PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

# MEASUREMENT REPORT FCC Part 15.407 UNII 802.11a/n/ac

#### **Applicant Name:**

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

#### Date of Testing: 2/6-3/21/2017 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 1M1703010081-05.ZNF

# FCC ID: APPLICANT:

## LG Electronics MobileComm U.S.A

Application Type: Model: Additional Model(s):

FCC Classification:

FCC Rule Part(s):

**Test Procedure(s):** 

EUT Type:

Certification LG-TP450 LGTP450, TP450, LG-MP450, LGMP450, MP450, LG-M470, LGM470, M470, LG-M470F, LGM470F, M470F Portable Handset Unlicensed National Information Infrastructure (UNII) Part 15.407

KDB 789033 D02 v01r03

ZNFTP450

|           | Channel<br>Bandwidth<br>(MHz) |                       | Conducted Power       |                        |  |
|-----------|-------------------------------|-----------------------|-----------------------|------------------------|--|
| UNII Band |                               | Tx Frequency<br>(MHz) | Max.<br>Power<br>(mW) | Max.<br>Power<br>(dBm) |  |
| 1         |                               | 5180 - 5240           | 51.404                | 17.11                  |  |
| 2A        | 20                            | 5260 - 5320           | 48.865                | 16.89                  |  |
| 2C        |                               | 5500 - 5700           | 51.523                | 17.12                  |  |
| 3         |                               | 5745 - 5825           | 49.204                | 16.92                  |  |
| 1         |                               | 5190 - 5230           | 20.749                | 13.17                  |  |
| 2A        | 40                            | 5270 - 5310           | 20.606                | 13.14                  |  |
| 2C        | 40                            | 5510 - 5670           | 21.038                | 13.23                  |  |
| 3         |                               | 5755 - 5795           | 20.845                | 13.19                  |  |
| 1         |                               | 5210                  | 12.853                | 11.09                  |  |
| 2A        | 80                            | 5290                  | 13.092                | 11.17                  |  |
| 2C        |                               | 5530 -5610            | 13.459                | 11.29                  |  |
| 3         |                               | 5775                  | 13.521                | 11.31                  |  |

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02 v01r03. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

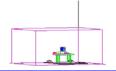
Randy Ortanez President



| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |    | Dega 1 of 112                   |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |    | Page 1 of 113                   |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |    | V 6.2                           |

01/09/2016




# TABLE OF CONTENTS

| FCC F | PART 1 | 5.407 ME | EASUREMENT REPORT                                 | 3  |
|-------|--------|----------|---------------------------------------------------|----|
| 1.0   | INTR   | ODUCTI   | ON                                                | 4  |
|       | 1.1    | Scope    | e                                                 | 4  |
|       | 1.2    | PCTE     | EST Test Location                                 | 4  |
| 2.0   | PRO    |          | FORMATION                                         | 5  |
|       | 2.1    | Equip    | oment Description                                 | 5  |
|       | 2.2    | Devic    | e Capabilities                                    | 5  |
|       | 2.3    | Test (   | Configuration                                     | 6  |
|       | 2.4    | EMI S    | Suppression Device(s)/Modifications               | 6  |
| 3.0   | DESC   | CRIPTIO  | N OF TESTS                                        | 7  |
|       | 3.1    | Evalu    | ation Procedure                                   | 7  |
|       | 3.2    | AC Li    | ine Conducted Emissions                           | 7  |
|       | 3.3    | Radia    | ated Emissions                                    | 8  |
|       | 3.4    | Enviro   | onmental Conditions                               |    |
| 4.0   | ANTE   | ENNA RE  | EQUIREMENTS                                       | 9  |
| 5.0   | MEAS   | SUREME   | NT UNCERTAINTY                                    |    |
| 6.0   | TEST   | EQUIPN   | MENT CALIBRATION DATA                             | 11 |
| 7.0   | TEST   | RESUL    | TS                                                |    |
|       | 7.1    | Sumn     | nary                                              |    |
|       | 7.2    | 26dB     | Bandwidth Measurement - 802.11a/n/ac              |    |
|       | 7.3    | 6dB E    | Bandwidth Measurement – 802.11a/n/ac              |    |
|       | 7.4    | UNII     | Output Power Measurement – 802.11a/n/ac           |    |
|       | 7.5    | Maxir    | mum Power Spectral Density – 802.11a/n/ac         |    |
|       | 7.6    | Frequ    | Jency Stability                                   |    |
|       | 7.7    | Radia    | ated Spurious Emission Measurements – Above 1GHz  | 63 |
|       |        | 7.7.1    | Radiated Spurious Emission Measurements           |    |
|       |        | 7.7.2    | Radiated Band Edge Measurements (20MHz BW)        | 77 |
|       |        | 7.7.3    | Radiated Band Edge Measurements (40MHz BW)        |    |
|       |        | 7.7.4    | Radiated Band Edge Measurements (80MHz BW)        |    |
|       | 7.8    | Radia    | ated Spurious Emissions Measurements – Below 1GHz |    |
|       | 7.9    | Line-0   | Conducted Test Data                               |    |
| 8.0   | CON    | CLUSION  | ۷                                                 |    |

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Daga 2 of 112                   |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 2 of 113                   |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |

01/09/2016





# MEASUREMENT REPORT FCC Part 15.407



| APPLICANT:              | LG Electronics MobileComm U.S.A                        |  |  |  |  |
|-------------------------|--------------------------------------------------------|--|--|--|--|
| APPLICANT ADDRESS:      | 1000 Sylvan Avenue                                     |  |  |  |  |
|                         | Englewood Cliffs, NJ 07632, United States              |  |  |  |  |
| TEST SITE:              | PCTEST ENGINEERING LABORATORY, INC.                    |  |  |  |  |
| TEST SITE ADDRESS:      | 7185 Oakland Mills Road, Columbia, MD 21046 USA        |  |  |  |  |
| FCC RULE PART(S):       | Part 15.407                                            |  |  |  |  |
| BASE MODEL:             | LG-TP450                                               |  |  |  |  |
| FCC ID:                 | ZNFTP450                                               |  |  |  |  |
| FCC CLASSIFICATION:     | Unlicensed National Information Infrastructure (UNII)  |  |  |  |  |
| Test Device Serial No.: | 38455, 38448,  Production  Pre-Production  Engineering |  |  |  |  |
| DATE(S) OF TEST:        | 2/6-3/21/2017                                          |  |  |  |  |
| TEST REPORT S/N:        | 1M1703010081-05.ZNF                                    |  |  |  |  |

# **Test Facility / Accreditations**

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.



- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.



- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Page 3 of 113                   |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 5 01 115                   |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |

01/09/2016



# 1.0 INTRODUCTION

## 1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

# 1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (*See Figure 1-1*).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

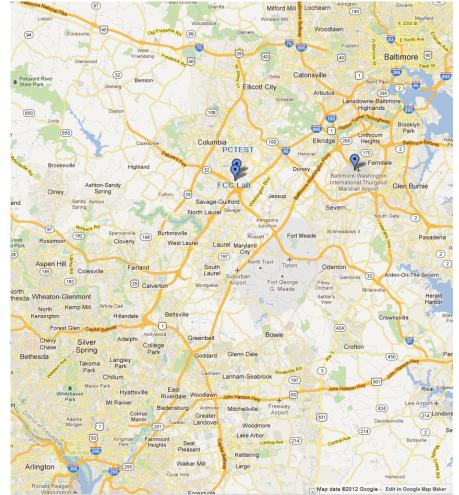



Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |    | Dego 4 of 112                   |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |    | Page 4 of 113                   |
| © 2017 PCTEST Engineering L | aboratory, Inc. | ·                                                                      |    | V 6.                            |

01/09/2016



#### PRODUCT INFORMATION 2.0

#### 2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG Portable Handset FCC ID: ZNFTP450. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

#### 2.2 **Device Capabilities**

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

|     | Band 1          |     | Band 2A         |     | Band 2C         |     | Band 3          |
|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|
| Ch. | Frequency (MHz) |
| 36  | 5180            | 52  | 5260            | 100 | 5500            | 149 | 5745            |
| :   | :               | :   | :               | :   | :               | :   | :               |
| 42  | 5210            | 56  | 5280            | 116 | 5580            | 157 | 5785            |
| :   | :               | :   | :               | :   | :               | :   | :               |
| 48  | 5240            | 64  | 5320            | 140 | 5700            | 165 | 5825            |

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

| Ban  | d  | 1 |
|------|----|---|
| Duir | м. |   |

Band 2A

. .

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 38  | 5190            |
| :   | :               |
| 46  | 5230            |

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 54  | 5270            |
| :   | :               |
| 62  | 5310            |

| Band 2C |                 |     |  |  |  |
|---------|-----------------|-----|--|--|--|
| Ch.     | Frequency (MHz) | Ch  |  |  |  |
| 102     | 5510            | 151 |  |  |  |
| :       | •               | :   |  |  |  |
| 110     | 5550            |     |  |  |  |
| :       | :               |     |  |  |  |
| 134     | 5670            | 159 |  |  |  |

|     | Band 3          |
|-----|-----------------|
| Ch. | Frequency (MHz) |
| 151 | 5755            |
| :   | :               |
|     |                 |
|     |                 |
| 159 | 5795            |
|     |                 |

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

|     | Band 1          |     | Band 2A         |     | Band 2C         | Band 2C Band 3 |     |                 |
|-----|-----------------|-----|-----------------|-----|-----------------|----------------|-----|-----------------|
| Ch. | Frequency (MHz) | Ch. | Frequency (MHz) | Ch. | Frequency (MHz) |                | Ch. | Frequency (MHz) |
| 42  | 5210            | 58  | 5290            | 106 | 5530            |                | 155 | 5775            |

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Daga E of 112                   |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 5 of 113                   |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of KDB 789033 D02 v01r03. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

| Maximum Achievable Duty Cycles |                  |      |  |  |
|--------------------------------|------------------|------|--|--|
| 802 11 M                       | 802.11 Mode/Band |      |  |  |
| 802.11 10                      |                  |      |  |  |
|                                | а                | 99.2 |  |  |
|                                | n (HT20)         | 99.2 |  |  |
|                                | ac (HT20)        | 98.3 |  |  |
| 5GHz                           | n (HT40)         | 98.7 |  |  |
|                                | ac (HT40)        | 96.4 |  |  |
|                                | ac (HT80)        | 93.1 |  |  |

Data Rate(s) Tested: 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n - 20MHz) 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n - 40MHz BW) 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac - 80MHz BW)

## 2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v01r03. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

# 2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 6 of 113                   |  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 6 01 113                   |  |
| 0 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |  |

<sup>© 2017</sup> PCTEST Engineering Laboratory. Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.



# 3.0 DESCRIPTION OF TESTS

# 3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v01r03 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

# 3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz,  $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 7 of 112                   |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 7 of 113                   |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



# 3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. A 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

#### 3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 8 of 113                   |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page o 01 115                   |
| 2 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



# 4.0 ANTENNA REQUIREMENTS

#### Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

#### Conclusion:

The EUT complies with the requirement of §15.203.

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 9 of 113                   |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 9 01 115                   |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



# 5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                        | Expanded Uncertainty (±dB) |
|-------------------------------------|----------------------------|
| Conducted Bench Top<br>Measurements | 1.13                       |
| Line Conducted Disturbance          | 3.09                       |
| Radiated Disturbance (<1GHz)        | 4.98                       |
| Radiated Disturbance (>1GHz)        | 5.07                       |
| Radiated Disturbance (>18GHz)       | 5.09                       |

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dega 10 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 10 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



# 6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

| Manufacturer      | Model            | Description                            | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-------------------|------------------|----------------------------------------|------------|--------------|------------|---------------|
| -                 | WL25-1           | Conducted Cable Set (25GHz)            | 4/11/2016  | Annual       | 4/11/2017  | WL25-1        |
| -                 | RE1              | Radiated Emissions Cable Set (UHF/EHF) | 7/11/2016  | Annual       | 7/11/2017  | RE1           |
| Agilent           | N9030A           | PXA Signal Analyzer (26.5GHz)          | 7/20/2016  | Annual       | 7/20/2017  | MY49432391    |
| Agilent           | N9038A           | MXE EMI Receiver                       | 4/21/2016  | Annual       | 4/21/2017  | MY51210133    |
| Anritsu           | MA2411B          | Pulse Power Sensor                     | 10/14/2015 | Biennial     | 10/14/2017 | 846215        |
| Anritsu           | ML2495A          | Power Meter                            | 10/16/2015 | Biennial     | 10/16/2017 | 941001        |
| Com-Power         | AL-130           | 9kHz - 30MHz Loop Antenna              | 7/30/2015  | Biennial     | 7/30/2017  | 121034        |
| Com-Power         | PAM-103          | Pre-Amplifier (1-1000MHz)              | 7/6/2016   | Annual       | 7/6/2017   | 441119        |
| Com-Power         | PAM-118A         | PREAMPLIFIER 500MHZ TO 18GHZ           | 8/9/2016   | Annual       | 8/9/2017   | 551079        |
| Emco              | 3115             | Horn Antenna (1-18GHz)                 | 3/10/2016  | Biennial     | 3/10/2018  | 9704-5182     |
| EMCO              | 3160-09          | Small Horn (18 - 26.5GHz)              | 8/23/2016  | Biennial     | 8/23/2018  | 135427        |
| EMCO              | 3160-10          | Small Horn (26.5 - 40GHz)              | 8/23/2016  | Biennial     | 8/23/2018  | 130993        |
| Espec             | ESX-2CA          | Environmental Chamber                  | 4/4/2016   | Annual       | 4/4/2017   | 17620         |
| Huber+Suhner      | Sucoflex 102A    | 40GHz Radiated Cable                   | 4/26/2016  | Annual       | 4/26/2017  | 251425001     |
| Pasternack        | NMLC-1           | Line Conducted Emissions Cable (NM)    | 4/28/2015  | Biennial     | 4/28/2017  | NMLC-1        |
| PCTEST            | -                | EMC Switch System                      | 7/6/2016   | Annual       | 7/6/2017   | NM2           |
| Rohde & Schwarz   | ESU40            | EMI Test Receiver (40GHz)              | 7/15/2016  | Annual       | 7/15/2017  | 100348        |
| Rohde & Schwarz   | FSW67            | Signal / Spectrum Analyzer             | 7/27/2016  | Annual       | 7/27/2017  | 103200        |
| Rohde & Schwarz   | TS-PR18          | 1-18 GHz Pre-Amplifier                 | 7/11/2016  | Annual       | 7/11/2017  | 100071        |
| Rohde & Schwarz   | TS-PR26          | 18-26.5 GHz Pre-Amplifier              | 4/7/2016   | Annual       | 4/7/2017   | 100040        |
| Rohde & Schwarz   | TS-PR40          | 26.5-40 GHz Pre-Amplifier              | 4/7/2016   | Annual       | 4/7/2017   | 100037        |
| Solar Electronics | 8012-50-R-24-BNC | Line Impedance Stabilization Network   | 7/30/2015  | Biennial     | 7/30/2017  | 310233        |
| Sunol             | JB5              | Bi-Log Antenna (30M - 5GHz)            | 3/14/2016  | Biennial     | 3/14/2018  | A051107       |
| Sunol Sciences    | DRH-118          | Horn Antenna                           | 7/1/2015   | Biennial     | 7/1/2017   | A060215       |

Table 6-1. Annual Test Equipment Calibration Schedule

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 11 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 11 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



# 7.0 TEST RESULTS

#### 7.1 Summary

| Company Name:  | LG Electronics MobileComm U.S.A                       |
|----------------|-------------------------------------------------------|
| FCC ID:        | <u>ZNFTP450</u>                                       |
| Method/System: | Unlicensed National Information Infrastructure (UNII) |

| FCC Part<br>Section(s)                   | Test Description                                                                       | Test Limit                                                                           | Test<br>Condition | Test<br>Result | Reference              |
|------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|----------------|------------------------|
| N/A                                      | 26dB Bandwidth                                                                         | N/A                                                                                  |                   | PASS           | Section 7.2            |
| 15.407(e)                                | 6dB Bandwidth                                                                          | >500kHz(5725-5850MHz)                                                                |                   | PASS           | Section 7.3            |
| 15.407 (a.1.iv),<br>(a.2), (a.3)         | Maximum Conducted Output<br>Power                                                      | Maximum conducted powers must meet the limits detailed in 15.407 (a)                 |                   | PASS           | Section 7.4            |
| 15.407 (a.1.iv),<br>(a.2), (a.3)         | Maximum Power Spectral<br>Density                                                      | Maximum power spectral density must meet the limits detailed in 15.407 (a)           | CONDUCTED-        | PASS           | Section 7.5            |
| 15.407(g)                                | Frequency Stability                                                                    | N/A                                                                                  |                   | PASS           | Section 7.6            |
| 15.407(h)                                | Dynamic Frequency<br>Selection                                                         | See DFS Test Report                                                                  |                   | PASS           | See DFS<br>Test Report |
| 15.407(b.1), (2),<br>(3), (4)            | Undesirable Emissions                                                                  | Undesirable emissions must meet the limits detailed in 15.407(b)                     |                   | PASS           | Section 7.7            |
| 15.205,<br>15.407(b.1), (4),<br>(5), (6) | General Field Strength<br>Limits (Restricted Bands<br>and Radiated Emission<br>Limits) | Emissions in restricted bands must<br>meet the radiated limits detailed in<br>15.209 | RADIATED          | PASS           | Section 7.7,<br>7.8    |
| 15.407                                   | AC Conducted Emissions<br>150kHz – 30MHz                                               | < FCC 15.207 limits                                                                  | LINE<br>CONDUCTED | PASS           | Section 7.9            |

#### Table 7-1. Summary of Test Results

#### Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.4.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.5.

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dego 12 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 12 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



# 7.2 26dB Bandwidth Measurement – 802.11a/n/ac

#### **Test Overview and Limit**

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r03, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

#### The 26dB bandwidth is used to determine the conducted power limits.

#### Test Procedure Used

KDB 789033 D02 v01r03 - Section C

#### Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

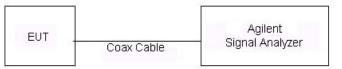



Figure 7-1. Test Instrument & Measurement Setup

#### Test Notes

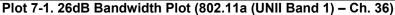
None.

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dogo 12 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 13 of 113                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |

01/09/2016



|         | Frequency<br>[MHz] | Channel<br>No.                | 802.11 Mode | Data Rate [Mbps] | Measured 26dB<br>Bandwidth<br>[MHz] |
|---------|--------------------|-------------------------------|-------------|------------------|-------------------------------------|
|         | 5180               | 36                            | а           | 6                | 23.27                               |
|         | 5200               | 40                            | а           | 6                | 20.81                               |
|         | 5240               | 48                            | а           | 6                | 20.50                               |
| ~       | 5180               | 36                            | n (20MHz)   | 6.5/7.2 (MCS0)   | 21.25                               |
| Band 1  | 5200               | 40                            | n (20MHz)   | 6.5/7.2 (MCS0)   | 20.71                               |
| ä       | 5240               | 48                            | n (20MHz)   | 6.5/7.2 (MCS0)   | 21.11                               |
|         | 5190               | 38                            | n (40MHz)   | 13.5/15 (MCS0)   | 42.39                               |
|         | 5230               | 46                            | n (40MHz)   | 13.5/15 (MCS0)   | 42.90                               |
|         | 5210               | 42                            | ac (80MHz)  | 29.3/32.5 (MCS0) | 83.15                               |
|         | 5260               | 52                            | а           | 6                | 20.24                               |
|         | 5280               | 56                            | а           | 6                | 20.42                               |
|         | 5320               | 64                            | а           | 6                | 20.34                               |
| 2A      | 5260               | 52                            | n (20MHz)   | 6.5/7.2 (MCS0)   | 20.62                               |
| Band 2A | 5280               | 56                            | n (20MHz)   | 6.5/7.2 (MCS0)   | 21.15                               |
| Ba      | 5320               | 320 64 n (20MHz) 6.5/7.2 (MCS |             | 6.5/7.2 (MCS0)   | 20.41                               |
|         | 5270               | 54                            | n (40MHz)   | 13.5/15 (MCS0)   | 42.88                               |
|         | 5310               | 62                            | n (40MHz)   | 13.5/15 (MCS0)   | 42.92                               |
|         | 5290               | 58                            | ac (80MHz)  | 29.3/32.5 (MCS0) | 82.77                               |
|         | 5500               | 100                           | а           | 6                | 20.35                               |
|         | 5580               | 116                           | а           | 6                | 21.44                               |
|         | 5700               | 140                           | а           | 6                | 21.34                               |
| o       | 5500               | 100                           | n (20MHz)   | 6.5/7.2 (MCS0)   | 21.30                               |
| Band 2C | 5580               | 116                           | n (20MHz)   | 6.5/7.2 (MCS0)   | 21.05                               |
| and     | 5700               | 140                           | n (20MHz)   | 6.5/7.2 (MCS0)   | 21.07                               |
| ш       | 5510               | 102                           | n (40MHz)   | 13.5/15 (MCS0)   | 43.02                               |
|         | 5550               | 110                           | n (40MHz)   | 13.5/15 (MCS0)   | 42.83                               |
|         | 5670               | 134                           | n (40MHz)   | 13.5/15 (MCS0)   | 42.95                               |
|         | 5530               | 106                           | ac (80MHz)  | 29.3/32.5 (MCS0) | 82.99                               |


Table 7-2. Conducted Bandwidth Measurements

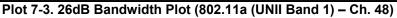
| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dogo 14 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 14 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016







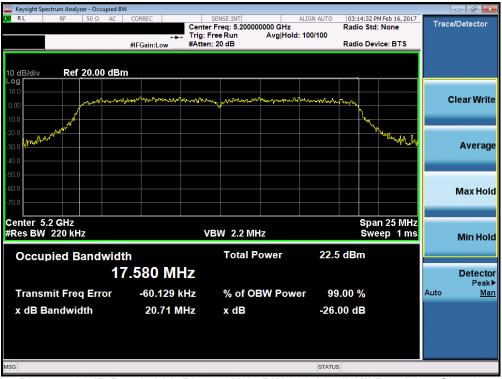



Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

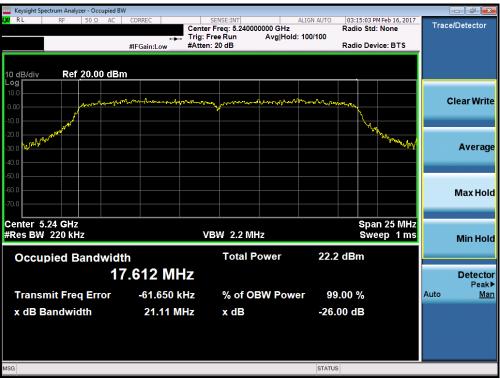
| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dage 15 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 15 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |











Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) – Ch. 36)

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dego 16 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 16 of 113                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |





Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)




Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dega 17 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 17 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |





Plot 7-7. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)



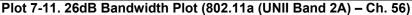
Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) – Ch. 46)

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dogo 19 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 18 of 113                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |



| Keysight Spectrum Analyzer - Occupied BV    | V                      |                                                                    |                          |                                                                  |                          |
|---------------------------------------------|------------------------|--------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|--------------------------|
| KL RF 50Ω AC                                | Trig:                  | SENSE:INT<br>Freq: 5.210000000 GHz<br>Free Run Avg Hol<br>n: 20 dB | ALIGN AUTO               | 03:27:03 PM Feb 16, 2017<br>Radio Std: None<br>Radio Device: BTS | Trace/Detector           |
| 10 dB/div Ref 20.00 dBn                     | n                      |                                                                    |                          |                                                                  | Clear Write              |
| 0.00<br>-10.0<br>-20.0                      |                        |                                                                    | affig falsafigda angeler | Norman Andrews                                                   |                          |
| -30.0<br>-40.0<br>-50.0                     |                        |                                                                    |                          |                                                                  | Average<br>Max Hold      |
| -70.0<br>Center 5.21 GHz<br>#Res BW 820 kHz |                        | /BW 8 MHz                                                          |                          | Span 100 MH:<br>Sweep 1 ms                                       |                          |
| Occupied Bandwidt                           | h<br>1.580 MHz         | Total Power                                                        | 18.1                     | dBm                                                              | Detector                 |
| Transmit Freq Error                         | 7.425 kHz<br>83.15 MHz | % of OBW Pov<br>x dB                                               |                          | .00 %<br>00 dB                                                   | Peakl<br>Auto <u>Mar</u> |
|                                             | 65.13 MHz              | Xub                                                                | -20.0                    |                                                                  |                          |
| ISG                                         |                        |                                                                    | STATUS                   |                                                                  |                          |

Plot 7-9. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)




Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dego 10 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 19 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |









Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 64)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 20 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 20 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |






Plot 7-13. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)



Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dogo 21 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 21 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |





Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

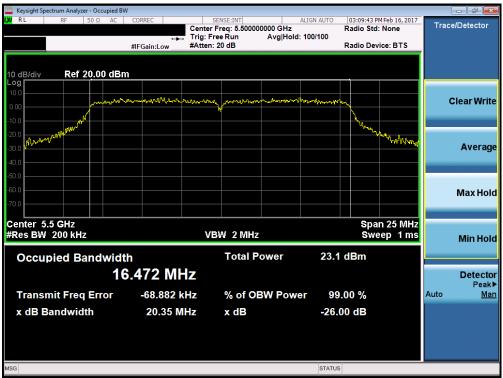


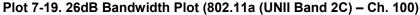
Plot 7-16. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

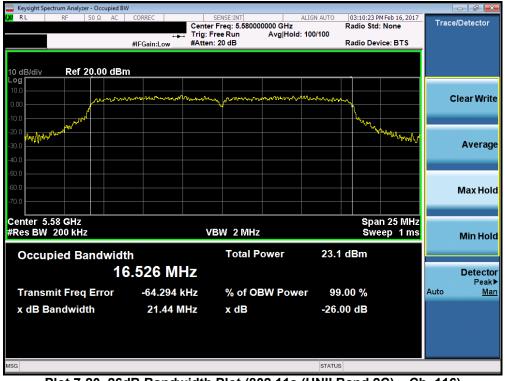
| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dogo 22 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 22 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |






Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

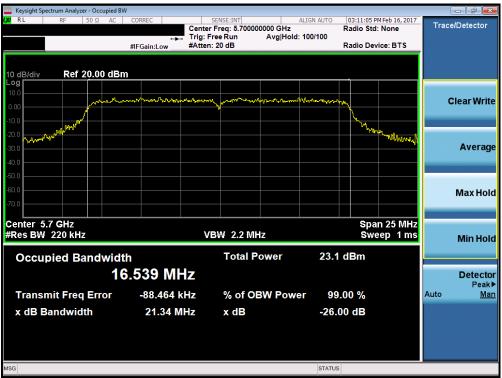


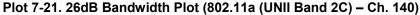


Plot 7-18. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dogo 22 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 23 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |








Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 116)

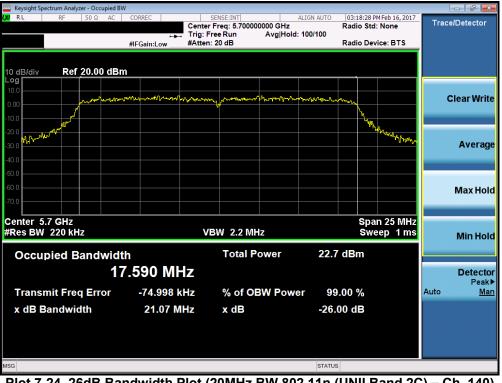
| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dogo 24 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 24 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |







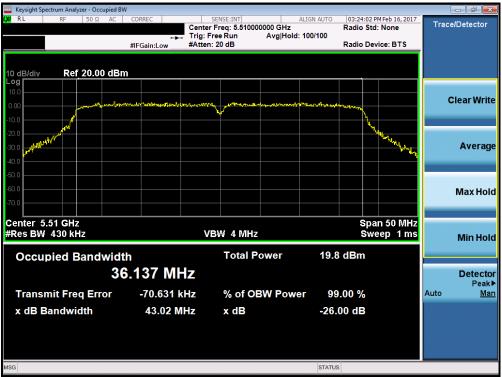



Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

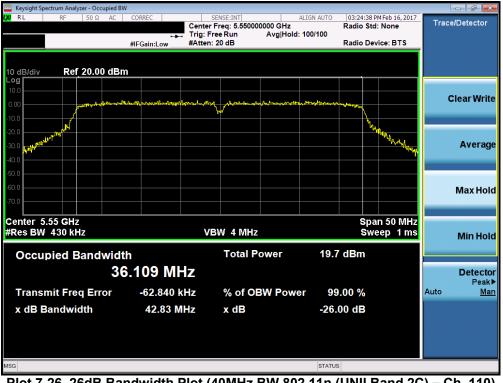
| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dage 25 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 25 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |






Plot 7-23. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)




Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 140)

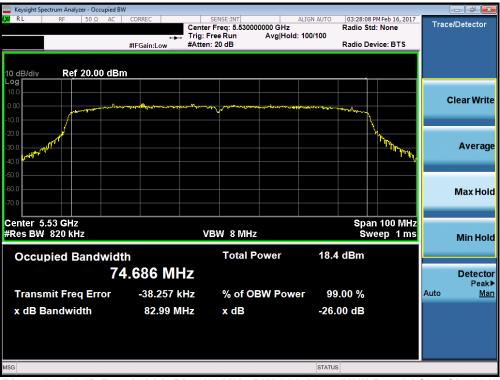
| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dogo 26 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 26 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |





Plot 7-25. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)




Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 27 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 27 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |





Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 134)



Plot 7-28. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dogo 20 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 28 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |



# 7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e)

#### **Test Overview and Limit**

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r03, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

#### In the 5.725 – 5.850GHz band, the 6dB bandwidth must be $\geq$ 500 kHz.

#### Test Procedure Used

KDB 789033 D02 v01r03 - Section C

#### Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

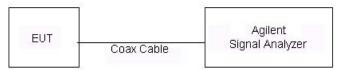



Figure 7-2. Test Instrument & Measurement Setup

#### Test Notes

None.

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 29 of 113                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 29 01 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

01/09/2016

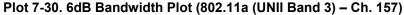


## 6 dB Bandwidth Measurements

| _    | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] | Measured 6dB<br>Bandwidth<br>[MHz] |
|------|--------------------|----------------|-------------|------------------|------------------------------------|
|      | 5745               | 149            | а           | 6                | 15.68                              |
|      | 5785               | 157            | а           | 6                | 16.34                              |
|      | 5825               | 165            | а           | 6                | 16.32                              |
| e    | 5745               | 149            | n (20MHz)   | 6.5/7.2 (MCS0)   | 16.96                              |
| Band | 5785               | 157            | n (20MHz)   | 6.5/7.2 (MCS0)   | 16.46                              |
| ä    | 5825               | 165            | n (20MHz)   | 6.5/7.2 (MCS0)   | 16.69                              |
|      | 5755               | 151            | n (40MHz)   | 13.5/15 (MCS0)   | 34.82                              |
|      | 5795               | 159            | n (40MHz)   | 13.5/15 (MCS0)   | 35.11                              |
|      | 5775               | 155            | ac (80MHz)  | 29.3/32.5 (MCS0) | 75.09                              |

 Table 7-3. Conducted Bandwidth Measurements




Plot 7-29. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dogo 20 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 30 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

01/09/2016









Plot 7-31. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dega 21 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 31 of 113                  |
| ◎ 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

v 6.2 01/09/2016



| Keysight Spectrum Analyzer - Occupied B                       |               | SENSE:INT               |                                                                                                                 | 02:10:50 0              | ME-h 16 2017         | -       |                   |
|---------------------------------------------------------------|---------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|---------|-------------------|
| KL RF 50Ω AC                                                  | Trig:         | er Freq: 5.745000000 GI | ALIGN AUTO<br>Hz<br>Hold: 100/100                                                                               | Radio Std:<br>Radio Dev |                      | Trace/I | Detector          |
| 10 dB/div Ref 20.00 dBr                                       | n             |                         |                                                                                                                 |                         |                      |         |                   |
| 10.0<br>0.00                                                  | m handan para |                         | and the space of the second | ~~                      |                      | Cl      | ear Write         |
| -20.0<br>-20.0<br>-30.0 av <sup>1</sup> M <sup>34</sup> -40.0 |               |                         |                                                                                                                 |                         | murray               |         | Average           |
| -50.0                                                         |               |                         |                                                                                                                 |                         |                      | ı       | Max Hold          |
| Center 5.745 GHz<br>#Res BW 100 kHz                           |               | #VBW 300 kHz            |                                                                                                                 |                         | n 25 MHz<br>p 2.4 ms |         | Min Hold          |
| Occupied Bandwid                                              |               | Total Power             | 22.8                                                                                                            | dBm                     |                      |         |                   |
| 17                                                            | 7.563 MHz     |                         |                                                                                                                 |                         |                      |         | Detector<br>Peak▶ |
| Transmit Freq Error                                           | -77.778 kHz   | % of OBW P              | ower 99                                                                                                         | .00 %                   |                      | Auto    | Mar               |
| x dB Bandwidth                                                | 16.96 MHz     | x dB                    | -6.                                                                                                             | 00 dB                   |                      |         |                   |
| MSG                                                           |               |                         | STATUS                                                                                                          | 3                       |                      |         |                   |

Plot 7-32. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) – Ch. 149)



Plot 7-33. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

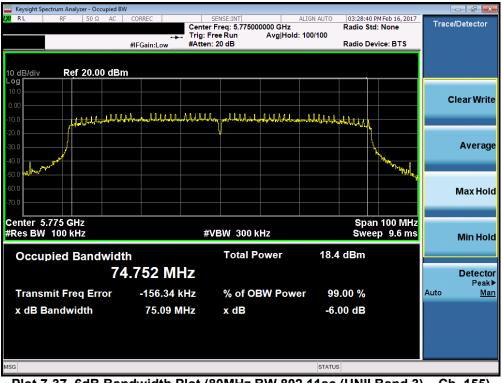
| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dega 22 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 32 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |



| Keysight Spectrum Analyzer - Occupied BV | V                                         |                                                                  |                                   |                                                               |                   |
|------------------------------------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|-------------------|
| KAL RF 50Ω AC                            | Trig:                                     | sense:INT<br>er Freq: 5.825000000 G<br>Free Run Avg<br>en: 20 dB | ALIGN AUTO<br>Hz<br>Hold: 100/100 | 03:19:58 PM Feb 16, 2<br>Radio Std: None<br>Radio Device: BTS | Trace/Detector    |
| 10 dB/div Ref 20.00 dBr                  | n                                         |                                                                  |                                   |                                                               |                   |
| 0.00                                     | ungangangangangangangangangangangangangan | on pronounder of                                                 | amenanana fiyana fiya             | hand he a                                                     | Clear Write       |
| -20.0                                    |                                           |                                                                  |                                   |                                                               | V Average         |
| -50.0                                    |                                           |                                                                  |                                   |                                                               | Max Hold          |
| Center 5.825 GHz<br>#Res BW 100 kHz      |                                           | #VBW 300 kHz<br>Total Power                                      | 22.0                              | Span 25 M<br>Sweep 2.4 r<br>dBm                               |                   |
| Occupied Bandwidt                        | n<br>7.551 MHz                            | rotar Power                                                      | 22.0                              | abin                                                          | Detector<br>Peak▶ |
| Transmit Freq Error<br>x dB Bandwidth    | -81.577 kHz<br>16.69 MHz                  | % of OBW P<br>x dB                                               |                                   | 0.00 %<br>00 dB                                               | Auto <u>Man</u>   |
| ISG                                      |                                           |                                                                  | STATUS                            | 5                                                             |                   |

Plot 7-34. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) – Ch. 165)




Plot 7-35. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) – Ch. 151)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 22 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 33 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |





Plot 7-36. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)



Plot 7-37. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) – Ch. 155)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dega 24 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 34 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |



#### 7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3)

#### Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r03, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm +  $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(20.24) = 24.06dBm$ .

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm +  $10log_{10}(26dB BW) = 11 dBm + <math>10log_{10}(20.35) = 24.09dBm$ .

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

#### Test Procedure Used

KDB 789033 D02 v01r03 – Section E)3)b) Method PM-G

#### Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

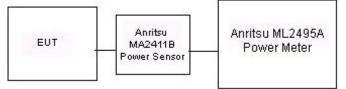



Figure 7-3. Test Instrument & Measurement Setup

#### Test Notes

None

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |    | Page 35 of 113                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |    | Page 55 01 115                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |    | V 6.2                           |

01/09/2016



|            |         |          | 5GHz (20MHz) Conducted Power [dBm]<br>IEEE Transmission Mode |         |          |  |
|------------|---------|----------|--------------------------------------------------------------|---------|----------|--|
| Freq [MHz] | Channel | Detector |                                                              |         |          |  |
|            |         |          | 802.11a                                                      | 802.11n | 802.11ac |  |
| 5180       | 36      | AVG      | 17.09                                                        | 16.35   | 16.24    |  |
| 5200       | 40      | AVG      | 17.04                                                        | 16.31   | 16.27    |  |
| 5220       | 44      | AVG      | 17.11                                                        | 16.26   | 16.18    |  |
| 5240       | 48      | AVG      | 16.91                                                        | 16.32   | 16.16    |  |
| 5260       | 52      | AVG      | 16.89                                                        | 16.20   | 16.16    |  |
| 5280       | 56      | AVG      | 16.87                                                        | 16.23   | 16.14    |  |
| 5300       | 60      | AVG      | 16.67                                                        | 16.23   | 16.09    |  |
| 5320       | 64      | AVG      | 16.74                                                        | 16.31   | 16.19    |  |
| 5500       | 100     | AVG      | 17.11                                                        | 16.52   | 16.44    |  |
| 5580       | 116     | AVG      | 16.88                                                        | 16.42   | 16.39    |  |
| 5660       | 132     | AVG      | 17.00                                                        | 16.48   | 16.42    |  |
| 5700       | 140     | AVG      | 17.12                                                        | 16.44   | 16.35    |  |
| 5745       | 149     | AVG      | 16.81                                                        | 16.41   | 16.32    |  |
| 5785       | 157     | AVG      | 16.92                                                        | 16.56   | 16.47    |  |
| 5825       | 165     | AVG      | 16.91                                                        | 16.49   | 16.41    |  |

Table 7-4. 20MHz BW (UNII) Maximum Conducted Output Power

| Freq [MHz] | Channel | Detector | 5GHz (40MHz) Conducted<br>Power [dBm] |              |  |  |
|------------|---------|----------|---------------------------------------|--------------|--|--|
|            | Channel | Detector | IEEE Transm                           | nission Mode |  |  |
|            |         |          | 802.11n                               | 802.11ac     |  |  |
| 5190       | 38      | AVG      | 13.04                                 | 13.01        |  |  |
| 5230       | 46      | AVG      | 13.17                                 | 13.02        |  |  |
| 5270       | 54      | AVG      | 13.14                                 | 13.01        |  |  |
| 5310       | 62      | AVG      | 13.06                                 | 13.02        |  |  |
| 5510       | 102     | AVG      | 13.14                                 | 13.03        |  |  |
| 5550       | 110     | AVG      | 13.23                                 | 13.04        |  |  |
| 5670       | 134     | AVG      | 13.11                                 | 13.02        |  |  |
| 5755       | 151     | AVG      | 13.11                                 | 13.01        |  |  |
| 5795       | 159     | AVG      | 13.19                                 | 13.02        |  |  |

Table 7-5. 40MHz BW (UNII) Maximum Conducted Output Power

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dego 26 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 36 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |

01/09/2016



| 5GHz (80MHz) Conducted Power [dBm] |         |                              |          |  |  |  |  |
|------------------------------------|---------|------------------------------|----------|--|--|--|--|
| Freq [MHz]                         | Channel | IEEE<br>Transmission<br>Mode |          |  |  |  |  |
|                                    |         |                              | 802.11ac |  |  |  |  |
| 5210                               | 42      | AVG                          | 11.09    |  |  |  |  |
| 5290                               | 58      | AVG                          | 11.17    |  |  |  |  |
| 5530                               | 106     | AVG                          | 11.29    |  |  |  |  |
| 5775                               | 155     | AVG                          | 11.31    |  |  |  |  |

 Table 7-6. 80MHz BW (UNII) Maximum Conducted Output Power

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 27 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 37 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |

01/09/2016



## 7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3)

#### Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r03, and at the appropriate frequencies. Method SA-1, as defined in KDB 789033 D02 v01r03, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

#### In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

#### **Test Procedure Used**

KDB 789033 D02 v01r03 - Section F

#### **Test Settings**

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points  $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

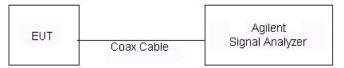



Figure 7-4. Test Instrument & Measurement Setup

#### Test Notes

None

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 29 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 38 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |

01/09/2016



|         | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] |       | Max Permissible<br>Power Density<br>[dBm/MHz] | Margin<br>[dB] | Pass / Fail |
|---------|--------------------|----------------|-------------|------------------|-------|-----------------------------------------------|----------------|-------------|
|         | 5180               | 36             | а           | 6                | 5.80  | 11.0                                          | -5.20          | Pass        |
|         | 5200               | 40             | а           | 6                | 5.93  | 11.0                                          | -5.07          | Pass        |
|         | 5240               | 48             | а           | 6                | 5.67  | 11.0                                          | -5.33          | Pass        |
| -       | 5180               | 36             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.32  | 11.0                                          | -5.68          | Pass        |
| Band    | 5200               | 40             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.18  | 11.0                                          | -5.82          | Pass        |
| B       | 5240               | 48             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.07  | 11.0                                          | -5.93          | Pass        |
|         | 5190               | 38             | n (40MHz)   | 13.5/15 (MCS0)   | -0.93 | 11.0                                          | -11.93         | Pass        |
|         | 5230               | 46             | n (40MHz)   | 13.5/15 (MCS0)   | -0.95 | 11.0                                          | -11.95         | Pass        |
|         | 5210               | 42             | ac (80MHz)  | 29.3/32.5 (MCS0) | -6.00 | 11.0                                          | -17.00         | Pass        |
|         | 5260               | 52             | а           | 6                | 5.51  | 11.0                                          | -5.49          | Pass        |
|         | 5280               | 56             | а           | 6                | 5.60  | 11.0                                          | -5.40          | Pass        |
|         | 5320               | 64             | а           | 6                | 5.85  | 11.0                                          | -5.15          | Pass        |
| 5A      | 5260               | 52             | n (20MHz)   | 6.5/7.2 (MCS0)   | 4.96  | 11.0                                          | -6.04          | Pass        |
| Band 2A | 5280               | 56             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.22  | 11.0                                          | -5.78          | Pass        |
| Ba      | 5320               | 64             | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.33  | 11.0                                          | -5.67          | Pass        |
|         | 5270               | 54             | n (40MHz)   | 13.5/15 (MCS0)   | -0.96 | 11.0                                          | -11.96         | Pass        |
|         | 5310               | 62             | n (40MHz)   | 13.5/15 (MCS0)   | -1.01 | 11.0                                          | -12.01         | Pass        |
|         | 5290               | 58             | ac (80MHz)  | 29.3/32.5 (MCS0) | -5.57 | 11.0                                          | -16.57         | Pass        |
|         | 5500               | 100            | а           | 6                | 6.32  | 11.0                                          | -4.68          | Pass        |
|         | 5580               | 116            | а           | 6                | 6.11  | 11.0                                          | -4.89          | Pass        |
|         | 5700               | 140            | а           | 6                | 6.25  | 11.0                                          | -4.75          | Pass        |
| 0       | 5500               | 100            | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.72  | 11.0                                          | -5.28          | Pass        |
| 4 5C    | 5580               | 116            | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.58  | 11.0                                          | -5.42          | Pass        |
| Band 2C | 5700               | 140            | n (20MHz)   | 6.5/7.2 (MCS0)   | 5.55  | 11.0                                          | -5.45          | Pass        |
| ш       | 5510               | 102            | n (40MHz)   | 13.5/15 (MCS0)   | -0.82 | 11.0                                          | -11.82         | Pass        |
|         | 5550               | 110            | n (40MHz)   | 13.5/15 (MCS0)   | -0.94 | 11.0                                          | -11.94         | Pass        |
|         | 5670               | 134            | n (40MHz)   | 13.5/15 (MCS0)   | -0.80 | 11.0                                          | -11.80         | Pass        |
|         | 5530               | 106            | ac (80MHz)  | 29.3/32.5 (MCS0) | -5.59 | 11.0                                          | -16.59         | Pass        |

Table 7-7. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dego 20 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 39 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |

01/09/2016



|                      | ectrum Analyzer |              | A                             |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |             |                                    |
|----------------------|-----------------|--------------|-------------------------------|----------------------|--------|----------------------------------------------------------------------------------------------------------------|---------|----------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|------------------------------------|
| LXI RL               | RF              | 50Ω A        | AC CO                         | RREC                 |        | SEN                                                                                                            | ISE:INT | #Avg Typ                   | ALIGN AUTO<br>e: RMS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M Feb 16, 2017<br>CE 1 2 3 4 5 6 | F           | requency                           |
|                      |                 |              | P<br>IF                       | NO: Fast<br>Gain:Low |        | rig: Free<br>Atten: 26                                                                                         |         |                            |                             | TY<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |             | Auto Tune                          |
| 10 dB/div<br>Log     | Ref 15.0        | )0 dBi       | m                             |                      |        |                                                                                                                |         |                            | Mkr1                        | 5.175 8<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 800 GHz<br>80 dBm                |             | Auto Tune                          |
| 5.00                 |                 | Jeronana and | generates y official parts of | 1                    |        | and a special state of the |         | مەرىمىرىيە بىلىسىيە يەرىسى | and balgeby-th-cluby-splay- | and the second s |                                  |             | <b>Center Freq</b><br>80000000 GHz |
| -5.00                | /               |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |             | Start Freq                         |
| -15.0                | م<br>مرکز ا     |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 5.16        | 57500000 GHz                       |
| -25.0                | yran fu         |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marthan to Second Mart           | 5.19        | Stop Freq                          |
| -35.0                |                 |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |             | CF Step                            |
| -45.0                |                 |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | <u>Auto</u> | 2.500000 MHz<br>Man                |
| -65.0                |                 |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |             | Freq Offset                        |
| -75.0                |                 |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |             | 0 Hz                               |
|                      |                 |              |                               |                      |        |                                                                                                                |         |                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |             | Scale Type                         |
| Center 5.<br>#Res BW |                 | z            |                               | #VE                  | 3W 3.( | ) MHz                                                                                                          |         |                            | Sweep 1                     | Span 2<br>.000 ms (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00 MHz<br>(1001 pts)           | Log         | Lin                                |
| MSG                  |                 |              |                               |                      |        |                                                                                                                |         |                            | STATUS                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |             |                                    |

Plot 7-38. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)



Plot 7-39. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

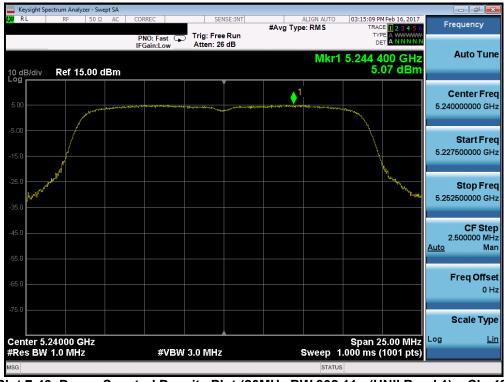
| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Page 40 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 40 01 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |



| Keysight Spectrum Analyzer - Swept SA |                                                                                                                |                                                                                                                |                                                                                                                |                                  |                                     |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|
| X/RL RF 50Ω AC                        | CORREC SEN                                                                                                     | SE:INT #Avg Typ                                                                                                |                                                                                                                | M Feb 16, 2017<br>DE 1 2 3 4 5 6 | Frequency                           |
|                                       | PNO: Fast Free<br>IFGain:Low Atten: 26                                                                         | Run                                                                                                            | TY                                                                                                             |                                  |                                     |
| 10 dB/div Ref 15.00 dBm               |                                                                                                                |                                                                                                                | Mkr1 5.244<br>5.                                                                                               | 550 GHz<br>67 dBm                | Auto Tune                           |
|                                       |                                                                                                                |                                                                                                                |                                                                                                                |                                  | Center Freq                         |
| 5.00                                  | al na an de angle de la constant de | and a sub-product of the second s | and a second |                                  | 5.240000000 GHz                     |
| -5.00                                 |                                                                                                                |                                                                                                                |                                                                                                                |                                  | Start Freq<br>5.227500000 GHz       |
| -25.0                                 |                                                                                                                |                                                                                                                | · · ·                                                                                                          | Andrahan UNIVINIA WOM            | <b>Stop Freq</b><br>5.252500000 GHz |
| 45.0                                  |                                                                                                                |                                                                                                                |                                                                                                                |                                  | CF Step<br>2.500000 MH<br>Auto Mar  |
| -65.0                                 |                                                                                                                |                                                                                                                |                                                                                                                |                                  | Freq Offset<br>0 Hz                 |
| -75.0                                 |                                                                                                                |                                                                                                                |                                                                                                                |                                  | Scale Type                          |
| Center 5.24000 GHz<br>#Res BW 1.0 MHz | #VBW 3.0 MHz                                                                                                   |                                                                                                                | Span 2<br>Sweep 1.000 ms i                                                                                     | .3.00 WILLS                      | .og <u>Lin</u>                      |
| ASG                                   |                                                                                                                |                                                                                                                | STATUS                                                                                                         |                                  |                                     |



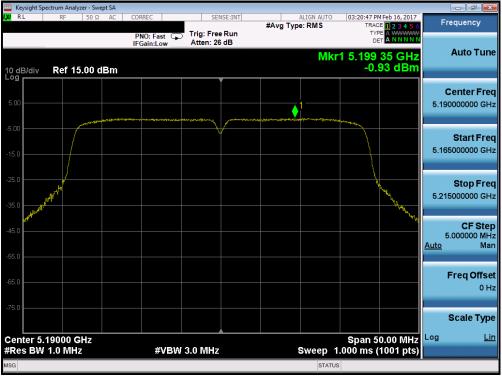



Plot 7-41. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Page 41 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 41 01 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |



|                       | ectrum Analyzer - S  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       | - 6 <b>-</b>                      |
|-----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|---------------------|-----------------------|-----------------------------------|
| L <mark>XI</mark> RL  | RF 50                | Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CORREC                                      | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #Avg Typ | ALIGN AUTO<br>e: RMS | TRAC                | HFeb 16, 2017         | Frequency                         |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PNO: Fast G                                 | Trig: Free Run<br>Atten: 26 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                      |                     |                       |                                   |
| 10 dB/div<br>Log      | Ref 15.00            | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Mkr1                 | 5.203 7<br>5.       | '00 GHz<br>18 dBm     | Auto Tun                          |
| 5.00                  |                      | and set of the set of | nany-11-11-11-11-11-11-11-11-11-11-11-11-11 | and meriling and a state of the | 1        | Content and the form |                     |                       | Center Fre<br>5.200000000 GH      |
| -5.00                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       |                                   |
| -15.0                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       | Start Fre<br>5.187500000 GH       |
|                       | La March             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     | MAL .                 |                                   |
| -25.0                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     | WWW MAR               | <b>Stop Fre</b><br>5.212500000 GH |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       | CF Ste                            |
| -45.0                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       | 2.500000 MH<br><u>Auto</u> Ma     |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       | Freq Offse                        |
| -65.0                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       | . он                              |
| -75.0                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                     |                       | Scale Type                        |
|                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      | <b>0</b> 0          | 5 00 MILL-            | Log Li                            |
| Center 5.2<br>#Res BW | 20000 GHz<br>1.0 MHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #VBV                                        | / 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Sweep 1              | span 2<br>.000 ms ( | 5.00 MHz<br>1001 pts) |                                   |
| MSG                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | STATUS               | 3                   |                       |                                   |


Plot 7-42. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)



Plot 7-43. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Page 42 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 42 01 115                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |









Plot 7-45. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 42 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 43 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |



|                             | pectrum Analyze      | er - Swept SA        |                                        |              |                                                                          |                                                                                 |                                          |
|-----------------------------|----------------------|----------------------|----------------------------------------|--------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|
| XI RL                       | RF                   | 50 Ω AC              | CORREC<br>PNO: Fast                    | SENSE:INT    | ALIGN AUTO<br>#Avg Type: RMS                                             | 03:27:10 PM Feb 16, 2017<br>TRACE 1 2 3 4 5 6<br>TYPE A WWWW<br>DET A N N N N N | Frequency                                |
| 10 dB/div<br>Log            |                      | et 0.31 dB<br>00 dBm | IFGain:Low                             | Atten: 26 dB | N                                                                        | DET A NNNNN<br>Akr1 5.202 0 GHz<br>-6.00 dBm                                    | Auto Tun                                 |
| 5.00                        |                      |                      |                                        | ▲1           |                                                                          |                                                                                 | Center Fre<br>5.210000000 GH             |
| -5.00                       |                      | rer man damana       | 14440000000000000000000000000000000000 |              | Nergelander (1995) ville verden stander (1995) gewallte en stander og se |                                                                                 | <b>Start Fre</b><br>5.160000000 GH       |
| -25.0                       |                      |                      |                                        |              |                                                                          |                                                                                 | <b>Stop Fre</b><br>5.260000000 GH        |
| -45.0 <b>And</b><br>-55.0 — | en l'all'            |                      |                                        |              |                                                                          | "Minutyny A                                                                     | CF Ste<br>10.000000 MH<br><u>Auto</u> Ma |
| 65.0                        |                      |                      |                                        |              |                                                                          |                                                                                 | Freq Offso<br>0 ⊦                        |
|                             |                      |                      |                                        |              |                                                                          |                                                                                 | Scale Typ                                |
|                             | .21000 GH<br>1.0 MHz | łz                   | #VB                                    | W 3.0 MHz    | Sweep                                                                    | Span 100.0 MHz<br>1.000 ms (1001 pts)                                           | Log <u>Li</u>                            |
| //SG                        |                      |                      |                                        |              | STA                                                                      | TUS                                                                             |                                          |



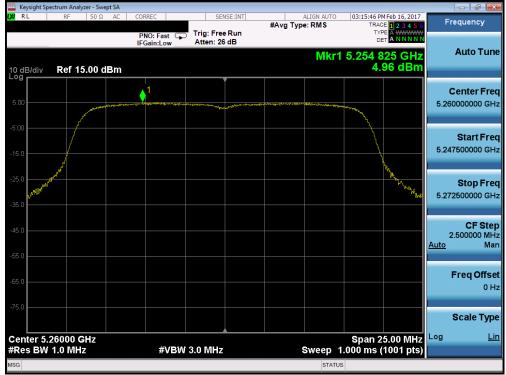



Plot 7-47. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG           | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|----------------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |                | Dogo 11 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       | Page 44 of 113 |                                 |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |                | V 6.2                           |



| — Keysight S     | pectrum Analyz       | er - Swep | pt SA          |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                |                       |           |                         |
|------------------|----------------------|-----------|----------------|--------------------|-------------------------|----------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-------------------------|
| XV RL            | RF                   | 50 Ω      | AC             | CORREC             |                         |                      | ENSE:INT                                                                                                         | #Avg Typ                           | ALIGN AUTO<br>e: RMS                     | TRAC                                                                                                           | M Feb 16, 2017        | F         | requency                |
|                  |                      |           |                | PNO: F<br>IFGain:l | ast ⊊<br>∟ow            | Trig: Fr<br>Atten: 2 |                                                                                                                  |                                    |                                          | TYF<br>DE                                                                                                      |                       |           |                         |
| 10 dB/div<br>Log | Ref 15.              | .00 dl    | Bm             |                    |                         |                      |                                                                                                                  | Mkr1 5.284 100 GHz<br>5.60 dBm     |                                          |                                                                                                                |                       | Auto Tune |                         |
|                  |                      |           |                |                    |                         |                      | Ĭ                                                                                                                |                                    |                                          |                                                                                                                |                       |           | Center Free             |
| 5.00             |                      | /         | لمحرة وتحقيمهم |                    | <del>₩ ¶- 44]+d,+</del> |                      | and the second | ngų, nigar sala sala skinterionari | an a | the second s |                       | 5.28      | 0000000 GH              |
| -5.00            |                      |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                |                       | 5.26      | Start Free              |
|                  | Jours                |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          | NH4                                                                                                            | No.                   |           |                         |
| -25.0            | Nur and              |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                | - Mingheliudur base   | 5.29      | Stop Free<br>2500000 GH |
| -45.0            |                      |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                |                       |           | CF Ste                  |
| -55.0            |                      |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                |                       | Auto      | 2.500000 MH<br>Ma       |
| -65.0            |                      |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                |                       |           | Freq Offse              |
|                  |                      |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                |                       |           | 0 H                     |
| -75.0            |                      |           |                |                    |                         |                      |                                                                                                                  |                                    |                                          |                                                                                                                |                       |           | Scale Typ               |
|                  | .28000 GI<br>1.0 MHz |           |                | ;                  | #VBW                    | 3.0 MH               | z                                                                                                                |                                    | Sweep 1                                  | Span 2<br>.000 ms (                                                                                            | 5.00 MHz<br>1001 pts) | Log       | Li                      |
| //SG             |                      |           |                |                    |                         |                      |                                                                                                                  |                                    | STATUS                                   |                                                                                                                |                       |           |                         |


Plot 7-48. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 56)



Plot 7-49. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 45 of 112                  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 45 of 113                  |  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |  |





Plot 7-50. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) – Ch. 52)




Plot 7-51. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

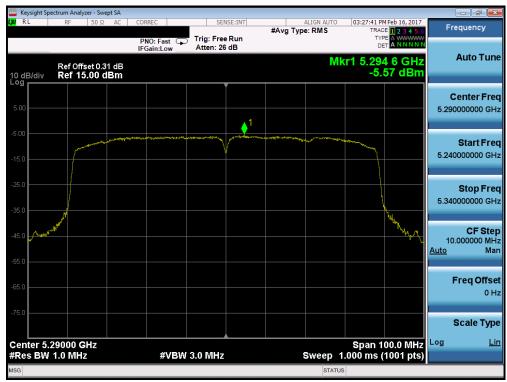
| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Page 46 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 40 01 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |










Plot 7-53. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dego 47 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 47 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |



| SG                           |             | #VD                                                                                                            | A CAV IVITIZ                   | Sweep          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| enter 5.3100<br>Res BW 1.0 N |             | #\/B)                                                                                                          | № 3.0 MHz                      | Sween          | Span 50.00 MHz<br>1.000 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Log <u>L</u>             |
|                              |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale Typ                |
| 75.0                         |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 65.0                         |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o H                      |
| 55.0                         |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offs                |
|                              |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto Ma                  |
| I5.0                         |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CF Ste<br>5.000000 M     |
| 35.0                         |             |                                                                                                                |                                |                | White the second | 3.333000000 8            |
| 25.0 <b>با</b>               |             |                                                                                                                |                                |                | Why way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop Fr<br>5.335000000 G |
|                              |             |                                                                                                                |                                |                | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
| 15.0                         |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.285000000 G            |
| 5.00                         |             | and a second |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Fr                 |
| 5.00                         |             |                                                                                                                |                                | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.310000000 G            |
|                              |             |                                                                                                                |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Fre               |
| 0 dB/div Ref                 | f 15.00 dBn | n                                                                                                              | <b>.</b>                       |                | -1.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
|                              |             | IFGain:Low                                                                                                     | Atten: 26 dB                   | Mk             | r1 5.321 65 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto Tui                 |
|                              |             | PNO: Fast                                                                                                      | Trig: Free Run<br>Atten: 26 dB | #Avg Type: RMS | TRACE 1 2 3 4 5 6<br>TYPE A WWWWW<br>DET A N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trequency                |
| RL RF                        | 50 Ω A      | C CORREC                                                                                                       | SENSE:INT                      | ALIGN AUTO     | 03:23:28 PM Feb 16, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency                |

Plot 7-54. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)



Plot 7-55. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG           | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|----------------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |                | Dego 49 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       | Page 48 of 113 |                                 |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |                | V 6.2                           |



|                  | ectrum Analyzer -          |       |                                          |                                               |                                                 |                                    |                               |
|------------------|----------------------------|-------|------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------|
| X/RL             | RF 5                       | OΩ AC | CORREC                                   | Trig: Free Run                                | ALIGN AUTO<br>#Avg Type: RMS                    | 03:09:54 PM Feb 16,<br>TRACE 1 2 3 | 456 Frequency                 |
|                  |                            |       | PNO: Fast 🕞<br>IFGain:Low                | Atten: 26 dB                                  |                                                 |                                    |                               |
| 10 dB/div<br>Log | Ref 15.0                   | 0 dBm |                                          |                                               | Mkr1                                            | 5.494 950 G<br>6.32 dl             | iHz Auto Tune<br>Bm           |
|                  |                            |       | <b>1</b>                                 |                                               |                                                 |                                    | Center Freq                   |
| 5.00             | /                          |       | an a | alassa ang ang ang ang ang ang ang ang ang an | yan a yan Anton San Un tan Anton ya ya ka ya ka |                                    | 5.50000000 GHz                |
| -5.00            |                            |       |                                          |                                               |                                                 |                                    | Start Freq<br>5.487500000 GHz |
| -15.0            | 16 Areas and a start and a |       |                                          |                                               |                                                 | W.W. WARDEN                        |                               |
| -25.0            |                            |       |                                          |                                               |                                                 |                                    | 5.512500000 GHz               |
|                  |                            |       |                                          |                                               |                                                 |                                    | CF Step                       |
| -45.0            |                            |       |                                          |                                               |                                                 |                                    | 2.500000 MH<br>Auto Mar       |
| -55.0            |                            |       |                                          |                                               |                                                 |                                    | Freq Offse                    |
| -65.0            |                            |       |                                          |                                               |                                                 |                                    | 0 Hz                          |
| -75.0            |                            |       |                                          |                                               |                                                 |                                    | Scale Type                    |
| Center 5.        | 50000 GHz                  | 2     |                                          |                                               |                                                 | Span 25.00 M                       | /Hz Log <u>Lir</u>            |
| #Res BW          |                            |       | #VBW                                     | 3.0 MHz                                       | Sweep 1                                         | .000 ms (1001                      | pts)                          |
| ISG              |                            |       |                                          |                                               | STATU                                           | 5                                  |                               |





Plot 7-57. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 116)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG           | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|----------------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |                | Dega 40 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       | Page 49 of 113 |                                 |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |                | V 6.2                           |



|                  | ectrum Analyze |       | ot SA |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                                |
|------------------|----------------|-------|-------|----------------|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|--------------------------------|
| X/RL             | RF             | 50 Ω  | AC    | CORREC         |               |                                | NSE:INT                                                                                                         | #Avg Typ                                                                                                                  | ALIGN AUTO<br>e: RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M Feb 16, 2017<br>E <b>1 2 3 4 5 6</b> | F    | requency                       |
|                  |                |       |       | PNO: F         | ast ⊊⊃<br>∟ow | Trig: Fre<br>Atten: 2          |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                                |
| 10 dB/div<br>Log | Ref 15.        | 00 dl | Bm    |                |               |                                |                                                                                                                 |                                                                                                                           | Mkr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.694 3<br>6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75 GHz<br>25 dBm                       |      | Auto Tune                      |
|                  |                |       |       | ♦ <sup>1</sup> |               |                                | Ĭ                                                                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      | Center Freq                    |
| 5.00             | /              | /     | ,     |                |               | Lotent for the species play of | and the second secon | el <u>an de la serie de la ser</u> ie | Contraction of the state of the | and a second sec |                                        | 5.70 | 0000000 GHz                    |
| -5.00            |                |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 5 68 | Start Freq                     |
| -15.0            | - Marth Wel    |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mary Mary                              |      |                                |
| -25.0            | u              |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mary Mary Mary                         | 5.71 | Stop Freq<br>2500000 GHz       |
| -35.0            |                |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      | 05.04+                         |
| -45.0            |                |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Auto | CF Step<br>2.500000 MHz<br>Man |
| -55.0            |                |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |                                |
| -65.0            |                |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      | Freq Offset<br>0 Hz            |
| -75.0            |                |       |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      | Scale Type                     |
| Center 5.        | 70000 CL       | 17    |       |                |               |                                |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Snan-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.00 MHz                               | Log  | Lin                            |
| #Res BW          |                | 172   |       | ŧ              | #VBW          | 3.0 MHz                        |                                                                                                                 |                                                                                                                           | Sweep 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000 ms (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1001 pts)                              |      |                                |
| MSG              |                |       |       |                |               |                                |                                                                                                                 |                                                                                                                           | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |      |                                |






Plot 7-59. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG           | Approved by:<br>Quality Manager |  |  |  |
|--------------------------------------------|---------------|------------------------------------------------------------------------|----------------|---------------------------------|--|--|--|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |                | Page 50 of 113                  |  |  |  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       | Page 50 01 113 |                                 |  |  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |                |                                 |  |  |  |









Plot 7-61. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 140)


| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 51 of 113                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 51 01 115                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

© 2017 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, include or produced or utilized in any part, form or by any means, electronic or mechanical, include or produced or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or ut










Plot 7-63. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 52 of 113                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 52 01 115                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |





Plot 7-64. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 134)



Plot 7-65. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dogo 52 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 53 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |



|      | Frequency<br>[MHz] | Channel<br>No. | 802.11 Mode | Data Rate [Mbps] |       | Max Permissible<br>Power Density<br>[dBm/500kHz] | Margin<br>[dB] | Pass / Fail |
|------|--------------------|----------------|-------------|------------------|-------|--------------------------------------------------|----------------|-------------|
|      | 5745               | 149            | а           | 6                | 3.14  | 30.0                                             | -26.86         | Pass        |
|      | 5785               | 157            | а           | 6                | 3.36  | 30.0                                             | -26.64         | Pass        |
|      | 5825               | 165            | а           | 6                | 3.46  | 30.0                                             | -26.54         | Pass        |
| e    | 5745               | 149            | n (20MHz)   | 6.5/7.2 (MCS0)   | 2.56  | 30.0                                             | -27.44         | Pass        |
| Band | 5785               | 157            | n (20MHz)   | 6.5/7.2 (MCS0)   | 2.78  | 30.0                                             | -27.22         | Pass        |
| ä    | 5825               | 165            | n (20MHz)   | 6.5/7.2 (MCS0)   | 2.66  | 30.0                                             | -27.34         | Pass        |
|      | 5755               | 151            | n (40MHz)   | 13.5/15 (MCS0)   | -3.83 | 30.0                                             | -33.83         | Pass        |
|      | 5795               | 159            | n (40MHz)   | 13.5/15 (MCS0)   | -3.55 | 30.0                                             | -33.55         | Pass        |
|      | 5775               | 155            | ac (80MHz)  | 29.3/32.5 (MCS0) | -5.28 | 30.0                                             | -35.28         | Pass        |

Table 7-8. Band 3 Conducted Power Spectral Density Measurements



Plot 7-66. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)


| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 54 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 54 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016










Plot 7-68. Power Spectral Density Plot (802.11a (UNII Band 3) – Ch. 165)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Daga EE of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 55 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

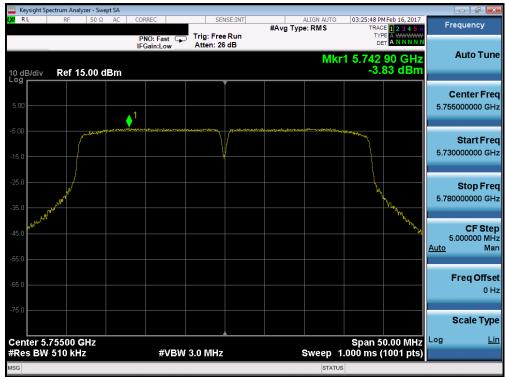
01/09/2016





Plot 7-69. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) – Ch. 149)



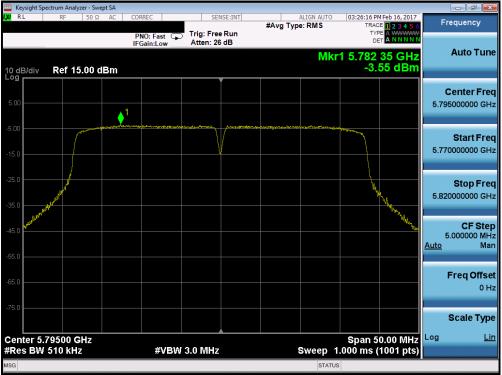

Plot 7-70. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dega EC of 112                  |  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 56 of 113                  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |  |





Plot 7-71. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)




Plot 7-72. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)


| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 57 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 57 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

© 2017 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, include or produced or utilized in any part, form or by any means, electronic or mechanical, include or produced or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or ut





Plot 7-73. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)



Plot 7-74. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 58 of 113                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 56 01 115                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

© 2017 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, include or produced or utilized in any part, form or by any means, electronic or mechanical, include or produced or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or utilized or utilized in any part, form or by any means, electronic or mechanical, include or utilized or ut



### 7.6 Frequency Stability §15.407(g)

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

| OPERATING FREQUENCY: | 5,180,000,000 | Hz  |
|----------------------|---------------|-----|
| CHANNEL:             | 36            |     |
| REFERENCE VOLTAGE:   | 3.85          | VDC |

| VOLTAGE<br>(%)                                                       | POWER<br>(VDC) | TEMP<br>(°C) | FREQUENCY<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |  |
|----------------------------------------------------------------------|----------------|--------------|-------------------|--------------------|------------------|--|
| 100 %                                                                | 3.85           | + 20 (Ref)   | 5,179,999,924     | -76                | -0.00000147      |  |
| 100 %                                                                |                | - 30         | 5,180,000,049     | 49                 | 0.00000095       |  |
| 100 %                                                                |                | - 20         | 5,180,000,124     | 124                | 0.00000239       |  |
| 100 %                                                                |                | - 10         | 5,180,000,133     | 133                | 0.00000257       |  |
| 100 %                                                                |                | 0            | 5,180,000,268     | 268                | 0.00000517       |  |
| 100 %                                                                |                | + 10         | 5,180,000,070     | 70                 | 0.00000135       |  |
| 100 %                                                                |                | + 20         | 5,179,999,689     | -311               | -0.00000600      |  |
| 100 %                                                                |                | + 30         | 5,180,000,099     | 99                 | 0.00000191       |  |
| 100 %                                                                |                | + 40         | 5,179,999,951     | -49                | -0.00000095      |  |
| 100 %                                                                |                | + 50         | 5,179,999,988     | -12                | -0.00000023      |  |
| BATT. ENDPOINT                                                       | 3.45           | + 20         | 5,180,000,184     | 184                | 0.00000355       |  |
| Table 7-9. Frequency Stability Measurements for UNII Band 1 (Ch. 36) |                |              |                   |                    |                  |  |

#### Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 59 of 113                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 59 01 115                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

01/09/2016



The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

| OPERATING FREQUENCY: | 5,260,000,000 | Hz  |
|----------------------|---------------|-----|
| CHANNEL:             | 52            |     |
| REFERENCE VOLTAGE:   | 3.85          | VDC |

| VOLTAGE<br>(%)                                                         | POWER<br>(VDC) | TEMP<br>(°C) | FREQUENCY<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |
|------------------------------------------------------------------------|----------------|--------------|-------------------|--------------------|------------------|
| 100 %                                                                  | 3.85           | + 20 (Ref)   | 5,260,000,081     | 81                 | 0.00000154       |
| 100 %                                                                  |                | - 30         | 5,259,999,870     | -130               | -0.00000247      |
| 100 %                                                                  |                | - 20         | 5,260,000,017     | 17                 | 0.00000032       |
| 100 %                                                                  |                | - 10         | 5,260,000,261     | 261                | 0.00000496       |
| 100 %                                                                  |                | 0            | 5,260,000,012     | 12                 | 0.00000023       |
| 100 %                                                                  |                | + 10         | 5,259,999,964     | -36                | -0.00000068      |
| 100 %                                                                  |                | + 20         | 5,259,999,894     | -106               | -0.00000202      |
| 100 %                                                                  |                | + 30         | 5,259,999,979     | -21                | -0.00000040      |
| 100 %                                                                  |                | + 40         | 5,260,000,267     | 267                | 0.00000508       |
| 100 %                                                                  |                | + 50         | 5,260,000,356     | 356                | 0.00000677       |
| BATT. ENDPOINT                                                         | 3.45           | + 20         | 5,260,000,174     | 174                | 0.00000331       |
| Table 7-10. Frequency Stability Measurements for UNII Band 2A (Ch. 52) |                |              |                   |                    |                  |

#### Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 60 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 60 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |

01/09/2016



The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

| OPERATING FREQUENCY: | 5,500,000,000 | Hz  |
|----------------------|---------------|-----|
| CHANNEL:             | 100           |     |
| REFERENCE VOLTAGE:   | 3.85          | VDC |

| VOLTAGE<br>(%)                                                          | POWER<br>(VDC) | TEMP<br>(°C) | FREQUENCY<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |
|-------------------------------------------------------------------------|----------------|--------------|-------------------|--------------------|------------------|
| 100 %                                                                   | 3.85           | + 20 (Ref)   | 5,500,000,218     | 218                | 0.00000396       |
| 100 %                                                                   |                | - 30         | 5,499,999,976     | -24                | -0.00000044      |
| 100 %                                                                   |                | - 20         | 5,500,000,007     | 7                  | 0.00000013       |
| 100 %                                                                   |                | - 10         | 5,499,999,914     | -86                | -0.00000156      |
| 100 %                                                                   |                | 0            | 5,499,999,923     | -77                | -0.00000140      |
| 100 %                                                                   |                | + 10         | 5,500,000,001     | 1                  | 0.00000002       |
| 100 %                                                                   |                | + 20         | 5,499,999,838     | -162               | -0.00000295      |
| 100 %                                                                   |                | + 30         | 5,499,999,781     | -219               | -0.00000398      |
| 100 %                                                                   |                | + 40         | 5,499,999,987     | -13                | -0.00000024      |
| 100 %                                                                   |                | + 50         | 5,500,000,387     | 387                | 0.00000704       |
| BATT. ENDPOINT                                                          | 3.45           | + 20         | 5,499,999,969     | -31                | -0.00000056      |
| Table 7-11. Frequency Stability Measurements for UNII Band 2C (Ch. 100) |                |              |                   |                    |                  |

#### Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 61 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 61 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |

01/09/2016



The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -30°C and +50°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

| OPERATING FREQUENCY: | 5,745,000,000 | Hz  |
|----------------------|---------------|-----|
| CHANNEL:             | 149           | -   |
| REFERENCE VOLTAGE:   | 3.85          | VDC |

| VOLTAGE<br>(%)                                                         | POWER<br>(VDC) | TEMP<br>(°C) | FREQUENCY<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |
|------------------------------------------------------------------------|----------------|--------------|-------------------|--------------------|------------------|
| 100 %                                                                  | 3.85           | + 20 (Ref)   | 5,745,000,286     | 286                | 0.00000498       |
| 100 %                                                                  |                | - 30         | 5,744,999,678     | -322               | -0.00000560      |
| 100 %                                                                  |                | - 20         | 5,744,999,856     | -144               | -0.00000251      |
| 100 %                                                                  |                | - 10         | 5,744,999,682     | -318               | -0.00000554      |
| 100 %                                                                  |                | 0            | 5,744,999,969     | -31                | -0.00000054      |
| 100 %                                                                  |                | + 10         | 5,744,999,608     | -392               | -0.00000682      |
| 100 %                                                                  |                | + 20         | 5,745,000,225     | 225                | 0.00000392       |
| 100 %                                                                  |                | + 30         | 5,745,000,195     | 195                | 0.00000339       |
| 100 %                                                                  |                | + 40         | 5,744,999,992     | -8                 | -0.00000014      |
| 100 %                                                                  |                | + 50         | 5,745,000,151     | 151                | 0.00000263       |
| BATT. ENDPOINT                                                         | 3.45           | + 20         | 5,745,000,269     | 269                | 0.00000468       |
| Table 7-12. Frequency Stability Measurements for UNII Band 3 (Ch. 149) |                |              |                   |                    |                  |

#### Note:

Based on the results of the frequency stability test shown above the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 62 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 62 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |

01/09/2016



## 7.7 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209

#### Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r03, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-13 per Section 15.209.

| Frequency       | Field Strength<br>[μV/m] | Measured Distance<br>[Meters] |
|-----------------|--------------------------|-------------------------------|
| Above 960.0 MHz | 500                      | 3                             |

Table 7-13. Radiated Limits

#### Test Procedures Used

KDB 789033 D02 v01r03 - Section G

#### **Test Settings**

#### Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be  $\geq 2 \times \text{span/RBW}$ )
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Page 63 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 63 01 113                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |

01/09/2016

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereor, please contact INFO@PCTESTLAB.COM.



#### Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

#### Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

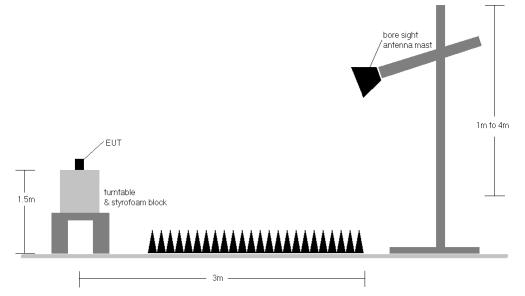



Figure 7-5. Test Instrument & Measurement Setup

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Page 64 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 64 01 115                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |

01/09/2016



- All radiated spurious emissions levels were measured in a radiated test setup per the guidance of KDB 789033 D02 v01r03 Section G.
- 2. All emissions that lie in the restricted bands (denoted by a \* next to the frequency) specified in §15.205 are below the limit shown in Table 7-13.
- 3. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-13. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBμV/m.
- 4. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 5. This unit was tested with its standard battery.
- 6. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 7. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 8. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

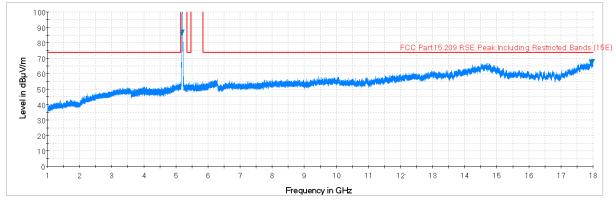
#### Sample Calculations

#### **Determining Spurious Emissions Levels**

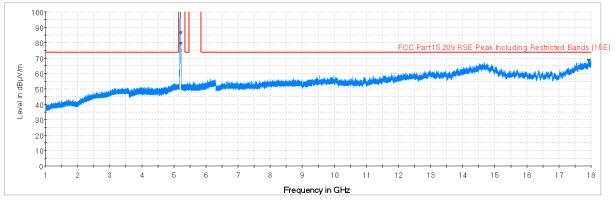
- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

#### Radiated Band Edge Measurement Offset

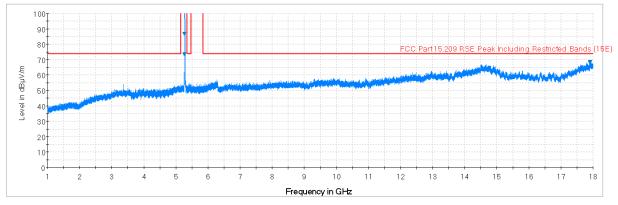
• The amplitude offset shown in the radiated restricted band edge plots in Section 7.7 was calculated using the formula:


#### Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

| FCC ID: ZNFTP450            |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|-----------------------------|---------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:            | Test Dates:   | EUT Type:                                                              |    | Demo 65 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017 | Portable Handset                                                       |    | Page 65 of 113                  |
| © 2017 PCTEST Engineering I | aboratory Inc |                                                                        |    | V 6 2                           |


01/09/2016

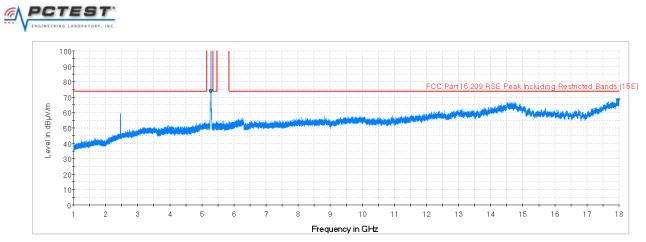



### 7.7.1 Radiated Spurious Emission Measurements

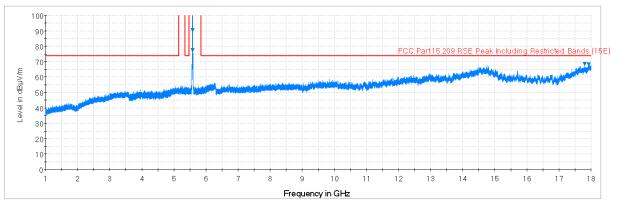


Plot 7-75. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)

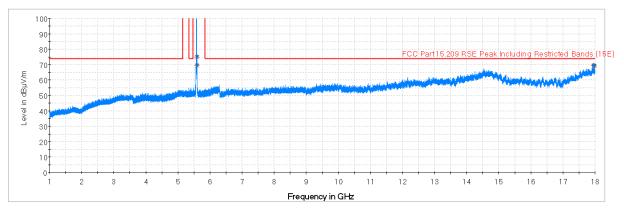



Plot 7-76. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. V)



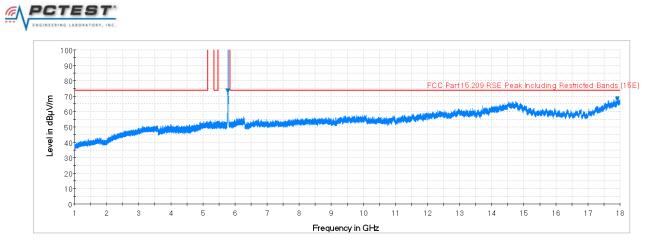

Plot 7-77. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)

| FCC ID: ZNFTP450                  |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |
|-----------------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:                  | Test Dates:     | EUT Type:                                                              |      | Dage 66 of 112                  |  |
| 1M1703010081-05.ZNF 2/6-3/21/2017 |                 | Portable Handset                                                       |      | Page 66 of 113                  |  |
| © 2017 PCTEST Engineering L       | aboratory, Inc. |                                                                        |      | V 6.2                           |  |

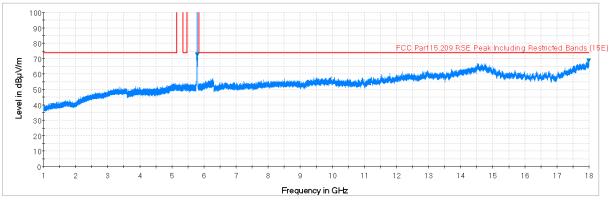

01/09/2016



Plot 7-78. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. V)




Plot 7-79. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. H)




Plot 7-80. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. V)

| FCC ID: ZNFTP450                  |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG           | Approved by:<br>Quality Manager |
|-----------------------------------|-----------------|------------------------------------------------------------------------|----------------|---------------------------------|
| Test Report S/N:                  | Test Dates:     | EUT Type:                                                              |                | Dege 67 of 112                  |
| 1M1703010081-05.ZNF 2/6-3/21/2017 |                 | Portable Handset                                                       | Page 67 of 113 |                                 |
| © 2017 PCTEST Engineering L       | aboratory, Inc. |                                                                        |                | V 6.2                           |

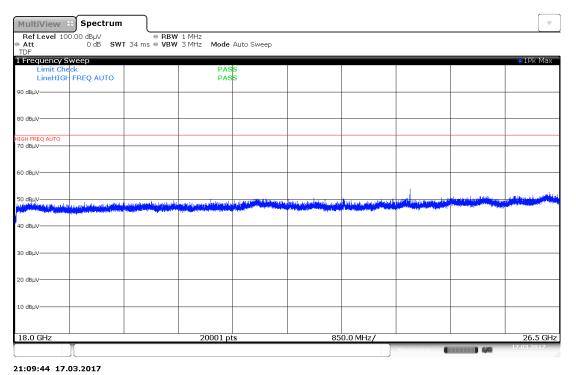


Plot 7-81. Radiated Spurious Plot above 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



Plot 7-82. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dega 69 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 68 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |




# Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

| MultiView                                                                                                        | Spectrum                      |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------|
| Ref Level 10<br>Att<br>TDF                                                                                       | 0.00 dBµV<br>0 dB <b>SWT</b>  |                                          | 1 MHz<br>3 MHz Mode                                                                                              | Auto Sweep |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 1 Frequency S                                                                                                    |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ●1Pk Max                                       |
| Limit Che                                                                                                        |                               |                                          | PAS                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| LineHIGH                                                                                                         | FREQ AUTO                     |                                          | PAS                                                                                                              | S          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 90 dBµV                                                                                                          |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 80 dBµV                                                                                                          |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| HIGH FREQ AUTO<br>70 dBµV                                                                                        |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| , o dop.                                                                                                         |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 60 dBµV                                                                                                          |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| FO dD: AL                                                                                                        |                               |                                          |                                                                                                                  | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Late contains | واللطائمينان ورزيته والأرز                     |
| Join of Burney Links                                                                                             | المتحمين والاطراف والم        | and the sector sector sector             | data polisi Agoonta bayan Ar                                                                                     |            | al de auxiliant de arus, de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | الألبية الإيداني والمرابع           | AND A DESCRIPTION OF THE PARTY |               | and the property and the state of the state of |
| and the second | Management design of addition | Annual Statistics of Congress Statistics | and the second |            | and the second se | the state of the state of the state |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 40 dBμV                                                                                                          |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 30 dBµV                                                                                                          |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 20 dBuV                                                                                                          |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 10 dBµV                                                                                                          |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |
| 18.0 GHz                                                                                                         |                               |                                          | 20001 pt                                                                                                         | s          | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0 MHz/                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 26.5 GHz                                       |
|                                                                                                                  | T I                           |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 17.03.2017                                     |
|                                                                                                                  |                               |                                          |                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                |

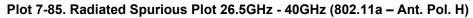
21:01:01 17.03.2017

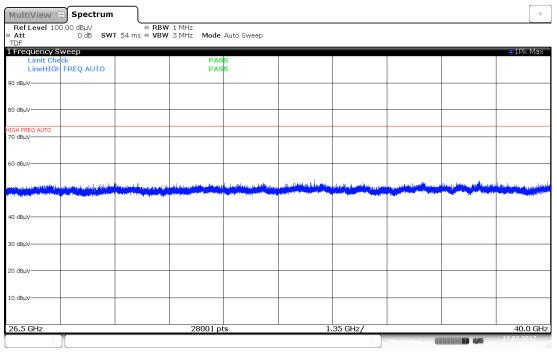




Plot 7-84. Radiated Spurious Plot above 18GHz - 26.5GHz (802.11a – Ant. Pol. V)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |    | Dega 60 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |    | Page 69 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |    | V 6.2                           |


01/09/2016




# Radiated Spurious Emissions Measurements (Above 18GHz) §15.209

| MultiView 🖽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spectrum                     | $\neg$                         |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 | $\nabla$                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------------|--------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Ref Level 100.00<br>Att<br>TDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dBµV<br>0 dB <b>SWT</b>      | ● RBW<br>54 ms ● VBW           | 1 MHz<br>3 MHz Mode                 | Auto Sweep               |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 1 Frequency Swee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :p                           |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 | ●1Pk Max                             |
| Limit Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                | PAS                                 |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| LineHIGH FRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EQ AUTO                      |                                | PAS                                 | 5                        |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 90 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 80 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| HIGH FREQ AUTO<br>70 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| , o dopv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 60 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| لفاليس بيفر وفالغابليين بارين ويتبين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | ويروق والروابي وتسامط أطرياتها | والركر أنتسا تسافظ المحترية والطباس | e                        | والعادا الدويين والمتلفظ أباده والروي           | ويمرور الرواط فالأحط والمتلك                                                                                    | يفاقون فيلتج تدامينا ريان                                                                                      | وريدا فيعقب المقصور والمغاف                                                                                     | المقيسين وروريقيلهم أورا فلغة        |
| on the state of th | والالتان ويستروعه والمتكافئة | and the second second second   | محمدان كالحسفر سوستسب               | and the second states in | and a second statement of the second statements | and and the second standing of the second | the second s | and the state of the | Interconnecting to an a state of the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 40 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 30 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 20 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 10 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |
| 26.5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                | 28001 pt                            | s                        | 1.                                              | 35 GHz/                                                                                                         | -                                                                                                              |                                                                                                                 | 40.0 GHz                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 | Measuring                                                                                                      | 4/4                                                                                                             | 17.03.2017                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                |                                     |                          |                                                 |                                                                                                                 |                                                                                                                |                                                                                                                 |                                      |

21:20:09 17.03.2017





21:16:03 17.03.2017

#### Plot 7-86. Radiated Spurious Plot above 26.5GHz - 40GHz (802.11a – Ant. Pol. V)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Daga 70 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 70 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | ·                                                                      |      | V 6.2                           |

01/09/2016



## Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

| Worst Case Mode:          | 802.11a      |
|---------------------------|--------------|
| Worst Case Transfer Rate: | 6 Mbps       |
| Distance of Measurements: | 1 & 3 Meters |
| Operating Frequency:      | 5180MHz      |
| Channel:                  | 36           |
|                           |              |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10360.00           | Peak     | н                     | 135                       | 319                              | -58.62                     | 12.30          | 0.00                                     | 60.68                         | 68.20             | -7.52          |
| * | 15540.00           | Average  | Н                     | -                         | -                                | -73.72                     | 16.93          | 0.00                                     | 50.21                         | 53.98             | -3.77          |
| * | 15540.00           | Peak     | Н                     | -                         | -                                | -58.58                     | 16.93          | 0.00                                     | 65.35                         | 73.98             | -8.63          |
| * | 20720.00           | Average  | Н                     | 100                       | 10                               | -69.61                     | 8.13           | -9.54                                    | 35.98                         | 53.98             | -18.00         |
| * | 20720.00           | Peak     | Н                     | 100                       | 10                               | -59.66                     | 8.13           | -9.54                                    | 45.93                         | 73.98             | -28.05         |
|   | 25900.00           | Peak     | Н                     | -                         | -                                | -57.34                     | 8.50           | -9.54                                    | 48.62                         | 68.20             | -19.58         |

#### Table 7-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

| 802.11a      |  |
|--------------|--|
| 6 Mbps       |  |
| 1 & 3 Meters |  |
| 5200MHz      |  |
| 40           |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10400.00           | Peak     | н                     | 101                       | 296                              | -58.53                     | 12.23          | 0.00                                     | 60.70                         | 68.20             | -7.50          |
| * | 15600.00           | Average  | Н                     | -                         | -                                | -73.03                     | 16.96          | 0.00                                     | 50.93                         | 53.98             | -3.05          |
| * | 15600.00           | Peak     | Н                     | -                         | -                                | -58.12                     | 16.96          | 0.00                                     | 65.84                         | 73.98             | -8.14          |
| * | 20800.00           | Average  | Н                     | 100                       | 87                               | -71.58                     | 8.16           | -9.54                                    | 34.03                         | 53.98             | -19.95         |
| * | 20800.00           | Peak     | Н                     | 100                       | 87                               | -58.73                     | 8.16           | -9.54                                    | 46.88                         | 73.98             | -27.10         |
|   | 26000.00           | Peak     | Н                     | -                         | -                                | -58.26                     | 8.52           | -9.54                                    | 47.72                         | 68.20             | -20.48         |
|   |                    |          |                       | Tal                       | ble 7-15 R                       | A hoteihe                  | logeurom       | onte                                     |                               |                   |                |

#### Table 7-15. Radiated Measurements

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) |                | Approved by:<br>Quality Manager |  |  |
|--------------------------------------------|---------------|------------------------------------------------------------------------|----------------|---------------------------------|--|--|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |                | Dego 71 of 112                  |  |  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       | Page 71 of 113 |                                 |  |  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |                |                                 |  |  |

01/09/2016



| Worst Case Mode:          | 802.11a      |  |  |
|---------------------------|--------------|--|--|
| Worst Case Transfer Rate: | 6 Mbps       |  |  |
| Distance of Measurements: | 1 & 3 Meters |  |  |
| Operating Frequency:      | 5240MHz      |  |  |
| Channel:                  | 48           |  |  |
|                           |              |  |  |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10480.00           | Peak     | н                     | 104                       | 293                              | -58.45                     | 12.31          | 0.00                                     | 60.86                         | 68.20             | -7.34          |
| * | 15720.00           | Average  | Н                     | -                         | -                                | -72.54                     | 16.49          | 0.00                                     | 50.95                         | 53.98             | -3.03          |
| * | 15720.00           | Peak     | Н                     | -                         | -                                | -57.50                     | 16.49          | 0.00                                     | 65.99                         | 73.98             | -7.99          |
| * | 20960.00           | Average  | Н                     | 100                       | 128                              | -70.34                     | 8.12           | -9.54                                    | 35.24                         | 53.98             | -18.74         |
| * | 20960.00           | Peak     | Н                     | 100                       | 128                              | -59.24                     | 8.12           | -9.54                                    | 46.34                         | 73.98             | -27.64         |
|   | 26200.00           | Peak     | Н                     | -                         | -                                | -56.68                     | 8.62           | -9.54                                    | 49.40                         | 68.20             | -18.80         |

### Table 7-16. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5260MHz 52

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10520.00           | Peak     | н                     | 105                       | 302                              | -58.49                     | 12.60          | 0.00                                     | 61.11                         | 68.20             | -7.09          |
| * | 15780.00           | Average  | Н                     | -                         | -                                | -73.57                     | 16.17          | 0.00                                     | 49.60                         | 53.98             | -4.38          |
| * | 15780.00           | Peak     | Н                     | -                         | -                                | -57.81                     | 16.17          | 0.00                                     | 65.36                         | 73.98             | -8.62          |
| * | 21040.00           | Average  | Н                     | 100                       | 122                              | -71.10                     | 8.10           | -9.54                                    | 34.46                         | 53.98             | -19.52         |
| * | 21040.00           | Peak     | Н                     | 100                       | 122                              | -59.30                     | 8.10           | -9.54                                    | 46.26                         | 73.98             | -27.72         |
|   | 26300.00           | Peak     | Н                     | -                         | -                                | -56.40                     | 8.76           | -9.54                                    | 49.82                         | 68.20             | -18.38         |

Table 7-17. Radiated Measurements

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) |  | Approved by:<br>Quality Manager |  |  |
|-----------------------------|-----------------|------------------------------------------------------------------------|--|---------------------------------|--|--|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |  | Dego 72 of 112                  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |  | Page 72 of 113                  |  |  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |  | V 6.2                           |  |  |

01/09/2016



| Worst Case Mode:          | 802.11a      |
|---------------------------|--------------|
| Worst Case Transfer Rate: | 6 Mbps       |
| Distance of Measurements: | 1 & 3 Meters |
| Operating Frequency:      | 5280MHz      |
| Channel:                  | 56           |
|                           |              |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
|   | 10560.00           | Peak     | н                     | 107                       | 294                              | -58.36                     | 12.55          | 0.00                                     | 61.19                         | 68.20             | -7.01          |
| * | 15840.00           | Average  | н                     | -                         | -                                | -73.43                     | 16.16          | 0.00                                     | 49.73                         | 53.98             | -4.25          |
| * | 15840.00           | Peak     | н                     | -                         | -                                | -57.48                     | 16.16          | 0.00                                     | 65.68                         | 73.98             | -8.30          |
| * | 21120.00           | Average  | н                     | 100                       | 55                               | -70.33                     | 8.09           | -9.54                                    | 35.21                         | 53.98             | -18.77         |
| * | 21120.00           | Peak     | н                     | 100                       | 55                               | -59.11                     | 8.09           | -9.54                                    | 46.43                         | 73.98             | -27.55         |
|   | 26400.00           | Peak     | н                     | -                         | -                                | -57.03                     | 8.99           | -9.54                                    | 49.42                         | 68.20             | -18.78         |

# Table 7-18. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6 Mbps 1 & 3 Meters 5320MHz 64

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 10640.00           | Average  | н                     | 107                       | 293                              | -70.28                     | 12.89          | 0.00                                     | 49.61                         | 53.98             | -4.37          |
| * | 10640.00           | Peak     | н                     | 107                       | 293                              | -58.58                     | 12.89          | 0.00                                     | 61.31                         | 73.98             | -12.67         |
| * | 15960.00           | Average  | Н                     | -                         | -                                | -73.32                     | 16.27          | 0.00                                     | 49.95                         | 53.98             | -4.02          |
| * | 15960.00           | Peak     | Н                     | -                         | -                                | -58.11                     | 16.27          | 0.00                                     | 65.16                         | 73.98             | -8.81          |
| * | 21280.00           | Average  | Н                     | 100                       | 59                               | -69.76                     | 8.07           | -9.54                                    | 35.77                         | 53.98             | -18.21         |
| * | 21280.00           | Peak     | н                     | 100                       | 59                               | -58.78                     | 8.07           | -9.54                                    | 46.75                         | 73.98             | -27.23         |
|   | 26600.00           | Peak     | Н                     | -                         | -                                | -46.77                     | -8.30          | -9.54                                    | 42.39                         | 68.20             | -25.81         |

Table 7-19. Radiated Measurements

| FCC ID: ZNFTP450            |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:   | EUT Type:                                                              |      | Dega 72 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 73 of 113                  |
| © 2017 PCTEST Engineering L |               | V 6.2                                                                  |      |                                 |

01/09/2016



| Worst Case Mode:          | 802.11a      |
|---------------------------|--------------|
| Worst Case Transfer Rate: | 6 Mbps       |
| Distance of Measurements: | 1 & 3 Meters |
| Operating Frequency:      | 5500MHz      |
| Channel:                  | 100          |
|                           |              |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11000.00           | Average  | Н                     | 100                       | 301                              | -70.54                     | 12.80          | 0.00                                     | 49.26                         | 53.98             | -4.72          |
| * | 11000.00           | Peak     | Н                     | 100                       | 301                              | -58.68                     | 12.80          | 0.00                                     | 61.12                         | 73.98             | -12.86         |
|   | 16500.00           | Peak     | Н                     | -                         | -                                | -57.81                     | 15.53          | 0.00                                     | 64.72                         | 68.20             | -3.48          |
|   | 22000.00           | Peak     | Н                     | -                         | -                                | -58.86                     | 8.35           | -9.54                                    | 46.94                         | 68.20             | -21.26         |
|   | 27500.00           | Peak     | Н                     | -                         | -                                | -45.46                     | -8.93          | -9.54                                    | 43.07                         | 68.20             | -25.13         |

Table 7-20. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5580MHz 116

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11160.00           | Average  | Н                     | -                         | -                                | -70.32                     | 12.97          | 0.00                                     | 49.65                         | 53.98             | -4.32          |
| * | 11160.00           | Peak     | Н                     | -                         | -                                | -59.33                     | 12.97          | 0.00                                     | 60.64                         | 73.98             | -13.33         |
|   | 16740.00           | Peak     | Н                     | -                         | -                                | -59.46                     | 16.15          | 0.00                                     | 63.69                         | 68.20             | -4.51          |
| * | 22320.00           | Average  | Н                     | -                         | -                                | -70.16                     | 8.20           | -9.54                                    | 35.50                         | 53.98             | -18.48         |
| * | 22320.00           | Peak     | Н                     | -                         | -                                | -57.88                     | 8.20           | -9.54                                    | 47.78                         | 73.98             | -26.20         |
|   | 27900.00           | Peak     | н                     | -                         | -                                | -45.14                     | -9.24          | -9.54                                    | 43.08                         | 68.20             | -25.12         |

Table 7-21. Radiated Measurements

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dogo 74 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 74 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | ·                                                                      |      | V 6.2                           |

01/09/2016



| Worst Case Mode:          | 802.11a      |
|---------------------------|--------------|
| Worst Case Transfer Rate: | 6 Mbps       |
| Distance of Measurements: | 1 & 3 Meters |
| Operating Frequency:      | 5700MHz      |
| Channel:                  | 140          |
|                           |              |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11400.00           | Average  | н                     | -                         | -                                | -70.34                     | 14.14          | 0.00                                     | 50.80                         | 53.98             | -3.18          |
| * | 11400.00           | Peak     | Н                     | -                         | -                                | -59.10                     | 14.14          | 0.00                                     | 62.04                         | 73.98             | -11.94         |
|   | 17100.00           | Peak     | Н                     | -                         | -                                | -62.49                     | 19.31          | 0.00                                     | 63.82                         | 68.20             | -4.38          |
| * | 22800.00           | Average  | Н                     | -                         | -                                | -71.70                     | 8.29           | -9.54                                    | 34.04                         | 53.98             | -19.94         |
| * | 22800.00           | Peak     | Н                     | -                         | -                                | -60.22                     | 8.29           | -9.54                                    | 45.52                         | 73.98             | -28.46         |
|   | 28500.00           | Peak     | Н                     | -                         | -                                | -45.81                     | -9.03          | -9.54                                    | 42.62                         | 68.20             | -25.58         |

# Table 7-22. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5745MHz 149

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11490.00           | Average  | н                     | -                         | -                                | -70.84                     | 14.05          | 0.00                                     | 50.21                         | 53.98             | -3.77          |
| * | 11490.00           | Peak     | Н                     | -                         | -                                | -59.53                     | 14.05          | 0.00                                     | 61.52                         | 73.98             | -12.46         |
|   | 17235.00           | Peak     | Н                     | -                         | -                                | -62.34                     | 19.32          | 0.00                                     | 63.98                         | 68.20             | -4.22          |
| * | 22980.00           | Average  | Н                     | -                         | -                                | -72.67                     | 8.19           | -9.54                                    | 32.98                         | 53.98             | -21.00         |
| * | 22980.00           | Peak     | н                     | -                         | -                                | -61.10                     | 8.19           | -9.54                                    | 44.55                         | 73.98             | -29.43         |
|   | 28725.00           | Peak     | Н                     | -                         | -                                | -45.26                     | -9.45          | -9.54                                    | 42.75                         | 68.20             | -25.45         |

Table 7-23. Radiated Measurements

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |  |  |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|--|--|--|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Page 75 of 113                  |  |  |  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 75 01 115                  |  |  |  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |  |  |  |

01/09/2016



| Worst Case Mode:          | 802.11a      |
|---------------------------|--------------|
| Worst Case Transfer Rate: | 6 Mbps       |
| Distance of Measurements: | 1 & 3 Meters |
| Operating Frequency:      | 5785MHz      |
| Channel:                  | 157          |
|                           |              |

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11570.00           | Average  | Н                     | -                         | -                                | -70.51                     | 13.85          | 0.00                                     | 50.34                         | 53.98             | -3.64          |
| * | 11570.00           | Peak     | Н                     | -                         | -                                | -58.89                     | 13.85          | 0.00                                     | 61.96                         | 73.98             | -12.02         |
|   | 17355.00           | Peak     | Н                     | -                         | -                                | -62.86                     | 20.51          | 0.00                                     | 64.65                         | 68.20             | -3.55          |
|   | 23140.00           | Peak     | Н                     | -                         | -                                | -59.20                     | 8.47           | -9.54                                    | 46.72                         | 68.20             | -21.48         |
|   | 28925.00           | Peak     | Н                     | -                         | -                                | -45.06                     | -9.71          | -9.54                                    | 42.69                         | 68.20             | -25.51         |

Table 7-24. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

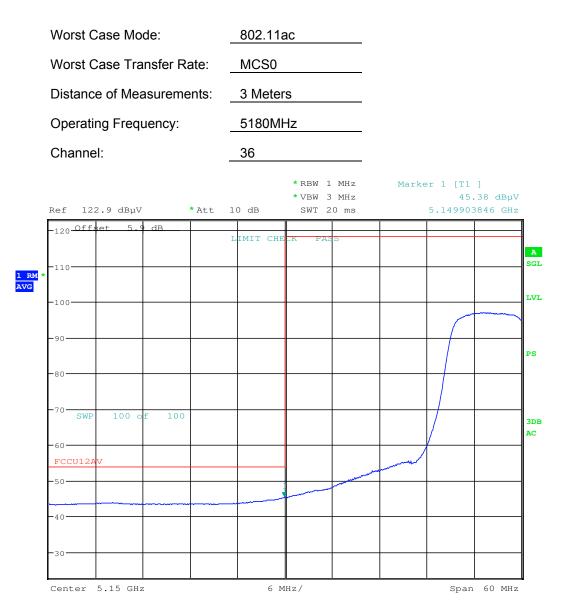

|   | Frequency<br>[MHz] | Detector | Ant.<br>Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Distance<br>Correction<br>Factor<br>[dB] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|---|--------------------|----------|-----------------------|---------------------------|----------------------------------|----------------------------|----------------|------------------------------------------|-------------------------------|-------------------|----------------|
| * | 11650.00           | Average  | н                     | -                         | -                                | -70.53                     | 14.19          | 0.00                                     | 50.66                         | 53.98             | -3.32          |
| * | 11650.00           | Peak     | Н                     | -                         | -                                | -58.24                     | 14.19          | 0.00                                     | 62.95                         | 73.98             | -11.03         |
|   | 17475.00           | Peak     | Н                     | -                         | -                                | -63.69                     | 21.75          | 0.00                                     | 65.06                         | 68.20             | -3.14          |
|   | 23300.00           | Peak     | Н                     | 100                       | 105                              | -59.10                     | 8.60           | -9.54                                    | 46.96                         | 68.20             | -21.24         |
|   | 29125.00           | Peak     | Н                     | -                         | -                                | -44.56                     | -9.93          | -9.54                                    | 42.97                         | 68.20             | -25.23         |

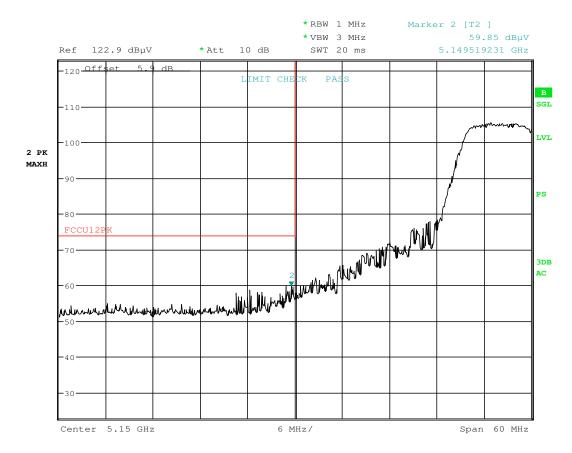
Table 7-25. Radiated Measurements

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|--|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dega 76 of 112                  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 76 of 113                  |  |
| © 2017 PCTEST Engineering L | aboratory, Inc. | •                                                                      |      | V 6.2                           |  |

01/09/2016






Date: 9.MAR.2017 07:01:28

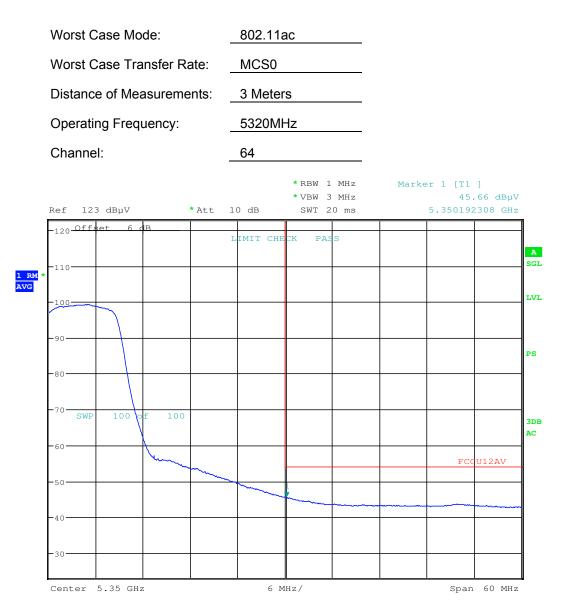
#### Plot 7-87. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

| FCC ID: ZNFTP450            |                                            | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |  |  |  |
|-----------------------------|--------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|--|--|--|
| Test Report S/N:            | Test Dates:                                | EUT Type:                                                              |      | Dege 77 of 112                  |  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                              | Portable Handset                                                       |      | Page 77 of 113                  |  |  |  |
| © 2017 PCTEST Engineering L | © 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |  |  |  |

01/09/2016






Date: 9.MAR.2017 07:01:57

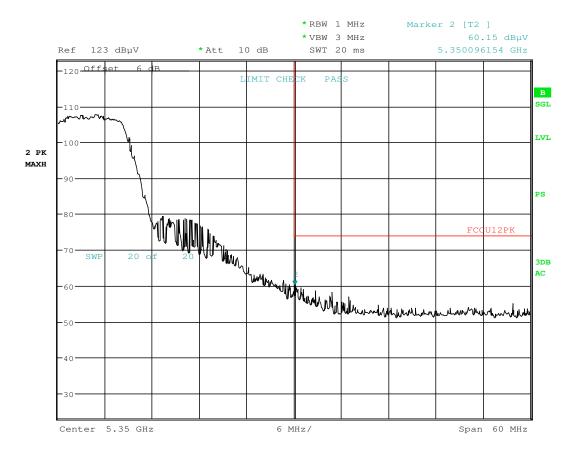
#### Plot 7-88. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |  |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|--|--|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dego 70 of 112                  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 78 of 113                  |  |  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |  |  |

01/09/2016






Date: 9.MAR.2017 07:06:39

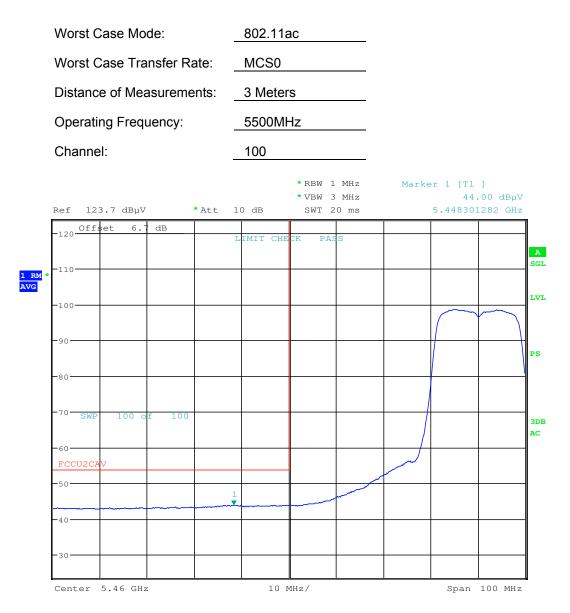
#### Plot 7-89. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

| FCC ID: ZNFTP450            |                                            | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |  |  |
|-----------------------------|--------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|--|--|--|
| Test Report S/N:            | Test Dates:                                | EUT Type:                                                              |      | Daga 70 of 112                  |  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                              | Portable Handset                                                       |      | Page 79 of 113                  |  |  |  |
| © 2017 PCTEST Engineering L | © 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |  |  |  |

01/09/2016






Date: 9.MAR.2017 07:07:17

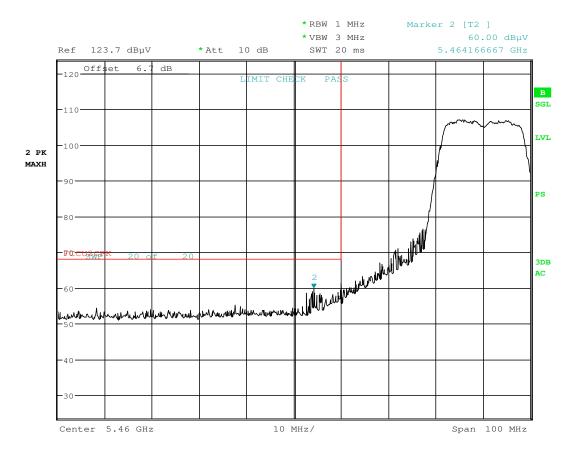
#### Plot 7-90. Radiated Restricted Upper Band Edge Plot (Peak - UNII Band 2A)

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |  |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|--|--|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dogo 90 of 112                  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 80 of 113                  |  |  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |  |  |

01/09/2016






Date: 9.MAR.2017 07:12:09

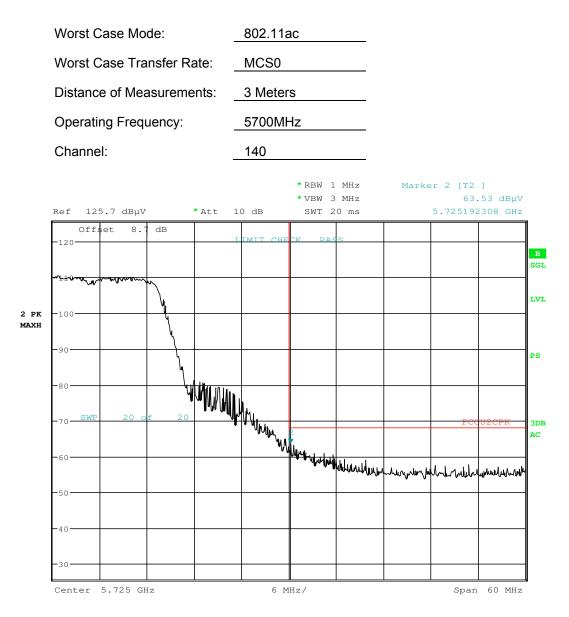
#### Plot 7-91. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

| FCC ID: ZNFTP450            |                                            | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |  |  |
|-----------------------------|--------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|--|--|--|
| Test Report S/N:            | Test Dates:                                | EUT Type:                                                              |      | Dego 01 of 112                  |  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                              | Portable Handset                                                       |      | Page 81 of 113                  |  |  |  |
| © 2017 PCTEST Engineering L | © 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |  |  |  |

01/09/2016






Date: 9.MAR.2017 07:12:41

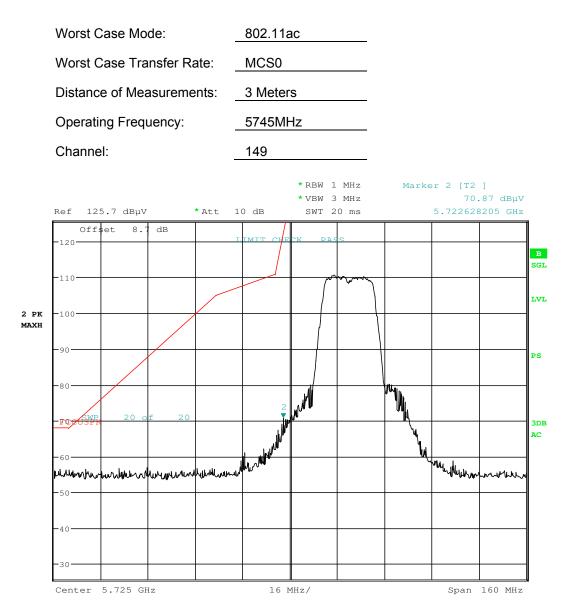


| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |  |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|--|--|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dogo 92 of 112                  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 82 of 113                  |  |  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |  |  |

01/09/2016






Date: 16.MAR.2017 05:41:55

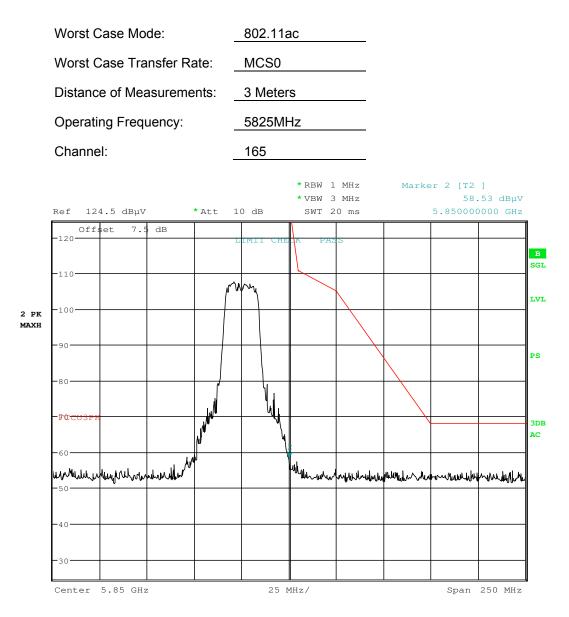
# Plot 7-93. Radiated Upper Band Edge Plot (Peak – UNII Band 2C)

| FCC ID: ZNFTP450            |                                            | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |  |  |  |
|-----------------------------|--------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|--|--|--|
| Test Report S/N:            | Test Dates:                                | EUT Type:                                                              |      | Daga 92 of 112                  |  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                              | Portable Handset                                                       |      | Page 83 of 113                  |  |  |  |
| © 2017 PCTEST Engineering L | © 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |  |  |  |

01/09/2016






Date: 16.MAR.2017 05:32:28

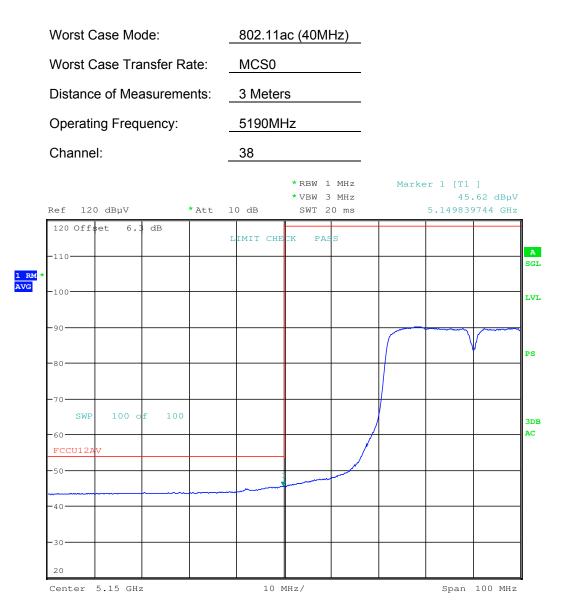
# Plot 7-94. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFTP450            |                                            | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |  |  |  |
|-----------------------------|--------------------------------------------|------------------------------------------------------------------------|----|---------------------------------|--|--|--|
| Test Report S/N:            | Test Dates:                                | EUT Type:                                                              |    | Dege 94 of 112                  |  |  |  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                              | Portable Handset                                                       |    | Page 84 of 113                  |  |  |  |
| © 2017 PCTEST Engineering L | © 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |    |                                 |  |  |  |

01/09/2016






Date: 9.MAR.2017 07:20:15

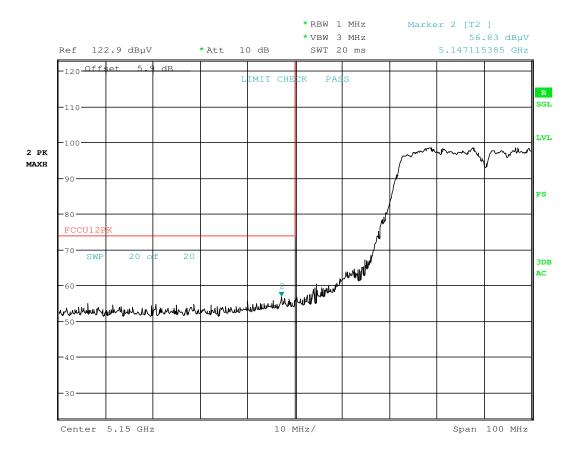
#### Plot 7-95. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |    | Dege 95 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |    | Page 85 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |    | V 6.2                           |

01/09/2016






Date: 9.MAR.2017 07:34:22

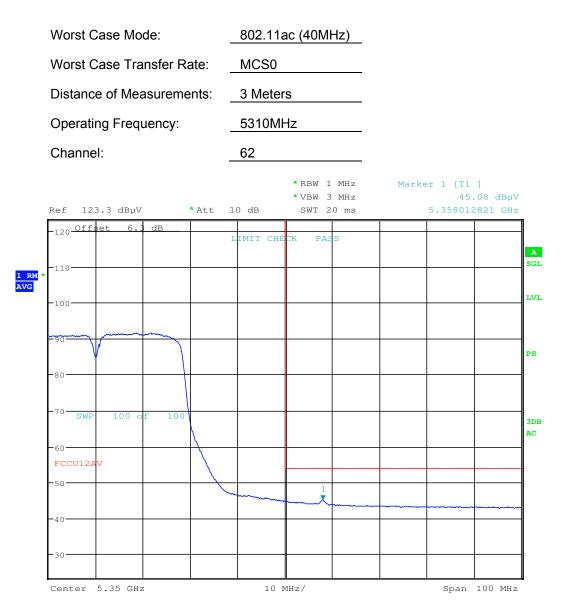
#### Plot 7-96. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Dage 96 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 86 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

01/09/2016






Date: 9.MAR.2017 07:34:53

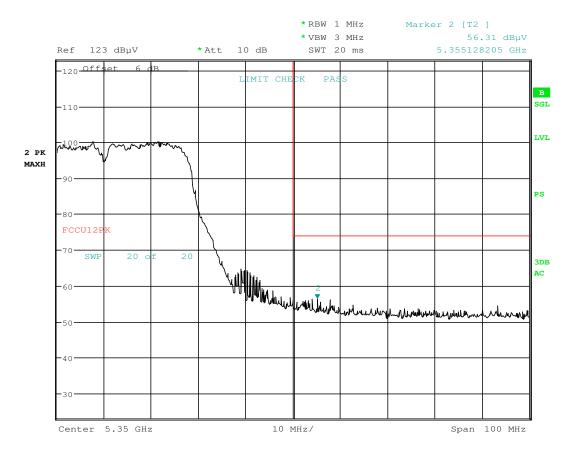
#### Plot 7-97. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 1)

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Page 87 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page of 01 115                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |

01/09/2016






Date: 9.MAR.2017 07:38:36

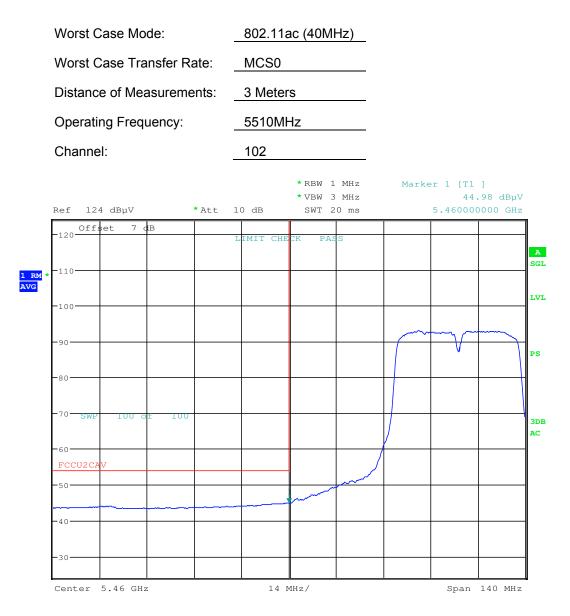
#### Plot 7-98. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |    | Dage 89 of 112                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |    | Page 88 of 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |    | V 6.2                           |

01/09/2016






Date: 9.MAR.2017 07:39:06

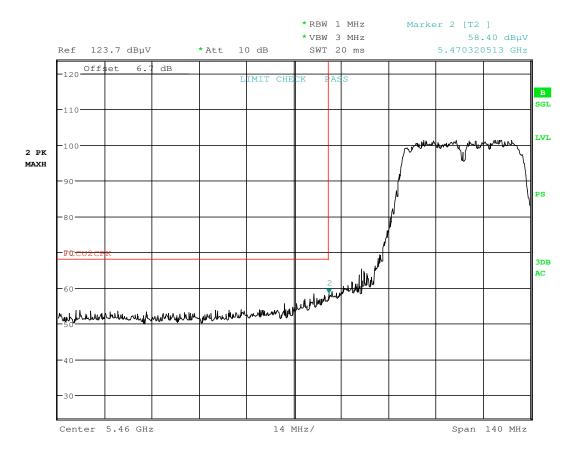


| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dego 90 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 89 of 113                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |

01/09/2016






Date: 9.MAR.2017 07:43:56

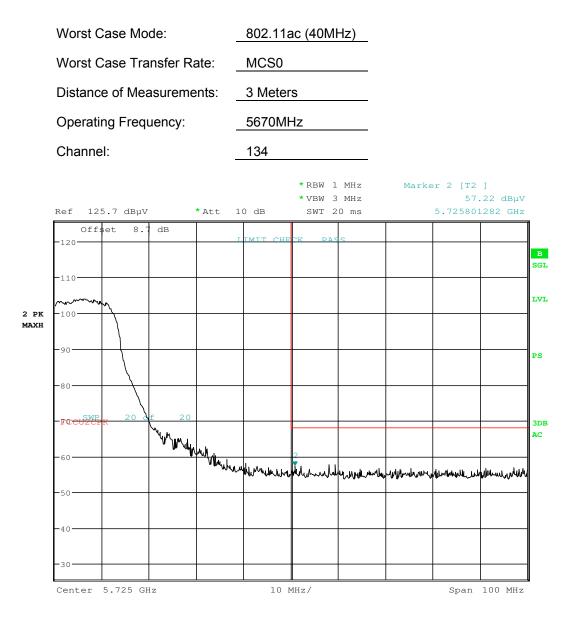
#### Plot 7-100. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

| FCC ID: ZNFTP450                         |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                         | Test Dates:   | EUT Type:                                                              |      | Page 90 of 113                  |
| 1M1703010081-05.ZNF                      | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 90 01 113                  |
| 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

01/09/2016






Date: 9.MAR.2017 07:44:39

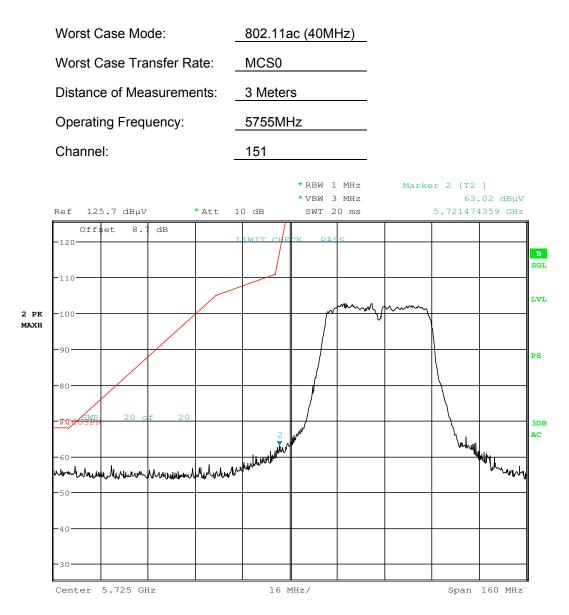


| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Page 91 of 113                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 9101113                    |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |

01/09/2016






Date: 16.MAR.2017 05:48:26

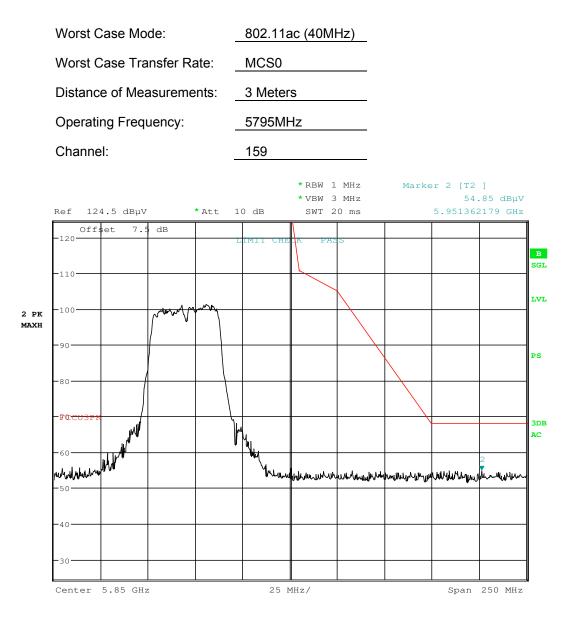
# Plot 7-102. Radiated Upper Band Edge Plot (Peak – UNII Band 2C)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 92 of 113                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 92 01 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

01/09/2016






Date: 16.MAR.2017 05:52:45

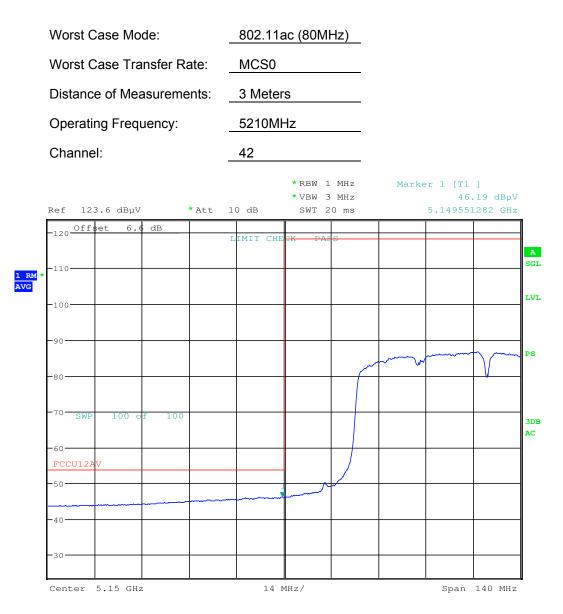
# Plot 7-103. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dogo 02 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 93 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

01/09/2016






Date: 9.MAR.2017 07:49:57

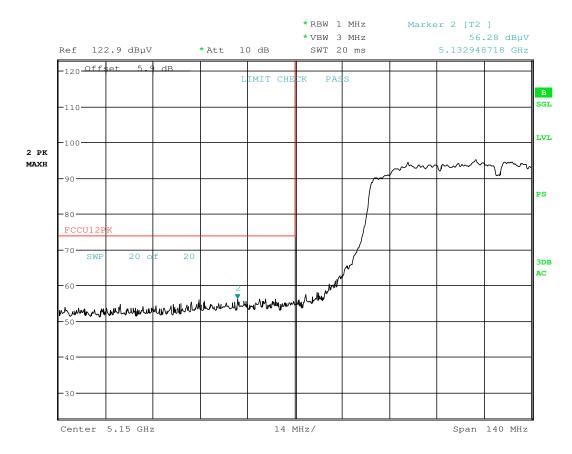
# Plot 7-104. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |    | Dega 04 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |    | Page 94 of 113                  |
| 0 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |    | V 6.2                           |

01/09/2016






Date: 9.MAR.2017 07:55:05

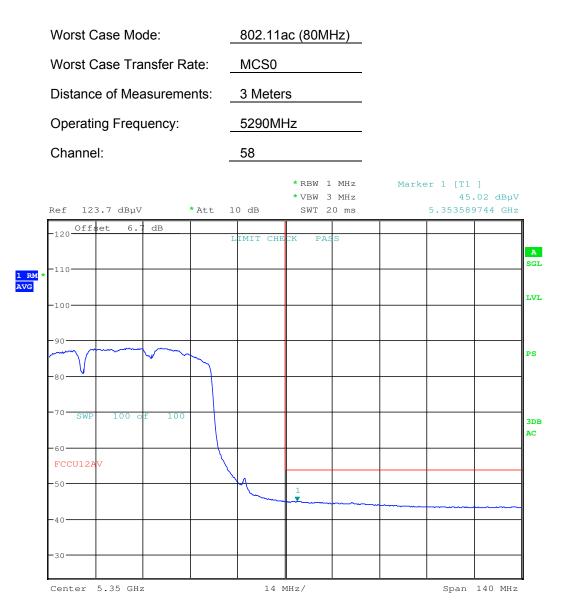
#### Plot 7-105. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 1)

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dega 05 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 95 of 113                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |

01/09/2016






Date: 9.MAR.2017 07:55:50

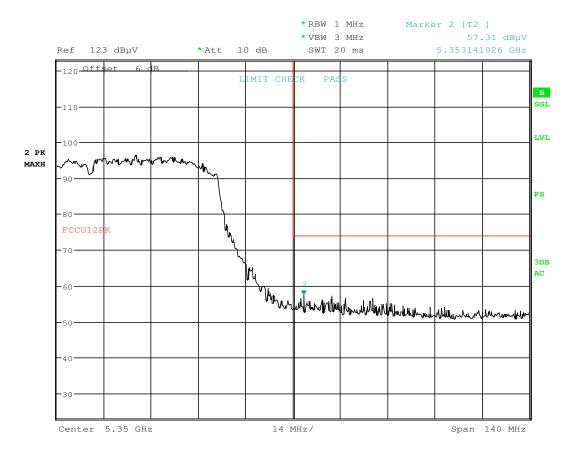
# Plot 7-106. Radiated Restricted Lower Band Edge Plot (Peak - UNII Band 1)

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dage 06 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 96 of 113                  |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      |                                 |

01/09/2016






Date: 9.MAR.2017 07:59:52

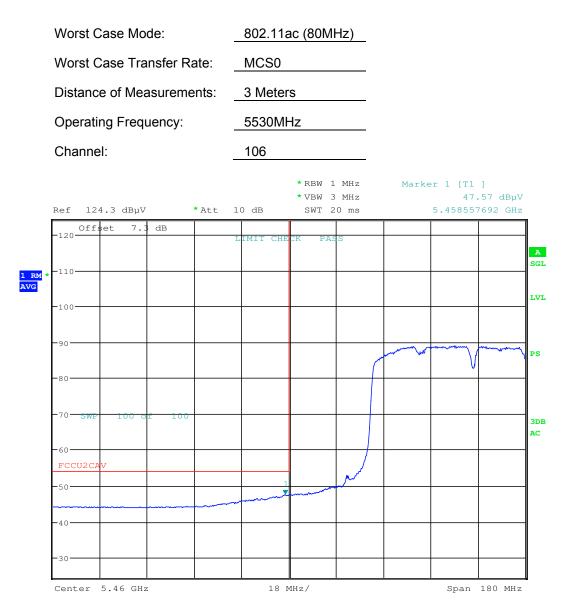
#### Plot 7-107. Radiated Restricted Upper Band Edge Plot (Average – UNII Band 2A)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG  | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|-------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |       | Dogo 07 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |       | Page 97 of 113                  |
| 0 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        | V 6.2 |                                 |

01/09/2016






Date: 9.MAR.2017 08:00:11

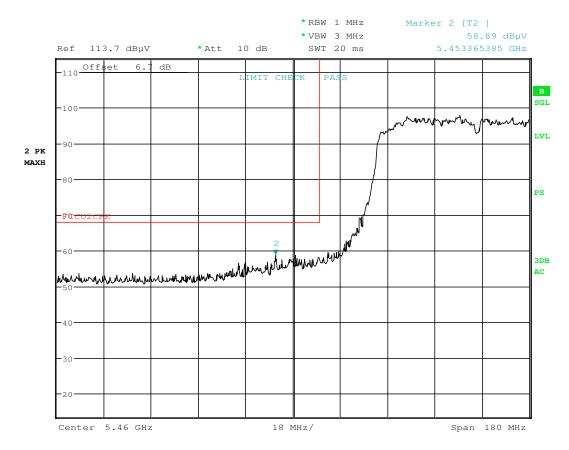


| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dego 00 of 112                  |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 98 of 113                  |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |

01/09/2016






Date: 9.MAR.2017 08:04:58

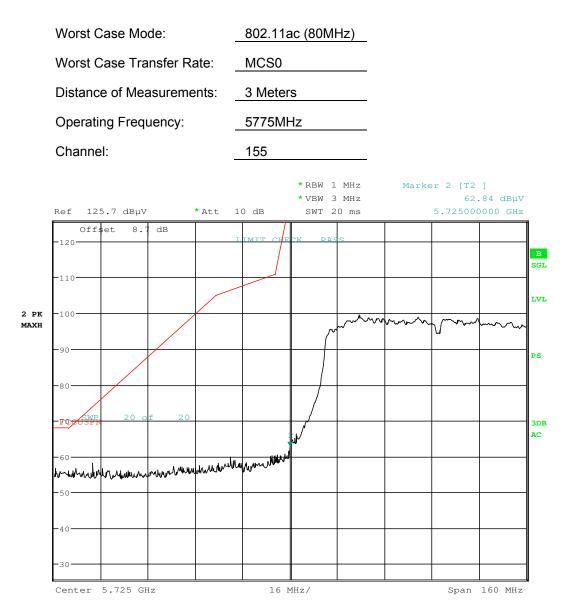
#### Plot 7-109. Radiated Restricted Lower Band Edge Plot (Average – UNII Band 2C)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG  | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|-------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |       | Dogo 00 of 112                  |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |       | Page 99 of 113                  |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        | V 6.2 |                                 |

01/09/2016






Date: 9.MAR.2017 08:05:41

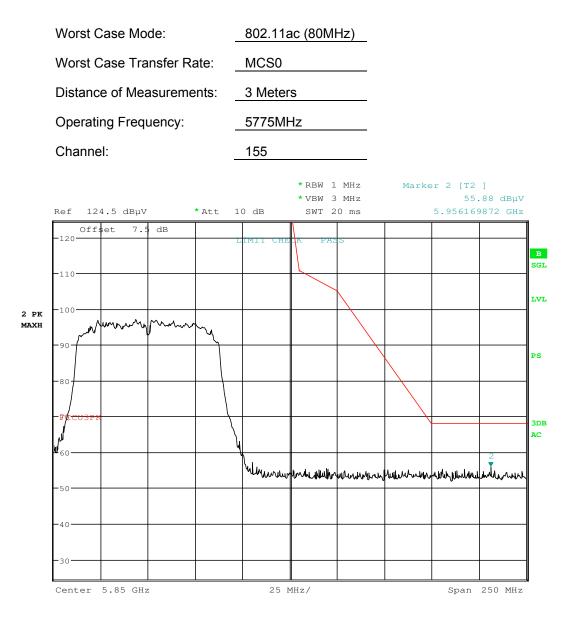
#### Plot 7-110. Radiated Restricted Lower Band Edge Plot (Peak – UNII Band 2C)

| FCC ID: ZNFTP450            |                 | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|-----------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:     | EUT Type:                                                              |      | Dega 100 of 112                 |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017   | Portable Handset                                                       |      | Page 100 of 113                 |
| © 2017 PCTEST Engineering L | aboratory, Inc. |                                                                        |      | V 6.2                           |

01/09/2016






Date: 16.MAR.2017 05:59:24

# Plot 7-111. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG  | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|-------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |       | Page 101 of 113                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |       | Page 101 01 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        | V 6.2 |                                 |

01/09/2016





Date: 9.MAR.2017 08:09:58

# Plot 7-112. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG  | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|-------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |       | Dega 102 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |       | Page 102 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        | V 6.2 |                                 |

01/09/2016



# 7.8 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

#### Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

# All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-26 per Section 15.209.

| Frequency         | Field Strength<br>[µV/m] | Measured Distance<br>[Meters] |
|-------------------|--------------------------|-------------------------------|
| 0.009 – 0.490 MHz | 2400/F (kHz)             | 300                           |
| 0.490 – 1.705 MHz | 24000/F (kHz)            | 30                            |
| 1.705 – 30.00 MHz | 30                       | 30                            |
| 30.00 – 88.00 MHz | 100                      | 3                             |
| 88.00 – 216.0 MHz | 150                      | 3                             |
| 216.0 – 960.0 MHz | 200                      | 3                             |
| Above 960.0 MHz   | 500                      | 3                             |

Table 7-26. Radiated Limits

#### **Test Procedures Used**

ANSI C63.10-2013

#### Test Settings

#### **Quasi-Peak Field Strength Measurements**

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

| FCC ID: ZNFTP450            |                                          | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:            | Test Dates:                              | EUT Type:                                                              |      | Dega 102 of 112                 |
| 1M1703010081-05.ZNF         | 2/6-3/21/2017                            | Portable Handset                                                       |      | Page 103 of 113                 |
| © 2017 PCTEST Engineering L | 2017 PCTEST Engineering Laboratory, Inc. |                                                                        |      | V 6.2                           |

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.



The EUT and measurement equipment were set up as shown in the diagrams below.

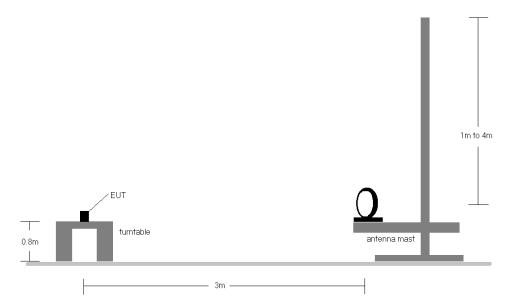
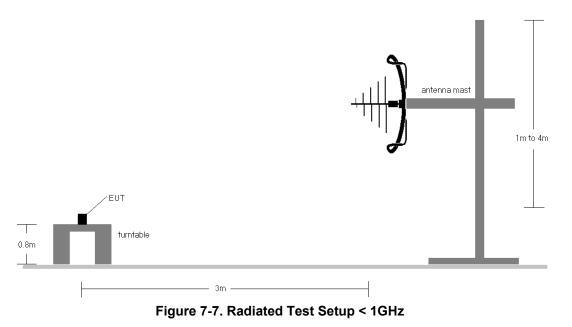



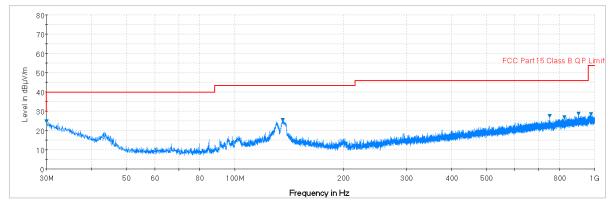

Figure 7-6. Radiated Test Setup < 30MHz



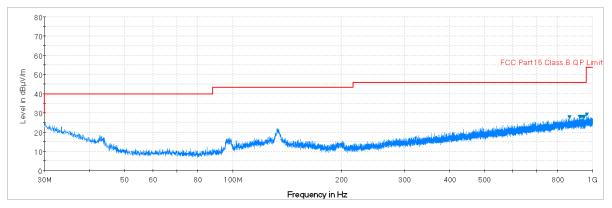
| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG    | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|-------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |       | Dogo 104 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |       | Page 104 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        | V 6.2 |                                 |

01/09/2016




- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-26.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

| FCC ID: ZNFTP450                          |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|-------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                          | Test Dates:   | EUT Type:                                                              |      | Dega 105 of 112                 |
| 1M1703010081-05.ZNF                       | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 105 of 113                 |
| © 2017 PCTEST Engineering Laboratory Inc. |               |                                                                        |      |                                 |


<sup>© 2017</sup> PCTEST Engineering Laboratory. Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.



# Radiated Spurious Emissions Measurements (Below 1GHz) §15.209



Plot 7-113. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. H)



Plot 7-114. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157, Ant. Pol. V)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG  | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|-------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |       | Dogo 106 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |       | Page 106 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        | V 6.2 |                                 |



#### Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

#### All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

| Frequency of emission<br>(MHz) | Conducted L | ₋imit (dBμV) |
|--------------------------------|-------------|--------------|
|                                | Quasi-peak  | Average      |
| 0.15 – 0.5                     | 66 to 56*   | 56 to 46*    |
| 0.5 – 5                        | 56          | 46           |
| 5 – 30                         | 60          | 50           |

Table 7-27. Conducted Limits

\*Decreases with the logarithm of the frequency.

#### Test Procedures Used

ANSI C63.10-2013, Section 6.2

#### Test Settings

#### **Quasi-Peak Field Strength Measurements**

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

#### Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Page 107 of 113                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 107 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      | V 6.2                           |

<sup>© 2017</sup> PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.



The EUT and measurement equipment were set up as shown in the diagram below.

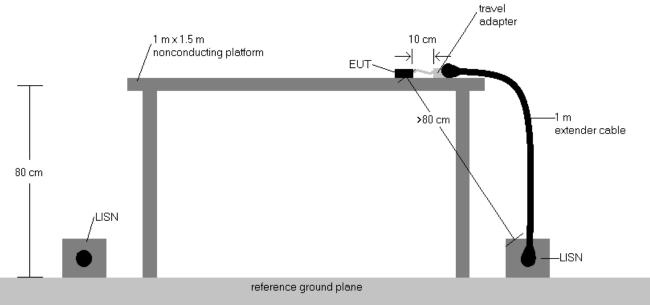
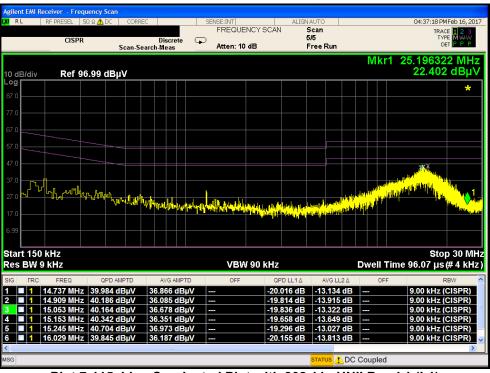
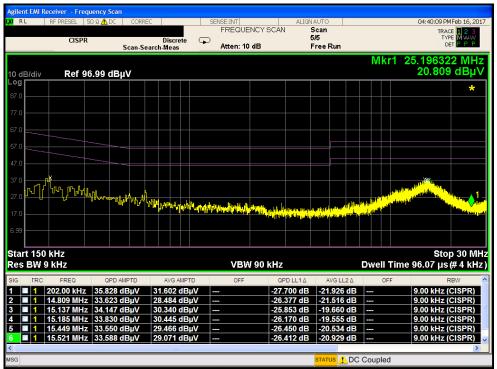



Figure 7-8. Test Instrument & Measurement Setup


### Test Notes

- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB $\mu$ V) = QP/AV Analyzer/Receiver Level (dB $\mu$ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB $\mu$ V) QP/AV Level (dB $\mu$ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

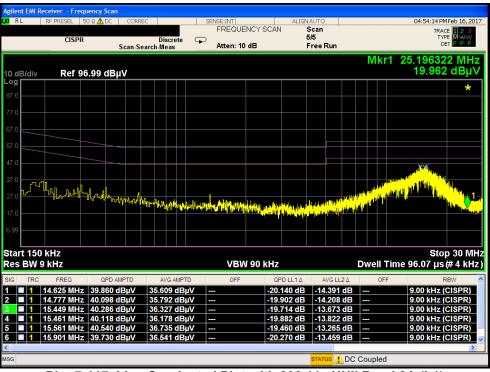

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dage 109 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 108 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016

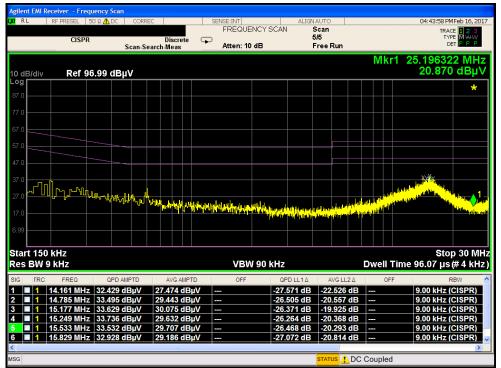




Plot 7-115. Line Conducted Plot with 802.11a UNII Band 1 (L1)




#### Plot 7-116. Line Conducted Plot with 802.11a UNII Band 1 (N)

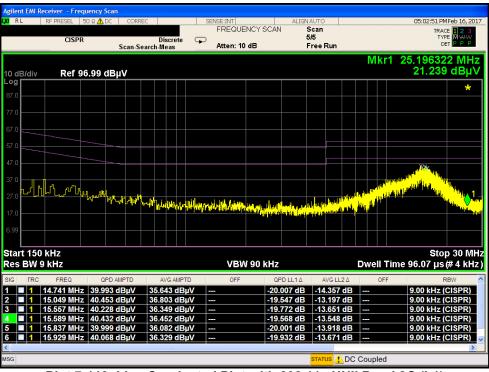

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dega 100 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 109 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016

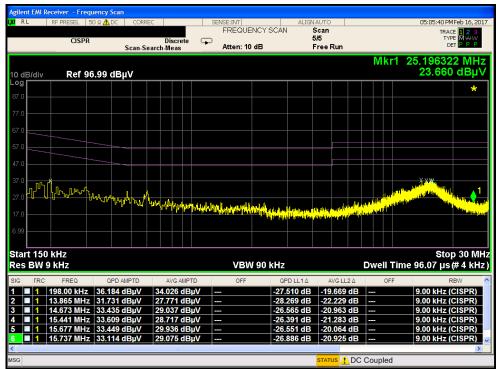




Plot 7-117. Line Conducted Plot with 802.11a UNII Band 2A (L1)




#### Plot 7-118. Line Conducted Plot with 802.11a UNII Band 2A (N)

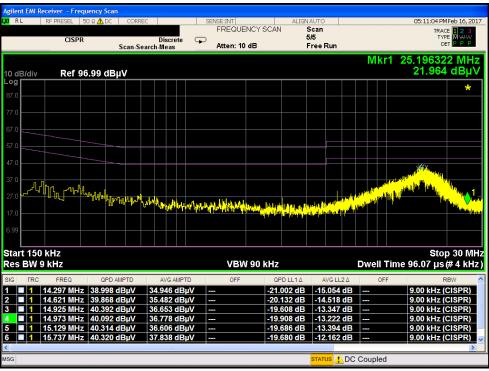

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dega 110 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 110 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016

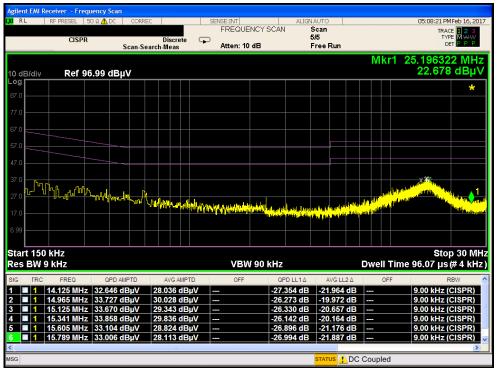




Plot 7-119. Line Conducted Plot with 802.11a UNII Band 2C (L1)




#### Plot 7-120. Line Conducted Plot with 802.11a UNII Band 2C (N)


| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 🕒 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 111 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 111 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016





Plot 7-121. Line Conducted Plot with 802.11a UNII Band 3 (L1)



Plot 7-122. Line Conducted Plot with 802.11a UNII Band 3 (N)

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | 💽 LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|------|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |      | Dego 112 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |      | Page 112 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |      |                                 |

01/09/2016



# 8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFTP450** is in compliance with Part 15E of the FCC Rules.

| FCC ID: ZNFTP450                           |               | FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT<br>(CERTIFICATION) | LG | Approved by:<br>Quality Manager |
|--------------------------------------------|---------------|------------------------------------------------------------------------|----|---------------------------------|
| Test Report S/N:                           | Test Dates:   | EUT Type:                                                              |    | Dogo 112 of 112                 |
| 1M1703010081-05.ZNF                        | 2/6-3/21/2017 | Portable Handset                                                       |    | Page 113 of 113                 |
| © 2017 PCTEST Engineering Laboratory, Inc. |               |                                                                        |    |                                 |

01/09/2016