Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL CCS USA** Certificate No: EX3-3686_Feb15 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3686 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: February 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Israe Elnaouq Laboratory Technician Reproved by: Katja Pokovic Technical Manager Issued: February 23, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3686 Feb15 Page 2 of 11 # Probe EX3DV4 SN:3686 Manufactured: March 10, 2009 Calibrated: February 23, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) February 23, 2015 EX3DV4-SN:3686 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3686 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.49 | 0.49 | 0.52 | ± 10.1 % | | DCP (mV) ^B | 98.4 | 101.0 | 95.0 | | Modulation Calibration Parameters | UID | UID Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|-------------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 138.0 | ±2.2 % | | | | Y | 0.0 | 0.0 | 1.0 | | 130.3 | | | | | Z | 0.0 | 0.0 | 1.0 | | 138.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 4 of 11 Certificate No: EX3-3686_Feb15 A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3686 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 8.88 | 8.88 | 8.88 | 0.43 | 0.87 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.65 | 8.65 | 8.65 | 0.45 | 0.77 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.65 | 7.65 | 7.65 | 0.76 | 0.59 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.46 | 7.46 | 7.46 | 0.56 | 0.68 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.82 | 6.82 | 6.82 | 0.34 | 0.89 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.57 | 6.57 | 6.57 | 0.34 | 0.91 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 4.58 | 4.58 | 4.58 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.06 | 4.06 | 4.06 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.11 | 4.11 | 4.11 | 0.45 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-3686_Feb15 Page 5 of 11 validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between
3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3686 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 8.70 | 8.70 | 8.70 | 0.31 | 1.09 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.49 | 8.49 | 8.49 | 0.45 | 0.85 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.28 | 7.28 | 7.28 | 0.41 | 0.84 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.10 | 7.10 | 7.10 | 0.37 | 0.86 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.84 | 6.84 | 6.84 | 0.66 | 0.61 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.56 | 6.56 | 6.56 | 0.80 | 0.50 | ± 12.0 % | | 5250 | 48.9 | 5.36 | 4.00 | 4.00 | 4.00 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.45 | 3.45 | 3.45 | 0.50 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 3.71 | 3.71 | 3.71 | 0.55 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. February 23, 2015 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM 18C 02 04 0.6 08 0 225 315 Z f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3686 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -106.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL CCS USA** Accreditation No.: SCS 108 Certificate No: EX3-3751_Nov14 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3751 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: November 14, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 14, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3751_Nov14 Page 1 of 11 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3751_Nov14 Page 2 of 11 # Probe EX3DV4 SN:3751 Manufactured: March 26, 2010 Calibrated: November 14, 2014
Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3751 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.51 | 0.53 | 0.52 | ± 10.1 % | | DCP (mV) ^B | 100.6 | 96.8 | 96.6 | | **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 144.3 | ±3.8 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 144.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 138.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No: EX3-3751_Nov14 Page 4 of 11 A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3751 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.31 | 9.31 | 9.31 | 0.39 | 0.89 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.73 | 8.73 | 8.73 | 0.76 | 0.62 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.41 | 7.41 | 7.41 | 0.59 | 0.71 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.14 | 7.14 | 7.14 | 0.76 | 0.59 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.61 | 6.61 | 6.61 | 0.80 | 0.59 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.37 | 6.37 | 6.37 | 0.50 | 0.78 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 4.89 | 4.89 | 4.89 | 0.30 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.42 | 4.42 | 4.42 | 0.35 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.40 | 4.40 | 4.40 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3751 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 8.68 | 8.68 | 8.68 | 0.37 | 0.94 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.47 | 8.47 | 8.47 | 0.59 | 0.77 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.24 | 7.24 | 7.24 | 0.34 | 0.93 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 6.90 | 6.90 | 6.90 | 0.36 | 0.87 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.47 | 6.47 | 6.47 | 0.76 | 0.57 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.28 | 6.28 | 6.28 | 0.80 | 0.57 | ± 12.0 % | | 5250 | 48.9 | 5.36 | 4.22 | 4.22 | 4.22 | 0.40 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.69 | 3.69 | 3.69 | 0.45 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 4.12 | 4.12 | 4.12 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3751 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 9.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL CCS USA** Certificate No: EX3-3772_Feb15 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3772 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: February 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | iD | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Signature Calibrated by: Israe Elnaouq Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 23, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service
is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3772 Feb15 Page 2 of 11 February 23, 2015 EX3DV4 - SN:3772 # Probe EX3DV4 SN:3772 Manufactured: January 10, 2011 February 23, 2015 Calibrated: Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4- SN:3772 February 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3772 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.50 | 0.55 | 0.54 | ± 10.1 % | | DCP (mV) ^B | 98.7 | 99.9 | 102.2 | | **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ⁻
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 153.7 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 151.6 | | | | | Z | 0.0 | 0.0 | 1.0 | | 144.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-- SN:3772 February 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3772 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 8.92 | 8.92 | 8.92 | 0.23 | 1.34 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.58 | 8.58 | 8.58 | 0.21 | 1.43 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.64 | 7.64 | 7.64 | 0.51 | 0.72 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.45 | 7.45 | 7.45 | 0.41 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.74 | 6.74 | 6.74 | 0.42 | 0.79 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.44 | 6.44 | 6.44 | 0.32 | 0.92 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 4.82 | 4.82 | 4.82 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.24 | 4.24 | 4.24 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.55 | 4.55 | 4.55 | 0.45 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3772 February 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3772 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 8.82 | 8.82 | 8.82 | 0.55 | 0.74 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.46 | 8.46 | 8.46 | 0.35 | 0.97 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.21 | 7.21 | 7.21 | 0.58 | 0.69 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.03 | 7.03 | 7.03 | 0.28 | 1.09 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.58 | 6.58 | 6.58 | 0.66 | 0.63 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.35 | 6.35 | 6.35 | 0.80 | 0.50 | ± 12.0 % | | 5250 | 48.9 | 5.36 | 4.14 | 4.14 | 4.14 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.60 | 3.60 | 3.60 | 0.50 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 3.85 | 3.85 | 3.85 | 0.55 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. February 23, 2015 EX3DV4-SN:3772 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3772 February 23,
2015 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) February 23, 2015 ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz February 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3772 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -101.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL CCS USA** Accreditation No.: SCS 108 S C S Certificate No: EX3-3871_Aug14 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3871 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: August 26, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | | 1 | | | |----------------------------|-----------------|-----------------------------------|------------------------| | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Name Function Laboratory Technician Signature Approved by: Certificate No: EX3-3871_Aug14 Katja Pokovic Claudio Leubler **Technical Manager** Issued: August 26, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space Certificate No: EX3-3871_Aug14 ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Page 2 of 11 # Probe EX3DV4 SN:3871 Manufactured: February 2, 2012 August 26, 2014 Calibrated: 7 tagast 20, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3871 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.42 | 0.30 | 0.51 | ± 10.1 % | | DCP (mV) ^B | 102.7 | 113.1 | 101.8 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [±]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 143.3 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 147.0 | | | | | Z | 0.0 | 0.0 | 1.0 | | 138.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No: EX3-3871_Aug14 Page 4 of 11 A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3871 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 43.5 | 0.87 | 10.27 | 10.27 | 10.27 | 0.13 | 1.35 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.17 | 10.17 | 10.17 | 0.79 | 0.60 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.79 | 9.79 | 9.79 | 0.75 | 0.61 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.63 | 9.63 | 9.63 | 0.74 | 0.61 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.88 | 8.88 | 8.88 | 0.53 | 0.72 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.48 | 8.48 | 8.48 | 0.74 | 0.56 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.42 | 8.42 | 8.42 | 0.80 | 0.60 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.60 | 0.70 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 7.95 | 7.95 | 7.95 | 0.62 | 0.63 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.15 | 8.15 | 8.15 | 0.65 | 0.62 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.94 | 7.94 | 7.94 |
0.69 | 0.60 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.44 | 7.44 | 7.44 | 0.52 | 0.68 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.35 | 0.86 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.22 | 7.22 | 7.22 | 0.43 | 0.89 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.87 | 6.87 | 6.87 | 0.77 | 0.67 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.55 | 5.55 | 5.55 | 0.35 | 1.80 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.23 | 5.23 | 5.23 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.02 | 5.02 | 5.02 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.93 | 4.93 | 4.93 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.86 | 4.86 | 4.86 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.62 | 4.62 | 4.62 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConyE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-3871_Aug14 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3871 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G (mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|-------------------------|----------------| | 450 | 56.7 | 0.94 | 11.23 | 11.23 | 11.23 | 0.06 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 9.73 | 9.73 | 9.73 | 0.30 | 0.99 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.59 | 9.59 | 9.59 | 0.36 | 1.03 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.53 | 9.53 | 9.53 | 0.58 | 0.74 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.52 | 8.52 | 8.52 | 0.25 | 1.15 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.54 | 8.54 | 8.54 | 0.72 | 0.65 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.05 | 8.05 | 8.05 | 0.56 | 0.74 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.77 | 7.77 | 7.77 | 0.38 | 0.85 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 8.07 | 8.07 | 8.07 | 0.31 | 1.04 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.94 | 7.94 | 7.94 | 0.48 | 0.75 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.68 | 7.68 | 7.68 | 0.76 | 0.59 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.47 | 7.47 | 7.47 | 0.76 | 0.55 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.41 | 7.41 | 7.41 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.68 | 6.68 | 6.68 | 0.37 | 1.15 | ± 13.1 9 | | 3700 | 51.0 | 3.55 | 6.67 | 6.67 | 6.67 | 0.44 | 0.95 | ± 13.1 9 | | 4950 | 49.4 | 5.01 | 4.91 | 4.91 | 4.91 | 0.40 | 1.90 | ± 13.1 9 | | 5200 | 49.0 | 5.30 | 4.69 | 4.69 | 4.69 | 0.40 | 1.90 | ± 13.1 9 | | 5300 | 48.9 | 5.42 | 4.50 | 4.50 | 4.50 | 0.40 | 1.90 | ± 13.1 9 | | 5500 | 48.6 | 5.65 | 4.24 | 4.24 | 4.24 | 0.45 | 1.90 | ± 13.1 9 | | 5600 | 48.5 | 5.77 | 4.06 | 4.06 | 4.06 | 0.45 | 1.90 | ± 13.1 ° | | 5800 | 48.2 | 6.00 | 4.24 | 4.24 | 4.24 | 0.45 | 1.90 | ± 13.1 9 | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. August 26, 2014 EX3DV4-SN:3871 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) August 26, 2014 EX3DV4-SN:3871 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz August 26, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3871 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -17.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | ### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL CCS USA** Certificate No: EX3-3901_Jan15 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3901 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: January 27, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Claudio Leubler Function Approved by: Katja Pokovic Technical Manager Laboratory Technician Issued: January 27, 2015 Signatur This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3901_Jan15 Page 1 of 11 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point DCP CF A, B, C, D ConvF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3901_Jan15 Page 2 of 11 # Probe EX3DV4 SN:3901 Manufactured: October 9, 2012 Calibrated: January 27, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) January 27, 2015 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3901 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.42 | 0.41 | 0.41 | ± 10.1 % | | DCP (mV) ^B | 102.1 | 104.4 | 100.5 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 149.7 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 144.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 145.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. January 27, 2015 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3901 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 43.5 | 0.87 | 10.86 | 10.86 | 10.86 | 0.20 | 1.50 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.08 | 10.08 | 10.08 | 0.32 | 1.00 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.59 | 9.59 | 9.59 | 0.33 | 0.98 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.53 | 8.53 | 8.53 | 0.17 | 1.44 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.19 | 8.19 | 8.19 | 0.77 | 0.56 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.91 | 7.91 | 7.91 | 0.63 | 0.63 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.48 | 7.48 | 7.48 | 0.43 | 0.74 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.14 | 7.14 | 7.14 | 0.43 | 0.76 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.97 | 6.97 | 6.97 | 0.38 | 0.84 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.78 | 6.78 | 6.78 | 0.27 | 1.34 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.20 | 6.20 | 6.20 | 0.21 | 1.93 | ± 13.1 % | | 4950 | 36.3 | 4.40 | 5.27 | 5.27 | 5.27 | 0.35 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 4.76 | 4.76 | 4.76 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.27 | 4.27 | 4.27 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.47 | 4.47 | 4.47 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3901 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 56.7 | 0.94 | 11.57 | 11.57 | 11.57 | 0.10 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 9.68 | 9.68 | 9.68 | 0.27 | 1.21 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.50 | 9.50 | 9.50 | 0.30 | 1.03 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.36 | 8.36 | 8.36 | 0.80 | 0.59 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.93 | 7.93 | 7.93 | 0.35 | 0.89 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.68 | 7.68 | 7.68 | 0.50 | 0.74 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.45 | 7.45 | 7.45 | 0.40 | 0.84 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.26 | 7.26 | 7.26 | 0.70 | 0.61 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.97 | 6.97 | 6.97 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.30 | 6.30 | 6.30 | 0.26 | 1.60 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 6.25 | 6.25 | 6.25 | 0.26 | 1.94 | ± 13.1 % | | 4950 | 49.4 | 5.01 | 4.58 | 4.58 | 4.58 | 0.40 | 1.90 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.21 | 4.21 | 4.21 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.80 | 3.80 | 3.80 | 0.45 | 1.90 | ± 13.1 % | | 5750 | 48.3 | 5.94 | 3.90 | 3.90 | 3.90 | 0.50 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to \pm 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. January 27, 2015 EX3DV4-SN:3901 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$
f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3901 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 5.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL CCS USA** Accreditation No.: SCS 108 Certificate No: EX3-3936_Jul14 # CALIBRATION CERTIFICATE Object EX3DV4 - SN:3936 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 24, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID . | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Israe El-Naouq Laboratory Technician Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 24, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). July 24, 2014 # Probe EX3DV4 SN:3936 Manufactured: May 2, 2013 Calibrated: July 24, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) July 24, 2014 EX3DV4-SN:3936 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3936 **Basic Calibration Parameters** | Basic Cambration Fara | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--|----------|----------|----------|-----------|--| | Norm (μV/(V/m) ²) ^A | 0.46 | 0.42 | 0.52 | ± 10.1 % | | | DCP (mV) ^B | 99.4 | 104.2 | 99.3 | | | Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ⁻
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 137.9 | ±3.0 % | | 0 | | Y | 0.0 | 0.0 | 1.0 | | 151.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 140.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 4 of 11 Certificate No: EX3-3936_Jul14 A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. July 24, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3936 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.64 | 9.64 | 9.64 | 0.80 | 0.61 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.29 | 9.29 | 9.29 | 0.46 | 0.82 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.07 | 9.07 | 9.07 | 0.72 | 0.63 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.28 | 8.28 | 8.28 | 0.43 | 0.74 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.84 | 7.84 | 7.84 | 0.80 | 0.57 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.61 | 7.61 | 7.61 | 0.76 | 0.55 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 7.42 | 7.42 | 7.42 | 0.80 | 0.56 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.64 | 7.64 | 7.64 | 0.62 | 0.64 | ± 12.0 % | | 2300 | 39.5 | 1.67_ | 7.28 | 7.28 | 7.28 | 0.52 | 0.66 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.95 | 6.95 | 6.95 | 0.41 | 0.74 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.78 | 6.78 | 6.78 | 0.33 | 0.91 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.00 | 5.00 | 5.00 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.80 | 4.80 | 4.80 | 0.40 | 1.80 | ±
13.1 % | | 5500 | 35.6 | 4.96 | 4.71 | 4.71 | 4.71 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.49 | 4.49 | 4.49 | 0.45 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.44 | 4.44 | 4.44 | 0.45 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3936 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.33 | 9.33 | 9.33 | 0.31 | 1.10 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.33 | 9.33 | 9.33 | 0.69 | 0.67 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.10 | 9.10 | 9.10 | 0.80 | 0.61 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.22 | 8.22 | 8.22 | 0.44 | 0.78 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.53 | 7.53 | 7.53 | 0.68 | 0.66 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.15 | 7.15 | 7.15 | 0.36 | 0.84 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 7.37 | 7.37 | 7.37 | 0.39 | 0.84 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.28 | 7.28 | 7.28 | 0.47 | 0.75 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.01 | 7.01 | 7.01 | 0.80 | 0.50 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.81 | 6.81 | 6.81 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.67 | 6.67 | 6.67 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.42 | 4.42 | 4.42 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.19 | 4.19 | 4.19 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.99 | 3.99 | 3.99 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.75 | 3.75 | 3.75 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.99 | 3.99 | 3.99 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3936 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -53.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm |