

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics MobileComm U.S.A. Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: 12/14/2016

Test Site/Location:

PCTEST Lab, Columbia, MD, USA **Test Report Serial No.:**

0Y1612191978.ZNF

FCC ID: ZNFTP260

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A. INC.

Scope of Test: Audio Band Magnetic Testing (T-Coil)

Application Type: Class II Permissive Change

CFR §20.19(b) FCC Rule Part(s): **HAC Standard:** ANSI C63.19-2011

285076 D01 HAC Guidance v04

285076 D02 T-Coil testing for CMRS IP v02

DUT Type: Portable Handset

LG-TP260 Model:

Additional Model(s): LGTP260, TP260, LG-MP260, LGMP260, MP260, LG-TP260BK, LGTP260BK, TP260BK

Test Device Serial No.: Pre-Production Sample [S/N: 02510]

Class II Permissive Change(s): See FCC Change Document

Original Grant Date: 12/23/2016

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: ZNFTP260	POTEST ENGINEERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 1 of EO
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 1 of 50

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	5
4.	METHOD OF MEASUREMENT	7
5.	FCC 3G MEASUREMENTS	18
6.	TEST SUMMARY	19
7.	MEASUREMENT UNCERTAINTY	23
8.	EQUIPMENT LIST	24
9.	TEST DATA	25
10.	CALIBRATION CERTIFICATES	38
11.	CONCLUSION	45
12.	REFERENCES	46
13.	TEST SETUP PHOTOGRAPHS	48

FCC ID: ZNFTP260	PCTEST VINGINEERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 2 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 2 of 50

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFTP260	PCTEST* UNGINEERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 2 of FO
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 3 of 50

DUT DESCRIPTION 2.

FCC ID: ZNFTP260

Applicant: LG Electronics MobileComm U.S.A. Inc.

1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

United States

Model: LG-TP260

LGTP260, TP260, LG-MP260, LGMP260, Additional Model(s): MP260, LG-TP260BK, LGTP260BK, TP260BK

Serial Number: 02510 HW Version: Rev.1.0 SW Version: MP26008o

Internal Antenna Antenna:

HAC Test Configurations: GSM 850, 128, 190, 251, BT Off, WLAN Off, LTE Off

> GSM 1900, 512, 661, 810, BT Off, WLAN Off, LTE Off UMTS V, 4132, 4183, 4233, BT Off, WLAN Off, LTE Off UMTS IV, 1312, 1412, 1513, BT Off, WLAN Off, LTE Off

UMTS II, 9262, 9400, 9538, BT Off, WLAN Off, LTE Off

DUT Type: Portable Handset

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Voice over Digital Transport OTT Capability	Additional GSM Power Reduction	
	850	VO	Yes	Yes: WIFI or BT	N/A	No	
GSM	1900	VO	res	res. Wiri Oi Bi	IN/A	NO	
	GPRS/EDGE DT	No	Yes: WIFI or BT	Yes	No		
	850						
UMTS	1700	VD	Yes Yes: WIFI or BT	N/A	N/A		
UIVITS	1900						
	HSPA	DT	No	Yes: WIFI or BT	Yes	N/A	
	700 (B12)						
LTE (EDD)	850 (B5)	VD¹	No²	No ² Yes: WIFI or BT	Yes	N/A	
LTE (FDD)	1700 (B4)	VD.					
	1900 (B2)						
	2450						
	5200						
WIFI	5300	VD	No ²	Yes: GSM, UMTS, or LTE	Yes	N/A	
	5500						
	5800						
BT	2450	DT	No	Yes: GSM, UMTS, or LTE	N/A	N/A	
	Type Transport		Notes:				
	VO = Voice Only		1. The 3GPP VoLTE CMRS service is defined by GSMA in PRD IR.92 for IP Voice Service and Digital				
_	DT = Digital Data - Not intended for CMRS Service						
VD = CMRS and Data Transport			2. Not tested in accordance with the guidance issued by OET in KDB publication 285076 D02 T-				

Table 2-1: ZNFTP260 HAC Air Interfaces

Coil testing for CMRS IP.

FCC ID: ZNFTP260	PETEST: INGINERING LARGATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 4 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Fage 4 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

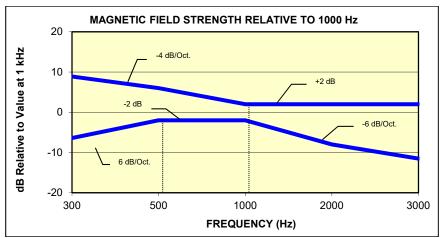


Figure 3-1
Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

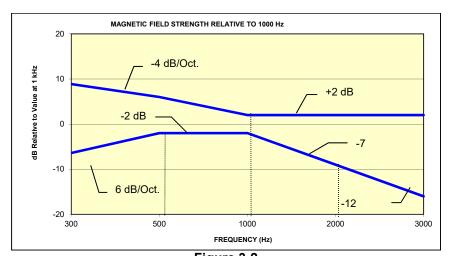


Figure 3-2
Magnetic Field frequency response for wireless devices with an axial field that exceeds
-15 dB(A/m) at 1 kHz

FCC ID: ZNFTP260	PCTEST:	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo F of FO
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 5 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 11/29/2016

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Catagory	Telephone RF Parameters			
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 3-1 Magnetic Coupling Parameters				

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 6 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 6 of 50

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

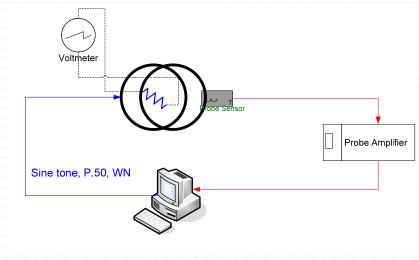
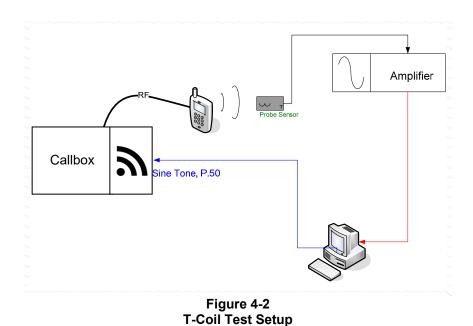



Figure 4-1
Validation Setup with Helmholtz Coil

FCC ID: ZNFTP260

HAC (T-COIL) TEST REPORT

Quality Manager

Filename:

OY1612191978.ZNF

12/14/2016

Portable Handset

Approved by:
Quality Manager

Page 7 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 11/29/2016

II. Scanning Mechanism

Manufacturer: TEM

Accuracy: ± 0.83 cm/meter

Minimum Step Size: 0.1 mm

Maximum speed 6.1 cm/sec Line Voltage: 115 VAC Line Frequency: 60 Hz

Material Composite: Delrin (Acetal)

Data Control: Parallel Port

Dynamic Range (X-Y-Z): 45 x 31.75 x 47 cm

Dimensions: 36" x 25" x 38" Operating Area: 36" x 49" x 55"

Reflections: < -20 dB (in anechoic chamber)

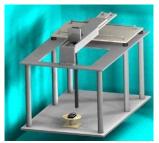


Figure 4-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

Manufacturer: ITU-T

Active Frequency Range: 100 Hz – 8 kHz

Stimulus Type: Male and Female, no spaces

Single Sample 20.96 seconds

Duration:

Activity Level: 100%

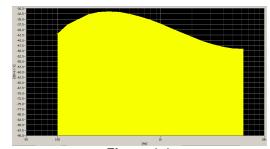


Figure 4-4
Spectral Characteristic of full P.50

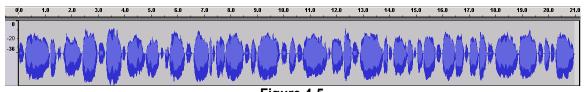


Figure 4-5
Temporal Characteristic of full P.50

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama C of EO
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 8 of 50

ABM2 Measurement Block Diagram:

Figure 4-6 Magnetic Measurement Processing Steps

IV. **Test Procedure**

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - "A-weighting" and Half-Band Integration was applied to the measurements.
 - Since this measurement was measured in the same method as ABM2 measurements. this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation(See Figure 4-1)
 - The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - **ABM1 Validation**

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316A/m \approx -10dB(A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10dB(A/m). This was verified to be within ± 0.5 dB of the -10dB(A/m) value (see Page 21).

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga C of EC
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 9 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

Frequency Response Validation
 The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the P.50 signal as shown below:

Figure 4-7 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

Table 4-1
ABM2 Frequency Response Validation

	HBI, A -	HBI, A -	
f (Hz)	Measured	Theoretical	dB Var.
	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 10 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 10 of 50

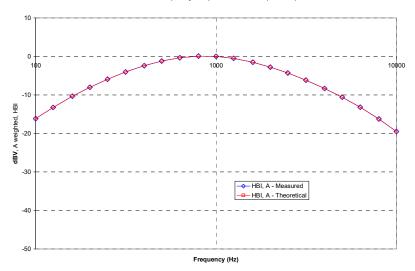
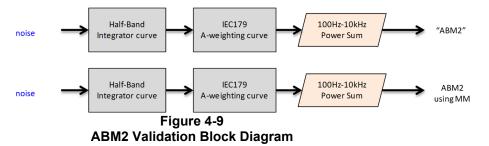



Figure 4-8
ABM2 Frequency Response Validation

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and A-weighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 11 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 11 of 50

Table 4-2
ABM2 Power Sum Validation

WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.36	-60.2	0.16
-50	-50.19	-50.13	0.06
-40	-40.14	-40.03	0.11
-30	-30.13	-30.01	0.12
-20	-20.12	-20	0.12
-10	-10.14	-10	0.14

ABM2 Power Sum Validation (LISTEN)

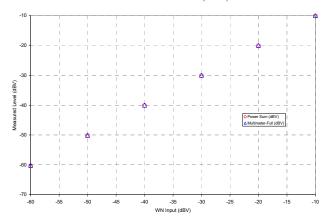


Figure 4-10
ABM2 Power Sum Validation

3. Measurement Test Setup

- a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

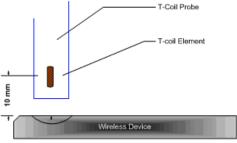
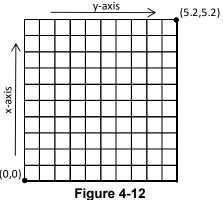



Figure 4-11
Measurement Distance

FCC ID: ZNFTP260	POTEST VENGINEERING CARDEATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 10 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 12 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 11/29/2016

Measurement Grid

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-16 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

The CMU200 audio levels were determined using base station simulator manufacturer calibration procedures resulting in the below corresponding voltages relative to handset test point level (in dBm0):

> Table 4-3 CMU200 Voltage Input Levels for Audio

CMO200 Voltage Input Levels for Addio					
dBm0 Ref.	Voltage		Notes		
3.14 dBm0	990.5 mV	-0.08 dBV	From GSM "DECODER CAL". (What is needed through Encoder for FS)		
-16 dBm0	109.4 mV	-19.2 dBV	For Speechcod/Handset Low		
dBm0 Ref.	Voltage		Notes		
3.14 dBm0	1068.5 mV	0.58 dBV	From UMTS "DECODER CAL". (What is needed through Encoder for FS)		
-16 dBm0	118.0 mV	-18.6 dBV	For Handset Low		

- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 13 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 13 01 50

d. WD Radio Configuration Selection

i. The device was chosen to be tested in the worst-case ABM2 condition (see below for GSM, see Section 5 for more information regarding worst-case configurations for UMTS.):

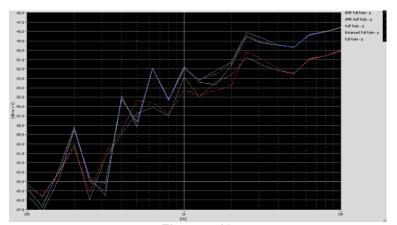


Figure 4-13 Vocoder Analysis for ABM Noise for GSM

4. Signal Quality Data Analysis

- a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.

b. Frequency Response

- i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 - 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
- ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
- iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.

c. Signal Quality Index

- i. Ensuring the WD was at maximum RF power, maximum volume, backlight on, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz -10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
- ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
- iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 14 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 14 01 50

V. Test Setup

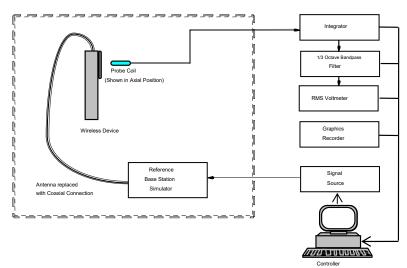


Figure 4-14
Audio Magnetic Field Test Setup

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to shielding effects of battery cover.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

According to the April 2013 TCB workshop slides, OTT data services are outside the current definition of a managed CMRS service and are currently not required to be evaluated.

VoLTE and VoIP over WIFI CMRS air interfaces were not tested in accordance with the guidance issued by OET in KDB publication 285076 D02 T-Coil testing for CMRS IP.

FCC ID: ZNFTP260	PCTEST VENGINEERING LAIGHATORT, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 15 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 15 of 50

VIII. Wireless Device Channels and Frequencies

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band.

Table 4-4
Center Channels and Frequencies

Test frequencies & associated channels			
Frequency (MHz)			
836.60			
836.60			
1730.40			
PCS 1900			
1880			
1880			

IX. RF Emission Effect on T-coil Measurements

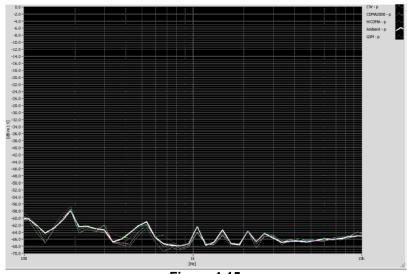


Figure 4-15
ah power RF Emissions Effect with HAC Dipole on the T-coil Pro

High power RF Emissions Effect with HAC Dipole on the T-coil Probe System 10mm between dipole maximum and magnetic probe

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 16 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 10 01 50

X. Test Flow

The flow diagram below was followed (From C63.19):

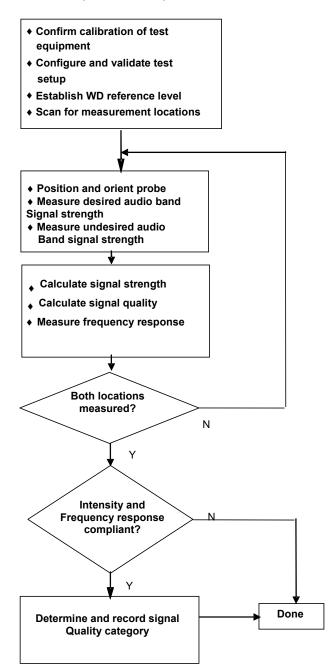


Figure 4-16 C63.19 T-Coil Signal Test Process

FCC ID: ZNFTP260	PCTEST VENGINEERING LAIGHATORT, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 17 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 17 of 50

5. FCC 3G MEASUREMENTS

I. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

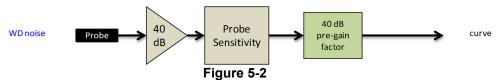


Figure 5-1
UMTS Audio Band Magnetic Noise

Table 5-1
FCC 3G ABM Measurements for ZNFTP260 (UMTS)

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel
ABM1 Pre-test (dBA/m)	4.47	4.45	4.19		
ABM2 Pre-test (dBA/m) (A-weight, Half-Band Int.)	<u>-411 h4</u>	-41.91	-41.40	Axial	9400
S+N/N (dB)	45.11	46.36	45.59		

- Mute on; Backlight on; Max Volume; Max Contrast
- · TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFTP260	PCTEST VENGINEERING LAIGHATORT, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 10 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 18 of 50

TEST SUMMARY 6.

T-Coil Test Summary I.

Table 6-1 **Table of Results for GSM**

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	4.8	PASS
8.3.1			Intensity, Radial	-18	1.8	PASS
8.3.4	GSM	Cellular	Signal-to-Noise/Noise, Axial	20	24.6	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	26.8	PASS
8.3.2			Frequency Response, Axial	0	0.6	PASS
8.3.1			Intensity, Axial	-18	4.7	PASS
8.3.1			Intensity, Radial	-18	2.0	PASS
8.3.4	GSM	PCS	Signal-to-Noise/Noise, Axial	20	29.3	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	31.8	PASS
8.3.2			Frequency Response, Axial	0	0.6	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 6-4.

Table 6-2 **Table of Results for UMTS**

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	4.4	PASS
8.3.1			Intensity, Radial	-18	1.5	PASS
8.3.4	UMTS	Band 5	Signal-to-Noise/Noise, Axial	20	46.5	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	47.8	PASS
8.3.2			Frequency Response, Axial	0	0.8	PASS
8.3.1			Intensity, Axial	-18	4.5	PASS
8.3.1			Intensity, Radial	-18	1.6	PASS
8.3.4	UMTS	Band 4	Signal-to-Noise/Noise, Axial	20	45.7	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	47.5	PASS
8.3.2			Frequency Response, Axial	0	0.8	PASS
8.3.1			Intensity, Axial	-18	4.5	PASS
8.3.1			Intensity, Radial	-18	1.5	PASS
8.3.4	UMTS	Band 2	Signal-to-Noise/Noise, Axial	20	44.8	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	48.3	PASS
8.3.2			Frequency Response, Axial	0	0.7	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 6-5.

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 19 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 19 01 50

Table 6-3 **Consolidated Tabled Results**

		Freq. Response Margin		Magnetic Intensity Verdict		FCC SNNR Verdict		FCC Margin (dB)	C63.19-2011 Rating
		Axial	Radial	Axial	Radial	Axial	Radial		
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-4.58	Т3
GSW	PCS	PASS	NA	PASS	PASS	PASS	PASS	-4.50	13
	Cellular	PASS	NA	PASS	PASS	PASS	PASS		
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-24.77	T4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		

Note: Result shown is for T-coil category only.

Raw Handset Data II.

Table 6-4 **Raw Data Results for GSM**

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates	
		128	4.83	-19.93		0.56	24.76	20.00	-4.76	Т3		
	Axial	190	4.76	-20.20	-64.00	0.65	24.96	20.00	-4.96	Т3	2.6, 2.6	
GSM850		251	4.77	-19.81		0.58	24.58	20.00	-4.58	T3		
GSIVIOSU		128	1.87	-25.55			27.42	20.00	-7.42	Т3		
	Radial	190	1.98	-24.85	-65.56	-65.56 N/A	N/A	26.83	20.00	-6.83	Т3	2.4, 3.4
		251	1.75	-25.63				27.38	20.00	-7.38	Т3	
		512	4.78	-25.71		0.57	30.49	20.00	-10.49	T4		
	Axial	661	4.67	-25.32	-64.00	0.57	29.99	20.00	-9.99	Т3	2.6, 2.6	
GSM1900		810	4.95	-24.33		0.60	29.28	20.00	-9.28	Т3		
G3W1900		512	2.04	-31.37			33.41	20.00	-13.41	T4		
	Radial	661	2.15	-31.01	-65.56	N/A	33.16	20.00	-13.16	T4	2.4, 3.4	
		810	2.19	-29.62			31.81	20.00	-11.81	T4		

Table 6-5 **Raw Data Results for UMTS**

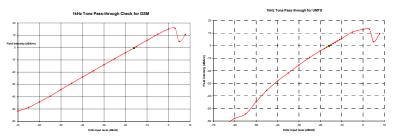
				IXUV E	ala Nesu						
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		4132	4.38	-42.41		0.80	46.79	20.00	-26.79	T4	
	Axial	4183	4.35	-42.10	-64.00	0.77	46.45	20.00	-26.45	T4	2.6, 2.6
UMTS Band		4233	4.41	-43.35		0.76	47.76	20.00	-27.76	T4	
5		4132	1.53	-46.73			48.26	20.00	-28.26	T4	
	Radial	4183	1.53	-46.28	-65.56	N/A	47.81	20.00	-27.81	T4	2.4, 3.4
		4233	1.56	-46.98			48.54	20.00	-28.54	T4	
		1312	4.51	-41.36	-64.00	0.82	45.87	20.00	-25.87	T4	
	Axial	1412	4.84	-40.88		0.81	45.72	20.00	-25.72	T4	2.6, 2.6
UMTS Band		1513	4.45	-41.86		0.83	46.31	20.00	-26.31	T4	
4		1312	1.58	-46.40			47.98	20.00	-27.98	T4	
	Radial	1412	1.56	-46.52	-65.56	N/A	48.08	20.00	-28.08	T4	2.4, 3.4
		1513	1.55	-45.98			47.53	20.00	-27.53	T4	
		9262	4.46	-41.45		0.83	45.91	20.00	-25.91	T4	
	Axial	9400	4.48	-40.29	-64.00	0.84	44.77	20.00	-24.77	T4	2.6, 2.6
UMTS Band		9538	4.82	-40.84		0.67	45.66	20.00	-25.66	T4	
2		9262	1.49	-47.53			49.02	20.00	-29.02	T4	
	Radial	9400	1.48	-47.55	-65.56	N/A	49.03	20.00	-29.03	T4	2.4, 3.4
		9538	1.65	-46.64			48.29	20.00	-28.29	T4	

FCC ID: ZNFTP260	PCTEST UNGINEERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 20 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 20 of 50

III. **Test Notes**

A. General

- 1. Phone Condition: Mute on; Backlight on; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (Phone→Call Settings→ More→Hearing aids) as well as Noise Suppression mode (Phone→Call Settings→ More→Noise Suppression) was set to ON for Frequency Response compliance.


B. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);
- 3. Speech Signal: ITU-T P.50 Artificial Voice

C. UMTS

- 1. Power Configuration: TPC="All 1s";
- 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);
- 3. Speech Signal: ITU-T P.50 Artificial Voice

IV. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, and UMTS. This measurement was taken in the axial configuration above the maximum location.

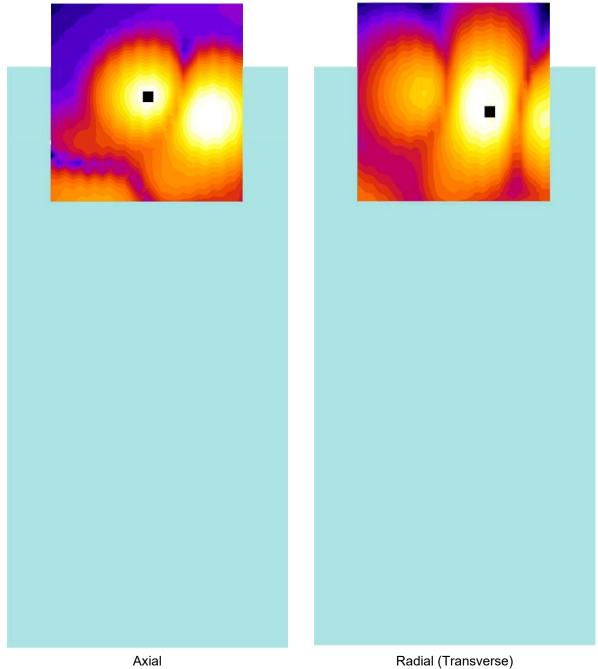

T-Coil Validation Test Results ٧.

Table 6-6 **Helmholtz Coil Validation Table of Results**

Item	Target	Result	Verdict	
Axial				
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.647	PASS	
Environmental Noise	< -58 dBA/m	-64.00	PASS	
Frequency Response, from limits	> 0 dB	0.50	PASS	
Radial				
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.004	PASS	
Environmental Noise	< -58 dBA/m	-65.56	PASS	
Frequency Response, from limits	> 0 dB	0.60	PASS	

FCC ID: ZNFTP260	PCTEST VENGINEERING LABORATORS, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 21 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 21 of 50

VI. ABM1 Magnetic Field Distribution Scan Overlays

Figure 6-1 T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFTP260	ENGINEERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 22 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		raye 22 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 11/29/2016

7. MEASUREMENT UNCERTAINTY

Table 7-1
Uncertainty Estimation Table

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)							0.71
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Notes:

- 1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.
- All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (1-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dog 22 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 23 of 50

8. EQUIPMENT LIST

Table 8-1 Equipment List

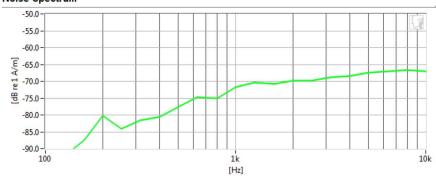
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number	
Listen	SoundCheck	Acoustic Analyzer System 6		Annual	6/13/2017	04-06-5876	
Listen	SoundConnect	Microphone Power Supply	6/9/2016	Annual	6/9/2017	0899-PS150	
Rohde & Schwarz	CMU200	Base Station Simulator	N/A	N/A	N/A	107826	
TEM	Radial T-Coil Probe	Radial T-Coil Probe	6/8/2016	Annual	6/8/2017	TEM-1129	
TEM	Axial T-Coil Probe	Axial T-Coil Probe	6/8/2016	Annual	6/8/2017	TEM-1123	
TEM	Helmholtz Coil	Helmholtz Coil	12/22/2015	Annual	12/22/2016	SBI 1052	
TEM		HAC System Controller with Software	N/A		N/A	N/A	
TEM		HAC Positioner	N/A		N/A	N/A	

FCC ID: ZNFTP260	PCTEST VINGINEERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 24 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 24 of 50

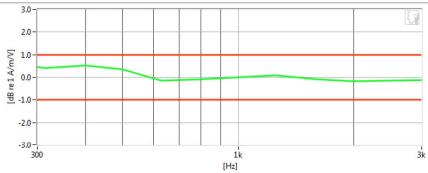
FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 25 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 25 of 50

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 06/08/2016
- Helmholtz Coil SN: SBI 1052; Calibrated: 12/22/2015

Noise Spectrum

Frequency Response

Results

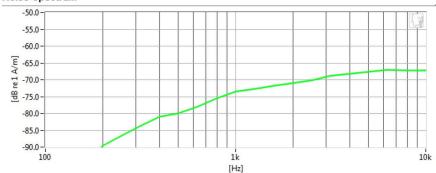
Verification 1kHz Intensity	-9.647 dB	•	Max/Min	-9.5/-10.5
Verification ABM2	-64 dB	•	Maximum	-58.0
Frequency Response Margin	500m dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFTP260	PCTEST VENGINEERING LAIGHATORT, INC.	HAC (T-COIL) TEST REPORT	LG LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 26 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 26 of 50

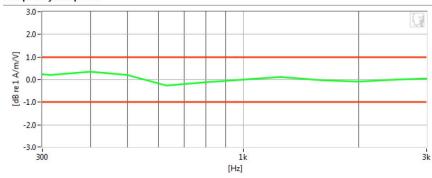
PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

• Helmholtz Coil – SN: SBI 1052; Calibrated: 12/22/2015

Noise Spectrum

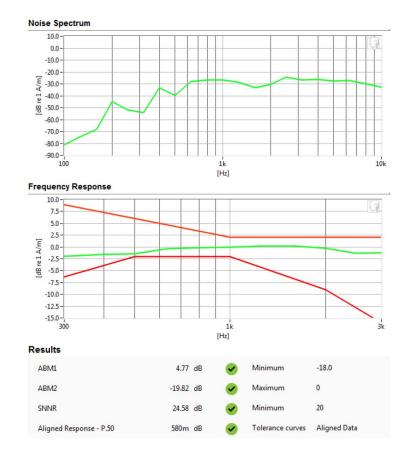
Frequency Response

Results

Verification 1kHz Intensity	-10.004 dB	✓	Max/Min	-9.5/-10.5
Verification ABM2	-65.56 dB	V	Maximum	-58.0
Frequency Response Margin	600m dB	V	Tolerance curves	Aligned Data

FCC ID: ZNFTP260	PCTEST VENGINEERING LAIGHATORT, INC.	HAC (T-COIL) TEST REPORT	LG LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 27 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 27 of 50

Type: Portable Handset Serial: 02510


Measurement Standard: ANSI C63.19-2011

Equipment:

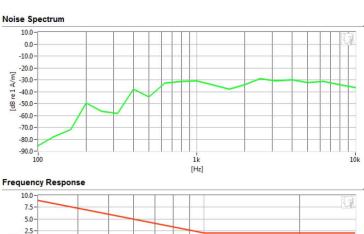
• Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016

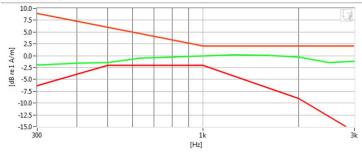
Test Configuration:

- Mode: GSM 850
- Channel: 251
- Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	- HAC (1-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 20 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 28 of 50

Type: Portable Handset Serial: 02510


Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: GSM 1900
- Channel: 810
- Speech Signal: ITU-T P.50 Artificial Voice

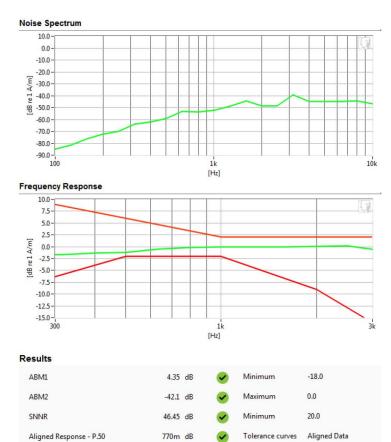
Results				
ABM1	4.95 dB	•	Minimum	-18.0
ABM2	-24.33 dB	•	Maximum	0
SNNR	29.28 dB	•	Minimum	20
Aligned Response - P.50	600m dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 20 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 29 of 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

Mode: UMTS Band 5

Channel: 4183

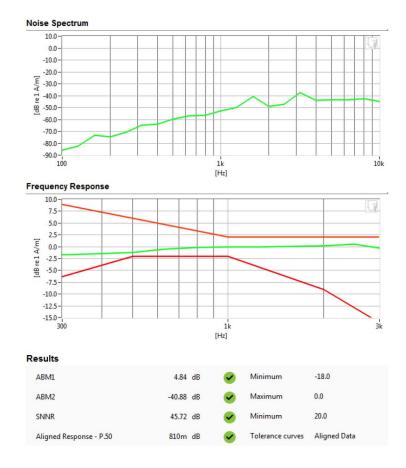
• Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	TAC (1-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 20 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 30 of 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

Mode: UMTS Band 4

Channel: 1412

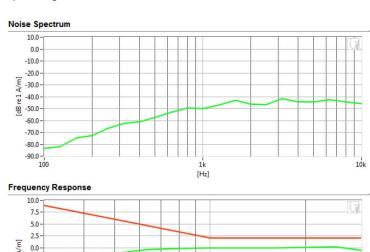
• Speech Signal: ITU-T P.50 Artificial Voice

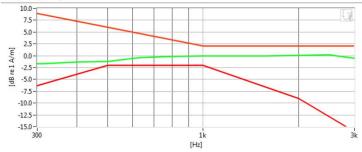
FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	TAC (1-COIL) 1EST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dog 21 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 31 of 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016


Test Configuration:

Mode: UMTS Band 2

Channel: 9400

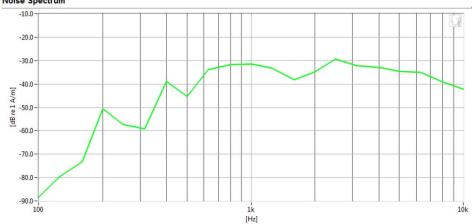
• Speech Signal: ITU-T P.50 Artificial Voice

Results				
ABM1	4.48 dB	•	Minimum	-18.0
ABM2	-40.28 dB	•	Maximum	0
SNNR	44.77 dB	•	Minimum	20
Aligned Response - P.50	840m dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	TAC (1-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dog 22 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 32 of 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

 Mode: GSM 850 • Channel: 190

Noise Spectrum

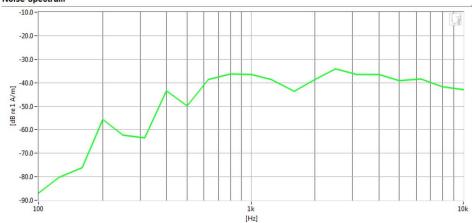
Results

ABM1	1.98 dB 🕜	Minimum	-18.0	
ABM2	-24.85 dB	Maximum	0.0	
SNNR	26.83 dB	Minimum	20.0	

FCC ID: ZNFTP260	PCTEST VENGINEERING LABORATORS, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 22 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 33 of 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

Mode: GSM 1900Channel: 810

Noise Spectrum

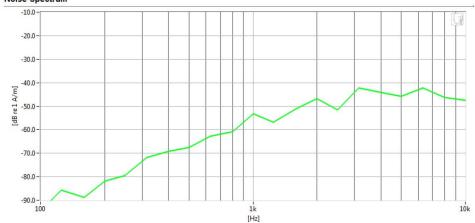
Results

ABM1	2.19 dB	•	Minimum	-18.0	
ABM2	-29.63 dB	•	Maximum	0.0	
SNNR	31.81 dB	•	Minimum	20.0	

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	TAC (1-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 24 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 34 of 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

Mode: UMTS Band 5Channel: 4183

Noise Spectrum

Results

ABM1	1.53 dB	Minimum	-18.0	
ABM2	-46.29 dB	Maximum	0.0	
SNNR	47.81 dB	Minimum	20.0	

FCC ID: ZNFTP260	PCTEST VENGINEERING LAIGHATORT, INC.	TAC (1-COIL) 1EST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 35 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Fage 35 01 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

Mode: UMTS Band 4Channel: 1513

Results

-80.0

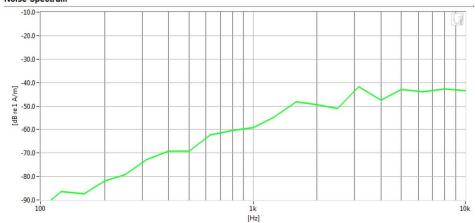
ABM1	1.55 dB	lacksquare	Minimum	-18.0
ABM2	-45.98 dB	•	Maximum	0.0
SNNR	47.53 dB	₹	Minimum	20.0

[Hz]

FCC ID: ZNFTP260	PCTEST VENGINEERING LABORATORS, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 26 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 36 of 50

Type: Portable Handset Serial: 02510

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

Mode: UMTS Band 2Channel: 9538

Noise Spectrum

Results

ABM1	1.65 dB	•	Minimum	-18.0	
ABM2	-46.64 dB	•	Maximum	0.0	
SNNR	48.29 dB	\checkmark	Minimum	20.0	

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 37 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 37 01 50

10. CALIBRATION CERTIFICATES

FCC ID: ZNFTP260	POTEST VENGINEERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 20 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 38 of 50

Certificate of Calibration

AXIAL T COIL PROBE

TEM CONSULTING Manufactured by:

Model No: AXIAL T COIL PROBE (ID#80582)

Serial No: TEM-1123

Calibration Recall No: 26516

Submitted By:

Customer: ANDREW HARWELL

Company: PCTEST ENGINEERING LAB Address:

6660-B DOBBIN ROAD COLUMBIA

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

Upon receipt for Calibration, the instrument was found to be:

MD 21045

Within (\mathbf{X})

tolerance of the indicated specification. See attached Report of Calibration.

West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

08-Jun-16

Certificate No:

26516 -3

Felix Christopher (QA Mgr.)

QA Doc. #1051 Rev. 2.0 10/1/01

Certificate Page 1 of 1

ISO/IEC 17025:2005

West Caldwell Calibration

uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A

Approved by: FCC ID: ZNFTP260 HAC (T-COIL) TEST REPORT 1 LG Quality Manager Test Dates: **DUT Type:** Page 39 of 50 12/14/2016 Portable Handset

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

ISO/IEC 17025; 2005 Calibration Lab. Cert. # 1533.01

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

TEM Consulting LP Axial T Coil Probe

Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Company: PCTEST Engineering Lab.

I. D. No: 80582

Probe Sensitivity measured wit	h Helmholf	z Coil			
Helmholtz Coil;			Before & afte	er data same	. Y
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environ	ment:	
the current in the coils, in amperes.;	0.09	Α	Ambient Temperature:	20.3	°C
Helmholtz Coil Constant;	7.08	A/m/V	Ambient Humidity:	43.4	% RH
Helmholtz Coll magnetic field;	6.20	A/m	Ambient Pressure:	98.3	kPa
			Calibration Date:	8-Jun-16	
Probe Sensitivity at	1000	Hz.	Re-calibration Due:	8-Jun-17	
was	-60.12	dBV/A/m	Report Number:	26516	-3
	0.987	mV/A/m	Control Number:	26516	
Probe resistance	895	Ohms			
The above listed instrument meets or	exceeds t	he tested manufac	turer's specifications.		
This Calibration is traceable through NIST test numbers		683/284413-14	*		
The expanded uncertainty of calibration: 0.30dB at 95% c	onfidence leve	el with a coverage factor of a	k=2		

Graph represents Probes Frequency Response

Axial Probe Response ▲ Measured Probe. 20 15 10 Wagnitude (dB) 5 0 -5 -10 -15 -20 100 Freq. (Hz) 10000

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025

Cal. Date: 8-Jun-2016

Measurements performed by:

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Felix Christopher Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: ZNFTP260	PCTEST*	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 40 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 40 of 50

HCATEMC_TEM-1123_Jun-08-2016

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe

Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Company: PCTEST Engineering Lab.

Function	Tolera	Measured values			
	77474	Before	Out	Remarks	
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.12		
	1000	dB			-
Probe Level Linearity		6	6.00		
	Ref. (0 dB)	0	0.00		
		-6	-6.03		
		-12	-12.04		ļ
		Hz			
Probe Frequency Response			-19.9		
		126	-17.9		
		158	-15.9		
		200	-14.0		
		251	-12.0		i
		316	-10.0		
		398	-8.0		
		501	-6.0		
		631	-4.0		
		794	-2.0		
	Ref. (0 dB)	1000	0.0		
		1259	2.0		
		1585	4.0		
		1995	6.0		
		2512	7.9		
		3162	9.9		
		3981	11.9		1
		5012	13.9		1
		6310	15.9		1
		7943	18.0		
		10000	20.2		
		Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB) Probe Frequency Response	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity Ref. (0 dB) Ref. (0 dB) Ref. (0 dB) Probe Frequency Response Hz Probe Frequency Response 100 126 158 200 251 316 398 501 631 794 Ref. (0 dB) 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943	Probe Sensitivity at 1000 Hz. dBV/A/m -60.12 Probe Level Linearity 6 6 6.00 Ref. (0 dB) 0 0.00 -6 -6.03 -12 -12.04 Probe Frequency Response 100 -19.9 126 -17.9 158 -15.9 200 -14.0 251 -12.0 316 -10.0 398 -8.0 501 -6.0 631 -4.0 794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1585 4.0 1995 6.0 2512 7.9 3162 9.9 3981 11.9 5012 13.9 6310 15.9 7943 18.0	Probe Sensitivity at 1000 Hz. dBV/A/m -60.12 Probe Level Linearity Ref. (0 dB) 0 0.00 -6 6.03 -12 -12.04 Probe Frequency Response Hz Probe Frequency Response 100 -19.9 126 -17.9 158 -15.9 200 -14.0 251 -12.0 316 -10.0 398 -3.0 501 -6.0 631 -4.0 794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1855 4.0 1995 6.0 2512 7.9 3162 9.9 3981 11.9 5012 13.9 6310 15.9 7943 18.0

Instruments used for calibrat	tion:		Date of Cal.	Traceablity No.	Due Date
HP HP	34401A	S/N 36064102	1-Oct-2015	.287708	1-Oct-2016
HP	34401A	S/N 36102471	1-Oct-2015	,287708	1-Oct-2016
HP	33120A	S/N 36043716	1-Oct-2015	.287708	1-Oct-2016
B&K	2133	S/N 1583254	1-Oct-2015	683/284413-14	1-Oct-2016

Cal. Date:

8-Jun-2016

Tested by: Felix Christopher

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: ZNFTP260	PCTEST' INGINITERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 44 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 41 of 50

Certificate of Calibration

RADIAL T COIL PROBE

Manufactured by:

TEM CONSULTING

Model No:

RADIAL T COIL PROBE (ID#80583

Serial No:

TEM-1129

Calibration Recall No:

26516

Submitted By:

Customer:

ANDREW HARWELL

Company: Address:

PCTEST ENGINEERING LAB 6660-B DOBBIN ROAD

COLUMBIA

MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

RADIAL T TEM C

Upon receipt for Calibration, the instrument was found to be:

Within (\mathbf{X})

tolerance of the indicated specification. See attached Report of Calibration.

West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

08-Jun-16

Certificate No:

26516 - 2

Felix Christopher (QA Mgr.)

QA Doc. #1051 Rev. 2.0 10/1/01

Certificate Page 1 of 1

West Caldwell Calibration uncompromised calibration Laboratories, Inc. 1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

Approved by: FCC ID: ZNFTP260 HAC (T-COIL) TEST REPORT 1 LG Quality Manager Test Dates: **DUT Type:** Page 42 of 50 12/14/2016 Portable Handset

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M

ISO/IEC 17025: 2005 Calibration Lab. Cert. #1533.01

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

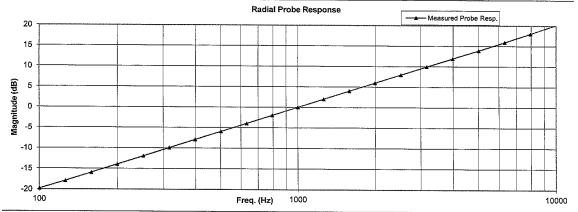
TEM Consulting LP Radial T Coil Probe

Model No.: Radial T Coil Probe

Serial No.: TEM-1129

i. D. No: 80583

Company: PCTEST Engineering Lab.


Probe Sensitivity measured wit	h Helmholt	z Coil			
Helmholtz Coil;			Before & afte	er data same	:X
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environ	ment:	
the current in the coils, in amperes.;	0.09	Α	Ambient Temperature:	20.3	°C
Helmholtz Coil Constant;	7.08	A/m/V	Ambient Humidity:	43.4	% RH
Helmholtz Coil magnetic field;	6.22	A/m	Ambient Pressure:	98.3	kPa
			Calibration Date:	8-Jun-16	
Probe Sensitivity at	1000	Hz.	Re-calibration Due:	8-Jun-17	
was	-60.57	dBV/A/m	Report Number:	26516	-2
	0.937	mV/A/m	Control Number:	26516	
Probe resistance	899	Ohms			

This Calibration is traceable through NIST test numbers:

683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025

Cal. Date: 8-Jun-2016

Measurements performed by:

Felix Christopher

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: ZNFTP260	PCTEST VENGINEERING LANGUATORY, INC.	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 43 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 43 01 50

HCRTEMC_TEM-1129_Jun-08-2016

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe

Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Company: PCTEST Engineering Lab.

Function	Tolerai	Measured values			
			Before	Out	Remarks
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.57		
	***************************************	dB		7727	1
Probe Level Linearity		6	5.95		
	Ref. (0 dB)	0	0.00		1
		-6	-6.00		
		-12	-12.02		
***************************************	· · · · · · · · · · · · · · · · · · ·	Hz			
Probe Frequency Response			-19.8		
		126	-18.0		
					1
			I I		
					1
	Ref. (0 dB)				
			I I		
			1		
		10000	20.2		
		Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB)	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity 6 Ref. (0 dB) 0 -6 -12 Probe Frequency Response 100 126 158 200 251 316 398 501 631 794	Probe Sensitivity at 1000 Hz. dBV/A/m -60.57 Probe Level Linearity	Probe Sensitivity at 1000 Hz. dBV/A/m -60.57 Probe Level Linearity 6 5.95 6 6.60

Instruments used for calibration: HP 34401A HP 34401A HP 33120A B&K 2133	S/N 36064102 S/N 36102471 S/N 36043716 S/N 1583254	Date of Cal. 1-Oct-2015 1-Oct-2015 1-Oct-2015 1-Oct-2015	Traceability No. ,287708 ,287708 ,287708 ,287708 683/284413-14	Due Date 1-Oct-2016 1-Oct-2016 1-Oct-2016 1-Oct-2016
--	---	--	---	--

Cal. Date:

8-Jun-2016

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc. Tested by: Felix Christopher

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: ZNFTP260	PCTEST' INGINITERING LABORATORY, INC.	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 44 of 50
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 44 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 11/29/2016

11. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFTP260	PETEST VENGINEERING LAKONATORY, INC.	HAC (1-COIL) TEST REPORT		Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 45 of 50	
0Y1612191978.ZNF	12/14/2016	Portable Handset		Fage 45 01 50	

12. REFERENCES

- ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v04," April 26, 2016
- FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v02," April 26, 2016 3.
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5 FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May,
- Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, "IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- 11. Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- 12. Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.

FCC ID: ZNFTP260	PCTEST VENGINEERING LAIGHATORT, INC.	TAC (1-CUIL) IEST REPORT		Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 46 of 50	
0Y1612191978.ZNF	12/14/2016	Portable Handset			

- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 25. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFTP260	HAC (T-COIL) TEST REPORT		① LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dog 47 of 50	
0Y1612191978.ZNF	12/14/2016	Portable Handset		Page 47 of 50	