

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.407 UNII 802.11a/n/ac

Applicant Name:

LG Electronics USA, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 11/19/2018 – 1/14/2019 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1811230205-06.ZNF

FCC ID:

ZNFV450PM

APPLICANT:

LG Electronics USA, Inc.

Application Type: Model: Additional Model(s): EUT Type: Frequency Range: FCC Classification: FCC Rule Part(s): Test Procedure(s):

Certification LM-V450PM LMV450PM, V450PM Portable Handset 5180 – 5825MHz Unlicensed National Information Infrastructure (UNII) Part 15 Subpart E (15.407) ANSI C63.10-2013, KDB 789033 D02 v02r01, KDB 648474 D03 v01r04, KDB 662911 D01 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Råndy Ortanez President

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 1 of 185
© 2010 PCTEST Engineering Labora	tony Inc	•		V 8 8 11/10/2018

Test Report S/N:

TABLE OF CONTENTS

FCC	ID: ZNFV	450PM	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
8.0	CONC	LUSION		
	7.9	Line-Co	nducted Test Data	
	7.8	Radiate	d Spurious Emissions Measurements – Below 1GHz	173
		7.6.12	MIMO Radiated Band Edge Measurements (80MHz BW)	170
		7.6.11	MIMO Radiated Band Edge Measurements (40MHz BW)	167
		7.6.10	CDD Radiated Band Edge Measurements (20MHz BW)	164
		7.6.9	SISO Antenna-2 Radiated Band Edge Measurements (80MHz BW)	161
		7.6.8	SISO Antenna-2 Radiated Band Edge Measurements (40MHz BW)	158
		7.6.7	SISO Antenna-2 Radiated Band Edge Measurements (20MHz BW)	155
		7.6.6	SISO Antenna-1 Radiated Band Edge Measurements (80MHz BW)	152
		7.6.5	SISO Antenna-1 Radiated Band Edge Measurements (40MHz BW)	149
	7.7	SISO A	tenna-1 Radiated Band Edge Measurements (20MHz BW)	146
		7.6.4	Simultaneous Tx Radiated Spurious Emissions Measurements	144
		7.6.3	/IMO/CDD Radiated Spurious Emission Measurements	135
		7.6.2	SISO Antenna-2 Radiated Spurious Emission Measurements	124
		7.6.1	SISO Antenna-1 Radiated Spurious Emission Measurements	113
	7.6	Radiate	d Spurious Emission Measurements – Above 1GHz	110
	7.5	Maximu	n Power Spectral Density – 802.11a/n/ac	65
	7.4	UNII Ou	tput Power Measurement – 802.11a/n/ac	58
	7.3	6dB Bai	dwidth Measurement – 802.11a/n/ac	47
	7.2	26dB Ba	ndwidth Measurement – 802.11a/n/ac	14
	7.1	Summa	у	
7.0	TEST	RESULTS		13
6.0	TEST	EQUIPME	NT CALIBRATION DATA	12
5.0	MEAS	UREMEN	UNCERTAINTY	11
4.0	ANTE	NNA REQ	JIREMENTS	10
	3.4	Environ	nental Conditions	9
	3.3	Radiate	d Emissions	9
	3.2	AC Line	Conducted Emissions	8
	3.1		on Procedure	
3.0			۲	
	2.4		pression Device(s)/Modifications	
	2.2		nfiguration	
	2.1		Capabilities	
2.0	2.1		ent Description	
2.0	-		RMATION	
	1.2 1.3		Test Location	
	1.1	•		
1.0			l	
4.0				

Page 2 of 185 1M1811230205-06.ZNF 11/19/2018 – 1/14/2019 Portable Handset © 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/20 All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. V 8.8 11/19/2018

EUT Type:

Test Dates:

MEASUREMENT REPORT

	Ohannal		AN	JT1	AN	JT2	MI	NO
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
1		5180 - 5240	58.884	17.70	56.624	17.53	115.248	20.62
2A	20	5260 - 5320	57.810	17.62	59.156	17.72	116.966	20.68
2C	20	5500 - 5720	48.529	16.86	47.863	16.80	95.073	19.78
3		5745 - 5825	61.660	17.90	57.810	17.62	119.469	20.77
1		5190 - 5230	39.719	15.99	39.537	15.97	78.711	18.96
2A	40	5270 - 5310	39.628	15.98	39.537	15.97	79.164	18.99
2C	40	5510 - 5710	39.719	15.99	39.719	15.99	79.073	18.98
3		5755 - 5795	39.537	15.97	39.719	15.99	78.893	18.97
1		5210	20.989	13.22	22.284	13.48	43.274	16.36
2A	80	5290	22.284	13.48	21.677	13.36	43.961	16.43
2C	00	5530 - 5690	21.979	13.42	21.478	13.32	42.957	16.33
3		5775	22.233	13.47	20.464	13.11	42.698	16.30

EUT Overview

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 2 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 3 of 185
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

Construction of the second of the second

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 4 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 4 of 185
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

PRODUCT INFORMATION

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG Portable Handset FCC ID: ZNFV450PM. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 00082, 00081, 00072, 00073

2.2 **Device Capabilities**

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1, BC10), 850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

	Band 1		Band 2A Band 2C		<u>с </u>		Band 3		
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)		Ch.	Frequency (MHz)	Γ	Ch.	Frequency (MHz)
36	5180	52	5260		100	5500		149	5745
:	:	:	:		:	:		•••	:
42	5210	56	5280		120	5600	ſ	157	5785
:	:	:	:		:	:	ſ	:	:
48	5240	64	5320		144	5720	ſ	165	5825

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

С

1

1

142

	Band 1
Ch.	Frequency (MHz)
38	5190
:	:
46	5230

	Band 2A
Ch.	Frequency (MHz)
54	5270
:	:
62	5310

12) Frequency / Chan				
	Band 2C			
ch.	Frequency (MHz)			
02	5510			
:	:			
18	5590			

5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

	Band 1		Band 2A		Band 2C		Band 3		
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)		
42	5210	58	5290	106	5530	155	5775		
				:	:				
					5690				
	Table 2.2, 802 Mac (80MUs DW) Frequency (Channel Operations								

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 5 of 185
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018			

- Notes:
- 5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles						
902 11 Mode/Pand			Duty Cycle [%]			
802.11 1	802.11 Mode/Band		ANT2	МІМО		
	а	98.3	98.3	98.3		
	n (HT20)	98.1	98.2	98.1		
5GHz	ac (HT20)	98.2	98.2	98.1		
3012	n (HT40)	97.2	97.3	97.4		
	ac (HT40)	97.3	97.3	97.3		
	ac (HT80)	97.0	97.0	97.1		

Table 2-4. Measured Duty Cycles

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		SE	SDM		CDD	
	igurations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2	
	11a	✓	✓	×	×	✓	✓	
	11n (20MHz)	✓	✓	✓	✓	✓	✓	
5GHz	11n (40MHz)	✓	✓	✓	✓	✓	✓	
	11ac (80MHz)	✓	✓	✓	✓	✓	✓	

Table 2-5. Frequency / Channel Operations

✓ = Support ; × = NOT Support
 SISO = Single Input Single Output
 SDM = Spatial Diversity Multiplexing – MIMO function
 CDD = Cyclic Delay Diversity - 2Tx Function

 Data Rate(s) Tested:
 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

 6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n - 20MHz)

 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n - 40MHz BW)

 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac - 80MHz BW)

 13/14.4, 26.28.9, 39/43.3, 52/57.8, 78/86.7, 104/115.6, 117/130, 130/144.4MBps (MIMO n/ac - 20MHz)

 15/6/173Mbps (MIMO ac - 20MHz)

 27/30, 54/60, 81/90, 108/120, 162/180, 216/240, 243,270, 270/300Mbps (MIMO n/ac - 40MHz) 324/360, 360/400Mbps (MIMO ac - 40MHz)

 58.5/65, 117/130, 175.5/195, 234/260, 351/390, 468/520, 526.5/585, 585/650, 702/780, 780/866.7Mbps (MIMO ac - 80MHz)

3. This device supports simultaneous transmission operation, which allows for two SISO channels to operate independent of one another in the 2.4GHz and 5GHz bands simultaneously on each antenna. The following tables show the worst case configurations determined during testing. The data for these configurations is contained in this test report.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Page 6 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019				
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018				

Configuration 1: ANT1 transmitting in 2.4GHz mode and ANT2 in 5GHz mode

Description	2.4 GHz Emission	5 GHz Emission
Antenna	1	2
Channel	1	165
Operating Frequency (MHz)	2412	5825
Data Rate (Mbps)	1Mbps	6Mbps
Mode	b	а

Table 2-6. Config-1 (ANT1 2.4GHz & ANT2 5GHz)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Section 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) FCC ID: PWMA-W815A while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 7 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 7 of 185
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section Line-Conducted Test Data. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 9 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 8 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 0 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 9 of 185
© 2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 10 of 185
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 11 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	1/23/2018	Annual	1/23/2019	WL25-1
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	5/25/2018	Annual	5/25/2019	MY52350166
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	846215
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
COM-Power	PAM-103	Pre-Amplifier (1-1000MHz)	9/17/2018	Annual	9/17/2019	441119
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	6/7/2018	Triennial	6/7/2021	9203-2178
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	12/27/2016	Biennial	12/27/2018	114451
Huber + Suhner	Sucoflex 102A	40GHz Radiated Cable Set	1/23/2018	Annual	1/23/2019	251425001
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	1/23/2018	Annual	1/23/2019	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/21/2018	Annual	5/21/2019	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/9/2018	Annual	8/9/2019	100348
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/25/2018	Annual	6/25/2019	102133
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	1/24/2018	Annual	1/24/2019	100040
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	1/24/2018	Annual	1/24/2019	100037
Seekonk	NC-100	Torque Wrench	12/28/2017	Annual	12/28/2018	N/A
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 12 of 185
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics USA, Inc.
FCC ID:	ZNFV450PM
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b.1), (2), (3), (4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6, 7.7
15.205, 15.407(b.1), (4), (5), (6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.6.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 0.2.16.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 13 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

7.2 26dB Bandwidth Measurement – 802.11a/n/ac RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 14 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 14 of 185
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/2018				

SISO Antenna-1 26 dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	19.67
	5200	40	а	6	19.30
	5240	48	а	6	19.77
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.45
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	21.45
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	20.97
	5190	38	n (40MHz)	13.5/15 (MCS0)	40.04
	5230	46	n (40MHz)	13.5/15 (MCS0)	40.11
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	80.90
	5260	52	а	6	19.81
	5280	56	а	6	21.59
	5320	64	а	6	20.83
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	20.74
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	21.20
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	20.98
	5270	54	n (40MHz)	13.5/15 (MCS0)	40.16
	5310	62	n (40MHz)	13.5/15 (MCS0)	39.86
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	81.11
	5500	100	а	6	20.39
	5600	120	а	6	22.45
	5720	144	а	6	21.45
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	21.15
ပ	5600	120	n (20MHz)	6.5/7.2 (MCS0)	22.05
d 2	5720	144	n (20MHz)	6.5/7.2 (MCS0)	21.59
Band 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	39.71
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	39.77
	5710	142	n (40MHz)	13.5/15 (MCS0)	40.12
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.43
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	81.08
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.21

Table 7-2. Conducted Bandwidth Measurements SISO ANT1

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 15 of 185
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

🔤 Keysight Spectrum Analyzer - Occupied BW				
LX/ RL RF 50Ω AC	CORREC Cente	SENSE:INT er Freq: 5.180000000 GHz	05:05:19 PM No Radio Std: No	
NFE	Trig:	Free Run Avg Hold: n: 20 dB	100/100 Radio Device:	BTS Swept SA
10 dB/div Ref 20.00 dBm				
Log 10.0		m man		Channel Power
-10.0 -20.0 -30.0 -40.0	p ^{urr} and a second sec			Occupied BW
-40.0 -50.0 			Land any house	ACP
Center 5.18 GHz #Res BW 200 kHz	\\	/BW 2 MHz	Span 5 Sweep	
Occupied Bandwidt	h .381 MHz	Total Power	23.2 dBm	
Transmit Freq Error	35.541 kHz	% of OBW Powe		BurstPower
x dB Bandwidth	19.67 MHz	x dB	-26.00 dB	More 1 of 2
MSG			STATUS	

Plot 7-1. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 36)

Plot 7-2. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 16 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 16 of 185
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018			



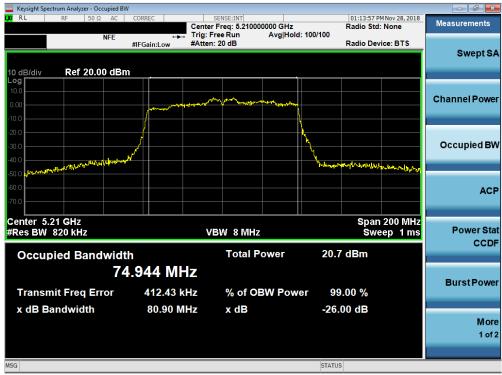

Plot 7-4. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 17 of 185
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018		

Plot 7-5. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

Plot 7-6. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

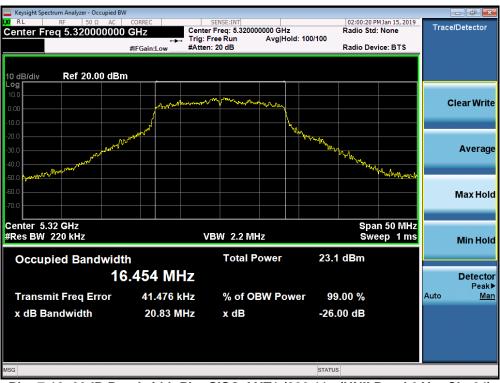
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 18 of 185
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			


Plot 7-7. 26dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)


Plot 7-8. 26dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 19 of 185
© 2019 PCTEST Engineering Laborat	V 8.8 11/19/2018			

Plot 7-9. 26dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)


Plot 7-10. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 2A) – Ch. 52)

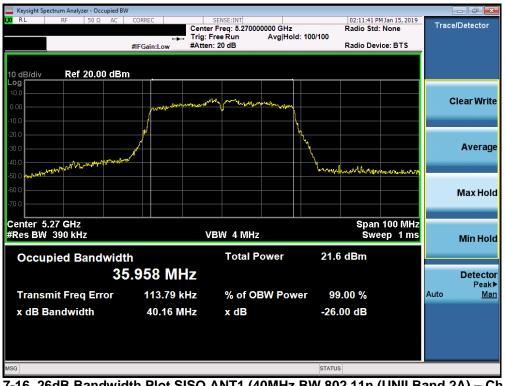
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 20 of 185
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

Plot 7-11. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-12. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 2A) – Ch. 64)

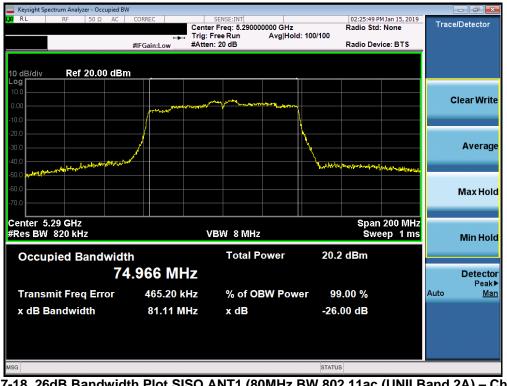
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 01 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 21 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

Plot 7-13. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)


Plot 7-14. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 22 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 22 of 185	
0 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

Plot 7-15. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)


Plot 7-16. 26dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 22 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 23 of 185
0 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

Plot 7-17. 26dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

Plot 7-18. 26dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 04 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 24 of 185
© 2019 PCTEST Engineering Laborat	V 8.8 11/19/2018			


Plot 7-19. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 100)

Plot 7-20. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 120)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 25 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 25 of 185
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

Plot 7-21. 26dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 144)

Plot 7-22. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 26 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018


Plot 7-23. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

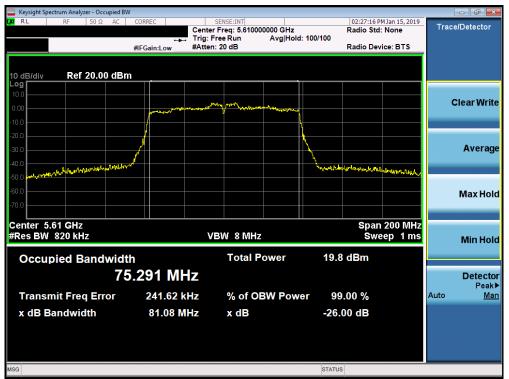

Plot 7-24. 26dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 27 of 185
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

Plot 7-25. 26dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

Plot 7-26. 26dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 28 of 185
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018		


Plot 7-27. 26dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-28. 26dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 20 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 29 of 185
0 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

Plot 7-29. 26dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

Plot 7-30. 26dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

SISO Antenna-2 26dB Bandwidth Measurements

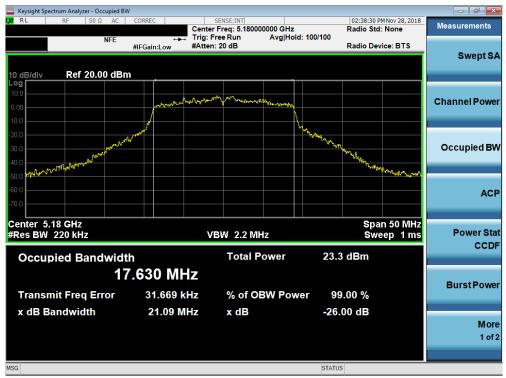
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	18.96
	5200	40	а	6	21.02
	5240	48	а	6	19.14
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.09
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	21.11
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	20.78
	5190	38	n (40MHz)	13.5/15 (MCS0)	40.06
	5230	46	n (40MHz)	13.5/15 (MCS0)	40.00
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	80.91
	5260	52	а	6	20.55
	5280	56	а	6	20.42
	5320	64	а	6	21.50
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	20.01
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	20.62
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	21.73
	5270	54	n (40MHz)	13.5/15 (MCS0)	39.72
	5310	62	n (40MHz)	13.5/15 (MCS0)	39.93
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	82.28
	5500	100	а	6	22.00
	5600	120	а	6	22.17
	5720	144	а	6	22.57
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	22.75
с	5600	120	n (20MHz)	6.5/7.2 (MCS0)	22.88
d 2	5720	144	n (20MHz)	6.5/7.2 (MCS0)	20.88
Band 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	39.98
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	40.27
	5710	142	n (40MHz)	13.5/15 (MCS0)	40.98
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.39
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	81.14
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.15
	Table 7 (Conduct	ad Bandwidth	Measurements SIS	

Table 7-3. Conducted Bandwidth Measurements SISO ANT2

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 21 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 31 of 185
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

Construction of the second of the second

Plot 7-31. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 1) - Ch. 36)


Plot 7-32. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 32 of 185	
© 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018	

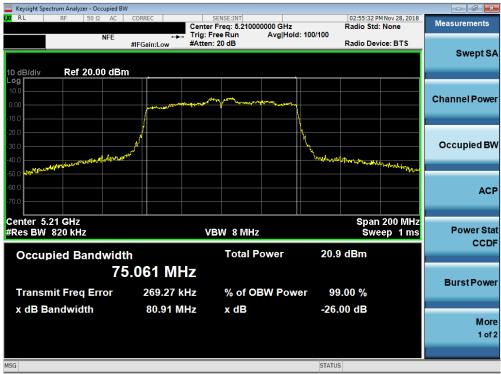
Plot 7-34. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 185
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

Plot 7-35. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

Plot 7-36. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dara 04 of 405	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 34 of 185	
© 2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018	


Plot 7-37. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

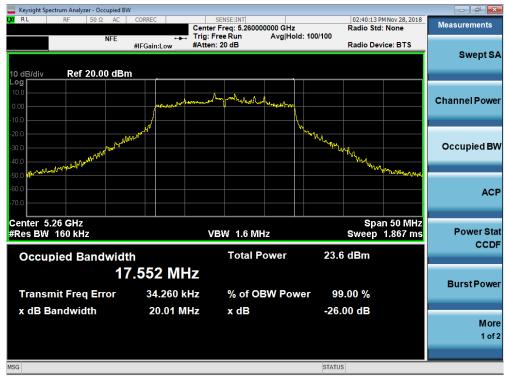
Plot 7-38. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 185
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory, Inc.			V 8.8 11/19/2018	

Plot 7-39. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

Plot 7-40. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 185
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory, Inc.			V 8.8 11/19/2018	


Plot 7-41. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-42. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 27 of 195	
1M1811230205-06.ZNF	230205-06.ZNF 11/19/2018 – 1/14/2019 Portable Handset			Page 37 of 185	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

Plot 7-43. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

Plot 7-44. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 105	
1M1811230205-06.ZNF 11/19/2018 – 1/14/2019 Portable Handset				Page 38 of 185	
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/2018					

Plot 7-45. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-46. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Painter Portable Handset Painter		Dage 20 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019			Page 39 of 185	
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/2018					

Keysight Spectrum Analyzer - Occupied BW					
LXX RL RF 50Ω AC	Center	SENSE:INT Freq: 5.310000000 GHz	Radio St	PM Nov 28, 2018 d: None	Measurements
NFE		ree Run Avg Hold ∷ 20 dB		evice: BTS	
					Swept SA
10 dB/div Ref 20.00 dBm	l				
10.0		n who			Channel Power
0.00	Page of a share of the state	and and the second and the second			ChannelPower
-10.0		h			
-20.0	North Contraction of the second secon		No.		Occupied BW
-40.0	<i>.</i>		"Lynner Margarethand		
-50.0			المعادمة المعالية المعالية المعادمة	and an and a state of the	
-60.0					ACP
-70.0					
Center 5.31 GHz #Res BW 390 kHz				n 100 MHz	Power Stat
#Res DW J90 KHZ	v	BW 4 MHz	24	/eep 1ms	CCDF
Occupied Bandwidt		Total Power	21.9 dBm		
36	.044 MHz				BurstPower
Transmit Freq Error	51.140 kHz	% of OBW Pow	er 99.00 %		BurstPower
x dB Bandwidth	39.93 MHz	x dB	-26.00 dB		
					More
					1 of 2
MSG			STATUS		

Plot 7-47. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

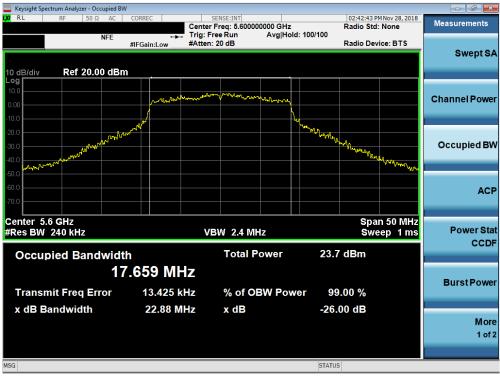
Plot 7-48. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dage 40 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019			Page 40 of 185	
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/2018					

Plot 7-49. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 2C) - Ch. 100)


Plot 7-50. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 2C) – Ch. 120)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Report S/N: Test Dates: EUT Type:			Dogo 41 of 195	
1M1811230205-06.ZNF 11/19/2018 - 1/14/2019		Portable Handset		Page 41 of 185	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				


Plot 7-51. 26dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 2C) - Ch. 144)

Plot 7-52. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 42 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	le Handset		
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018				

Plot 7-53. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

Plot 7-54. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Page 43 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019				
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018				

Plot 7-55. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

Plot 7-56. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Page 44 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019				
© 2019 PCTEST Engineering Laboratory, Inc.					

Keysight Spectrum Analyzer - Occupied BW					
LXI RL RF 50Ω AC		SENSE:INT Freq: 5.710000000 GHz		02:51:14 PM Nov 28, 201 Radio Std: None	8 Measurements
NFE NFE NFE NFE	#IFGain:Low #Atten	Free Run Avg Ho 1: 20 dB	ld: 100/100	Radio Device: BTS	Swept SA
10.0	Manufacture and a second second	well			Channel Power
-20.0 -30.0 -40.0 -40.0			himme	he Margan Margan Margan Branger	Occupied BW
-50.0 -60.0 -70.0					ACP
Center 5.71 GHz #Res BW 390 kHz	v	BW 4 MHz		Span 100 MH Sweep 1 m	
Occupied Bandwidtl 35	ո .928 MHz	Total Power	22.9	dBm	BurstPower
Transmit Freq Error	15.093 kHz	% of OBW Pov	wer 99.	00 %	BuistPower
x dB Bandwidth	40.98 MHz	x dB	-26.0	0 dB	More 1 of 2
MSG			STATUS		

Plot 7-57. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-58. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 45 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Handset		
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/2018					

Keysight Spectrum Analyzer - Occupied BW					
LXX RL RF 50Ω AC		SENSE:INT r Freq: 5.610000000 GHz	Radio Sto	M Nov 28, 2018 I: None	Measurements
NFE		Free Run Avg Hold n: 20 dB	: 100/100 Radio De	vice: BTS	
					Swept SA
10 dB/div Ref 20.00 dBm					
10.0					Channel Devre
0.00		and and a second s			ChannelPower
-10.0					
-30.0	1				Occupied BW
-40.0 -50.0 hours and more the market of	<u>^</u>		WHARMAR	Nex that	
-50.0 Lander and the real of the second seco				an of the second of the second of the second se	
-60.0					ACP
-70.0					
Center 5.61 GHz #Res BW 820 kHz	v	BW 8 MHz		n 200 MHz eep 1 ms	Power Stat
				cep i ma	CCDF
Occupied Bandwidt		Total Power	20.8 dBm		
75	.234 MHz				BurstPower
Transmit Freq Error	78.865 kHz	% of OBW Pow	er 99.00 %		Buistrower
x dB Bandwidth	81.14 MHz	x dB	-26.00 dB		
					More
					1 of 2
MSG			STATUS		
			J AIGO		

Plot 7-59. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

Plot 7-60. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 46 of 185
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/19/2018				

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e); RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

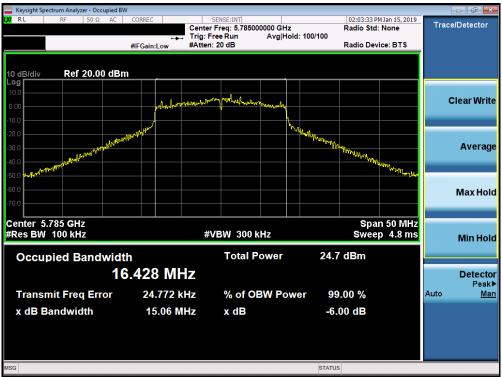
Test Notes

None.

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 47 of 185
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11			

SISO Antenna-1 6 dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	15.81
	5785	157	а	6	15.06
	5825	165	а	6	13.80
en co	5745	149	n (20MHz)	6.5/7.2 (MCS0)	16.26
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	15.18
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	13.20
	5755	151	n (40MHz)	13.5/15 (MCS0)	35.16
	5795	159	n (40MHz)	13.5/15 (MCS0)	27.59
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	65.03

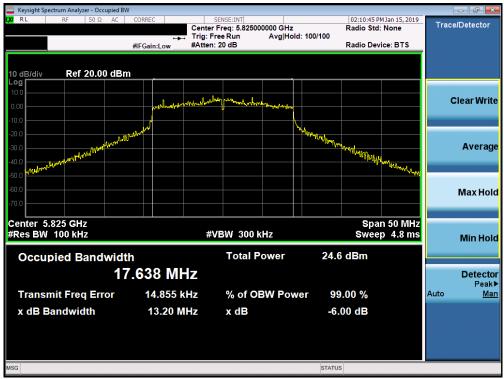

Table 7-4. Conducted Bandwidth Measurements SISO ANT1

Plot 7-61. 6dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 49 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 48 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

Plot 7-63. 6dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 49 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018


Plot 7-64. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)

Plot 7-65. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 50 of 185
© 2019 PCTEST Engineering Laborat	V 8.8 11/19/2018		

Plot 7-66. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

Plot 7-67. 6dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 51 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 51 of 185
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018		

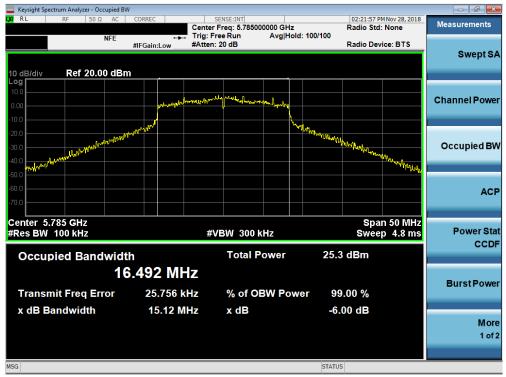
Plot 7-68. 6dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

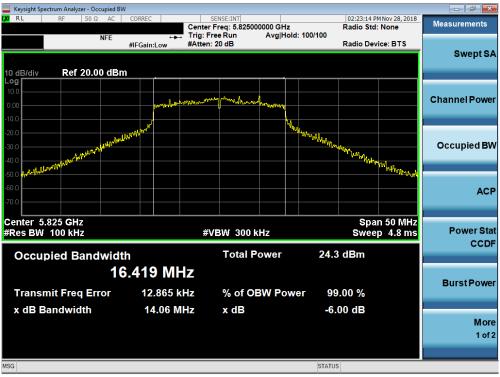
Plot 7-69. 6dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 52 of 185
2019 PCTEST Engineering Laboratory, Inc.			V 8.8 11/19/2018

SISO Antenna-2 6dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	13.37
	5785	157	а	6	15.12
	5825	165	а	6	14.06
en co	5745	149	n (20MHz)	6.5/7.2 (MCS0)	15.12
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	15.04
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	15.13
	5755	151	n (40MHz)	13.5/15 (MCS0)	33.85
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.07
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	66.48


Table 7-5. Conducted Bandwidth Measurements SISO ANT2


Plot 7-70. 6dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 53 of 185
2019 PCTEST Engineering Laboratory, Inc.				V 8.8 11/19/2018

Plot 7-72. 6dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 3) – Ch. 165)

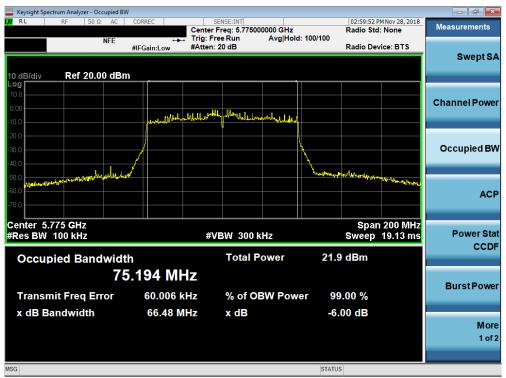
FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 54 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 54 of 185
2019 PCTEST Engineering Laboratory, Inc.			V 8.8 11/19/2018	


Plot 7-73. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)

Plot 7-74. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 55 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 55 of 185
© 2019 PCTEST Engineering Laborat	V 8.8 11/19/2018		

Plot 7-75. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-76. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage EC of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	9/2018 – 1/14/2019 Portable Handset		Page 56 of 185	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

Plot 7-77. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-78. 6dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 57 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	I/19/2018 – 1/14/2019 Portable Handset		Page 57 of 185	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm). The maximum e.i.r.p. shall not exceed the lesser of 200 mW or 10 + 10 log10B, dBm.

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(19.81) = 23.97dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(20.39) = 24.09dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 59 of 195		
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 58 of 185		
© 2019 PCTEST Engineering Laboratory, Inc. V 8.8 11/1						

SISO Antenna-1 Conducted Output Power Measurements

	Freq [MHz] Channel		Detector	IEEE Transmission Mode			Conducted Power Limit	Conducted Power
Ē				802.11a	802.11n	802.11ac	[dBm]	Margin [dB]
主	5180	36	AVG	16.54	16.43	16.40	23.98	-7.44
÷	5200	40	AVG	17.70	17.50	17.43	23.98	-6.28
승	5220	44	AVG	16.73	16.53	16.54	23.98	-7.25
andwidth)	5240	48	AVG	16.69	16.46	16.40	23.98	-7.29
Ba	5260	52	AVG	16.70	16.52	16.50	23.98	-7.28
	5280	56	AVG	17.62	17.44	17.42	23.98	-6.36
Hz	5300	60	AVG	16.62	16.50	16.37	23.98	-7.36
(20M	5320	64	AVG	16.62	16.45	16.52	23.98	-7.36
20	5500	100	AVG	16.66	16.53	16.56	23.98	-7.32
) N	5600	120	AVG	16.82	16.66	16.70	23.98	-7.16
Ϊ	5620	124	AVG	16.71	16.65	16.54	23.98	-7.27
Ċ	5720	144	AVG	16.86	16.81	16.77	23.98	-7.12
L2	5745	149	AVG	16.97	16.80	16.79	30.00	-13.03
	5785	157	AVG	17.85	17.70	17.72	30.00	-12.15
	5825	165	AVG	17.90	17.54	17.68	30.00	-12.10

Table 7-6. SISO ANT1 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	IEEE Transm	nission Mode	Conducted Power Limit	Conducted Power
				802.11n	802.11ac	[dBm]	Margin [dB]
₽ ⊂	5190	38	AVG	15.63	15.69	23.98	-8.29
0MH; idth)	5230	46	AVG	15.93	15.99	23.98	-7.99
(401 wid	5270	54	AVG	15.98	15.83	23.98	-8.00
	5310	62	AVG	15.79	15.79	23.98	-8.19
Hz and	5510	102	AVG	15.79	15.74	23.98	-8.19
Ва Ва	5590	118	AVG	15.97	15.97	23.98	-8.01
50 E	5630	126	AVG	15.99	15.99	23.98	-7.99
	5710	142	AVG	15.96	15.94	23.98	-8.02
	5755	151	AVG	15.97	15.97	30.00	-14.03
	5795	159	AVG	15.93	15.92	30.00	-14.07

Table 7-7. SISO ANT1 40MHz BW (UNII) Maximum Conducted Output Power

(80MHz Iwidth)	Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
(80MH width)	5210	42	AVG	13.22	23.98	-10.76
z (8 dwj	5290	58	AVG	13.48	23.98	-10.50
ΡČ	5530	106	AVG	13.32	23.98	-10.66
5GH Ba	5610	122	AVG	13.42	23.98	-10.56
	5690	138	AVG	13.23	23.98	-10.75
	5775	155	AVG	13.47	30.00	-16.53

Table 7-8. SISO ANT1 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 50 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 59 of 185	
© 2019 PCTEST Engineering Labo	ratory. Inc.			V 8.8 11/19/2018	

SISO Antenna-2 Conducted Output Power Measurements

	Freq [MHz]		Detector	IEEE	Transmission	Mode	Conducted Power Limit	Conducted Power
$\widehat{}$			802.11a	802.11n	802.11ac	[dBm]	Margin [dB]	
÷.	5180	36	AVG	16.48	16.49	16.47	23.98	-7.49
i i i	5200	40	AVG	17.51	17.53	17.53	23.98	-6.45
- P	5220	44	AVG	16.64	16.50	16.41	23.98	-7.34
andwidth)	5240	48	AVG	16.65	16.54	16.54	23.98	-7.33
Ba	5260	52	AVG	16.62	16.61	16.50	23.98	-7.36
N	5280	56	AVG	17.72	17.62	17.64	23.98	-6.26
<u> </u>	5300	60	AVG	16.60	16.57	16.40	23.98	-7.38
(20M	5320	64	AVG	16.47	16.51	16.38	23.98	-7.47
20	5500	100	AVG	16.80	16.66	16.62	23.98	-7.18
) м	5600	120	AVG	16.72	16.63	16.67	23.98	-7.26
Ϊ	5620	124	AVG	16.70	16.54	16.60	23.98	-7.28
Ċ	5720	144	AVG	16.41	16.30	16.38	23.98	-7.57
Ŝ	5745	149	AVG	16.43	16.28	16.27	30.00	-13.57
	5785	157	AVG	17.56	17.38	17.42	30.00	-12.44
	5825	165	AVG	17.62	17.41	17.40	30.00	-12.38

Table 7-9. SISO ANT2 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	IEEE Transm	nission Mode	Conducted Power Limit [dBm]	Conducted Power
				802.11n	802.11ac		Margin [dB]
P (5190	38	AVG	15.60	15.56	23.98	-8.38
0MH idth)	5230	46	AVG	15.97	15.33	23.98	-8.01
(40MH) (width)	5270	54	AVG	15.97	15.31	23.98	-8.01
	5310	62	AVG	15.34	15.29	23.98	-8.64
<u> </u>	5510	102	AVG	15.91	15.82	23.98	-8.07
Ва Ва	5590	118	AVG	15.97	15.58	23.98	-8.01
50 E	5630	126	AVG	15.55	15.58	23.98	-8.40
	5710	142	AVG	15.97	15.99	23.98	-7.99
	5755	151	AVG	15.86	15.82	30.00	-14.14
	5795	159	AVG	15.99	15.80	30.00	-14.01

Table 7-10. SISO ANT2 40MHz BW (UNII) Maximum Conducted Output Power

Hz (80MHz Indwidth)	Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
OM	5210	42	AVG	13.48	23.98	-10.50
l (8	5290	58	AVG	13.36	23.98	-10.62
GHz (Band	5530	106	AVG	13.32	23.98	-10.66
5GH Ba	5610	122	AVG	13.21	23.98	-10.77
	5690	138	AVG	13.21	23.98	-10.77
	5775	155	AVG	13.11	30.00	-16.89

Table 7-11. SISO ANT2 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 60 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	0/2018 – 1/14/2019 Portable Handset		Page 60 of 185	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

MIMO/CDD Maximum Conducted Output Power Measurements

	Freq [MHz]		Detector	Conc	dBm]	Conducted Power Limit	Conducted Power	
~	~			ANT1	ANT2	MIMO	[dBm]	Margin [dB]
는 국	5180	36	AVG	16.54	16.48	19.52	23.98	-4.46
ij	5200	40	AVG	17.70	17.51	20.62	23.98	-3.36
	5220	44	AVG	16.73	16.64	19.70	23.98	-4.28
andwidth)	5240	48	AVG	16.69	16.65	19.68	23.98	-4.30
Ba	5260	52	AVG	16.70	16.62	19.67	23.98	-4.31
N	5280	56	AVG	17.62	17.72	20.68	23.98	-3.30
	5300	60	AVG	16.62	16.60	19.62	23.98	-4.36
(20M	5320	64	AVG	16.62	16.47	19.56	23.98	-4.42
50	5500	100	AVG	16.66	16.80	19.74	23.98	-4.24
) z	5600	120	AVG	16.82	16.72	19.78	23.98	-4.20
Ϊ	5620	124	AVG	16.71	16.70	19.72	23.98	-4.26
Ŭ	5720	144	AVG	16.86	16.41	19.65	23.98	-4.33
2 L	5745	149	AVG	16.97	16.43	19.72	30.00	-10.28
	5785	157	AVG	17.85	17.56	20.72	30.00	-9.28
	5825	165	AVG	17.90	17.62	20.77	30.00	-9.23

Table 7-12. CDD 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
~				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
	5180	36	AVG	16.43	16.49	19.47	23.98	-4.51
<u>vi</u>	5200	40	AVG	17.50	17.53	20.53	23.98	-3.45
5	5220	44	AVG	16.53	16.50	19.53	23.98	-4.45
andwidth)	5240	48	AVG	16.46	16.54	19.51	23.98	-4.47
Ba	5260	52	AVG	16.52	16.61	19.58	23.98	-4.40
	5280	56	AVG	17.44	17.62	20.54	23.98	-3.44
Î	5300	60	AVG	16.50	16.57	19.55	23.98	-4.43
(20MHz	5320	64	AVG	16.45	16.51	19.49	23.98	-4.49
20	5500	100	AVG	16.53	16.66	19.61	23.98	-4.37
	5600	120	AVG	16.66	16.63	19.66	23.98	-4.32
Hz	5620	124	AVG	16.65	16.54	19.61	23.98	-4.37
5G	5720	144	AVG	16.81	16.30	19.57	23.98	-4.41
5	5745	149	AVG	16.80	16.28	19.56	30.00	-10.44
	5785	157	AVG	17.70	17.38	20.55	30.00	-9.45
	5825	165	AVG	17.54	17.41	20.49	30.00	-9.51

Table 7-13. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: 1/14/2019 Portable Handset		Page 61 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019				
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

	Freq [MHz] Channel		Detector	Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power
~				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
÷.	5180	36	AVG	16.40	16.47	19.45	23.98	-4.53
- S	5200	40	AVG	17.43	17.53	20.49	23.98	-3.49
5	5220	44	AVG	16.54	16.41	19.49	23.98	-4.49
ğ	5240	48	AVG	16.40	16.54	19.48	23.98	-4.50
Bandwidth)	5260	52	AVG	16.50	16.50	19.51	23.98	-4.47
N	5280	56	AVG	17.42	17.64	20.54	23.98	-3.44
Ξ.	5300	60	AVG	16.37	16.40	19.40	23.98	-4.58
(20MH	5320	64	AVG	16.52	16.38	19.46	23.98	-4.52
50	5500	100	AVG	16.56	16.62	19.60	23.98	-4.38
	5600	120	AVG	16.70	16.67	19.70	23.98	-4.28
ΗZ	5620	124	AVG	16.54	16.60	19.58	23.98	-4.40
5G	5720	144	AVG	16.77	16.38	19.59	23.98	-4.39
Ŋ	5745	149	AVG	16.79	16.27	19.55	30.00	-10.45
	5785	157	AVG	17.72	17.42	20.58	30.00	-9.42
	5825	165	AVG	17.68	17.40	20.55	30.00	-9.45

Table 7-14. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

	Freq [MHz] Channel		Detector	Conc	Conducted Power [dBm]			Conducted Power
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
OMHz idth)	5190	38	AVG	15.63	15.60	18.63	23.98	-5.35
0MH; idth)	5230	46	AVG	15.93	15.97	18.96	23.98	-5.02
lo: pi	5270	54	AVG	15.98	15.97	18.99	23.98	-4.99
(4) 14	5310	62	AVG	15.79	15.34	18.58	23.98	-5.40
łz (nd	5510	102	AVG	15.79	15.91	18.86	23.98	-5.12
GF Ba	5590	118	AVG	15.97	15.97	18.98	23.98	-5.00
50	5630	126	AVG	15.99	15.55	18.79	23.98	-5.19
	5710	142	AVG	15.96	15.97	18.98	23.98	-5.00
	5755	151	AVG	15.97	15.86	18.93	30.00	-11.07
	5795	159	AVG	15.93	15.99	18.97	30.00	-11.03

Table 7-15. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type: 1/14/2019 Portable Handset		Page 62 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019				
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018				

	Freq [MHz]		Detector	Conducted Power [dBm]		Conducted Power Limit	Conducted Power	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
P C	5190	38	AVG	15.69	15.56	18.64	23.98	-5.34
0MH; idth)	5230	46	AVG	15.99	15.33	18.68	23.98	-5.30
Di bi	5270	54	AVG	15.83	15.31	18.59	23.98	-5.39
(4) dv	5310	62	AVG	15.79	15.29	18.56	23.98	-5.42
	5510	102	AVG	15.74	15.82	18.79	23.98	-5.19
G Ва	5590	118	AVG	15.97	15.58	18.79	23.98	-5.19
50	5630	126	AVG	15.99	15.58	18.80	23.98	-5.18
	5710	142	AVG	15.94	15.99	18.98	23.98	-5.00
	5755	151	AVG	15.97	15.82	18.91	30.00	-11.09
	5795	159	AVG	15.92	15.80	18.87	30.00	-11.13

Table 7-16. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power
E C				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
(80MH: width)	5210	42	AVG	13.22	13.48	16.36	23.98	-7.62
(8) Avi	5290	58	AVG	13.48	13.36	16.43	23.98	-7.55
GHz (Band	5530	106	AVG	13.32	13.32	16.33	23.98	-7.65
5G Bź	5610	122	AVG	13.42	13.21	16.33	23.98	-7.65
	5690	138	AVG	13.23	13.21	16.23	23.98	-7.75
	5775	155	AVG	13.47	13.11	16.30	30.00	-13.70

Table 7-17. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	/2019 Portable Handset		Page 63 of 185	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019				
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

Note:

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 16.43 dBm for Antenna-1 and 16.49 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(16.43 dBm + 16.49 dBm) = (43.95 mW + 44.57 mW) = 88.52 mW = 19.47 dBm

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:			Dage 64 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019			Page 64 of 185	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018				

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 65 of 195	
1M1811230205-06.ZNF	11230205-06.ZNF 11/19/2018 – 1/14/2019 Portable Handset			Page 65 of 185	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				

SISO Antenna-1 Power Spectral Density Measurements

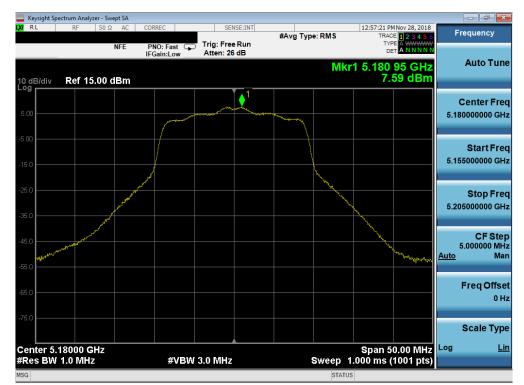
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	7.82	11.0	-3.18
	5200	40	а	6	9.01	11.0	-1.99
	5240	48	а	6	8.08	11.0	-2.92
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	7.59	11.0	-3.41
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	8.92	11.0	-2.08
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	7.87	11.0	-3.13
	5190	38	n (40MHz)	13.5/15 (MCS0)	3.60	11.0	-7.40
	5230	46	n (40MHz)	13.5/15 (MCS0)	3.78	11.0	-7.22
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.45	11.0	-12.45
	5260	52	а	6	7.37	11.0	-3.63
	5280	56	а	6	8.36	11.0	-2.64
	5320	64	а	6	7.41	11.0	-3.59
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	6.95	11.0	-4.05
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	8.22	11.0	-2.78
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	7.46	11.0	-3.54
	5270	54	n (40MHz)	13.5/15 (MCS0)	2.94	11.0	-8.06
	5310	62	n (40MHz)	13.5/15 (MCS0)	2.83	11.0	-8.17
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-2.15	11.0	-13.15
	5500	100	а	6	7.53	11.0	-3.47
	5600	120	а	6	7.92	11.0	-3.08
	5720	144	а	6	8.08	11.0	-2.92
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	7.10	11.0	-3.90
O	5600	120	n (20MHz)	6.5/7.2 (MCS0)	7.49	11.0	-3.51
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	7.71	11.0	-3.29
an	5510	102	n (40MHz)	13.5/15 (MCS0)	2.69	11.0	-8.31
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	3.31	11.0	-7.69
	5710	142	n (40MHz)	13.5/15 (MCS0)	3.41	11.0	-7.59
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-2.73	11.0	-13.73
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-2.65	11.0	-13.65
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-5.17	11.0	-16.17

Table 7-18. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT1

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	4/2019 Portable Handset		Dogo 66 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019			Page 66 of 185
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018			

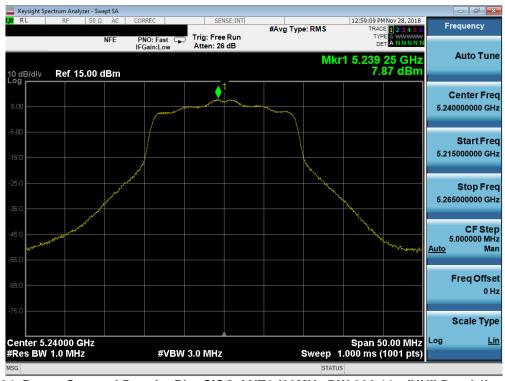
	ectrum Analyzer - Swe										
LXIRL	RF 50 Ω	AC CO	RREC	SEN	E:INT	#Avg Typ	e: RMS		Nov 27, 2018	Fr	equency
		NFE P	NO: Fast 😱 Gain:Low	Trig: Free Atten: 26				TYP DE			A
10 dB/div Log	Ref 15.00 d	IBm					Mkr	1 5.180 7.9	25 GHz 82 dBm		Auto Tune
5.00					1	-Ma.					enter Freq
-5.00											
-15.0										5.15	Start Freq
-25.0						Ľ	A A A				
-35.0										5.20	Stop Freq
-45.0	all and a state of the state of	wand					man				CF Step
-55.0	and the second second							Magan Hermony and a second	and the second	5 <u>Auto</u>	.000000 MHz Man
-65.0										F	Freq Offset
-75.0											0 Hz
											Scale Type
	18000 GHz			0.0.041				Span 5	0.00 101112	Log	<u>Lin</u>
#Res BW	1.0 IVIHz		#VBW	3.0 MHz					1001 pts)		
MSG							STATUS				

Plot 7-79. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 36)


Plot 7-80. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 67 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 67 of 185
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

LXI RL											- 6 ×
	RF 50 Ω	AC NFE	CORREC PNO: Fast IFGain:Low			#Avg Typ	e: RMS	TRAC	M Nov 27, 2018 E 1 2 3 4 5 6 E A WWWWW T A N N N N N	Fr	equency
10 dB/div	Ref 15.00	dBm	II Guilleon				Mkr	1 5.239 8.	10 GHz 08 dBm		Auto Tune
5.00				<u> </u>	1	and the second					enter Freq 0000000 GHz
-5.00										5.21	Start Free
-25.0										5.26	Stop Free
-45.0	and the family and th							S Spectra Property Co	- MALINA MALINA	5 <u>Auto</u>	CF Step 000000 MH: Mar
-65.0										ŀ	Freq Offse 0 Ha
-75.0 Center 5.24								Span 5	V.VV WII 12	Log	Scale Type <u>Lir</u>
#Res BW 1	.0 MHz		#VL	3W 3.0 MHz			Sweep 1		1001 pts)		


Plot 7-82. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 69 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 68 of 185
© 2019 PCTEST Engineering Laboration	V 8.8 11/19/2018			

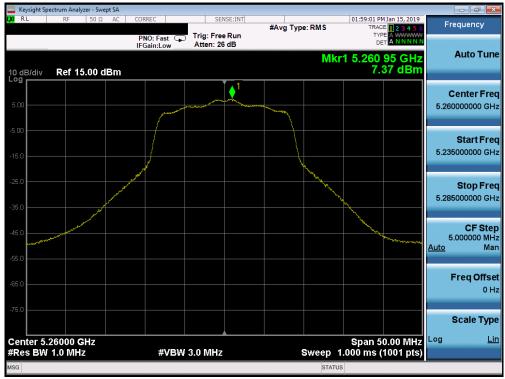
🔤 Keysight Spectrum Analyzer - Sv					- ē 🔀
LX RL RF 50 Ω	2 AC CORREC	SENSE:INT	#Avg Type: RMS	12:58:17 PM Nov 28, 2018 TRACE 1 2 3 4 5 6	Frequency
	NFE PNO: Fast C IFGain:Low	Trig: Free Run Atten: 26 dB			
10 dB/div Ref 15.00	dBm		Mki	r1 5.200 65 GHz 8.92 dBm	Auto Tune
5.00	سيبسر		and the second of the second o		Center Freq 5.20000000 GHz
-5.00					
-15.0					Start Freq 5.175000000 GHz
-25.0					Stop Freq
-35.0				Market and the second s	5.225000000 GHz
-45.0				. My House Share and a second	CF Step 5.000000 MHz <u>Auto</u> Man
-65.0					Freq Offset
-75.0					
				0 50.00 MU-	Scale Type
Center 5.20000 GHz #Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep	Span 50.00 MHz 1.000 ms (1001 pts)	
MSG			STATU	S	

Plot 7-83. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

Plot 7-84. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 60 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 69 of 185
© 2019 PCTEST Engineering Labor	V 8.8 11/19/2018			

Plot 7-85. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)


Plot 7-86. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 70 of 185
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018			

Plot 7-87. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

Plot 7-88. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 71 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 71 of 185
2019 PCTEST Engineering Laboratory. Inc.				V 8.8 11/19/2018

🔤 Keysight Spectrum Analyzer - Swept SA 👘					
LX RL RF 50Ω AC	CORREC	SENSE:INT	#Avg Type: RM		23456 Frequency
		rig: Free Run .tten: 26 dB		DET A	5 GHz Auto Tune
10 dB/div Ref 15.00 dBm				8.36	dBm
5.00					Center Freq 5.280000000 GHz
-5.00					Start Free 5.255000000 GHz
-25.0				The second se	Stop Fred 5.305000000 GHz
-45.0					CF Step 5.000000 MH <u>Auto</u> Mar
-65.0					Freq Offse 0 H
-75.0					Scale Type
Center 5.28000 GHz #Res BW 1.0 MHz	#VBW 3.0) MHz	Swee	Span 50.0 p 1.000 ms (10	00 MHz Log Lin 01 pts)
MSG				STATUS	

Plot 7-89. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-90. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 72 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 72 of 185
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

Plot 7-91. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

Plot 7-92. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 72 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 73 of 185
© 2019 PCTEST Engineering Laborat	V 8.8 11/19/2018			

Plot 7-93. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-94. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 74 of 195
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	Page 74 of 185
© 2019 PCTEST Engineering Laborat	V 8.8 11/19/2018		

								×			
L <mark>XI</mark> RL	RF 50 Ω	AC CO	RREC		SE:INT	#Avg Typ	e: RMS	TRA	M Jan 15, 2019 CE 1 2 3 4 5 6	Frequenc	y
		P	NO: Fast 🖵 Gain:Low	Trig: Free Atten: 26					PE A WWWWW ET A N N N N N		
							Μ	kr1 5.31	2 2 GHz	Auto	Tune
10 dB/div Log	Ref 15.00 c	dBm						2.	83 dBm		
					. 1					Center	Freq
5.00				~~~	<u> </u>					5.31000000) GHz
-5.00			and the second		/ marine	many					
-5.00										Start	Freq
-15.0										5.26000000) GHz
							1				
-25.0			/				l.			Stop	
-35.0		/					λ			5.36000000) GHz
-45.0	and a second second	and the second second					hun			10.00000	Step MHz
-55.0	440									<u>Auto</u>	Man
-55.0											
-65.0										Freq O	offset 0 Hz
											UHZ
-75.0										Scale	Type
	enter 5.31000 GHz Span 100.0 MHz Span 100.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)						Log	Lin			
			#VBW	5.0 WHZ			Sweep		(Too Phis)		

Plot 7-95. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)


Plot 7-96. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Page 75 of 185
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset	table Handset	
© 2019 PCTEST Engineering Labora	V 8.8 11/19/2018			

Plot 7-97. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 100)

Plot 7-98. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) - Ch. 120)

FCC ID: ZNFV450PM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Dogo 76 of 195	
1M1811230205-06.ZNF	11/19/2018 - 1/14/2019	Portable Handset		Page 76 of 185	
© 2019 PCTEST Engineering Labo	V 8.8 11/19/2018				