

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC PART 15.247 Bluetooth (Low Energy)

Applicant Name:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing:

5/16-5/26/2016 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1605160921.ZNF

FCC ID:	ZNFUS610
APPLICANT:	LG Electronics MobileComm U.S.A
Application Type:	Certification
Model:	LG-US610, LGUS610, US610, LG-K212, LGK212, K212
EUT Type:	Portable Handset
Max. RF Output Power:	0.755 mW (-1.22 dBm) Peak Conducted
Frequency Range:	2402 - 2480 MHz
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15.247
Test Procedure(s):	KDB 558074 D01 v03r05

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01 v03r05. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 1 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

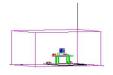


TABLE OF CONTENTS

FCC	PART	15.247 MEASUREMENT REPORT	3
1.0	INT	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
2.0	PRO	ODUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DES	SCRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	AC Line Conducted Emissions	6
	3.3	Radiated Emissions	7
	3.4	Environmental Conditions	7
4.0	ANT	TENNA REQUIREMENTS	8
5.0	ME	ASUREMENT UNCERTAINTY	9
6.0	TES	ST EQUIPMENT CALIBRATION DATA	10
7.0	TES	ST RESULTS	11
	7.1	Summary	11
	7.2	6dB Bandwidth Measurement – Bluetooth (LE)	12
	7.3	Output Power Measurement – Bluetooth (LE)	15
	7.4	Power Spectral Density – Bluetooth (LE)	
	7.5	Conducted Emissions at the Band Edge	21
	7.6	Conducted Spurious Emissions	23
	7.7	Radiated Spurious Emission Measurements	
	7.8	Radiated Restricted Band Edge Measurements	
	7.9	Line-Conducted Test Data	35
8.0	COI	NCLUSION	

FCC ID: ZNFUS610		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕑 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 38
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 2 01 38
© 2016 PCTEST Engineering Laboratory, Inc.				

MEASUREMENT REPORT FCC Part 15.247

§ 2.1033 General Information

APPLICANT:	LG Electronics MobileComm U.S.A			
APPLICANT ADDRESS:	1000 Sylvan Avenue			
	Englewood Cliffs, NJ 07632,	United States		
TEST SITE:	PCTEST ENGINEERING LAI	BORATORY, INC).	
TEST SITE ADDRESS:	7185 Oakland Mills Road, Co	olumbia, MD 2104	I6 USA	
FCC RULE PART(S):	Part 15.247			
BASE MODEL:	LG-US610			
FCC ID:	ZNFUS610			
FCC CLASSIFICATION:	Digital Transmission System	(DTS)		
Test Device Serial No.:	00052, 00053, 00541, 00525	Production	Pre-Production	Engineering
DATE(S) OF TEST:	5/16-5/26/2016			
TEST REPORT S/N:	0Y1605160921.ZNF			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
 - PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: ZNFUS610	CTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 3 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

INTRODUCTION 1.0

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

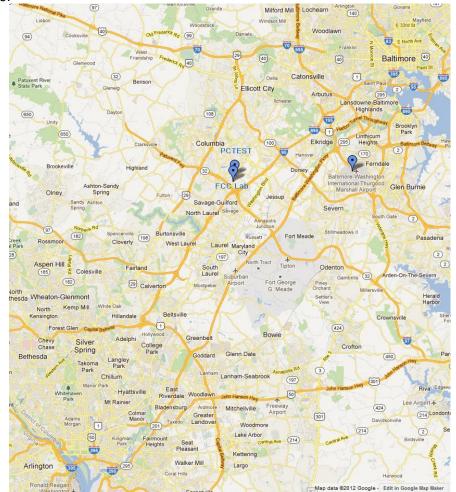


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 4 of 38
© 2016 PCTEST Engineering	Laboratory Inc	-		V 3 3

6 PCTEST Engir

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFUS610**. The data found in this test report was taken with the EUT operating in Bluetooth low energy mode. While in low energy mode, the Bluetooth transmitter hops pseudo-randomly between 40 channels, three of which are "advertising channels". When the transmitter is hopping only between the three advertising channels, the EUT does not fall under the category of a "hopper" as defined in 15.247(a)(iii) which states that a "frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels." As operation on only the advertising channels does not qualify the EUT as a hopper, the EUT is certified as a DTS device in this mode. The data found in this report is representative of the device when it transmits on its advertising channels. Typical Bluetooth operation is covered under the DSS report found with this application.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE)

2.3 Test Configuration

The LG Portable Handset FCC ID: ZNFUS610 was tested per the guidance of KDB 558074 D01 v03r05. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFUS610		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E at 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 5 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v03r05 were used in the measurement of the **LG Portable Handset FCC ID: ZNFUS610.**

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. he EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga C of 20	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 6 of 38	
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.				

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz, a 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFUS610	CTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dere 7 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 7 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna(s) of the Portable Handset are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The LG Portable Handset FCC ID: ZNFUS610 unit complies with the requirement of §15.203.

Ch.	Frequency (MHz)
0	2402
:	:
19	2440
:	:
39	2480

Table 4-1. Frequency / Channel Operations

FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 20	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 8 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 20	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 9 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	10/8/2015	Annual	10/8/2016	WL25-1
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	3/4/2016	Bi-annual	9/4/2016	RE1
Agilent	8447D	Broadband Amplifier	6/12/2015	Annual	6/12/2016	2443A01900
Agilent	N9020A	MXA Signal Analyzer	11/5/2015	Annual	11/5/2016	US46470561
Agilent	N4010A	Wireless Connectivity Test Set		N/A		GB46170464
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	2/26/2016	Annual	2/26/2017	441112
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/26/2016	4/26/2016 Biennial 4/26/201		125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	6/17/2014 Biennial 6/17/2016		6/17/2016	135427
K & L	11SH10-3075/U18000	High Pass Filter	7/18/2015 Annual 7/18		7/18/2016	11SH10-3075/U18000-2
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	11/18/2015	Bi-annual	5/18/2016	NMLC-1
Rhode & Schwarz	TS-PR18	Pre-Amplifier	3/7/2016	Annual	3/7/2017	101622
Rohde & Schwarz	CMU200	Base Station Simulator		N/A		836536/0005
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/17/2015	Annual	7/17/2016	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	6/2/2015	Annual	6/2/2016	103200
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100040
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	6/2/2015	Annual	6/2/2016	103200
Rohde & Schwarz	ESR26	EMI Test Receiver	3/2/2016	Annual	3/2/2017	101328
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	7/30/2015	Biennial	7/30/2017	310233
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFUS610	APCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)				Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 20		
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 10 of 38		
© 2016 PCTEST Engineering Laboratory, Inc.						

TEST RESULTS 7.0

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	ZNFUS610
FCC Classification:	Digital Transmission System (DTS)
Number of Channels:	<u>40</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER	MODE (TX)				
15.247(a)(2)	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	Transmitter Output Power	< 1 Watt		PASS	Sections 7.3
15.247(e)	Transmitter Power Spectral Density	< 8dBm / 3kHz Band	CONDUCTED	PASS	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Sections 7.7, 7.8
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1. All modes of operation were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4. For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Bluetooth LE Automation," Version 2.5.
- 5. For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.2.

FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 11 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 11 of 38
© 2016 PCTEST Engineerin	a laboratory Inc			V 3 3

2016 PCTEST Engineering Laboratory, Inc

7.2 6dB Bandwidth Measurement – Bluetooth (LE) §15.247(a.2)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

KDB 558074 D01 v03r05 - Section 8.2 Option 2

Test Settings

- The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

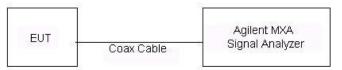


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 12 of 38
© 2016 PCTEST Engineering	g Laboratory, Inc.			V 3.3

Frequency [MHz]	Channel No.	Bluetooth Mode	Measured Bandwidth [kHz]	Minimum Bandwidth [kHz]	Pass / Fail
2402	0	LE	675.7	500	Pass
2440	19	LE	669.8	500	Pass
2480	39	LE	674.4	500	Pass

Table 7-2. Conducted Bandwidth Measurements




Plot 7-1. 6dB Bandwidth Plot (Bluetooth (LE) – Ch. 0)

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 00	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 13 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					

🔤 Keysight Spectrum Ana		N						[- # ×
LXIRL RF	50 Ω AC	CORREC	SENSE:INT Center Freg: 2.4		ALIGN AUTO	07:10:20 P Radio Std	MMay 18, 2016	Trace	Detector
			Trig: Free Run	Avg Hold	: 100/100				
		#IFGain:Low	#Atten: 26 dB			Radio Dev	ice: BTS		
10 dB/div Re	f 15.00 dBr	n							
5.00									
-5.00								c	lear Write
-15.0									
-25.0									
-35.0									Average
-45.0									
-55.0									
-55.0									
									Max Hold
-75.0									_
Center 2.44 GH	z			·		Sp	an 2 MHz		
#Res BW 100 k	Hz		#VBW 3	00 kHz		Swe	eep 1 ms		Min Hold
	D a sa also si al (Tot	al Power	5.2	5 dBm			
Occupied				airowei	5.2	5 ubiii			
	1.	0804 MF	Z						Detector
Transmit Fre	eq Error	-821	Hz %o	f OBW Powe	er 99	9.00 %		Auto	Peak▶ <u>Man</u>
x dB Bandw	idth	669.8 k	Hz xdE	2	-6	.00 dB			
	iatii	000.0 K				.00 01			
					07.77				
MSG					STATU	5			

Plot 7-3. 6dB Bandwidth Plot (Bluetooth (LE) - Ch. 39)

FCC ID: ZNFUS610	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 20	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset	Page 14 of 38		
© 2016 PCTEST Engineering Laboratory, Inc.					

7.3 Output Power Measurement – Bluetooth (LE) §15.247(b.3)

Test Overview and Limits

The transmitter antenna terminal of the EUT is connected to the input of a spectrum analyzer. Measurements are made while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

KDB 558074 D01 v03r05 - Section 9.1.1

Test Settings

- 1. RBW = 3MHz
- 2. VBW = 50MHz
- 3. Span \ge 3 x RBW
- 4. Sweep = auto couple
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

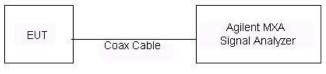


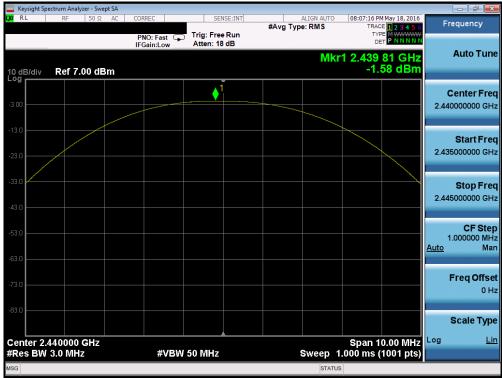
Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 15 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 15 of 38
© 2016 PCTEST Engineering Laboratory, Inc.				

Frequency	Channel	Bluetooth	Peak Conducted Power	
[MHz]	No.	Mode	[dBm]	[mW]
2402	0	LE	-1.88	0.649
2440	19	LE	-1.58	0.695
2480	39	LE	-1.22	0.755


Table 7-3. Conducted Output Power Measurements (Bluetooth (LE))

Plot 7-4. Peak Power Plot (Bluetooth (LE) - Ch. 0)

FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 16 of 38
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

Plot 7-5. Peak Power Plot (Bluetooth (LE) - Ch. 19)

Plot 7-6. Peak Power Plot (Bluetooth (LE) - Ch. 39)

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 17 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 17 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

7.4 Power Spectral Density – Bluetooth (LE) §15.247(e)

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power and at the appropriate frequencies.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

KDB 558074 D01 v03r05 - Section 10.2 Method PKPSD

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

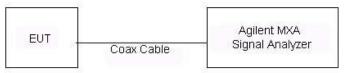
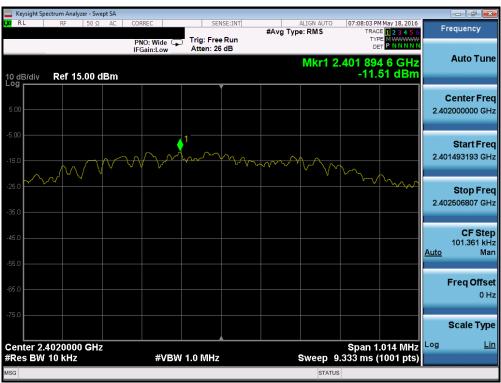


Figure 7-3. Test Instrument & Measurement Setup

Test Notes


None

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 10 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 18 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

Frequency [MHz]	Channel No.	Bluetooth Mode	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]
2402	0	LE	-11.51	8.0	-19.51
2440	19	LE	-11.46	8.0	-19.46
2480	39	LE	-10.98	8.0	-18.98


Table 7-4. Conducted Power Density Measurements

Plot 7-7. Power Spectral Density Plot (Bluetooth (LE) - Ch. 0)

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 10 of 20
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 19 of 38
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.			

Plot 7-8. Power Spectral Density Plot (Bluetooth (LE) - Ch. 19)

Plot 7-9. Power Spectral Density Plot (Bluetooth (LE) – Ch. 39)

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 20 of 38
© 2016 PCTEST Engineering Laboratory, Inc.				V 3.3

7.5 Conducted Emissions at the Band Edge §15.247(d)

Test Overview and Limit

For the following out of band conducted spurious emissions plots at the band edge, the EUT was set to transmit at maximum power with the largest packet size available. These settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth.

Test Procedure Used

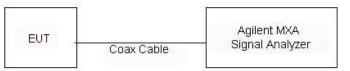
KDB 558074 D01 v03r05 - Section 11.3

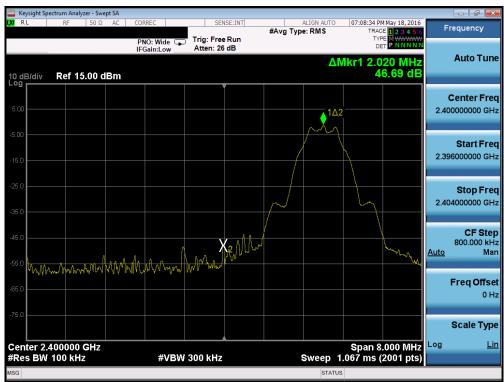
Test Settings

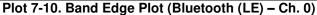
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points \geq 2 x Span/RBW
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

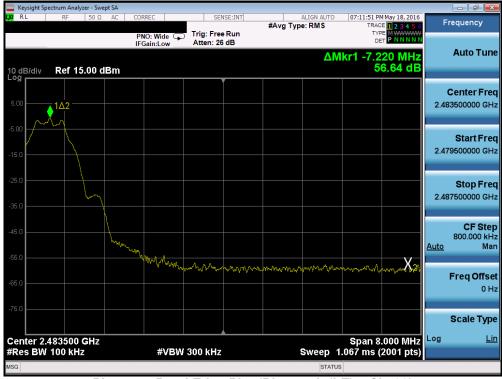
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.




Figure 7-4. Test Instrument & Measurement Setup


Test Notes


None

FCC ID: ZNFUS610	<u>«NPCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 21 of 38
© 2016 PCTEST Engineerin	2016 PCTEST Engineering Laboratory, Inc.			

Plot 7-11. Band Edge Plot (Bluetooth (LE) - Ch. 39)

FCC ID: ZNFUS610	APCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 00 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 22 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

7.6 Conducted Spurious Emissions §15.247(d)

Test Overview and Limit

For the following out of band conducted spurious emissions plots, the EUT was set to transmit at maximum power with the largest packet size available. The worst case spurious emissions were found in this configuration.

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 D01 v03r05.

Test Procedure Used

KDB 558074 D01 v03r05 - Section 11.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

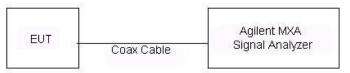


Figure 7-5. Test Instrument & Measurement Setup

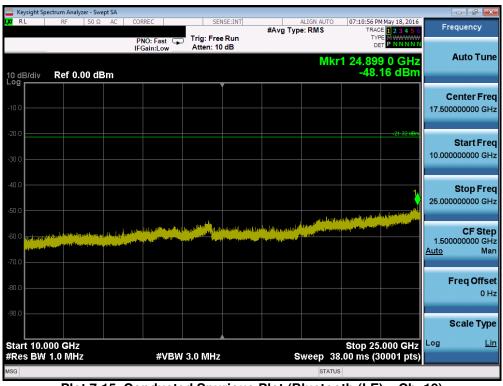
FCC ID: ZNFUS610	CTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 23 of 38
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.			

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

FCC ID: ZNFUS610	<u> PCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 04 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 24 of 38
© 2016 PCTEST Engineering Laboratory, Inc.				

	Spectrum Analyze											
XI RL	RF	50 Ω AC		Fast 🖵	Trig: Fre		#Avg Typ	ALIGN AUTO	TRAC	M May 18, 2016 DE <u>1 2 3 4 5 6</u> PE M WWWWW FT P N N N N N	Frequ	lency
10 dB/div	Ref 15.0	00 dBm	IFGain:	Low	Atten: 20	6 dB		M	(r1 3.26	0 3 GHz 37 dBm	Αι	ıto Tun
5.00											Cen 5.01500	nter Fre 0000 G⊦
15.0										-21.54 dBm		t art Fre 0000 M⊦
25.0											Si 10.00000	t op Fre 0000 GH
45.0	gan an dere tek men er alle sen an er franken. An er an dere tek men er alle sen er al	uphpys (pitration) (minipation)		1 Toru Taru Taru Taru	alanti, pinita		10 J. 19 19 19		y a fittingan para sa	tajan inggeratasan Mandhataatal ing	997.00 <u>Auto</u>	CF Ste 0000 MH Ma
65.0											Fre	e q Offs 0 F
75.0											Sc	ale Typ
	30 GHz V 1.0 MHz			#VBW	3.0 MHz		s	weep 18	Stop 10 .00 ms (3	.000 GHz 0001 pts)	Log	L
FRES BU	V 1.U WIHZ			#VBW	3.U MHZ		8	SWeep 18		ooon pts)		


Plot 7-13. Conducted Spurious Plot (Bluetooth (LE) - Ch. 0)

FCC ID: ZNFUS610	CTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 05 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 25 of 38
© 2016 PCTEST Engineering	Laboratory, Inc.	•		V 3.3

RL RL	Spectrum Analy: RF	2er - Swep 50 Ω	AC	CORREC	SE	NSE:INT		ALIGN AUTO	07:10:42 PM	1 May 18, 2016	
112	Tu .	30 32	AC	CONTREC			#Avg Typ		TRAC	E 1 2 3 4 5 6	Frequency
				PNO: Fast G	Trig: Fre				TYP		
				IFGain:Low	Atten. 20						Auto Tui
	B - 6 4 6							IVIP	(r1 3.197	31 dBm	
0 dB/div .og r	Ref 15	5.UU di	зm				_		-40.	or abiii	
											Center Fre
5.00											5.015000000 GI
											0.01000000000
5.00											
											Start Fre
15.0											30.000000 MI
										-21.32 dBm	
25.0											
											Stop Fre
35.0											10.00000000 GI
55.6				▲1							
45.0											CF Ste
- I .	AND A DESCRIPTION OF A	a the second	AND AND INC.	full	and the particular of the local states of the	AND A PARTY OF	and he are and the same	Assetti pilitara (charte	and all the second of the	A statistic for the second	997.000000 MI
55.0 (1997)	n and all all a statistic	a ju dan	in fractions	to a la constitución de la constitu	Section of the	الأبدرية والتلديدي	a auto Baucalata A	al de Bier Landil (Barrer)	والكنفي والمتقاد	a line and the line of the	Auto M
33.0											
65.0											Freq Offs
0.0											01
75.0											
/9:0											Scale Typ
											_ coure ry
	30 GHz								Stop 10.		Log <u>L</u>
Res BV	V 1.0 MHz	z		#VB\	V 3.0 MHz		s	weep 18	.00 ms (3	0001 pts)	
SG								STATUS	1		

Plot 7-14. Conducted Spurious Plot (Bluetooth (LE) – Ch. 19)

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 26 of 38
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3

<mark>U</mark> RL	RF	50 Ω	AC	CORF	REC	SE	NSE:INT	#A	ALIGN AUTO		4 May 18, 2016	Fre	quency
				PN	0:Fast 🗔	Trig: Fre		#Avg Typ	e: RIVIS	TYP	E 1 2 3 4 5 6 E M WWWWW T P N N N N N		
					ain:Low	Atten: 26	6 dB						
									M	(r1 2.64	0 1 GHz	· '	Auto Tun
l0 dB/div	Ref 1	5.00 d	Bm							-43.	70 dBm		
							Ĩ					Ce	enter Fre
5.00													000000 GH
-5.00													
													Start Fre
15.0												30.0	000000 MH
											-20.79 dBm		
-25.0													Stop Fre
												10.0000	000000 GH
-35.0				• 1									
				♦ '									CF Ste
45.0	unipersterre partie	d poor farm	A CONTRACTOR	a dia manjeri	land,	راييو داريوريا الدروييا	Manual and	All California and a second second			1.1.1		000000 MI
-55.0 entern		un numeral	ukarasi .		العراديري	and Manager Maline	and the second	in a little state	نغرت فليفظ فطالب وال			<u>Auto</u>	Ma
-35.0													
.65.0												F	req Offs
													0 H
75.0													
												S	cale Typ
										0 4 40		Log	L
	30 GHz V 1.0 MH				#\/B\/	/ 3.0 MHz			ween 19	Stop 10	.000 GHz 0001 pts)		
The Di	• 1.0 IVII	12			<i></i>	10.0-101112			STATUS	<i>(</i>) enro	ooor pis)		

Plot 7-16. Conducted Spurious Plot (Bluetooth (LE) - Ch. 39)

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 27 of 38
© 2016 PCTEST Engineering	Laboratory, Inc.			V 3.3

7.7 Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d)

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-5 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedures Used

KDB 558074 D01 v03r05 - Section 12.1, 12.2.7

Test Settings

Average Field Strength Measurements per Section 12.2.5.3 of KDB 558074 D01 v03r05

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3kHz > 1/T
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to run for at least 50 times (1/duty cycle) traces

FCC ID: ZNFUS610		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dere 00 of 00		
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 28 of 38		
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.					

Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01 v03r05

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW is set depending on measurement frequency, as specified in Table 7-6 below
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Frequency	RBW
9 – 150kHz	200 – 300Hz
0.15 – 30MHz	9 – 10kHz
30 – 1000MHz	100 – 120kHz
> 1000MHz	1MHz

Table 7-6. RBW as a Function of Frequency

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

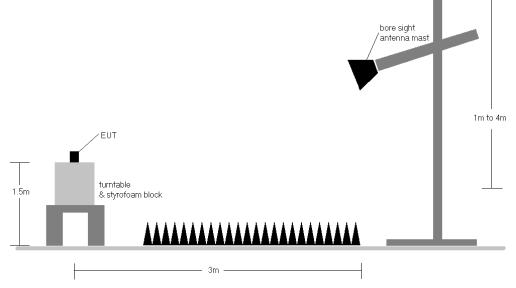


Figure 7-6. Radiated Test Setup >1GHz

FCC ID: ZNFUS610		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 00 of 00
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 29 of 38
© 2016 PCTEST Engineering	g Laboratory, Inc.			V 3.3

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v03r05 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-5.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Average measurements were recorded using a VBW of 3kHz, per Section 12.2.5.3 of KDB 558074 D01 v03r05, since 1/T is equal to just under 3kHz. This method was used because the EUT could not be configured to operate with a duty cycle > 98%. Both average and peak measurements were made using a peak detector
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 8. No significant radiated band edge emissions were found in the 2310 2390MHz restricted band.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

Determining Spurious Emissions Levels

- $\circ \quad \mbox{Field Strength Level}_{[dB\mu V/m]} = \mbox{Analyzer Level}_{[dBm]} + 107 + \mbox{AFCL}_{[dB/m]}$
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- $\circ \quad Margin_{[dB]} = Field \ Strength \ Level_{[dB_{\mu}V/m]} Limit_{[dB_{\mu}V/m]}$

Radiated Band Edge Measurement Offset

 The amplitude offset shown in the radiated restricted band edge plots in Section 7.8 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) - Preamplifier Gain

FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 20		
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 30 of 38		
© 2016 PCTEST Engineering	© 2016 PCTEST Engineering Laboratory, Inc.					

Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d)

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Avg	Н	-	-	-111.05	40.43	36.38	53.98	-17.60
4804.00	Peak	Н	-	-	-98.62	40.43	48.81	73.98	-25.17
12010.00	Avg	Н	-	-	-114.39	51.20	43.80	53.98	-10.17
12010.00	Peak	Н	-	-	-102.70	51.20	55.49	73.98	-18.48

Bluetooth Mode: Distance of Measurements: Operating Frequency: Channel: LE 3 Meters 2440MHz 19

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4880.00	Avg	Н	-	-	-110.18	39.95	36.77	53.98	-17.21
4880.00	Peak	Н	-	-	-97.99	39.95	48.96	73.98	-25.02
7320.00	Avg	Н	-	-	-110.63	43.78	40.16	53.98	-13.82
7320.00	Peak	Н	-	-	-99.56	43.78	51.23	73.98	-22.75
12200.00	Avg	Н	-	-	-114.52	51.19	43.67	53.98	-10.31
12200.00	Peak	Н	-	-	-103.84	51.19	54.35	73.98	-19.63

Table 7-8. Radiated Measurements @ 3 meters

FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 00	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 31 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					

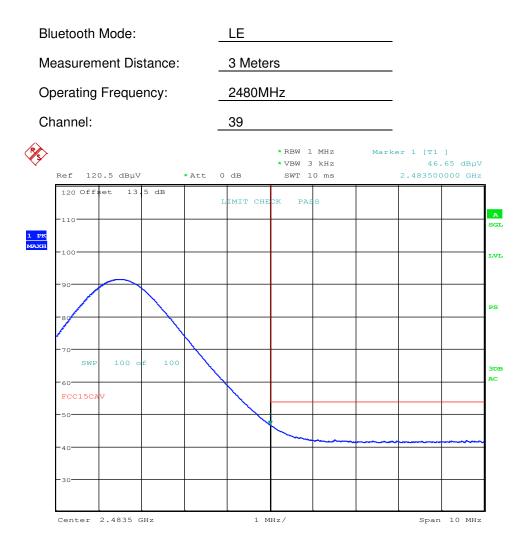
Radiated Spurious Emission Measurements §15.205 §15.209 §15.247(d)

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz
Channel:	39

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Avg	Н	-	-	-110.88	40.02	36.14	53.98	-17.84
4960.00	Peak	Н	-	-	-98.63	40.02	48.39	73.98	-25.59
7440.00	Avg	н	-	-	-111.53	44.42	39.88	53.98	-14.09
7440.00	Peak	н	-	-	-98.94	44.42	52.47	73.98	-21.50
12400.00	Avg	н	-	-	-114.23	51.65	44.42	53.98	-9.56
12400.00	Peak	Н	-	-	-102.02	51.65	56.63	73.98	-17.35

Table 7-9. Radiated Measurements @ 3 meters

FCC ID: ZNFUS610	APCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕕 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 00	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 32 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					



7.8 Radiated Restricted Band Edge Measurements §15.205 §15.209

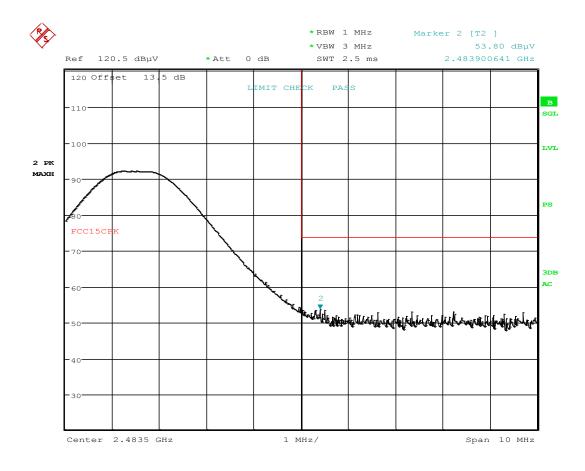
The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) – Preamplifier Gain

Date: 19.MAY.2016 00:49:53

Plot 7-18. Radiated Restricted Upper Band Edge Measurement (Average)


FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege 22 of 20	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 33 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					

Radiated Restricted Band Edge Measurements §15.205 §15.209

The amplitude offset shown in the following plots for average measurements was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + 10 dB Attenuator) - Preamplifier Gain

Date: 19.MAY.2016 00:50:14

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 20	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 34 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					

7.9 Line-Conducted Test Data §15.207

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per 15.207.

Frequency of emission (MHz)	Conducted Limit (dBµV)				
(101712)	Quasi-peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 – 30	60	50			

Table 7-10. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 25 of 29
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 35 of 38
© 2016 PCTEST Engineering Laboratory, Inc.				

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

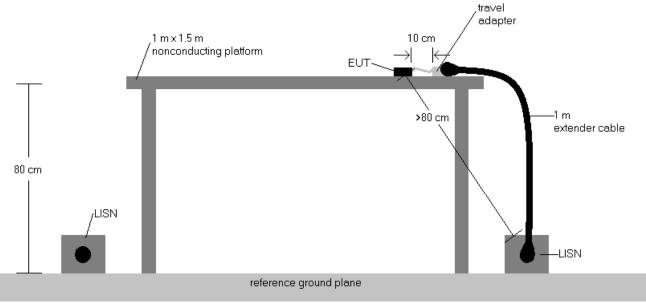
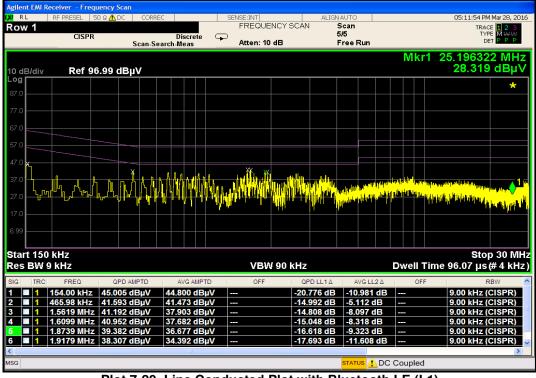
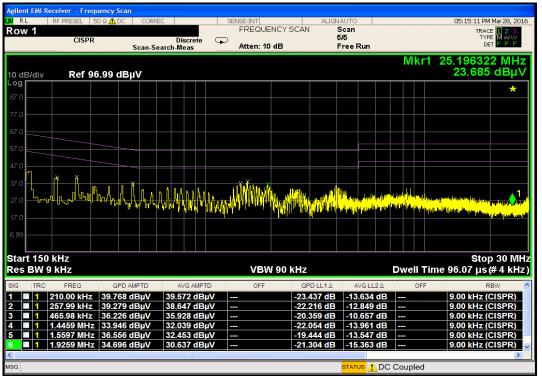


Figure 7-7. Test Instrument & Measurement Setup

Test Notes


- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level $(dB\mu V) = QP/AV$ Analyzer/Receiver Level $(dB\mu V) + Corr. (dB)$
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFUS610		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 20	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 36 of 38	
© 2016 PCTEST Engineering Laboratory, Inc.					



Line-Conducted Test Data

§15.207

Plot 7-20. Line Conducted Plot with Bluetooth LE (L1)

Plot 7-21. Line Conducted Plot with Bluetooth LE (N)

FCC ID: ZNFUS610	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🕒 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 37 of 38	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 37 01 38	
© 2016 PCTEST Engineering Laboratory, Inc.					

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFUS610** is in compliance with Part 15C of the FCC Rules.

FCC ID: ZNFUS610	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	🔁 LG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 38 of 38	
0Y1605160921.ZNF	5/16-5/26/2016	Portable Handset		Page 38 01 38	
© 2016 PCTEST Engineering Laboratory, Inc.					