

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D750V3 – SN: 1161	07/12/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D835V2-4d133_Jul17

S

s

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Object

DAE4

CALIBRATION CERTIFICATE PNV 8/3/217 z Extended BN 7/18/2018 D835V2 - SN:4d133 QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 11, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainlies with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration SN: 104778 04-Apr-17 (No. 217-02521/02522) Power meter NRP Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 04-Apr-17 (No. 217-02522) Power sensor NRP-Z91 SN: 103245 Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 31-May-17 (No. EX3-7349_May17) May-18 Reference Probe EX3DV4 SN: 7349 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 Scheduled Check Secondary Standards 1D # Check Date (in house)

SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power meter EPM-442A In house check: Oct-18 Power sensor HP 8461A 07-Oct-15 (in house check Oct-16) SN: US37292783 In house check: Oct-18 07-Oct-15 (in house check Oct-16) Power sensor HP 8481A SN: MY41092317 in house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-17 Name Function Signature Calibrated by: Johannes Kurikka Laboratory Technician gen ihm Katja Pokovic **Technical Manager** Approved by:

issued: July 12, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Jul17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.52 W/kg ± 17.0 % (k=2)
	······	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.54 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.41 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.16 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 2.9 jΩ
Return Loss	- 30.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 Ω - 6.8 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

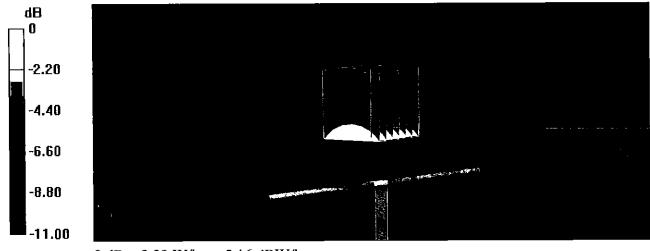
Manufactured by	SPEAG
Manufactured on	July 22, 2011

DASY5 Validation Report for Head TSL

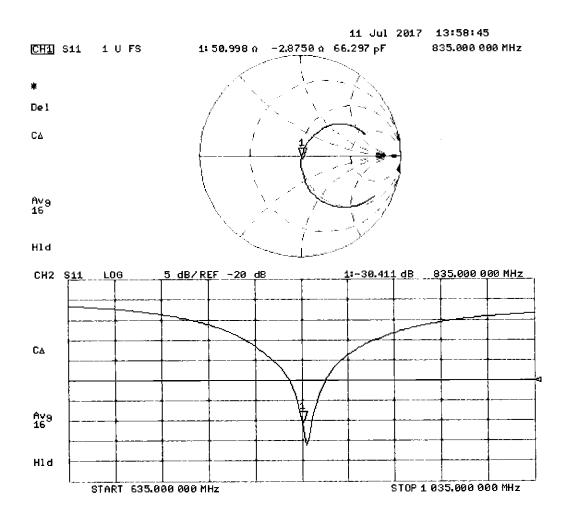
Date: 11.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.84 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.28 W/kg

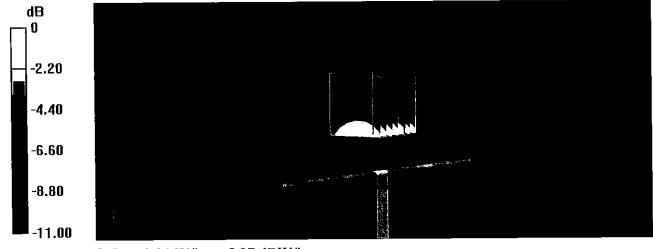
0 dB = 3.28 W/kg = 5.16 dBW/kg

DASY5 Validation Report for Body TSL

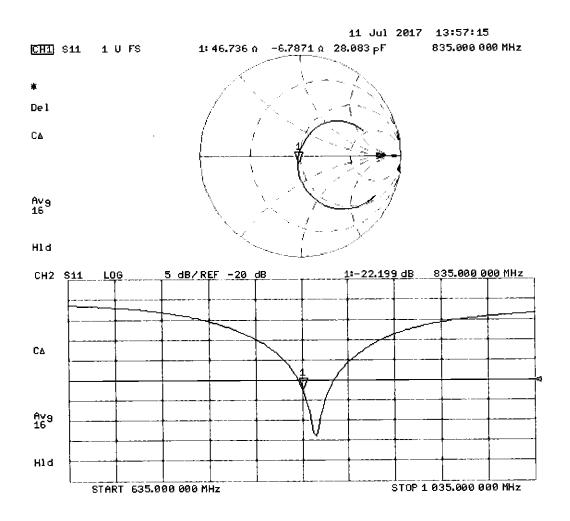
Date: 11.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.2, 10.2, 10.2); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.25 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.21 W/kg

0 dB = 3.21 W/kg = 5.07 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D835V2 - SN: 4d133

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

07/11/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

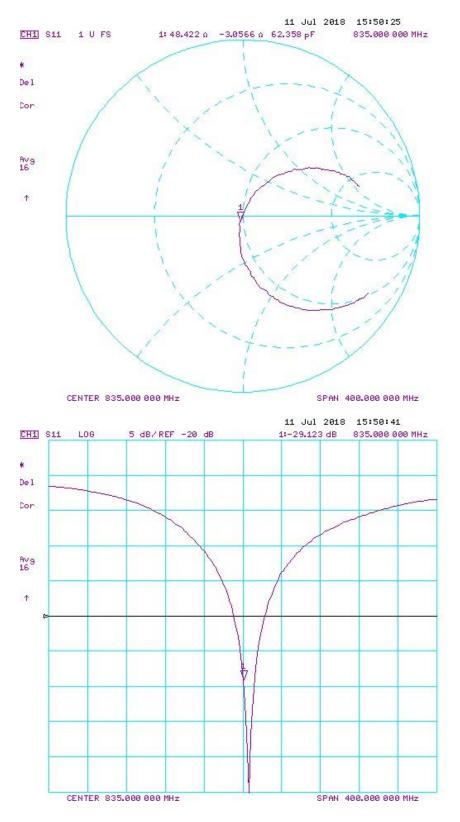
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/9/2017	Annual	11/9/2018	1450
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	ES3DV3	SAR Probe	3/27/2018	Annual	3/27/2019	3347

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

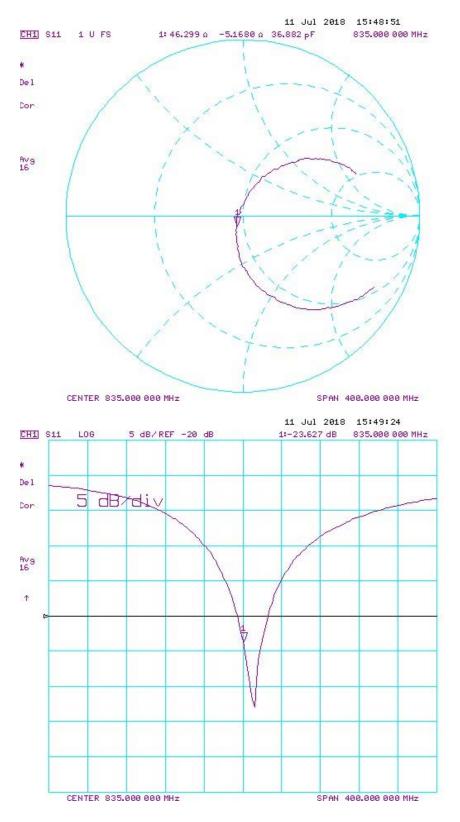
Object:	Date Issued:	Dogo 1 of 4
D835V2 – SN: 4d133	07/11/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 23.0 dBm	dBm	(%)	W/kg @ 23.0 dBm	(10g) W/kg @ 23.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/11/2017	7/11/2018	1.196	1.904	2.020	6.09%	1.220	1.310	7.38%	51.0	48.4	2.6	-2.9	-3.1	0.2	-30.4	-29.1	4.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	(0()	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	(40-) Million (2)	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/11/2017	7/11/2018	1.196	1.882	2.030	7.86%	1.232	1.340	8.77%	46.7	46.3	0.4	-6.8	-5.2	1.6	-22.2	-23.6	-6.30%	PASS

Object:	Date Issued:	Daga 2 of 4
D835V2 – SN: 4d133	07/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D835V2 – SN: 4d133	07/11/2018	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4
D835V2 – SN: 4d133	07/11/2018	Page 4 of 4

S Schweizerlischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

PC Test Client Certificate No: D1750V2-1148 May17 CALIBRATION CERTIFICATE Object D1750V2 - SN:1148 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz 05-09-2017 05-09-201 May 09, 2017 Calibration date: 승규는 승규는 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 7349 31-Dec-16 (No. EX3-7349_Dec16) Dec-17 DAE4 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 Secondary Standards ID # Check Date (In house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) in house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) in house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-17

 Name
 Function
 Signature

 Calibrated by:
 Claudio Leubler
 Laboratory Technician

 Approved by:
 Kalja Pokovic
 Technical Manager

Certificate No: D1750V2-1148_May17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 0.7 jΩ
Return Loss	- 42.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7 Ω - 0.5 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.223 ns
Electrical Beilay (one allocation)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

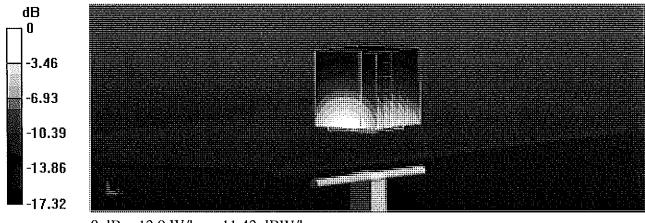
Manufactured by	SPEAG
Manufactured on	September 30, 2014

DASY5 Validation Report for Head TSL

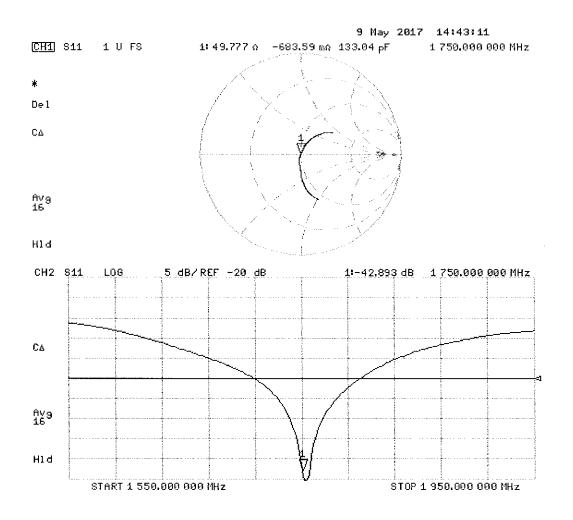
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 13.9 W/kg

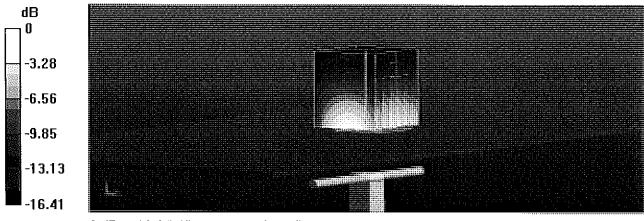
0 dB = 13.9 W/kg = 11.43 dBW/kg

DASY5 Validation Report for Body TSL

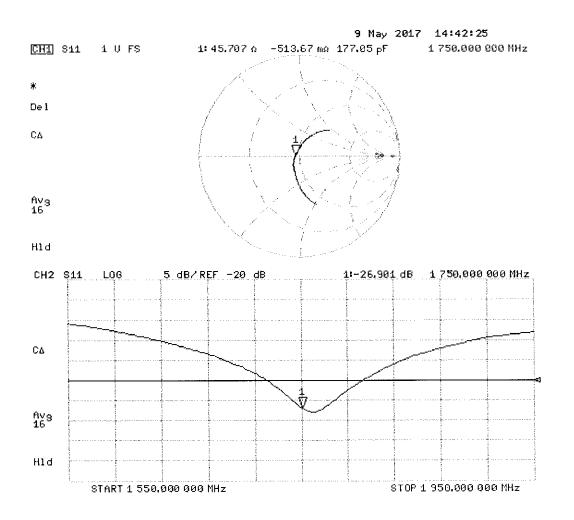
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.49 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1750V2 - SN: 1148

May 09, 2018

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Pasternack	NC-100	Torque Wrench	4/18/2018	Annual	4/18/2019	1445
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

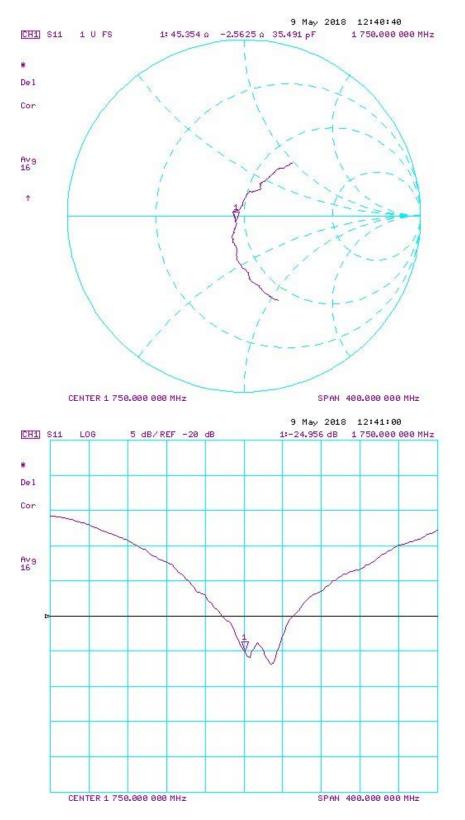
Object:	Date Issued:	Page 1 of 4	
D1750V2 – SN: 1148	05/09/2018	Page 1 of 4	

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
5/9/2017	5/9/2018	1.223	3.64	3.59	-1.37%	1.93	1.91	-1.04%	49.8	49.0	0.8	-0.7	0.1	0.8	-42.9	-38.7	9.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		BODY SAR (1g)	(9/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/9/2017	5/9/2018	1.223	3.7	3.88	4.86%	1.98	2.06	4.04%	45.7	45.4	0.3	-0.5	-2.6	2.1	-26.9	-25.0	7.20%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 – SN: 1148	05/09/2018	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D1750V2 – SN: 1148	05/09/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1750V2 – SN: 1148	05/09/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SSchweizerischer KalibrierdienstCService sulsse d'étalonnageServizio svizzero di taraturaSSwiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D1900V2-5d149_Jul17

CALIBRATION CERTIFICATE

Object	D1900V2 - SN;50	1149		
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz BN X13/2017	
Calibration date:	July 11, 2017		ove 700 MHz BN 8/3/2017 Extended BN 7/18	 201
	-	ional standards, which realize the physical un robability are given on the following pages an	its of measurements (SI).	
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%,	
Calibration Equipment used (M&	TE critical for calibration)			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	1
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Altenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	
Secondary Standards	1D #	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN; GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18	
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17	
	Name	Function	Signature	
Calibrated by:	Johannes Kurikka	Laboratory Technician	gue len	
Approved by:	Kalja Pokovic	Technical Manager	Jel Kg	
This calibration portificate shall r	not he remoduled event i	n full without written approval of the laborator	issued: July 12, 2017 v.	

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.39 mho/ m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω + 5.3 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 7.3 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

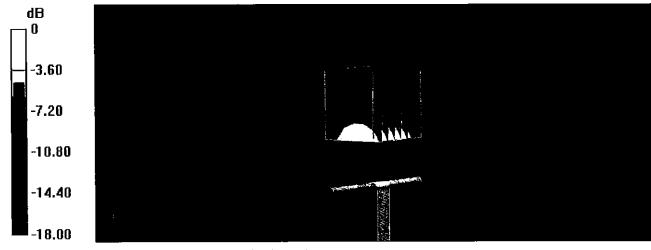
Manufactured by	SPEAG				
Manufactured on	March 11, 2011				

DASY5 Validation Report for Head TSL

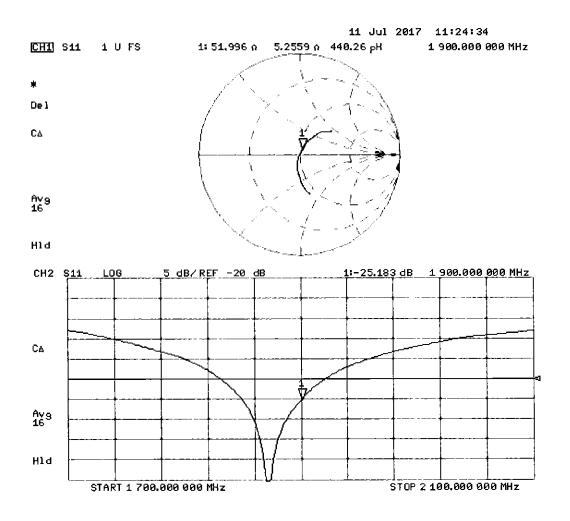
Date: 11.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.6 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 14.7 W/kg

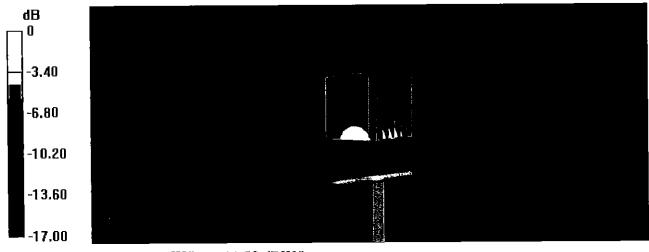
0 dB = 14.7 W/kg = 11.67 dBW/kg

DASY5 Validation Report for Body TSL

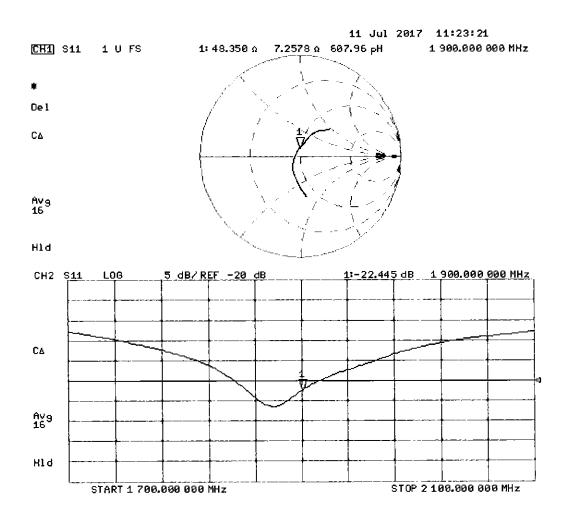
Date: 11.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.5 S/m; ϵ_r = 54.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1900V2 - SN: 5d149

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

07/11/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

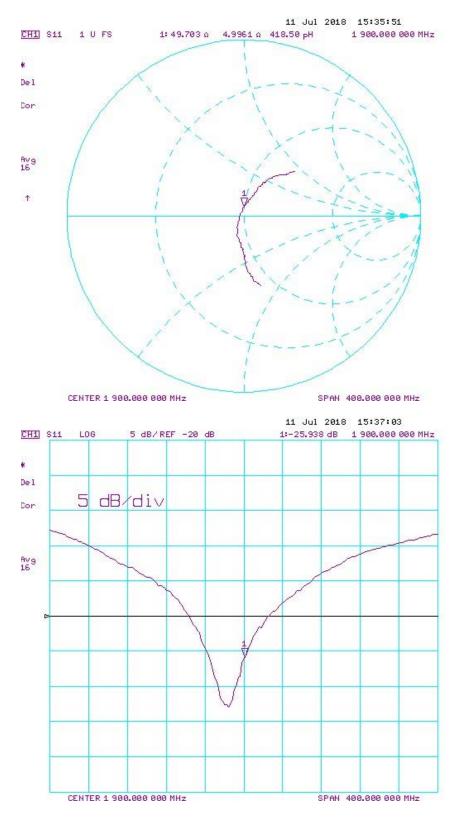
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/22/2018	Annual	5/22/2019	859
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
SPEAG	EX3DV4	SAR Probe	5/22/2018	Annual	5/22/2019	7406

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

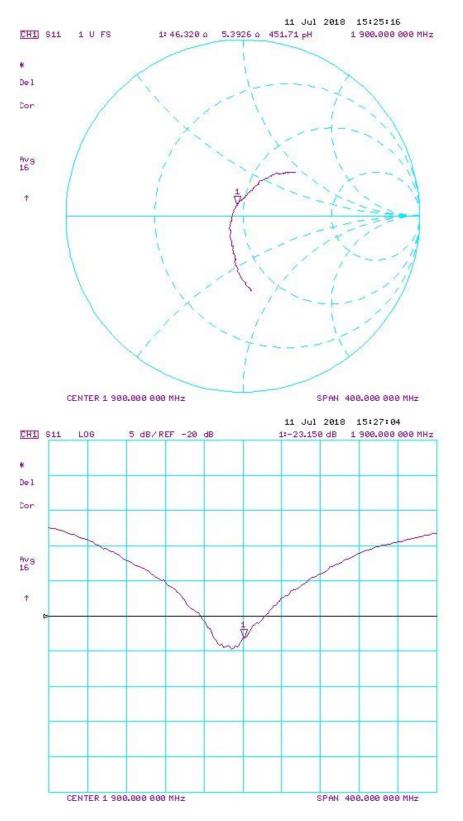
Object:	Date Issued:	Page 1 of 4	
D1900V2 – SN: 5d149	07/11/2018	Page 1 01 4	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/11/2017	7/11/2018	1.196	3.96	4.11	3.79%	2.08	2.12	1.92%	52.0	49.7	2.3	5.3	5.0	0.3	-25.2	-25.9	-2.80%	Pass
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(9/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/11/2018	7/11/2018	1.196	4.01	4.28	6.73%	2.13	2.19	2.82%	48.4	46.3	2.1	7.3	5.4	1.9	-22.4	-23.2	-3.60%	PASS

Object:	Date Issued:	Daga 2 of 4
D1900V2 – SN: 5d149	07/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D1900V2 – SN: 5d149	07/11/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1900V2 – SN: 5d149	07/11/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION	CERTIFICAT	Ε	
Object	D2300V2 - SN:	1073	
Calibration procedure(s)	QA CAL-05.v9 Calibration proc	edure for dipole validation kits al	γPN bove 700 MHz 8/9/16
Calibration date:	July 25, 2016		bove 700 MHz 8/9/16 Extended 1/2917
This calibration certificate docun The measurements and the unc	nents the traceability to na ertainties with confidence	ational standards, which realize the physical L probability are given on the following pages a	units of measurements (SI).
		ory facility: environment temperature (22 \pm 3)	
Calibration Equipment used (M&			
Primary Standards	ID #	Cal Date (Certificate No.)	
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16
Secondary Standards	ID #	Check Date (in house)	
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Calibrated by:	Name Michael Weber	Function Laboratory Technician	Signature

Approved by:

Technical Manager

Issued: July 26, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D2300V2-1073_Jul16

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.69 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	48.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.85 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 4.9 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 4.1 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.171 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

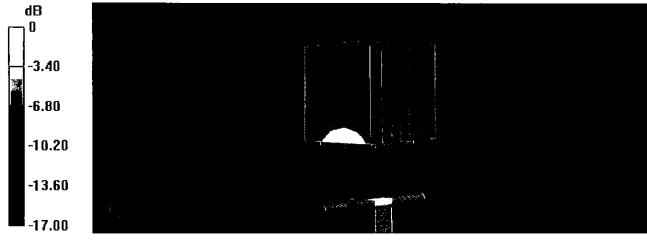
Manufactured by	SPEAG
Manufactured on	November 16, 2015

DASY5 Validation Report for Head TSL

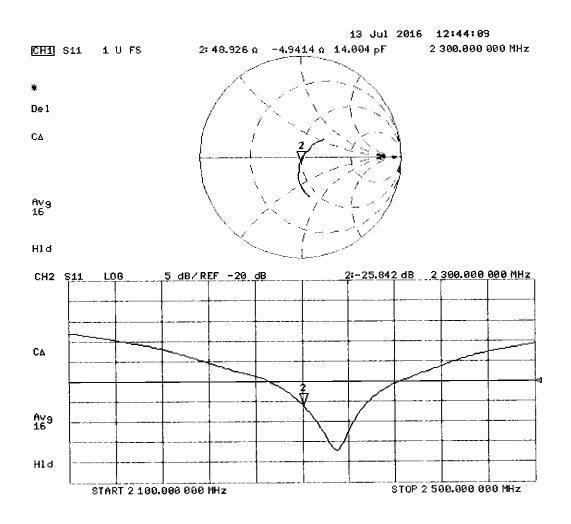
Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.69$ S/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.9 W/kg Maximum value of SAR (measured) = 19.8 W/kg

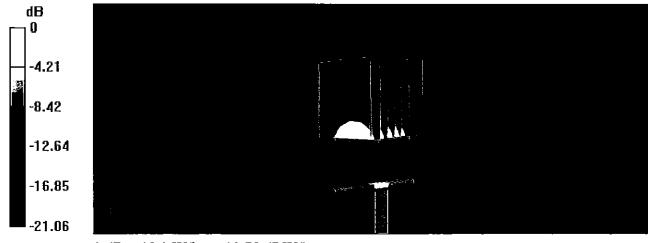
0 dB = 19.8 W/kg = 12.97 dBW/kg

DASY5 Validation Report for Body TSL

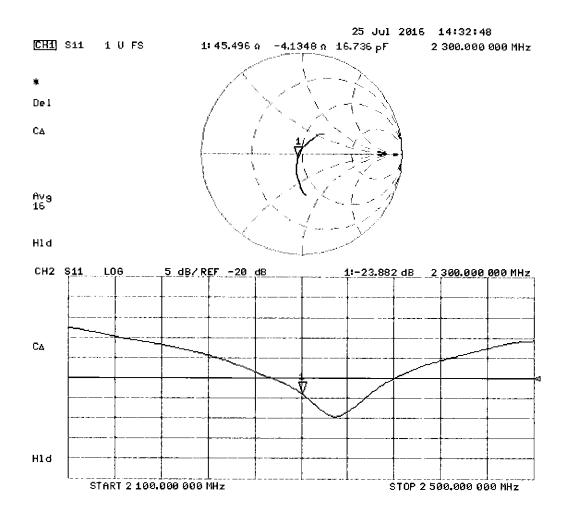
Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 104.8 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.85 W/kg Maximum value of SAR (measured) = 19.0 W/kg

0 dB = 19.0 W/kg = 12.79 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2300V2 - SN: 1073

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

July 24, 2017

Description:

SAR Validation Dipole at 2300 MHz.

Calibration Equipment used:

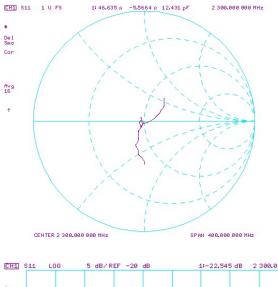
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/14/2016	Annual	9/14/2017	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	9/19/2016	Annual	9/19/2017	3287
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK-

Object:	Date Issued:	Page 1 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 1 01 4

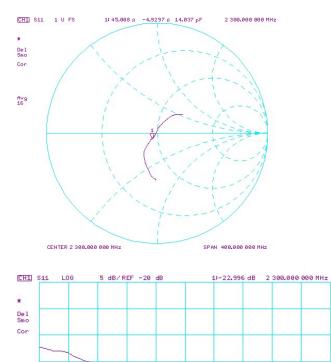
DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	W/кg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/25/2016	7/24/2017	1.171	4.86	5.06	4.12%	2.34	2.40	2.56%	48.9	46.6	2.3	-4.9	-5.6	0.7	-25.8	-22.5	12.80%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/25/2016	7/24/2017	1.171	4.81	4.63	-3.74%	2.32	2.18	-6.03%	45.5	45.0	0.5	-4.1	-4.9	0.8	-23.9	-23.0	3.80%	PASS


Object:	Date Issued:	Page 2 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2300V2 – SN: 1073	07/24/2017	Fage 5 01 4

1

Av9 16

CENTER 2 300.000 000 MHz

Impedance & Return-Loss Measurement Plot for Body TSL

SPAN 400.000 000 MHz

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kallbrlerdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug17

Object	D2450V2 - SN:7	19 of the second second	
			Priv
Calibration procedure(s)	QA CAL-05.v9	Aktan Alah Marin	
		dure for dipole validation kits abo	ove 700 MHz 8/27
	11년 48년 동네가 한다.		Extende
			Rai
Calibration date:	August 17, 2017	· 我们就是你说,你可能是可能的。"	(DNC)
			ove 700 MHz 8/27 Extende BN 7/19/2
This calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical un	nits of measurements (SI).
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%
Calibration Equipment used (M&	FE critical for calibration)		
	lD #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
Power meter NRP			
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.3 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω + 7.0 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 8.1 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

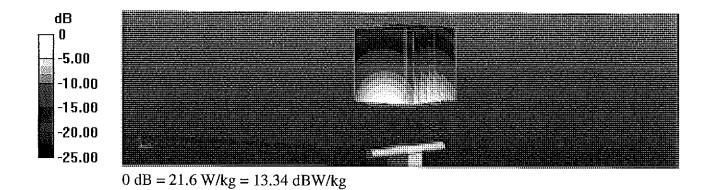
Manufactured by	SPEAG
Manufactured on	September 10, 2002

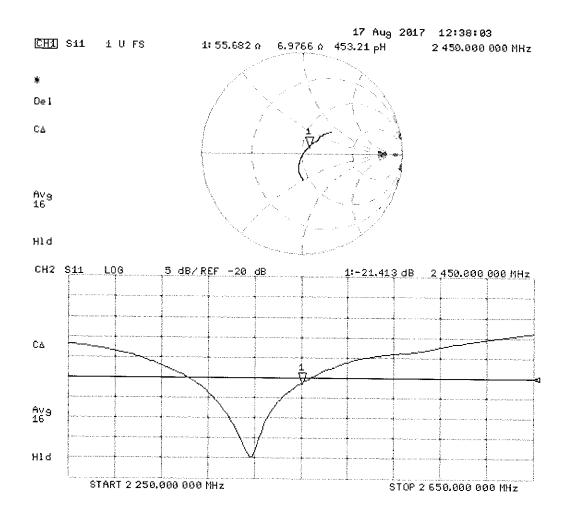
DASY5 Validation Report for Head TSL

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

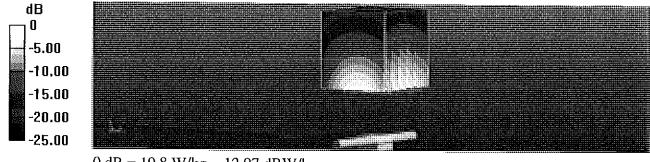
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 21.6 W/kg

DASY5 Validation Report for Body TSL

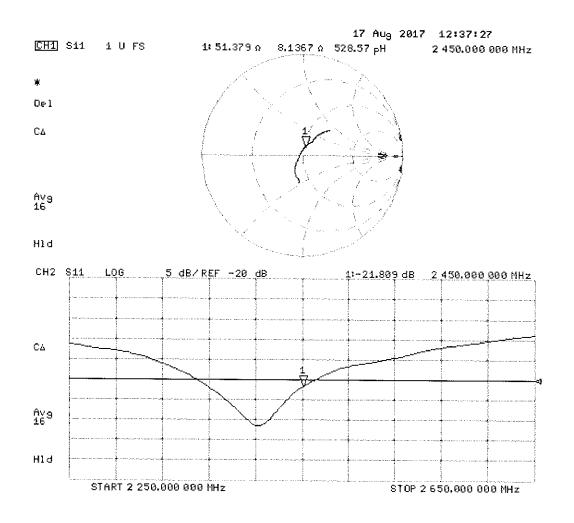
Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.0 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.2 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 719

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

07/18/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

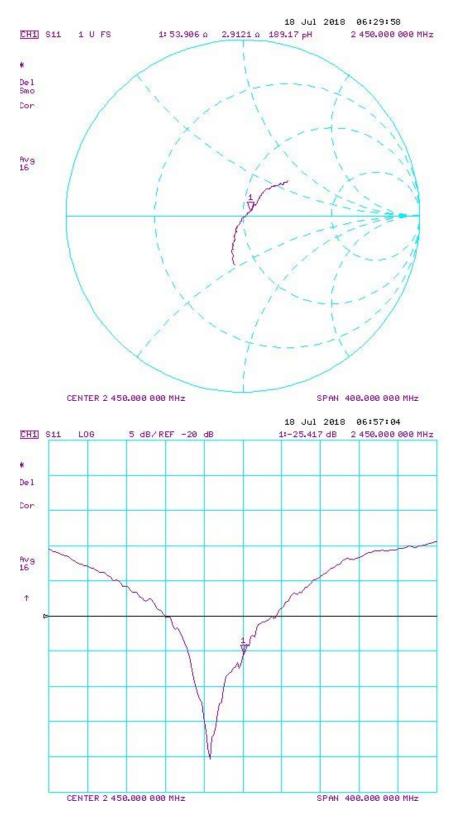
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/9/2017	Annual	8/9/2018	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

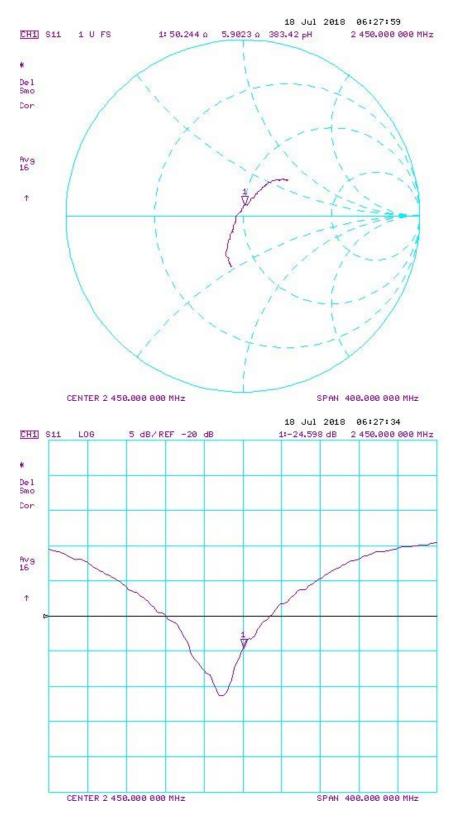
Object:	Date Issued:	Dogo 1 of 4
D2450V2 – SN: 719	07/18/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
8/17/2017	7/18/2018	1.150	5.19	5.46	5.20%	2.43	2.51	3.29%	55.7	53.9	1.8	7.0	2.9	4.1	-21.4	-25.4	-18.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) Million (2)	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/17/2017	7/18/2018	1.150	5.01	5.19	3.59%	2.37	2.38	0.42%	51.4	50.2	1.2	8.1	5.9	2.2	-21.8	-24.6	-12.80%	PASS

Object:	Date Issued:	Daga 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D2450V2 – SN: 719	07/18/2018	Faye 4 01 4	

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D2450V2-797_Sep17

Object	D2450V2 - SN:7	97	
Calibration procedure(s)	QA CAL-05.v9	dure for dipole validation kits abo	ove 700 MHz کرد کر رواوع
	Calibration proce	dure for upple valuation kits abo	
			(olo s
Calibration date:	September 11, 2	017	· · ·
his calibration contificate docum	onto the treeschilling as a		
he measurements and the unce	ents the traceability to hat	ional standards, which realize the physical un probability are given on the following pages ar	nts of measurements (SI).
II calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	,	Cal Date (Certificate No.)	Schodulod Calibration
imary Standards	TE critical for calibration)	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration
rimary Standards ower meter NRP	ID #	04-Apr-17 (No. 217-02521/02522)	Apr-18
imary Standards ower meter NRP ower sensor NRP-Z91	ID # SN: 104778	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	ID # SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 AE4 econdary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 May-18 Mar-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
rimary Standards lower meter NRP lower sensor NRP-Z91 lower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 AE4 lecondary Standards lower meter EPM-442A lower sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: 6B37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator ype-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
rimary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No.	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Ref generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 AE4 <u>econdary Standards</u> ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0258) 31-May-17 (No. 217-0258) 31-May-17 (No. 217-0258) 31-May-10 (No. 217-0258) 31-May-10 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Regenerator R&S SMT-06 Retwork Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 217-0259) 31-May-17 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 letwork Analyzer HP 8753E Calibrated by:	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-0258) 31-May-17 (No. 217-0258) 31-May-17 (No. 217-0258) 31-May-10 (No. 217-0258) 31-May-10 (No. 2	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-797_Sep17

-MR(

CCREDIT

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

С S

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	· · ·
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

à.

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k≃2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

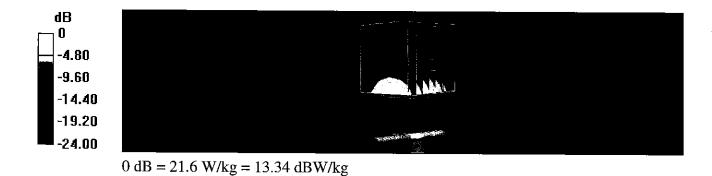
Manufactured by	SPEAG	
Manufactured on	January 24, 2006	

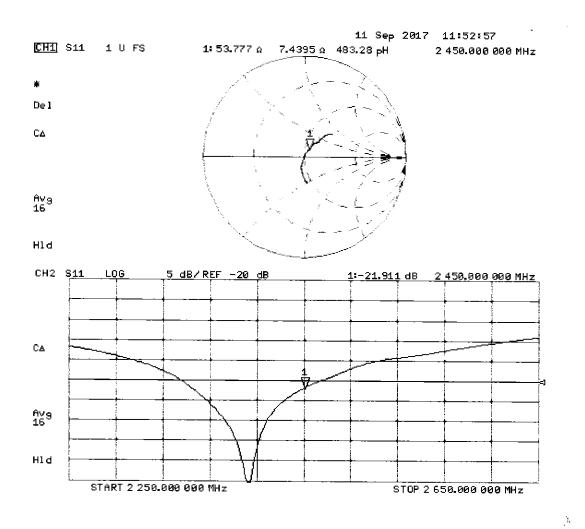
DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

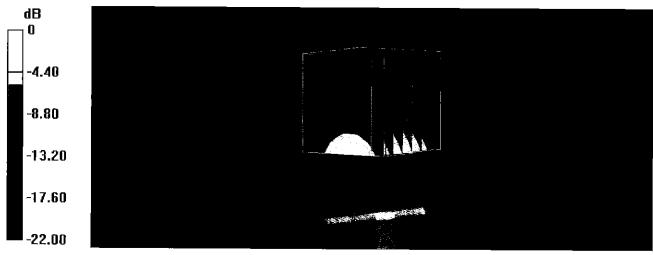
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg

DASY5 Validation Report for Body TSL

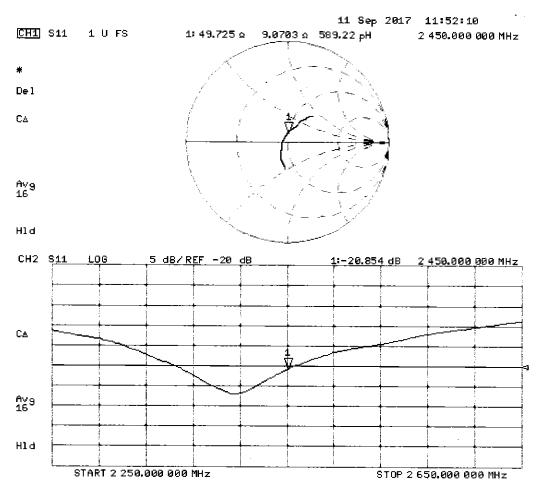
Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

i.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CRED

S

С

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D2600V2-1071_Sep16

		TIFICATE

Object	D2600V2 - SN:1	071	
			BN
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits above	700 MHz 09-28-20
			Erronde
Calibration date:	September 13, 2	016	BN 700 MHz 09-28-201 Extende 9/2011 56
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical units of probability are given on the following pages and are ry facility: environment temperature (22 \pm 3)°C and	measurements (SI). Part of the certificate.
Calibration Equipment used (M&T	FE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	e Wr
Approved by:	Katja Pokovic	Technical Manager	CUL
	the reproduced ever-the	full without written approval of the laboratory.	Issued: September 13, 2016

Certificate No: D2600V2-1071_Sep16

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Callbration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
CAll atolugou otor le oni (le g) el neua re-	Contaition	
SAR measured	250 mW input power	6.45 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.1 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.9 Ω - 6.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 2.1 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

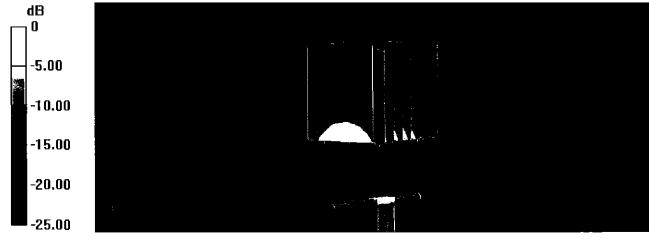
Manufactured by	SPEAG
Manufactured on	July 17, 2013

DASY5 Validation Report for Head TSL

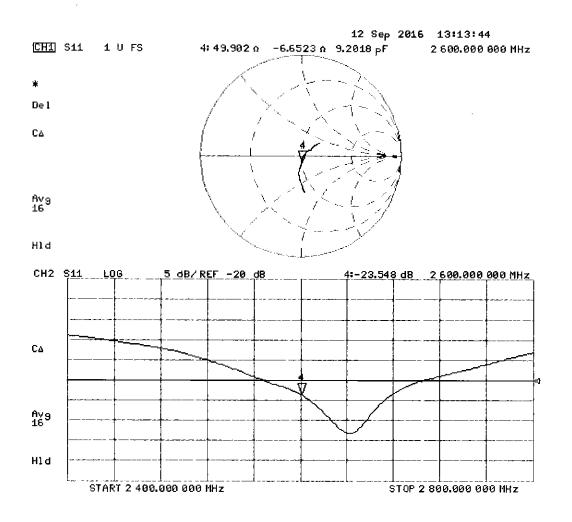
Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.05$ S/m; $\varepsilon_r = 37.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kg Maximum value of SAR (measured) = 24.6 W/kg

0 dB = 24.6 W/kg = 13.91 dBW/kg

DASY5 Validation Report for Body TSL

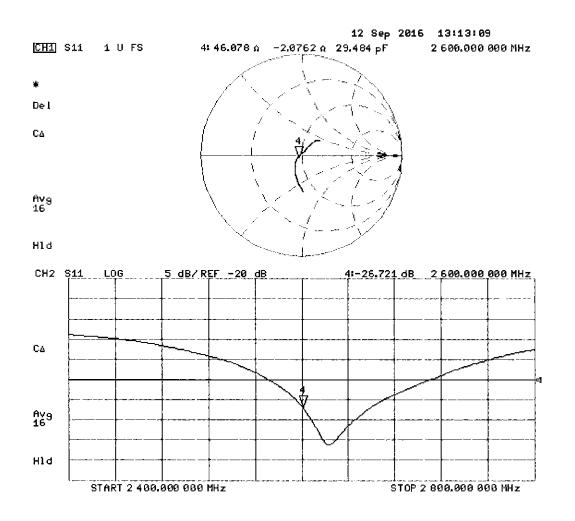
Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 23.3 W/kg

0 dB = 23.3 W/kg = 13.67 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2600V2 - SN: 1071

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

09/07/2017

Description:

SAR Validation Dipole at 2600 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15\$1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annual	7/13/2018	1322
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	EX3DV4	SAR Probe	7/17/2017	Annual	7/17/2018	7410
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A

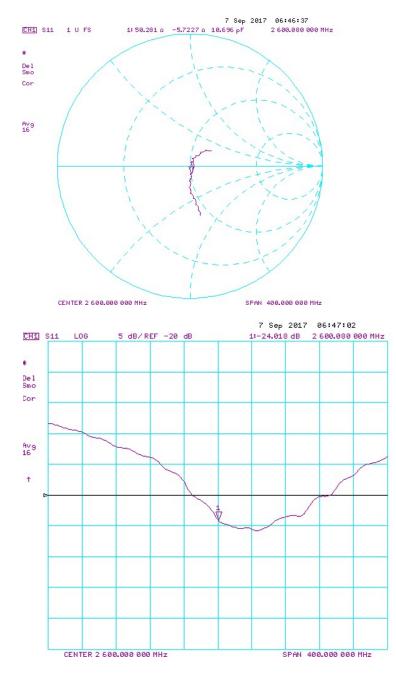
Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

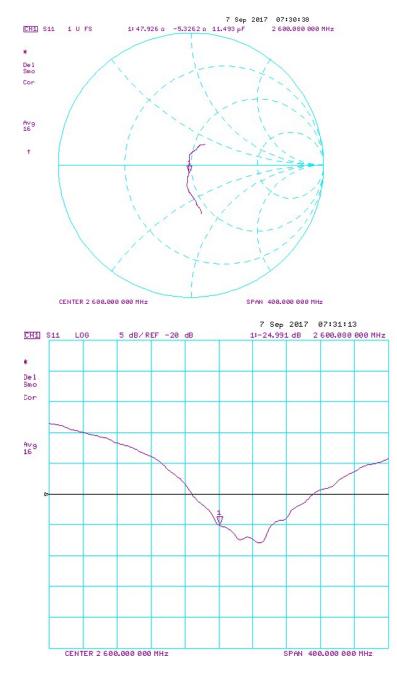
Object:	Date Issued:	Page 1 of 4
D2600V2 – SN: 1071	09/07/2017	Fage 1 01 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	w/кg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
9/13/2016	9/7/2017	1.153	5.63	5.73	1.78%	2.53	2.52	-0.40%	49.9	50.3	0.4	-6.7	-5.7	1.0	-23.5	-24.0	-2.10%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(40-) 10/0- @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/13/2016	9/7/2017	1.153	5.42	5.34	-1.48%	2.45	2.33	-4.90%	46.1	47.9	1.8	-2.1	-5.3	3.2	-26.7	-25.0	6.40%	PASS

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1071	09/07/2017	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2600V2 – SN: 1071	09/07/2017	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4
D2600V2 – SN: 1071	09/07/2017	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1191_Sep16

Object	D5GHzV2 - SN:1	191 <u>as studios se un loss subscribentas</u>	,
			BNY
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits betv	veen 3-6 GHz 09-28-24
			veen 3-6 GHz 09-28-20 Extende 09/201 56
Calibration date:	September 21, 20	016 [2014] 2014 2014 2014 2014 2014 2014 2014 2014	09/201 5C
This calibration certificate docum	ents the traceability to nati	onal standards, which realize the physical uni	ts of measurements (SI).
The measurements and the unce	rtainties with confidence p	robability are given on the following pages and	d are part of the certificate.
All collibustions have been conduc	tod in the closed isherator	ry facility: environment temperature (22 ± 3)°C	and humidity < 70%.
All calibrations have been conduc	sed in the closed aborator	y raciny. Environment temperature (EE 20) e	
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Power sensor NRP-Z91	0	00-Api-10 (110. 217 02200)	Aprili
	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Reference 20 dB Attenuator		• •	•
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5058 (20k) SN: 5047.2 / 06327	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16)	Apr-17 Apr-17 Jun-17
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	Apr-17 Apr-17 Jun-17 Dec-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 Name	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US37390585 Name	05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 30-Jun-16 (No. EX3-3503_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) Function	Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ٠ connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
	5250 MHz ± 1 MHz	
Frequency	5600 MHz ± 1 MHz	
	5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W / kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

OATTaveraged over to ont (to g) of flead for	Contaition	
SAR measured	100 mW input pow e r	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

Ĺ

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)
CAD averaged ever 10 cm ³ (10 m) of Redu TCL		
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ² (10 g) of Body TSL SAR measured	100 mW input power	2.14 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	55.7 Ω - 4.3 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	58.3 Ω - 3.2 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	58.1 Ω + 4.8 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	56.1 Ω - 3.7 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.9 Ω - 1.7 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	59.5 Ω + 6.9 jΩ	
Return Loss	- 19.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.204 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	August 28, 2003	

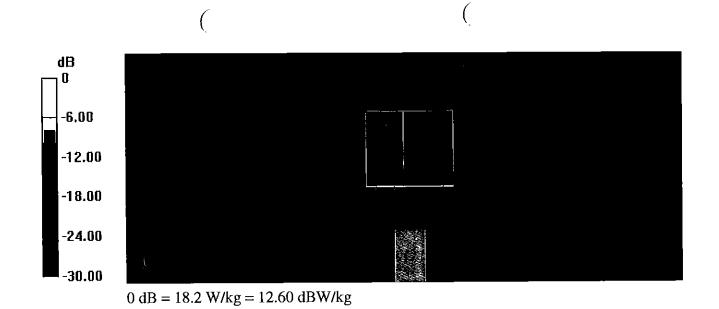
DASY5 Validation Report for Head TSL

Date: 21.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

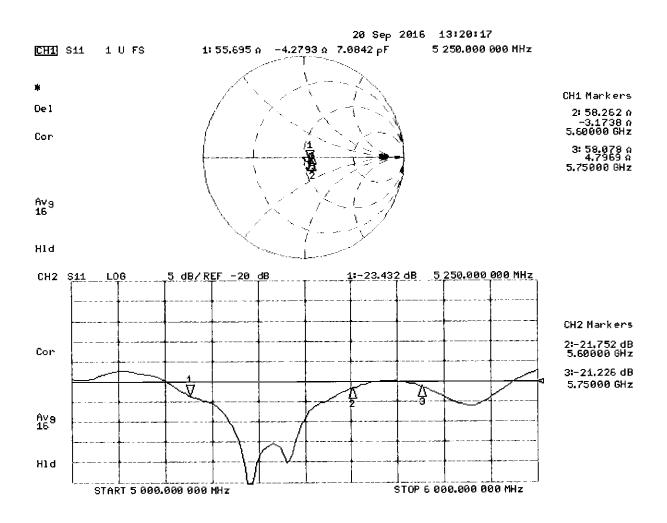
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ S/m; $\varepsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.49 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.34 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.0 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.15 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Certificate No: D5GHzV2-1191_Sep16

Impedance Measurement Plot for Head TSL

(

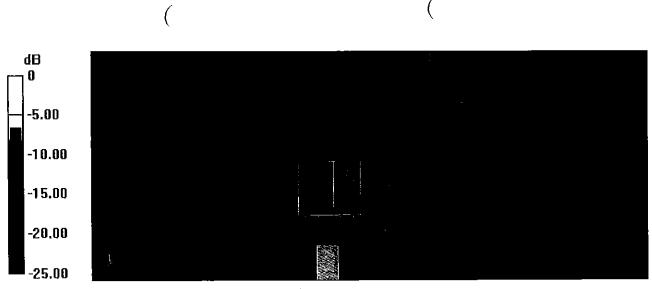
(

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.52$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 6$ S/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

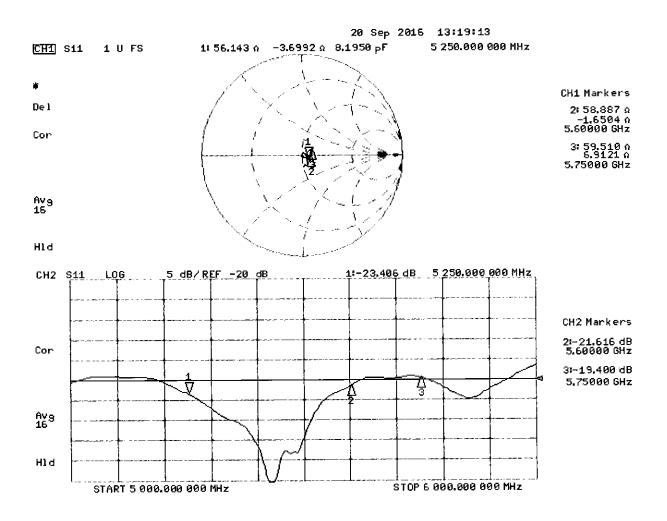

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.49 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.85 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.21 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.5 W/kg



(

0 dB = 17.7 W/kg = 12.48 dBW/kg

Impedance Measurement Plot for Body TSL

(

(

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D5GHzV2 - SN: 1191

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 9/19/2017

Description:

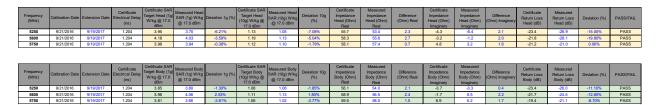
SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

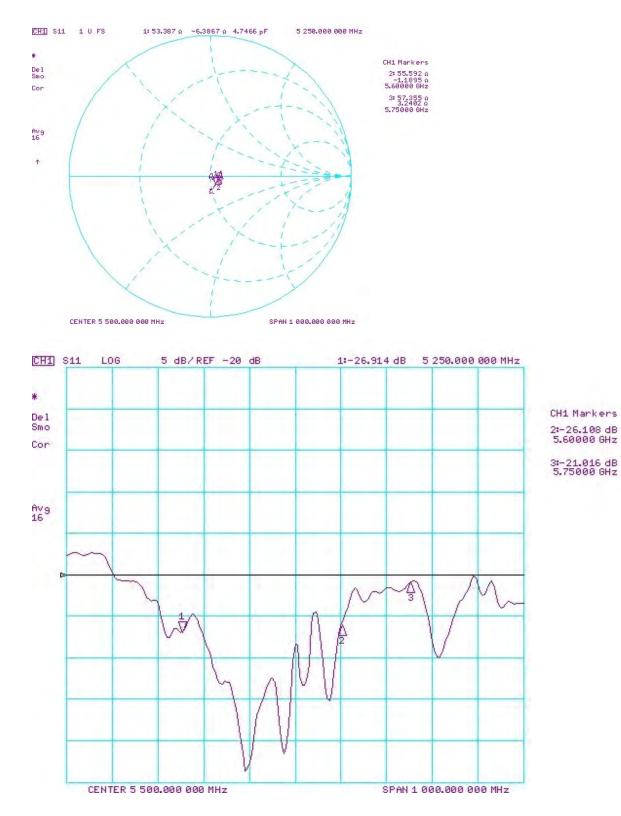
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	EX3DV4	SAR Probe	1/13/2017	Annual	1/13/2018	3589
SPEAG	EX3DV4	SAR Probe	2/13/2017	Annual	2/13/2018	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/16/2017	Annual	1/16/2018	1466
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	665
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

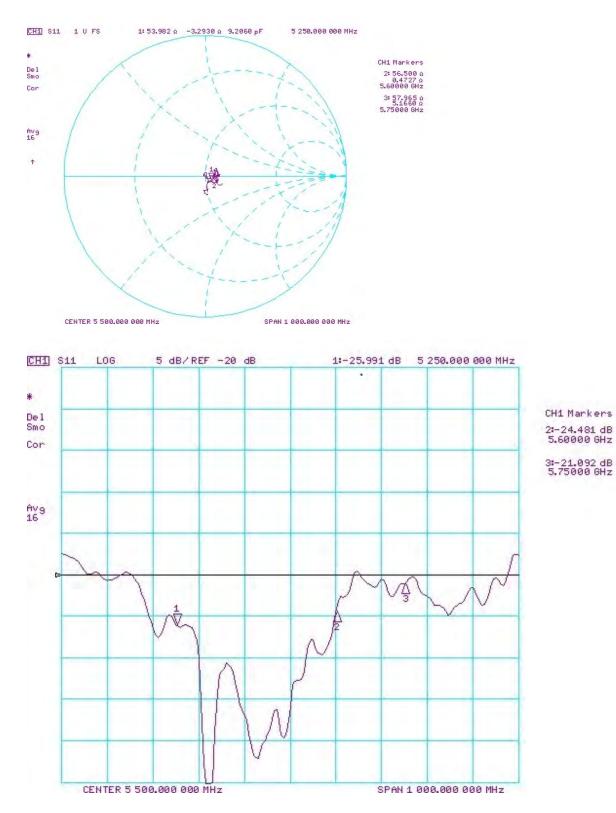

Object:	Date Issued:	Page 1 of 4
D5GHzV2 – SN: 1191	09/19/2017	raye 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:



Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1191	09/19/2017	raye 2 014

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1191	09/19/2017	Faye 5 01 4

3:-21.092 dB 5.75000 GHz

Impedance & Return-Loss Measurement Plot for Body TSL

Object: Da	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1191 09	9/19/2017	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Sorvizio svizzero di taratura

Accreditation No.: SCS 0108

BNV 03-27-2017 BNV 04-04-2018

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatorios to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1054_Mar17

CALIBRATION CERTIFICATE Object D750V3 - SN:1054 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certilicate No.)	Scheduled Calibration
Power meter NRP	SN; 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Referenco Probo EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oot-18
Power sensor HP 8481A	SN: MY41092317	07-Ocl-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN; US37390585	18-Oct-01 (in house check Oct-18)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	you lean
Approved by:	Kaija Pokovic	Technical Manager	Ally
			Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kelibrierdienst

Service sulsse d'étaionnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
		V02.0.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.37 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5,50 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	2 2.0 °C	55 .5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1054_Mar17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7 Ω - 0.7 jΩ	
Return Loss	- 26.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω - 3.6 jΩ		
Return Loss	- 28.7 dB		

General Antenna Parameters and Design

)	<u> </u>
Electrical Delay (one	diraction)	1.033 ns	1
	, 		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

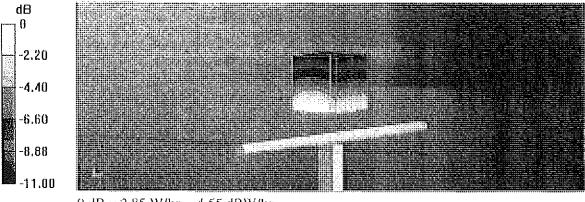
Manufactured by	SPEAG
Manufactured on	November 08, 2011

DASY5 Validation Report for Head TSL

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW ; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31,12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.21 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

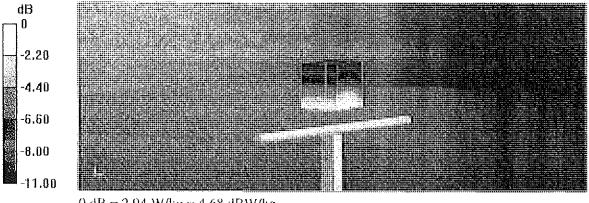
Impedance Measurement Plot for Head TSL

.

DASY5 Validation Report for Body TSL

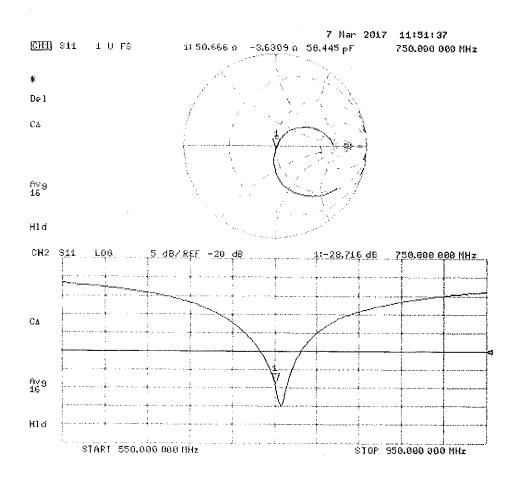
Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW ; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.94 W/kg

+0 dB = 2.94 W/kg = 4.68 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST' Gr ******

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D750V3 - SN:1054

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

March 07, 2018

Description:

SAR Validation Dipole at 750 MHz.

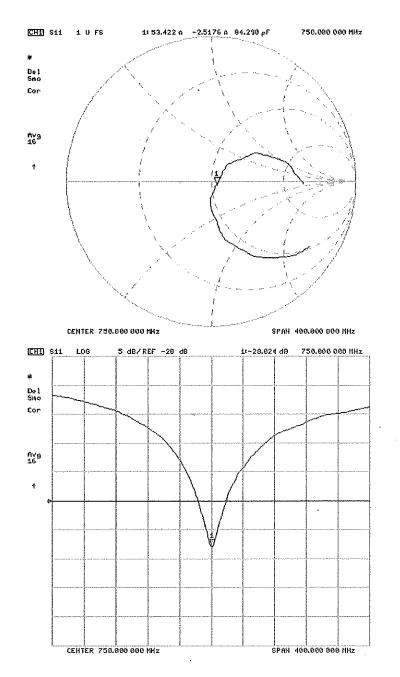
Calibration Equipment used:

	and the second		2010/00/00/00/00/00/00/00	A second statement of the second	where the second state is a second state of the	
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agllent	8753ES	S-Parameter Network Analyzer	8/3/2017	Annual	8/3/2018	MY40000670
Agilent	N5182A	MXG Vector Signal Generator	1/24/2018	Annual	1/24/2019	MY47420651
Amplifler Research	1551G6	Amplifier	C8T	N/A	CBT	433971
Anritsu	MA24118	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Puise Power Sensor	10/16/2017	Annual	10/16/2018	1126066
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	8W-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	1/22/2018	Annual	1/22/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annual	7/13/2018	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	EX3DV4	SAR Probe	7/17/2017	Annual	7/17/2018	7410
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287

Measurement Uncertainty = $\pm 23\%$ (k=2)

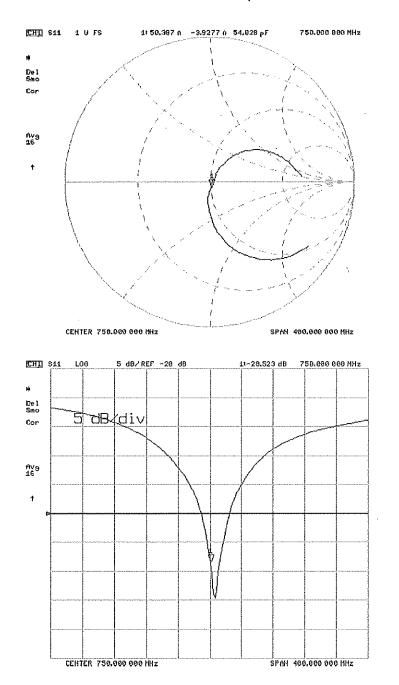
	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BROPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date issued:	Page 1 of 4
D750V3 - SN:1054	03/07/2018	


DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Object:	Date Issued:	Page 2 of 4
D750V3 – SN:1054	03/07/2018	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date issued:	Page 2 of 4
D750V3 – SN:1054	03/07/2018	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Pogo 4 of 4
D750V3 – SN:1054	03/07/2018	Page 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D835V2-4d132_Jan18

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d	132	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
			Bru
Calibration date:	January 15, 2018	3	BNV 01-25-2018
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.			
Calibration Equipment used (M&T			
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	QNAM
Approved by:	Katja Pokovic	Technical Manager	seg flyn
This calibration certificate shall no	t be reproduced excent in	full without written approval of the laboratory	Issued: January 15, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured
not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.36 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.55 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.71 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.39 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 2.9 jΩ
Return Loss	- 29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 5.7 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.386 ns	Electrical Delay (one direction)	1.386 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.41 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 c) of Used Tel	o o poditi o p	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.58 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	
SAR for nominal Head TSL parameters	normalized to 1W	9.69 W/kg ± 17.5 % (k≍2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.45 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	2.35 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	9.22 W/kg ± 17.5 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	250 mW input power	1.59 W/kg	
		1.59 W/Kg	

SAR result with SAM Head (Ear)

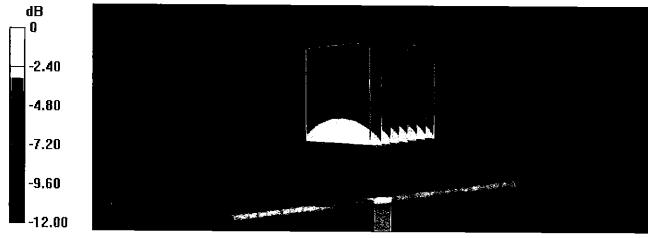
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	2.03 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	7.96 W/kg ± 17.5 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
		1.37 W/kg	
SAR measured	250 mW input power	1.37 W/kg	

DASY5 Validation Report for Head TSL

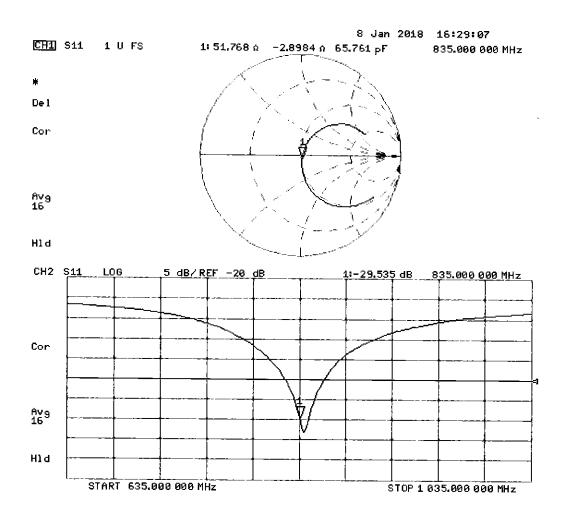
Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.23 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.22 W/kg

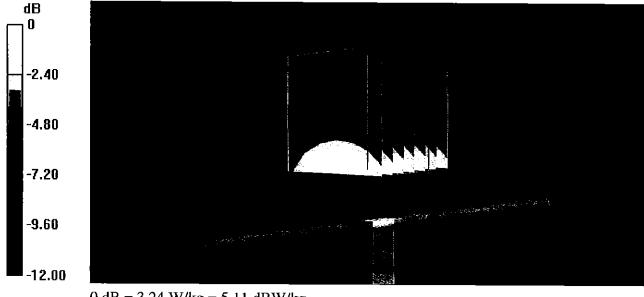
0 dB = 3.22 W/kg = 5.08 dBW/kg

DASY5 Validation Report for Body TSL

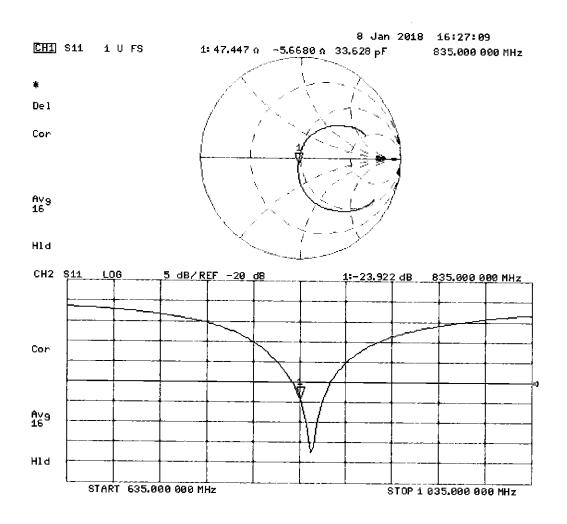
Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.55 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.66 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

DASY5 Validation Report for SAM Head

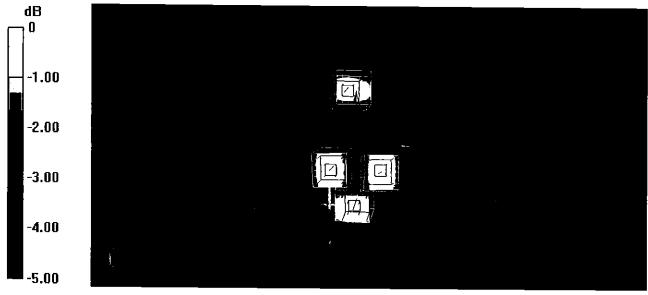
Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 44.1$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.16 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.99 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg Maximum value of SAR (measured) = 3.19 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.20 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.33 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.04 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.03 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.90 W/kg SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

4

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of callb -. . . .

Accreditation No.: SCS 0108

C

Client PC Test		Certificate N	o: D1900V2-5d141_Apr18
CALIBRATION C	ERTIFICAT		
Object	D1900V2 - SN:5	d141	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure for dipole validation kits ab	ove 700 MHz
Calibration date:	April 12, 2018		BNV 05-01-201
The measurements and the unce	rtainties with confidence p ted in the closed laborato	tional standards, which realize the physical un probability are given on the following pages an any facility: environment temperature (22 \pm 3)°	nd are part of the certificate.
The measurements and the unce	rtainties with confidence p ted in the closed laborato	probability are given on the following pages an ory facility: environment temperature (22 \pm 3)°	nd are part of the certificate. °C and humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T	rtainties with confidence p ted in the closed laborato "E critical for calibration)	probability are given on the following pages at bry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP	rtainties with confidence p rted in the closed laborato "E critical for calibration)	orobability are given on the following pages at ory facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 04-Apr-18 (No. 217-02672/02673)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-19
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91	rtainties with confidence p ted in the closed laborato 'E critical for calibration) D # SN: 104778	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-19 Apr-19
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	rtainties with confidence p ted in the closed laborato 'E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672)	nd are part of the certificate. ² C and humidity < 70%. <u>Scheduled Calibration</u> Apr-19 Apr-19 Apr-19
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator	rtainties with confidence p ted in the closed laborato "E critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p ted in the closed laborato "E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	nd are part of the certificate. ² C and humidity < 70%. <u>Scheduled Calibration</u> Apr-19 Apr-19 Apr-19
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4	rtainties with confidence p ted in the closed laborato "E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	rtainties with confidence p ted in the closed laborato "E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	rtainties with confidence p ted in the closed laborato "E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	rd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	rtainties with confidence p ted in the closed laborato 'E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence p rted in the closed laborato "E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	rtainties with confidence p rted in the closed laborato 'E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
			$\int \mathcal{G}^{2}$
Approved by:	Katja Pokovic	Technical Manager	1011L
			10103

Issued: April 13, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

unouuny.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
State and a set of the state of	Condition	
SAR measured	250 mW input power	5.05 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 5.9 jΩ
Return Loss	- 23.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω + 7.2 jΩ
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 100
	1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

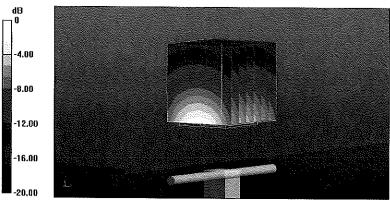
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

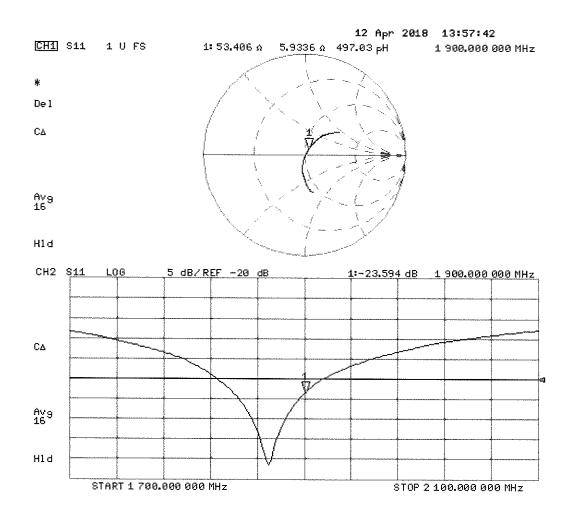
Date: 12.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.9 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.7 W/kg

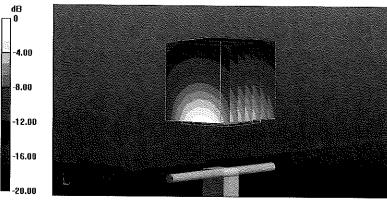
0 dB = 14.7 W/kg = 11.67 dBW/kg

DASY5 Validation Report for Body TSL

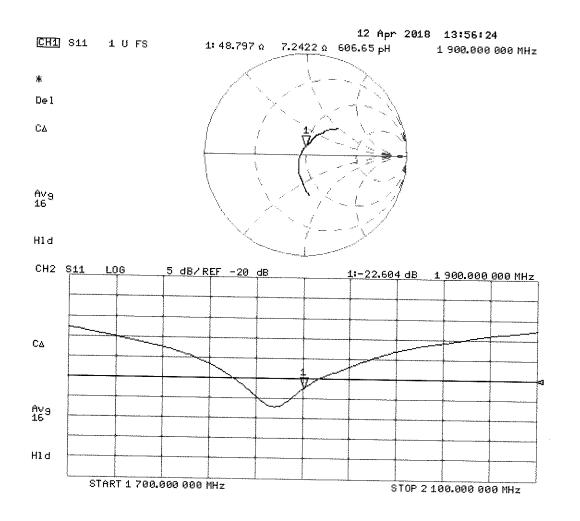
Date: 12.04.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 55.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.8 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.2 W/kg Maximum value of SAR (measured) = 14.5 W/kg

0 dB = 14.5 W/kg = 11.61 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: D5GHzV2-1237_Aug17

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	237		
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz	PMV 8/27/1=
Calibration date:	August 15, 2017			
		ional standards, which realize the physical un robability are given on the following pages ar		
All calibrations have been conduct		ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibratio	n
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 3503	31-Dec-16 (No. EX3-3503_Dec16)	Dec-17	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	i.
Secondary Standards	1D #	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-	18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-	18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-	17
	Name	Function	Signature	
Calibrated by:	Johannes Kurikka	Laboratory Technician	Jer un	
Approved by:	Katja Pokovic	Technical Manager	fel lle	
This calibration certificate shall no	ot be reproduced except in	n full without written approval of the laboratory	Issued: August 16, 20	017

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.16 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.9 Ω - 5.3 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.9 Ω + 2.3 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	55.6 Ω - 0.5 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.9 Ω - 4.2 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	50.2 Ω + 3.0 jΩ
Return Loss	- 30.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.4 Ω + 0.2 jΩ
Return Loss	- 29.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 194 pc
Electrical Delay (one direction)	1.194 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

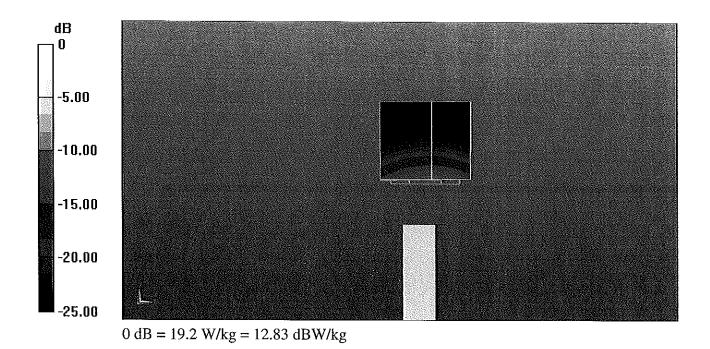
DASY5 Validation Report for Head TSL

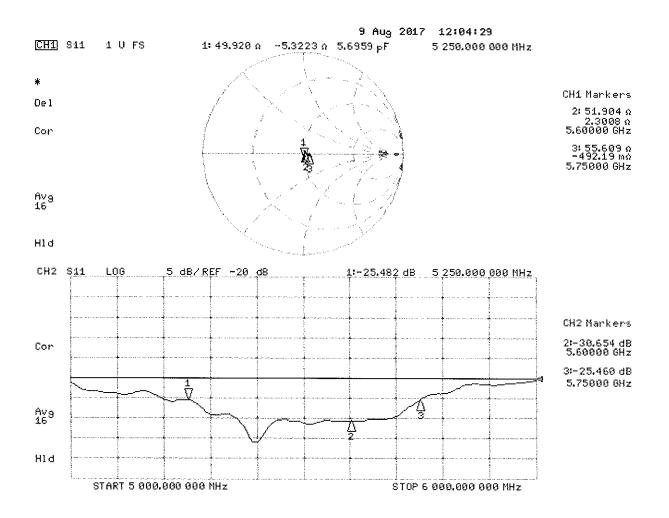
Date: 15.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.49 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.84 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 4.99 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.08 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.04 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.11 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.6 W/kg

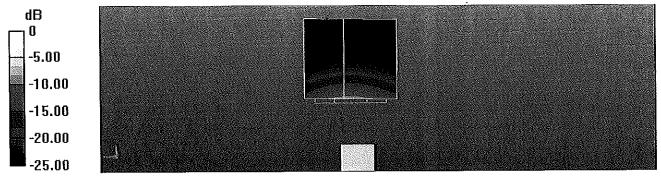
DASY5 Validation Report for Body TSL

Date: 08.08.2017

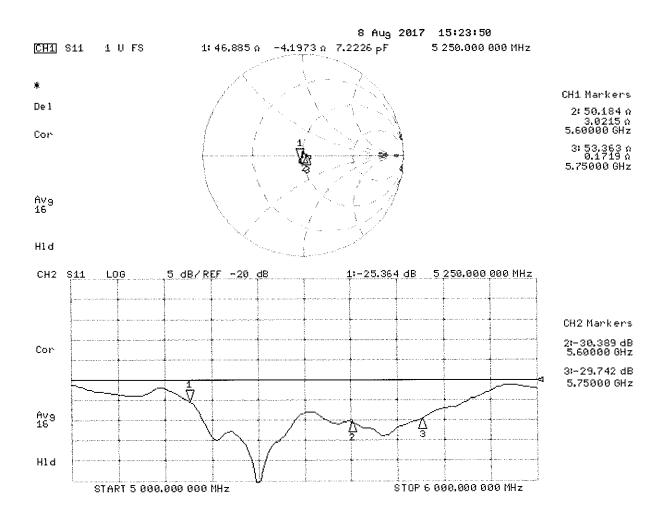
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.46$ S/m; $\varepsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.93$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.13$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.11 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.64 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kalibrierdienst Service suisse d'étatonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

¹ Certificate No: D1900V2-5d080_Jul16

S

С

S

CALIBRATION CERTIFICATE				
Object	D1900V2 - SN:5d080			
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz			
Callbration date:	July 08, 2016			

-7/16/2016 Extended BNV This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	- Mar
1	• • •	<u> </u>	Fe U
Approved by:	Katja Pokovic	Technical Manager	ally
		· ·	issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servízio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of callbration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	1900 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.10 W/kg

Body TSL parameters

The following parameters and calculations were applied.

· · · · · · · · · · · · · · · · · · ·	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.3 jΩ	
Return Loss	- 25.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω + 6.8 jΩ		
Return Loss	- 22.6 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

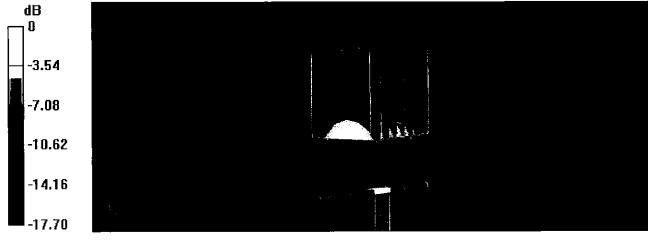
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

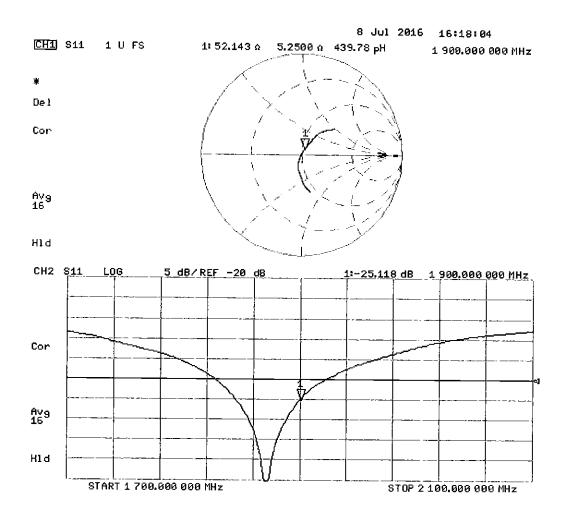
Date: 08.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.38 S/m; ϵ_r = 39.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.6 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 9.76 W/kg; SAR(10 g) = 5.1 W/kg Maximum value of SAR (measured) = 15.0 W/kg

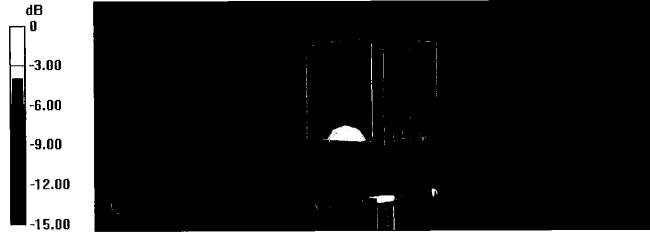
0 dB = 15.0 W/kg = 11.76 dBW/kg

DASY5 Validation Report for Body TSL

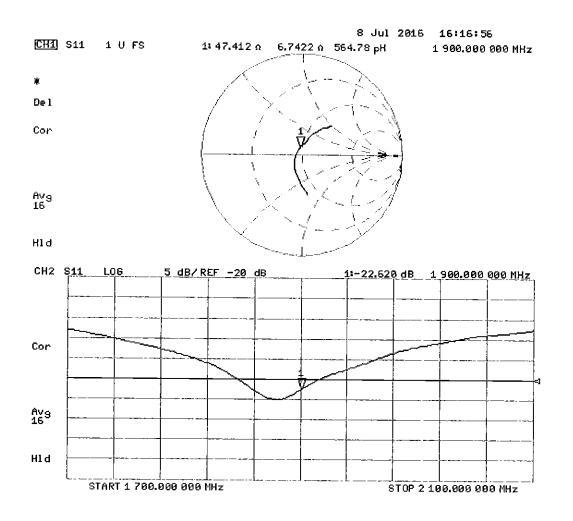
Date: 08.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D1900V2 - SN: 5d080

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Calibration date:

July 06, 2017

Description:

SAR Validation Dipole at 1900 MHz.

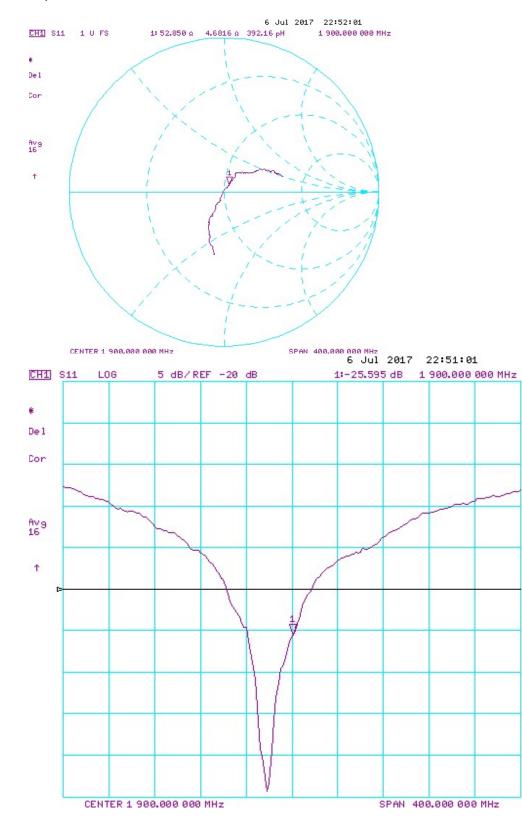
Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2017	Annual	3/13/2018	1415
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3209
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	dBm	(%)	W/кg @ 20.0 dBm	(10a) W//ka @		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/8/2016	7/6/2017	1.192	3.93	3.86	-1.78%	2.05	2	-2.44%	52.1	52.9	0.8	5.3	4.7	0.6	-25.1	-25.6	-2.00%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/8/2016	7/6/2017	1.192	3.91	4.05	3.58%	2.07	2.11	1.93%	47.4	48.5	1.1	6.8	5.1	1.7	-22.6	-25.5	-12.80%	PASS


Object:	Date Issued:	Page 2 of 4
D1900V2 – SN: 5d080	07/06/2017	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D1900V2 – SN: 5d080	07/06/2017	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Dogo 4 of 4
D1900V2 – SN: 5d080	07/06/2017	Page 4 of 4

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1900V2 - SN: 5d080

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

07/06/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

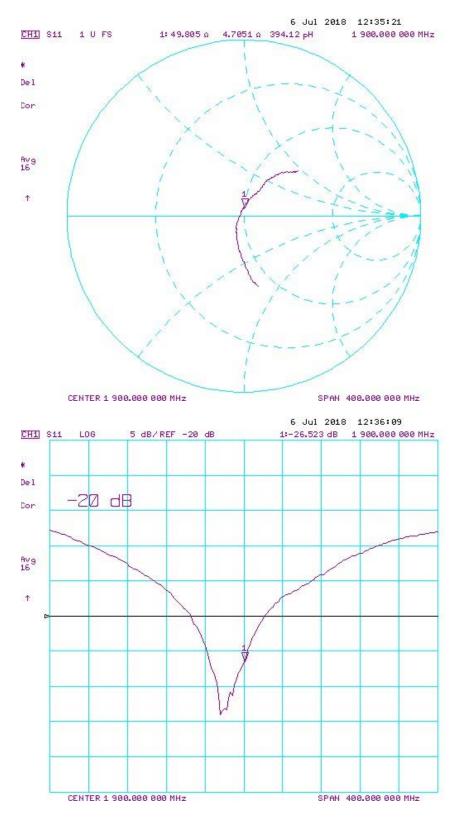
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/22/2018	Annual	5/22/2019	859
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
SPEAG	EX3DV4	SAR Probe	5/22/2018	Annual	5/22/2019	7406

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

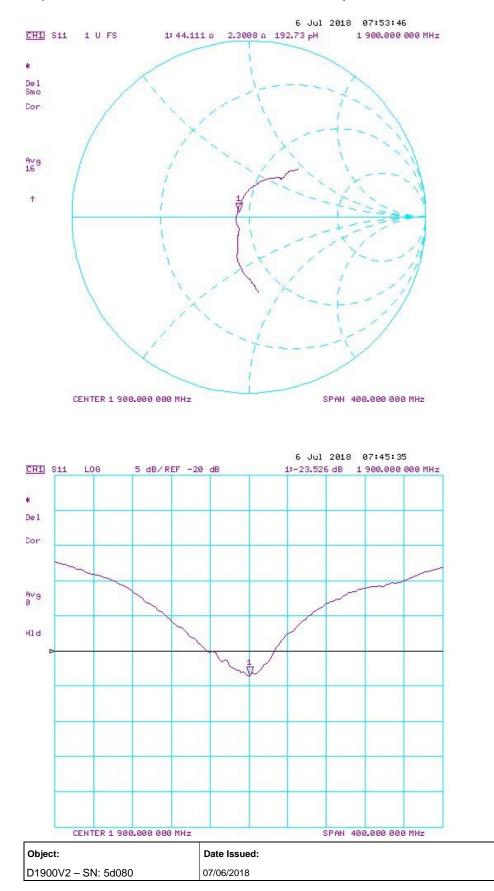
Object:	Date Issued:	Dogo 1 of 4
D1900V2 – SN: 5d080	07/06/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(%)	vv/кg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
7/8/2016	7/6/2018	1.192	3.93	4.090	4.07%	2.05	2.12	3.41%	52.1	49.8	2.3	5.3	4.7	0.6	-25.1	-26.5	-5.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) Million (2)	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/8/2017	7/6/2018	1.192	3.91	4.110	5.12%	2.07	2.09	0.97%	47.4	44.1	3.3	6.8	2.3	4.5	-22.6	-23.5	-4.00%	PASS

Object:	Date Issued:	Daga 2 of 4
D1900V2 – SN: 5d080	07/06/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D1900V2 – SN: 5d080	07/06/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: ES3-3213_Feb18

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3213

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

February 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
			MICE
Approved by:	Katja Pokovic	Technical Manager	PILL
			10000
			Issued: February 13, 2018
This calibration certificate	shall not be reproduced except in full	without written approval of the laboratory	4.

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Bru 2018

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 0108

- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv: tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D φ rotation around probe axis Polarization ϕ 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3213

Calibrated:

Manufactured: October 14, 2008 February 13, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.43	1.32	1.29	± 10.1 %
DCP (mV) ^B	100.3	104.3	100.0	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊢]
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	219.3	±2.7 %
		Y	0.0	0.0	1.0		219.1	
		Z	0.0	0.0	1.0		213.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ^{-₂}	T2 ms.V⁻¹	T3 ms	T4 V⁻²	T5 V⁻¹	Т6
Х	55.43	404.4	36.34	28.23	1.967	5.10	0.398	0.555	1.011
Y	56.36	406.4	35.71	28.34	2.153	5.10	1.040	0.438	1.013
Z	52.80	385.3	36.34	28.19	1.829	5.10	0.000	0.541	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

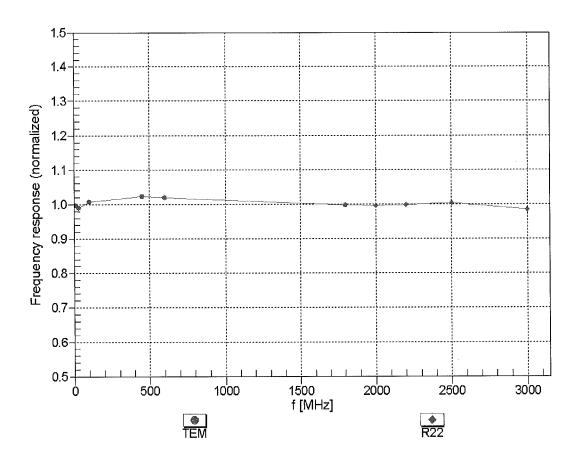
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.75	6.75	6.75	0.64	1.30	± 12.0 %
835	41.5	0.90	6.42	6.42	6.42	0.48	1.50	± 12.0 %
1750	40.1	1.37	5.45	5.45	5.45	0.52	1.41	± 12.0 %
1900	40.0	1.40	5.30	5.30	5.30	0.79	1.17	± 12.0 %
2300	39.5	1.67	4.94	4.94	4.94	0.59	1.37	± 12.0 %
2450	39.2	1.80	4.72	4.72	4.72	0.80	1.21	± 12.0 %
2600	39.0	1.96	4.53	4.53	4.53	0.72	1.33	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

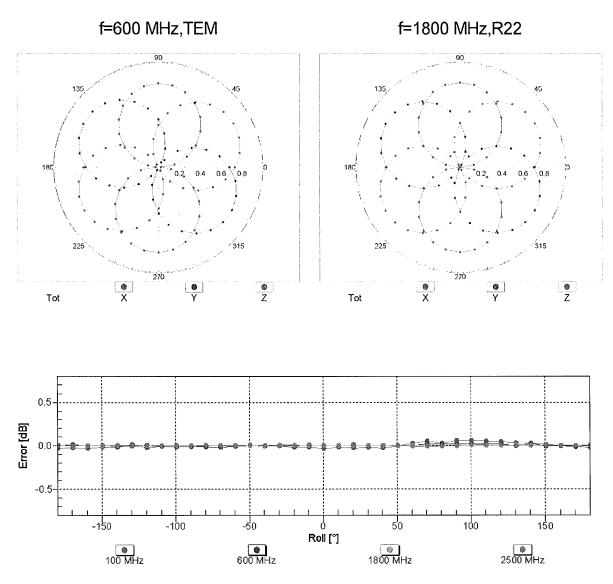
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

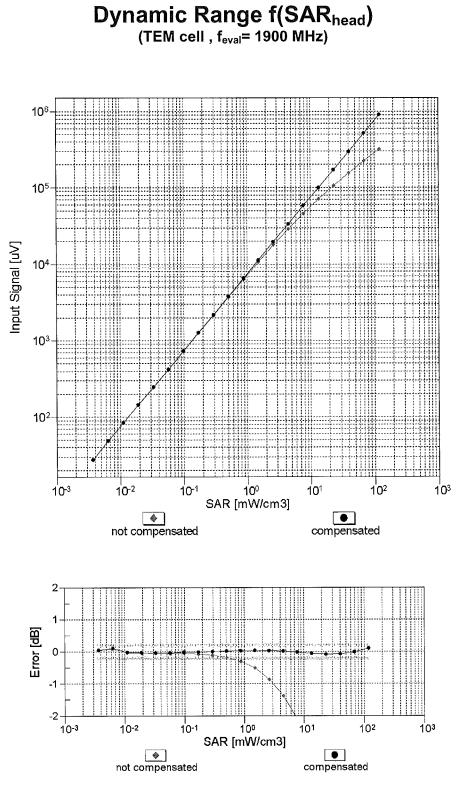

			-		-			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.30	6.30	6.30	0.80	1.13	± 12.0 %
835	55.2	0.97	6.20	6.20	6.20	0.41	1.66	± 12.0 %
1750	53.4	1.49	5.10	5.10	5.10	0.37	1.82	± 12.0 %
1900	53.3	1.52	4.88	4.88	4.88	0.59	1.51	± 12.0 %
2300	52.9	1.81	4.62	4.62	4.62	0.80	1.30	± 12.0 %
2450	52.7	1.95	4.53	4.53	4.53	0.80	1.25	± 12.0 %
2600	52.5	2.16	4.33	4.33	4.33	0.80	1.25	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

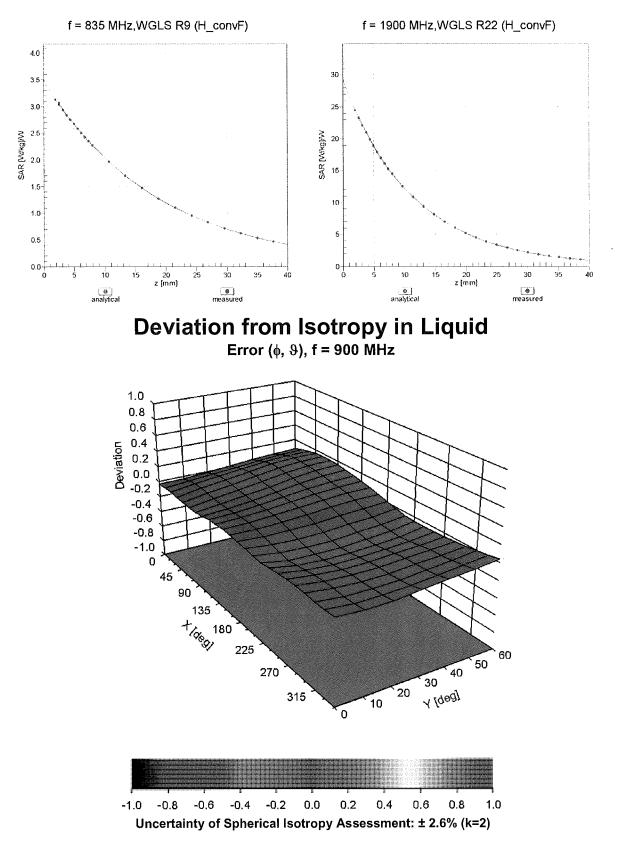
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	100.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

ES3DV3-- SN:3213

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	219.3	± 2.7 %
		Y	0.00	0.00	1.00		219.1	
10010		Z	0.00	0.00	1.00	10.00	213.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	7.64	78.36	17.77	10.00	25.0	± 9.6 %
		Y	8.93	80.69	18.99		25.0	
10011-	UMTS-FDD (WCDMA)	Z X	7.43 0.94	77.97 65.73	17.46 13.94	0.00	25.0	100%
CAB						0.00	150.0	± 9.6 %
		Y	1.08	67.98	15.48		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	0.93	65.52 64.18	13.77 15.06	0.44	150.0	
CAB	Mbps)					0.41	150.0	± 9.6 %
		Y	1.29	65.11	15.84		150.0	
40040		Z	1.22	64.10	14.97	A 4-	150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.06	67.01	17.27	1.46	150.0	± 9.6 %
		Y	5.11	67.24	17.46		150.0	
		Z	5.03	67.01	17.25		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	58.23	111.57	29.90	9.39	50.0	± 9.6 %
		Y	38.28	105.54	28.67		50.0	
		Ζ	83.35	116.76	31.01		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	×	42.41	106.55	28.63	9.57	50.0	± 9.6 %
		Y	31.06	102.12	27.76		50.0	
		Ζ	55.17	110.35	29.43		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	116.42	29.15	6.56	60.0	±9.6 %
		Y	100.00	117.64	29.89		60.0	
		Z	100.00	115.95	28.84		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	22.66	114.16	43.61	12.57	50.0	± 9.6 %
		Y	32.36	125.54	47.77		50.0	
		Z	20.92	112.18	42.96		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	×	22.06	107.62	37.21	9.56	60.0	± 9.6 %
		Y	29.09	114.84	39.79		60.0	
		Z	22.32	108.24	37.43		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	114.90	27.59	4.80	80.0	± 9.6 %
		Y	100.00	116.49	28.47		80.0	
		Z	100.00	114.42	27.29		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	114.37	26.58	3.55	100.0	± 9.6 %
		Y	100.00	116.53	27.70		100.0	
		Z	100.00	113.85	26.28		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	13.21	95.56	31.98	7.80	80.0	± 9.6 %
		Y	16.23	100.64	33.98		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.05 100.00	95.55 114.59	31.99 27.76	5.30	80.0 70.0	± 9.6 %
CAA		<u>, .</u>	400.00	110.05	00.00			
		Y	100.00	116.05	28.60		70.0	
10024	IEEE 902 15 1 Plusteeth (OEOK, DU2)	Z	100.00	114.06	27.44	1 0 0	70.0	+060/
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	112.38	24.24	1.88	100.0	± 9.6 %
		Y	100.00	116.66	26.24		100.0	
		Z	100.00	111.54	23.82		100.0	

Certificate No: ES3-3213_Feb18

ES3DV3-- SN:3213

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	112.51	23.27	1.17	100.0	± 9.6 %
UMA		Y	100.00	119.82	26.49		100.0	
		Z	100.00	119.82	20.49		100.0 100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	19.77	98.57	26.87	5.30	70.0	± 9.6 %
		Y	22.51	101.06	27.89		70.0	
		Z	20.62	99.03	26.84		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	5.26	81.87	19.91	1.88	100.0	± 9.6 %
		Y	7.30	87.04	22.01		100.0	
40005		Z	5.17	81.44	19.55		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	2.97	75.56	17.30	1.17	100.0	± 9.6 %
		Y	4.02	80.17	19.40		100.0	
10036-		Z	2.90	75.11	16.93		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	25.61	102.92	28.18	5.30	70.0	± 9.6 %
		Y	28.89	105.33	29.15		70.0	
10037-		Z	27.23	103.63	28.21	4.00	70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	5.03	81.31	19.68	1.88	100.0	± 9.6 %
		Y	7.01	86.52	21.80		100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Z	4.92	80.81	19.30		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	3.05	76.11	17.60	1.17	100.0	± 9.6 %
		Y	4.14	80.86	19.74		100.0	
10020		Z	2.97	75.64	17.22		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	X	1.52	68.64	14.11	0.00	150.0	± 9.6 %
		Y	1.86	71.69	15.85		150.0	
10040		Z	1.44	68.18	13.70		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	115.25	28.83	7.78	50.0	± 9.6 %
		Y	100.00	116.43	29.57		50.0	
10044-	IS-91/EIA/TIA-553 FDD (FDMA, FM)	Z	100.00	114.73	28.50	0.00	50.0	
CAA		X	0.00	111.44	0.10	0.00	150.0	± 9.6 %
		Y	0.00	116.05	0.75		150.0	
10049	DECT (TDD TDMA/CDM OFOK Full	Z	0.00	113.36	0.21	10.00	150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	15.69	90.02	25.55	13.80	25.0	± 9.6 %
		Y	13.84	87.79	25.13		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	17.52 19.88	91.95 94.41	25.99 25.54	10.79	25.0 40.0	± 9.6 %
		Y	17.39	92.41	25.24		40.0	
		z	22.32	96.16	25.89		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	15.96	91.92	25.75	9.03	50.0	± 9.6 %
		Y	16.02	92.06	26.04		50.0	
		Z	16.84	92.83	25.91		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	9.21	88.16	28.55	6.55	100.0	± 9.6 %
		Y	10.78	91.87	30.15		100.0	
40055		Ζ	9.04	87.96	28.49		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Х	1.36	66.07	16.00	0.61	110.0	± 9.6 %
		Y	1.46	67.28	16.91		110.0	
10055		_ Z_	1.35	65.96	15.91		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	52.62	119.34	30.14	1.30	110.0	± 9.6 %
		Y	100.00	130.86	33.40		110.0	
		Ζ	47.54	117.73	29.68		110.0	

ES3DV3- SN:3213

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	7.64	91.52	25.20	2.04	110.0	± 9.6 %
		Y	11.51	98.81	27.78		110.0	
		z	7.56	91.41	25.11		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.79	66.76	16.54	0.49	100.0	± 9.6 %
		Y	4.84	66.99	16.73		100.0	
		Z	4.76	66.76	16.52		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.82	66.91	16.68	0.72	100.0	± 9.6 %
		Y	4.87	67.15	16.87		100.0	
		Z	4.79	66.91	16.65		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.14	67.25	16.96	0.86	100.0	± 9.6 %
		Y	5.20	67.49	17.14		100.0	
		Z	5.10	67.24	16.93		100.0	
10065- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.04	67.27	17.12	1.21	100.0	± 9.6 %
		Y	5.10	67.51	17.31		100.0	
10000		Z	5.00	67.25	17.09		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.09	67.39	17.35	1.46	100.0	± 9.6 %
		Y	5.15	67.65	17.54		100.0	
400		Z	5.06	67.37	17.32		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.41	67.60	17.83	2.04	100.0	± 9.6 %
		Y	5.47	67.85	18.03		100.0	
		Z	5.38	67.60	17.82		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.53	67.90	18.19	2.55	100.0	± 9.6 %
		Y	5.60	68.19	18.41		100.0	
		Z	5.49	67.88	18.16		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.62	67.88	18.39	2.67	100.0	± 9.6 %
		Y	5.69	68.17	18.62		100.0	
		Z	5.57	67.88	18.36		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.20	67.23	17.66	1.99	100.0	± 9.6 %
		Y	5.25	67.48	17.85		100.0	
		Z	5.17	67.24	17.64		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.24	67.75	17.96	2.30	100.0	± 9.6 %
		Y	5.31	68.03	18.18		100.0	
		Z	5.21	67.74	17.94		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.36	68.08	18.38	2.83	100.0	± 9.6 %
		Y	5.44	68.38	18.61		100.0	
		Z	5.33	68.07	18.36		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.39	68.13	18.62	3.30	100.0	± 9.6 %
		Y	5.47	68.45	18.87		100.0	
		Z	5.36	68.12	18.60		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.52	68.55	19.10	3.82	90.0	± 9.6 %
		Y	5.61	68.93	19.38		90.0	
		Z	5.48	68.52	19.07		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.53	68.37	19.24	4.15	90.0	± 9.6 %
		Y	5.62	68.75	19.52		90.0	
		Z	5.50	68.36	19.22		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.57	68.46	19.34	4.30	90.0	± 9.6 %
· · · · · ·		Y	5.66	68.84	19.63		90.0	
		Z	5.54	68.44	19.32		90.0	

ES3DV3- SN:3213

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.76	64.13	11.38	0.00	150.0	± 9.6 %
		Y	0.90	66.35	12.99	-	150.0	<u> </u>
		Z	0.73	63.81	11.00		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	1.73	62.47	7.53	4.77	80.0	± 9.6 %
		Y	1.91	63.29	8.22		80.0	
		Z	1.67	62.23	7.30		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	116.51	29.21	6.56	60.0	± 9.6 %
		Y	100.00	117.72	29.95		60.0	
40007		Z	100.00	116.03	28.90		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X Y	1.73	66.45	14.86	0.00	150.0	± 9.6 %
		Y Z		67.58	15.67		150.0	
10098-	UMTS-FDD (HSUPA, Subtest 2)	X	1.71	66.38	14.75	0.00	150.0	
CAB	UMTS-FDD (HSOFA, Sublest 2)	Y	1.70	66.40	14.82	0.00	150.0	± 9.6 %
		-		67.56	15.65		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Z X	1.68 22.00	66.33 107.50	14.71 37.17	0.50	150.0	1000
DAC						9.56	60.0	± 9.6 %
		Y	28.88	114.61	39.71		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	Z X	22.27 3.03	108.13	37.40	0.00	60.0	
CAD	MHz, QPSK)	Y	3.03	69.43	16.03	0.00	150.0	± 9.6 %
		Z	2.99	70.56	16.70		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.23	69.29 67.20	15.96 15.61	0.00	150.0 150.0	± 9.6 %
0/10		Y	3.33	67.78	16.01		150.0	
	and the second s	Z	3.20	67.12	15.56		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.34	67.12	15.71	0.00	150.0 150.0	± 9.6 %
		Y	3.42	67.69	16.08		150.0	
		Z	3.31	67.10	15.66		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	8.49	78.45	21.33	3.98	65.0	± 9.6 %
		Y	8.79	79.00	21.62		65.0	
		Z	8.39	78.42	21.32		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	8.27	76.76	21.53	3.98	65.0	± 9.6 %
		Y	8.57	77.41	21.89		65.0	
		Z	8.21	76.79	21.53		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.13	76.44	21.71	3.98	65.0	± 9.6 %
		Y	7.83	75.63	21.42		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Z X	7.93 2.67	76.10 68.71	21.55 15.86	0.00	65.0 150.0	± 9.6 %
		Y	2.83	60.00	10 55		450.0	
		Z	2.63	69.80 68.57	16.55 15.78		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.89	66.95	15.47	0.00	150.0 150.0	± 9.6 %
		Y	2.98	67.57	15.91		150.0	
		Z	2.86	66.87	15.40		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.17	67.76	15.45	0.00	150.0	± 9.6 %
		Y	2.32	68.94	16.22		150.0	
		Z	2.13	67.62	15.34		150,0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.56	67.34	15.57	0.00	150.0	±9.6 %
		Y	2.66	68.04	16.08		150.0	
		Z	2.53	67.28	15.48		150.0	

ES3DV3-- SN:3213

February 13, 2018

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.02	66.95	15.54	0.00	150.0	± 9.6 %
		Y	3.10	67.51	15.95		150.0	
		Z	2.98	66.88	15.48		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.72	67,49	15.72	0.00	150.0	± 9.6 %
		Y	2.81	68.13	16.19		150.0	
		Z	2.68	67.45	15.64		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	5.17	67.15	16.34	0.00	150.0	± 9.6 %
		Y	5.21	67.35	16.50		150.0	
		Z	5.15	67.16	16.34		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.53	67.49	16.54	0.00	150.0	± 9.6 %
		Y	5.58	67.70	16.70		150.0	
		Ζ	5.48	67.42	16.49		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.30	67.42	16.41	0.00	150.0	± 9.6 %
		Y	5.34	67.62	16.57		150.0	
		Z	5.27	67.41	16.40		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.15	67.08	16.33	0.00	150.0	± 9.6 %
		Y	5.20	67.30	16.50		150.0	
		Ζ	5.12	67.04	16.30		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	Х	5.63	67.73	16.67	0.00	150.0	± 9.6 %
		Y	5.66	67.91	16.81		150.0	
		Z	5.59	67.70	16.64		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	Х	5.27	67.36	16.39	0.00	150.0	± 9.6 %
		Y	5.31	67.56	16.55		150.0	
		Z	5.24	67.35	16.38		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	Х	3.38	67.18	15.64	0.00	150.0	± 9.6 %
		Y	3.47	67.70	16.01		150.0	
		Z	3,35	67.11	15.59		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.50	67.27	15.81	0.00	150.0	± 9.6 %
		Y	3.59	67.74	16.15		150.0	
		Ζ	3.47	67.21	15.77		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.93	67.51	15.04	0.00	150.0	± 9.6 %
		Y	2.09	68.84	15.93		150.0	
		Ζ	1.89	67.35	14.89		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	Х	2.38	67.70	15.18	0.00	150.0	± 9.6 %
		Y	2.51	68.61	15.82		150.0	
		Z	2.34	67.60	15.02		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.24	66.02	13.89	0.00	150.0	± 9.6 %
		Y	2.36	66.87	14.53		150.0	
		Z	2.19	65.88	13.71		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.22	64.47	11.59	0.00	150.0	± 9.6 %
		Y	1.37	66.07	12.76		150.0	
		Z	1.15	64.01	11.10		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	2.40	68.51	13.38	0.00	150.0	± 9.6 %
		Y	3.25	72.57	15.44		150.0	
		Ζ	2.13	67.36	12.68		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	Х	2.86	70.85	14.59	0.00	150.0	± 9.6 %
	i interesting inte	Y	4.17	75.98	16.98		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	2.50	69.50	13.83		150.0	

Certificate No: ES3-3213_Feb18

ES3DV3- SN:3213

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.90	67.00	15.51	0.00	150.0	± 9.6 %
		Y	2.99	67.62	15.95		150.0	
		Ζ	2.86	66.92	15.44		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.02	66.99	15.58	0.00	150.0	± 9.6 %
		Y	3.11	67.55	15.98		150.0	
		Z	2.99	66.93	15.52		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	8.96	80.66	22.26	3.98	65.0	± 9.6 %
		Y	9.32	81.32	22.60		65.0	
		Z	9.00	80.93	22.35		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	7.88	76.96	21.35	3.98	65.0	± 9.6 %
		Y	8.23	77.73	21.78		65.0	
		Z	7.82	76.98	21.33		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	8.28	77.78	22.03	3.98	65.0	± 9.6 %
		Y	8.58	78.42	22.39		65.0	
		Z	8.24	77.86	22.04		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.21	68.11	15.68	0.00	150.0	± 9.6 %
		Y	2.36	69.30	16.45		150.0	
		Z	2.17	67.96	15.57		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.56	67.35	15.58	0.00	150.0	± 9.6 %
		Y	2.66	68.05	16.10		150.0	
		Z	2.53	67.29	15.50		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.77	67.43	14.78	0.00	150.0	± 9.6 %
		Y	1.94	68.94	15.78		150.0	
		Z	1.72	67.23	14.58		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.05	66.34	13.82	0.00	150.0	± 9.6 %
		Y	2.19	67.38	14.58		150.0	
		Z	2.00	66.16	13.59		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.72	67.54	15.76	0.00	150.0	± 9.6 %
		Y	2.82	68.17	16.23		150.0	
		Z	2.68	67.50	15.68		150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.14	66.71	14.07	0.00	150.0	± 9.6 %
		Y	2.28	67.74	14.81		150.0	
		Z	2.09	66.52	13.84		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.72	68.07	15.82	0.00	150.0	± 9.6 %
		Y	2.84	68.89	16.38		150.0	
		Z	2.69	68.00	15.76		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.91	66.88	15.50	0.00	150.0	± 9.6 %
		Y	3.00	67.45	15.91		150.0	
		Z	2.88	66.82	15.43		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.02	67.01	15.60	0.00	150.0	± 9.6 %
		Y	3.11	67.54	16.00		150.0	
		Z	2.99	66.96	15.54		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.77	69.87	19.29	3.01	150.0	± 9.6 %
		Y	3.99	71.07	20.04		150.0	
		Z	3.62	69.43	19.11		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	4.72	72.88	19.79	3.01	150.0	± 9.6 %
		Y	5.23	74.95	20.86		150.0	
		Z	4.39	72.04	19.48		150.0	t

ES3DV3-SN:3213

February 13, 2018

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.18	74.86	20.97	3.01	150.0	± 9.6 %
		Y	5.75	76.97	22.01		150.0	
		Z	4.80	74.00	20.67		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.27	70.16	19.42	3.01	150.0	± 9.6 %
		Y	3.60	72.33	20.65		150.0	
		Z	3.01	68.98	18.94		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	4.60	76.17	21.67	3.01	150.0	± 9.6 %
		Y	5.62	80.32	23.51		150.0	
		Z	3.98	74.14	20.96		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.81	72.17	19.05	3.01	150.0	± 9.6 %
		Y	4.54	75.67	20.74		150.0	
		Z	3.36	70.59	18.47		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	30.28	111.82	34.48	6.02	65.0	± 9.6 %
		Y	76.86	130.98	39.85		65.0	
		Z	23.60	107.83	33.49		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	34.72	108.92	31.80	6.02	65.0	± 9.6 %
		Y	74.54	122.99	35.68		65.0	
		Z	31.06	107.91	31.67		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	26.76	102.85	29.55	6.02	65.0	± 9.6 %
		Y	50.48	114.18	32.83		65.0	
		Z	23.63	101.61	29.31		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.23	69.86	19.18	3.01	150.0	± 9.6 %
		Y	3.55	72.01	20.41		150.0	
		Z	2.98	68.71	18.72		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	4.60	76.19	21.68	3.01	150.0	± 9.6 %
		Y	5.63	80.35	23.53		150.0	
		Z	3.98	74.16	20.97		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.26	70.01	19.27	3.01	150.0	± 9.6 %
		Y	3.58	72.16	20.50		150.0	
		Z	3.00	68.84	18.80		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	4.55	75.95	21.56	3.01	150.0	±9.6 %
		Y	5.56	80.06	23.39		150.0	
		Z	3.95	73.96	20.86		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	4.17	74.04	20.23	3.01	150.0	±9.6 %
		Y	5.04	77.87	21.99		150.0	
		Z	3.65	72.28	19.60		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	3.80	72.10	19.00	3.01	150.0	± 9.6 %
		Y	4.52	75.59	20.69		150.0	
		Z	3.36	70.53	18.43		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	×	3.25	69.99	19.27	3.01	150.0	± 9.6 %
		Y	3.58	72.15	20.49		150.0	
		Z	3.00	68.83	18.80		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	4.54	75.93	21.54	3.01	150.0	±9.6 %
		Y	5.55	80.04	23.38		150.0	
		Z	3.94	73.93	20.85		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.79	72.07	18.99	3.01	150.0	± 9.6 %
		Y	4.51	75.56	20.68		150.0	
		Z	3.35	70.51	18.42		150.0	

Certificate No: ES3-3213_Feb18

ES3DV3-SN:3213

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.26	70.03	19.29	3.01	150.0	± 9.6 %
		Y	3.59	72,19	20.51		150.0	
		Z	3.01	68.87	18.82		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	4.56	76.00	21.58	3.01	150.0	± 9.6 %
		Y	5.57	80.12	23.42		150.0	
		Ζ	3.96	74.00	20.89		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	3.81	72.14	19.03	3.01	150.0	± 9.6 %
		Y	4.54	75.64	20.72		150.0	
		Ζ	3.37	70.57	18.45		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.27	70.08	19.34	3.01	150.0	± 9.6 %
		Y	3.60	72.24	20.57		150.0	
		Z	3.02	68.91	18.87		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	4.71	76.65	21.94	3.01	150.0	± 9.6 %
		Y	5.78	80.88	23.80		150.0	
		Z	4.07	74.57	21.23		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	3.89	72.56	19.29	3.01	150.0	± 9.6 %
		Y	4.65	76.13	21.00		150.0	
		Ζ	3.43	70.95	18.70		150.0	
10193- CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.57	66.50	16.04	0.00	150.0	± 9.6 %
		Y	4.61	66.73	16.23		150.0	
		Z	4.54	66.49	16.01		150.0	
10194- CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	Х	4.75	66.84	16.16	0.00	150.0	± 9.6 %
		Y	4.80	67.09	16.35		150.0	
		Z	4.71	66.82	16.14		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	Х	4.79	66.87	16.18	0.00	150.0	± 9.6 %
		Y	4.84	67.11	16.37		150.0	
		Z	4.76	66.85	16.15		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	4.58	66.58	16.07	0.00	150.0	± 9.6 %
		Y	4.63	66.82	16.26		150.0	
		Ζ	4.54	66.56	16.03		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	Х	4.77	66.86	16.18	0.00	150.0	± 9.6 %
		Y	4.82	67.11	16.37		150.0	
		Z	4.73	66.84	16.15		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.80	66.89	16.19	0.00	150.0	± 9.6 %
		Y	4.85	67.13	16.38		150.0	
		Z	4.76	66.87	16.17		150.0	
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.52	66.58	16.02	0.00	150.0	± 9.6 %
		Y	4.58	66.83	16.22		150.0	
		Z	4.49	66.56	15.99		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.76	66.85	16.17	0.00	150.0	± 9.6 %
		Y	4.81	67.09	16.36		150.0	
		Ζ	4.72	66.82	16.14		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	Х	4.80	66.82	16.18	0.00	150.0	± 9.6 %
		Y	4.86	67.06	16.37		150.0	
		Ζ	4.77	66.80	16.16		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.13	67.08	16.32	0.00	150.0	±9.6 %
		Y	5.18	67.32	16.50		150.0	
		Ζ	5.10	67.04	16.29		150.0	

ES3DV3- SN:3213

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.46	67.35	16.49	0.00	150.0	± 9.6 %
0.00		Y	5.51	07.50	10.00		450.0	
		Z		67.58	16.66		150.0	
10224-	IEEE 802.11n (HT Mixed, 150 Mbps, 64-	$\frac{2}{X}$	5.42	67.30	16.45	0.00	150.0	
CAC	QAM)		5.17	67.18	16.29	0.00	150.0	± 9.6 %
		Y	5.22	67.40	16.46		150.0	
40005		Z	5.14	67.14	16.27		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.80	65.74	15.07	0.00	150.0	± 9.6 %
		Y	2.87	66.19	15.45		150.0	
		Z	2.77	65.70	14.98		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	37.38	110.41	32.30	6.02	65.0	± 9.6 %
		Y	81.50	124.82	36.22		65.0	
		Z	33.47	109.42	32.18		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	29.60	104.69	30.14	6.02	65.0	± 9.6 %
		Y	53.65	115.37	33.21		65.0	
		Z	27.65	104.42	30.19		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	32.41	113.60	35.07	6.02	65.0	± 9.6 %
		Y	69.82	129.54	39.59		65.0	·
		Z	28.33	111.82	34.72		65.0	
10229-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	X	34.78	108.94	31.81	6.02	65.0	± 9.6 %
CAB	QAM)	Y	74.32	122.93	35.67		65.0	20.070
		Z	31.14	107.94	31.68		65.0	
10230-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-	X	27.87			6.00		1000
CAB	QAM)			103.54	29.74	6.02	65.0	± 9.6 %
		Y	50.12	114.03	32.79		65.0	
40004		Z	25.97	103.21	29.78		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	30.34	112.17	34.60	6.02	65.0	± 9.6 %
		Y	64.44	127.76	39.06		65.0	
10000		Z	26.54	110.39	34.24		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	34.78	108.95	31.81	6.02	65.0	± 9.6 %
		Y	74.45	122.97	35.68		65.0	
		Z	31.13	107.95	31.68		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	27.88	103.55	29.75	6.02	65.0	± 9.6 %
		Y	50.22	114.08	32.80		65.0	
		Z	25.97	103.22	29.78		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	28.47	110.69	34.07	6.02	65.0	± 9.6 %
		Y	59.28	125.81	38.45		65.0	
		Z	24.97	108.97	33.72		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	34.92	109.04	31.84	6.02	65.0	± 9.6 %
		Y	75.02	123.12	35.72		65.0	
		Z	31.25	108.03	31.71		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	28.18	103.71	29.79	6.02	65.0	± 9.6 %
		Y	50.93 26.26	114.30	32.85		65.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	ZX		103.39	29.82	6.00	65.0	+000
CAD	QPSK)		30.66	112.40	34.66	6.02	65.0	± 9.6 %
		Y	65.75	128.19	39.17		65.0	
100		Z	26.79	110.61	34.30		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	34.79	108.97	31.82	6.02	65.0	± 9.6 %
		Y	74.62	123.02	35.69		65.0	
		Z	31.13	107.96	31.69		65.0	

ES3DV3-SN:3213

10239-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	27.87	103.57	29.75	6.02	65.0	± 9.6 %
CAD	64-QAM)		50.20	11/ 10	22.00		65.0	
		Y Z	50.30	114.13	32.82		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	25.95 30.53	103.23 112.33	29.78 34.64	6.02	65.0 65.0	± 9.6 %
		Y	65.39	128.09	39.15		65.0	
		Z	26.68	110.54	34.28		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	11.82	86.67	27.53	6.98	65.0	± 9.6 %
		Y	13.66	90.07	29.00		65.0	
		Ζ	11.24	86.07	27.33		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	11.41	85.92	27.17	6.98	65.0	± 9.6 %
		Y	13.45	89.74	28.82		65.0	
		Z	10.57	84.73	26.73		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	9.24	83.16	27.04	6.98	65.0	± 9.6 %
		L L	10.64	86.64	28.68		65.0	
40011		Z	8.64	81.99	26.56		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	9.03	80.20	20.72	3.98	65.0	± 9.6 %
		×	9.95	81.82	21.52		65.0	
4004-		Z	8.70	79.77	20.42		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	8.84	79.62	20.45	3.98	65.0	± 9.6 %
		Y	9.72	81.20	21.24		65.0	
		Z	8.49	79.13	20.13		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	8.67	82.28	21.37	3.98	65.0	± 9.6 %
		Y	9.40	83.61	22.04		65.0	
		Ζ	8.57	82.11	21.15		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	7.23	77.21	20.08	3.98	65.0	± 9.6 %
		Y	7.59	77.99	20.54		65.0	
		Z	7.13	77.07	19.88		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	7.20	76.70	19.86	3.98	65.0	± 9.6 %
		Y	7.57	77.51	20.35		65.0	
		Z	7.09	76.52	19.65		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	9.92	84.79	23.00	3.98	65.0	± 9.6 %
		Y	10.62	85.95	23.57		65.0	
		Z	10.01	85.03	22.98		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	8.21	79.48	22.35	3.98	65.0	± 9.6 %
		Y	8.54	80.13	22.71		65.0	
		Z	8.20	79.60	22.34		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	7.75	77.32	21.20	3.98	65.0	± 9.6 %
		Y	8.11	78.10	21.64		65.0	
10055		Z	7.70	77.35	21.14		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	9.77	84.02	23.49	3.98	65.0	± 9.6 %
		Υ	10.31	84.92	23.94		65.0	
10050		Z	9.89	84.42	23.60		65.0	
10253- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	7.68	76.36	21.13	3.98	65.0	± 9.6 %
		Y	8.00	77.10	21.55		65.0	
100-1		Z	7.63	76.40	21.10		65.0	
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	8.06	77.17	21.76	3.98	65.0	± 9.6 %
		Y	8.36	77.82	22.13		65.0	
		Ζ	8.03	77.25	21.75		65.0	

ES3DV3-SN:3213

February 13, 2018

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	8.65	80.28	22.35	3.98	65.0	± 9.6 %
		Y	9.02	80.99	22.72		65.0	1
		Z	8.68	80.54	22.43		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	7.67	77.22	18.70	3.98	65.0	± 9.6 %
		Y	8.58	78.99	19.61		65.0	
		Z	7.24	76.45	18.22		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	7.44	76.40	18.29	3.98	65.0	± 9.6 %
		Y	8.29	78.12	19.18		65.0	
		Z	6.99	75.59	17.78		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	7.04	78.52	19.29	3.98	65.0	± 9.6 %
		Y	7.71	79.96	20.05		65.0	
		Z	6.74	77.86	18.83		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	7.62	78.03	20.88	3.98	65.0	± 9.6 %
		Y	7.97	78.76	21.31		65.0	
		Z	7.55	78.00	20.76		65.0	<u> </u>
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	7.62	77.74	20.79	3.98	65.0	± 9.6 %
		Y	7.97	78.46	21.21		65.0	
		Z	7.55	77.69	20.65		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	9.43	83.76	22.98	3.98	65.0	± 9.6 %
		Y	10.04	84.84	23.52		65.0	
		Z	9.50	84.03	22.99		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	8.20	79.43	22.31	3.98	65.0	± 9.6 %
		Y	8.53	80.09	22.68		65.0	
		Z	8.18	79.55	22.30		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	7.75	77.31	21.19	3.98	65.0	± 9.6 %
		Y	8.10	78.09	21.64		65.0	-
		Z	7.69	77.34	21.14		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	Х	9.70	83.85	23.41	3.98	65.0	± 9.6 %
		Y	10.24	84.77	23.87		65.0	
		Z	9.81	84.24	23.51		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	7.88	76.96	21.35	3.98	65.0	± 9.6 %
		Y	8.22	77.73	21.78		65.0	
		Z	7.82	76.99	21.33		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	8.27	77.77	22.03	3.98	65.0	± 9.6 %
		Y	8.58	78.42	22.39		65.0	!
		Z	8.23	77.85	22.03		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	8.94	80.62	22.25	3.98	65.0	± 9.6 %
		Y	9.31	81.28	22.59		65.0	
		Z	8.98	80.89	22.34		65.0	· · · · ·
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	8.36	76.49	21.55	3.98	65.0	± 9.6 %
		Y	8.63	77.08	21.88		65.0	
		Z	8.31	76.53	21.55		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	8.29	76.07	21.45	3.98	65.0	± 9.6 %
		Y	8.55	76.65	21.78		65.0	
		Z	8.24	76.11	21.45		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	8.43	77.83	21.33	3.98	65.0	± 9.6 %
		Y	8.69	78.31	21.60		65.0	
		Z	8.42	77.98	21.39		65.0	

Certificate No: ES3-3213_Feb18

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.55	65.90	14.85	0.00	150.0	± 9.6 %
		Y	2.63	66.48	15.31		150.0	
		Z	2.53	65.88	14.78		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.52	66.64	14.62	0.00	150.0	± 9.6 %
		Y	1.66	68.17	15.66		150.0	
		Z	1.50	66.49	14.49		150.0	
10277- CAA	PHS (QPSK)	X	4.62	67.49	12.27	9.03	50.0	± 9.6 %
		Y	5.00	68.49	13.05		50.0	
		Z	4.42	66.98	11.81		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	8.56	79.12	19.84	9.03	50.0	± 9.6 %
		Y	9.04	80.04	20.47		50.0	
		Ζ	8.20	78.37	19.32		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	8.72	79.33	19.94	9.03	50.0	± 9.6 %
		Y	9.22	80.28	20.58		50.0	
		Z	8.35	78.58	19.43		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	1.31	66.62	12.89	0.00	150.0	± 9.6 %
		Y	1.55	69.01	14.40		150.0	
		Z	1.25	66.21	12.49		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	0.75	63.97	11.28	0.00	150.0	± 9.6 %
		Y	0.88	66.12	12.85		150.0	
		Z	0.72	63.66	10.91		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	0.85	66.24	12.81	0.00	150.0	± 9.6 %
		Y	1.08	69.81	15.02		150.0	
		Z	0.81	65.82	12.39		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	1.07	69.43	14.80	0.00	150.0	± 9.6 %
		Y	1.49	74.49	17.52		150.0	
		Z	1.02	68.94	14.36		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.66	86.40	24.85	9.03	50.0	± 9.6 %
		Y	11.94	86.89	25.26		50.0	
		Z	12.14	87.13	24.94		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.68	68.79	15.92	0.00	150.0	± 9.6 %
		Y	2.84	69.89	16.60		150.0	
		Z	2.64	68.65	15.84		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.50	66.36	13.40	0.00	150.0	± 9.6 %
		Y	1.68	68.07	14.56		150.0	
		Z	1.44	66.01	13.05		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	2.99	70.93	15.34	0.00	150.0	± 9.6 %
		Y	3.88	74.74	17.20		150.0	
		Ζ	2.71	70.03	14.84		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.29	66.50	12.57	0.00	150.0	± 9.6 %
		Y	2.73	68.87	13.94		150.0	
	·	Z	2.09	65.76	12.08		150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.48	67.66	18.50	4.17	80.0	± 9.6 %
		Y	5.78	68.84	19.23		80.0	
		Z	5.37	67.36	18.28		80.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.94	68.12	19.14	4.96	80.0	± 9.6 %
	,	Y	6.22	69.31	19.91		80.0	
	NAL NAVA	Z						

February 13, 2018

10303-	IEEE 802.16e WiMAX (31:15, 5ms,	X	5.76	68.09	19.15	4.96	80.0	± 9.6 %
AAA	10MHz, 64QAM, PUSC)		0.07		10.00			
		Y Z	6.07 5.69	69.41	19.99		80.0	
10304-	IEEE 802.16e WiMAX (29:18, 5ms,	X	5.43	67.97 67.45	19.02 18.35	4.17	80.0	
AAA	10MHz, 64QAM, PUSC)					4.17	80.0	± 9.6 %
		Y	5.68	68.54	19.05		80.0	
10305-		Z	5.37	67.37	18.26		80.0	
AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	7.18	77.42	24.28	6.02	50.0	± 9.6 %
		Y	9.01	83.08	27.04		50.0	
10306-	IEEE 802.16e WiMAX (29:18, 10ms,	Z	7.00	76.95	23.93		50.0	
AAA	10MHz, 64QAM, PUSC, 18 symbols)	X	5.96	70.23	20.82	6.02	50.0	± 9.6 %
		Y	6.58	72.76	22.30		50.0	
10307-	IEEE 802.16e WiMAX (29:18, 10ms,	Z	5.86	69.99	20.61	0.00	50.0	
AAA	10MHz, QPSK, PUSC, 18 symbols)	X	6.41	73.34	22.47	6.02	50.0	± 9.6 %
		Y	6.70	73.58	22.50		50.0	
10000		Z	6.29	73.03	22.22		50.0	
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	6.49	73.92	22.75	6.02	50.0	± 9.6 %
		Y	6.78	74.12	22.76		50.0	
40000		Z	6.37	73.60	22.50		50.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	6.06	70.55	21.00	6.02	50.0	± 9.6 %
		Y	6.71	73.17	22.53		50.0	
10010		Z	5.95	70.29	20.78		50.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.95	70.41	20.82	6.02	50.0	±9.6 %
		Y	6.61	73.05	22.35		50.0	
		Z	6.20	72.46	22.04		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.02	68.11	15.62	0.00	150.0	± 9.6 %
		Y	3.19	69.13	16.23		150.0	
		Z	2.98	67.98	15.55		150.0	
10313- AAA	iDEN 1:3	X	6.80	77.50	18.05	6.99	70.0	±9.6 %
		Y	7.71	79.38	18.97		70.0	
		Z	6.80	77.56	18.00		70.0	
10314- AAA	iDEN 1:6	X	9.17	84.53	23.10	10.00	30.0	± 9.6 %
		Y	10.17	86.19	23.87		30.0	
		Z	9.47	85.21	23.28		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.09	63.63	14.71	0.17	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	1.15	64.55	15.51		150.0	
		Z	1.08	63.56	14.63		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.67	66.69	16.26	0.17	150.0	± 9.6 %
		Y	4.72	66.94	16.46		150.0	
		Z	4.64	66.69	16.24		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.67	66.69	16.26	0.17	150.0	± 9.6 %
		Y	4.72	66.94	16.46		150.0	
		Z	4.64	66.69	16.24		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.75	66.92	16.17	0.00	150.0	± 9.6 %
		Y	4.81	67.18	16.37		150.0	
		Z	4.72	66.89	16.14		150.0	
		X	5.45	67.19	16.39	0.00	150.0	± 9.6 %
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	^	0.40	07.10				
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	Y	5.49	67.37	16.55		150.0	

Certificate No: ES3-3213_Feb18

10402- AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.72	67.54	16.41	0.00	150.0	± 9.6 %
		Y	5.76	67.75	16.56		150.0	
		Z	5.68	67.48	16.38		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	×X	1.31	66.62	12.89	0.00	115.0	± 9.6 %
		Y	1.55	69.01	14.40		115.0	
		Z	1.25	66.21	12.49		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.31	66.62	12.89	0.00	115.0	±9.6 %
		Y	1.55	69.01	14.40		115.0	
		Z	1.25	66.21	12.49		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	25.28	103.83	26.72	0.00	100.0	± 9.6 %
		Y	100.00	122.83	31.28		100.0	
		Z	15.62	98.87	25.67		100.0	
10410- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	120.77	30.63	3.23	80.0	± 9.6 %
		Y	100.00	121.50	31.09		80.0	
		Z	100.00	121.84	30.99		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	0.97	62.31	13.89	0.00	150.0	± 9.6 %
		Y	1.01	63.10	14.65		150.0	
		Z	0.96	62.25	13.81		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.57	66.54	16.10	0.00	150.0	± 9.6 %
		Y	4.62	66.78	16.29		150.0	
		Z	4.54	66.53	16.07		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.57	66.54	16.10	0.00	150.0	± 9.6 %
		Y	4.62	66.78	16.29		150.0	
		Z	4.54	66.53	16.07		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.55	66.67	16.10	0.00	150.0	± 9.6 %
		Y	4.61	66.92	16.30		150.0	
		Z	4.53	66.67	16.08		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.58	66.63	16.11	0.00	150.0	± 9.6 %
		Y	4.63	66.88	16.30		150.0	
		Z	4.55	66.63	16.09		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.70	66.66	16.14	0.00	150.0	± 9.6 %
		Y	4.75	66.89	16.33		150.0	
		Z	4.67	66.65	16.12		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.89	67.00	16.27	0.00	150.0	± 9.6 %
		Y	4.94	67.25	16.46		150.0	
		Z	4.85	66.98	16.24		150.0	
10424- AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.80	66.94	16.23	0.00	150.0	± 9.6 %
		Y	4.85	67.19	16.42		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	Z X	<u>4.76</u> 5.43	66.92 67.40	16.20 16.49	0.00	150.0 150.0	± 9.6 %
			E 40	67.50	10.01		450.0	
		Y	5.46	67.59	16.64		150.0	
10406		Z	5.40	67.39	16.48	0.0	150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.43	67.42	16.49	0.00	150.0	± 9.6 %
		Y	5.47	67.60	16.64		150.0	
		Z	5.40	67.41	16.48		150.0	

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.43	67.37	16.46	0.00	150.0	± 9.6 %
		Y	5.47	67.57	16.62		150.0	
		Z	5.41	67.36	16.45	-	150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.15	69.76	17.63	0.00	150.0	± 9.6 %
		Y	4.19	69.88	17.76		150.0	
		Z	4.12	69.84	17.60		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.26	67.02	16.07	0.00	150.0	± 9.6 %
		Y	4.33	67.32	16.31		150.0	
		Z	4.22	67.00	16.02		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.56	66.95	16.16	0.00	150.0	± 9.6 %
		Y	4.62	67.22	16.37		150.0	
		Z	4.52	66.93	16.13		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.81	66.98	16.25	0.00	150.0	± 9.6 %
		Y	4.87	67.22	16.44		150.0	
10/07		Z	4.78	66.96	16.22		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.20	70.38	17.52	0.00	150.0	± 9.6 %
		Y	4.25	70.53	17.68	ļ	150.0	
10425		Z	4.16	70.46	17.47	0.00	150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	120.59	30.55	3.23	80.0	± 9.6 %
		Y	100.00	121.33	31.01		80.0	
10117		Z	100.00	121.65	30.91		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	×	3.54	66.87	15.35	0.00	150.0	± 9.6 %
		Y	3.62	67.29	15.69		150.0	
		Z	3.49	66.83	15.25		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	×	4.09	66.78	15.91	0.00	150.0	± 9.6 %
		Y	4.15	67.09	16.16		150.0	
		Z	4.05	66.76	15.87		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	×	4.36	66.75	16.04	0.00	150.0	± 9.6 %
		Y	4.42	67.03	16.26		150.0	
		Z	4.33	66.74	16.01		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	×	4.56	66.71	16.09	0.00	150.0	± 9.6 %
		Y	4.61	66.97	16.29		150.0	
		Z	4.53	66.69	16.06		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.43	67.01	14.98	0.00	150.0	± 9.6 %
		Y	3.53	67.50	15.37		150.0	
10/75		Z	3.37	66.93	14.84		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.29	67.98	16.66	0.00	150.0	± 9.6 %
		Y	6.32	68.16	16.79		150.0	
40/57		Z	6.26	67.96	16.65		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.79	65.17	15.80	0.00	150.0	± 9.6 %
		Y	3.83	65.41	16.01		150.0	
10/50		Z	3.78	65.16	15.77		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.84	69.59	16.93	0.00	150.0	± 9.6 %
		Y	3.91	69.84	17.18		150.0	
10/70		Z	3.81	69.69	16.86		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.05	67.70	17.82	0.00	150.0	± 9.6 %
		Y	5.09	67.77	17.90		150.0	
	1	Z	5.00	67.75	17.77		150.0	

10460-	UMTS-FDD (WCDMA, AMR)	X	0.79	65.91	14.37	0.00	150.0	± 9.6 %
AAA								
		Y	0.92	68.57	16.19		150.0	
10461-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z X	0.78	65,69	14.19	2.00	150.0	1000
AAA	QPSK, UL Subframe=2,3,4,7,8,9)		100.00	124.09	32.24	3.29	80.0	± 9.6 %
		Y	100.00	125.81	33.13		80.0	
10460		Z	100.00	125.28	32.66		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	82.18	106.66	24.50	3.23	80.0	± 9.6 %
		Y	100.00	110.22	25.68		80.0	
10463-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z X	90.90	108.32	24.86	0.00	80.0	
AAA	64-QAM, UL Subframe=2,3,4,7,8,9)		13.11	84.75	18.36	3.23	80.0	± 9.6 %
		Y	100.00	107.13	24.20		80.0	
10464-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	Z	11.64	83.97	18.10	0.00	80.0	
AAA	QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	122.05	31.13	3.23	80.0	± 9.6 %
		Y	100.00	123.91	32.10		80.0	
10465		Z	100.00	123.17	31.52	0.00	80.0	
10465- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	34.70	96.83	22.08	3,23	80.0	± 9.6 %
		Y	100.00	109.74	25.45		80.0	
10466-		Z	33.97	97.14	22.15	0.55	80.0	
10466- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	8.66	80.23	16.95	3.23	80.0	± 9.6 %
		Y	88.88	105.43	23.71		80.0	
10.107		Z	7.53	79.24	16.62		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	122.26	31.23	3.23	80.0	± 9.6 %
		Y	100.00	124.12	32.19		80.0	
		Z	100.00	123.40	31.62		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	42.56	99.17	22.68	3.23	80.0	± 9.6 %
		Y	100.00	109.90	25.52		80.0	
		Z	42.79	99.79	22.82		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	8.79	80.40	17.00	3.23	80.0	± 9.6 %
		Y	94.78	106.12	23.86		80.0	
		Z	7.65	79.43	16.67		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	122.29	31.23	3.23	80.0	± 9.6 %
		Y	100.00	124.15	32.20		80.0	
		Z	100.00	123.43	31.63		80.0	
10471- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	42.39	99.09	22.65	3.23	80.0	± 9.6 %
		Y	100.00	109.85	25.49		80.0	
		Z	42.62	99.70	22.79		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	8.75	80.33	16.97	3.23	80.0	± 9.6 %
		Y	95.63	106.16	23.85		80.0	
		Z	7.61	79.36	16.63		80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	122.26	31.22	3.23	80.0	± 9.6 %
		Y	100.00	124.13	32.18		80.0	
		Z	100.00	123.40	31.61		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	41.57	98.89	22.60	3.23	80.0	±9.6 %
		Y	100.00	109.86	25.49		80.0	
		Ζ	41.71	99.48	22.73		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	8.66	80.23	16.94	3.23	80.0	±9.6 %
		Y	92.76	105.86	23.79		80.0	
		Z	7.52	79.25	16.60		80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	36.02	97.20	22.15	3.23	80.0	± 9.6 %
		Y	100.00	109.70	25.42		80.0	· · · · · · · · · · · · · · · · · · ·
		Z	35.46	97.58	23.42		80.0	
10478-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-	X	8.55	80.07	16.88	3.23	80.0	± 9.6 %
AAC	QAM, UL Subframe=2,3,4,7,8,9)		0.00	00.01	10.00	0.20	00.0	1 0.0 70
		Y	89.69	105.45	23.69		80.0	
		Ζ	7.42	79.08	16.54		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	12.76	92.36	25.32	3.23	80.0	± 9.6 %
		Y	18.65	98.88	27.57		80.0	· · · · · · · · · · · · · · · · · · ·
		Ζ	13.95	94.12	25.81		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	12.57	87.00	22.01	3.23	80.0	± 9.6 %
		Y	19.95	93.91	24.32		80.0	
		Z	12.93	87.73	22.15		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	10.42	83.70	20.62	3.23	80.0	± 9.6 %
		Y	16.05	89.97	22.81		80.0	
1015-		Ζ	10.45	84.04	20.63		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.39	75.05	18.02	2.23	80,0	± 9.6 %
		Y	5.40	78.13	19.40		80.0	
10:00		Z	4.23	74.62	17.69		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	7.31	79.21	19.52	2.23	80.0	± 9.6 %
		Υ	9.15	82.68	20.99		80.0	
		Z	7.17	79.05	19.31		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.75	77.88	19.05	2.23	80.0	± 9.6 %
		Y	8.31	81.08	20.44		80.0	
		Z	6.55	77.60	18,79		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.80	76.47	19.36	2.23	80.0	± 9.6 %
		Y	5.70	79.15	20.55		80.0	
		Z	4.72	76.35	19.21		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.16	71.40	17.03	2.23	80.0	± 9.6 %
		Y	4.57	72.84	17.80		80.0	
		Z	4.07	71.21	16.82		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.14	70.99	16.86	2.23	80.0	± 9.6 %
		Y	4.52	72.34	17.60		80.0	
40400		Z	4.04	70.79	16.64		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.95	75.43	19.57	2.23	80.0	± 9.6 %
		Y	5.59	77.40	20.48		80.0	
10.100		Ζ	4.87	75.36	19.51		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.39	71.05	17.97	2.23	80.0	± 9.6 %
		Y	4.67	72.07	18.53		80.0	
40400		Z	4.33	71.01	17.90	0.00	80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.47	70.81	17.90	2.23	80.0	± 9.6 %
		Y	4.74	71.76	18.43		80.0	
10404		Z	4.41	70.77	17.83		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.94	73.38	18.92	2.23	80.0	± 9.6 %
		Y	5.38	74.76	19.60		80.0	
10400		Z	4.87	73.32	18.89		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	4.67	70.17	17.91	2.23	80.0	± 9.6 %
		Y	4.91	70.97	18.36		80.0	
		Z	4.62	70.13	17.86		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.74	70.00	17.86	2.23	80.0	± 9.6 %
		Y	4.96	70.77	18.30		80.0	
		Z	4.68	69.97	17.81		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	5.42	74.96	19.36	2.23	80.0	± 9.6 %
		Y	5.98	76.57	20.11		80.0	
		Z	5.33	74.86	19.31		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.74	70.64	18.10	2.23	80.0	± 9.6 %
		Y	4.99	71.49	18.58		80.0	
		Z	4.68	70.58	18.06		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.80	70.29	18.01	2.23	80.0	± 9.6 %
		Y	5.03	71.08	18.45		80.0	
		Z	4.74	70.24	17.97		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.26	70.91	15,58	2.23	80.0	± 9.6 %
		Y	4.08	73.99	17.07		80.0	
		Z	3.04	70.05	15.01		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.52	65.21	12.20	2.23	80.0	± 9.6 %
		Y	2.96	67.17	13.35		80.0	
		Ζ	2.32	64.31	11.53		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.46	64.66	11.82	2.23	80.0	± 9.6 %
		Y	2.87	66.51	12.93		80.0	
		Z	2,25	63.75	11.14		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.75	75.65	19.32	2.23	80.0	± 9.6 %
		Y	5.48	77.92	20.36		80.0	
		Z	4.68	75.58	19.22		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.26	71.24	17.39	2.23	80.0	± 9.6 %
		Y	4.61	72.46	18.05		80.0	
		Z	4.19	71.15	17.24		, 80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.30	71.03	17.26	2.23	80.0	± 9.6 %
		Y	4.65	72.20	17.90		80.0	
		Z	4.23	70.93	17.11		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.89	75.24	19.48	2.23	80.0	± 9.6 %
		Y	5.52	77.21	20.39		80.0	
		Z	4.81	75.16	19.42		80.0	
10504- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.37	70.96	17.92	2.23	80.0	± 9.6 %
		Y	4.66	71.99	18.49		80.0	
		Z	4.31	70.92	17.85		80.0	
10505- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.44	70.72	17.85	2.23	80.0	± 9.6 %
		Y	4.72	71.68	18.38		80.0	
		Z	4.39	70.68	17.78		80.0	
10506- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.37	74.82	19.29	2.23	80.0	± 9.6 %
		Y	5.93	76.44	20.05		80.0	
		Ζ	5.29	74.72	19.25		80.0	
10507- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	X	4.72	70.58	18.07	2.23	80.0	± 9.6 %
AAC								
	Subframe=2,3,4,7,8,9)	Y	4.98	71.44	18.54		80.0	

AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.10 10.00 12.0 00.0 13.8 /s Interval Z 6.41 72.94 18.60 80.0 10.0	10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.78	70.23	17.97	2.23	80.0	± 9.6 %
10509- ICS-FDMA, 100% RB, 15 Z 4.72 70.18 17.93 60.0 AAC MHz, QPSK, UL SUbframe=2,3,4,7,8,9) Y 5.87 74,15 18.60 2.23 60.0 ±9.6 % IDS10- AAC LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QM, UL Subframe=2,3,4,7,8,9) Y 5.81 70.13 17.99 2.23 60.0 ±9.6 % AAC MHz, 16-QM, UL Subframe=2,3,4,7,8,9) Y 5.40 70.44 18.59 80.0 10511- LTE-TDD (SC-FDMA, 100% RB, 15 AAC X 5.12 70.07 17.96 80.0 ±9.6 % Subframe=2,3,4,7,8,9) Y 5.40 70.44 18.29 80.0 ±9.6 % Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ±9.6 % AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.45 74.74 19.13 2.23 80.0 ±9.6 % AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.39 76.43 19.09 80.0			Y	5.02	71.02	18.41		80.0	
16509- LTE-TDD (SC-FDMA, 100% RB, 15 X 5.48 73.02 18.63 2.23 60.0 ± 9.6 % MHz, OPSK, UL SUbframe-2.3,4,7,8,9 Y 5.87 74.15 19.19 60.0 ± 9.6 % AC HTz, 10-QM, UL Z 5.41 72.34 18.60 60.0 ± 9.8 % AC HTz, 10-QM, UL X 5.18 70.13 17.99 2.23 80.0 ± 9.8 % Subframe2.3,4,7,8,9 Y 5.40 70.64 18.29 80.0 ± 9.6 % Subframe2.3,4,7,8,9 Y 5.42 70.47 17.92 80.0 ± 9.6 % MHz, CPGK, UL, Subframe2.3,4,7,8,9 Y 5.42 70.49 18.29 80.0 ± 9.6 % MHz, CPSK, UL, Subframe2.3,4,7,8,9 Y 5.42 70.49 18.29 80.0 ± 9.6 % Subframe2.3,4,7,8,9 Y 5.35 74.74 19.13 2.23 80.0 ± 9.6 % 10514 LTE-TDD (SC-FDMA, 100% RB, 20 X 5.10 70.52 18.1			Z						
Z 5.41 72.94 18.60 80.0 AAC MHz, 16-QAM, UL Subframe=2,3.4,7.8.9) Y 5.18 70.13 17.99 2.23 80.0 2.9.6 % Subframe=2,3.4,7.8.9) Y 5.40 70.84 18.39 80.0 2.9.6 % 10511. LTE-TDD (SC-FDMA, 100% RB, 15 X 5.12 70.70 17.96 80.0 19.6 % AAC MHz, 64-OAM, UL X 5.15 69.76 17.89 60.0 19.6 % 10512. LTE-TDD (SC-FDMA, 100% RB, 20 X 5.15 69.76 17.89 60.0 19.6 % MHz, QPSK, UL Subframe=2,3.4,7,8.9) Y 6.38 76.18 19.80 80.0 19.6 % MAC MHz, 16-QAM, UL Z 5.76 74.42 19.09 80.0 19.6 % Subframe=2,3.4,7.8,9) Y 5.34 71.31 18.56 80.0 19.6 % MHz, 16-QAM, UL Subframe=2,3.4,7.8,9) Y 5.29 70.75 18.40 80.0	10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)					2.23		± 9.6 %
Coston LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.18 70.13 17.99 2.23 80.0 ± 9.6 % ACC MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.12 70.07 17.96 80.0 ± 9.6 % 10510- LTE-TDD (SC-FDMA, 100% RB, 15 X 5.12 70.07 17.96 80.0 ± 9.6 % 30bframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % ACC MHz, 64-CAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % AAC MHz, 64-CAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % AAC MHz, 05C-FDMA, 100% RB, 20 X 5.10 70.42 19.09 80.0 ± 9.6 % AAC MHz, 18-GAM, UL Z 5.03 70.43 18.08 80.0 ± 9.6 % AAC MHz, 40-QAM, UL Z 5.03 70.33 18.00 2.23 80.0 ± 9.6 %			Y	5.87	74.15	19.19		80.0	
10510- AAC LTE-TDD (SC-FDMA, 100% RB, 15 SUbframe=2,3,4,7,8,9) X 5.18 70.13 17.99 2.23 80.0 ± 9.6 % AAC MEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.40 70.84 18.29 80.0 ± 9.6 % MIEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MIEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MIEz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.60 80.0 ± 9.6 % MAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.30 70.43 18.08 80.0 ± 9.6 % MAC Subframe=2,3,4,7,8,9) Y 5.30 70.33 18.00 2.23 80.0 ± 9.6 % MAC LTE-TDD (SC-FDMA, 100% RB, 20 X 5.08 70.03 18.00 2.23 80.0 ± 9.6 %			Z	5.41	72.94				
Z 5.12 70.07 17.96 60.0 AAC LTE-TDD (SC-FDMA, 100% RB, 15 X 5.21 69.83 17.92 2.23 80.0 ± 9.6 % MHz, 64-OAM, UL Y 5.42 70.49 18.29 80.0 ± 9.6 % 10512- LTE-TDD (SC-FDMA, 100% RB, 20 X 5.85 74.74 19.13 2.23 80.0 ± 9.6 % AAC MHz, 04-OAM, UL Subframe=2,3.4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % AAC Subframe=2,3.4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % MLz, 16-CAM, UL Subframe=2,3.4,7,8,9) Y 5.34 71.31 18.56 80.0 ± 9.6 % Mutz, 64-AAM, UL Subframe=2,3.4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % MAC Subframe=2,3.4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % MAC Subframe=2,3.4,7,8,9) Y 5.29	10510- AAC	MHz, 16-QAM, UL				17.99	2.23		± 9.6 %
10611- LTE-TDD (SC-FDMA, 100% RB, 15 AAC X 5.21 60.83 F.2 17.92 2.23 80.0 ± 9.6 % MAC MLz, 64-CAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 ± 9.6 % MAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 5.45 74.74 19.13 2.23 80.0 ± 9.6 % AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % MAC MHz, 16-CAM, UL Z 5.76 74.62 19.09 80.0 ± 9.6 % MHz, 16-CAM, UL Z 5.03 70.43 18.08 80.0 ± 9.6 % MHz, 16-CAM, UL Z 5.03 70.43 18.08 80.0 ± 9.6 % MHz, 64-CAM, UL Z 5.08 70.03 18.00 2.23 80.0 ± 9.6 % ML2, 64-CAM, UL Z 5.02 69.96 17.96 80.0 ± 9.6 % MD514- ITE-TDD (SC-FDMA, 100% RB, 20 X 5								80.0	
AAC MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.42 70.49 18.29 80.0 10512- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.30 2.23 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.09 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.56 80.0 10514- MAC Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.00 80.0 ± 9.6 % 10515- MAC Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- MAC LEE 802.11b WIFI 2.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 10515- MAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.76 150.0 <td>10511</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80.0</td> <td></td>	10511							80.0	
Construction Z 5.15 69.78 17.89 80.0 AAC ITE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.85 74.74 19.13 2.23 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 5.10 70.52 18.13 2.23 80.0 ± 9.6 % AAC MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.56 80.0 ± 9.6 % AAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.43 18.00 2.23 80.0 ± 9.6 % MAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.31 18.00 2.23 80.0 ± 9.6 % MAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.75 18.40 80.0 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.92	10511- AAC	MHz, 64-QAM, UL			69.83	17.92	2.23	80.0	± 9.6 %
10512- LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 5.85 74.74 19.13 2.23 80.0 ± 9.6 % 10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 6.39 76.18 19.80 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) Y 5.34 71.31 18.66 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10514- Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- AAA IEEE 802.11b WiF12.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 16.40 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.70 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>80.0</td><td></td></t<>								80.0	
AAC MHz, QPSK, UL Subframe=2,3,4,7,8,9) MHz MLX MUZ MZ S.10 70.52 18.13 2.23 80.0 ± 9.6 % AAC MHz, 64-QAM, UL Z 5.03 70.43 18.00 2.03 80.0 150.0 ± 9.6 % MAA Mbps, 99.0 (duty cycle) Y 5.29 70.75 18.40 80.0 150.0 ± 9.6 % MAA Mbps, 99.0 (duty cycle) 2 0.92 62.37 13.81 150.0 150.0 150.0	10515							80.0	
ZE 5.76 74.62 19.09 80.0 AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) X 5.10 70.52 18.13 2.23 80.0 ±9.6 % AAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.03 70.43 18.08 80.0 . LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.03 18.00 2.23 80.0 ±9.6 % AAC LTE-TDD (SC-FDMA, 100% RB, 20 AAC X 5.08 70.03 18.00 2.23 80.0 ±9.6 % AAC MHz, 64-QAM, UL Subframe=2,3,4.7,8,9) Y 5.29 70.75 18.40 80.0 . Color Z 5.02 69.96 17.96 80.0 . . AAA Mbps, 99pc duty cycle) Y 0.92 62.37 13.81 150.0 . . 10516- IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 0.48 66.52 14.26 0.00 150.0 ±9.6 % AAA Mbps, 99pc						19.13	2.23	80.0	± 9.6 %
10513- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-GMA, UL Subframe=2,3,4,7,8,9) X 5.10 70.52 18.13 2.23 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-GMA, UL Subframe=2,3,4,7,8,9) Y 5.34 77.131 18.06 80.0 ± 9.6 % 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MAz, 64-GMA, UL Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- AAA Mbs, 99pc duty cycle) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- MAA Mbs, 99pc duty cycle) Y 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 13.81 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.66 71.79 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y									
AAC MHz, 16-GAM, UL Subframe=2,3,4,7,8,9) No. A.R. B.R.	10540								
Z 5.03 70.43 18.08 80.0 10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 5.08 70.03 18.00 2.23 80.0 ± 9.6 % AAC Subframe=2,3,4,7,8,9) Y 5.29 70.75 18.40 80.0 ± 9.6 % 10515- IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 14.26 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 14.01 150.0 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 150.0 ± 9.6 % AAA <	10513- AAC	MHz, 16-QAM, UL					2.23		± 9.6 %
10514- AAC LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) X 5.08 70.03 18.00 2.23 80.0 ± 9.6 % 0 Y 5.29 70.75 18.40 80.0 105.0 ± 9.6 % 10515- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % 10516- AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 105.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 10517- IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 X 4.56 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
AAC MHz, 64-QAM, UL Market Ma	10511								
Z 5.02 69.96 17.96 80.0 10515- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.92 62.37 13.81 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) X 0.76 63.81 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) X 0.76 63.86 13.95 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.66 66.61 16.07 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y	10514- AAC	MHz, 64-QAM, UL			70.03	18.00	2.23	80.0	± 9.6 %
10515- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) X 0.93 62.43 13.89 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 ± 9.6 % 10516- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 0.48 66.52 14.26 0.00 150.0 ± 9.6 % 10517- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 0.48 66.52 14.26 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 X 4.56 66.61 16.05 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y					70.75	18.40		80.0	
AAA Mbps, 99pc duty cycle) Y 0.97 63.29 14.71 150.0 2 0.92 62.37 13.81 150.0 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.68 66.52 14.26 0.00 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.66 71.79 17.60 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.65 71.79 17.60 150.0 ±9.6 % 10517- IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 X 0.76 63.81 14.01 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ±9.6 % AAA Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ±9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.85 16.27 150.0 I0519- IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 X 4.76 66.88		-	Z					80.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10515- AAA						0.00		± 9.6 %
10516- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) X 0.48 66.52 14.26 0.00 150.0 ± 9.6 % Y 0.65 71.79 17.60 150.0 150.0 150.0 10517- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 X 0.76 63.81 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 ± 9.6 % AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.85 16.27 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.12									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40540								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AAA	Mbps, 99pc duty cycle)					0.00		± 9.6 %
10517- AAA IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) X 0.76 63.81 14.08 0.00 150.0 ± 9.6 % AAA Mbps, 99pc duty cycle) Z 0.75 63.68 13.95 150.0 10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 AAB X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB Y 4.61 66.85 16.27 150.0 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.83 16.12 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.									
AAA Mbps, 99pc duty cycle) Y 0.83 65.38 15.37 150.0 10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % 10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % 10519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % 10520- AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 10520- AAB Mbps, 99pc duty cycle) Y 4.61 66.83 16.12 0.00 150.0 ± 9.6 % 10521- AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.54	10517	1555 802 115 W/i5i 2 4 CHz (DSSS_11					0.00		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AAA						0.00		± 9.6 %
10518- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) X 4.56 66.61 16.07 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.61 66.85 16.27 150.0 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % IO519- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 AAB X 4.76 66.88 16.21 0.00 150.0 ± 9.6 % IO520- AAB Mbps, 99pc duty cycle) Y 4.82 67.13 16.41 150.0 ± 9.6 % IO520- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) X 4.61 66.83 16.12 0.00 150.0 ± 9.6 % IO520- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.61 66.83 16.12 0.00 150.0 ± 9.6 % IO521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % IO522- AAB Mbps, 99pc duty cycle) Y 4.60 67.09 16.31									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10518- AAB						0.00		± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	4.61	66.85	16.27		150.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Z						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10519- AAB		X	4.76	66.88		0.00		± 9.6 %
10520- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) X 4.61 66.83 16.12 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB Y 4.67 66.81 16.09 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB Y 4.60 67.09 16.31 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB Y 4.60 66.79 16.07 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % IO522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) Y 4.65 67.13 16.37 150.0			Y						
AAB Mbps, 99pc duty cycle) Y 4.67 67.09 16.32 150.0 10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 AAB X 4.57 66.81 16.09 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) Y 4.60 67.09 16.31 150.0 10522- AAB Y 4.60 67.09 16.31 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB Y 4.65 67.13 16.37 150.0						16.18		150.0	
Z 4.57 66.81 16.09 150.0 10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % Y 4.60 67.09 16.31 150.0 ± 16.00 150.0 ± 9.6 % IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % AAB Mbps, 99pc duty cycle) Y 4.65 67.13 16.37 150.0	10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)					0.00		±9.6 %
10521- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) X 4.54 66.82 16.10 0.00 150.0 ± 9.6 % Y 4.60 67.09 16.31 150.0 ± 9.6 % Z 4.51 66.79 16.07 150.0 IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 AAB X 4.60 66.88 16.17 0.00 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 %									
AAB Mbps, 99pc duty cycle) Y 4.60 67.09 16.31 150.0 Image: Constraint of the state of the s	10524						0.00		
Z 4.51 66.79 16.07 150.0 10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % Y 4.65 67.13 16.37 150.0 ± 150.0	10521- AAB						0.00		± 9.6 %
10522- AAB IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) X 4.60 66.88 16.17 0.00 150.0 ± 9.6 % Y 4.65 67.13 16.37 150.0 ± 9.6 %							-		
AAB Mbps, 99pc duty cycle) Y 4.65 67.13 16.37 150.0	10522						0.00		
	10522- AAB						0.00		± 9.6 %
			Z	4.65	67.13	16.37 16.15		150.0	

10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.47	66.73	16.00	0.00	150.0	± 9.6 %
		Y	4.52	66.99	16.21		150.0	
		Z	4.52	66.72	15.98		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.44	66.81	16.14	0.00	150.0	± 9.6 %
AAD		Y	4.60	67.07	16.35		450.0	
		Z	4.60				150.0	
10525-		$\frac{2}{X}$		66.79	16.12	0.00	150.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)		4.52	65.83	15.72	0.00	150.0	± 9.6 %
		Y	4.57	66.08	15.92		150.0	
		Z	4.49	65.82	15.70		150.0	
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.70	66.21	15.87	0.00	150.0	± 9.6 %
		Y	4.76	66.48	16.07		150.0	
		Z	4.66	66.20	15.85		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.61	66.17	15.81	0.00	150.0	± 9.6 %
		Y	4.67	66.44	16.02		150.0	
		Z	4.58	66.15	15.78		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.63	66.19	15.85	0.00	150.0	± 9.6 %
		Y	4.69	66.46	16.05		150.0	
		Z	4.60	66.17	15.82		150.0	····
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.63	66.19	15.85	0.00	150.0	± 9.6 %
		Y	4.69	66.46	16.05		150.0	
		Z	4.60	66.17	15.82		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.63	66.31	15.86	0.00	150.0	± 9.6 %
		Y	4.69	66.59	16.07		150.0	
		Z	4.59	66.28	15.83		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.48	66.15	15.79	0.00	150.0	± 9.6 %
		Y	4.55	66.44	16.01		150.0	
		Z	4.45	66.12	15.75		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.64	66.22	15.83	0.00	150.0	± 9.6 %
		Y	4.70	66.49	16.03		150.0	
		Z	4.60	66.20	15.80		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.17	66.38	15.95	0.00	150.0	± 9.6 %
		Y	5.22	66.61	16.12		150.0	
			5.14	66.36	15.93		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.24	66.55	16.02	0.00	150.0	± 9.6 %
		Y	5.29	66.77	16.19		150.0	
		z	5.21	66.54	16.01		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.11	66.49	15.97	0.00	150.0	± 9.6 %
		Y	5.16	66.73	16.15		150.0	
		Z	5.07	66.46	15.95		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.17	66.48	15.97	0.00	150.0	± 9.6 %
		Y	5.22	66.71	16.14		150.0	
40500		Z	5.14	66.45	15.95		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.27	66.54	16.05	0.00	150.0	± 9.6 %
		Y	5.32	66.77	16.22		150.0	
		Z	5.23	66.49	16.02		150.0	
10540 . AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.19	66.52	16.05	0.00	150.0	± 9.6 %
		Y	5.24	66.75	16.22		150.0	····
	I COMPANY CONTRACTOR C	Z	5.16					

10541-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	5.16	66.38	15.97	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)							//
		Y	5.21	66.61	16.15		150.0	
		Z	5.13	66.35	15.95		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.32	66.47	16.04	0.00	150.0	± 9.6 %
		Y	5.37	66.69	16.20		150.0	
		Z	5.29	66.44	16.02		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.41	66.52	16.08	0.00	150.0	± 9.6 %
		Y	5.45	66.73	16.24		150.0	
		Z	5.38	66.51	16.07		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	Х	5.47	66.50	15.95	0.00	150.0	± 9.6 %
		Y	5.51	66.71	16.11		150.0	
		Z	5.45	66.47	15.93		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.69	66.97	16.13	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.73	67.17	16.28		150.0	
		Z	5.66	66.95	16.12		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.56	66.76	16.04	0.00	150.0	± 9.6 %
		Y	5.60	66.98	16.21		150.0	
105/-		Z	5.52	66.71	16.02		150.0	
10547- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.64	66.85	16.08	0.00	150.0	± 9.6 %
		Y	5.69	67.07	16.24		150.0	
		Z	5.60	66.78	16.04		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.00	68.11	16.68	0.00	150.0	± 9.6 %
		Y	6.04	68.30	16.83		150.0	
		Z	5.95	68.00	16.63		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.58	66.74	16.04	0.00	150.0	± 9.6 %
		Y	5.62	66.95	16.20		150.0	
		Z	5.55	66.72	16.03		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.58	66.77	16.02	0.00	150.0	± 9.6 %
		Y	5.63	67.00	16.18		150.0	
		Z	5.55	66.74	16.00		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.49	66.55	15.92	0.00	150.0	± 9.6 %
		Y	5.53	66.77	16.08		150.0	
		Z	5.46	66.52	15.90		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.58	66.61	15.98	0.00	150.0	± 9.6 %
		Y	5.63	66.83	16.14		150.0	
		Z	5.55	66.57	15.96		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.88	66.89	16.06	0.00	150.0	± 9.6 %
		Y	5.92	67.10	16.21		150.0	
		Z	5.86	66.86	16.04		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.03	67.23	16.21	0.00	150.0	± 9.6 %
		Y	6.07	67.43	16.35		150.0	
1055-		Z	6.00	67.20	16.19		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.04	67.26	16.21	0.00	150.0	± 9.6 %
		Y	6.08	67.46	16.36		150.0	
1		Z	6.02	67.23	16.20		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.01	67.18	16.19	0.00	150.0	± 9.6 %
C		Y	6.06	67.39	16.35		150.0	
		Z	5.98	67.14	16.17		150.0	

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.07	67.37	16.30	0.00	150.0	± 9.6 %
		Y	6.12	67.58	16.46		150.0	
		Z	6.04	67.31	16.27		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.06	67.18	16.25	0.00	150.0	± 9.6 %
		Y	6.10	67.40	16.41		150.0	
		Z	6.03	67.14	16.23		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.98	67.16	16.28	0.00	150.0	± 9.6 %
		Y	6.02	67.38	16.43		150.0	
		Z	5.95	67.13	16.26		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.14	67.65	16.52	0.00	150.0	± 9.6 %
		Y	6.18	67.88	16.69		150.0	
		Z	6.10	67.57	16.48		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.53	68.40	16.85	0.00	150.0	± 9.6 %
		Y	6.57	68.59	17.00		150.0	
		Z	6.44	68.19	16.75		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.91	66.77	16.29	0.46	150.0	± 9.6 %
	····	Y	4.96	67.01	16.49		150.0	
		Z	4.88	66.76	16.26		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	Х	5.15	67.23	16.61	0.46	150.0	± 9.6 %
		Y	5.20	67.46	16.79		150.0	
		Z	5.11	67.20	16.58		150.0	····
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.98	67.08	16.43	0.46	150.0	± 9.6 %
		Y	5.04	67.33	16.62		150.0	
		Z	4.94	67.05	16.40		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.00	67.42	16.74	0.46	150.0	± 9.6 %
		Y	5.05	67.64	16.92		150.0	
		Z	4.96	67.39	16.72		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.90	66.88	16.22	0.46	150.0	± 9.6 %
		Y	4.96	67.15	16.44		150.0	
		Z	4.87	66.87	16.19		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.95	67.46	16.77	0.46	150.0	± 9.6 %
		Y	5.00	67.68	16.94		150.0	
		Z	4.91	67.46	16.76		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.99	67.34	16.73	0.46	150.0	±9.6 %
		Y	5.04	67.57	16.91		150.0	
		Z	4.95	67.33	16.71		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.25	64.93	15.40	0.46	130.0	± 9.6 %
		Y	1.32	65.99	16.25		130.0	
		Z	1.24	64.84	15.31		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.27	65.48	15.72	0.46	130.0	± 9.6 %
		Y	1.35	66.62	16.60		130.0	
		Z	1.26	65.38	15.63		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	2.10	81.92	20.57	0.46	130.0	± 9.6 %
		Y	6.18	99.59	26.88		130.0	
		Z	1.98	81.02	20.18		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.40	70.72	18.14	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	1.59	73.16	19.61		130.0	
		Z	1.38	70.53	18.01			

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.72	66.64	16.39	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)				10.00	0.40	100.0	1 0.0 78
		Y	4.77	66.88	16.58		130.0	
		Z	4.69	66.63	16.36		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.74	66.78	16.44	0.46	130.0	± 9.6 %
		Y	4.79	67.02	16.63		130.0	
		Z	4.71	66.78	16.41		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.96	67.10	16.62	0.46	130.0	± 9.6 %
		Y	5.01	67.33	16.80		130.0	
		Z	4.92	67.08	16.59		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.85	67.23	16.70	0.46	130.0	± 9.6 %
		Y	4.90	67.46	16.88		130.0	
40570		Z	4.81	67.21	16.67		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.63	66.62	16.07	0.46	130.0	± 9.6 %
	•	Y	4.70	66.91	16.30		130.0	
10590		Z	4.60	66.59	16.04	0.15	130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.68	66.64	16.09	0.46	130.0	± 9.6 %
		Y	4.74	66.93	16.33		130.0	
10501		Z	4.64	66.62	16.06		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.75	67.28	16.64	0.46	130.0	± 9.6 %
		Y	4.81	67.52	16.83		130.0	
10500		Z	4.71	67.26	16.61		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.59	66.41	15.89	0.46	130.0	± 9.6 %
		Y	4.65	66.72	16.14		130.0	
		Z	4.55	66.37	15.85		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.72	66.64	16.39	0.46	130.0	±9.6 %
		Y	4.77	66.88	16.58		130.0	
		Z	4.69	66.63	16.36		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.74	66.78	16.44	0.46	130.0	±9.6 %
		Y	4.79	67.02	16.63		130.0	
		Z	4.71	66.78	16.41		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.96	67.10	16.62	0.46	130.0	± 9.6 %
		Y	5.01	67.33	16.80		130.0	
		Z	4.92	67.08	16.59		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.85	67.23	16.70	0.46	130.0	±9.6 %
		Y	4.90	67.46	16.88		130.0	
10505		Z	4.81	67.21	16.67		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.63	66.62	16.07	0.46	130.0	± 9.6 %
		Y	4.70	66.91	16.30		130.0	
1		Z	4.60	66.59	16.04		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.68	66.64	16.09	0.46	130.0	± 9.6 %
		Y	4.74	66.93	16.33		130.0	
10555		Z	4.64	66.62	16.06		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.75	67.28	16.64	0.46	130.0	±9.6 %
		Y	4.81	67.52	16.83		130.0	
		Z	4.71	67.26	16.61		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.59	66.41	15.89	0.46	130.0	± 9.6 %
		Y	4.65	66.72	16.14		130.0	
		Z	4.55	66.37	15.85		130.0	

10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.87	66.69	16.48	0.46	130.0	± 9.6 %
=		Y	4.92	66.92	16.67		130.0	
		Z	4.84	66.69	16.46		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.03	67.03	16.61	0.46	130.0	± 9.6 %
		Y	5.08	67.26	16,79		130.0	
		Z	5.00	67.02	16.59		130.0	
10593-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.96	66.97	16.51	0.46	130.0	± 9.6 %
AAB	MCS2, 90pc duty cycle)	Y	5.01	67.21	16.70	0.40	130.0	10.0 %
		Z	4.92	66.95	16.48		130.0	
	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.01	67.11	16.65	0.46	130.0	± 9.6 %
		Y	5.06	67.34	16.83		130.0	
		Z	4.97	67.10	16.62		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.98	67.08	16.55	0.46	130.0	± 9.6 %
		Y	5.04	67.32	16.74		130.0	
		Z	4.94	67.06	16.53		130.0	
	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.92	67.08	16.55	0.46	130.0	± 9.6 %
		Y	4.98	67.33	16.75		130.0	
		Z	4.88	67.06	16.53		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.87	67.00	16.45	0.46	130.0	± 9.6 %
		Y	4.93	67.26	16.65		130.0	
		Z	4.83	66.97	16.42		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.85	67.21	16.69	0.46	130.0	±9.6 %
		Y	4.90	67.45	16.87		130.0	
		Z	4.81	67.18	16.66		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.55	67.30	16.72	0.46	130.0	± 9.6 %
		Y	5.59	67.50	16.88		130.0	
		Z	5.52	67.28	16.71		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.76	67.97	17.04	0.46	130.0	± 9.6 %
		Y	5.80	68.15	17.19		130.0	
		Z	5.71	67.90	16.99		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.61	67.58	16.85	0.46	130.0	±9.6 %
		Y	5.65	67.77	17.00		130.0	
		Z	5.57	67.54	16.83		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.69	67.58	16.77	0.46	130.0	± 9.6 %
		Y	5.73	67.78	16.94		130.0	
		Z	5.66	67.57	16.76		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.77	67.85	17.03	0.46	130.0	± 9.6 %
		Y	5.81	68.03	17.18		130.0	
		Z	5.73	67.82	17.01		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.55	67.27	16.73	0.46	130.0	± 9.6 %
		Y	5.60	67.47	16.89		130.0	
		Z	5.52	67.24	16.71		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.69	67.68	16.94	0.46	130.0	± 9.6 %
		Y	5.73	67.87	17.10		130.0	
		Z	5.66	67.69	16.94		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.43	67.03	16.48	0.46	130.0	± 9.6 %
		Y'	5.48	67.26	16.66		130.0	
		Z	5.41	67.03	16.47		130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.70	65.95	16.07	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)							
		Y	4.75	66.19	16.26		130.0	
10608-		Z	4.67	65.95	16.05	0.40	130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.89	66.37	16.24	0.46	130.0	± 9.6 %
		Y	4.95	66.62	16.43		130.0	
10609-		Z	4.86	66.36	16.22		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.78	66.23	16.09	0.46	130.0	± 9.6 %
		Y	4.84	66.50	16.29		130.0	
10610-	IEEE 802.11ac WiFi (20MHz, MCS3,	Z	4.75	66.21	16.06		130.0	
AAB	90pc duty cycle)	X	4.83	66.38	16.24	0.46	130.0	±9.6 %
· · · · · ·		Y	4.89	66.63	16.43		130.0	
10611	IEEE 802.11ac WiFi (20MHz, MCS4,	Z	4.80	66.36	16.22	0.40	130.0	
10611- AAB	90pc duty cycle)	X	4.75	66.21	16.10	0.46	130.0	± 9.6 %
		Y	4.81	66.47	16.30		130.0	
10612		Z	4.72	66.18	16.07	0.45	130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.77	66.37	16.14	0.46	130.0	± 9.6 %
		Y	4.83	66.65	16.36		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z	4.73	66.35	16.12	0.10	130.0	
AAB	90pc duty cycle)	X	4.78	66.28	16.05	0.46	130.0	±9.6 %
		Y	4.84	66.57	16.26		130.0	
10614		Z	4.74	66.25	16.02	0.40	130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.71	66.42	16.24	0.46	130.0	± 9.6 %
		Y	4.77	66.68	16.44		130.0	
10015		Z	4.67	66.39	16.22		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.76	66.06	15.90	0.46	130.0	± 9.6 %
		Y	4.82	66.34	16.11		130.0	
10010		Z	4.72	66.04	15.87		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.36	66.52	16.31	0.46	130.0	± 9.6 %
		Y	5.40	66.73	16.47		130.0	
		Z	5.33	66.49	16.29		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.42	66.67	16.35	0.46	130.0	± 9.6 %
		Y	5.47	66.87	16.51		130.0	
		Z	5.40	66.69	16.36		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.31	66.69	16.37	0.46	130.0	± 9.6 %
		Y	5.36	66.91	16.54		130.0	
40010		Z	5.28	66.66	16.36		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.34	66.55	16.24	0.46	130.0	± 9.6 %
		Y	5.39	66.77	16.41		130.0	
10000		Z	5.31	66.53	16.23		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.44	66.61	16.33	0.46	130.0	± 9.6 %
		Y	5.49	66.85	16.50		130.0	
10001			5.40	66.57	16.30		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.41	66.65	16.46	0.46	130.0	± 9.6 %
		Y	5.46	66.85	16.61		130.0	
40000		Z	5.38	66.63	16.44		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.43	66.83	16.54	0.46	130.0	± 9.6 %
		Y	5.47	67.03	16.69		130.0	
		Z	5.41	66.83	16.53		130.0	

10623-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	E 94	66.27	10.00	0.40	100.0	
AAB	90pc duty cycle)		5.31	66.37	16.20	0.46	130.0	± 9.6 %
		Y	5.36	66.60	16.37		130.0	
		Z	5.28	66.35	16.18		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.51	66.60	16.37	0.46	130.0	± 9.6 %
		Y	5.55	66.80	16.53		130.0	
		Z	5.48	66.57	16.35		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.96	67.84	17.04	0.46	130.0	± 9.6 %
		Y	6.00	68.03	17.20		130.0	
		Z	5.91	67.77	17.00		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.63	66.56	16.25	0.46	130.0	± 9.6 %
		Y	5.67	66.76	16.40		130.0	
10007		Z	5.61	66.54	16.24	0.40	130.0	
	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.91	67.22	16.54	0.46	130.0	± 9.6 %
		Y	5.95	67.40	16.68		130.0	
40000		Z	5.89	67.20	16.54		130.0	
	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.69	66.73	16.24	0.46	130.0	± 9.6 %
		Y	5.74	66.95	16.40		130.0	
10000		Z	5.67	66.70	16.22		130.0	
10629- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.78	66.80	16.27	0.46	130.0	± 9.6 %
		Y	5.82	67.01	16.42		130.0	
40000		Z	5.76	66.81	16.27		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.42	68.87	17.30	0.46	130.0	± 9.6 %
		Y	6.45	69.07	17.46		130.0	
		Z	6.35	68.76	17.24		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.17	68.24	17.17	0.46	130.0	± 9.6 %
		Y	6.22	68.45	17.31		130.0	
		Z	6.11	68.14	17.12		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	×	5.86	67.20	16.67	0.46	130.0	± 9.6 %
		Y	5.89	67.37	16.79		130.0	
		Z	5.84	67.20	16.66		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.75	66.86	16.33	0.46	130.0	± 9.6 %
		Y	5.80	67.09	16.49		130.0	
		Z	5.72	66.81	16.30		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.73	66.86	16.39	0.46	130.0	± 9.6 %
		Y	5.78	67.07	16.54		130.0	
40005		Z	5.70	66.82	16.36		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.63	66.29	15.85	0.46	130.0	± 9.6 %
		Y	5.69	66.55	16.05		130.0	
10000		Z	5.60	66.24	15.82		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.06	66.98	16.37	0.46	130.0	± 9.6 %
		Y	6.09	67.16	16.51		130.0	
40007		Z	6.04	66.95	16.36		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.23	67.40	16.57	0.46	130.0	± 9.6 %
		Y	6.27	67.58	16.70		130.0	
		Z	6.21	67.38	16.55		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.23	67.37	16.53	0.46	130.0	± 9.6 %
		Y	6.27	67.56	16.67		130.0	
		Z	6.21	67.35	16.52		130.0	

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	6.21	67.31	16.55	0.46	130.0	± 9.6 %
AAC	90pc duty cycle)					0.10	100.0	1 0.0 %
····		Y	6.25	67.51	16.69		130.0	
10640-		Z	6.18	67.27	16.52		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.23	67.39	16.53	0.46	130.0	± 9.6 %
· · · · · · · ·		Y	6.28	67.61	16.69		130.0	
10641-		Z	6.20	67.33	16.50		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.24	67.19	16.45	0.46	130.0	± 9.6 %
		Y	6.28	67.39	16.60		130.0	
10642-		Z	6.22	67.18	16.44		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.29	67.45	16.73	0.46	130.0	± 9.6 %
		Y	6.33	67.63	16.87		130.0	
10010		Z	6.26	67.41	16.72		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.13	67.18	16.51	0.46	130.0	± 9.6 %
		Y	6.18	67.38	16.66		130.0	
400.1		Z	6.11	67.15	16.49		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.35	67.83	16.86	0.46	130.0	± 9.6 %
		Y	6.40	68.06	17.03		130.0	
10015		Z	6.30	67.74	16.80		130.0	
10645- I AAC 9	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.89	68.98	17.38	0.46	130.0	± 9.6 %
		Y	6.90	69.10	17.50		130.0	
		Z	6.83	68.87	17.33		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	Х	48.50	125.76	41.37	9.30	60.0	± 9.6 %
		Y	90.47	140.91	45.72		60.0	
		Z	50.32	127.46	41.96		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	Х	48.77	126.82	41.82	9.30	60.0	±9.6 %
		Y	98.14	143.92	46.67		60.0	
		Z	49.92	128.24	42.34		60.0	
10648- AAA	CDMA2000 (1x Advanced)	Х	0.66	62.51	9.96	0.00	150.0	±9.6 %
		Y	0.73	63.91	11.18		150.0	
		Z	0.63	62.25	9.61		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	4.17	68.03	16.99	2.23	80.0	±9.6 %
		Y	4.34	68.67	17.39		80.0	
		Z	4.13	68.01	16.93		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	Х	4.68	67.42	17.15	2.23	80.0	±9.6 %
		Y	4.82	67.93	17.48		80.0	
		Z	4.65	67.40	17.11		80.0	
10654-	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1,	X	4.64	67.10	17.16	2.23	80.0	±9.6 %
	Clipping 44%)							
	Clipping 44%)	Y	4.76	67.59	17.48		80.0	
	Clipping 44%)	Y Z	4.76 4.61	67.59 67.07	17.48 17.13		80.0 80.0	
AAB 10655- AAB	Clipping 44%) LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X	4.76 4.61 4.70	67.59 67.07 67.12	17.48 17.13 17.21	2.23	80.0 80.0 80.0	± 9.6 %
AAB 10655-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,	Z X Y	4.61 4.70 4.82	67.07 67.12 67.61	17.13 17.21 17.53	2.23	80.0 80.0 80.0	± 9.6 %
AAB 10655- AAB 10658-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1,	Z X	4.61 4.70	67.07 67.12	17.13 17.21	2.23	80.0 80.0	± 9.6 %
AAB 10655- AAB 10658-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X Y Z	4.61 4.70 <u>4.82</u> 4.67	67.07 67.12 67.61 67.08	17.13 17.21 17.53 17.17		80.0 80.0 80.0 80.0 50.0	
AAB 10655-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X Y Z X Y	4.61 4.70 4.82 4.67 17.27 16.02	67.07 67.12 67.61 67.08 91.20 90.22	17.13 17.21 17.53 17.17 23.98 23.99		80.0 80.0 80.0 50.0 50.0	
AAB 10655- AAB 10658- AAA 10659-	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Z X Y Z X	4.61 4.70 4.82 4.67 17.27	67.07 67.12 67.61 67.08 91.20	17.13 17.21 17.53 17.17 23.98		80.0 80.0 80.0 80.0 50.0	
AAB 10655- AAB 10658- AAA	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) Pulse Waveform (200Hz, 10%)	Z X Y Z X Y Z	4.61 4.70 4.82 4.67 17.27 16.02 18.59	67.07 67.12 67.61 67.08 91.20 90.22 92.23	17.13 17.21 17.53 17.17 23.98 23.99 24.12	10.00	80.0 80.0 80.0 50.0 50.0 50.0	± 9.6 %

February 13, 2018

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	112.03	25.82	3.98	80.0	± 9.6 %
		Y	100.00	113.99	26.86		80.0	
		Z	100.00	111.43	25.48		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	111.06	24.05	2.22	100.0	± 9.6 %
		Y	100.00	114.62	25.75		100.0	
		Z	100.00	110.31	23.67		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	X	100.00	108.64	21.32	0.97	120.0	± 9.6 %
		Y	100.00	117.33	25.06		120.0	
		Z	100.00	107.31	20.72		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-7409_Jun18

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7409	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	3
	BIN 07/16/2018	Ş
Calibration date:	June 25, 2018	
	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	lD	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature	
Calibrated by:	Claudio Leubler	Laboratory Technician)
				2
Approved by:	Katja Pokovic	Technical Manager	Jol Hy	4
			issued: June	26, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7409

Manufactured: Calibrated:

November 24, 2015 June 25, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.38	0.33	0.38	± 10.1 %
DCP (mV) ⁸	100.8	102.3	97.7	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [≞]
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	157.1	±2.2 %
		Y	0.0	0.0	1.0		172.6	
		Z	0.0	0.0	1.0		175.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5	T6
	fF	fF	V-1	ms.V⁻²	ms.V⁻¹	ms	V-2	V ^{~1}	
Х	15.40	116.5	36.38	2.655	0.140	4.978	0.000	0.017	1.008
Y	27.94	206.6	35.20	4.338	0.095	4.989	1.642	0.000	1.004
Z	31.47	244.0	37.99	3.819	0.313	5.030	0.103	0.363	1.006

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

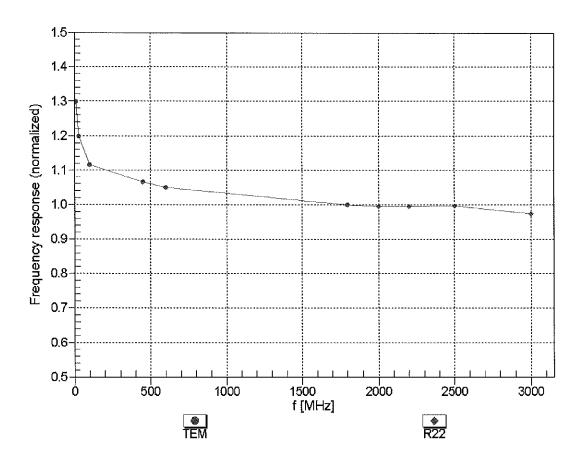
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.91	9.91	9.91	0.44	0.90	± 12.0 %
835	41.5	0.90	9.67	9.67	9.67	0.46	0.85	± 12.0 %
1750	40.1	1.37	8.43	8.43	8.43	0.38	0.80	± 12.0 %
1900	40.0	1.40	8.05	8.05	8.05	0.38	0.84	± 12.0 %
2300	39.5	1.67	7.57	7.57	7.57	0.32	0.80	± 12.0 %
2450	39.2	1.80	7.23	7.23	7.23	0.34	0.86	± 12.0 %
2600	39.0	1.96	6.98	6.98	6.98	0.39	0.86	± 12.0 %
5250	35.9	4.71	5.20	5.20	5.20	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.77	4.77	4.77	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.82	4.82	4.82	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

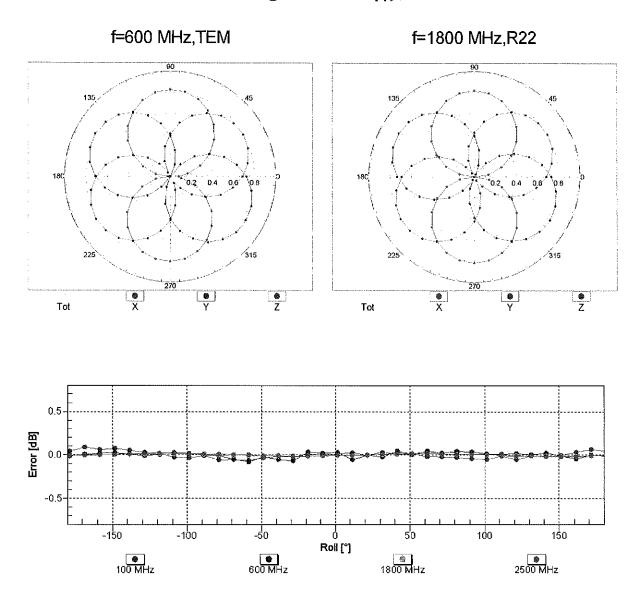
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


			-					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.82	9.82	9.82	0.52	0.84	± 12.0 %
835	55.2	0.97	9.63	9.63	9.63	0.48	0.80	± 12.0 %
1750	53.4	1.49	7.91	7.91	7.91	0.36	0.93	± 12.0 %
1900	53.3	1.52	7.60	7.60	7.60	0.44	0.80	± 12.0 %
2300	52.9	1.81	7.36	7.36	7.36	0.38	0.88	± 12.0 %
2450	52.7	1.95	7.24	7.24	7.24	0.33	0.89	± 12.0 %
2600	52.5	2.16	7.07	7.07	7.07	0.32	0.96	± 12.0 %
5250	48.9	5.36	4.67	4.67	4.67	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.25	4.25	4.25	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.32	4.32	4.32	0.50	1.90	± 13.1 %

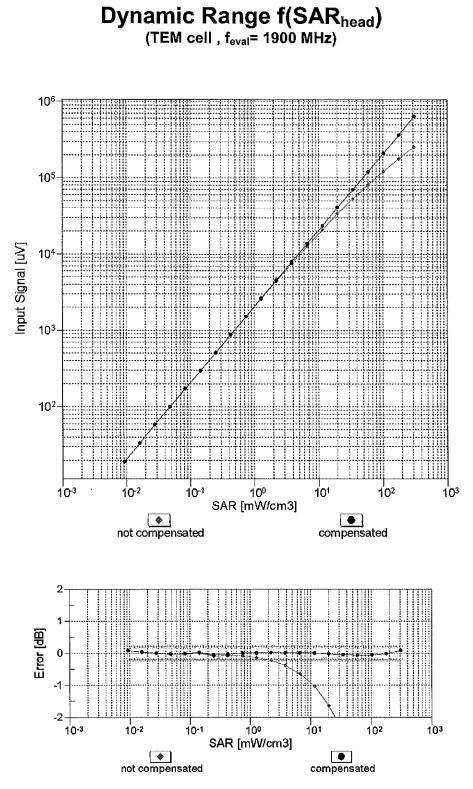
Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

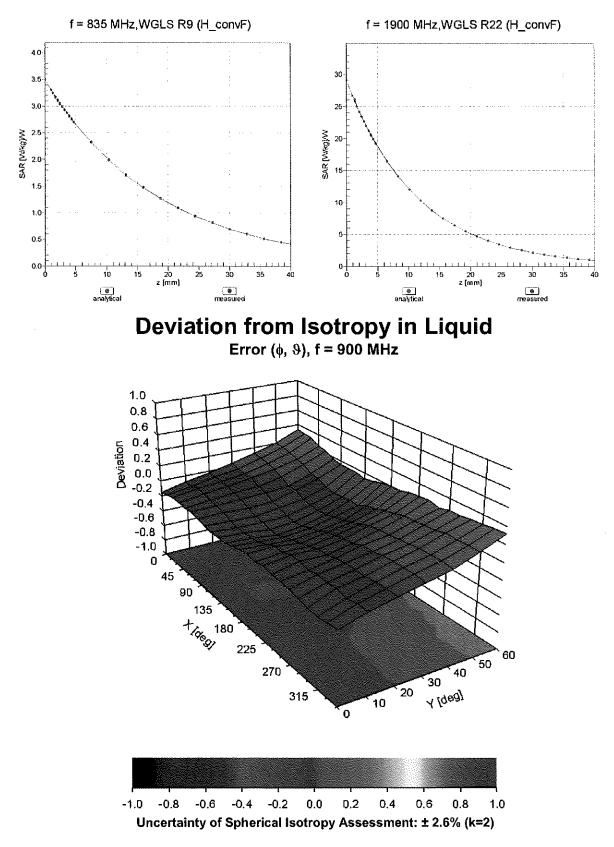

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

 G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

June 25, 2018

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7409_Jun18

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	41.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	157.1	± 2.2 %
		Y	0.00	0.00	1.00		172.6	
10010		Z	0.00	0.00	1.00		175.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	1.25	60.42	5.97	10.00	20.0	±9.6 %
		Y	1.37	61.35	6.72		20.0	
10011-		Z	1.46	61.54	7.06	ļ	20.0	
CAB	UMTS-FDD (WCDMA)	X	0.71	66.47	12.38	0.00	150.0	± 9.6 %
		Y	1.49	76.31	19.52		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z	0.80	65.38	13.27		150.0	
CAB	Mbps)	X	0.97	63.61	14.22	0.41	150.0	± 9.6 %
		Y	1.14	65.32	16.39		150.0	
10013-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	1.01	62.66	14.20	4 40	150.0	
CAB	OFDM, 6 Mbps)		3.98	66.92	16.39	1.46	150.0	±9.6 %
		Y	4.51	67.09	17.14	ļ	150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z X	4.51 2.93	66.48	16.81		150.0	1000
DAC				68.02	10.47	9.39	50.0	± 9.6 %
		Y	5.30	74.12	13.20		50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z X	8.30 2.04	79.26 64.26	15.55	0.57	50.0	1000
DAC					8.75	9.57	50.0	± 9.6 %
		Y Z	3.75 5.18	70.52	11.87		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	0.77	74.16 60.84	13.81 5.97	6.56	50.0 60.0	± 9.6 %
0/10		Y	100.00	98.81	18.33		60.0	
		Z	7.39	79.44	14.17		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	2.92	62.32	21.25	12.57	50.0	± 9.6 %
		Y	3.79	70,21	26.28		50.0	
		Z	3.08	62.64	21.59		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	4.19	76.79	26.73	9.56	60.0	± 9.6 %
		Y	5.08	81.51	29.10		60.0	
10007		Z	4.89	79.35	27.91		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	0.43	60.00	4.84	4.80	80.0	± 9.6 %
		Y	100.00	98.82	17.61		80.0	
10029			99,96	97.90	17.31		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	0.29	60.00	4.20	3.55	100.0	± 9.6 %
		Y	100.00	100.72	17.79	<u> </u>	100.0	
10029-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Z	0.57	63.31	6.83		100.0	
DAC	EDGE-FDD (IDIWA, 8PSK, IN 0-1-2)	X	3.08	70.55	22.84	7.80	80.0	±9.6 %
		Y	3.50	73.17	24.28		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	3.45 0.52	72.07 60.00	<u>23.57</u> 4.79	5.30	80.0 70.0	±9.6 %
		Y	1.54	67.33	9.06		70.0	
		Z	1.17	65.26	8.49		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	0.04	196.26	30.81	1.88	100.0	± 9.6 %
		Y	0.17	60.00	4.10		100.0	
		z	15.90	60.96	1.69		100.0	

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	0.00	86.08	35.43	1.17	100.0	± 9.6 %
CAA		Y	99.99	344.89	100.44		100.0	
·		Y Z	<u>99.99</u> 1.14	<u>344.89</u> 132.41	100.44		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	0.95	60.75	6.54	5.30	70.0	± 9.6 %
		Y	4.98	80.79	18.23		70.0	
		Ζ	3.25	75.39	16.74		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	3.04	65.72	5.34	1.88	100.0	± 9.6 %
		Ī	1.68	70.56	12.82	····	100.0	
40005		Z	0.99	64.34	10.07	4 47	100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	24.75	218.80	26.78 12.15	1.17	100.0	± 9.6 %
		Y Z	1.37	69.43		,	100.0	
10036-	UTTT 902 15 1 Plusteeth (9 DDSV DU1)	X	0.77 0.94	62.85 60.83	8.95 6.63	5.30	70.0	± 9.6 %
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Y	7.23	85.73	19.90	5.30	70.0	± 9.0 %
		Z	3.94	78.17	17.83		70.0	
10037-	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	3.94	63.61	4.82	1.88	100.0	± 9.6 %
CAA	IEEE 802.15.1 Blueloo(II (8-DPSK, DH3)	^ Y	1.41	68.85	12.14	1.00	100.0	± 9.0 %
		r Z	0.93	63.88	9.84		100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	26.17	217.46	9.04 26.16	1.17	100.0	± 9.6 %
CAA		^ Y	1.45	70.29	12.67	1.17	100.0	1 9.0 %
		Z	0.78	63.02	9.17		100.0	
10039-	CDMA2000 (1xRTT, RC1)	X	21.96	306.20	30.49	0.00	150.0	± 9.6 %
CAB		A Y	1.63			0.00	150.0	± 9.0 %
		Z	0.63	72.13 61.62	12.95 7.75		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	1.01	60.95	6.26	7.78	50.0	± 9.6 %
		Y	1.74	65.58	9.03		50.0	· ·
		Z	1.77	65.58	9.34		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.10	124.30	3.45	0.00	150.0	± 9.6 %
		Y	0.01	119.74	2.99		150.0	
		z	0.14	123.41	9.03		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	2.82	62.25	9.34	13.80	25.0	±9.6 %
		Y	3.46	64.98	10.90		25.0	
		Z	4.35	67.54	12.61		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	2.47	64.28	8.96	10.79	40.0	± 9.6 %
		Y.	3,27	67.55	10.82		40.0	
		Z	4.02	69.88	12.36		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	×	2.81	66.64	10.78	9.03	50.0	± 9.6 %
		Y	11.82	86.24	20.09		50.0	
		Z	9.59	84.12	20.02		50.0	
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	×	2.65	68.11	20.96	6.55	100.0	± 9.6 %
		Y	2.94	70.05	22.07		100.0	
		Z	2.91	69.15	21.44		100,0	
10059- CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps)	X	0.95	64.02	14.39	0.61	110.0	± 9.6 %
		Y	1.14	66.10	16.82		110.0	
		Z	1.00	63.23	14.55		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	1.76	81.26	19.48	1.30	110.0	± 9.6 %
		Y	100.00	150.16	40.00		110.0	
		Z	1.90	81.85	20.27		110.0	

10061-			4.40					
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.18	69.71	16.58	2.04	110.0	± 9.6 %
		Y	1.94	78.32	21.99		110.0	
····	·····	Z	1.40	71.35	18.33		110.0	
10062-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6	X	3.80	66.99	15.87	0.49	100.0	± 9.6 %
CAC	Mbps)		0.00		10.01	0.10	100.0	10.0 %
	· · ·	Y	4.35	67.21	16.69		100.0	
		Z	4.31	66.43	16.23		100.0	
10063-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9	X	3.81	67.06	15.96	0.72	100.0	±9.6 %
CAC	Mbps)			ļ				
·····		Y	4.36	67.29	16.77		100.0	
10064-		Z	4.32	66.52	16.32		100.0	
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	3.97	67.23	16.12	0.86	100.0	±9.6 %
0.00		Y	4.56	67.40	16.91		100.0	
		Z	4.55	66.72	16.52		100.0	
10065-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	X	3.85	66.82	16.02	1.21	100.0	± 9.6 %
CAC	Mbps)		0.00	00.02	10.00	1.6-1	100.0	10.0 %
		Y	4.42	67.15	16.92		100.0	
		Z	4.42	66.52	16.58		100.0	
10066-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24	X	3.83	66.65	16.06	1.46	100.0	±9.6 %
CAC	Mbps)			L				
		Y	4.41	67.05	17.01		100.0	
40007		Z	4.42	66.49	16.71		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36	Х	4.01	66.66	16.35	2.04	100.0	± 9.6 %
UAC	Mbps)	Y	4.65	67.23	17.40		400.0	
		Z	4.05	66.78	17.40		100.0	
10068-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.12	66.97	16.78	2.55	100.0	± 9.6 %
CAC	Mbps)		7.12	00.57	10.70	2.55	100.0	1 9.0 %
		Y	4.69	67.14	17.56		100.0	
		Z	4.73	66.69	17.36		100.0	
10069-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	X	4.11	66.73	16.77	2.67	100.0	± 9.6 %
CAC	Mbps)							
		Υ	4.72	67.08	17.69		100.0	
		Z	4.78	66.70	17.53		100.0	
10071-	IEEE 802.11g WiFi 2.4 GHz	X	4.07	66.96	16.68	1.99	100.0	±9.6 %
CAB	(DSSS/OFDM, 9 Mbps)	Y	4.59	07.07	47.07		400.0	
			4.59	67.07	17.37	1	100.0	
10072-	IEEE 802.11g WiFi 2.4 GHz	Z		66.53 66.89	17.10		100.0	100%
CAB	(DSSS/OFDM, 12 Mbps)	X	3.98	66.89	16.71	2.30	100.0	± 9.6 %
0,10		Y	4.51	67.19	17.50		100.0	
		Z	4.54	66.70	17.26		100.0	
10073-	IEEE 802.11g WiFi 2.4 GHz	X	4.03	67.09	17.06	2.83	100.0	± 9.6 %
CAB	(DSSS/OFDM, 18 Mbps)							
		Y	4.56	67.35	17.81		100.0	
		Z	4.59	66.87	17.58		100.0	
10074-	IEEE 802.11g WiFi 2.4 GHz	X	4.11	67.36	17.40	3.30	100.0	±9.6 %
CAB	(DSSS/OFDM, 24 Mbps)	<u> </u>					L .	
		Y	4,57	67.31	17.95		100.0	
40075		Z	4.60	66.82	17.73	<u> </u>	100.0	
10075- CAB	IEEE 802.11g WIFi 2.4 GHz	X	4.18	67.58	17.73	3.82	90.0	± 9.6 %
UND	(DSSS/OFDM, 36 Mbps)	Y	4.58	67.25	18.15		00.0	
	·	Z	4.58	66.79	18.15		90.0 90.0	
10076-	IEEE 802.11g WiFi 2.4 GHz	X	4.01	67.48	17.90	4.15	90.0	± 9.6 %
CAB	(DSSS/OFDM, 48 Mbps)	^	7.24	07.40	17.31		30.0	1 2.0 %
UU		Y	4.61	67.08	18.28		90.0	
		Ż	4.65	66.67	18.13		90.0	
10077-	IEEE 802.11g WiFi 2.4 GHz	X	4.28	67.60	18.06	4.30	90.0	± 9.6 %
CAB	(DSSS/OFDM, 54 Mbps)							
		Y	4.64	67.18	18.41		90.0	

10082- CAB		1 ····						
		Y	0.57	64.50	9.19		150.0	
		Z	0.37	60.00	6.09		150.0	
	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	72.13	59.07	0.77	4.77	80,0	± 9.6 %
		Y	7.02	60.09	1.53		80.0	
		Z	7.63	60.12	1.53		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	0.78	60.88	6.00	6.56	60.0	± 9.6 %
		Y	100.00	98.83	18.35		60.0	
		Z	8.66	80.77	14.58		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.12	65.69	11.46	0.00	150.0	±9.6 %
		Y	2.39	74.48	18.29		150.0	
40000		Z	1.58	66.95	14.31		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.11	65.81	11.55	0.00	150.0	±9.6 %
		Y	2.34	74.47	18.31		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	ZX	1.54 4.22	66.88	14.28	0.50	150.0	+0.00/
DAC	EDGE-FDD (TDIMA, 885K, TN 0-4)			76.90	26.77	9.56	60.0	±9.6 %
		Y	5.12	81.66	29.15		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	Z X	4.92 2.39	79.46	27.95	0.00	60.0	1000/
CAD	MHz, QPSK)	Y		69.31 72.58	16.37	0.00	150.0	± 9.6 %
			3.20 2.69	1	18.18		150.0	
10101-	LTE-FDD (SC-FDMA, 100% RB, 20	Z X	2.69	68.81 67.07	15.94 15.44	0.00	150.0 150.0	+06%
CAD	MHz, 16-QAM)					0.00		±9.6 %
		Y	3.12	68.53	16.66		150.0	
40400		Z	2.91	66.65	15.40	0.00	150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	2.71	67.23	15.58	0.00	150.0	± 9.6 %
		Y	3.22	68.53	16.74		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Z X	3.02 3.72	66.72 71.26	15.54 18.49	3.98	150.0 65.0	± 9.6 %
	MINZ, QFOK)	Y	4.70	73.63	19.84		65.0	
		Z	4.70	71.81	19.64		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.95	69.27	17.90	3.98	65.0	± 9.6 %
		Y	4.71	71.04	19.29		65.0	
		Z	4.63	70.10	18.86		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.78	68.25	17.72	3.98	65.0	±9.6 %
		Y	4.47	69.73	18.97		65.0	
		Z	4,37	68.68	18.48		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	1.98	69.15	15.95	0.00	150.0	± 9.6 %
		Y	2.77	72.39	18.20		150.0	
		Z	2.29	68.22	15.72		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.19	67.24	14.70	0.00	150.0	± 9.6 %
		Y	2.80	69.06	16.71		150.0	l
10110-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z X	2.54 1.35	66.58 66.94	15.14 13.41	0.00	150.0 150.0	±9.6%
CAE	QPSK)	Y	2.32	72.63	18.00		150.0	
		Z	1.78	67.28	14.92		150.0	l l
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	1.58	65.90	12.12	0.00	150.0	± 9.6 %
		Y	2.81	72.30	17.60		150.0	<u>.</u>
İ		1 F	I Z.OI	: 12.00	1 17.00	1	1 100.0	1

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.30	67.45	14.81	0.00	150.0	± 9.6 %
		Y	2.93	69.12	16.76		150.0	
		Z	2.66	66.72	15.26		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	1.64	65.77	12.05	0.00	150.0	± 9.6 %
		Y	2.95	72.32	17.65		150.0	
		Z	2.37	67.73	15.17		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.34	66.99	16.28	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.86	67.57	16.78		150.0	
		Z	4.82	66.90	16.32		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	4.58	67.29	16.33	0.00	150.0	±9.6 %
		Y	5.08	67.61	16.77		150.0	
		Z	5.06	66.98	16.35		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	Х	4.40	67.26	16.31	0.00	150.0	± 9.6 %
		Y	4.93	67.75	16.79		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	4.89	67.04	16.31		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.33	66.90	16.26	0.00	150.0	± 9.6 %
		Y	4.84	67.46	16.74		150.0	
		Z	4.79	66.75	16.26		150.0	[
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	4.58	67.24	16.31	0.00	150.0	±9.6 %
		Y	5.15	67.78	16.86		150.0	
		Z	5.14	67.21	16.48		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	4.39	67.16	16.27	0.00	150.0	± 9.6 %
		Y	4.94	67.78	16.81		150.0	
		Z	4.90	67.08	16.34		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	2.65	67.18	15.35	0.00	150.0	±9.6 %
		Y	3.23	68.57	16.65		150.0	
		Z	3.03	66.74	15.44		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	2.80	67.68	15.68	0.00	150.0	± 9.6 %
		Y	3.37	68.79	16.86		150.0	
		Z	3.16	66.97	15.67		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	0.71	61.44	8.06	0.00	150.0	± 9.6 %
		Y	2.27	74.06	17.56		150.0	
		Z	1.48	66.51	13.59		150.0	1
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	0.73	60.00	6.15	0.00	150.0	± 9.6 %
		Y	2.80	73.44	16.54		150.0	
		Z	1.85	66.55	13.15		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	0.73	60.00	5.65	0.00	150.0	±9.6 %
		Y	1.85	66.75	12.85		150.0	
		Z	1.61	64.01	11.28		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	5.16	385.51	36.59	0.00	150.0	± 9.6 %
		Y	0.54	60.00	5.91		150.0	
		Z	0.58	60.00	5.88		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	0.00	60.00	0.00	0.00	150.0	± 9.6 %
		Y	0.74	60.00	4.95		150.0	
		Z	0.80	60.00	5.53		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0.00	60.00	0.00	0.00	150.0	± 9.6 %
		Y	0.60	58.26	3.86		150.0	
		Z	0.82	60.00	5.58		150.0	