

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 15.247 WLAN 802.11b/g/n

Applicant Name:

FCC ID:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 12/27/2016 - 1/4/2017 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1612232005.ZNF

U.S.A

APPLICANT:	LG Electronics MobileComm		
Application Type:	Certification		
Model:	LG-US110		
Additional Model(s):	LGUS110, US110		
EUT Type:	Portable Handset		
FCC Classification:	Digital Transmission System (DTS)		
FCC Rule Part(s):	Part 15.247		
Test Procedure(s):	KDB 558074 D01 v03r05		

ZNFUS110

Conducted Power Avg Conducted Peak Conducted **Tx Frequency** Mode Max. Max. Max. Max. (MHz) Power Power Power Power (mW) (dBm) (mW) (dBm) 802.11b 2412 - 2462 41.020 16.13 75.509 18.78 2412 - 2462 25.351 14.04 136.144 21.34 802.11g 802.11n 2412 - 2462 21.086 13.24 125.603 20.99

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01 v03r05. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 1 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				

11/28/2016

TABLE OF CONTENTS

FCC	PART	T 15.247 MEASUREMENT REPORT	
1.0	INTE	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
2.0	PRC	DDUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DES	SCRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANT	9	
5.0	MEA	ASUREMENT UNCERTAINTY	10
6.0	TES	T EQUIPMENT CALIBRATION DATA	11
7.0	TES	ST RESULTS	12
	7.1	Summary	
	7.2	6dB Bandwidth Measurement	
	7.3	Output Power Measurement	
	7.4	Power Spectral Density	21
	7.5	Conducted Emissions at the Band Edge	27
	7.6	Conducted Spurious Emissions	
	7.7	Radiated Spurious Emission Measurements – Above 1 GHz	
		7.7.1 Radiated Spurious Emission Measurements	40
		7.7.2 Radiated Restricted Band Edge Measurements	45
	7.8	Radiated Spurious Emissions Measurements – Below 1GHz	51
	7.9	Line-Conducted Test Data	
8.0	CON	NCLUSION	59

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 2 01 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

MEASUREMENT REPORT FCC Part 15.247

§ 2.1033 General Information

APPLICANT:	LG Electronics Mobile	Comm U.S.A		
APPLICANT ADDRESS:	1000 Sylvan Avenue			
	Englewood Cliffs, NJ 0	7632, United Sta	ates	
TEST SITE:	PCTEST ENGINEERII	NG LABORATOF	RY, INC.	
TEST SITE ADDRESS:	7185 Oakland Mills Ro	oad, Columbia, M	ID 21046 USA	
FCC RULE PART(S):	Part 15.247			
BASE MODEL:	LG-US110			
FCC ID:	ZNFUS110			
FCC CLASSIFICATION:	Digital Transmission S	ystem (DTS)		
Test Device Serial No.:	00311, 42452, 00130, 00137	Production	Pre-Production	
DATE(S) OF TEST:	12/27/2016 - 1/4/2017			
TEST REPORT S/N:	0Y1612232005.ZNF			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 3 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				

11/28/2016

rvlap
Certificate of Accreditation to ISO/IEC 17025:200
NULPLARCORE: BIRDH
PCTEST Engineering Laboratory, Inc. Columbic, MD
a sograndig die Aaland Zuinty Laberby, konstituto Popuratio onternerse ethoriteiner fuel NGP azamlation duzantia and inspireenite 200821 (102508) Azamlation is partietin gestin annies, laberantie Sope Microsofton, for
LECTROMAGNETIC COMPATIBILITY AND TELECORPUTNICATION
TRADE LAND AND AND AND AND AND AND AND AND AND

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

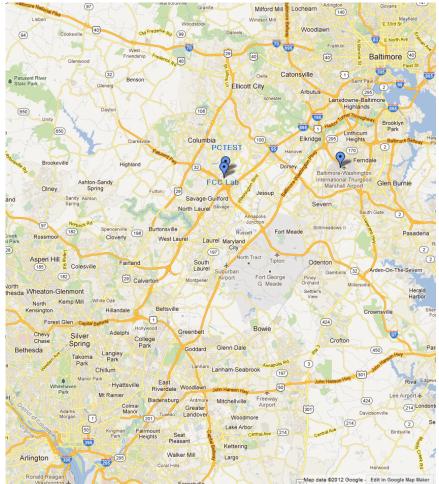


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 4 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 4 of 59
© 2017 PCTEST Engineering Laboratory. Inc.				

v 5.1 11/28/2016

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFUS110**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0, BC1), Multi-band LTE, 802.11b/g/n WLAN, Bluetooth (1x, EDR, LE)

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Table 2-1. Frequency/ Channel Operations

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 D01 v03r05. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles				
Duty Cycle [9				
802.11 Mode/Band		ANT1		
2.4GHz	b	99.2		
	g	99.2		
	n	98.9		

Data Rates Supported: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b)

6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g) 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 5 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 5 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				

11/28/2016

2.3 Test Configuration

The EUT was tested per the guidance of KDB 558074 D01 v03r05. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 6 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 6 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v03r05 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 7 of 50	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 7 of 59	
© 2017 PCTEST Engineering Laboratory. Inc. V 5					

11/28/2016

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. A 72.4cm high PVC support structure is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 50	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 8 of 59	
© 2017 PCTEST Engineering	2017 PCTEST Engineering Laboratory, Inc.				

11/28/2016

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 9 of 59
© 2017 PCTEST Engineering L	2017 PCTEST Engineering Laboratory, Inc.			

11/28/2016

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 50	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 10 of 59	
© 2017 PCTEST Engineering I	2017 PCTEST Engineering Laboratory, Inc.				

11/28/2016

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	3/4/2016	Annual	3/4/2017	RE1
-	WL40-1	Conducted Cable Set (40GHz) 4/26/2016 Annual		4/26/2017	WL40-1	
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	7/20/2016	Annual	7/20/2017	MY49432391
Agilent	N9038A	MXE EMI Receiver	4/21/2016	Annual	4/21/2017	MY51210133
Anritsu	MA2411B	Pulse Sensor	10/14/2015	Biennial	10/14/2017	846215
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Com-Power	AL-130	9kHz - 30MHz Loop Antenna 7/30/2015 Biennial 7/30/2		7/30/2017	121034	
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	8/28/2016	Biennial	8/28/2018	135427
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	4/26/2016	Annual	4/26/2017	251425001
K & L	11SH10-3075/U18000	High Pass Filter	7/11/2016	Annual	7/11/2017	11SH10-3075/U18000-2
PCTEST	-	EMC Switch System	7/11/2016	Annual	7/11/2017	NM1
PCTEST	-	EMC Switch System	7/6/2016	Annual	7/6/2017	NM2
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	7/27/2016	Annual	7/27/2017	103200
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/15/2016	Annual	7/15/2017	100348
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/16/2016	Annual	5/16/2017	100342
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	7/30/2015	Biennial	7/30/2017	310233
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 11 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 11 of 59
© 2017 PCTEST Engineering L	2017 PCTEST Engineering Laboratory, Inc.			

11/28/2016

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	ZNFUS110
FCC Classification:	Digital Transmission System (DTS)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	> 500kHz		PASS	Section 7.2
15.247(b)(3)	Transmitter Output Power	< 1 Watt	CONDUCTED	PASS	Sections 7.3
15.247(e)	Transmitter Power Spectral Density	< 8dBm / 3kHz Band		PASS	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	Conducted ≥ 30dBc		PASS	Sections 7.5, 7.6
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Sections 7.7, 7.8
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "WLAN Automation," Version 3.2.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.4.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 12 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				

EST Engineering Laboratory, Inc.

© 2015 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

11/28/2016

7.2 6dB Bandwidth Measurement §15.247(a.2)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

KDB 558074 D01 v03r05 - Section 8.2 Option 2

Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

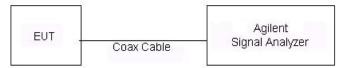
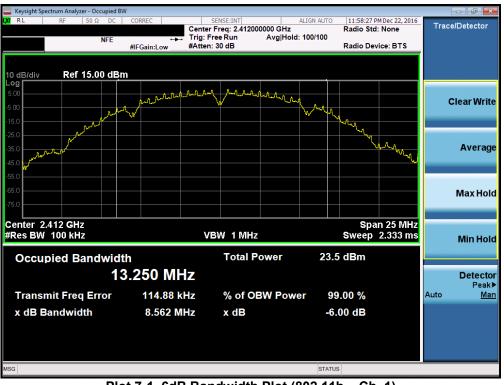


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None


FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 12 of 50	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 13 of 59	
© 2017 PCTEST Engineering Laboratory, Inc. V 5.1					

11/28/2016

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	Pass / Fail
2412	1	b	1	8.562	0.500	Pass
2437	6	b	1	9.026	0.500	Pass
2462	11	b	1	8.071	0.500	Pass
2412	1	g	6	16.38	0.500	Pass
2437	6	g	6	16.38	0.500	Pass
2462	11	g	6	16.37	0.500	Pass
2412	1	n	6.5/7.2 (MCS0)	17.57	0.500	Pass
2437	6	n	6.5/7.2 (MCS0)	17.59	0.500	Pass
2462	11	n	6.5/7.2 (MCS0)	17.60	0.500	Pass

Table 7-2. Conducted Bandwidth Measurements

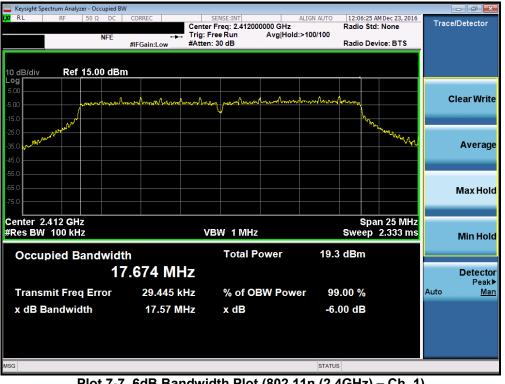
Plot 7-1. 6dB Bandwidth Plot (802.11b - Ch. 1)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 50	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 14 of 59	
© 2017 PCTEST Engineering Laboratory, Inc.			V 5.1		

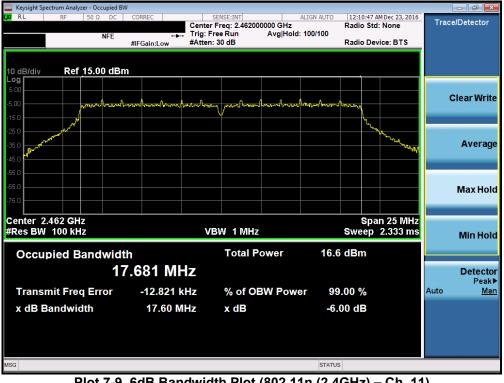
Plot 7-3. 6dB Bandwidth Plot (802.11b - Ch. 11)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1




Plot 7-5. 6dB Bandwidth Plot (802.11g - Ch. 6)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 16 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1


Plot 7-7. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 1)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 17 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

Plot 7-9. 6dB Bandwidth Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 16 01 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

7.3 Output Power Measurement §15.247(b.3)

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

Test Procedure Used

KDB 558074 D01 v03r05 – Section 9.1.2 PKPM1 Peak Power Method KDB 558074 D01 v03r05 – Section 9.2.3.2 Method AVGPM-G

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 19 01 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

			2.4GHz Conducted Power [dBm]		
Freq [MHz]	Channel	Detector	IEEE Transmission Mode		
			802.11b	802.11b 802.11g	
2412	1	AVG	15.78	13.18	12.33
		PEAK	18.43	20.62	20.26
2437	6	AVG	16.13	14.04	13.24
		PEAK	18.78	21.34	20.99
2457	10	AVG	15.56	13.73	12.71
		PEAK	18.22	21.22	20.80
2462	11	AVG	15.63	10.81	9.71
		PEAK	18.28	19.01	18.37

Table 7-3. Conducted Output Power Measurements

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 20 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

7.4 Power Spectral Density §15.247(e)

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

KDB 558074 D01 v03r05 - Section 10.2 Method PKPSD

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

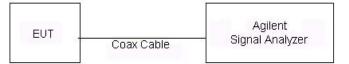


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

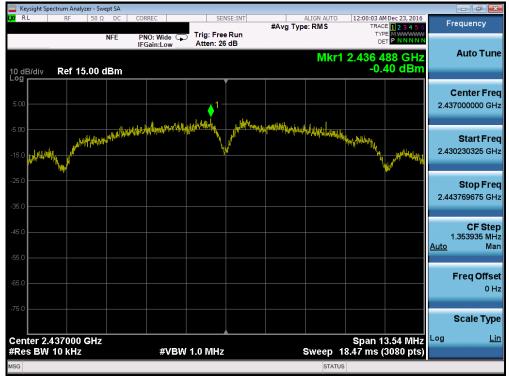
None

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 04 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 21 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				

11/28/2016

Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]	Pass / Fail
2412	1	b	1	-0.93	8.00	-8.93	Pass
2437	6	b	1	-0.40	8.00	-8.40	Pass
2462	11	b	1	-0.14	8.00	-8.14	Pass
2412	1	g	6	-6.21	8.00	-14.21	Pass
2437	6	g	6	-6.04	8.00	-14.04	Pass
2462	11	g	6	-8.51	8.00	-16.51	Pass
2412	1	n	6.5/7.2 (MCS0)	-8.05	8.00	-16.05	Pass
2437	6	n	6.5/7.2 (MCS0)	-7.69	8.00	-15.69	Pass
2462	11	n	6.5/7.2 (MCS0)	-8.77	8.00	-16.77	Pass

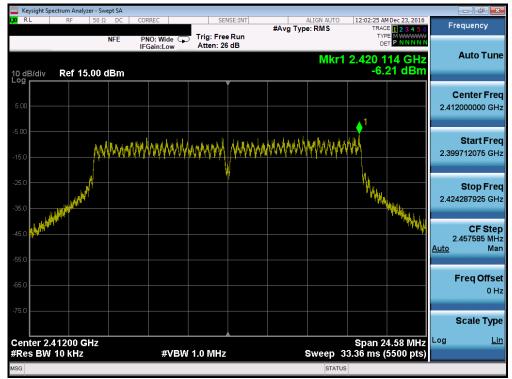
Table 7-4. Conducted Power Density Measurements

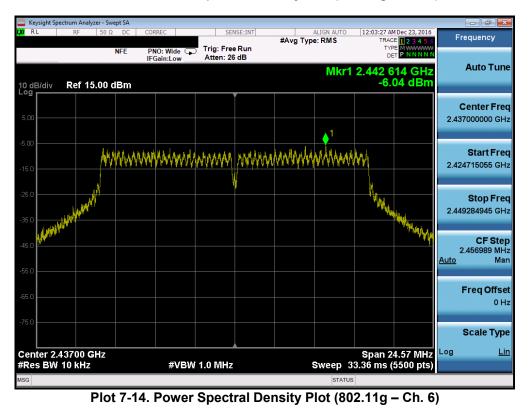


Plot 7-10. Power Spectral Density Plot (802.11b - Ch. 1)

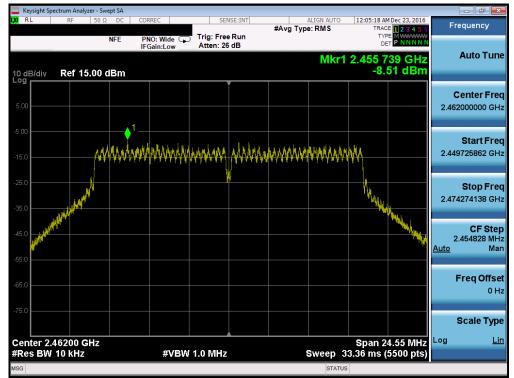
FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 22 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

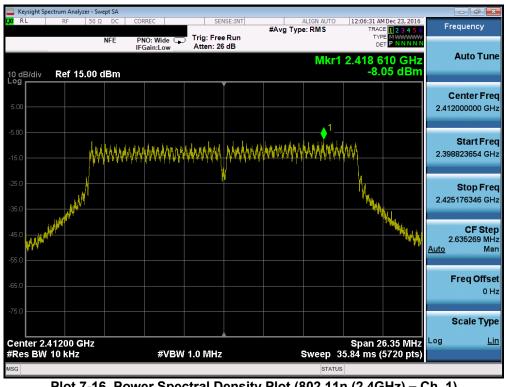

Plot 7-11. Power Spectral Density Plot (802.11b - Ch. 6)


Plot 7-12. Power Spectral Density Plot (802.11b - Ch. 11)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 23 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

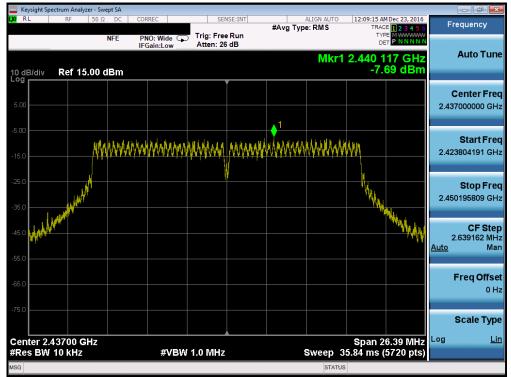


Plot 7-13. Power Spectral Density Plot (802.11g - Ch. 1)

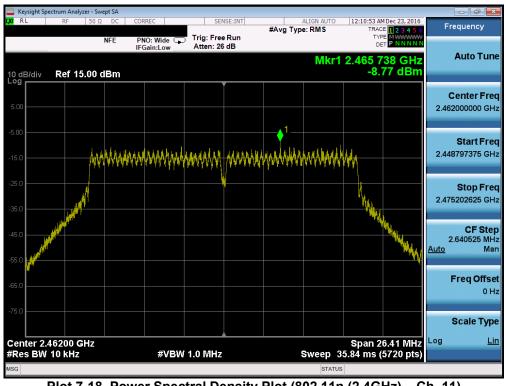


Approved by: FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT FCC ID: ZNFUS110 🕒 LG (CERTIFICATION) **Quality Manager** EUT Type: Test Report S/N: Test Dates: Page 24 of 59 0Y1612232005.ZNF 12/27/2016 - 1/4/2017 Portable Handset © 2017 PCTEST Engineering Laboratory, Inc. V 5 1

Plot 7-15. Power Spectral Density Plot (802.11g - Ch. 11)



Plot 7-16. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 1)


FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 25 of 59
© 2017 PCTEST Engineering I	aboratory, Inc.			V 5.1

11/28/2016

Plot 7-17. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 6)

Plot 7-18. Power Spectral Density Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 26 of 59
© 2017 PCTEST Engineering L	aboratory, Inc.			V 5.1

11/28/2016

7.5 Conducted Emissions at the Band Edge §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, and 6.5/7.2Mbps for "n" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

KDB 558074 D01 v03r05 - Section 11.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

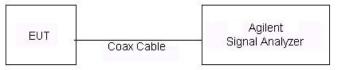


Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

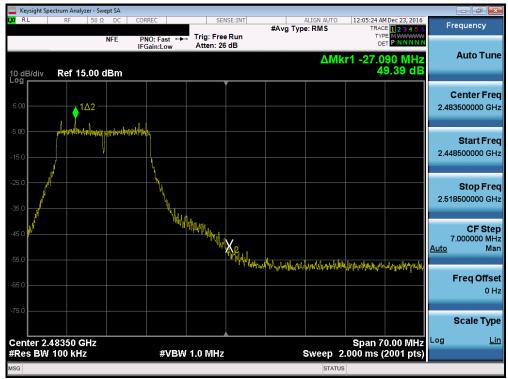
FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 27 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 27 01 59
© 2017 PCTEST Engineering L	aboratory, Inc.			V 5.1

11/28/2016

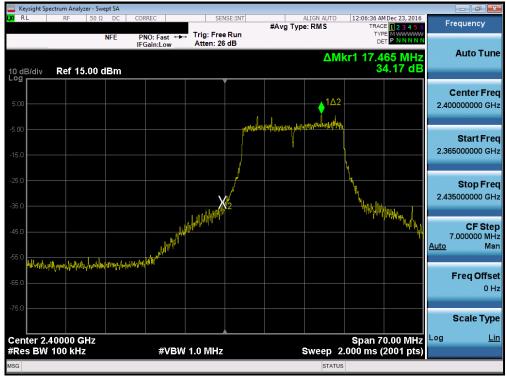

Plot 7-20. Band Edge Plot (802.11b - Ch. 11)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 28 of 59
© 2017 PCTEST Engineering L	aboratory, Inc.			V 5.1

Plot 7-21. Band Edge Plot (802.11g– Ch. 1)



Plot 7-22. Band Edge Plot (802.11g - Ch. 10)


FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 29 of 59
© 2017 PCTEST Engineering L	aboratory, Inc.			V 5.1

11/28/2016

Plot 7-23. Band Edge Plot (802.11g - Ch. 11)



Plot 7-24. Band Edge Plot (802.11n (2.4GHz) – Ch. 1)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 30 of 59
© 2017 PCTEST Engineering L	aboratory, Inc.			V 5.1

11/28/2016

Plot 7-25. Band Edge Plot (802.11n (2.4GHz) - Ch. 10)

Plot 7-26. Band Edge Plot (802.11n (2.4GHz) - Ch. 11)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 31 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 31 01 59
© 2017 PCTEST Engineering L	aboratory, Inc.			V 5.1

7.6 Conducted Spurious Emissions §15.247(d)

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. For the following out of band conducted spurious emissions plots, the EUT was investigated in all available data rates for "b", "g", and "n" modes. The worst case spurious emissions for the 2.4GHz band were found while transmitting in "b" mode at 1 Mbps and are shown in the plots below.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the procedure in Section 11.1 of KDB 558074 D01 v03r05.

Test Procedure Used

KDB 558074 D01 v03r05 - Section 11.3

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

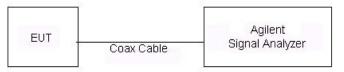


Figure 7-5. Test Instrument & Measurement Setup

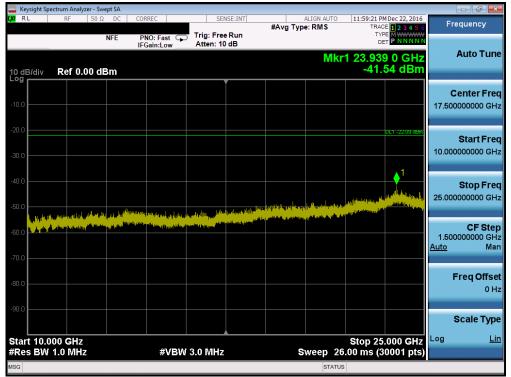
FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 32 of 59
© 2017 PCTEST Engineering	Laboratory, Inc.	•		V 5.1

11/28/2016

^{© 2015} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

Test Notes

- 1. RBW was set to 1MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 30dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 30dB below the level of the fundamental in a 1MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

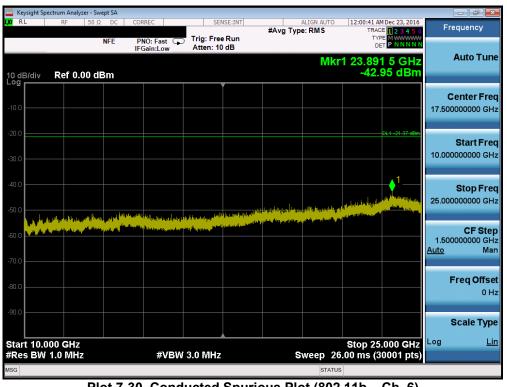

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 33 of 59
© 2017 PCTEST Engineering L	aboratory, Inc.	•		V 5.1

11/28/2016

	Spectrum Anal		SA								-	- 6 -
X/RL	RF	50 Ω	DC O	ORREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO		M Dec 22, 2016 DE 1 2 3 4 5 6	Fred	uency
		NF	E	PNO: Fast FGain:Low	Trig: Free Atten: 26		#Avg Typ		TY Di			
10 dB/div Log	Ref 1	5.00 dB	m					Μ	lkr1 3.78 -36.	9 7 GHz 40 dBm	<u>д</u>	uto Tun
5.00												nter Fre 00000 GH
-5.00												Start Fre
-25.0										DL1 -22.09 dBm		Stop Fre
-35.0					1 				و مادر الدار مادر	and an and the		00000 GH
45.0	en generation of a fille of the second states of the second states of the second states of the second states of	and a substant	and Planets				dia contra provinsi dia co	contraction for the	gan na an a	t - and the part of a second lines -	997.0 <u>Auto</u>	CF Ste 00000 MI Ma
65.0											Fr	e q Offs 0 I
75.0											S	cale Typ
Start 30 Res BV	MHz V 1.0 MH	z		#VBV	V 3.0 MHz		s	weep 1	Stop 10 8.00 ms (3	.000 0112	Log	Ĺ
ISG								STAT	us			

Plot 7-27. Conducted Spurious Plot (802.11b - Ch. 1)

Plot 7-28. Conducted Spurious Plot (802.11b - Ch. 1)


FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 34 of 59
© 2017 PCTEST Engineering L	aboratory, Inc.			V 5.1

11/28/2016

	ight Spectrun											-0	ð
X/RL	F	RF 50	Ω DC	CORR	EC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO		M Dec 23, 2016	Freque	ency
			NFE	PNC IFGa): Fast 🕞 in:Low	Trig: Free Atten: 26				TY		Aut	to Tun
10 dB/	/div Re	ef 15.00	dBm							-36.	77 dBm		
5.00													er Fre
												5.015000	000 GF
5.00 -													art Fre
15.0											DL1 -21.37 dBm	30.000	000 MI
25.0												Ste	op Fre
35.0					• ¹							10.000000	000 GI
45.0			للدري ا	a ba a ba	Maralana (Consportation Automation	Alling Paulas Alling Paulas	an a		an a	R pergegi katika keringi Kalana seringi		CF Ste
	الدوانا والإيلام ورو. المالالالالالادم ورو.	ang	araj genara Alimatika sa k	CONTRACTOR OF	Mary Mary			The support				997.000 <u>Auto</u>	000 M M
55.0 <mark>*</mark>	and the second											_	_
65.0												Free	Offs 01
75.0 -													
													le Typ
	30 MHz BW 1.0				#VBW	/ 3.0 MHz		s	weep	Stop 10 18.00 ms (3	.000 GHz 30001 pts)	Log	L
SG									STA				

Plot 7-29. Conducted Spurious Plot (802.11b - Ch. 6)

Plot 7-30. Conducted Spurious Plot (802.11b – Ch. 6)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 50		
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 35 of 59		
© 2017 PCTEST Engineering Laboratory, Inc.						

11/28/2016

	Spectrum Analyz	er - Swept SA									- 6 론
X/RL	RF	50 Ω DC	CORREC	SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Dec 23, 2016 CE 1 2 3 4 5 6	Free	quency
	_	NFE	PNO: Fast G	Trig: Fre Atten: 26		#Avg typ	e: RIVIS	TY	PE M WWWWW ET P N N N N N		
10 dB/div	Ref 15	.00 dBm					M	kr1 3.75 -36.	8 8 GHz 04 dBm	-	luto Tun
- ^o g					Ĭ					Ce	enter Fre
5.00										5.0150	00000 GH
5.00											Start Fre
15.0										30.0	00000 MH
25.0									DL1 -22.10 dBm		Stop Fre
35.0											00000 GI
			as at a platety in	م الأرباط والمراجع الأور المراجع المراجع المراجع الأور	and the state of the	-	liptical states and the	plates and a second second	uyah yan) awa ^{ntala}		CF Ste
ו5.0 איזיקוג	Level (1) Killing to a graph of the second sec	ang tengen sing sing te ng kangalan di	aller and a second second	ار مەلەيلەر _{بىلەر ب} الە ^{لەر}		اللہ ہے۔ ریک کہ دینے اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل		an dia 19 milia amin'ny solatena dia dia dia dia dia dia dia dia dia di	ىلەنتىلىكى بىلەتلىقى يىلاكىي م	997.0 <u>Auto</u>	00000 MI Mi
55.0 <mark>Uitabio</mark>	olin e m										
i5.0										Fi	r <mark>eq Offs</mark> 0 I
75.0											01
										S	cale Typ
tart 30			-#\/D\					Stop 10	0.000 GHz	Log	L
Res BV	V 1.0 MHz		#VBV	V 3.0 MHz		8	weep 1	s.ou ms (3	30001 pts)		

Plot 7-31. Conducted Spurious Plot (802.11b - Ch. 11)

Plot 7-32. Conducted Spurious Plot (802.11b – Ch. 11)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 50		
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 36 of 59		
© 2017 PCTEST Engineering Laboratory, Inc.						

7.7 Radiated Spurious Emission Measurements – Above 1 GHz §15.247(d) §15.205 & §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-5 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]	
Above 960.0 MHz	500	3	

Table 7-5. Radiated Limits

Test Procedures Used

KDB 558074 D01 v03r05 - Section 12.1, 12.2.7

Test Settings

Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 D01 v03r05

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces

Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01 v03r05

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 50		
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 37 of 59		
© 2017 PCTEST Engineering Laboratory, Inc.						

11/28/2016

^{© 2015} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

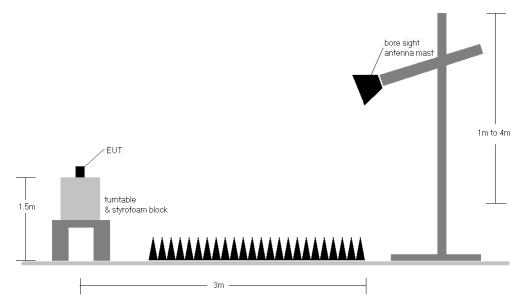


Figure 7-6. Test Instrument & Measurement Setup

Test Notes

- The optional test procedures for antenna port conducted measurements of unwanted emissions per the guidance of KDB 558074 D01 v03r05 were not used to evaluate this device for compliance to radiated limits. All radiated spurious emissions levels were measured in a radiated test setup.
- 2. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-5.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 50		
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 38 of 59		
© 2017 PCTEST Engineering Laboratory, Inc.						

11/28/2016

investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.

8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

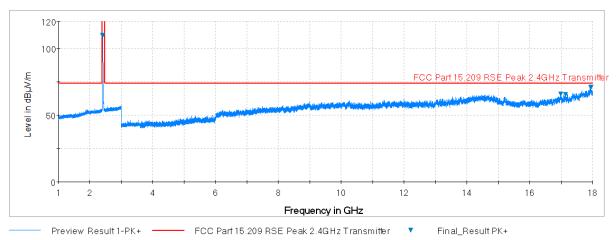
Determining Spurious Emissions Levels

- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m] 0
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] 0
- Margin [dB] = Field Strength Level [dBµV/m] Limit [dBµV/m] 0

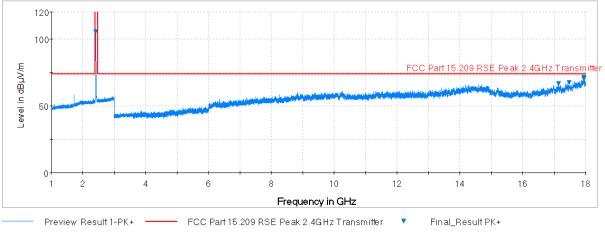
Radiated Band Edge Measurement Offset

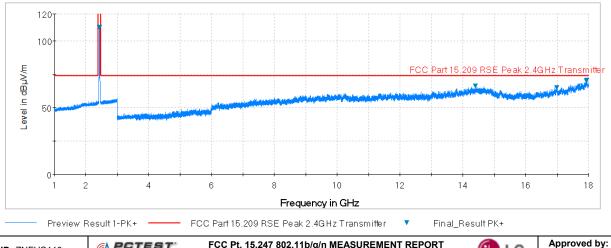
The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was 0 calculated using the formula: Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gain

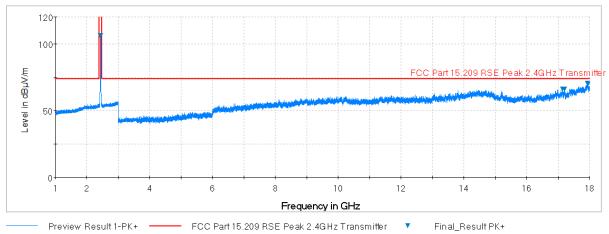
FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 39 of 59

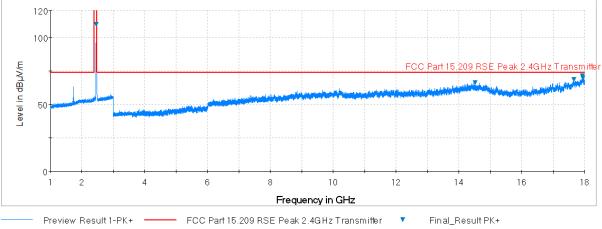

© 2017 PCTEST Engineering Laboratory, Inc.

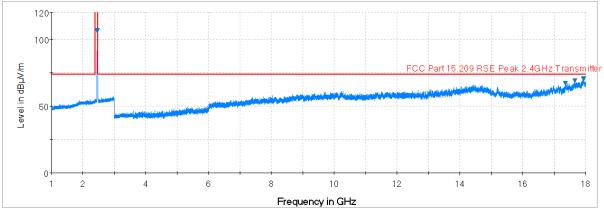
V 5 1 11/28/2016


^{© 2015} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.


7.7.1 Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209



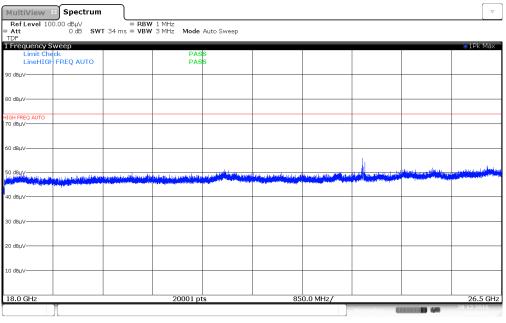

FCC ID: ZNFUS110		(CERTIFICATION)		Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 59		
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Fage 40 01 59		
© 2017 PCTEST Engineering	2017 PCTEST Engineering Laboratory, Inc.					



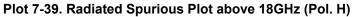
Plot 7-35. Radiated Spurious Plot above 1GHz (802.11b – Ch. 6, Ant. Pol. H)

Plot 7-37. Radiated Spurious Plot above 1GHz (802.11b - Ch. 11, Ant. Pol. H)

- Preview Result 1-PK+ ——— FCC Part 15.209 RSE Peak 2.4GHz Transmitter 🔹 Final_Result PK+


Plot 7-38. Radiated Spurious Plot above 1GHz (802.11b – Ch. 11, Ant. Pol. V)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 50	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 41 of 59	
© 2017 PCTEST Engineering Laboratory, Inc.					


v 5.1 11/28/2016

Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

21:53:16 28.12.2016

1ultiView 🕀 Spectrum				\bigtriangledown
Ref Level 100.00 dBµV				
Att 0 dB SWT 34 ms DF	VBW 3 MHz Mode Auto Sweep			
Frequency Sweep				●1Pk Max
Limit Check	PASS			
LineHIGH FREQ AUTO	PASS			
dBµV				
dBuV				
app.				
H FREQ AUTO				
dBµV				
dBuV				
dBuy difference all all and a second dependence	الماليك والمتعالية والمعداري ومرغا والمعدان والمعطية والمتعادية	والمتحافظ والمتعادية والمعادية والمتحاط والمتحاط والمتحاط والمتحاط والمتحاط	a dan baga apita sarihi di sis	
and the design of the second	The state of the s	and a second	The state of the s	
dBµV				
dBµV-				
dBµV				
I dBuV				
appy				
3.0 GHz	20001 pts	850.0 MHz/		26.5 GF
				20.12.2016

21:56:57 28.12.2016

Plot 7-40. Radiated Spurious Plot above 18GHz (Pol. V)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 50	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 42 of 59	
© 2017 PCTEST Engineering Laboratory, Inc.					

11/28/2016

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2412MHz
Channel:	01

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4824.00	Avg	Н	-	-	-109.44	43.16	40.72	53.98	-13.26
4824.00	Peak	Н	-	-	-99.27	43.16	50.89	73.98	-23.09
12060.00	Avg	Н	-	-	-112.09	54.49	49.39	53.98	-4.59
12060.00	Peak	Н	-	-	-101.72	54.49	59.76	73.98	-14.22

Table 7-6. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11b
1 Mbps
3 Meters
2437MHz
06

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4874.00	Avg	Н	-	-	-109.12	43.91	41.79	53.98	-12.19
4874.00	Peak	Н	-	-	-99.11	43.91	51.80	73.98	-22.18
7311.00	Avg	Н	-	-	-108.70	47.55	45.84	53.98	-8.14
7311.00	Peak	Н	-	-	-98.17	47.55	56.37	73.98	-17.61
12185.00	Avg	Н	-	-	-113.16	54.54	48.38	53.98	-5.60
12185.00	Peak	Н	-	-	-103.19	54.54	58.35	73.98	-15.63

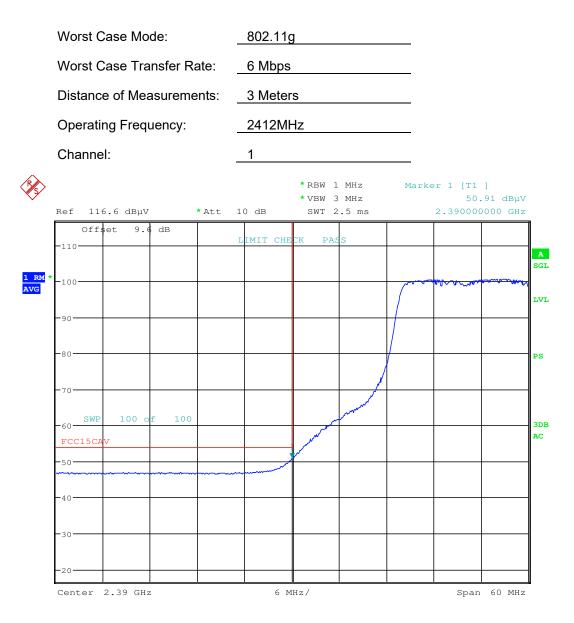
Table 7-7. Radiated Measurements

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 42 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 43 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

Worst Case Mode:	802.11b
Worst Case Transfer Rate:	1 Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2462MHz
Channel:	11

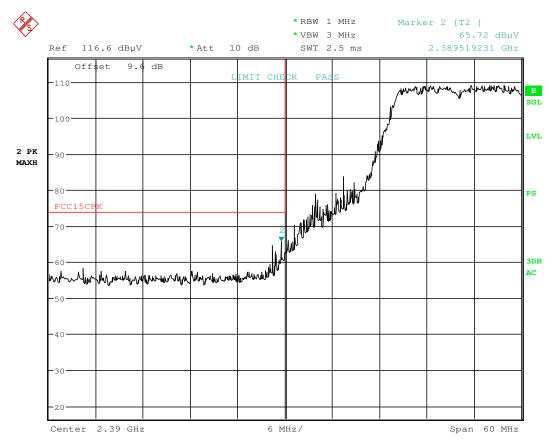
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4924.00	Avg	Н	-	-	-108.85	44.38	42.53	53.98	-11.45
4924.00	Peak	Н	-	-	-98.67	44.38	52.71	73.98	-21.27
7386.00	Avg	Н	-	-	-108.05	47.61	46.56	53.98	-7.42
7386.00	Peak	Н	-	-	-98.34	47.61	56.27	73.98	-17.71
12310.00	Avg	Н	-	-	-111.95	54.60	49.66	53.98	-4.32
12310.00	Peak	Н	-	-	-103.46	54.60	58.15	73.98	-15.83


Table 7-8. Radiated Measurements

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 44 of 59
© 2017 PCTEST Engineering L	2 2017 PCTEST Engineering Laboratory, Inc.			

11/28/2016

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting.


Date: 22.DEC.2016 22:58:11

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 45 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				

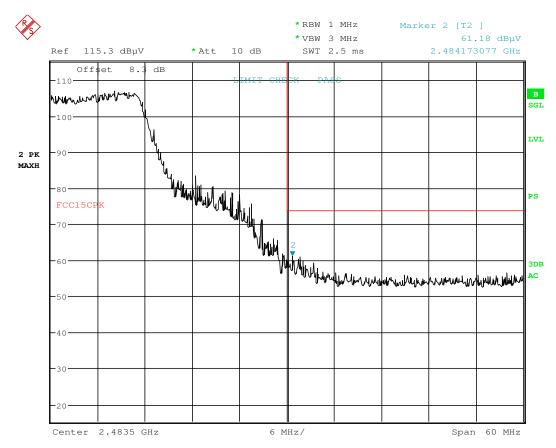
11/28/2016


Date: 22.DEC.2016 22:58:32

Plot 7-42. Radiated Restricted Lower Band Edge Measurement (Peak)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 46 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 46 01 59
© 2017 PCTEST Engineering L	2017 PCTEST Engineering Laboratory, Inc.			V 5.1

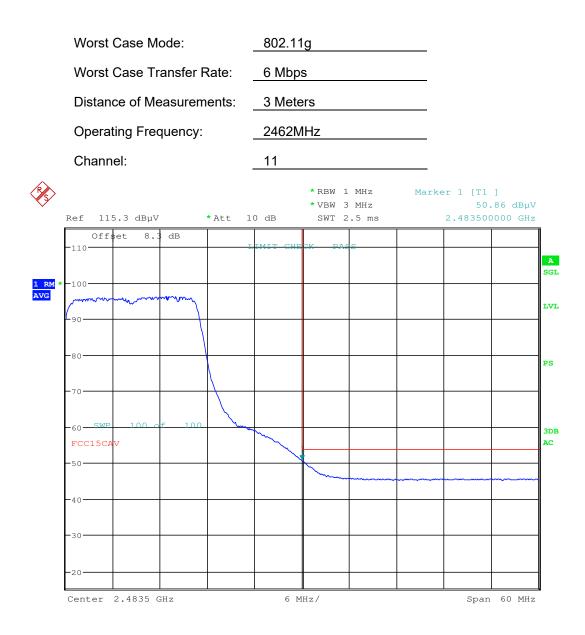
11/28/2016


Date: 22.DEC.2016 23:04:52

Plot 7-43. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 47 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 47 01 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

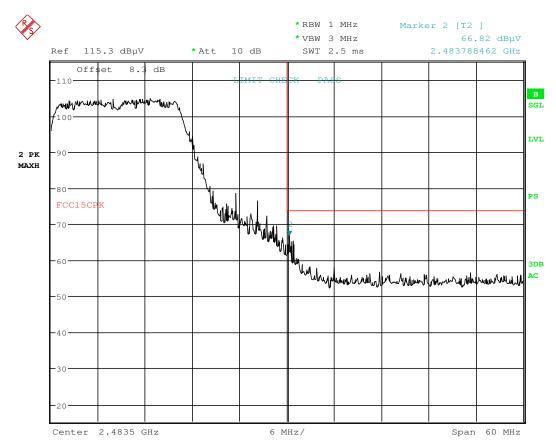
11/28/2016


Date: 22.DEC.2016 23:05:08

Plot 7-44. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 49 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 48 of 59
2 2017 PCTEST Engineering Laboratory, Inc.			V 5.1	

11/28/2016


Date: 22.DEC.2016 23:08:32

Plot 7-45. Radiated Restricted Upper Band Edge Measurement (Average)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 40 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 49 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

Date: 22.DEC.2016 23:08:42

Plot 7-46. Radiated Restricted Upper Band Edge Measurement (Peak)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 50 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 50 of 59
© 2017 PCTEST Engineering L	2017 PCTEST Engineering Laboratory, Inc.			

11/28/2016

7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-9 per Section 15.209.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-9. Radiated Limits

Test Procedures Used

ANSI C63.4-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:			
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 51 of 59	
© 2017 PCTEST Engineering Laboratory Inc.					

11/28/2016

^{© 2015} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

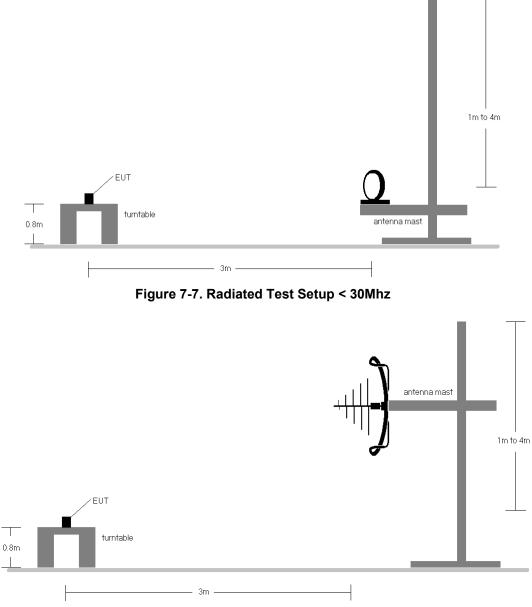


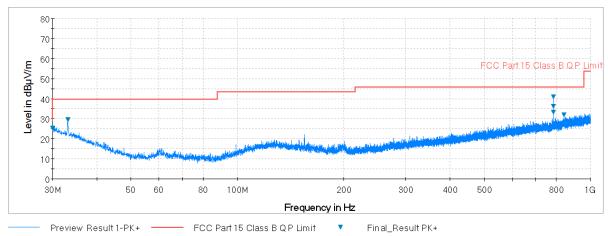
Figure 7-8. Radiated Test Setup < 1GHz

Test Notes

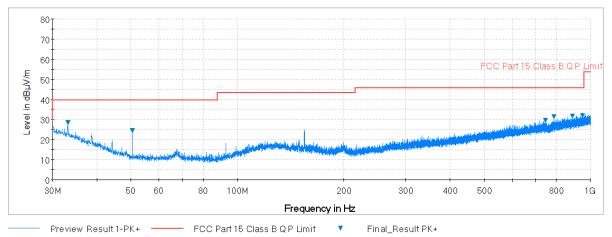
- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-9.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 52 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 52 01 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016


- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. The emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots, were investigated and found to be more than 20dB below the respective limits.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 53 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				


11/28/2016

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-47. Radiated Spurious Plot below 1GHz (Pol. H)

Plot 7-48. Radiated Spurious Plot below 1GHz (Pol. V)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:			
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 54 of 59	
© 2017 PCTEST Engineering Laboratory. Inc. V 5					

11/28/2016

7.9 Line-Conducted Test Data §15.207

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted	Limit (dBµV)
	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-10. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga EE of EO	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 55 of 59	
© 2017 PCTEST Engineering Laboratory Inc.					

2017 PCTEST Engineering Laboratory, Inc.

^{11/28/2016} © 2015 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

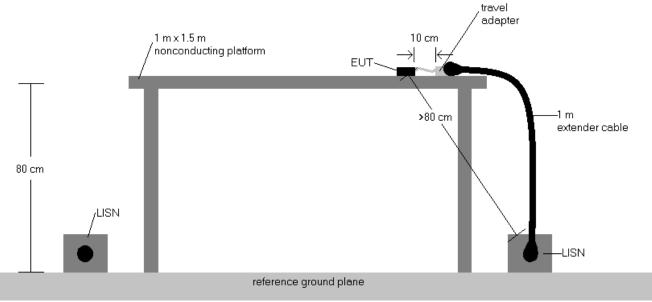


Figure 7-9. Test Instrument & Measurement Setup

Test Notes

- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

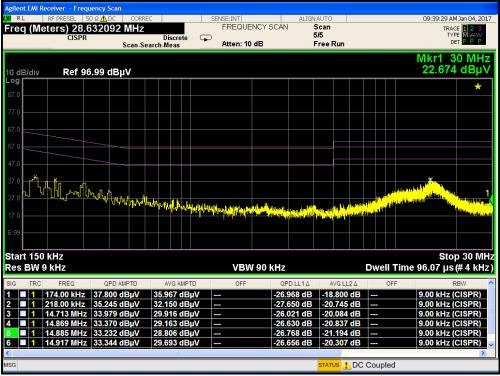
FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dege EC of EQ	
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 56 of 59	
© 2017 PCTEST Engineering Laboratory, Inc.					

11/28/2016

Line-Conducted Test Data §15.207

Agilent EMI Receiver - Frequency Scan M RF PRESEL <s0 dc<="" td="" δ="" ω=""> CORREC SENSE:INT ALIGN AUTO 09:43:56 AM Jan 04, 2017 Freq (Meters) 28.632092 MHz FREQUENCY SCAN Scan TRACE 2 3</s0>							
CISPR	Scan-Sea	Discrete 🕞	Atten: 10 dB	5/5 Free Run	I		
Mkr1 25.196322 MHz 10 dB/div Ref 96.99 dBμV 21.390 dBμV							
Log 87.0						*	
77.0							
67.0							
57.0							
47.0							
37.0							
27.0	սողորհ <mark>եններին</mark> ներույթյուն	WY TER WILd Lander &	and an and the laters of the Lines of		n alan dan ter		
17.0		an a shirt of a start of the st	ennertfeldigintettadion			and the second sec	
6.99							
						04 00 BAU	
Start 150 kHz Res BW 9 kHz			VBW 90 kH	Iz	Dwell Time	Stop 30 MHz 96.07 µs(# 4 kHz)	
SIG TRC FREQ	QPD AMPTD	AVG AMPTD	OFF	QPD LL1 AVG L	L2 A OFF	RBW	
1 🔳 1 15.213 MHz		35.193 dBµV		0.527 dB -14.80		9.00 kHz (CISPR)	
2 📕 1 15.405 MHz		34.599 dBµV		0.835 dB -15.40		9.00 kHz (CISPR)	
3 📕 1 15.469 MHz 4 📕 1 15.485 MHz		34.077 dBµV 35.428 dBµV		0.884 dB -15.92		9.00 kHz (CISPR) 9.00 kHz (CISPR)	
5 1 15.977 MHz		33.232 dBuV		1.642 dB -16.76		9.00 kHz (CISPR)	
	38.372 dBµV	34.926 dBµV		1.628 dB -15.07		9.00 kHz (CISPR)	
<		111				>	
ISG				STATUS	DC Coupled		
	DI-1 7 40		nducted P	1 11 000			

Plot 7-49. Line Conducted Plot with 802.11b (L1)


FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 57 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 57 01 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

Line-Conducted Test Data

<u>§15.207</u>

Plot 7-50. Line Conducted Plot with 802.11b (N)

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 58 of 59
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 56 01 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the LG Portable Handset FCC ID: ZNFUS110 is in compliance with Part 15C of the FCC Rules.

FCC ID: ZNFUS110		FCC Pt. 15.247 802.11b/g/n MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 50
0Y1612232005.ZNF	12/27/2016 - 1/4/2017	Portable Handset		Page 59 of 59
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

11/28/2016