.33
2592.99	40	QPSK	Н	117	116	53/26	10.87	7.71	18.58	0.072	33.01	-14.43
2670.00	40	QPSK	Н	113	57	53/26	10.34	7.55	17.89	0.062	33.01	-15.12
2592.99	40	QPSK	Н	125	78	1/1	11.21	7.71	18.92	0.078	33.01	-14.09
2550.00	40	QPSK	Н	127	86	1/52	12.59	7.71	20.30	0.107	33.01	-12.71
2592.99	40	16-QAM	Н	119	263	1/52	11.23	7.71	18.94	0.078	33.01	-14.07
2592.99	40	64-QAM	Н	115	269	106/0	9.51	7.71	17.22	0.053	33.01	-15.79

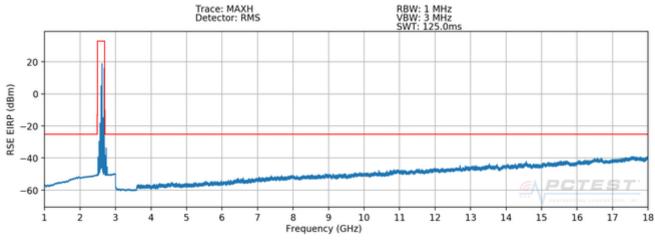
Table 52. EIRP Data (n41)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 70 of 74	
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018				





Plot 37. Radiated Spurious Plot above 1GHz (NR Band n41 (ENDC mode) – Low Channel)


MHz	526.00	2	n41 OPERATING FREQUENCY:				
		QPSK	n41 MODULATION SIGNAL:				
	MHz	60.0	n41 BANDWIDTH:				
		81/40	n41 RB OFFSET:				
MHz	566.00	2	LTE OPERATING FREQUENCY:				
	40350		LTE CHANNEL:				
		QPSK	LTE MODULATION SIGNAL:				
	MHz	20.0	LTE BANDWIDTH:				
		1/0	LTE RB OFFSET:				
	meters	3	DISTANCE:				
	dBm	-25	LIMIT:				

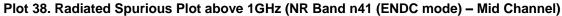

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5052.00	Н	-	-	-67.63	8.57	-59.07	-34.1
7578.00	Н	-	-	-63.12	8.44	-54.67	-29.7
10104.00	Н	-	-	-59.88	9.81	-50.07	-25.1

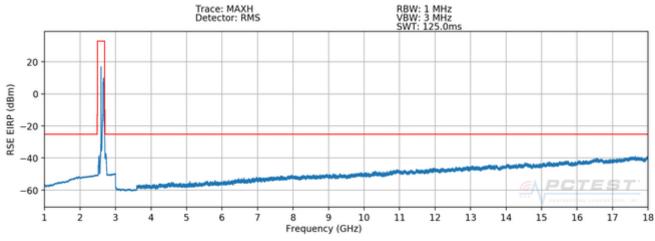
Table 53. Radiated Spurious Data (NR Band n41 (ENDC mode) – Low Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 71 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 71 of 74	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				








n41 OPERATING FREQUENCY:	25	92.99	MHz
n41 CHANNEL:	51	8598	
n41 MODULATION SIGNAL:	QPSK		
n41 BANDWIDTH:	60.0	MHz	
n41 RB OFFSET:	81/40		
LTE OPERATING FREQUENCY:	26	80.00	MHz
LTE CHANNEL:	4	1490	
LTE MODULATION SIGNAL:	QPSK		
LTE BANDWIDTH:	20.0	MHz	
LTE RB OFFSET:	1/50		
DISTANCE:	3	meters	
LIMIT:	-25	dBm	

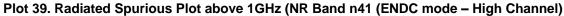

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5185.98	Н	-	-	-67.89	8.70	-59.19	-34.2
7778.97	Н	-	-	-63.34	8.69	-54.65	-29.7
10371.96	Н	-	-	-59.04	9.62	-49.42	-24.4

Table 54. Radiated Spurious Data (NR Band n41 (ENDC mode – Mid Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🔥 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 72 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 72 of 74
© 2019 PCTEST Engineering Labora	V 8 8 11/19/2018			







MHz	2659.98		n41 OPERATING FREQUENCY:		
	531996	:	n41 CHANNEL:		
		QPSK	n41 MODULATION SIGNAL:		
	MHz	60.0	n41 BANDWIDTH:		
		81/40	n41 RB OFFSET:		
MHz	2593.00		LTE OPERATING FREQUENCY:		
	40620		LTE CHANNEL:		
		QPSK	LTE MODULATION SIGNAL:		
	MHz	20.0	LTE BANDWIDTH:		
		1/50	LTE RB OFFSET:		
	dBm	-25	DISTANCE:		
			LIMIT:		

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
5319.96	Н	-	-	-67.45	8.73	-58.72	-33.7
7979.94	Н	-	-	-63.23	8.85	-54.38	-29.4
10639.92	Н	-	-	-57.87	9.50	-48.37	-23.4

Table 55. Radiated Spurious Data (NR Band n41 (ENDC mode – High Channel)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 72 of 74	
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 73 of 74	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				



## 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFV450PM** complies with all the requirements of Part 22, 24, & 27 of the FCC Rules for LTE operation only.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 74 of 74
1M1901150004-03-R2.ZNF	1/16 - 2/11/2019	Portable Handset		Page 74 of 74
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			