PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com



### MEASUREMENT REPORT FCC Part 15.407 UNII 802.11 a/n/ac

#### **Applicant Name:**

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

#### Date of Testing: 7/20 - 8/11/2017 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 1M1707180221-05-R1.ZNF

| FCC ID:                     | ZNFV30A                                                                                    |  |
|-----------------------------|--------------------------------------------------------------------------------------------|--|
| APPLICANT:                  | LG Electronics MobileComm U.S.A                                                            |  |
| Application Type:           | Class II Permissive Change                                                                 |  |
| Model:                      | LG-H931                                                                                    |  |
| Additional Model(s):        | LGH931, H931, H933, LG-H933, LGH933, LG-VS996, LGVS996, VS996,<br>LG-US998, LGUS998, US998 |  |
| EUT Type:                   | Portable Handset                                                                           |  |
| FCC Classification:         | Unlicensed National Information Infrastructure (UNII)                                      |  |
| FCC Rule Part(s):           | Part 15.407                                                                                |  |
| Test Procedure(s):          | KDB 789033 D02 v01r04, KDB 648474 D03 v01r04, KDB 662911 D01 v02r01                        |  |
| Class II Permissive Change: | Please see FCC change document                                                             |  |

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02 v01r04. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M1707180221-05-R1.ZNF) supersedes and replaces the previously issued test report (S/N: 1M1707180221-05.ZNF) on the same subject device for the same type of testing as indicated. Please discard the previously issued test report(s).

I attest to he accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President



| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) |  | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|--|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |  | Demo 1 of 111                   |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |  | Page 101114                     |
| © 2017 PCTEST Engineering Labo | ratory. Inc.     |                                                                                      |  | V 6.                            |

07/14/2017



## TABLE OF CONTENTS

| FCC | PART 1 | 5.407 ME | ASUREMENT REPORT                                         | 3   |
|-----|--------|----------|----------------------------------------------------------|-----|
| 1.0 | INTR   | ODUCTIO  | DN                                                       | 4   |
|     | 1.1    | Scope    | 9                                                        | 4   |
|     | 1.2    | PCTE     | ST Test Location                                         | 4   |
| 2.0 | PRO    | DUCT INF | FORMATION                                                | 5   |
|     | 2.1    | Equip    | ment Description                                         | 5   |
|     | 2.2    | Device   | e Capabilities                                           | 5   |
|     | 2.3    | Test C   | Configuration                                            | 7   |
|     | 2.4    | EMI S    | Suppression Device(s)/Modifications                      | 7   |
| 3.0 | DESC   | RIPTION  | N OF TESTS                                               | 8   |
|     | 3.1    | Evalua   | ation Procedure                                          | 8   |
|     | 3.2    | Radia    | ted Emissions                                            | 8   |
|     | 3.3    | Enviro   | onmental Conditions                                      | 8   |
| 4.0 | ANTE   | INNA RE  | QUIREMENTS                                               | 9   |
| 5.0 | MEAS   | SUREME   | NT UNCERTAINTY                                           | 10  |
| 6.0 | TEST   | EQUIPM   | IENT CALIBRATION DATA                                    | 11  |
| 7.0 | TEST   | RESULT   | ۲S                                                       | 12  |
|     | 7.1    | Summ     | nary                                                     | 12  |
|     | 7.2    | Radia    | ted Spurious Emission Measurements – Above 1GHz          |     |
|     |        | 7.7.1    | Antenna-1 Radiated Spurious Emission Measurements        | 17  |
|     |        | 7.7.2    | Antenna-2 Radiated Spurious Emission Measurements        |     |
|     |        | 7.7.3    | Simultaneous Tx Radiated Spurious Emissions Measurements | 45  |
|     |        | 7.7.4    | Antenna-1 Radiated Band Edge Measurements (20MHz BW)     | 49  |
|     |        | 7.7.5    | Antenna-1 Radiated Band Edge Measurements (40MHz BW)     | 55  |
|     |        | 7.7.6    | Antenna-1 Radiated Band Edge Measurements (80MHz BW)     | 61  |
|     |        | 7.7.7    | Antenna-2 Radiated Band Edge Measurements (20MHz BW)     | 67  |
|     |        | 7.7.8    | Antenna-2 Radiated Band Edge Measurements (40MHz BW)     | 73  |
|     |        | 7.7.9    | Antenna-2 Radiated Band Edge Measurements (80MHz BW)     | 79  |
|     |        | 7.7.10   | MIMO Radiated Band Edge Measurements (20MHz BW)          | 85  |
|     |        | 7.7.11   | MIMO Radiated Band Edge Measurements (40MHz BW)          | 91  |
|     |        | 7.7.12   | MIMO Radiated Band Edge Measurements (80MHz BW)          | 97  |
|     | 7.3    | Radia    | ted Spurious Emissions Measurements – Below 1GHz         |     |
| 8.0 | CON    | CLUSION  | I                                                        | 114 |

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Demo 2 of 111                   |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 2 01 114                   |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      | V 6.                            |

07/14/2017





### MEASUREMENT REPORT FCC Part 15.407



| APPLICANT:              | LG Electronics MobileComm U.S.A                                               |  |  |  |
|-------------------------|-------------------------------------------------------------------------------|--|--|--|
| APPLICANT ADDRESS:      | 1000 Sylvan Avenue                                                            |  |  |  |
|                         | Englewood Cliffs, NJ 07632, United States                                     |  |  |  |
| TEST SITE:              | PCTEST ENGINEERING LABORATORY, INC.                                           |  |  |  |
| TEST SITE ADDRESS:      | 7185 Oakland Mills Road, Columbia, MD 21046 USA                               |  |  |  |
| FCC RULE PART(S):       | Part 15.407                                                                   |  |  |  |
| BASE MODEL:             | LG-H931                                                                       |  |  |  |
| FCC ID:                 | ZNFV30A                                                                       |  |  |  |
| FCC CLASSIFICATION:     | Unlicensed National Information Infrastructure (UNII)                         |  |  |  |
| Test Device Serial No.: | 15532, 15482, 15490, ☐ Production ⊠ Pre-Production ☐ Engineering 15508, 15482 |  |  |  |
| DATE(S) OF TEST:        | 7/20 - 8/11/2017                                                              |  |  |  |
| TEST REPORT S/N:        | 1M1707180221-05-R1.ZNF                                                        |  |  |  |

### **Test Facility / Accreditations**

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.



- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.



- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

| FCC ID: ZNFV30A                | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE) |                  | 🕑 LG | Approved by:<br>Quality Manager |
|--------------------------------|-----------------------------------------------------------------------------------|------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:                                                                       | EUT Type:        |      | Dage 2 of 114                   |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017                                                                  | Portable Handset |      | Page 5 01 114                   |
| © 2017 PCTEST Engineering Labo | pratory Inc                                                                       |                  |      | V 6 8                           |

07/14/2017



### 1.0 INTRODUCTION

### 1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

### 1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.



Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

| FCC ID: ZNFV30A                | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) |                  | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------|--------------------------------------------------------------------------------------|------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:                                                                          | EUT Type:        |      | Dago 4 of 114                   |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017                                                                     | Portable Handset |      | Page 4 of 114                   |
| © 2017 PCTEST Engineering Labo | ratory Inc                                                                           |                  |      | V68                             |

07/14/2017



#### PRODUCT INFORMATION 2.0

#### 2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG Portable Handset FCC ID: ZNFV30A. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

#### 2.2 **Device Capabilities**

This device contains the following capabilities:

CI

5

5

6

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1), 850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

|     | Band 1          |
|-----|-----------------|
| Ch. | Frequency (MHz) |
| 36  | 5180            |
| :   | :               |
| 42  | 5210            |
| :   | :               |
| 48  | 5240            |

|    | Band 2A       |
|----|---------------|
| h. | Frequency (MH |
| 2  | 5260          |
|    | :             |
| 6  | 5280          |
|    | :             |
| 4  | 5320          |
|    |               |

|     | Band 2C         |
|-----|-----------------|
| Ch. | Frequency (MHz) |
| 100 | 5500            |
| :   | :               |
| 120 | 5600            |
| :   | :               |
| 144 | 5720            |
|     |                 |

| Ch.        | Frequency (MHz) |  |  |
|------------|-----------------|--|--|
| 149        | 5745            |  |  |
| •••        |                 |  |  |
| 157        | 5785            |  |  |
|            | :               |  |  |
| 165        | 5825            |  |  |
| Inerations |                 |  |  |

Band 3

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

Band 1

Band 2A

### Rand 3

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 38  | 5190            |
|     | :               |
| 46  | 5230            |

|     | Dana ZA         |
|-----|-----------------|
| Ch. | Frequency (MHz) |
| 54  | 5270            |
| :   | :               |
| 62  | 5310            |
|     |                 |

|     | Band 2C        |
|-----|----------------|
| Ch. | Frequency (MHz |
| 102 | 5510           |
|     | ••             |
| 110 | 5550           |
|     | :              |
| 142 | 5710           |

|     | Dand U          |
|-----|-----------------|
| Ch. | Frequency (MHz) |
| 151 | 5755            |
|     |                 |
| 159 | 5795            |

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

|     | Band 1 Band 2A  |   | Band 2C |                 |     | Band 3          |   |     |                 |
|-----|-----------------|---|---------|-----------------|-----|-----------------|---|-----|-----------------|
| Ch. | Frequency (MHz) | ſ | Ch.     | Frequency (MHz) | Ch. | Frequency (MHz) |   | Ch. | Frequency (MHz) |
| 42  | 5210            | Γ | 58      | 5290            | 106 | 5530            | 1 | 155 | 5775            |
|     |                 |   |         |                 | 1   | :               |   |     |                 |
|     |                 |   |         |                 | 138 | 5690            |   |     |                 |

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 5 of 114                   |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 5 01 114                   |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.                            |

07/14/2017

© 2017 PCTEST Engineering Laboratory, Inc. All ri hotocopying and microfilm, without permission in writing from PCTEST Engineeri eport or assembly of contents thereof, please contact INFO@PCTESTLAB.COM. ing Laboratory, Inc. If you



5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of KDB 789033 D02 v01r04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

| Maximum Achievable Duty Cycles |           |      |      |      |  |  |  |
|--------------------------------|-----------|------|------|------|--|--|--|
| Duty Cycle [%]                 |           |      |      |      |  |  |  |
| 802.11 10                      | ode/Band  | ANT1 | ANT2 | ΜΙΜΟ |  |  |  |
|                                | а         | 94.3 | 94.3 | 94.9 |  |  |  |
|                                | n (HT20)  | 93.7 | 94.1 | 94.5 |  |  |  |
|                                | ac (HT20) | 93.8 | 93.9 | 90.3 |  |  |  |
| SGHZ                           | n (HT40)  | 91.3 | 92.1 | 93.6 |  |  |  |
|                                | ac (HT40) | 91.9 | 91.9 | 86.7 |  |  |  |
|                                | ac (HT80) | 91.4 | 91.5 | 85.8 |  |  |  |

 Table 2-4. Measured Duty Cycles

2. The device employs MIMO technology. Below are the possible configurations.

| WiFi Configurations |              | SISO |      | SE   | DM           | CDD  |      |
|---------------------|--------------|------|------|------|--------------|------|------|
|                     |              | ANT1 | ANT2 | ANT1 | ANT2         | ANT1 | ANT2 |
| 5GHz                | 11a          | ✓    | ✓    | ×    | ×            | ✓    | ✓    |
|                     | 11n (20MHz)  | ✓    | ✓    | ✓    | ✓            | ✓    | ✓    |
|                     | 11n (40MHz)  | ✓    | ✓    | ✓    | ✓            | ✓    | ✓    |
|                     | 11ac (80MHz) | ✓    | ✓    | ✓    | $\checkmark$ | ✓    | ✓    |

Table 2-5. Frequency / Channel Operations

 $\checkmark$  = Support ; \* = NOT Support SISO = Single Input Single Output SDM = Spatial Diversity Multiplexing – MIMO function

**CDD** = Cyclic Delay Diversity - 2Tx Function

 Data Rate(s) Tested:
 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

 6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n - 20MHz)

 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n - 40MHz BW)

 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac - 80MHz BW)

 13/14.4, 26.28.9, 39/43.3, 52/57.8, 78/86.7, 104/115.6, 117/130, 130/144.4MBps (MIMO n/ac - 20MHz)

 156/173Mbps (MIMO ac - 20MHz)

 27/30, 54/60, 81/90, 108/120, 162/180, 216/240, 243,270, 270/300Mbps (MIMO n/ac - 40MHz) 324/360, 360/400Mbps (MIMO ac - 40MHz)

 58.5/65, 117/130, 175.5/195, 234/260, 351/390, 468/520, 526.5/585, 585/650, 702/780, 780/866.7Mbps (MIMO ac - 80MHz)

| FCC ID: ZNFV30A                                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|------------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                               | Test Dates:      | EUT Type:                                                                            |      | Daga 6 of 111                   |  |
| 1M1707180221-05-R1.ZNF                         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 6 01 114                   |  |
| 2017 PCTEST Engineering Laboratory, Inc. V 6.8 |                  |                                                                                      |      |                                 |  |

07/14/2017



3. This device supports simultaneous transmission operation, which allows for two SISO channels to operate independent of one another in the 2.4GHz and 5GHz bands simultaneously on each antenna. The following tables show the worst case configurations determined during testing. The data for these configurations is contained in this test report.

| Description               | 2.4 GHz Emission | 5 GHz Emission |
|---------------------------|------------------|----------------|
| Antenna                   | 1                | 2              |
| Channel                   | 6                | 48             |
| Operating Frequency (MHz) | 2437             | 5240           |
| Data Rate (Mbps)          | MCS0             | MCS0           |
| Mode                      | 802.11n          | 802.11n        |

Configuration 1: ANT1 transmitting in 2.4GHz mode and ANT2 in 5GHz mode

Table 2-6. Config-1 (ANT1 2.4GHz & ANT2 5GHz)

### 2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v01r04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing. See Section 3.2 for radiated emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on a certified wireless charging pad (WCP) while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

### 2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

| FCC ID: ZNFV30A                          |             | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🔁 LG | Approved by:<br>Quality Manager |  |
|------------------------------------------|-------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                         | Test Dates: | EUT Type:                                                                            |      | Dago 7 of 114                   |  |
| 1M1707180221-05-R1.ZNF 7/20 - 8/11/2017  |             | Portable Handset                                                                     |      | Page 7 of 114                   |  |
| © 2017 PCTEST Engineering Laboratory Inc |             |                                                                                      |      |                                 |  |

07/14/2017

<sup>© 2017</sup> PCTEST Engineering Laboratory. Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory. Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INPO@PCTESTLAB.COM.



### 3.0 DESCRIPTION OF TESTS

### 3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v01r04 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

### 3.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. A 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

### 3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

| FCC ID: ZNFV30A                                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |  |
|------------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N: Test Dates:                   |                  | EUT Type:                                                                            |      | Dago 9 of 114                   |  |
| 1M1707180221-05-R1.ZNF                         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 8 01 114                   |  |
| © 2017 PCTEST Engineering Laboratory, Inc. V 6 |                  |                                                                                      |      |                                 |  |

07/14/2017



### 4.0 ANTENNA REQUIREMENTS

#### Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

#### Conclusion:

The EUT complies with the requirement of §15.203.

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dage 0 of 114                   |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 9 01 114                   |
| © 2017 PCTEST Engineering Labo | ratory Inc       |                                                                                      |      | V 6                             |

07/14/2017



### 5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                  | Expanded Uncertainty (±dB) |
|-------------------------------|----------------------------|
| Radiated Disturbance (<1GHz)  | 4.98                       |
| Radiated Disturbance (>1GHz)  | 5.07                       |
| Radiated Disturbance (>18GHz) | 5.09                       |

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dago 10 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 10 of 114                  |
| © 2017 PCTEST Engineering Labo | ratory Inc       |                                                                                      |      | V 6                             |

07/14/2017



## 6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

| Manufacturer    | Model         | Description                            | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------|---------------|----------------------------------------|------------|--------------|------------|---------------|
| -               | RE1           | Radiated Emissions Cable Set (UHF/EHF) | 6/21/2017  | Annual       | 6/21/2018  | RE1           |
| Agilent         | N9038A        | MXE EMI Receiver                       | 4/26/2017  | Annual       | 4/26/2018  | MY51210133    |
| Anritsu         | ML2495A       | Power Meter                            | 10/16/2015 | Biennial     | 10/16/2017 | 941001        |
| Anritsu         | MA2411B       | Pulse Power Sensor                     | 10/14/2015 | Biennial     | 10/14/2017 | 846215        |
| Emco            | 6502          | Active Loop Antenna (10k - 30 MHz)     | 8/9/2016   | Biennial     | 8/9/2018   | 2936          |
| Emco            | 3115          | Horn Antenna (1-18GHz)                 | 3/10/2016  | Biennial     | 3/10/2018  | 9704-5182     |
| Emco            | 3116          | Horn Antenna (18 - 40GHz)              | 3/27/2015  | Triennial    | 3/27/2018  | 9203-2178     |
| ETS Lindgren    | 3160-09       | 18-26.5 GHz Standard Gain Horn         | 8/23/2016  | Biennial     | 8/23/2018  | 135427        |
| ETS Lindgren    | 3160-10       | 26.5-40 GHz Standard Gain Horn         | 8/23/2016  | Biennial     | 8/23/2018  | 130993        |
| ETS Lindgren    | 3117          | 1-18 GHz DRG Horn (Medium)             | 4/26/2016  | Biennial     | 4/26/2018  | 125518        |
| Huber+Suhner    | Sucoflex 102A | 40GHz Radiated Cable                   | 10/3/2016  | Annual       | 10/3/2017  | 251425001     |
| PCTEST          | -             | EMC Switch System                      | 6/21/2017  | Annual       | 6/21/2018  | NM2           |
| PCTEST          | -             | EMC Switch System                      | 6/21/2017  | Annual       | 6/21/2018  | NM1           |
| Rohde & Schwarz | ESU40         | EMI Test Receiver (40GHz)              | 7/31/2017  | Annual       | 7/31/2018  | 100348        |
| Rohde & Schwarz | TS-PR40       | 26.5-40 GHz Pre-Amplifier              | 5/11/2017  | Annual       | 5/11/2018  | 100037        |
| Rohde & Schwarz | TS-PR26       | 18-26.5 GHz Pre-Amplifier              | 5/11/2017  | Annual       | 5/11/2018  | 100040        |
| Seekonk         | NC-100        | Torque Wrench 5/16", 8" lbs            | 3/2/2016   | Biennial     | 3/2/2018   | N/A           |

Table 6-1. Annual Test Equipment Calibration Schedule

| FCC ID: ZNFV30A                                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 💽 LG | Approved by:<br>Quality Manager |
|------------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                               | Test Dates:      | EUT Type:                                                                            |      | Dago 11 of 114                  |
| 1M1707180221-05-R1.ZNF                         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 11 of 114                  |
| 2017 PCTEST Engineering Laboratory, Inc. V 6.8 |                  |                                                                                      |      |                                 |

07/14/2017



#### 7.0 TEST RESULTS

#### 7.1 Summary

| Company Name:  | LG Electronics MobileComm U.S.A                       |
|----------------|-------------------------------------------------------|
| FCC ID:        | ZNFV30A                                               |
| Method/System: | Unlicensed National Information Infrastructure (UNII) |

| FCC Part<br>Section(s)                   | Test Description                                                                       | Test Limit                                                                           | Test<br>Condition | Test<br>Result | Reference           |  |
|------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|----------------|---------------------|--|
| 15.407(b.1), (2),<br>(3), (4)            | Undesirable Emissions                                                                  | Undesirable emissions must meet the limits detailed in 15.407(b)                     |                   | PASS           | Section 7.2         |  |
| 15.205,<br>15.407(b.1), (4),<br>(5), (6) | General Field Strength<br>Limits (Restricted Bands<br>and Radiated Emission<br>Limits) | Emissions in restricted bands must<br>meet the radiated limits detailed in<br>15.209 | RADIATED          | PASS           | Section 7.2,<br>7.3 |  |
| Table 7-1. Summary of Test Results       |                                                                                        |                                                                                      |                   |                |                     |  |

Notes: 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dago 10 of 114                  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 12 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |

07/14/2017

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may l photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any qu report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM. ed or utilized in any part, form or by any r al, including nal rights to this nic or m n enquiry about obtaining add copyright or ha ns about this int



### 7.2 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209

### Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r04, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-2 per Section 15.209.

| Frequency       | Field Strength<br>[μV/m] | Measured Distance<br>[Meters] |
|-----------------|--------------------------|-------------------------------|
| Above 960.0 MHz | 500                      | 3                             |

Table 7-2. Radiated Limits

### Test Procedures Used

KDB 789033 D02 v01r04 - Section G

#### Test Settings

#### Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- Number of measurement points = 1001 (Number of points must be ≥ 2 x span/RBW)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

| FCC ID: ZNFV30A                                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🔁 LG | Approved by:<br>Quality Manager |
|------------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                               | Test Dates:      | EUT Type:                                                                            |      | Dogo 12 of 114                  |
| 1M1707180221-05-R1.ZNF                         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 13 01 114                  |
| 2017 PCTEST Engineering Laboratory, Inc. V 6.8 |                  |                                                                                      |      |                                 |

07/14/2017

<sup>© 2017</sup> PCTEST Engineering Laboratory. Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory. Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INFO@PCTESTLAB.COM.



### Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

#### Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-1. Test Instrument & Measurement Setup

### Test Notes

| FCC ID: ZNFV30A                               |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                              | Test Dates:      | EUT Type:                                                                            |      | Dega 14 of 114                  |
| 1M1707180221-05-R1.ZNF                        | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 14 01 114                  |
| 2017 PCTEST Engineering Laboratory. Inc. V 6. |                  |                                                                                      |      |                                 |

07/14/2017



- 1. All radiated spurious emissions levels were measured in a radiated test setup per the guidance of KDB 789033 D02 v01r04 Section G.
- 2. All emissions that lie in the restricted bands (denoted by a \* next to the frequency) specified in §15.205 are below the limit shown in Table 7-2.
- 3. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-2. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBμV/m.
- 4. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 5. This unit was tested with its standard battery.
- 6. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- Radiated spurious emissions were investigated while operating in MIMO/CDD mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO/CDD operation were found to be more than 20dB below the limit, the MIMO/CDD emissions are not reported.
- 9. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.
- 10. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Daga 15 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 15 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory Inc       | ·                                                                                    |      | VAS                             |

07/14/2017

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.



### **Determining Spurious Emissions Levels**

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- o Margin [dB] = Field Strength Level  $[dB\mu V/m]$  Limit  $[dB\mu V/m]$

### Radiated Band Edge Measurement Offset

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.2 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

| FCC ID: ZNFV30A                 |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|---------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                | Test Dates:      | EUT Type:                                                                            |      | Daga 16 of 114                  |
| 1M1707180221-05-R1.ZNF          | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 16 01 114                  |
| © 2017 PCTEST Engineering Labor | ratory, Inc.     |                                                                                      |      | V 6.                            |

07/14/2017

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.



7.7.1 Antenna-1 Radiated Spurious Emission Measurements



Plot 7-1. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)



Plot 7-2. Radiated Spurious Plot above 1GHz (802.11a - U1 Ch. 40, Ant. Pol. V)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac_MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |  |  |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|--|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dogo 17 of 114                  |  |  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 17 01 114                  |  |  |  |
| © 2017 PCTEST Engineering Laboratory. Inc. |                  |                                                                                      |      |                                 |  |  |  |

07/14/2017



G

EST

Plot 7-3. Radiated Spurious Plot above 1GHz (802.11a - U2A Ch. 56, Ant. Pol. H)



Plot 7-4. Radiated Spurious Plot above 1GHz (802.11a - U2A Ch. 56, Ant. Pol. V)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) |  | Approved by:<br>Quality Manager |  |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|--|---------------------------------|--|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |  | Dago 10 of 114                  |  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |  | Page 18 of 114                  |  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |  | V 6.9                           |  |

07/14/2017



G

EST

Plot 7-5. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 120, Ant. Pol. H)



Plot 7-6. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 120, Ant. Pol. V)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |  |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dago 10 of 114                  |  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 19 01 114                  |  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |  |

07/14/2017



Plot 7-7. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



Plot 7-8. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) |  |                |  |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|--|----------------|--|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |  | Dogo 20 of 114 |  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |  | Page 20 of 114 |  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |  |                |  |  |

07/14/2017



Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz) <u>§15.209</u>







Plot 7-10. Radiated Spurious Plot above 18GHz - 26.5GHz (802.11a – Ant. Pol. V)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dega 21 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 21 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |



Antenna-1 Radiated Spurious Emissions Measurements (Above 18GHz)





Plot 7-11. Radiated Spurious Plot 26.5GHz - 40GHz (802.11a - Ant. Pol. H)

Plot 7-12. Radiated Spurious Plot above 26.5GHz - 40GHz (802.11a - Ant. Pol. V)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dega 22 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 22 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |

07/14/2017



### Antenna-1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5180MHz |
| Channel:                  | 36      |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10360.00           | Peak     | Н                     | 100                       | 142                              | -62.75                     | 12.13          | -9.54                                    | 46.84                         | 68.20             | -21.36         |
| * | 15540.00           | Average  | Н                     | -                         | -                                | -74.63                     | 14.49          | -9.54                                    | 37.32                         | 53.98             | -16.66         |
| * | 15540.00           | Peak     | Н                     | -                         | -                                | -63.74                     | 14.49          | -9.54                                    | 48.21                         | 73.98             | -25.77         |
| * | 20720.00           | Average  | Н                     | -                         | -                                | -70.44                     | 7.94           | -9.54                                    | 34.96                         | 53.98             | -19.02         |
| * | 20720.00           | Peak     | Н                     | -                         | -                                | -62.68                     | 7.94           | -9.54                                    | 42.72                         | 73.98             | -31.26         |
|   | 25900.00           | Peak     | Н                     | -                         | -                                | -60.58                     | 8.46           | -9.54                                    | 45.34                         | 68.20             | -22.86         |

### Table 7-3. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5200MHz |  |
| 40      |  |

|   | Frequency<br>[MHz]               | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|----------------------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10400.00                         | Peak     | Н                     | 100                       | 121                              | -63.88                     | 12.12          | -9.54                                    | 45.70                         | 68.20             | -22.50         |
| * | 15600.00                         | Average  | Н                     | -                         | -                                | -74.40                     | 14.31          | -9.54                                    | 37.36                         | 53.98             | -16.62         |
| * | 15600.00                         | Peak     | Н                     | -                         | -                                | -64.79                     | 14.31          | -9.54                                    | 46.98                         | 73.98             | -27.00         |
| * | 20800.00                         | Average  | Н                     | -                         | -                                | -70.59                     | 7.95           | -9.54                                    | 34.82                         | 53.98             | -19.16         |
| * | 20800.00                         | Peak     | Н                     | -                         | -                                | -62.37                     | 7.95           | -9.54                                    | 43.04                         | 73.98             | -30.94         |
|   | 26000.00                         | Peak     | Н                     | -                         | -                                | -60.32                     | 8.61           | -9.54                                    | 45.74                         | 68.20             | -22.46         |
|   | Table 7.4. Dedicted Measurements |          |                       |                           |                                  |                            |                |                                          |                               |                   |                |

#### Table 7-4. Radiated Measurements

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 22 of 114                  |  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 23 of 114                  |  |
| © 2017 PCTEST Engineering Labo | oratory, Inc.    |                                                                                      |      | V 6.8                           |  |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5240MHz |
| Channel:                  | 48      |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10480.00           | Peak     | Н                     | 100                       | 355                              | -64.27                     | 12.09          | -9.54                                    | 45.28                         | 68.20             | -22.92         |
| * | 15720.00           | Average  | Н                     | -                         | -                                | -70.61                     | 14.02          | -9.54                                    | 40.87                         | 53.98             | -13.11         |
| * | 15720.00           | Peak     | Н                     | -                         | -                                | -64.59                     | 14.02          | -9.54                                    | 46.89                         | 73.98             | -27.08         |
| * | 20960.00           | Average  | Н                     | -                         | -                                | -70.38                     | 7.91           | -9.54                                    | 35.00                         | 53.98             | -18.98         |
| * | 20960.00           | Peak     | Н                     | -                         | -                                | -61.99                     | 7.91           | -9.54                                    | 43.38                         | 73.98             | -30.60         |
|   | 26200.00           | Peak     | Н                     | -                         | -                                | -59.84                     | 8.62           | -9.54                                    | 46.23                         | 68.20             | -21.97         |

#### Table 7-5. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |
|---------|
| 6 Mbps  |
| 1 Meter |
| 5180MHz |
| 36      |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10360.00           | Peak     | Н                     | 100                       | 360                              | -64.78                     | 12.13          | -9.54                                    | 44.81                         | 68.20             | -23.39         |
| * | 15540.00           | Average  | Н                     | -                         | -                                | -75.63                     | 14.49          | -9.54                                    | 36.33                         | 53.98             | -17.65         |
| * | 15540.00           | Peak     | Н                     | -                         | -                                | -65.95                     | 14.49          | -9.54                                    | 46.00                         | 73.98             | -27.98         |
| * | 20720.00           | Average  | Н                     | -                         | -                                | -70.65                     | 7.94           | -9.54                                    | 34.75                         | 53.98             | -19.23         |
| * | 20720.00           | Peak     | Н                     | -                         | -                                | -63.26                     | 7.94           | -9.54                                    | 42.14                         | 73.98             | -31.84         |
|   | 25900.00           | Peak     | Н                     | -                         | -                                | -61.62                     | 8.46           | -9.54                                    | 44.30                         | 68.20             | -23.90         |

Table 7-6. Radiated Measurements with WCP

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG           | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|----------------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |                | Dago 24 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     | Page 24 01 114 |                                 |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |                | V 6.8                           |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5260MHz |
| Channel:                  | 52      |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10520.00           | Peak     | Η                     | 100                       | 347                              | -61.92                     | 12.16          | -9.54                                    | 47.69                         | 68.20             | -20.51         |
| * | 15780.00           | Average  | Н                     | -                         | -                                | -73.26                     | 14.03          | -9.54                                    | 38.22                         | 53.98             | -15.76         |
| * | 15780.00           | Peak     | Н                     | -                         | -                                | -64.74                     | 14.03          | -9.54                                    | 46.75                         | 73.98             | -27.23         |
| * | 21040.00           | Average  | Н                     | -                         | -                                | -71.24                     | 7.92           | -9.54                                    | 34.14                         | 53.98             | -19.84         |
| * | 21040.00           | Peak     | Н                     | -                         | -                                | -62.29                     | 7.92           | -9.54                                    | 43.09                         | 73.98             | -30.89         |
|   | 26300.00           | Peak     | Н                     | -                         | -                                | -60.43                     | 8.73           | -9.54                                    | 45.76                         | 68.20             | -22.44         |

### Table 7-7. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5280MHz |  |
| 56      |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10560.00           | Peak     | н                     | 100                       | 343                              | -62.40                     | 12.04          | -9.54                                    | 47.10                         | 68.20             | -21.10         |
| * | 15840.00           | Average  | Н                     | -                         | -                                | -73.15                     | 14.25          | -9.54                                    | 38.55                         | 53.98             | -15.43         |
| * | 15840.00           | Peak     | Н                     | -                         | -                                | -64.98                     | 14.25          | -9.54                                    | 46.72                         | 73.98             | -27.26         |
| * | 21120.00           | Average  | Н                     | -                         | -                                | -70.40                     | 7.97           | -9.54                                    | 35.02                         | 53.98             | -18.96         |
| * | 21120.00           | Peak     | Н                     | -                         | -                                | -62.76                     | 7.97           | -9.54                                    | 42.66                         | 73.98             | -31.32         |
|   | 26400.00           | Peak     | Н                     | -                         | -                                | -60.67                     | 8.94           | -9.54                                    | 45.73                         | 68.20             | -22.47         |

Table 7-8. Radiated Measurements

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 25 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 25 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5320MHz |
| Channel:                  | 64      |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 10640.00           | Average  | н                     | 100                       | 330                              | -71.57                     | 12.06          | -9.54                                    | 37.95                         | 53.98             | -16.02         |
| * | 10640.00           | Peak     | Н                     | 100                       | 330                              | -62.75                     | 12.06          | -9.54                                    | 46.77                         | 73.98             | -27.21         |
| * | 15960.00           | Average  | Н                     | -                         | -                                | -72.59                     | 14.55          | -9.54                                    | 39.42                         | 53.98             | -14.56         |
| * | 15960.00           | Peak     | Н                     | -                         | -                                | -65.39                     | 14.55          | -9.54                                    | 46.62                         | 73.98             | -27.36         |
| * | 21280.00           | Average  | Н                     | -                         | -                                | -70.30                     | 8.04           | -9.54                                    | 35.20                         | 53.98             | -18.78         |
| * | 21280.00           | Peak     | Н                     | -                         | -                                | -63.11                     | 8.04           | -9.54                                    | 42.39                         | 73.98             | -31.59         |
|   | 26600.00           | Peak     | Н                     | -                         | -                                | -53.07                     | -9.45          | -9.54                                    | 34.94                         | 68.20             | -33.26         |

### Table 7-9. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

| 802.11a |
|---------|
| 6 Mbps  |
| 1 Meter |
| 5320MHz |
| 64      |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10640.00           | Average  | н                     | 100                       | 75                               | -72.56                     | 12.06          | -9.54                                    | 36.96                         | 53.98             | -17.02         |
| * | 10640.00           | Peak     | Н                     | 100                       | 75                               | -64.56                     | 12.06          | -9.54                                    | 44.96                         | 73.98             | -29.02         |
| * | 15960.00           | Average  | н                     | -                         | -                                | -72.62                     | 14.55          | -9.54                                    | 39.39                         | 53.98             | -14.59         |
| * | 15960.00           | Peak     | Н                     | -                         | -                                | -66.02                     | 14.55          | -9.54                                    | 45.99                         | 73.98             | -27.99         |
| * | 21280.00           | Average  | Н                     | -                         | -                                | -70.31                     | 8.04           | -9.54                                    | 35.19                         | 53.98             | -18.79         |
|   | 21280.00           | Peak     | Н                     | -                         | -                                | -63.54                     | 8.04           | -9.54                                    | 41.96                         | 73.98             | -32.02         |
|   | 26600.00           | Peak     | Н                     | -                         | -                                | -53.32                     | -9.45          | -9.54                                    | 34.69                         | 68.20             | -33.51         |

### Table 7-10. Radiated Measurements with WCP

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dage 26 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 20 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5500MHz |
| Channel:                  | 100     |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11000.00           | Average  | н                     | 100                       | 325                              | -73.54                     | 12.87          | -9.54                                    | 36.79                         | 53.98             | -17.19         |
| * | 11000.00           | Peak     | Н                     | 100                       | 325                              | -64.88                     | 12.87          | -9.54                                    | 45.45                         | 73.98             | -28.53         |
|   | 16500.00           | Peak     | н                     | -                         | -                                | -65.32                     | 16.61          | -9.54                                    | 48.74                         | 68.20             | -19.46         |
|   | 22000.00           | Peak     | н                     | -                         | -                                | -63.16                     | 8.43           | -9.54                                    | 42.73                         | 68.20             | -25.47         |
|   | 27500.00           | Peak     | Н                     | -                         | -                                | -51.55                     | -8.80          | -9.54                                    | 37.11                         | 68.20             | -31.09         |

### Table 7-11. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 Meter 5600MHz 120

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11160.00           | Average  | Н                     | 100                       | 327                              | -72.70                     | 12.64          | -9.54                                    | 37.40                         | 53.98             | -16.58         |
| * | 11160.00           | Peak     | Н                     | 100                       | 327                              | -64.37                     | 12.64          | -9.54                                    | 45.72                         | 73.98             | -28.26         |
|   | 16740.00           | Peak     | н                     | -                         | -                                | -64.35                     | 16.21          | -9.54                                    | 49.32                         | 68.20             | -18.88         |
| * | 22320.00           | Average  | н                     | -                         | -                                | -70.19                     | 8.08           | -9.54                                    | 35.35                         | 53.98             | -18.63         |
| * | 22320.00           | Peak     | н                     | -                         | -                                | -61.58                     | 8.08           | -9.54                                    | 43.96                         | 73.98             | -30.02         |
|   | 27900.00           | Peak     | Н                     | -                         | -                                | -52.14                     | -9.07          | -9.54                                    | 36.25                         | 68.20             | -31.95         |

Table 7-12. Radiated Measurements

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 27 of 114                  |  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 27 01 114                  |  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |  |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5720MHz |
| Channel:                  | 144     |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11400.00           | Average  | Н                     | 100                       | 343                              | -72.64                     | 12.47          | -9.54                                    | 37.29                         | 53.98             | -16.69         |
| * | 11400.00           | Peak     | Н                     | 100                       | 343                              | -65.18                     | 12.47          | -9.54                                    | 44.75                         | 73.98             | -29.23         |
|   | 17100.00           | Peak     | Н                     | -                         | -                                | -64.46                     | 18.06          | -9.54                                    | 51.06                         | 68.20             | -17.14         |
| * | 22800.00           | Average  | Н                     | -                         | -                                | -70.46                     | 8.37           | -9.54                                    | 35.37                         | 53.98             | -18.61         |
| * | 22800.00           | Peak     | Н                     | -                         | -                                | -62.34                     | 8.37           | -9.54                                    | 43.50                         | 73.98             | -30.48         |
|   | 28500.00           | Peak     | Н                     | -                         | -                                | -51.16                     | -8.95          | -9.54                                    | 37.34                         | 68.20             | -30.86         |

#### Table 7-13. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5600MHz |  |
| 120     |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11160.00           | Average  | Н                     | 100                       | 350                              | -72.82                     | 12.64          | -9.54                                    | 37.27                         | 53.98             | -16.71         |
| * | 11160.00           | Peak     | Н                     | 100                       | 350                              | -64.87                     | 12.64          | -9.54                                    | 45.22                         | 73.98             | -28.76         |
|   | 16740.00           | Peak     | н                     | -                         | -                                | -65.26                     | 16.21          | -9.54                                    | 48.41                         | 68.20             | -19.79         |
|   | 22320.00           | Average  | Н                     | -                         | -                                | -70.27                     | 8.08           | -9.54                                    | 35.27                         | 53.98             | -18.71         |
|   | 22320.00           | Peak     | Н                     | -                         | -                                | -62.49                     | 8.08           | -9.54                                    | 43.05                         | 73.98             | -30.93         |
|   | 27900.00           | Peak     | Н                     | -                         | -                                | -52.16                     | -9.07          | -9.54                                    | 36.22                         | 68.20             | -31.98         |

Table 7-14. Radiated Measurements with WCP

| FCC ID: ZNFV30A                              |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |  |  |  |  |
|----------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|--|--|--|
| Test Report S/N:                             | Test Dates:      | EUT Type:                                                                            |      | Dega 29 of 114                  |  |  |  |  |
| 1M1707180221-05-R1.ZNF                       | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 26 01 114                  |  |  |  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. V |                  |                                                                                      |      |                                 |  |  |  |  |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5745MHz |
| Channel:                  | 149     |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11490.00           | Average  | Η                     | 100                       | 345                              | -72.77                     | 12.43          | -9.54                                    | 37.12                         | 53.98             | -16.86         |
| * | 11490.00           | Peak     | Н                     | 100                       | 345                              | -63.81                     | 12.43          | -9.54                                    | 46.07                         | 73.98             | -27.90         |
|   | 17235.00           | Peak     | Н                     | -                         | -                                | -64.58                     | 18.61          | -9.54                                    | 51.48                         | 68.20             | -16.72         |
| * | 22980.00           | Average  | Н                     | -                         | -                                | -69.42                     | 8.16           | -9.54                                    | 36.20                         | 53.98             | -17.78         |
| * | 22980.00           | Peak     | Н                     | -                         | -                                | -61.92                     | 8.16           | -9.54                                    | 43.70                         | 73.98             | -30.28         |
|   | 28725.00           | Peak     | Н                     | -                         | -                                | -51.01                     | -9.24          | -9.54                                    | 37.21                         | 68.20             | -30.99         |

### Table 7-15. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5785MHz |  |
| 157     |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11570.00           | Average  | Н                     | 100                       | 342                              | -73.75                     | 12.54          | -9.54                                    | 36.24                         | 53.98             | -17.74         |
| * | 11570.00           | Peak     | Н                     | 100                       | 342                              | -64.91                     | 12.54          | -9.54                                    | 45.08                         | 73.98             | -28.90         |
|   | 17355.00           | Peak     | н                     | -                         | -                                | -64.41                     | 18.73          | -9.54                                    | 51.77                         | 68.20             | -16.43         |
|   | 23140.00           | Peak     | н                     | -                         | -                                | -62.52                     | 8.37           | -9.54                                    | 43.31                         | 68.20             | -24.89         |
|   | 28925.00           | Peak     | Н                     | -                         | -                                | -51.59                     | -9.65          | -9.54                                    | 36.22                         | 68.20             | -31.98         |

Table 7-16. Radiated Measurements

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 20 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 29 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |

07/14/2017



| 802.11a |
|---------|
| 6 Mbps  |
| 1 Meter |
| 5825MHz |
| 165     |
|         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11650.00           | Average  | Н                     | 100                       | 336                              | -73.43                     | 12.99          | -9.54                                    | 37.02                         | 53.98             | -16.96         |
| * | 11650.00           | Peak     | н                     | 100                       | 336                              | -65.36                     | 12.99          | -9.54                                    | 45.09                         | 73.98             | -28.89         |
|   | 17475.00           | Peak     | н                     | -                         | -                                | -65.17                     | 19.25          | -9.54                                    | 51.53                         | 68.20             | -16.67         |
|   | 23300.00           | Peak     | н                     | -                         | -                                | -61.62                     | 8.50           | -9.54                                    | 44.33                         | 68.20             | -23.87         |
|   | 29125.00           | Peak     | Н                     | -                         | -                                | -52.15                     | -9.87          | -9.54                                    | 35.44                         | 68.20             | -32.76         |

Table 7-17. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a  |  |
|----------|--|
| 6 Mbps   |  |
| 1 Meter  |  |
| 5745 MHz |  |
| 149      |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Correction<br>Factor | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|----------------------|-------------------------------|-------------------|----------------|
| * | 11490.00           | Average  | н                     | -                         | -                                | -73.48                     | 12.43          | -9.54                | 36.40                         | 53.98             | -17.57         |
| * | 11490.00           | Peak     | Н                     | -                         | -                                | -65.08                     | 12.43          | -9.54                | 44.81                         | 73.98             | -29.17         |
|   | 17235.00           | Peak     | Н                     | -                         | -                                | -64.79                     | 18.61          | -9.54                | 51.28                         | 68.20             | -16.92         |
|   | 22980.00           | Average  | Н                     | -                         | -                                | -69.80                     | 8.16           | -9.54                | 35.82                         | 53.98             | -18.16         |
|   | 22980.00           | Peak     | Н                     | -                         | -                                | -62.30                     | 8.16           | -9.54                | 43.32                         | 73.98             | -30.66         |
|   | 28725.00           | Peak     | н                     | -                         | -                                | -52.04                     | -9.24          | -9.54                | 36.17                         | 68.20             | -32.03         |

Table 7-18. Radiated Measurements with WCP

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 20 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 50 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |

07/14/2017



7.7.2 Antenna-2 Radiated Spurious Emission Measurements



Plot 7-13. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)



Plot 7-14. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)

| FCC ID: ZNFV30A                         |              | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG           | Approved by:<br>Quality Manager |
|-----------------------------------------|--------------|--------------------------------------------------------------------------------------|----------------|---------------------------------|
| Test Report S/N:                        | Test Dates:  | EUT Type:                                                                            |                | Dogo 21 of 114                  |
| 1M1707180221-05-R1.ZNF 7/20 - 8/11/2017 |              | Portable Handset                                                                     | Page 31 0f 114 |                                 |
| © 2017 PCTEST Engineering Labo          | ratory, Inc. |                                                                                      |                | V 6.8                           |

07/14/2017



G

Plot 7-15. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)



Plot 7-16. Radiated Spurious Plot above 1GHz (802.11a - U2A Ch. 56, Ant. Pol. V)

| FCC ID: ZNFV30A                                 |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |  |  |
|-------------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|--|
| Test Report S/N:                                | Test Dates:      | EUT Type:                                                                            |      | Dago 20 of 114                  |  |  |
| 1M1707180221-05-R1.ZNF                          | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 32 01 114                  |  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. V 6. |                  |                                                                                      |      |                                 |  |  |

07/14/2017



EST

Plot 7-17. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 120, Ant. Pol. H)



Plot 7-18. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 120, Ant. Pol. V)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dago 22 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 33 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6./                           |

07/14/2017

© 2017 PCTEST Engin ring Labo right sembly of cor ng Labo ing a , without permission in writing from PCTEST Engineeri ts thereof, please contact INFO@PCTESTLAB.COM. ory, port or a



EST

Plot 7-19. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



Plot 7-20. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | Fest Dates: EUT Type:                                                                |      | Dogo 24 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 34 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017

© 2017 PCTEST Engli ng La ng to this rights hotocopying and micron eport or assembly of cor ng Labo ory, Inc. I ng a , without permission in writing from PCTEST Engineeri ts thereof, please contact INFO@PCTESTLAB.COM.



Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz)





Plot 7-21. Radiated Spurious Plot above 18GHz - 26.5GHz (802.11a – Ant. Pol. H)

Plot 7-22. Radiated Spurious Plot above 18GHz - 26.5GHz (802.11a - Ant. Pol. V)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 25 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 55 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |

07/14/2017



Antenna-2 Radiated Spurious Emissions Measurements (Above 18GHz) §15.209





Plot 7-23. Radiated Spurious Plot 26.5GHz - 40GHz (802.11a - Ant. Pol. H)

Plot 7-24. Radiated Spurious Plot above 26.5GHz - 40GHz (802.11a – Ant. Pol. V)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | ites: EUT Type:                                                                      |      | Dogo 26 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 50 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |

07/14/2017



### Antenna-2 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5180MHz |
| Channel:                  | 36      |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10360.00           | Peak     | Н                     | -                         | -                                | -65.39                     | 12.13          | -9.54                                    | 44.19                         | 68.20             | -24.01         |
| * | 15540.00           | Average  | Н                     | -                         | -                                | -72.71                     | 14.49          | -9.54                                    | 39.24                         | 53.98             | -14.74         |
| * | 15540.00           | Peak     | Н                     | -                         | -                                | -64.23                     | 14.49          | -9.54                                    | 47.72                         | 73.98             | -26.25         |
| * | 20720.00           | Average  | н                     | -                         | -                                | -70.41                     | 7.94           | -9.54                                    | 34.99                         | 53.98             | -18.99         |
| * | 20720.00           | Peak     | Н                     | -                         | -                                | -62.84                     | 7.94           | -9.54                                    | 42.56                         | 73.98             | -31.42         |
|   | 25900.00           | Peak     | Н                     | -                         | -                                | -60.34                     | 8.46           | -9.54                                    | 45.58                         | 68.20             | -22.62         |

### Table 7-19. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5200MHz |  |
| 40      |  |

| 10400.0<br>* 15600.0 |            | [H/V] | [cm] | Azimuth<br>[degree] | Level<br>[dBm] | [dB/m] | Factor<br>[dB] | Strength<br>[dBµV/m] | [dBµV/m] | Margin<br>[dB] |
|----------------------|------------|-------|------|---------------------|----------------|--------|----------------|----------------------|----------|----------------|
| * 15600.0            | 00 Peak    | н     | 100  | 290                 | -64.32         | 12.12  | -9.54          | 45.26                | 68.20    | -22.94         |
|                      | 00 Average | н     | -    | -                   | -73.06         | 14.31  | -9.54          | 38.71                | 53.98    | -15.27         |
| * 15600.0            | 00 Peak    | н     | -    | -                   | -64.53         | 14.31  | -9.54          | 47.24                | 73.98    | -26.74         |
| * 20800.0            | 00 Average | н     | -    | -                   | -70.05         | 7.95   | -9.54          | 35.36                | 53.98    | -18.62         |
| * 20800.0            | 00 Peak    | н     | -    | -                   | -62.16         | 7.95   | -9.54          | 43.25                | 73.98    | -30.73         |
| 26000.0              | 00 Peak    | н     | -    | -                   | -59.35         | 8.61   | -9.54          | 46.72                | 68.20    | -21.48         |

#### Table 7-20. Radiated Measurements

| FCC ID: ZNFV30A                                          |             | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG       | Approved by:<br>Quality Manager |  |
|----------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|------------|---------------------------------|--|
| Test Report S/N:                                         | Test Dates: | EUT Type:                                                                            | D 07 -6444 |                                 |  |
| 1M1707180221-05-R1.ZNF 7/20 - 8/11/2017 Portable Handset |             | Portable Handset                                                                     |            | Fage 57 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc.               |             |                                                                                      |            |                                 |  |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5240MHz |
| Channel:                  | 48      |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10480.00           | Peak     | Н                     | 100                       | 290                              | -64.87                     | 12.09          | -9.54                                    | 44.68                         | 68.20             | -23.52         |
| * | 15720.00           | Average  | Н                     | -                         | -                                | -72.58                     | 14.02          | -9.54                                    | 38.90                         | 53.98             | -15.08         |
| * | 15720.00           | Peak     | Н                     | -                         | -                                | -64.20                     | 14.02          | -9.54                                    | 47.28                         | 73.98             | -26.70         |
| * | 20960.00           | Average  | Н                     | -                         | -                                | -70.26                     | 7.91           | -9.54                                    | 35.11                         | 53.98             | -18.87         |
| * | 20960.00           | Peak     | Н                     | -                         | -                                | -62.19                     | 7.91           | -9.54                                    | 43.19                         | 73.98             | -30.79         |
|   | 26200.00           | Peak     | Н                     | -                         | -                                | -58.62                     | 8.62           | -9.54                                    | 47.45                         | 68.20             | -20.75         |

### Table 7-21. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |
|---------|
| 6 Mbps  |
| 1 Meter |
| 5200MHz |
| 40      |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10400.00           | Peak     | Н                     | 100                       | 352                              | -65.67                     | 12.12          | -9.54                                    | 43.91                         | 68.20             | -24.29         |
| * | 15600.00           | Average  | Н                     | -                         | -                                | -74.47                     | 14.31          | -9.54                                    | 37.30                         | 53.98             | -16.68         |
| * | 15600.00           | Peak     | Н                     | -                         | -                                | -66.43                     | 14.31          | -9.54                                    | 45.33                         | 73.98             | -28.65         |
| * | 20800.00           | Average  | Н                     | -                         | -                                | -70.49                     | 7.95           | -9.54                                    | 34.92                         | 53.98             | -19.06         |
| * | 20800.00           | Peak     | Н                     | -                         | -                                | -62.60                     | 7.95           | -9.54                                    | 42.81                         | 73.98             | -31.17         |
|   | 26000.00           | Peak     | Н                     | -                         | -                                | -61.35                     | 8.61           | -9.54                                    | 44.72                         | 68.20             | -23.48         |

Table 7-22. Radiated Measurements with WCP

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG           | Approved by:<br>Quality Manager |  |  |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|----------------|---------------------------------|--|--|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |                | Dogo 29 of 114                  |  |  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 |                                                                                      | Page 36 01 114 |                                 |  |  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |                |                                 |  |  |  |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5260MHz |
| Channel:                  | 52      |
| -                         |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10520.00           | Peak     | Н                     | 100                       | 289                              | -64.67                     | 12.16          | -9.54                                    | 44.95                         | 68.20             | -23.25         |
| * | 15780.00           | Average  | Н                     | -                         | -                                | -72.75                     | 14.03          | -9.54                                    | 38.74                         | 53.98             | -15.24         |
| * | 15780.00           | Peak     | Н                     | -                         | -                                | -64.07                     | 14.03          | -9.54                                    | 47.42                         | 73.98             | -26.56         |
| * | 21040.00           | Average  | Н                     | -                         | -                                | -70.30                     | 7.92           | -9.54                                    | 35.08                         | 53.98             | -18.90         |
| * | 21040.00           | Peak     | Н                     | -                         | -                                | -61.97                     | 7.92           | -9.54                                    | 43.41                         | 73.98             | -30.57         |
|   | 26300.00           | Peak     | Н                     | -                         | -                                | -60.12                     | 8.73           | -9.54                                    | 46.06                         | 68.20             | -22.14         |

### Table 7-23. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5280MHz |  |
| 56      |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10560.00           | Peak     | Н                     | 100                       | 287                              | -65.32                     | 12.04          | -9.54                                    | 44.18                         | 68.20             | -24.02         |
| * | 15840.00           | Average  | Н                     | -                         | -                                | -73.41                     | 14.25          | -9.54                                    | 38.30                         | 53.98             | -15.68         |
| * | 15840.00           | Peak     | Н                     | -                         | -                                | -64.58                     | 14.25          | -9.54                                    | 47.12                         | 73.98             | -26.86         |
| * | 21120.00           | Average  | Н                     | -                         | -                                | -70.26                     | 7.97           | -9.54                                    | 35.16                         | 53.98             | -18.81         |
| * | 21120.00           | Peak     | Н                     | -                         | -                                | -61.56                     | 7.97           | -9.54                                    | 43.87                         | 73.98             | -30.11         |
|   | 26400.00           | Peak     | Н                     | -                         | -                                | -59.91                     | 8.94           | -9.54                                    | 46.49                         | 68.20             | -21.71         |

Table 7-24. Radiated Measurements

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dogo 20 of 114                  |  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 39 01 114                  |  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |  |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5320MHz |
| Channel:                  | 64      |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 10640.00           | Average  | н                     | -                         | -                                | -72.55                     | 12.06          | -9.54                                    | 36.97                         | 53.98             | -17.01         |
| * | 10640.00           | Peak     | Н                     | -                         | -                                | -64.28                     | 12.06          | -9.54                                    | 45.24                         | 73.98             | -28.74         |
| * | 15960.00           | Average  | Н                     | -                         | -                                | -72.65                     | 14.55          | -9.54                                    | 39.36                         | 53.98             | -14.62         |
| * | 15960.00           | Peak     | Н                     | -                         | -                                | -63.89                     | 14.55          | -9.54                                    | 48.12                         | 73.98             | -25.86         |
| * | 21280.00           | Average  | Н                     | -                         | -                                | -70.29                     | 8.04           | -9.54                                    | 35.20                         | 53.98             | -18.78         |
| * | 21280.00           | Peak     | Н                     | -                         | -                                | -62.05                     | 8.04           | -9.54                                    | 43.45                         | 73.98             | -30.53         |
|   | 26600.00           | Peak     | Н                     | -                         | -                                | -52.19                     | -9.45          | -9.54                                    | 35.82                         | 68.20             | -32.38         |

Table 7-25. Radiated Measurements

| Worst Case Mode:          |
|---------------------------|
| Worst Case Transfer Rate: |
| Distance of Measurements: |
| Operating Frequency:      |
| Channel:                  |

| 802.11a |
|---------|
| 6 Mbps  |
| 1 Meter |
| 5260MHz |
| 52      |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10520.00           | Peak     | Н                     | 100                       | 345                              | -66.38                     | 12.16          | -9.54                                    | 43.23                         | 68.20             | -24.97         |
| * | 15780.00           | Average  | Н                     | -                         | -                                | -73.29                     | 14.03          | -9.54                                    | 38.20                         | 53.98             | -15.78         |
| * | 15780.00           | Peak     | Н                     | -                         | -                                | -65.01                     | 14.03          | -9.54                                    | 46.48                         | 73.98             | -27.50         |
| * | 21040.00           | Average  | Н                     | -                         | -                                | -70.37                     | 7.92           | -9.54                                    | 35.01                         | 53.98             | -18.97         |
| * | 21040.00           | Peak     | Н                     | -                         | -                                | -62.00                     | 7.92           | -9.54                                    | 43.38                         | 73.98             | -30.60         |
|   | 26300.00           | Peak     | Н                     | -                         | -                                | -60.95                     | 8.73           | -9.54                                    | 45.24                         | 68.20             | -22.96         |

### Table 7-26. Radiated Measurements with WCP

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dago 40 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 40 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.8                           |

07/14/2017



| Worst Case Mode:          | 802.11a |  |  |  |
|---------------------------|---------|--|--|--|
| Worst Case Transfer Rate: | 6 Mbps  |  |  |  |
| Distance of Measurements: | 1 Meter |  |  |  |
| Operating Frequency:      | 5500MHz |  |  |  |
| Channel:                  | 100     |  |  |  |
|                           |         |  |  |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11000.00           | Average  | Н                     | -                         | -                                | -73.87                     | 12.87          | -9.54                                    | 36.46                         | 53.98             | -17.52         |
| * | 11000.00           | Peak     | Н                     | -                         | -                                | -65.59                     | 12.87          | -9.54                                    | 44.74                         | 73.98             | -29.24         |
|   | 16500.00           | Peak     | н                     | -                         | -                                | -63.79                     | 16.61          | -9.54                                    | 50.28                         | 68.20             | -17.92         |
|   | 22000.00           | Peak     | н                     | -                         | -                                | -62.21                     | 8.43           | -9.54                                    | 43.68                         | 68.20             | -24.52         |
|   | 27500.00           | Peak     | Н                     | -                         | -                                | -50.55                     | -8.80          | -9.54                                    | 38.11                         | 68.20             | -30.09         |

Table 7-27. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 Meter 5600MHz 120

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11160.00           | Average  | Н                     | -                         | -                                | -73.00                     | 12.64          | -9.54                                    | 37.09                         | 53.98             | -16.89         |
| * | 11160.00           | Peak     | Н                     | -                         | -                                | -64.06                     | 12.64          | -9.54                                    | 46.04                         | 73.98             | -27.94         |
|   | 16740.00           | Peak     | Н                     | -                         | -                                | -64.29                     | 16.21          | -9.54                                    | 49.38                         | 68.20             | -18.82         |
| * | 22320.00           | Average  | н                     | -                         | -                                | -70.27                     | 8.08           | -9.54                                    | 35.26                         | 53.98             | -18.72         |
| * | 22320.00           | Peak     | Н                     | -                         | -                                | -61.73                     | 8.08           | -9.54                                    | 43.81                         | 73.98             | -30.17         |
|   | 27900.00           | Peak     | н                     | -                         | -                                | -50.86                     | -9.07          | -9.54                                    | 37.53                         | 68.20             | -30.67         |

Table 7-28. Radiated Measurements

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dage 41 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 41 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.                            |

07/14/2017



| 802.11a |
|---------|
| 6 Mbps  |
| 1 Meter |
| 5720MHz |
| 144     |
|         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11400.00           | Average  | Η                     | -                         | -                                | -73.34                     | 12.47          | -9.54                                    | 36.58                         | 53.98             | -17.40         |
| * | 11400.00           | Peak     | Н                     | -                         | -                                | -65.23                     | 12.47          | -9.54                                    | 44.69                         | 73.98             | -29.29         |
|   | 17100.00           | Peak     | Н                     | -                         | -                                | -63.77                     | 18.06          | -9.54                                    | 51.75                         | 68.20             | -16.45         |
| * | 22800.00           | Average  | Н                     | -                         | -                                | -70.03                     | 8.37           | -9.54                                    | 35.81                         | 53.98             | -18.17         |
| * | 22800.00           | Peak     | Н                     | -                         | -                                | -61.56                     | 8.37           | -9.54                                    | 44.27                         | 73.98             | -29.70         |
|   | 28500.00           | Peak     | Н                     | -                         | -                                | -51.52                     | -8.95          | -9.54                                    | 36.99                         | 68.20             | -31.21         |

#### Table 7-29. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5600MHz |  |
| 120     |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11160.00           | Average  | н                     | -                         | -                                | -73.08                     | 12.64          | -9.54                                    | 37.02                         | 53.98             | -16.96         |
| * | 11160.00           | Peak     | Н                     | -                         | -                                | -64.79                     | 12.64          | -9.54                                    | 45.30                         | 73.98             | -28.68         |
|   | 16740.00           | Peak     | Н                     | -                         | -                                | -64.46                     | 16.21          | -9.54                                    | 49.21                         | 68.20             | -18.99         |
|   | 22320.00           | Average  | Н                     | -                         | -                                | -70.28                     | 8.08           | -9.54                                    | 35.25                         | 53.98             | -18.73         |
|   | 22320.00           | Peak     | Н                     | -                         | -                                | -63.09                     | 8.08           | -9.54                                    | 42.45                         | 73.98             | -31.53         |
|   | 27900.00           | Peak     | Н                     | -                         | -                                | -51.33                     | -9.07          | -9.54                                    | 37.06                         | 68.20             | -31.14         |

Table 7-30. Radiated Measurements with WCP

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dago 42 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Faye 42 01 114                  |
| © 2017 PCTEST Engineering Labo | oratory, Inc.    |                                                                                      |      | V 6.8                           |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5745MHz |
| Channel:                  | 149     |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11490.00           | Average  | Н                     | -                         | -                                | -73.96                     | 12.43          | -9.54                                    | 35.92                         | 53.98             | -18.05         |
| * | 11490.00           | Peak     | Н                     | -                         | -                                | -65.20                     | 12.43          | -9.54                                    | 44.69                         | 73.98             | -29.29         |
|   | 17235.00           | Peak     | Н                     | -                         | -                                | -62.42                     | 18.61          | -9.54                                    | 53.65                         | 68.20             | -14.55         |
| * | 22980.00           | Average  | Н                     | -                         | -                                | -69.89                     | 8.16           | -9.54                                    | 35.73                         | 53.98             | -18.25         |
| * | 22980.00           | Peak     | Н                     | -                         | -                                | -60.78                     | 8.16           | -9.54                                    | 44.84                         | 73.98             | -29.14         |
|   | 28725.00           | Peak     | Н                     | -                         | -                                | -51.55                     | -9.24          | -9.54                                    | 36.67                         | 68.20             | -31.53         |

### Table 7-31. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a |  |
|---------|--|
| 6 Mbps  |  |
| 1 Meter |  |
| 5785MHz |  |
| 157     |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11570.00           | Average  | Н                     | -                         | -                                | -73.36                     | 12.54          | -9.54                                    | 36.64                         | 53.98             | -17.34         |
| * | 11570.00           | Peak     | Н                     | -                         | -                                | -65.04                     | 12.54          | -9.54                                    | 44.96                         | 73.98             | -29.02         |
|   | 17355.00           | Peak     | н                     | -                         | -                                | -64.54                     | 18.73          | -9.54                                    | 51.64                         | 68.20             | -16.56         |
|   | 23140.00           | Peak     | н                     | -                         | -                                | -61.64                     | 8.37           | -9.54                                    | 44.19                         | 68.20             | -24.01         |
|   | 28925.00           | Peak     | Н                     | -                         | -                                | -51.83                     | -9.65          | -9.54                                    | 35.98                         | 68.20             | -32.22         |

Table 7-32. Radiated Measurements

| FCC ID: ZNFV30A                            |                                   | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:                       | EUT Type:                                                                            |      | Dogo 42 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 Portable Handset |                                                                                      |      | Fage 45 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                                   |                                                                                      |      |                                 |  |

07/14/2017



| Worst Case Mode:          | 802.11a |
|---------------------------|---------|
| Worst Case Transfer Rate: | 6 Mbps  |
| Distance of Measurements: | 1 Meter |
| Operating Frequency:      | 5825MHz |
| Channel:                  | 165     |
|                           |         |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11650.00           | Average  | Н                     | -                         | -                                | -73.83                     | 12.99          | -9.54                                    | 36.61                         | 53.98             | -17.37         |
| * | 11650.00           | Peak     | Н                     | -                         | -                                | -65.26                     | 12.99          | -9.54                                    | 45.19                         | 73.98             | -28.79         |
|   | 17475.00           | Peak     | Н                     | -                         | -                                | -63.11                     | 19.25          | -9.54                                    | 53.59                         | 68.20             | -14.61         |
|   | 23300.00           | Peak     | Н                     | -                         | -                                | -60.97                     | 8.50           | -9.54                                    | 44.98                         | 68.20             | -23.22         |
|   | 29125.00           | Peak     | Н                     | -                         | -                                | -51.82                     | -9.87          | -9.54                                    | 35.77                         | 68.20             | -32.43         |

Table 7-33. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5785MHz 157

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Correction<br>Factor | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|----------------------|-------------------------------|-------------------|----------------|
| * | 11570.00           | Average  | Н                     | -                         | -                                | -73.92                     | 12.54          | -9.54                | 36.08                         | 53.98             | -17.90         |
| * | 11570.00           | Peak     | Н                     | -                         | -                                | -65.81                     | 12.54          | -9.54                | 44.19                         | 73.98             | -29.79         |
|   | 17355.00           | Peak     | Н                     | -                         | -                                | -64.66                     | 18.73          | -9.54                | 51.52                         | 68.20             | -16.68         |
|   | 23140.00           | Peak     | Н                     | -                         | -                                | -63.45                     | 8.37           | -9.54                | 42.38                         | 68.20             | -25.82         |
|   | 28925.00           | Peak     | Н                     | -                         | -                                | -53.17                     | -9.65          | -9.54                | 34.64                         | 68.20             | -33.56         |

Table 7-34. Radiated Measurements with WCP

| FCC ID: ZNFV30A                            |                                   | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:                       | EUT Type:                                                                            |      | Dogo 44 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 Portable Handset |                                                                                      |      | Page 44 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                                   |                                                                                      |      |                                 |  |

07/14/2017



# 7.7.3 Simultaneous Tx Radiated Spurious Emissions Measurements §15.247(d) §15.205 & §15.209

| Description               | 2.4 GHz Emission | 5 GHz Emission |
|---------------------------|------------------|----------------|
| Antenna                   | 1                | 2              |
| Channel                   | 6                | 48             |
| Operating Frequency (MHz) | 2437             | 5240           |
| Data Rate (Mbps)          | MCS0             | MCS0           |
| Mode                      | n                | n              |

Table 7-35. Simultaneous Transmission Config-1









| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dago 45 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 45 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.                            |

07/14/2017



| 🔤 Ke              | 🔤 Keysight Spectrum Analyzer - Swept SA 👘 🕞 😥 |                             |                  |                                                                                                                                                     |                                          |                                          |                                        |                                 | - 8 -             |                                          |                                                     |
|-------------------|-----------------------------------------------|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|-------------------|------------------------------------------|-----------------------------------------------------|
| L <mark>XI</mark> |                                               | RF 50                       | ΩDC              |                                                                                                                                                     | SEI                                      | ISE:INT                                  | #Avg Typ                               | e: RMS                          | 12:32:02 A        | Aug 02, 2017                             | Frequency                                           |
| 10 di             | Bidiy                                         | Pef -4 00                   | dBm              | PNO: Fast<br>IFGain:Low                                                                                                                             | Trig: Free<br>#Atten: 6                  | e Run<br>dB                              | Avg Hold                               | :>100/100<br><mark>Mkr</mark> 1 | 1 24.163<br>-61.9 | 07 GHz                                   | Auto Tune                                           |
| -14.0             |                                               |                             |                  |                                                                                                                                                     |                                          |                                          |                                        |                                 |                   |                                          | Center Freq<br>22.250000000 GHz                     |
| -24.0<br>-34.0    |                                               |                             |                  |                                                                                                                                                     |                                          |                                          |                                        |                                 |                   |                                          | <b>Start Freq</b><br>18.00000000 GHz                |
| -44.0<br>-54.0    |                                               |                             |                  |                                                                                                                                                     |                                          |                                          |                                        |                                 |                   |                                          | <b>Stop Freq</b><br>26.50000000 GHz                 |
| -64.0             | ng pakéngakés<br>pakénénéné                   | terpel distriction designed | Piteling and fai | al Martin and Alexandra Martin<br>Antoine and a state of the state of | (al dis) ya asalis<br>Galasi ng asalasis | n si tan dia Janifi<br>Na Kapatan ang Ka | DI DI LITA NA TAMIN'N IN<br>Referencia |                                 |                   | la epoletik filitet<br>menetik karitetet | <b>CF Step</b><br>850.000000 MHz<br><u>Auto</u> Man |
| -74.0<br>-84.0    |                                               |                             |                  |                                                                                                                                                     |                                          |                                          |                                        |                                 |                   |                                          | Freq Offset<br>0 Hz                                 |
| -94.0<br>Star     | + 19 00                                       |                             |                  |                                                                                                                                                     |                                          |                                          |                                        |                                 | Stop 26           | 500 CH-                                  | Scale Type                                          |
| #Re               | s BW ′                                        | I.0 MHz                     |                  | #VBW                                                                                                                                                | / 3.0 MHz                                |                                          | S                                      | weep 1                          | 6.00 ms (3        | 0001 pts)                                |                                                     |
| MSG               |                                               |                             |                  |                                                                                                                                                     |                                          |                                          |                                        | STATU                           | IS                |                                          |                                                     |

Plot 7-27. Radiated Spurious Plot 18GHz – 26.5GHz (2.4GHz – 5GHz, Ant. Pol. H)



Plot 7-28. Radiated Spurious Plot 18GHz – 26.5GHz (2.4GHz – 5GHz, Ant. Pol. V)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Daga 46 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 46 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017





Plot 7-29. Radiated Spurious Plot above 26.5GHz (2.4GHz – 5GHz, Ant. Pol. H)



Plot 7-30. Radiated Spurious Plot above 26.5GHz (2.4GHz – 5GHz, Ant. Pol. V)

#### Note:

The wide spectrum spurious emissions plots shown above (Plots 7-27 to 7-30) are used only for the purpose of emission identification.

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dage 47 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 47 01 114                  |
| © 2017 PCTEST Engineering Labo | pratory, Inc.    |                                                                                      |      | V 6.8<br>07/14/2017             |



|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|-------------------|----------------|
| * | 3169.00            | Average  | Н                     | -                         | -                                | -69.29                     | -3.44          | 34.27                         | 53.98             | -19.71         |
| * | 3169.00            | Peak     | Н                     | -                         | -                                | -58.10                     | -3.44          | 45.46                         | 73.98             | -28.52         |
| * | 5972.00            | Average  | Н                     | -                         | -                                | -70.85                     | 3.42           | 39.57                         | 53.98             | -14.41         |
| * | 5972.00            | Peak     | Н                     | -                         | -                                | -59.02                     | 3.42           | 51.40                         | 73.98             | -22.58         |
| * | 8043.00            | Average  | Н                     | -                         | -                                | -71.14                     | 11.30          | 47.16                         | 53.98             | -6.82          |
| * | 8043.00            | Peak     | Н                     | -                         | -                                | -59.48                     | 11.30          | 58.82                         | 73.98             | -15.16         |
| * | 8775.00            | Average  | Н                     | -                         | -                                | -71.59                     | 13.02          | 48.43                         | 53.98             | -5.55          |
| * | 8775.00            | Peak     | Н                     | -                         | -                                | -58.57                     | 13.02          | 61.45                         | 73.98             | -12.53         |
| * | 10846.00           | Peak     | Н                     | -                         | -                                | -60.08                     | 12.16          | 59.08                         | 73.98             | -14.90         |
|   | 10846.00           | Average  | Н                     | -                         | -                                | -72.81                     | 12.16          | 46.35                         | 53.98             | -7.63          |
|   | 13649.00           | Peak     | Н                     | -                         | -                                | -61.58                     | 17.82          | 63.24                         | 73.98             | -10.74         |
| * | 13649.00           | Average  | н                     | -                         | -                                | -77.31                     | 17.82          | 47.51                         | 53.98             | -6.47          |
| * | 16452.00           | Peak     | Н                     | -                         | -                                | -65.29                     | 16.81          | 58.52                         | 73.98             | -15.46         |

| Table 7-36. Radiated Measurements | s (ANT1 2.4GHz – ANT2 5GHz |
|-----------------------------------|----------------------------|
|-----------------------------------|----------------------------|

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dogo 49 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 46 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017



### 7.7.4 Antenna-1 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:02:51



| FCC ID: ZNFV30A                                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |  |
|------------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                               | Test Dates:      | EUT Type:                                                                            |      | Dago 40 of 114                  |  |
| 1M1707180221-05-R1.ZNF                         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 49 of 114                  |  |
| © 2017 PCTEST Engineering Laboratory. Inc. V 6 |                  |                                                                                      |      |                                 |  |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:08:06

### Plot 7-32. Radiated Restricted Upper Band Edge Plot (Average & Peak – UNII Band 2A)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dage 50 of 111                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 50 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:13:10

### Plot 7-33. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 2C)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Daga 54 of 444                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 51 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:23:22

### Plot 7-34. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dago 50 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 52 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.                            |

07/14/2017



### Antenna-1 WCP Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

| Worst Case Mode:          | 802.11a  |
|---------------------------|----------|
| Worst Case Transfer Rate: | 6 Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 5320MHz  |
| Channel:                  | 64       |

| MultiView 8       | B) Spectrum       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|---------|-----------------|---------------|---------------|
| Ref Level 116     | .12 dBµV Offs     | et 9.12 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RBW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            |         |                 | S             | GL            |
| Att               | 10 dB SW1         | 📔 1.01 ms 💻 🛚                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /BW 3 MHz Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de Auto Sweep            |            |         |                 | 0             | ount 100/100  |
| 1 Frequency S     | weep              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               | ●1Rm Avg      |
| UNII 1-2A AV: Che | ck                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS                       |            |         |                 | M1[1]         | 45.20 dBµV    |
| 110 dBpV          | 1-2A AV           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS                       |            |         |                 |               | .3500000 GHz  |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| 100 dBuV-         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| Mr. hand          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   | hargen .          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| 90. dBuV          | · •               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| se app :          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   | \                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| on druss          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| оо ивµv           | \<br>\            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   | $\langle \rangle$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   | When a            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| 70 авµ∨           |                   | and the second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   | Mar And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   | Marke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| 60 dBµV           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second sec |                          |            |         |                 |               |               |
| 50 dBµV           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M. N                     | 1          |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "Vhow why was a well and | - monorman | mmmmm   | and marken mark | www.man.man.m | monument      |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| 40 dBµV           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| 30 dBµ∨           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
| 20 dBµV ────      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         |                 |               |               |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            |         |                 | <u> </u>      | non 60.0 Mila |
| UF 3,33 GHZ       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                        | 6          | .u MHZ/ |                 | 2             | pan 60.0 MHZ  |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         | Ready           |               | 03.08.2017    |
|                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |         | ,               |               | 50.03.11      |

00:05:11 03.08.2017



| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dago 52 of 114                  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 55 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |

07/14/2017



### Antenna-1 WCP Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209







| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dogo 54 of 114                  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 54 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |

07/14/2017

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.



### 7.7.5 Antenna-1 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:42:08

Plot 7-37. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 1)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 💽 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dago FE of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 55 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:46:27

### Plot 7-38. Radiated Restricted Upper Band Edge Plot (Average & Peak – UNII Band 2A)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Daga EC of 111                  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 56 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:51:12

Plot 7-39. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 2C)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac_MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Daga 57 of 111                  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 57 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 27.JUL.2017 23:55:57

### Plot 7-40. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFV30A                |                  | FCC Pt. 15.407 802.11 UNII a/n/ac_MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:               | Test Dates:      | EUT Type:                                                                            |      | Dago 59 of 114                  |
| 1M1707180221-05-R1.ZNF         | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 58 01 114                  |
| © 2017 PCTEST Engineering Labo | ratory, Inc.     |                                                                                      |      | V 6.                            |

07/14/2017



### Antenna-1 WCP Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

| Worst Case Mode:          | 802.11a  |
|---------------------------|----------|
| Worst Case Transfer Rate: | 6 Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 5310MHz  |
| Channel:                  | 62       |

| MultiView                                   | B) Spectrum    |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|---------------------------------------------|----------------|-----------|----------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|----------------------|
| Ref Level 116                               | .35 dBµV Offse | et 9.35 d | B RBV    | V 1 MHz     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            | S             | GL                   |
| Att                                         | 10 dB SWT      | 1.01 m    | is 🔍 VBV | VI3 MHZ Moo | de Auto Sweep |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            | C             | ount 100/100         |
| I Frequency S                               | weep           |           |          | DA          | ee            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| LipeLINIT                                   | 1-24 AV        |           |          |             | 55<br>88      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            | M1[1]         | 46.21 dBµV           |
| 110 dBµV                                    | 1 28 80        |           |          |             | 33            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               | 5.3500000 GHz.       |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| 100 dBµV−−−−−                               |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| Junio                                       | mby            |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| ~90~øBp//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1 million      | annun .   |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             | ſ              | www.      | my       |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| 80 dBµV                                     |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| 70 dBµV                                     |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           | 1        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           | N I      |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| 60 dBµV                                     |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          | }           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          | $\lambda$   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| 50 dBµV                                     |                |           |          | Louise      | w             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |               |                      |
|                                             |                |           |          | man         | manumenter    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               | and the second s | monorman | monterment | wordenthewowh | warm when the second |
| 40 dBµV                                     |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| 30 dBuV                                     |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| 20 dBuV                                     |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               |                      |
| CF 5.35 GHz                                 |                |           |          | 1001 pts    | 6             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0 MHz/ |            | Sp            | an 100.0 MHz         |
|                                             |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Ready      |               | 03.08.2017           |
| L                                           |                |           |          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |               | 00:19:38             |

00:19:38 03.08.2017



|   | FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|---|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
|   | Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dogo 50 of 114                  |
|   | 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 59 01 114                  |
| 1 | © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      | V 6.                            |

07/14/2017



### Antenna-1 WCP Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

| MultiView 🕄 Spectr                                                             | ·um                                 |                       |               |                   |                    |               |         |                                                        |
|--------------------------------------------------------------------------------|-------------------------------------|-----------------------|---------------|-------------------|--------------------|---------------|---------|--------------------------------------------------------|
| Ref Level         115.69 dBµV         0           Att         10 dB         10 | Offset 8.69 dB R<br>SWT 1.01 ms ● V | BWI1MHz<br>BWI3MHz Mo | de Auto Sweep |                   |                    |               | с       | ount 100/100                                           |
| I Frequency Sweep<br>UNII 1-2A PK: Chekk<br>110 dBpineUNII 1-2A PK             |                                     | PA<br>PA              | SS<br>SS      |                   |                    |               | M1[1]   | ● 1Pk View<br>56.69 dBµV<br><del>5.3550900 GHz</del> - |
| 100 dBµV                                                                       | monormany                           |                       |               |                   |                    |               |         |                                                        |
| 90 dBµV                                                                        |                                     |                       |               |                   |                    |               |         |                                                        |
| 80 dBµV                                                                        | \                                   |                       |               |                   |                    |               |         |                                                        |
| 70 dBµV                                                                        |                                     |                       |               |                   |                    |               |         |                                                        |
| 60 dBµV                                                                        |                                     | hunder                | hendownandar  | MI Working Marine | unternationalistic | LAMAMANA MANA | walkand | mulummum                                               |
| 50 dBµV                                                                        |                                     |                       |               |                   |                    |               |         |                                                        |
| 40 dBµV                                                                        |                                     |                       |               |                   |                    |               |         |                                                        |
| 30 dBµV                                                                        |                                     |                       |               |                   |                    |               |         |                                                        |
| 20 dBµV<br>СF 5.35 GHz                                                         |                                     | 1001 pt               | s             | 10                | ).0 MHz/           |               | Sp      | an 100.0 MHz                                           |
|                                                                                |                                     |                       |               |                   |                    | Measuring     |         | 03.08.2017<br>00:10:19                                 |

00:10:20 03.08.2017



| FCC ID: ZNFV30A                              |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|----------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                             | Test Dates:      | EUT Type:                                                                            |      | Daga 60 of 114                  |
| 1M1707180221-05-R1.ZNF                       | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 60 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. V |                  |                                                                                      |      |                                 |

07/14/2017



### 7.7.6 Antenna-1 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 28.JUL.2017 00:04:16

### Plot 7-43. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 1)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dago C1 of 114                  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 61 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      | V 6.                            |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 28.JUL.2017 00:07:58

### Plot 7-44. Radiated Restricted Upper Band Edge Plot (Average & Peak – UNII Band 2A)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕕 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      |                                 |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 62 01 114                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209



Date: 28.JUL.2017 00:18:10

### Plot 7-45. Radiated Restricted Lower Band Edge Plot (Average & Peak– UNII Band 2C)

| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac_MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕑 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dage C2 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 63 of 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017



### Antenna-1 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

| Worst Case Mode:          | 802.11ac (80MHz) |
|---------------------------|------------------|
| Worst Case Transfer Rate: | MCS0             |
| Distance of Measurements: | 3 Meters         |
| Operating Frequency:      | 5775MHz          |
| Channel:                  | 155              |

| MultiView 🙁 Spe      | ectrum             | l                                 |                           |               |                                          |       |              |               |
|----------------------|--------------------|-----------------------------------|---------------------------|---------------|------------------------------------------|-------|--------------|---------------|
| Ref Level 116.35 dBµ | V Offset 9.35      | 5 dB 🖷 RBW 1 MHz                  |                           |               |                                          |       | S            | GL            |
| Att 10 d             | IB <b>SWT</b> 1.01 | lms <b>●VBW</b> 3 MHz <b>Mo</b> o | de Auto Sweep             |               |                                          |       | c            | ount 100/100  |
| UNII 1-2A AV Check   |                    | PA                                | 55                        |               |                                          |       | M1[1]        | 4E 26 dBuy    |
| LineUNII 1-2A A      | v                  | PA                                | SS                        |               |                                          |       | MILII        | 43.20 UBHV    |
| 110 dBμV             |                    |                                   |                           |               |                                          |       |              | 5.550000 GHz. |
|                      |                    |                                   |                           |               |                                          |       |              |               |
| 100 dbuV             |                    |                                   |                           |               |                                          |       |              |               |
| 100 uph 4            |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
| 90 dBµV              |                    |                                   |                           |               |                                          |       |              |               |
| mour many            |                    |                                   |                           |               |                                          |       |              |               |
| m V m                | mannaman           | August .                          |                           |               |                                          |       |              |               |
| 80 dBµ∨              |                    | Hundrymono                        |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
| 70 dBµ∨              |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
| co doute             |                    |                                   |                           |               |                                          |       |              |               |
| оо авру              |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
| 50 dBµV              |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   | M                         | 1             | • • • • • • •                            |       |              |               |
|                      |                    |                                   | an a shine and a short do | man water war | an a |       | www.www.www. | mprovene      |
| 40 dBµ∨              |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
| 30 dBµV              |                    |                                   |                           |               |                                          |       |              |               |
|                      |                    |                                   |                           |               |                                          |       |              |               |
| oo doulu             |                    |                                   |                           |               |                                          |       |              |               |
| 20 dBhA              |                    |                                   |                           |               |                                          |       |              |               |
| CF 5.35 GHz          | •                  | 1001 pts                          | \$                        | 14            | 4.0 MHz/                                 |       | Sp           | an 140.0 MHz  |
|                      |                    |                                   |                           |               |                                          | Ready |              | 03.08.2017    |
|                      |                    |                                   |                           |               |                                          |       |              | 00:28:48      |

00:28:48 03.08.2017



| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dage 64 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Page 64 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017



### Antenna-1 WCP Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

| Worst Case Mode:          | 802.11a  |
|---------------------------|----------|
| Worst Case Transfer Rate: | 6 Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 5290MHz  |
| Channel:                  | 58       |

| MultiView 8        | Spectrum      | J        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|--------------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|------------------|--------|--------------|
| Ref Level 116.     | 35 dBµV Offse | et 9.35  | dB 🔍 RBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V 1 MHz    |                                             |           |                                                                                                                 |                  | s      | GL           |
| Att                | 10 dB SWT     | 1.01 r   | ms 🔍 VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VI3 MHz Mo | <b>de</b> Auto Sweep                        |           |                                                                                                                 |                  | c      | ount 100/100 |
| 1 Frequency Sv     | veep          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        | ●1Rm Avg     |
| UNIT 1-2A AV; Chec | ĸ             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PA         | 55                                          |           |                                                                                                                 |                  | M1[1]  | 45.26 dBμV   |
| 110 dBµV           | I-ZA AV       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | РА         | 55                                          |           |                                                                                                                 |                  |        | 5.350000 GHz |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 100 dBµV           |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 90 dBµV            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| mon much           | m             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| m V                | grand market  | Marriage | why is a second s |            |                                             |           |                                                                                                                 |                  |        |              |
| 80 dBµ∨            |               |          | Mundar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ways all   |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1          |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 70 dBµ∨            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 60 авру            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \          |                                             |           |                                                                                                                 |                  |        |              |
| FO HRWH            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 50 UBHV            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L.         | M                                           | 1         |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>v</i>   | and many many many many many many many many | human war | mon and the second s | men hours amound | monorm | mpharenan    |
| 40 dBuV            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 40 dbp v           |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 30. dBuV           |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 00 dbp+            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| 20. dBuV           |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
|                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 |                  |        |              |
| CF 5.35 GHz        | ~             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1001 pt    | 6                                           | 14        | 1.0 MHz/                                                                                                        |                  | Sp     | an 140.0 MHz |
| ſ                  |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 | Ready            |        | 03.08.2017   |
| <u></u>            |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                             |           |                                                                                                                 | , .              |        | 00:28:48     |

00:28:48 03.08.2017



|   | FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|---|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
|   | Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dogo 65 of 114                  |  |
|   | 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 05 01 114                  |  |
| Ĩ | © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017



### Antenna-1 WCP Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

| MultiView 😁             | Spectrum                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|-------------------------|---------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|------------------------|--------------------|------------------------|--------------------|
| Ref Level 115.69<br>Att | 9 dBµV Offse<br>10 dB SWT | et 8.69 dB ● RE<br>1.01 ms ● VE | 3WI1MHz<br>3WI3MHz Moo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | de Auto Sweep            |                 |                        |                    | с                      | ount 100/100       |
| 1 Frequency Swe         | eep                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        | • 1 Pk View        |
| UNII 1-2A PK- Check     | oop                       |                                 | PΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                       |                 |                        |                    | M1E11                  | EC 21 dBuV         |
| inel INIT 1-            | 24 PK                     |                                 | PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                       |                 |                        |                    | witti                  | 50.51 ubµv         |
| 110 dBpv                | 2010                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        | -5.351260 GHz      |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| 100 dBµV                |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| my phone                | m                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         | maharanne                 | monthem                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| an npha                 |                           | and have                        | Marcen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| 80 dBμV                 |                           |                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| 70 dBuV                 |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 | <u>۲</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                 |                        |                    |                        |                    |
| 50 ID 11                |                           |                                 | l de la companya de la |                          |                 |                        |                    |                        |                    |
| ου αθμν                 |                           |                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | MI              |                        |                    |                        |                    |
|                         |                           |                                 | γw<br>Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | marine in the second     | A sal - k a wal | Make Com But we was    | a seconda Marsa Al | har a strategie in     | a state of the sec |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a a may many reality and | converting and  | and to a constant with | WILLIAM DUALS AND  | en manager and a start | www.www.whyw.www.  |
| 50 dBµV                 |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| 40 dBuV                 |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| 30 dBµV                 |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| 20 dBµV                 |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        |                    |                        |                    |
| CF 5.35 GHz             |                           |                                 | 1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S                        | 14              | 1.0 MHz/               |                    | Sp                     | an 140.0 MHz       |
|                         |                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        | Moacuring          |                        | 03.08.2017         |
| L                       | ال                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                 |                        | meusunny           |                        | 00:27:13           |

00:27:13 03.08.2017



| FCC ID: ZNFV30A                            |                  | FCC Pt. 15.407 802.11 UNII a/n/ac MEASUREMENT REPORT<br>(CLASS II PERMISSIVE CHANGE) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|------------------|--------------------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:      | EUT Type:                                                                            |      | Dogo 66 of 114                  |  |
| 1M1707180221-05-R1.ZNF                     | 7/20 - 8/11/2017 | Portable Handset                                                                     |      | Fage 00 01 114                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |                  |                                                                                      |      |                                 |  |

07/14/2017

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.