

## **FCC/IC UNII REPORT**

FCC/IC Class II Permissive Change

#### **Applicant Name:**

Date of Issue:

LG Electronics MobileComm U.S.A., Inc.

#### Address:

1000 Sylvan Avenue, Englewood Cliffs NJ

07632

April 25, 2016 **Test Site/Location:** HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majangmyeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA **Report No.:** HCT-R-1604-F046-1 **HCT FRN:** 0005866421 **IC Recognition No.:** 5944A-5

# FCC ID: ZNFV400IC: 2703C-V400APPLICANT: LG Electronics MobileComm U.S.A., Inc.

Model(s): EUT Type: Modulation type: FCC Classification: FCC Rule Part(s): IC Rule Part(s): LG-V400 2.4/5GHz BT/WiFi Tablet OFDM Unlicensed National Information Infrastructure(UNII) Part 15.407 RSS-247 Issue 1 (May 2015), RSS-GEN Issue 4(November 2014)

| Band  | Mode Channel<br>Bandwidth<br>(MHz) |    | Frequency<br>Range<br>(MHz) | Power<br>(dBm) | Power<br>(W) |  |
|-------|------------------------------------|----|-----------------------------|----------------|--------------|--|
|       | 802.11a                            | 20 | 5745 - 5825                 | 8.15           | 0.0065       |  |
| UNII3 | 802.11n                            | 20 | 5745 - 5825                 | 7.37           | 0.0055       |  |
|       | 802.11n                            | 40 | 5755 - 5795                 | 7.21           | 0.0053       |  |

#### Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this

equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Seul Ki Lee Test Engineer of RF Team

Approved by : Jong Seok Lee Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.



## **Version**

| TEST REPORT NO.   | DATE           | DESCRIPTION                                    |  |
|-------------------|----------------|------------------------------------------------|--|
| HCT-R-1604-F046   | April 08, 2016 | - First Approval Report                        |  |
| HCT-R-1604-F046-1 | April 25, 2016 | - Revised the antenna specification on page 4. |  |
|                   |                |                                                |  |
|                   |                |                                                |  |



## **Table of Contents**

| 1. GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 4                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 2. EUT DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 4                                                                     |
| 3. TEST METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 5                                                                     |
| 3.1 EUT CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |
| 3.2 EUT EXERCISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |
| 3.3 GENERAL TEST PROCEDURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                       |
| 3.4 DESCRIPTION OF TEST MODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 5                                                                     |
| 4. INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 6                                                                     |
| 5. FACILITIES AND ACCREDITATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |
| 5.1 FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                       |
| 5.2 EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 6                                                                     |
| 6. ANTENNA REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 6                                                                     |
| 7. MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 7                                                                     |
| 8. SUMMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 8                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| 8.1 FCC Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |
| 8.1 FCC Part<br>8.2 IC Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 9                                                                     |
| 8.1 FCC Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 9<br>0                                                                |
| 8.1 FCC Part<br>8.2 IC Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 9<br>0                                                                |
| <ul> <li>8.1 FCC Part</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 9<br>0<br>0<br>2                                                      |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         9.1 DUTY CYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 9<br>0<br>0<br>2                                                      |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1         9.1 DUTY CYCLE         1         9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1         9.3 99% BANDWIDTH MEASUREMENT         1         9.3 OUTPUT POWER MEASUREMENT                                                                                                                                                                                                                                                                                                                                                        | . 9<br>0<br>2<br>8<br>2                                                 |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1         9.1 DUTY CYCLE         1         9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1         9.3 99% BANDWIDTH MEASUREMENT         1         9.3 OUTPUT POWER MEASUREMENT         2         9.4 POWER SPECTRAL DENSITY                                                                                                                                                                                                                                                                                                           | . 9<br>0<br>2<br>8<br>2 1<br>2 7                                        |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1         9.1 DUTY CYCLE         1         9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1         9.3 99% BANDWIDTH MEASUREMENT         1         9.3 OUTPUT POWER MEASUREMENT         2         9.4 POWER SPECTRAL DENSITY         2         9.5 FREQUENCY STABILITY                                                                                                                                                                                                                                                                 | . 9<br>0<br>2<br>8<br>1<br>2<br>7<br>3<br>2                             |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1         9.1 DUTY CYCLE         1         9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1         9.3 99% BANDWIDTH MEASUREMENT         1         9.3 OUTPUT POWER MEASUREMENT         2         9.4 POWER SPECTRAL DENSITY         2         9.5 FREQUENCY STABILITY         3         9.6 RADIATED MEASUREMENT                                                                                                                                                                                                                      | . 9<br>0<br>2<br>8<br>2 1<br>2 7<br>3 2<br>3 4                          |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1         9.1 DUTY CYCLE         1         9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1         9.3 99% BANDWIDTH MEASUREMENT         1         9.3 OUTPUT POWER MEASUREMENT         2         9.4 POWER SPECTRAL DENSITY         2         9.5 FREQUENCY STABILITY                                                                                                                                                                                                                                                                 | .9<br>0<br>2<br>8<br>1<br>7<br>5<br>2<br>4<br>4                         |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1 DUTY CYCLE         1 9.1 DUTY CYCLE         1 9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1 9.3 99% BANDWIDTH MEASUREMENT         1 9.3 OUTPUT POWER MEASUREMENT         2 9.4 POWER SPECTRAL DENSITY         2 9.5 FREQUENCY STABILITY         2 9.6 RADIATED MEASUREMENT         3 9.6.1 RADIATED SPURIOUS EMISSIONS         3 9.6.2 RADIATED RESTRICTED BAND EDGE MEASUREMENTS         5 9.6.3 RECEIVER SPURIOUS EMISSIONS                                                                                                      | 9<br>0<br>2<br>8<br>1<br>7<br>2<br>4<br>4<br>0<br>5<br>5                |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1         9.1 DUTY CYCLE         1         9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1         9.3 99% BANDWIDTH MEASUREMENT         1         9.3 OUTPUT POWER MEASUREMENT         2         9.4 POWER SPECTRAL DENSITY         2         9.5 FREQUENCY STABILITY.         3         9.6 RADIATED MEASUREMENT         3         9.6.1 RADIATED SPURIOUS EMISSIONS         3         9.6.2 RADIATED RESTRICTED BAND EDGE MEASUREMENTS                                                                                              | 9<br>0<br>2<br>8<br>1<br>7<br>2<br>4<br>4<br>0<br>5<br>5                |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1 DUTY CYCLE         1 9.1 DUTY CYCLE         1 9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1 9.3 99% BANDWIDTH MEASUREMENT         1 9.3 OUTPUT POWER MEASUREMENT         2 9.4 POWER SPECTRAL DENSITY         2 9.5 FREQUENCY STABILITY         2 9.6 RADIATED MEASUREMENT         3 9.6.1 RADIATED SPURIOUS EMISSIONS         3 9.6.2 RADIATED RESTRICTED BAND EDGE MEASUREMENTS         5 9.6.3 RECEIVER SPURIOUS EMISSIONS                                                                                                      | 9<br>0<br>2<br>8<br>1<br>7<br>2<br>4<br>4<br>5<br>0<br>5<br>5<br>6      |
| 8.1 FCC Part         8.2 IC Part         9. TEST RESULT         1         9.1 DUTY CYCLE         1         9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT         1         9.3 99% BANDWIDTH MEASUREMENT         1         9.3 OUTPUT POWER MEASUREMENT         2         9.4 POWER SPECTRAL DENSITY         2         9.5 FREQUENCY STABILITY         3         9.6 RADIATED MEASUREMENT         3         9.6.1 RADIATED SPURIOUS EMISSIONS         3         9.6.2 RADIATED RESTRICTED BAND EDGE MEASUREMENTS         9.6.3 RECEIVER SPURIOUS EMISSIONS         5         9.7 POWERLINE CONDUCTED EMISSIONS | 9<br>0<br>2<br>8<br>1<br>7<br>2<br>4<br>4<br>5<br>5<br>6<br>1<br>5<br>1 |

## 1. GENERAL INFORMATION

| Applicant:        | LG Electronics MobileComm U.S.A., Inc.                                                     |
|-------------------|--------------------------------------------------------------------------------------------|
| Address:          | 1000 Sylvan Avenue, Englewood Cliffs NJ 07632                                              |
| FCC ID:           | ZNFV400                                                                                    |
| IC:               | 2703C-V400                                                                                 |
| EUT Type:         | 2.4/5GHz BT/WiFi Tablet                                                                    |
| Model (s):        | LG-V400                                                                                    |
| Date(s) of Tests: | March 16, 2016 ~ March 30, 2016                                                            |
| Place of Tests:   | HCT Co., Ltd.<br>74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea |

## 2. EUT DESCRIPTION

| Model                 | LG-V400                                 |                              |  |  |  |  |  |
|-----------------------|-----------------------------------------|------------------------------|--|--|--|--|--|
| EUT Type              | 2.4/5GHz BT/V                           | 2.4/5GHz BT/WiFi Tablet      |  |  |  |  |  |
| Power Supply          | DC 3.8 V                                | DC 3.8 V                     |  |  |  |  |  |
| Potton / Information  | Model: BL-T14                           |                              |  |  |  |  |  |
| Battery Infomation    | Type: Li-ion Batt                       | ery                          |  |  |  |  |  |
| Frequency Range       | TX_20 MHz BW:                           | 5745 MHz - 5825 MHz (UNII 3) |  |  |  |  |  |
|                       | 40 MHz BW:                              | 5755 MHz - 5795 MHz (UNII 3) |  |  |  |  |  |
|                       | RX_20 MHz BW:                           | 5745 MHz - 5825 MHz (UNII 3) |  |  |  |  |  |
|                       | 40 MHz BW:                              | 5755 MHz - 5795 MHz (UNII 3) |  |  |  |  |  |
| Modulation Type       | OFDM(802.11a, 802.11n)                  |                              |  |  |  |  |  |
| Antenna Specification | Manufacturer: Ace Technology Z          |                              |  |  |  |  |  |
|                       | Antenna type: Planar Inverted F ANTENNA |                              |  |  |  |  |  |
|                       | Peak Gain : 0.29                        | dBi                          |  |  |  |  |  |

## 3. TEST METHODOLOGY

The measurement procedure described in FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r01 dated January 08, 2016 entitled " Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part15, Subpart E" and the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) were used in the measurement. For 802.11ac, KDB644545 D03 v01 dated August 14, 2014

### **3.1 EUT CONFIGURATION**

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

#### **3.2 EUT EXERCISE**

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

#### **3.3 GENERAL TEST PROCEDURES**

#### **Conducted Emissions**

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

#### **Radiated Emissions**

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

#### **Conducted Antenna Terminal**

See Section from 8.1 to 8.4.(KDB 789033)

#### **3.4 DESCRIPTION OF TEST MODES**

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

## 4. INSTRUMENT CALIBRATION

The. measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2006).

## **5. FACILITIES AND ACCREDITATIONS**

#### **5.1 FACILITIES**

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

#### **5.2 EQUIPMENT**

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

## 6. ANTENNA REQUIREMENTS

#### According to FCC 47 CFR §15.203, §15.407, RSS-GEN 7.1.2

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

\* The antennas of this E.U.T are permanently attached.

\* The E.U.T Complies with the requirement of §15.203, §15.407, RSS-GEN 7.1.2

## 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

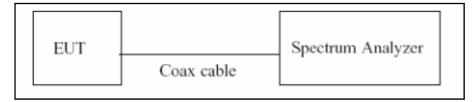
| Parameter                                | Expanded Uncertainty (±dB) |
|------------------------------------------|----------------------------|
| Conducted Disturbance (150 kHz ~ 30 MHz) | 1.82                       |
| Radiated Disturbance (9 kHz ~ 30 MHz)    | 3.40                       |
| Radiated Disturbance (30 MHz ~ 1 GHz)    | 4.80                       |
| Radiated Disturbance (1 GHz ~ 18 GHz)    | 6.07                       |



## 8. SUMMARY OF TEST RESULTS

## 8.1 FCC Part

| Toot Decembration                                                                  | FCC Part                              | Track Line 14                                                                                                                                                                                            | Test      | Test   |
|------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| Test Description                                                                   | Section(s)                            | Test Limit                                                                                                                                                                                               | Condition | Result |
| 26dB Bandwidth                                                                     | §15.407<br>(for Power<br>Measurement) | N/A                                                                                                                                                                                                      |           | PASS   |
| 6 dB Bandwidth                                                                     | §15.407(e)                            | >500 kHz<br>(5725-5850 MHz)                                                                                                                                                                              |           | PASS   |
| Maximum Conducted Output<br>Power,                                                 | §15.407(a)(1)                         | < 250 mW<br>(5150-5250 MHz)<br>< 250 mW<br>(5250-5350 MHz)<br>< 250 mW<br>(5470-5725 MHz)<br><1 W<br>(5725-5850 MHz)                                                                                     | CONDUCTED | PASS   |
| Peak Power Spectral Density                                                        | §15.407(a)(1), (5)                    | <11 dBm/ MHz (5150-5250 MHz)<br><11 dBm/ MHz (5250-5350 MHz)<br><11 dBm/ MHz (5470-5725 MHz)<br><30 dBm/500 kHz(5725-5850 MHz)                                                                           |           | PASS   |
| Frequency Stability                                                                | §15.407(g)                            | N/A                                                                                                                                                                                                      |           | N/A    |
| AC Conducted Emissions<br>150 kHz-30 MHz                                           | §15.207                               | <fcc 15.207="" limits<="" td=""><td>*</td><td>N/A</td></fcc>                                                                                                                                             | *         | N/A    |
| Undesirable Emissions                                                              | §15.407(b)(1), (2),<br>(3)            | <ul> <li>&lt;-27 dBm/ MHz EIRP<br/>(UNII1, 2A, 2C)</li> <li>&lt;-17 dBm/MHz EIRP within 5715-<br/>5725 MHz and 5850-5860 MHz,</li> <li>&lt;-27 dBm/MHz EIRP outside 5715-<br/>5850 MHz(UNII3)</li> </ul> |           | PASS   |
| General Field Strength<br>Limits(Restricted Bands and<br>Radiated Emission Limits) | §15.205,<br>5.407(b)(1), (5), (6)     | Emissions in restricted bands must<br>meet the radiated limits detailed in<br>15.209                                                                                                                     |           | PASS   |


#### 8.2 IC Part

| Test Description                                      | IC Part Section(s)           | Test Limit                                                                                                                                                                                                                    | Test<br>Condition | Test<br>Result |
|-------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 00% Dendwidth/IC)                                     |                              | N//A                                                                                                                                                                                                                          | Condition         |                |
| 99% Bandwidth(IC)                                     | RSS-GEN, 6.6                 | N/A<br>> 500 kHz                                                                                                                                                                                                              |                   | PASS           |
| 6 dB Bandwidth                                        | RSS-247, 6.2.4.1)            | (5725~5850 MHz)                                                                                                                                                                                                               |                   | PASS           |
| Maximum Conducted Output<br>Power,                    | RSS-247, 6.2                 | < 250 mW or 11+10 log <sub>10</sub> (BW)<br>dBm<br>(5250-5350 MHz)<br>< 250 mW or 11+10 log <sub>10</sub> (BW)<br>dBm<br>(5470-5600, 5650-5725 MHz)<br>Whichever power is less                                                |                   | PASS           |
|                                                       | RSS-247, 6.2.4 1)            | <1 W<br>(5725-5850 MHz)                                                                                                                                                                                                       |                   |                |
| Maximum e.i.r.p                                       | RSS-247, 6.2                 | < 200 mW or 10+10 log <sub>10</sub> (BW)<br>dBm<br>(5150-5250 MHz)<br>< 1 W or 17+10 log <sub>10</sub> (BW) dBm<br>(5250-5350 MHz)<br>< 1 W or 17+10 log <sub>10</sub> (BW) dBm<br>(5470-5725 MHz)<br>Whichever power is less | CONDUCTED         |                |
| Power Spectral Density                                | RSS-247 6.2                  | <10 dBm/ MHz(e.i.r.p.)                                                                                                                                                                                                        |                   | PASS           |
|                                                       | RSS-247, 6.2.4 1)            | <30 dBm/500 kHz(Conducted)<br>(5725-5850 MHz)                                                                                                                                                                                 |                   |                |
| AC Conducted Emissions<br>150 kHz-30 MHz              | RSS-GEN, 8.8                 | RSS-GEN<br>section 8.8 table 3                                                                                                                                                                                                |                   | NA             |
|                                                       | RSS-247, 6.2.1 2)            | OBW does not fall within<br>5250~5350 MHz<br>(5150~5350 MHz)                                                                                                                                                                  |                   | PASS           |
| Undesirable Emissions                                 | RSS-247, 6.2                 | <-27 dBm/ MHz EIRP<br>(5150-5350 MHz,<br>5470-5725 MHz)                                                                                                                                                                       |                   |                |
|                                                       | RSS-247, 6.2.4 2)            | <ul> <li>&lt;-17 dBm/MHz EIRP within</li> <li>5715-5725 MHz and 5850-5860<br/>MHz,</li> <li>&lt;-27 dBm/MHz EIRP outside</li> <li>5715-5860 MHz</li> <li>(5725~5850 MHz)</li> </ul>                                           | DADIATED          | PASS           |
| General Field Strength                                | RSS-GEN, 8.9                 | RSS-GEN                                                                                                                                                                                                                       | RADIATED          | DAGO           |
| Limits(Restricted Bands and Radiated Emission Limits) | RSS-GEN, 8.10                | section 8.9 table 4, 5 section 8.10 table 6                                                                                                                                                                                   |                   | PASS           |
| Receiver Spurious Emissions                           | RSS-GEN, 5<br>RSS-GEN, 7.1.2 | RSS-GEN section 7.1.2 table 2                                                                                                                                                                                                 |                   | PASS           |

## 9. TEST RESULT 9.1 DUTY CYCLE

The zero-span mode on a spectrum analyzer or EMI receiver ,if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW  $\geq$  EBW if possible; otherwise, set RBW to the largest available value. Set VBW  $\geq$  RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where *T* is defined in section B)1)a), and the number of sweep points across duration *T* exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if  $T \leq 16.7$  microseconds.)

#### **TEST CONFIGURATION**



#### TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We tested according to the zerospan measurement method, (B.2 in KDB 789033 D02, issued 01/08/2016)

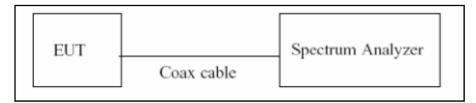
The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T  $\leq$  6.25 microseconds. (50/6.25 = 8)

The zero-span method was used becaure all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure  $T_{total} \,and \, T_{on}$
- 8. Calculate Duty Cycle =  $T_{on}/T_{total}$  and Duty Cycle Factor = 10\*log(1/Duty Cycle)

Model: LG-V400

## Duty Cycle Factor


| Mode               | Data Rate<br>(Mbps) | T <sub>on</sub><br>(ms) | T <sub>total</sub><br>(ms) | Duty Cycle | Duty Cycle Factor<br>(dB) |
|--------------------|---------------------|-------------------------|----------------------------|------------|---------------------------|
|                    | 6                   | 2.026                   | 2.124                      | 0.95386064 | 0.205                     |
|                    | 9                   | 1.356                   | 1.454                      | 0.93259972 | 0.303                     |
|                    | 12                  | 1.025                   | 1.122                      | 0.91354724 | 0.393                     |
| 000 44-            | 18                  | 0.693                   | 0.791                      | 0.87610619 | 0.574                     |
| 802.11a            | 24                  | 0.524                   | 0.622                      | 0.84244373 | 0.745                     |
|                    | 36                  | 0.356                   | 0.454                      | 0.78414097 | 1.056                     |
|                    | 48                  | 0.272                   | 0.370                      | 0.73513514 | 1.336                     |
|                    | 54                  | 0.244                   | 0.342                      | 0.71345029 | 1.466                     |
|                    | MCS 0               | 1.883                   | 1.981                      | 0.95053004 | 0.220                     |
|                    | MCS 1               | 0.949                   | 1.047                      | 0.90639924 | 0.427                     |
|                    | MCS 2               | 0.640                   | 0.738                      | 0.86720867 | 0.619                     |
| 902 44 p 20 MH- DW | MCS 3               | 0.489                   | 0.585                      | 0.83589744 | 0.778                     |
| 802.11n_20 MHz BW  | MCS 4               | 0.336                   | 0.435                      | 0.77241379 | 1.121                     |
|                    | MCS 5               | 0.255                   | 0.354                      | 0.72033898 | 1.425                     |
|                    | MCS 6               | 0.231                   | 0.330                      | 0.7000000  | 1.549                     |
|                    | MCS 7               | 0.213                   | 0.309                      | 0.68932039 | 1.616                     |
|                    | MCS 0               | 0.921                   | 1.020                      | 0.90294118 | 0.443                     |
|                    | MCS 1               | 0.474                   | 0.573                      | 0.82722513 | 0.824                     |
|                    | MCS 2               | 0.324                   | 0.423                      | 0.76595745 | 1.158                     |
| 802.11n_40 MHz BW  | MCS 3               | 0.246                   | 0.345                      | 0.71304348 | 1.469                     |
|                    | MCS 4               | 0.176                   | 0.274                      | 0.64233577 | 1.922                     |
|                    | MCS 5               | 0.136                   | 0.234                      | 0.58119658 | 2.357                     |
|                    | MCS 6               | 0.124                   | 0.223                      | 0.55605381 | 2.549                     |
|                    | MCS 7               | 0.116                   | 0.214                      | 0.54205607 | 2.660                     |

#### 9.2 EMISSION BANDWIDTH AND MINIMUM EMISSION BANDWIDTH MEASUREMENT

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum power control level, as defined in KDB 789033 D02(issued 01/08/2016), at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26 dB bandwidth.

The 26 dB bandwidth is used to determine the conducted power limits.

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE (26dB Bandwidth)**

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to( C.1 in KDB 789033 D02, issued 01/08/2016)

- 1. RBW = approximately 1 % of the emission bandwidth
- 2. VBW > RBW
- 3. Detector = Peak
- 4. Trace mode = max hold
- 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Note : We tested 26 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 26 dB.

#### **I** TEST PROCEDURE (for the band 5.725-5.85 GHz, 6 dB Bandwidth)

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to( C.2 in KDB 789033 D02, issued 01/08/2016)

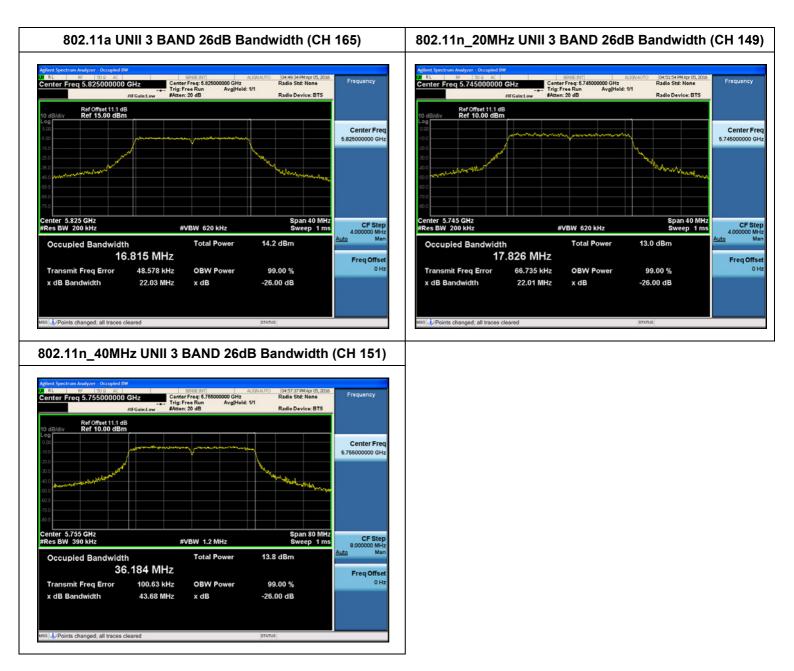
- 1. RBW = 100 kHz
- 2. VBW  $\geq$  3\*RBW
- 3. Detector = Peak
- 4. Trace mode = max hold
- 5. Allow the trace to stabilize
- 6. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points(upper and lower frequencies) that are attenuated by 6 dB relative to the maximum lever measured in the fundamental emission.

Note : We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

#### TEST RESULTS for 802.11a/n\_20 MHz BW\_40 MHz BW

#### Conducted 26 dB Bandwidth Measurements for 802.11a

| 802.11a Mo      | ode                         | Measured Bandwidth | Minimum Bandwidth |             |  |
|-----------------|-----------------------------|--------------------|-------------------|-------------|--|
| Frequency [MHz] | Frequency [MHz] Channel No. |                    | [MHz]             | Pass / Fail |  |
| 5745            | 149                         | 21.96              | N/A               | Pass        |  |
| 5785            | 157                         | 21.82              | N/A               | Pass        |  |
| 5825            | 165                         | 22.03              | N/A               | Pass        |  |


#### Conducted 26 dB Bandwidth Measurements for 802.11n\_20MHz BW

| 802.11n Mc                  | ode | Measured Bandwidth | Minimum Bandwidth |             |  |
|-----------------------------|-----|--------------------|-------------------|-------------|--|
| Frequency [MHz] Channel No. |     | [MHz]              | [MHz]             | Pass / Fail |  |
| 5745                        | 149 | 22.01              | N/A               | Pass        |  |
| 5785                        | 157 | 21.97              | N/A               | Pass        |  |
| 5825                        | 165 | 21.80              | N/A               | Pass        |  |

#### Conducted 26 dB Bandwidth Measurements for 802.11n\_40MHz BW

| 802.11n Mc                  | ode | Measured Bandwidth | Minimum Bandwidth |             |  |
|-----------------------------|-----|--------------------|-------------------|-------------|--|
| Frequency [MHz] Channel No. |     | [MHz]              | [MHz]             | Pass / Fail |  |
| 5755                        | 151 | 43.68              | N/A               | Pass        |  |
| 5795                        | 159 | 42.24              | N/A               | Pass        |  |

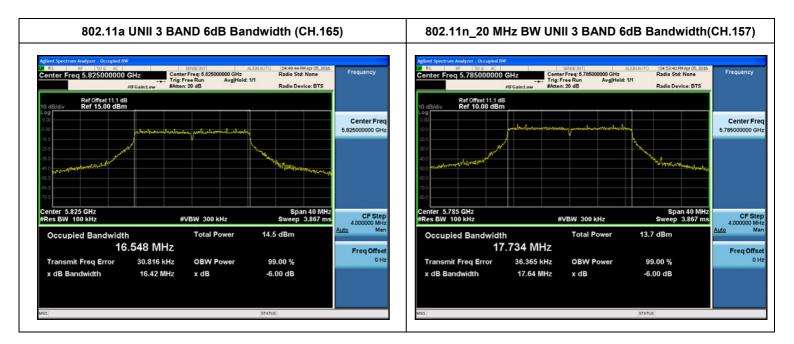
#### TEST Plot for 802.11a/n\_20 MHz BW\_40 MHz BW



Note : In order to simplify the report, attached plots were only the most wide channel.

#### Conducted 6 dB Bandwidth

#### TEST RESULTS for 802.11a/n \_20MHz BW


#### Conducted 6 dB Bandwidth Measurements for 802.11a

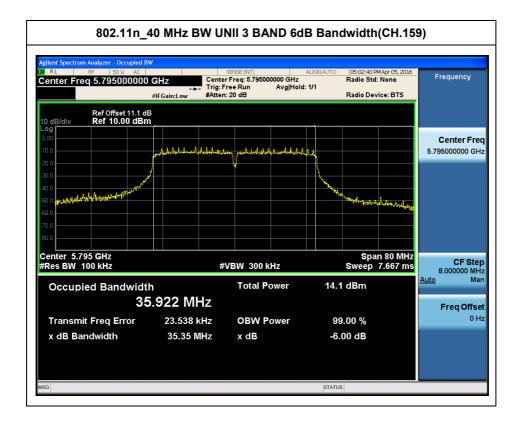
| 802.11a Mode    |                | Measured Bandwidth | Minimum Bandwidth |             |  |
|-----------------|----------------|--------------------|-------------------|-------------|--|
| Frequency [MHz] | Channel<br>No. | [MHz]              | [MHz]             | Pass / Fail |  |
| 5745            | 149            | 16.41              | 0.5               | Pass        |  |
| 5785            | 157            | 16.40              | 0.5               | Pass        |  |
| 5825            | 165            | 16.42              | 0.5               | Pass        |  |

#### Conducted 6 dB Bandwidth Measurements for 802.11n\_20MHz BW

| 802.11n(20MHz) Mode |                | Measured Bandwidth | Minimum Bandwidth | D (5 1      |  |
|---------------------|----------------|--------------------|-------------------|-------------|--|
| Frequency [MHz]     | Channel<br>No. | [MHz]              | [MHz]             | Pass / Fail |  |
| 5745                | 149            | 17.63              | 0.5               | Pass        |  |
| 5785                | 157            | 17.64              | 0.5               | Pass        |  |
| 5825                | 165            | 17.64              | 0.5               | Pass        |  |

#### TEST Plot for 802.11a/n\_20MHz BW




Note : In order to simplify the report, attached plots were only the most wide channel.

#### TEST RESULTS for 802.11n\_40MHz BW

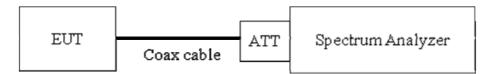
#### Conducted 6 dB Bandwidth Measurements for 802.11n\_40MHz BW

| 802.11n(40MHz) Mode |                | Measured Bandwidth | Minimum Bandwidth | D (F 1      |  |
|---------------------|----------------|--------------------|-------------------|-------------|--|
| Frequency [MHz]     | Channel<br>No. | [MHz]              | [MHz]             | Pass / Fail |  |
| 5755                | 151            | 34.81              | 0.5               | Pass        |  |
| 5795                | 159            | 35.35              | 0.5               | Pass        |  |

#### **TEST Plot for 802.11n \_40MHz BW**



Note : In order to simplify the report, attached plots were only the most wide channel.


#### 9.3 99% BANDWIDTH MEASUREMENT

#### limit

None; for IC reporting purposes only

The 99 % bandwidth is used to determine the conducted power limits(for IC).

#### **TEST CONFIGURATION**

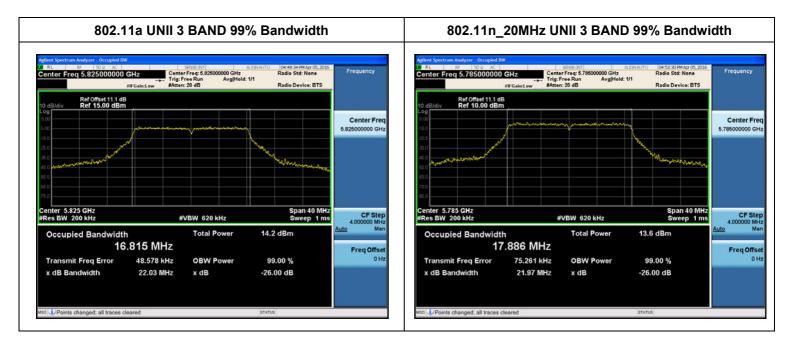


#### **I TEST PROCEDURE**

The transmitter output is connected to the spectrum analyzer. The RBW is set to as close to 1% of the selected span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RBW = 1% of the total span VBW ≥ 3 x RBW Detector = Peak Trace mode = max hold Sweep = auto couple Allow the trace to stabilize

#### TEST RESULTS for 802.11a/n\_20MHz BW

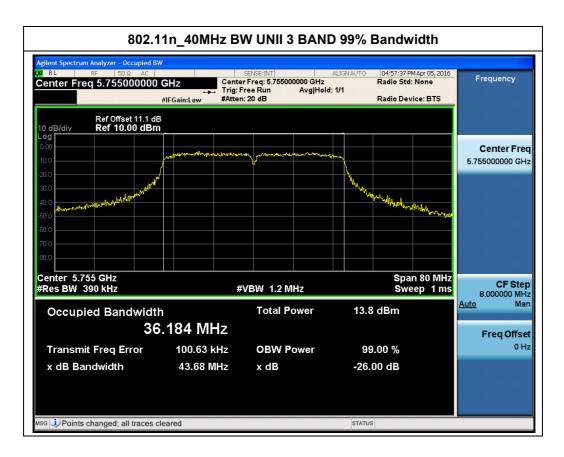

#### Conducted 99% Bandwidth Measurements for 802.11a

| 802.11a Mo      | Measured Bandwidth |        |
|-----------------|--------------------|--------|
| Frequency [MHz] | Channel<br>No.     | [MHz]  |
| 5745            | 149                | 16.733 |
| 5785            | 157                | 16.755 |
| 5825            | 165                | 16.815 |

#### Conducted 99% Bandwidth Measurements for 802.11n\_20MHz

| 802.11n Mo                  | Measured Bandwidth |        |
|-----------------------------|--------------------|--------|
| Frequency [MHz] Channel No. |                    | [MHz]  |
| 5745                        | 149                | 17.826 |
| 5785                        | 157                | 17.886 |
| 5825                        | 165                | 17.862 |

TEST Plot for 802.11a/n \_20MHz BW




#### **TEST RESULTS for 802.11n\_40MHz BW**

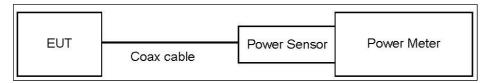
#### Conducted 99% Bandwidth Measurements for 802.11n\_40 MHz BW

| 802.11n(40MHz   | Measured Bandwidth |        |
|-----------------|--------------------|--------|
| Frequency [MHz] | Channel<br>No.     | [MHz]  |
| 5755            | 151                | 36.184 |
| 5795            | 159                | 36.156 |

#### **TEST Plot** for 802.11n \_40MHz BW



#### 9.3 OUTPUT POWER MEASUREMENT


#### Test Requirements and limit, §15.407(a)(1) / RSS-247, 6.2

A transmitter antenna terminal of EUT is connected to the input of a Power meter or Spectrum Analyzer .Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

Limit

| Band   | Mode         | Limit |
|--------|--------------|-------|
| Banu   | Widde        | (dBm) |
| UNII 3 | 802.11a,n,ac | 30.00 |

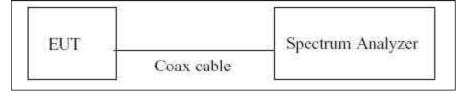
#### TEST CONFIGURATION(20 MHz BW)



#### TEST PROCEDURE(20 MHz BW)

• Average Power (Procedure E.3.a in KDB 789033, issued 01/08/2016).

- 1. Measure the duty cycle.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.


Note :

1. Actual value of loss for the attenuator and cable combination is below table.

| Band              | Loss(dB) |
|-------------------|----------|
| UNII 1, 2A, 2C, 3 | 11.1     |

(Actual value of loss for the attenuator and cable combination)

#### TEST CONFIGURATION(40 MHz BW)



#### TEST PROCEDURE(40 MHz BW)

#### Average Power

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function. We tested according to Method SA-2 in KDB 789033(issued 01/08/2016).

The Spectrum Analyzer is set to

- 1. Measure the duty cycle.
- 2. Set span to encompass the 26 dB EBW of the signal.
- 3. RBW = 1 MHz.
- 4. VBW  $\geq$  3 MHz.
- 5. Number of points in sweep  $\geq 2^*$ span/RBW.
- 6. Sweep time = auto.
- 7. Detector = RMS.
- 8. Do not use sweep triggering. Allow the sweep to "free run".
- 9. Trace average at least 100 traces in power averaging(RMS) mode
- 10. Integrated bandwidth = OBW
- 11. Add  $10\log(1/x)$ , where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

#### Sample Calculation (Conducted)

Output Power = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor

#### Sample Calculation (EIRP)

Output Power = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor + Ant gain Note: 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. Actual value of loss for the attenuator and cable combination is below table.

| Band              | Loss(dB) |  |
|-------------------|----------|--|
| UNII 1, 2A, 2C, 3 | 11.1     |  |

(Actual value of loss for the attenuator and cable combination)

#### 802.11a \_20MHz BW (UNII 3)

#### TEST RESULTS

#### Conducted Output Power Measurements (802.11a\_20M BW Mode: 5745~5825)

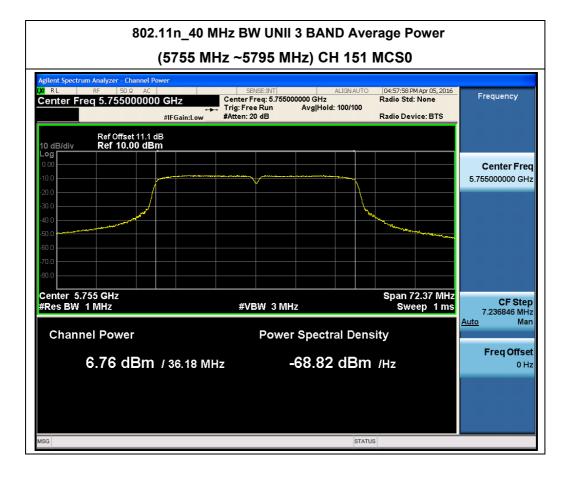
| 802.11a (20M       | -              |                |                            |                              | Measured                                    |                |
|--------------------|----------------|----------------|----------------------------|------------------------------|---------------------------------------------|----------------|
| Frequency<br>[MHz] | Channel<br>No. | Rate<br>(Mbps) | Measured<br>Power<br>(dBm) | Duty Cycle<br>Factor<br>(dB) | Power(dBm)<br>+<br>Duty Cycle<br>Factor(dB) | Limit<br>(dBm) |
|                    |                | 6              | 7.87                       | 0.21                         | 8.08                                        | 30             |
|                    |                | 9              | 7.53                       | 0.30                         | 7.83                                        | 30             |
|                    |                | 12             | 7.43                       | 0.39                         | 7.82                                        | 30             |
| 5745               | 149            | 18             | 7.16                       | 0.57                         | 7.73                                        | 30             |
| 5745               | 149            | 24             | 6.91                       | 0.74                         | 7.65                                        | 30             |
|                    |                | 36             | 6.59                       | 1.06                         | 7.65                                        | 30             |
|                    |                | 48             | 6.35                       | 1.34                         | 7.69                                        | 30             |
|                    |                | 54             | 6.05                       | 1.47                         | 7.52                                        | 30             |
|                    |                | 6              | 7.90                       | 0.21                         | 8.11                                        | 30             |
|                    |                | 9              | 7.79                       | 0.30                         | 8.09                                        | 30             |
|                    |                | 12             | 7.70                       | 0.39                         | 8.09                                        | 30             |
| 5705               |                | 18             | 7.56                       | 0.57                         | 8.13                                        | 30             |
| 5785               | 157            | 24             | 7.41                       | 0.74                         | 8.15                                        | 30             |
|                    |                | 36             | 6.92                       | 1.06                         | 7.98                                        | 30             |
|                    |                | 48             | 6.68                       | 1.34                         | 8.02                                        | 30             |
|                    |                | 54             | 6.56                       | 1.47                         | 8.03                                        | 30             |
|                    |                | 6              | 7.62                       | 0.21                         | 7.83                                        | 30             |
|                    |                | 9              | 7.53                       | 0.30                         | 7.83                                        | 30             |
|                    |                | 12             | 7.28                       | 0.39                         | 7.67                                        | 30             |
| 5825               | 405            | 18             | 7.16                       | 0.57                         | 7.73                                        | 30             |
|                    | 165            | 24             | 6.95                       | 0.74                         | 7.69                                        | 30             |
|                    |                | 36             | 6.69                       | 1.06                         | 7.75                                        | 30             |
|                    |                | 48             | 6.20                       | 1.34                         | 7.54                                        | 30             |
|                    |                | 54             | 6.05                       | 1.47                         | 7.52                                        | 30             |

### 802.11n \_20MHz BW (UNII 3)

#### TEST RESULTS

#### Conducted Output Power Measurements (802.11n\_20M BW Mode: 5745~5825)

| 802.11n(20M        | Hz) Mode       |              |                            |                              | Measured                                    |                |
|--------------------|----------------|--------------|----------------------------|------------------------------|---------------------------------------------|----------------|
| Frequency<br>[MHz] | Channel<br>No. | MCS<br>Index | Measured<br>Power<br>(dBm) | Duty Cycle<br>Factor<br>(dB) | Power(dBm)<br>+<br>Duty Cycle<br>Factor(dB) | Limit<br>(dBm) |
|                    |                | 0            | 6.50                       | 0.22                         | 6.72                                        | 30             |
|                    |                | 1            | 6.09                       | 0.43                         | 6.52                                        | 30             |
|                    |                | 2            | 5.97                       | 0.62                         | 6.59                                        | 30             |
| 5745               | 149            | 3            | 5.71                       | 0.78                         | 6.49                                        | 30             |
| 5745               | 145            | 4            | 5.28                       | 1.12                         | 6.40                                        | 30             |
|                    |                | 5            | 5.04                       | 1.42                         | 6.46                                        | 30             |
|                    |                | 6            | 4.82                       | 1.55                         | 6.37                                        | 30             |
|                    |                | 7            | 4.64                       | 1.62                         | 6.26                                        | 30             |
|                    |                | 0            | 7.15                       | 0.22                         | 7.37                                        | 30             |
|                    | 157            | 1            | 6.82                       | 0.43                         | 7.25                                        | 30             |
|                    |                | 2            | 6.55                       | 0.62                         | 7.17                                        | 30             |
| 5705               |                | 3            | 6.31                       | 0.78                         | 7.09                                        | 30             |
| 5785               |                | 4            | 6.00                       | 1.12                         | 7.12                                        | 30             |
|                    |                | 5            | 5.56                       | 1.42                         | 6.98                                        | 30             |
|                    |                | 6            | 5.44                       | 1.55                         | 6.99                                        | 30             |
|                    |                | 7            | 5.32                       | 1.62                         | 6.94                                        | 30             |
|                    |                | 0            | 6.58                       | 0.22                         | 6.80                                        | 30             |
|                    |                | 1            | 6.18                       | 0.43                         | 6.61                                        | 30             |
|                    |                | 2            | 6.07                       | 0.62                         | 6.69                                        | 30             |
| 5825               | 405            | 3            | 5.87                       | 0.78                         | 6.65                                        | 30             |
|                    | 165            | 4            | 5.60                       | 1.12                         | 6.72                                        | 30             |
|                    |                | 5            | 5.12                       | 1.42                         | 6.54                                        | 30             |
|                    |                | 6            | 5.00                       | 1.55                         | 6.55                                        | 30             |
|                    |                | 7            | 4.90                       | 1.62                         | 6.52                                        | 30             |


## 802.11n\_40MHz BW (UNII 3)

#### TEST RESULTS

#### Conducted Output Power Measurements (802.11n\_40M BW Mode: 5755~5795)

| 802.11n(40MI       | Hz) Mode       |              |                            |                              | Measured                                    |                |
|--------------------|----------------|--------------|----------------------------|------------------------------|---------------------------------------------|----------------|
| Frequency<br>[MHz] | Channel<br>No. | MCS<br>Index | Measured<br>Power<br>(dBm) | Duty Cycle<br>Factor<br>(dB) | Power(dBm)<br>+<br>Duty Cycle<br>Factor(dB) | Limit<br>(dBm) |
|                    |                | 0            | 6.76                       | 0.44                         | 7.21                                        | 30             |
|                    |                | 1            | 6.25                       | 0.82                         | 7.08                                        | 30             |
|                    |                | 2            | 5.97                       | 1.16                         | 7.13                                        | 30             |
| 5755               | 454            | 3            | 5.67                       | 1.47                         | 7.14                                        | 30             |
| 5755               | 151            | 4            | 5.03                       | 1.92                         | 6.96                                        | 30             |
|                    |                | 5            | 4.46                       | 2.36                         | 6.82                                        | 30             |
|                    |                | 6            | 4.31                       | 2.55                         | 6.86                                        | 30             |
|                    |                | 7            | 4.19                       | 2.66                         | 6.85                                        | 30             |
|                    |                | 0            | 6.50                       | 0.44                         | 6.95                                        | 30             |
|                    |                | 1            | 6.12                       | 0.82                         | 6.95                                        | 30             |
|                    |                | 2            | 5.56                       | 1.16                         | 6.72                                        | 30             |
| 5705               |                | 3            | 5.30                       | 1.47                         | 6.77                                        | 30             |
| 5795               | 159            | 4            | 4.67                       | 1.92                         | 6.59                                        | 30             |
|                    |                | 5            | 4.11                       | 2.36                         | 6.46                                        | 30             |
|                    |                | 6            | 3.91                       | 2.55                         | 6.46                                        | 30             |
|                    |                | 7            | 3.82                       | 2.66                         | 6.48                                        | 30             |

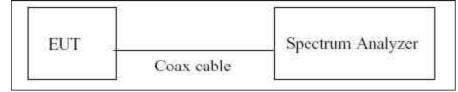
#### TEST Plot for 802.11n\_40MHz BW



#### 9.4 POWER SPECTRAL DENSITY

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The maximum permissible peak power spectral density is 30 dBm/500 kHz for UNII 3.

#### Limit(CDD)


#### **Power Spectral Density**

| Band   | Mode         | Limit          |  |
|--------|--------------|----------------|--|
| UNII 3 | 802.11a,n,ac | 30 dBm/500 kHz |  |

Note :

1. The limits of conducted power spectral density were applied the antenna gain. Therefore, if conducted power is pass, e.i.r.p. is also pass. So, we attached only conducted power spectral density table.

#### **TEST CONFIGURATION**



#### TEST PROCEDURE

We tested according to Method in KDB 789033(issued 01/08/2016).

The spectrum analyzer is set to :

- 1. Set span to encompass the entire emission bandwidth(EBW) of the signal.
- 2. RBW = 1 MHz(510 kHz for UNII 3)
- 3. VBW ≥ 3 MHz
- 4. Number of points in sweep  $\geq 2^*$ span/RBW.
- 5. Sweep time = auto.
- 6. Detector = RMS(i.e., power averaging), if available. Otherwise, use sample detector mode.
- 7. Do not use sweep triggering. Allow the sweep to "free run".
- 8. Trace average at least 100 traces in power averaging(RMS) mode
- 9. Use the peak search function on the spectrum analyzer to find the peak of the spectrum.
- 10. If Method SA-2 was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.

#### Sample Calculation

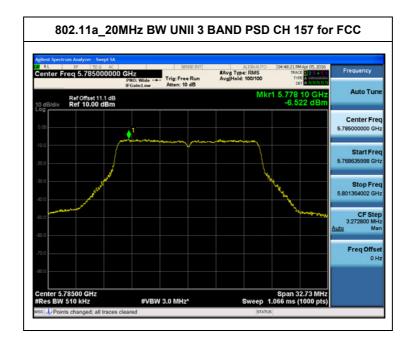
PSD = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor Output Power = 5 dBm + 10 dB + 0.8 dB + 0.21 dB = 16.01 dBm

Note :

- 1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 5.2 GHz, 5.3 GHz and 5.6 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the attenuator and cable combination is below table.

| Band               | Loss(dB) |
|--------------------|----------|
| UNII 1, 2A , 2C, 3 | 11.1     |

(Actual value of loss for the attenuator and cable combination)


#### 802.11a\_20MHz BW

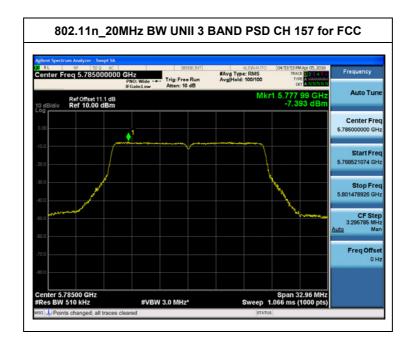
#### TEST RESULTS

|                    |                | Test Result |                                       |                              |                                                                |                |           |  |  |
|--------------------|----------------|-------------|---------------------------------------|------------------------------|----------------------------------------------------------------|----------------|-----------|--|--|
| Frequency<br>(MHz) | Channel<br>No. | Mode        | Measured<br>Power<br>Density<br>(dBm) | Duty Cycle<br>Factor<br>(dB) | Measured<br>Power<br>Density(dBm)<br>+<br>Duty Cycle<br>Factor | Limit<br>(dBm) | Pass/Fail |  |  |
| 5745               | 149            |             | -6.326                                | 0.205                        | -6.121                                                         |                | Pass      |  |  |
| 5785               | 157            | 802.11a     | -6.522                                | 0.745                        | -5.777                                                         | 30             | Pass      |  |  |
| 5825               | 165            |             | -6.425                                | 0.303                        | -6.122                                                         |                | Pass      |  |  |

**Conducted Power Density Measurements** 

### ■ TEST Plot for 802.11a 20MHz BW




#### 802.11n\_20MHz BW

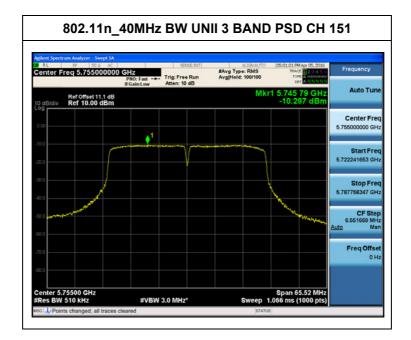
#### TEST RESULTS

|                    |                | Test Result |                                       |                              |                                                                |                |           |  |  |
|--------------------|----------------|-------------|---------------------------------------|------------------------------|----------------------------------------------------------------|----------------|-----------|--|--|
| Frequency<br>(MHz) | Channel<br>No. | Mode        | Measured<br>Power<br>Density<br>(dBm) | Duty Cycle<br>Factor<br>(dB) | Measured<br>Power<br>Density(dBm)<br>+<br>Duty Cycle<br>Factor | Limit<br>(dBm) | Pass/Fail |  |  |
| 5745               | 149            |             | -8.125                                | 0.220                        | -7.905                                                         |                | Pass      |  |  |
| 5785               | 157            | 802.11n     | -7.393                                | 0.220                        | -7.173                                                         | 30             | Pass      |  |  |
| 5825               | 165            |             | -7.431                                | 0.220                        | -7.211                                                         |                | Pass      |  |  |

#### **Conducted Power Density Measurements**

#### **TEST Plot for 802.11n 20MHz BW**




## 802.11n\_40MHz BW

#### TEST RESULTS

| Conducted | Power | Density | Measurements |
|-----------|-------|---------|--------------|
|-----------|-------|---------|--------------|

|                    |                | Test Result |                                       |                              |                                                      |                |           |  |
|--------------------|----------------|-------------|---------------------------------------|------------------------------|------------------------------------------------------|----------------|-----------|--|
| Frequency<br>(MHz) | Channel<br>No. | Mode        | Measured<br>Power<br>Density<br>(dBm) | Duty Cycle<br>Factor<br>(dB) | Measured<br>Power<br>Density(dBm)<br>+<br>Duty Cycle | Limit<br>(dBm) | Pass/Fail |  |
|                    |                |             |                                       |                              | Factor                                               |                |           |  |
| 5755               | 151            | 802.11n     | -10.297                               | 0.443                        | -9.854                                               | 20             | Pass      |  |
| 5795               | 159            | 002.1111    | -10.974                               | 0.824                        | -10.150                                              | 30             | Pass      |  |

#### **TEST Plot for 802.11n 40MHz BW**



#### 9.5 FREQUENCY STABILITY.

The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between -30  $^{\circ}$ C and 50  $^{\circ}$ C. The temperature was incremented by 10  $^{\circ}$ C intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.

#### 20 MHz BW

| OPERATING BAND:      | UNII Band 3      |
|----------------------|------------------|
| OPERATING FREQUENCY: | 5,745,000,000 Hz |
| CHANNEL:             | 149              |
| REFERENCE VOLTAGE:   | 3.70 VDC         |

| Voltage        | Power | Temp.    | Frequency  | Frequency   |
|----------------|-------|----------|------------|-------------|
| (%)            | (VDC) | (°C)     | (kHz)      | Error (kHz) |
| 100%           |       | +20(Ref) | 5745033.25 | 33.25       |
| 100%           |       | -30      | 5745015.64 | 15.64       |
| 100%           |       | -20      | 5745018.09 | 18.09       |
| 100%           |       | -10      | 5745020.77 | 20.77       |
| 100%           | 3.8   | 0        | 5745024.59 | 24.59       |
| 100%           |       | +10      | 5745028.48 | 28.48       |
| 100%           |       | +30      | 5745037.65 | 37.65       |
| 100%           |       | +40      | 5745040.64 | 40.64       |
| 100%           |       | +50      | 5745046.15 | 46.15       |
| 115%           | 4.37  | +20      | 5745032.64 | 32.64       |
| Batt. Endpoint | 3.23  | +20      | 5745031.62 | 31.62       |

#### Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

#### 40 MHz BW

| OPERATING BAND:      | UNII Band 3      |
|----------------------|------------------|
| OPERATING FREQUENCY: | 5,755,000,000 Hz |
| CHANNEL:             | 151              |
| REFERENCE VOLTAGE:   | 3.70 VDC         |

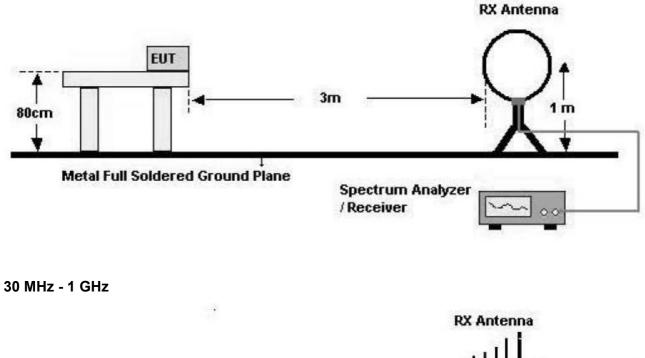
| Voltage        | Power | Temp.    | Frequency  | Frequency   |
|----------------|-------|----------|------------|-------------|
| (%)            | (VDC) | ( Ĵ )    | (kHz)      | Error (kHz) |
| 100%           |       | +20(Ref) | 5755031.12 | 31.12       |
| 100%           |       | -30      | 5755012.66 | 12.66       |
| 100%           |       | -20      | 5755018.69 | 18.69       |
| 100%           |       | -10      | 5755024.59 | 24.59       |
| 100%           | 3.8   | 0        | 5755027.61 | 27.61       |
| 100%           |       | +10      | 5755029.33 | 29.33       |
| 100%           |       | +30      | 5755034.15 | 34.15       |
| 100%           |       | +40      | 5755038.94 | 38.94       |
| 100%           |       | +50      | 5755042.16 | 42.16       |
| 115%           | 4.37  | +20      | 5755033.61 | 33.61       |
| Batt. Endpoint | 3.23  | +20      | 5755029.67 | 29.67       |

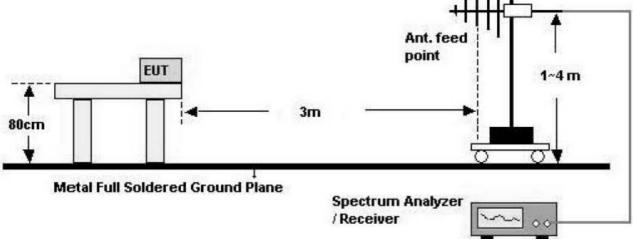
#### Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency error noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

## 9.6 RADIATED MEASUREMENT 9.6.1 RADIATED SPURIOUS EMISSIONS.

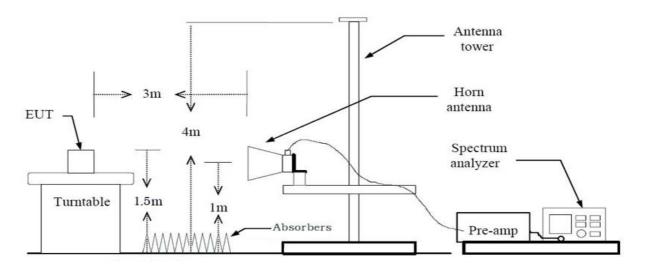
Test Requirements and limit, §15.205, §15.209, §15.407


| Frequency (MHz) | Field Strength (uV/m) | Measurement Distance (m) |
|-----------------|-----------------------|--------------------------|
| 0.009 – 0.490   | 2400/F(kHz)           | 300                      |
| 0.490 – 1.705   | 24000/F(kHz)          | 30                       |
| 1.705 – 30      | 30                    | 30                       |
| 30-88           | 100                   | 3                        |
| 88-216          | 150                   | 3                        |
| 216-960         | 200                   | 3                        |
| Above 960       | 500                   | 3                        |


#### §15.407, KDB 789033 D02

All harmonics that do not lie in a restricted band are subject to a peak limit of -27 dBm/MHz. At a distance of 3 meters the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2 dB to the EIRP limit of -27 dBm/MHz to obtain the limit for out of band spurious emissions of 68.2 dBµV/m. Espectally, for transmitter operating in the 5725 Mhz – 5850 MHz : all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequency 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

#### **Test Configuration**


#### Below 30 MHz





Model: LG-V400

#### Above 1 GHz



#### TEST PROCEDURE USED

ANSI C63.10:2013 Method G)5) in KDB 789033, issued 01/08/2016 (Peak) Method G)6)d) in KDB 789033, issued 01/08/2016 (Average)

. Spectrum setting:

- Peak.
- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = Peak
- 4. Sweep Time = auto
- 5. Trace mode = max hold
- 6. Allow sweeps to continue until the trace stabilizes.
- 7. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle.

- Average (Method VB : Averaging using reduced video bandwidth)

1. RBW = 1 MHz

- 2. VBW
  - 2.1. If the EUT is configured to transmit with duty cycle ≥ 98 percent, set VBW ≤ RBW/100(i.e., 10 kHz) but not less than 10 Hz.
  - 2.2. If the EUT duty cycle is < 98 percent, set VBW ≥ 1/T, where T is the minimum transmission duration.
- 3. The analyzer is set to linear detector mode.

- 4. Detector = Peak.
- 5. Sweep time = auto.
- 6. Trace mode = max hold.
- 7. Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98 percent duty cycle. For lower duty cycles, increase the minimym number of traces by a factor of 1/x, where x is the duty cycle.

#### Note :

- 1. We used the Method VB for 802.11a/n\_20, n\_40 mode to perform the average filed strength measurements.
- 2. The actual setting value of VBW for 802.11a/n \_20, n \_40

| Mode | Worst Data rate<br>(Mbps) | T <sub>on</sub><br>(ms) | T <sub>total</sub><br>(ms) | Duty Cycle<br>(%) | VBW(1/T)<br>(Hz) | The actual<br>setting<br>value of<br>VBW<br>(Hz) |
|------|---------------------------|-------------------------|----------------------------|-------------------|------------------|--------------------------------------------------|
| а    | 6                         | 2.026                   | 2.124                      | 95.39             | 494              | 1000                                             |
| n_20 | MCS 0                     | 1.883                   | 1.981                      | 95.05             | 531              | 1000                                             |
| n_40 | MCS 0                     | 0.921                   | 1.020                      | 90.29             | 1086             | 3000                                             |

## TEST RESULTS

#### 9 kHz – 30MHz

#### **Operation Mode:** Normal Mode

| Frequency               | Reading | Ant. factor | Cable loss | Ant. POL | Total  | Limit  | Margin |
|-------------------------|---------|-------------|------------|----------|--------|--------|--------|
| MHz                     | dBμN    | dB /m       | dB         | (H/V)    | dBµN/m | dBµN/m | dB     |
| No Critical peaks found |         |             |            |          |        |        |        |

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

## TEST RESULTS

#### Below 1 GHz

### Operation Mode: Normal Mode

| Frequency               | Reading | Ant. factor | Cable loss | Ant. POL | Total  | Limit  | Margin |
|-------------------------|---------|-------------|------------|----------|--------|--------|--------|
| MHz                     | dBμN    | dB /m       | dB         | (H/V)    | dBµN/m | dBµN/m | dB     |
| No Critical peaks found |         |             |            |          |        |        |        |

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

### Above 1 GHz

| Band :              | UNII 3             |
|---------------------|--------------------|
| Operation Mode:     | 802.11 a_20 MHz BW |
| Transfer Rate:      | 6 Mbps             |
| Operating Frequency | 5745MHz            |
| Channel No.         | 149 Ch             |

| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11490     | 63.68   | -5.43         | V        | 58.25    | 73.98    | 15.73  | PK          |
| 11490     | 49.19   | -5.43         | V        | 43.76    | 53.98    | 10.22  | AV          |
| 17235     | 62.51   | -1.30         | V        | 61.21    | 68.20    | 6.99   | PK          |
| 11490     | 63.35   | -5.43         | Н        | 57.92    | 73.98    | 16.06  | PK          |
| 11490     | 49.14   | -5.43         | Н        | 43.71    | 53.98    | 10.27  | AV          |
| 17235     | 62.37   | -1.30         | Н        | 61.07    | 68.20    | 7.13   | PK          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11a. Worst case is 6 Mbps in 802.11a.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

| UNII 3             |
|--------------------|
| 802.11 a_20 MHz BW |
| 6 Mbps             |
| 5785 MHz           |
| 157 Ch             |
|                    |

| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11570     | 62.80   | -5.41         | V        | 57.39    | 73.98    | 16.59  | PK          |
| 11570     | 49.11   | -5.41         | V        | 43.70    | 53.98    | 10.28  | AV          |
| 17355     | 62.07   | -0.40         | V        | 61.67    | 68.20    | 6.53   | PK          |
| 11570     | 62.63   | -5.41         | Н        | 57.22    | 73.98    | 16.76  | PK          |
| 11570     | 49.08   | -5.41         | Н        | 43.67    | 53.98    | 10.31  | AV          |
| 17355     | 62.02   | -0.40         | Н        | 61.62    | 68.20    | 6.58   | PK          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11a. Worst case is 6 Mbps in 802.11a.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

| Band :              | UNII 3             |  |  |
|---------------------|--------------------|--|--|
| Operation Mode:     | 802.11 a_20 MHz BW |  |  |
| Transfer Rate:      | 6 Mbps             |  |  |
| Operating Frequency | 5825 MHz           |  |  |
| Channel No.         | 165 Ch             |  |  |
| Channel No.         | 165 Ch             |  |  |

| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11650     | 63.46   | -5.43         | V        | 58.03    | 73.98    | 15.95  | PK          |
| 11650     | 49.61   | -5.43         | V        | 44.18    | 53.98    | 9.80   | AV          |
| 17475     | 62.17   | -0.28         | V        | 61.89    | 68.20    | 6.31   | PK          |
| 11650     | 63.48   | -5.43         | Н        | 58.05    | 73.98    | 15.93  | PK          |
| 11650     | 49.52   | -5.43         | Н        | 44.09    | 53.98    | 9.89   | AV          |
| 17475     | 62.05   | -0.28         | Н        | 61.77    | 68.20    | 6.43   | PK          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11a. Worst case is 6 Mbps in 802.11a.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna

| Band :              | UNII 3             |  |  |
|---------------------|--------------------|--|--|
| Operation Mode:     | 802.11 n_20 MHz BW |  |  |
| Transfer MCS Index: | 0                  |  |  |
| Operating Frequency | 5745 MHz           |  |  |
| Channel No.         | 149 Ch             |  |  |
|                     |                    |  |  |

| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11490     | 63.52   | -5.43         | V        | 58.09    | 73.98    | 15.89  | PK          |
| 11490     | 49.14   | -5.43         | V        | 43.71    | 53.98    | 10.27  | AV          |
| 17235     | 62.44   | -1.30         | V        | 61.14    | 68.20    | 7.06   | PK          |
| 11490     | 63.26   | -5.43         | Н        | 57.83    | 73.98    | 16.15  | PK          |
| 11490     | 49.05   | -5.43         | Н        | 43.62    | 53.98    | 10.36  | AV          |
| 17235     | 62.49   | -1.30         | Н        | 61.19    | 68.20    | 7.01   | PK          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11n\_20 MHz BW. Worst case is MCS 0 in 802.11n\_20 MHz BW.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

| Band :              | UNII 3             |  |  |  |
|---------------------|--------------------|--|--|--|
| Operation Mode:     | 802.11 n_20 MHz BW |  |  |  |
| Transfer MCS Index: | 0                  |  |  |  |
| Operating Frequency | 5785 MHz           |  |  |  |
| Channel No.         | 157 Ch             |  |  |  |
|                     |                    |  |  |  |

| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11570     | 62.94   | -5.41         | V        | 57.53    | 73.98    | 16.45  | PK          |
| 11570     | 49.06   | -5.41         | V        | 43.65    | 53.98    | 10.33  | AV          |
| 17355     | 62.25   | -0.40         | V        | 61.85    | 68.20    | 6.35   | PK          |
| 11570     | 62.63   | -5.41         | Н        | 57.22    | 73.98    | 16.76  | PK          |
| 11570     | 48.98   | -5.41         | Н        | 43.57    | 53.98    | 10.41  | AV          |
| 17355     | 62.12   | -0.40         | Н        | 61.72    | 68.20    | 6.48   | PK          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11n\_20 MHz BW. Worst case is MCS 0 in 802.11n\_20 MHz BW.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

| Band :              | UNII 3             |
|---------------------|--------------------|
| Operation Mode:     | 802.11 n_20 MHz BW |
| Transfer MCS Index: | 0                  |
| Operating Frequency | 5825 MHz           |
| Channel No.         | 165 Ch             |
|                     |                    |

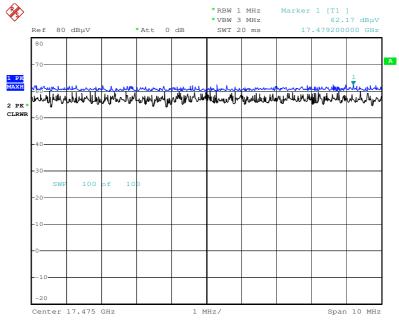
| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11650     | 63.01   | -5.43         | V        | 57.58    | 73.98    | 16.40  | PK          |
| 11650     | 49.54   | -5.43         | V        | 44.11    | 53.98    | 9.87   | AV          |
| 17475     | 62.71   | -0.28         | V        | 62.43    | 68.20    | 5.77   | PK          |
| 11650     | 62.89   | -5.43         | Н        | 57.46    | 73.98    | 16.52  | PK          |
| 11650     | 49.47   | -5.43         | Н        | 44.04    | 53.98    | 9.94   | AV          |
| 17475     | 62.46   | -0.28         | Н        | 62.18    | 68.20    | 6.02   | PK          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11n\_20 MHz BW. Worst case is MCS 0 in 802.11n\_20 MHz BW.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

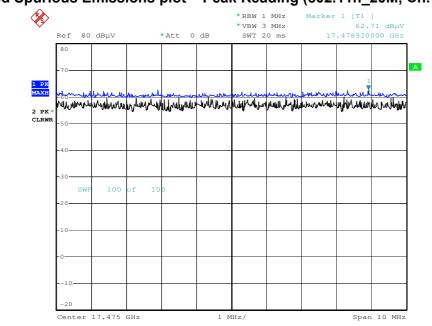
| Band :              | UNII3             |
|---------------------|-------------------|
| Operation Mode:     | 802.11n_40 MHz BW |
| Transfer MCS Index: | 0                 |
| Operating Frequency | 5755 MHz          |
| Channel No.         | 151 Ch            |
|                     |                   |

| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11510     | 63.12   | -5.23         | V        | 57.89    | 73.98    | 16.09  | PK          |
| 11510     | 50.12   | -5.23         | V        | 44.89    | 53.98    | 9.09   | AV          |
| 17265     | 62.57   | -1.12         | V        | 61.45    | 68.20    | 6.75   | PK          |
| 11510     | 62.78   | -5.23         | Н        | 57.55    | 73.98    | 16.43  | PK          |
| 11510     | 50.04   | -5.23         | Н        | 44.81    | 53.98    | 9.17   | AV          |
| 17265     | 62.32   | -1.12         | Н        | 61.20    | 68.20    | 7.00   | PK          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11n\_40 MHz BW. Worst case is MCS 0 in 802.11n\_40 MHz BW.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.


| Band :              | UNII 3            |
|---------------------|-------------------|
| Operation Mode:     | 802.11n_40 MHz BW |
| Transfer MCS Index: | 0                 |
| Operating Frequency | 5795 MHz          |
| Channel No.         | 159 Ch            |
|                     |                   |

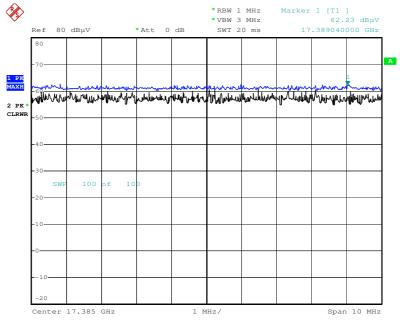
| Frequency | Reading | AN.+CL-Amp G. | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|---------------|----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]          | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 11590     | 63.08   | -5.35         | V        | 57.73    | 73.98    | 16.25  | PK          |
| 11590     | 50.03   | -5.35         | V        | 44.68    | 53.98    | 9.30   | AV          |
| 17385     | 62.23   | -0.10         | V        | 62.13    | 68.20    | 6.07   | PK          |
| 11590     | 62.86   | -5.35         | Н        | 57.51    | 73.98    | 16.47  | PK          |
| 11590     | 49.93   | -5.35         | Н        | 44.58    | 53.98    | 9.40   | AV          |
| 17385     | 62.14   | -0.10         | Н        | 62.04    | 68.20    | 6.16   | PK          |


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. We have done all data rate in 802.11n\_40 MHz BW. Worst case is MCS 0 in 802.11n\_40 MHz BW.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

## RESULT PLOTS

#### Radiated Spurious Emissions plot – Peak Reading (802.11a\_20M, Ch.165 3rd Harmonic)




Date: 22.MAR.2016 11:59:26



#### Radiated Spurious Emissions plot – Peak Reading (802.11n\_20M, Ch.165 3rd Harmonic)

Date: 22.MAR.2016 12:00:34

## Radiated Spurious Emissions plot – Peak Reading (802.11n\_40M, Ch.159 3rd Harmonic)



Date: 22.MAR.2016 12:03:11

## 9.6.2 RADIATED RESTRICTED BAND EDGE MEASUREMENTS

#### Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

| Band :              | UNII 3             |
|---------------------|--------------------|
| Operation Mode:     | 802.11 a_20 MHz BW |
| Transfer Rate:      | 6 Mbps             |
| Operating Frequency | 5745MHz            |
| Channel No.         | 149 Ch             |

| Frequency | Reading | AN.+CL-AMP+ATT | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|----------------|----------|----------|----------|--------|-------------|
| [MHz]     | DBuV    | [dB]           | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 5725      | 53.34   | 10.70          | Н        | 64.04    | 78.20    | 14.16  | PK          |
| 5725      | 51.85   | 10.70          | V        | 62.55    | 78.20    | 15.65  | PK          |
| 5715      | 48.24   | 10.35          | Н        | 58.59    | 68.20    | 9.61   | PK          |
| 5715      | 47.95   | 10.35          | V        | 58.30    | 68.20    | 9.90   | PK          |

| Band :              | UNII 3             |
|---------------------|--------------------|
| Operation Mode:     | 802.11 a_20 MHz BW |
| Transfer Rate:      | 6 Mbps             |
| Operating Frequency | 5825MHz            |
| Channel No.         | 165 Ch             |

| Frequency | Reading | AN.+CL-AMP+ATT | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|----------------|----------|----------|----------|--------|-------------|
| [MHz]     | DBuV    | [dB]           | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 5850      | 48.12   | 11.47          | Н        | 59.59    | 78.20    | 18.61  | PK          |
| 5850      | 47.91   | 11.47          | V        | 59.38    | 78.20    | 18.82  | PK          |
| 5860      | 47.98   | 11.47          | Н        | 59.45    | 68.20    | 8.75   | PK          |
| 5860      | 47.18   | 11.47          | V        | 58.65    | 68.20    | 9.55   | PK          |

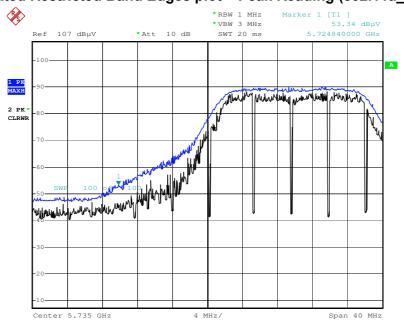
| Band :              | UNII 3            |
|---------------------|-------------------|
| Operation Mode:     | 802.11 n_20MHz BW |
| Transfer MCS Index: | 0                 |
| Operating Frequency | 5745 MHz          |
| Channel No.         | 149 Ch            |
|                     |                   |

| Frequency | Reading | AN.+CL-AMP+ATT | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|----------------|----------|----------|----------|--------|-------------|
| [MHz]     | DBuV    | [dB]           | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 5725      | 54.38   | 10.70          | Н        | 65.08    | 78.20    | 13.12  | PK          |
| 5725      | 52.81   | 10.70          | V        | 63.51    | 78.20    | 14.69  | PK          |
| 5715      | 49.40   | 10.35          | Н        | 59.75    | 68.20    | 8.45   | PK          |
| 5715      | 48.14   | 10.35          | V        | 58.49    | 68.20    | 9.71   | PK          |

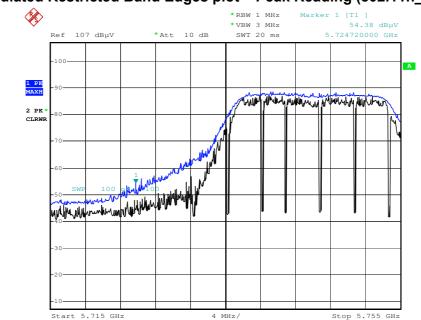
| Band :              | UNII 3            |  |  |
|---------------------|-------------------|--|--|
| Operation Mode:     | 802.11 n_20MHz BW |  |  |
| Transfer MCS Index: | 0                 |  |  |
| Operating Frequency | 5825 MHz          |  |  |
| Channel No.         | 165 Ch            |  |  |
|                     |                   |  |  |

| Frequency | Reading | AN.+CL-AMP+ATT | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|----------------|----------|----------|----------|--------|-------------|
| [MHz]     | DBuV    | [dB]           | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 5850      | 48.07   | 11.47          | Н        | 59.54    | 78.20    | 18.66  | PK          |
| 5850      | 48.11   | 11.47          | V        | 59.58    | 78.20    | 18.62  | PK          |
| 5860      | 47.69   | 11.47          | Н        | 59.16    | 68.20    | 9.04   | PK          |
| 5860      | 47.35   | 11.47          | V        | 58.82    | 68.20    | 9.38   | PK          |

| Band :              | UNII 3             |  |
|---------------------|--------------------|--|
| Operation Mode:     | 802.11 n_40 MHz BW |  |
| Transfer MCS Index: | 0                  |  |
| Operating Frequency | 5755 MHz           |  |
| Channel No.         | 151 Ch             |  |
|                     |                    |  |

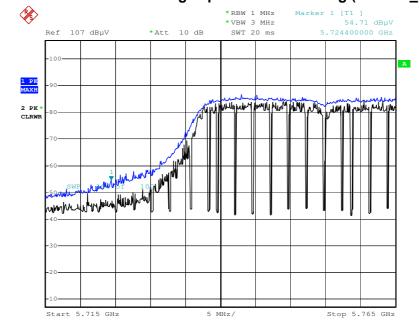

| Frequency | Reading | AN.+CL-AMP+ATT | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|----------------|----------|----------|----------|--------|-------------|
| [MHz]     | DBuV    | [dB]           | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 5725      | 54.71   | 10.70          | Н        | 65.41    | 78.20    | 12.79  | PK          |
| 5725      | 53.77   | 10.70          | V        | 64.47    | 78.20    | 13.73  | PK          |
| 5715      | 48.67   | 10.35          | Н        | 59.02    | 68.20    | 9.18   | PK          |
| 5715      | 48.31   | 10.35          | V        | 58.66    | 68.20    | 9.54   | PK          |

| Band :              | UNII 3             |  |  |
|---------------------|--------------------|--|--|
| Operation Mode:     | 802.11 n_40 MHz BW |  |  |
| Transfer MCS Index: | 0                  |  |  |
| Operating Frequency | 5795 MHz           |  |  |
| Channel No.         | 159 Ch             |  |  |


| Frequency | Reading | AN.+CL-AMP+ATT | ANT. POL | Total    | Limit    | Margin | Measurement |
|-----------|---------|----------------|----------|----------|----------|--------|-------------|
| [MHz]     | DBuV    | [dB]           | [H/V]    | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 5850      | 47.72   | 11.47          | Н        | 59.19    | 78.20    | 19.01  | PK          |
| 5850      | 47.68   | 11.47          | V        | 59.15    | 78.20    | 19.05  | PK          |
| 5860      | 47.63   | 11.47          | Н        | 59.10    | 68.20    | 9.10   | PK          |
| 5860      | 47.55   | 11.47          | V        | 59.02    | 68.20    | 9.18   | PK          |

- 1. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + ATT
- 2. We have done all data rate in 802.11a/n/ac mode test. . Worst case of EUT is lowest data rate in 802.11a/n.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. (\*' is radiated band edge test frequency.(not restricted band emissions)

### RESULT PLOTS Radiated Restricted Band Edges plot – Peak Reading (802.11a\_20M, Ch.149)




Date: 21.MAR.2016 16:24:55



Radiated Restricted Band Edges plot – Peak Reading (802.11n\_20M, Ch.149)

Date: 21.MAR.2016 16:30:39



## Radiated Restricted Band Edges plot – Peak Reading (802.11n\_40M, Ch.151)

Note : Only the worst case plots for Radiated Restricted Band Edges.

Date: 21.MAR.2016 16:33:54

## 9.6.3 RECEIVER SPURIOUS EMISSIONS

| IC Rule(s)            | RSS-GEN                                            |
|-----------------------|----------------------------------------------------|
| Test Requirements:    | Blow the table                                     |
| Operating conditions: | Under normal test conditions                       |
| Method of testing:    | Radiated                                           |
|                       |                                                    |
| S/A. Settings:        | F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak) |
| SA. Settings.         | F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)           |
| Mode of operation:    | Receive                                            |

| Frequency | Field Strength             |
|-----------|----------------------------|
| (MHz)     | (microvolts/m at 3 meters) |
| 30 – 88   | 100                        |
| 88 - 216  | 150                        |
| 216 – 960 | 200                        |
| Above 960 | 500                        |

### **Operation Mode: Receive:**

30 MHz ~ 1 GHz

| Frequency               | Reading | Ant. factor | Cable loss | Ant. POL | Total  | Limit  | Margin |
|-------------------------|---------|-------------|------------|----------|--------|--------|--------|
| MHz                     | dBμN    | dB /m       | dB         | (H/V)    | dBµN/m | dBµN/m | dB     |
| No Critical peaks found |         |             |            |          |        |        |        |

Above 1 GHz

| Frequency               | Reading | Ant. factor | Cable loss | Ant. POL | Total  | Limit  | Margin |
|-------------------------|---------|-------------|------------|----------|--------|--------|--------|
| MHz                     | dBμN    | dB /m       | dB         | (H/V)    | dBµN/m | dBµN/m | dB     |
| No Critical peaks found |         |             |            |          |        |        |        |

# 9.7 POWERLINE CONDUCTED EMISSIONS

### Test Requirements and limit, §15.207

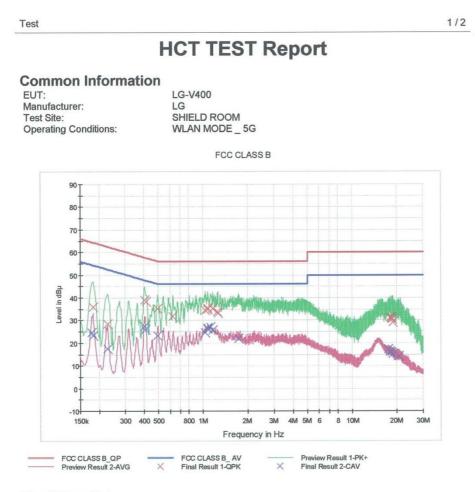
For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

|                       | Limits (dBµV) |          |  |  |  |
|-----------------------|---------------|----------|--|--|--|
| Frequency Range (MHz) | Quasi-peak    | Average  |  |  |  |
| 0.15 to 0.50          | 66 to 56      | 56 to 46 |  |  |  |
| 0.50 to 5             | 56            | 46       |  |  |  |
| 5 to 30               | 60            | 50       |  |  |  |

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

#### **Test Configuration**

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.


#### **TEST PROCEDURE**

- 1. The EUT is placed on a wooden table 80 cm above the reference groundplane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

#### Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

## RESULT PLOTS Conducted Emissions (Line 1)



#### **Final Result 1**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|--------------------|--------|------|---------------|----------------|-----------------|
| 0.182000           | 35.8                | 9.000              | Off    | N    | 9.6           | 28.6           | 64.4            |
| 0.228000           | 28.6                | 9.000              | Off    | N    | 9.6           | 33.9           | 62.5            |
| 0.404000           | 39.1                | 9.000              | Off    | N    | 9.6           | 18.7           | 57.8            |
| 0.416000           | 38.3                | 9.000              | Off    | N    | 9.6           | 19.3           | 57.5            |
| 0.496000           | 35.1                | 9.000              | Off    | N    | 9.6           | 20.9           | 56.1            |
| 0.628000           | 31.8                | 9.000              | Off    | N    | 9.6           | 24.2           | 56.0            |
| 1.034000           | 34.4                | 9.000              | Off    | N    | 9.7           | 21.6           | 56.0            |
| 1.072000           | 34.9                | 9.000              | Off    | N    | 9.7           | 21.1           | 56.0            |
| 1.076000           | 35.5                | 9.000              | Off    | N    | 9.7           | 20.5           | 56.0            |
| 1.160000           | 35.2                | 9.000              | Off    | N    | 9.7           | 20.8           | 56.0            |
| 1.250000           | 33.8                | 9.000              | Off    | N    | 9.7           | 22.2           | 56.0            |
| 1.258000           | 33.1                | 9.000              | Off    | N    | 9.7           | 22.9           | 56.0            |
| 18.032000          | 31.2                | 9.000              | Off    | N    | 10.2          | 28.8           | 60.0            |
| 18.254000          | 31.0                | 9.000              | Off    | N    | 10.2          | 29.0           | 60.0            |
| 18.274000          | 31.0                | 9.000              | Off    | N    | 10.2          | 29.0           | 60.0            |
| 18.364000          | 30.8                | 9.000              | Off    | N    | 10.2          | 29.2           | 60.0            |
| 18.476000          | 30.4                | 9.000              | Off    | N    | 10.2          | 29.6           | 60.0            |
| 18.890000          | 29.2                | 9.000              | Off    | N    | 10.2          | 30.8           | 60.0            |

#### **Final Result 2**

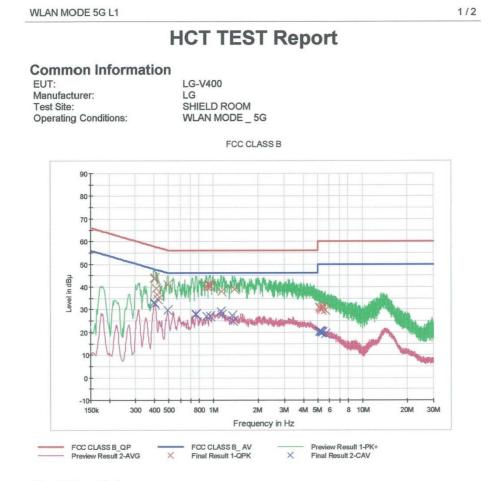
2016-03-30

오후 3:31:50



Test

| Frequency<br>(MHz) | CAverage<br>(dBµV) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|--------------------|--------------------|--------|------|---------------|----------------|-----------------|
| 0.178000           | 24.6               | 9.000              | Off    | N    | 9.6           | 30.0           | 54.6            |
| 0.182000           | 23.4               | 9.000              | Off    | N    | 9.6           | 31.0           | 54.4            |
| 0.228000           | 17.6               | 9.000              | Off    | N    | 9.6           | 34.9           | 52.5            |
| 0.404000           | 27.4               | 9.000              | Off    | N    | 9.6           | 20.4           | 47.8            |
| 0.408000           | 26.1               | 9.000              | Off    | N    | 9.6           | 21.6           | 47.7            |
| 0.494000           | 23.4               | 9.000              | Off    | N    | 9.6           | 22.7           | 46.1            |
| 1.028000           | 24.7               | 9.000              | Off    | N    | 9.7           | 21.3           | 46.0            |
| 1.072000           | 26.3               | 9.000              | Off    | N    | 9.7           | 19.7           | 46.0            |
| 1.076000           | 26.7               | 9.000              | Off    | N    | 9.7           | 19.3           | 46.0            |
| 1.124000           | 27.2               | 9.000              | Off    | N    | 9.7           | 18.8           | 46.0            |
| 1.160000           | 25.8               | 9.000              | Off    | N    | 9.7           | 20.2           | 46.0            |
| 1.734000           | 22.0               | 9.000              | Off    | N    | 9.7           | 24.0           | 46.0            |
| 17.606000          | 17.1               | 9.000              | Off    | N    | 10.2          | 32.9           | 50.0            |
| 18.032000          | 16.3               | 9.000              | Off    | N    | 10.2          | 33.7           | 50.0            |
| 18.254000          | 16.0               | 9.000              | Off    | N    | 10.2          | 34.0           | 50.0            |
| 18.274000          | 16.0               | 9.000              | Off    | N    | 10.2          | 34.0           | 50.0            |
| 18.808000          | 15.3               | 9.000              | Off    | N    | 10.2          | 34.7           | 50.0            |
| 20.548000          | 14.3               | 9.000              | Off    | N    | 10.3          | 35.7           | 50.0            |


2/2

2016-03-30

오후 3:31:50



#### **Conducted Emissions (Line 2)**



#### **Final Result 1**

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|--------------------|--------|------|---------------|----------------|-----------------|
| 0.400000           | 43.8                | 9.000              | Off    | L1   | 9.7           | 14.0           | 57.9            |
| 0.406000           | 44.0                | 9.000              | Off    | L1   | 9.7           | 13.8           | 57.7            |
| 0.414000           | 39.3                | 9.000              | Off    | L1   | 9.7           | 18.2           | 57.6            |
| 0.418000           | 36.6                | 9.000              | Off    | L1   | 9.7           | 20.8           | 57.5            |
| 0.424000           | 34.6                | 9.000              | Off    | L1   | 9.7           | 22.7           | 57.4            |
| 0.496000           | 40.9                | 9.000              | Off    | L1   | 9.7           | 15.1           | 56.1            |
| 0.894000           | 40.4                | 9.000              | Off    | L1   | 9.7           | 15.6           | 56.0            |
| 0.938000           | 41.1                | 9.000              | Off    | L1   | 9.7           | 14.9           | 56.0            |
| 0.944000           | 40.3                | 9.000              | Off    | L1   | 9.7           | 15.7           | 56.0            |
| 0.948000           | 40.1                | 9.000              | Off    | L1   | 9.7           | 15.9           | 56.0            |
| 1.132000           | 37.8                | 9.000              | Off    | L1   | 9.7           | 18.2           | 56.0            |
| 1.386000           | 39.0                | 9.000              | Off    | L1   | 9.7           | 17.0           | 56.0            |
| 5.132000           | 31.0                | 9.000              | Off    | L1   | 9.9           | 29.0           | 60.0            |
| 5.172000           | 30.5                | 9.000              | Off    | L1   | 9.9           | 29.5           | 60.0            |
| 5.222000           | 30.4                | 9.000              | Off    | L1   | 9.9           | 29.6           | 60.0            |
| 5.328000           | 29.8                | 9.000              | Off    | L1   | 9.9           | 30.2           | 60.0            |
| 5.358000           | 30.7                | 9.000              | Off    | L1   | 9.9           | 29.3           | 60.0            |
| 5.616000           | 29.9                | 9.000              | Off    | L1   | 9.9           | 30.1           | 60.0            |

#### **Final Result 2**

2016-03-30

오후 3:41:12



2/2

#### WLAN MODE 5G L1

| Frequency<br>(MHz) | CAverage<br>(dBµV) | Bandwidth<br>(kHz) | Filter | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|--------------------|--------------------|--------|------|---------------|----------------|-----------------|
| 0.402000           | 33.3               | 9.000              | Off    | L1   | 9.7           | 14.5           | 47.8            |
| 0.406000           | 32.4               | 9.000              | Off    | L1   | 9.7           | 15.3           | 47.7            |
| 0.492000           | 29.6               | 9.000              | Off    | L1   | 9.7           | 16.5           | 46.1            |
| 0.758000           | 28.1               | 9.000              | Off    | L1   | 9.7           | 17.9           | 46.0            |
| 0.762000           | 28.2               | 9.000              | Off    | L1   | 9.7           | 17.8           | 46.0            |
| 0.766000           | 27.8               | 9.000              | Off    | L1   | 9.7           | 18.2           | 46.0            |
| 0.894000           | 26.9               | 9.000              | Off    | L1   | 9.7           | 19.1           | 46.0            |
| 0.950000           | 27.1               | 9.000              | Off    | L1   | 9.7           | 18.9           | 46.0            |
| 1.120000           | 29.2               | 9.000              | Off    | L1   | 9.7           | 16.8           | 46.0            |
| 1.132000           | 27.9               | 9.000              | Off    | L1   | 9.7           | 18.1           | 46.0            |
| 1.340000           | 27.3               | 9.000              | Off    | L1   | 9.7           | 18.7           | 46.0            |
| 1.356000           | 24.9               | 9.000              | Off    | L1   | 9.7           | 21.1           | 46.0            |
| 5.146000           | 20.3               | 9.000              | Off    | L1   | 9.9           | 29.7           | 50.0            |
| 5.172000           | 20.4               | 9.000              | Off    | L1   | 9.9           | 29.6           | 50.0            |
| 5.222000           | 20.1               | 9.000              | Off    | L1   | 9.9           | 29.9           | 50.0            |
| 5.328000           | 19.9               | 9.000              | Off    | L1   | 9.9           | 30.1           | 50.0            |
| 5.358000           | 20.1               | 9.000              | Off    | L1   | 9.9           | 29.9           | 50.0            |
| 5.616000           | 19.3               | 9.000              | Off    | L1   | 9.9           | 30.7           | 50.0            |

2016-03-30

오후 3:41:12



# 10. LIST OF TEST EQUIPMENT 10.1 LIST OF TEST EQUIPMENT(Conducted Test)

| Manufacturer    | Model / Equipment            | Calibration<br>Date | Calibration<br>Interval | Serial No. |
|-----------------|------------------------------|---------------------|-------------------------|------------|
| Rohde & Schwarz | ENV216 / LISN                | 12/28/2015          | Annual                  | 100073     |
| Rohde & Schwarz | ESCI / Test Receiver         | 12/28/2015          | Annual                  | 100584     |
| Agilent         | N9020A / Signal Analyzer     | 06/30/2015          | Annual                  | MY51110085 |
| Agilent         | N9030A / Signal Analyzer     | 11/24/2015          | Annual                  | MY49431210 |
| Agilent         | N1911A / Power Meter         | 07/09/2015          | Annual                  | MY45100523 |
| Agilent         | N1921A /Power Sensor         | 03/11/2016          | Annual                  | MY52260025 |
| Agilent         | 87300B / Directional Coupler | 11/30/2015          | Annual                  | 3116A03621 |
| Hewlett Packard | 11667B / Power Splitter      | 06/15/2015          | Annual                  | 5001       |
| Hewlett Packard | E3632A / DC Power Supply     | 03/09/2016          | Annual                  | KR75303962 |
| Agilent         | 8493C / Attenuator(10 dB)    | 07/21/2015          | Annual                  | 07560      |
| Agilent         | 87300B / Directional Coupler | 11/30/2015          | Annual                  | 3116A03621 |

# 10.2 LIST OF TEST EQUIPMENT(Radiated Test)

| Manufacturer          | Model / Equipment                                         | Calibration<br>Date | Calibration<br>Interval | Serial No.  |
|-----------------------|-----------------------------------------------------------|---------------------|-------------------------|-------------|
| Schwarzbeck           | VULB 9160/ TRILOG Antenna                                 | 10/10/2014          | Biennial                | 3368        |
| HD                    | MA240/ Antenna Position Tower                             | N/A                 | N/A                     | 556         |
| EMCO                  | 1050/ Turn Table                                          | N/A                 | N/A                     | 114         |
| HD GmbH               | HD 100/ Controller                                        | N/A                 | N/A                     | 13          |
| Schwarzbeck           | BBHA 9120D/ Horn Antenna                                  | 05/07/2015          | Biennial                | 937         |
| Schwarzbeck           | BBHA9170 / Horn Antenna(15 GHz ~ 40<br>GHz)               | 04/30/2015          | Biennial                | BBHA9170124 |
| Rohde & Schwarz       | FSP / Spectrum Analyzer                                   | 01/15/2016          | Annual                  | 839117/011  |
| Rohde & Schwarz       | FSV40-N / Spectrum Analyzer                               | 09/23/2015          | Annual                  | 101068-SZ   |
| Wainwright Instrument | WHF3.0/18G-10EF / High Pass Filter                        | 06/29/2015          | Annual                  | 8           |
| Wainwright Instrument | WHKX8-6090-7000-18000-40SS / High<br>Pass Filter          | 08/05/2015          | Annual                  | 5           |
| Wainwright Instrument | WRCJV5100/5850-40/50-8EEK / Band<br>Reject Filter         | 01/16/2016          | Annual                  | 2           |
| Wainwright Instrument | WRCJ2400/2483.5-2370/2520-60/14SS /<br>Band Reject Filter | 06/15/2015          | Annual                  | 1           |
| Rohde & Schwarz       | LOOP ANTENNA                                              | 02/23/2016          | Biennial                | 1513-175    |
| CERNEX                | CBL26405040 / POWER AMP                                   | 07/21/2015          | Annual                  | 19660       |
| CERNEX                | CBLU1183540 / POWER AMP                                   | 07/21/2015          | Annual                  | 22964       |
| CERNEX                | CBL18265035 / POWER AMP                                   | 07/27/2015          | Annual                  | 22966       |
| CERNEX                | CBL06185030 / POWER AMP                                   | 07/21/2015          | Annual                  | 22965       |