

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (1) of (56)

Test Report

Part 15 Subpart C 15.247

Equipment under test Bluetooth Earbud (Cradle)

Model name TONE-T90QC

HVINs TONE-T90QC, TONE-UF90QC,

TONE-DF90QC

FVIN 1.0

FCC ID ZNFTONET90QC

Applicant LG Electronics USA, Inc.

Manufacturer LG Electronics Inc.

Date of test(s) 2022.06.09 ~ 2022.06.13

Date of issue 2022.06.14

Issued to

LG Electronics USA, Inc.

111 Sylvan Avem North Building, Englewood Cliffs, New Jersey, United States Tel: +82-10-9193-9881

Issued by

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Report approval by :
Yeong-Jun Cho
Technical manager

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (2) of (56)

Revision history

Revision	Date of issue	Test report No.	Description
-	2022.06.14	KES-RF1-22T0055	Initial

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (3) of (56)

TABLE OF CONTENTS

1.	General in	formation	4
	1.1.	EUT description	4
	1.2.	Requirements for Bluetooth transmitter	
	1.3.	Test configuration	6
	1.4.	Information about derivative model	6
	1.5.	Accessory information	6
	1.6.	Sample calculation	6
	1.7.	Measurement Uncertainty	6
	1.8.	Frequency/channel operations	7
2.	Summary	of tests	8
3.	Test result	S	9
	3.1.	99% Occupied Bandwidth	9
	3.2.	20 dB bandwidth	14
	3.3.	Output power	18
	3.4.	Carrier frequency separation	20
	3.5.	Number of hopping frequency	22
	3.6.	Time of occupancy	24
	3.7.	Radiated restricted band and emissions	28
	3.8.	Conducted band edge and out of band emissions	47
	3.8.	AC conducted emissions	
App	endix A.	Measurement equipment	
App	endix B.	Test setup photo	56

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (4) of (56)

1. General information

Applicant:	LG Electronics Inc USA, Inc.		
Applicant address:	111 Sylvan Avem North Bui	lding, Englewood Cliffs, New Je	ersey, United States
Test site:	KES Co., Ltd.		
Test site address:	3701, 40, Simin-daero 36	5beon-gil, Dongan-gu, Anyang-	si,
	Gyeonggi-do, 14057, Korea		
	🖾 473-21, Gayeo-ro, Yeoju-	-si, Gyeonggi-do, Korea	
Test Facility	FCC Accreditation Designation No.: KR0100, Registration No.: 444148		
	ISED Registration No.: 23298		
FCC,IC rule part(s):	FCC : 15.247 / IC : RSS-247	7	
FCC ID:	ZNFTONET90QC		
	2703C-TONET90QC		
Test device serial No.:	Production	Pre-production	Engineering

1.1. EUT description

Equipment under test	Bluetooth Earbud (Cradle)
Frequency range	2 402 MHz ~ 2 480 MHz (BDR/EDR)
Model	TONE-T90QC
Modulation technique	GFSK, π/4DQPSK, 8DPSK
Number of channels	2 402 MHz ~ 2 480 MHz (BDR / EDR) : 79ch
Antenna specification	PCB Antenna // Peak gain: -3.0 dBi
Power source	DC 3.70 V (Battery)
H/W version	1.0
S/W version	1.0

1.2. Requirements for Bluetooth transmitter

15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted signals.

Pseudorandom frequency hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

Equal hopping frequency use

The channels of this system will be used equally over the long-term distribution of the hopsets.

Example of a 79 hopping sequence in data mode:

67, 41, 2, 34, 4, 8, 73, 22, 50, 3, 56, 11, 77, 54, 7, 35, 27, 40, 62, 42, 29, 14, 72, 53, 36, 13, 12, 17, 48, 70, 26, 16, 19, 31, 18, 25, 60, 23, 30, 45, 46, 6, 52, 44, 75, 74, 55, 65, 00, 68, 57, 63, 1, 37, 38, 33, 64, 78, 47, 51, 20, 15, 32, 76, 49, 21, 61, 71, 69, 10, 5, 39, 66, 58, 43, 59, 9, 28, 24, 72, 50, 18, 25, 54, 22, 23, 39, 33, 37, 29, 13, 56, 74, 78, 49, 40, 1, 7, 63, 6, 46, 57, 15, 36, 16, 5, 28, 4, 69, 26, 30, 77, 9, 3, 52, 67, 47, 68, 73, 44, 64, 45, 42, 41, 70, 8, 31, 34, 00, 58, 35, 43, 24, 61, 76, 11, 27, 38, 71, 66, 32, 60, 20, 55, 21, 48, 12, 65, 10, 51, 53, 17, 75, 14, 59, 62, 19, 2

System receiver input bandwidth

Each channel bandwidth is 1 MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

1.3. Test configuration

The LG Electronics USA, Inc. // Bluetooth Earbud (Cradle) // TONE-T90QC //

FCC ID: ZNFTONET90QC // IC ID: 2703C-TONET90QC was tested according to the specification of

EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15.247 ISED RSS-247 Issue 2 and RSS-Gen Issue 5 KDB 558074 D01 v05 r02 ANSI C63.10-2013

1.4. Information about derivative model

N/A

1.5. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

1.6. Sample calculation

Where relevant, the following sample calculation is provided For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).= 0.72 + 10 = 10.72 (dB)

For Radiation test :

Field strength level $(^{dB}\mu V/m)$ = Measured level $(^{dB}\mu V)$ + Antenna factor $(^{dB})$ + Cable loss $(^{dB})$ - Amplifier gain $(^{dB})$

1.7. Measurement Uncertainty

Test Item		Uncertainty	
Uncertainty for Conduction emission test		2.46 dB	
Uncertainty for Radiation emission test	Below 16Hz	4.40 dB	
(include Fundamental emission)	Above 10Hz	5.94 dB	
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.			

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No.: KES-RF1-22T0055 Page (7) of (56)

1.8. Frequency/channel operations

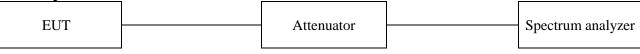
Ch.	Frequency (Mb)	Rate(Mbps)
00	2402	BDR 1 Mbps, EDR 2 Mbps, EDR 3 Mbps
•	•	•
40	2442	BDR 1 Mbps, EDR 2 Mbps, EDR 3 Mbps
•	•	•
78	2480	BDR 1 Mbps, EDR 2 Mbps, EDR 3 Mbps

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No .: KES-RF1-22T0055 Page (8) of (56)

2. Summar	ry of tests		
Section in FCC Part 15	Section in RSS-247 & Gen	Parameter	Test results
-	RSS-Gen 6.7	99% Occupied bandwidth	Pass
15.247(a)(1)(iii)	RSS-247 5.1(a)	20 dB bandwidth	Pass
15.247(b)(1)	RSS-247 5.4(b)	Output power	Pass
15.247(a)(1)	RSS-247 5.1(b)	Channel separation	Pass
15.247(a)(1)(iii)	RSS-247 5.1(d)	Number of channels F	
15.247(a)(1)(iii)	RSS-247 5.1(d)	Time of occupancy	Pass
15.205, 15.209	RSS-247 5.5 RSS-Gen 8.9,8,10	Radiated restricted band and emission	
15.207(a)	RSS-Gen 8.8	AC Conducted emissions	Pass
15.207(d)	RSS-247 5.5	Conducted spurious emission and band edge	Pass



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (9) of (56)

Test results 99% Occupied Bandwidth Test procedure

ANSI C63.10-2013 clause 6.9.2 and 6.9.3

Test setup

Test setting

- 1. Span = The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- 2. RBW = The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW 3.

VBW = shall be approximately three times the RBW

- 4. Sweep = auto
- 5. Detector function = Peak
- 6. Trace = Max hold

Limit

None; for reporting purpose only.

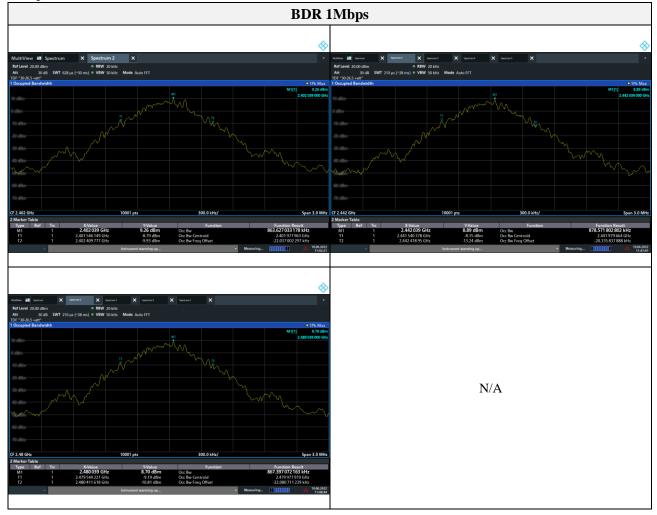
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Mode : BDR 1Mbps

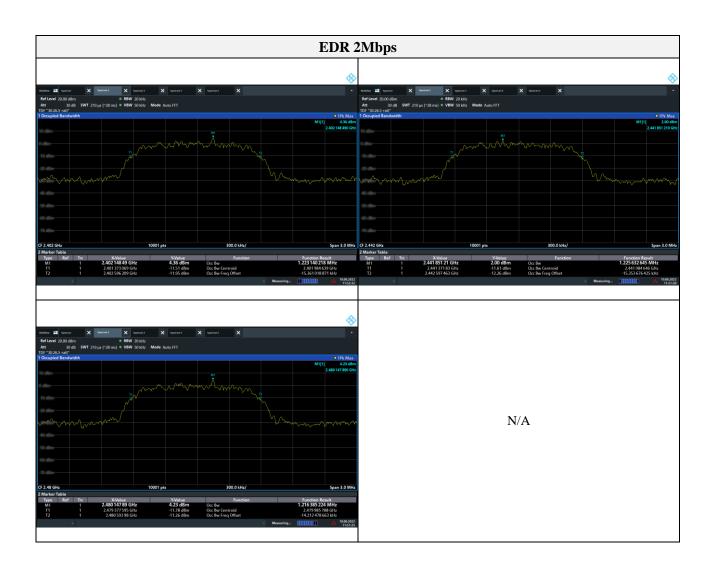
Frequency(₩z)	99% occupied bandwidth(Mz)	Limit (Mb)
2 402	0.864	
2 442	0.879	-
2 480	0.867	

Mode : EDR 2Mbps

Frequency(Mb)	99% occupied bandwidth(Mz)	Limit(M拉)
2 402	1.223	
2 442	1.226	-
2 480	1.216	


Mode : EDR 3Mbps

Frequency(Mb)	99% occupied bandwidth(Mz)	Limit (Mb)
2 402	1.218	
2 442	1.220	-
2 480	1.213	


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (11) of (56)



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (12) of (56)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (13) of (56)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (14) of (56)

3.2. 20 dB bandwidth

Test procedure ANSI 63.10-2013

Test setup

FUT	Attonuator	Spectrum analyzer
EUI	Attenuator	Spectrum analyzer

Test setting

- 1. Span = Set between two times and five times the OBW
- 2. $RBW \ge 1$ % to 5 % of the OBW
- 3. VBW \geq 3 * RBW
- 4. Sweep = Auto
- 5. Detector function = Peak
- 6. Sweep = Auto couple
- 7. Trace mode = Max hold
- 8. All the trace to stabilize

Limit

Not applicable

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (15) of (56)

Frequency(Mz)	Channel no.	Data rate(Mbps)	Measured bandwidth(Mz)
2 402	00		0.81
2 442	40	BDR 1 Mbps	0.81
2 480	78		0.81
2 402	00		1.35
2 442	40	EDR 2 Mbps	1.35
2 480	78		1.35
2 402	00		1.35
2 442	40	EDR 3 Mbps	1.35
2 480	78		1.35

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (16) of (56)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (18) of (56)

3.3. Output power

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013 – Section 11.9.2.1 and 11.9.2.3.2

Test setup

Test setting

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Limit

According to \$15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to \$15.247(b)(1), For frequency hopping systems operating in the 2 400 ~ 2 483.5 Mz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 ~ 5 805 Mz band: 1 Watt.

According to §15.247(a)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Limit

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (19) of (56)

Test results					
Frequency(Mb)	Channel no.	Data rate(Mbps)	Average Power (dBm)	Peak Power (dBm)	Power Limit (dBm)
2 402	00		13.91	13.95	20.97
2 442	40	BDR 1 Mbps	13.87	13.92	20.97
2 480	78		13.82	13.86	20.97
2 402	00		10.34	11.87	20.97
2 442	40	EDR 2 Mbps	10.32	11.88	20.97
2 480	78		10.24	11.93	20.97
2 402	00		10.24	12.20	20.97
2 442	40	EDR 3 Mbps	10.41	12.45	20.97
2 480	78		10.31	12.37	20.97

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3.4. Carrier frequency separation

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013

Test Setting

- 1. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:
- 2. Span = wide enough to capture the peaks of two adjacent channels

3. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

- 4. Video (or Average) Bandwidth (VBW) \geq RBW
- 5. Sweep = auto
- 6. Detector function = peak
- 7. Trace = max hold
- 8. Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Limit

According to 15.247(a)(1), frequency hopping system operating in 2 400 ~ 2 483.5 Mz. Band may have hopping channel carrier frequencies that are separated by 25 kz or two-third of 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil,

Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (21) of (56)

Test results				
Frequency(Mz)	Channel no.	Data rate(Mbps)	Channel Separation (Mtz)	Limit (MHz)
2 442	40	BDR 1 Mbps	0.956	≥ 0.540
2 442	40	EDR 3 Mbps	0.998	≥ 0.900

Hopping mode_BDR(1Mbps)	Hopping mode_EDR(3Mbps)
*	*
Att 25 dB SWT 140 µs (~7.0 ms) © VBW 100 kHz Mode Auto FFT	Ref Level Sto offin # Ref Level X tensorit X
1Prequency Sweep 01PK Max 1 1 0 02[1] -0.43 dB 02[1]	1Prequency Sweep 02(1) -0.05 d
20 mbm	20.48%
0.0m	
0.8m	
70.000- 80.000-	
CF 2. 442 GHz 1001 pts 300.0 kHz/ Span 3.0 MHz (
- Mexating 1100.002 1104-0	- Maavelag [111111] 🗡 1003.022 11.03.00

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3.5. Number of hopping frequency

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013

Test setup

FUT	Attonuator	Spactrum analyzar
EOT	Attenuator	Spectrum analyzer

Test setting

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings.

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW \geq RBW.
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Limit

According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mz bands shall use at least 15 hopping frequencies.

Limit

FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test results			
Frequency	Data rate(Mbps)	Number of hopping frequency	Limit
2 402 ~ 2 480 MHz	BDR 1 Mbps	79	≥15
2 402 ~ 2 480 MHz	EDR 3 Mbps	79	≥15

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No.: KES-RF1-22T0055 Page (23) of (56)

Hopping mode_EDR(3 Mbps)
Ketzeet ISodim Kay 2004tt May 2004tt
10.00mm
2 24619 C 24413 GB/ 2 24619 C 24413 GB/ Maauling C 24413 GB/ Maauling C 24413 GB/
Number all base Number of Net State Numer of NetState Number of NetState
Participant

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (24) of (56)

3.6. Time of occupancy

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013

Test setup

FIT	Attenuator	Spectrum analyzar
EUI	Attenuator	Spectrum analyzer

Test setting

- 1. The EUT must have its hopping function enabled.
- 2. Span = zero span, centered on a hopping channel
- 3. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 4. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 5. Detector function = peak
- 6. Trace = max hold

Limit

According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = $0.4(s) \times 79 = 31.6(s)$

Time of occupancy on the TX channel in 31.6 sec = time domain slot length \times (hop rate \div number of hop per channel) \times 31.6

Limit

According to RSS-247 5.1(d), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = $0.4(s) \times 79 = 31.6(s)$

Time of occupancy on the TX channel in 31.6 sec = time domain slot length \times (hop rate \div number of hop per channel) \times 31.6

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (25) of (56)

Operation mode: GFSK , $\pi/4$ -DQPSK, 8DPSK

Packet type	Frequency (Mz)	Dwell time (ms)	Time of occupancy on the Tx channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx channel in 31.6 sec (ms)
DH1	2 442	0.44	140.80	400
DH3	2 442	1.68	268.80	400
DH5	2 442	2.94	313.60	400
2-DH1	2 442	0.44	140.80	400
2-DH3	2 442	1.68	268.80	400
2-DH5	2 442	2.94	313.60	400
3-DH1	2 442	0.44	140.80	400
3-DH3	2 442	1.70	271.20	400
3-DH5	2 442	2.94	313.60	400

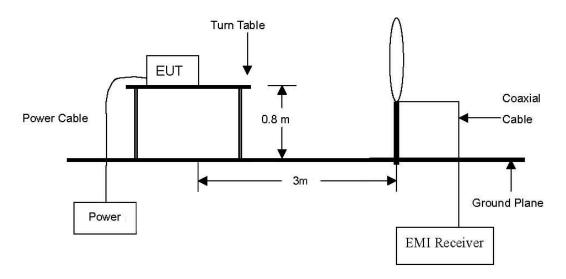
Note:

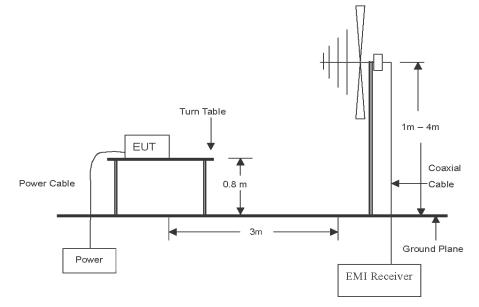
Normal Mode

DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 140.80$ (ms) DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 268.80$ (ms) DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 313.60$ (ms) 2-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 140.80$ (ms) 2-DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 268.80$ (ms) 2-DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 313.60$ (ms) 3-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 313.60$ (ms) 3-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 140.80$ (ms) 3-DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 271.20$ (ms) 3-DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 313.60$ (ms)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

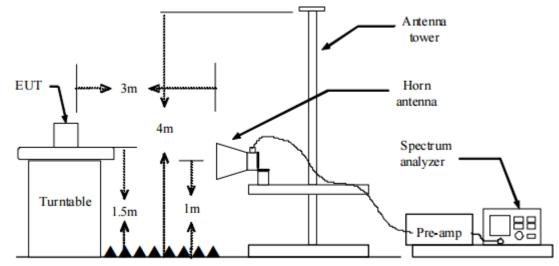



3.7. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 klz to 30 Mlz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 GHz emissions.



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Report No.: KES-RF1-22T0055 Page (29) of (56)

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel, ground parallel and perpendicular of the antenna are set to make the measurement. It was determined that **parallel** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **parallel**.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mz

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The antenna is a bi-log antenna, a horn antenna, and its height are varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (30) of (56)

- 5. Spectrum analyzer settings for f < 1 GHz:
 - 1 Span = wide enough to fully capture the emission being measured
 - 2 RBW = 100 kHz
 - $③ VBW \ge RBW$
 - ④ Detector = quasi peak
 - \bigcirc Sweep time = auto
 - 6 Trace = max hold
- 6. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - ③ VBW \ge 3 MHz
 - (4) Detector = peak
 - \bigcirc Sweep time = auto
 - 6 Trace = max hold
 - \bigcirc Trace was allowed to stabilize
- 7. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - (3) $VBW \ge 3 \times RBW$
 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Report No.: KES-RF1-22T0055 Page (31) of (56)

Note.

- 1. f < 30 Mz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$
 - $f \ge 30$ Mz, extrapolation factor of 20 dB/decade of distance. $F_d = 20\log(D_m/Ds)$ Where:
 - F_d = Distance factor in dB
 - D_m = Measurement distance in meters
 - D_s = Specification distance in meters
- 2. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 3. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 4. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(klz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No.: KES-RF1-22T0055 Page (32) of (56)

Limit

According to RSS-Gen, Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits :

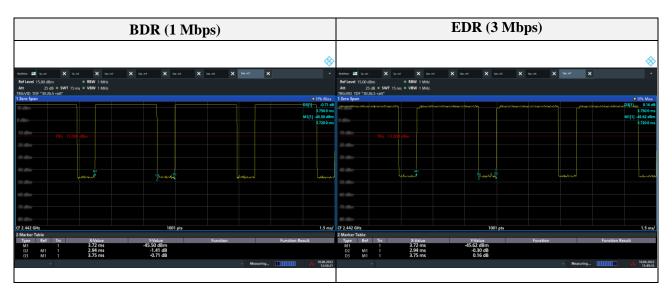
Frequency (Mb)	Distance (Meters)	Radiated (µN/m)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960*	3	500

* Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licenceexempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

Duty cycle

Regarding to KDB 558074 D01_v05 r02, 6. Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

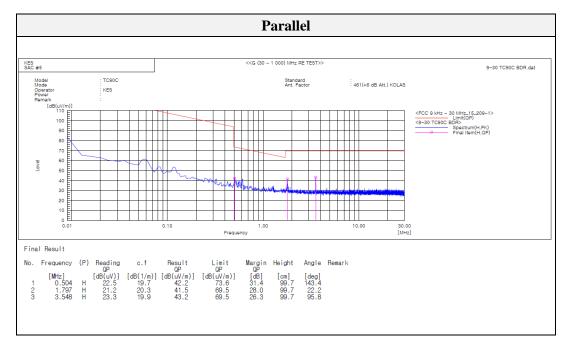

a) A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal.

b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal.

Mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
BDR(1 Mbps)	2.94	3.75	0.78	78.40	1.06
EDR(3 Mbps)	2.94	3.75	0.78	78.40	1.06

Duty cycle (Linear) = T_{on} time/Period


DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)


3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (34) of (56)

Test results (Below 30 Mz)

Channel:

0 (Worst case)

Note.

1. No spurious emission were detected under 30 Mtz, the above test result is the peak result.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (35) of (56)

Remark

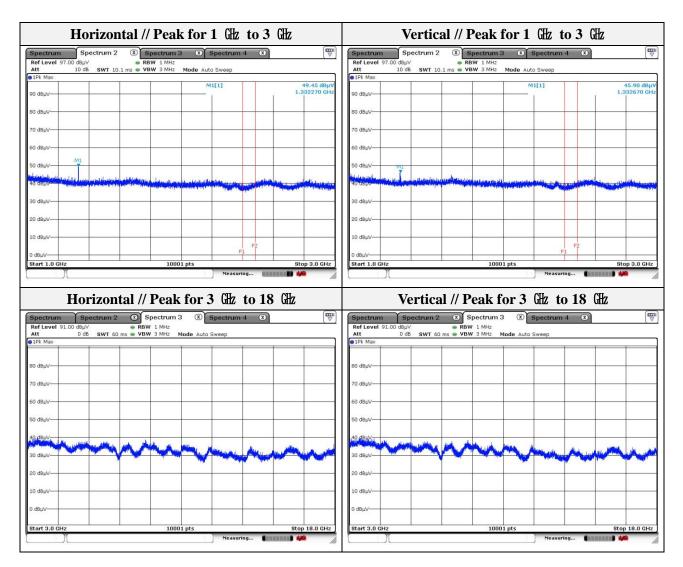
Test results (Below 1 000	Mb) – Worst case		
Mode:	BDR		
Distance of measurement:	3 meter		
Channel:	0 (Worst case)	_	
	Horizon	tal // Vertical	
KES	< <re(30 m<="" th=""><th>Hz - 1 000 MHz)>></th><th></th></re(30>	Hz - 1 000 MHz)>>	
Chamber No. : G, SAC #5 Model No. : TSOC Mode : EDR Power : 3.7V(BATTERY) Remark :		Limit : CISPR 02 Cl. Ant. Factor : VULB 9168(44 Test By : KES :	ass B, 3 m 61) + 6 dB Act., KOLAS
Teve1[d8(b)/b]]	100.0 Frequency [ktis]	500.0	CTC B Jac 30-1 T30C BDB Scn (K, FX) Final Team (K, OF Final Team (K, OF Final Team (K, OF Final Team (K, OF) Final Team
Final Result No. Range Frequenc [MHz]	y Pol Reading c.f QP [dB(µV)] [dB(1/m)]	Result Limit QP QP [dB(uV/m)] [dB(uV/m)] [Margin Height Angl QP dB] [cm] [deg]

				QP .		Q.P.	Q.F	¥-		
		[MHz]		[dB(µV)]	[dB(1/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[cm]	[deg]
1	Rangel	101.974	Н	50.1	-17.2	32.9	43.5	10.6	200.	0 158.0
2	Rangel	139.998	v	43.0	-13.2	29.8	43.5	13.7	130.	0 299.7
3	Range1	143.975	Н	50.4	-13.0	37.4	43.5	6.1	200.	0 9.5
4	Rangel	431.968	Н	50.4	-8.9	41.5	46.0	4.5	208.	0 56.8
5	Rangel	446.033	v	47.6	-8.5	39.1	46.0	6.9	100.	0 217.1
6	Rangel	447.973	v	47.9	-8.5	39.4	46.0	6.6	147.	0 205.5
7	Rangel	450.010	Н	50.2	-8.4	41.8	46.0	4.2	100.	0 60.4
8	Rangel	456.024	н	50.1	-8.3	41.8	46.0	4.2	100.	0 72.4
9	Rangel	463.978	v	47.3	-8.2	39.1	46.0	6.9	110.	0 203.7
10	Rangel	563.985	Н	47.3	-6.4	40.9	46.0	5.1	198.	0 331.8
11	Range1	563.985	v	46.0	-6.4	39.6	46.0	6.4	100.	0 247.3
12	Rangel	624.028	v	42.6	-5.0	37.6	46.0	8.4	100.	0 158.8

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (36) of (56)

Test results (Above 1 000	MHz)
Mode:	BDR
Distance of measurement:	3 meter
Channel:	00

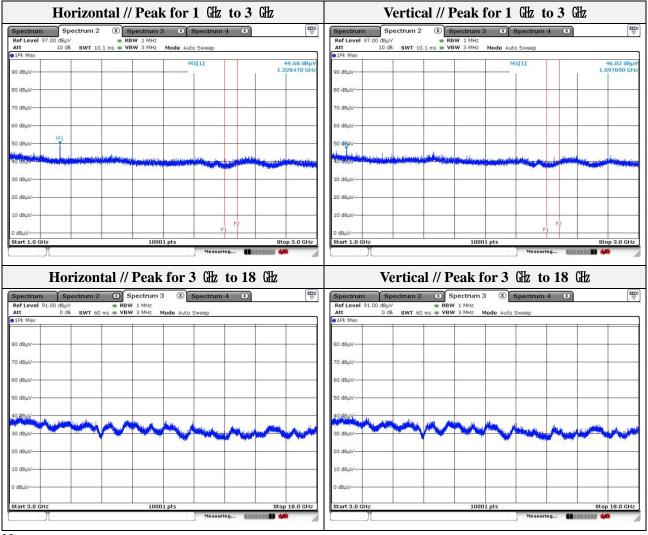
Spurious


Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 332.27	49.45	Peak	Н	-7.47	-	41.98	74.00	32.02
1 332.67	45.90	Peak	V	-7.47	-	38.43	74.00	35.57

- Band edge

Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2 361.15	41.39	Peak	V	-0.85	-	40.54	74.00	33.46
2 388.64	42.29	Peak	Н	-0.83	-	41.46	74.00	32.54

Restrict	ed band // Horizontal	// Peak	Rest	ricted band // Vertical	// Peak
Spectrum 2		8	Spectrum Spectru		4 (8)
Ref Level 100.00 dBµ∨ Att 10 dB SWT	RBW 1 MHz S.3 µs VBW 3 MHz Mode Auto FFT		Ref Level 100.00 dBµV Att 10 dB St	● RBW 1 MHz WT 15.3 µs ● VBW 3 MHz Mode Auto FFT	
1Pk Max			1Pk Max		
90 d8µV	M2[1] M1[1]	42.29 doğu 2.3886374 SHz 98.77 dBµV 2.4021390 GHz	90 dBµV	M2[1] M1[1]	41.39 dB 2.3611510 d 96.07 dB 2.4021390 G
30 dBµV			80 dBµV		
70 dBµV			70 dBµV		
о авру-			60 dBµV		
i0 dBµV		M2	50 dBµV	M2	
e ale porter and a second and a second and a second a s	www.www.www.www.www.	montun	APTOBALL	warm for and the second	man man
30 dBµV			30 dBµV-		
ю авил			20 dBµV		
LO dBµV-		F2	10 dBµV		F2
Start 2.3 GHz	10001 pts	Stop 2.405 GHz	Start 2.3 GHz	10001 pts	Stop 2.405 GH
/L	Measuring	••••••		Measuri	ng 🗰 🖬 🖬 🦗


Note.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (38) of (56)

Mode:	BDR
Distance of measurement:	3 meter
Channel:	40

Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)			Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)	
1 097.09	46.82	Peak	V	-8.88	-	37.94	74.00	36.06	
1 328.47	49.68	Peak	V	-7.49	-	42.19	74.00	31.81	

Note.

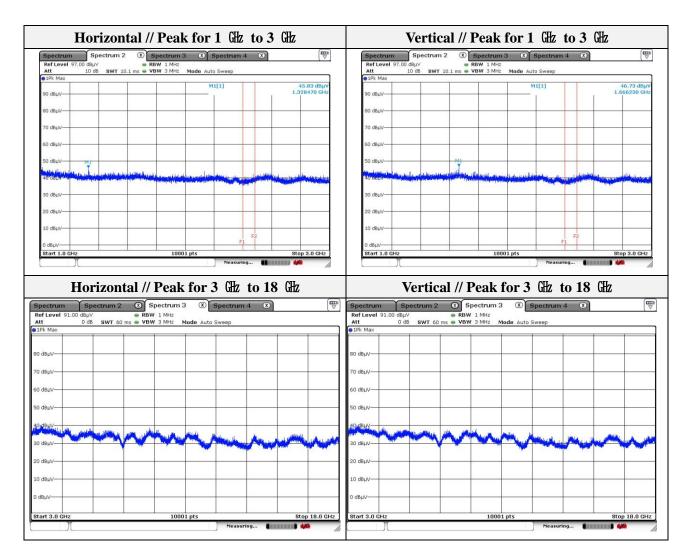
1. Average test would be performed if the peak result were greater than the average limit.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (39) of (56)

Mode:	BDR
Transfer rate:	1 Mbps
Distance of measurement:	3 meter
Channel:	78

- Spurious

Frequency (MHz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)			Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 328.47	45.83	Peak	Н	-7.49	-	38.34	74.00	35.66
1 666.23	46.73	Peak	V	-4.82	-	41.91	74.00	32.09


- Band edge

Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2 484.98	41.45	Peak	V	-0.77	-	40.68	74.00	33.32
2 499.77	42.54	Peak	Н	-0.76	-	41.78	74.00	32.22

Spectrum 2 X				ed band // Vertical //	ГСак
spectrum production 2	Spectrum 3 🛞 Spectrum 4	() ()	Spectrum 2 Spectrum 2	Spectrum 3 Spectrum 4	
	RBW 1 MHz VBW 3 MHz Mode Auto FFT		Ref Level 100.00 dBµV Att 10 dB SWT 5.7 ●1Pk Max	● RBW 1 MHz µs ● VBW 3 MHz Mode Auto FFT	
	M2[1] M1[1]	42.54 dBµV 2.49977220 GHz 95.76 dBµV 2.47981580 GHz	90 dBuV	M2[1] M1[1]	41.45 dBμ 2.48497690 GF 91.93 dBμ 2.48014540 GF
			70 dBµV		
	M2		50 dBµV		
30 dBµV			30 dBµV		
20 dBµV			20 dBµV		
10 dBμV-F1	F2		10 dBµV-F1	F2	
Start 2.478 GHz	10001 pts Measuring	Stop 2.51 GHz	Start 2.478 GHz	10001 pts Measuring	Stop 2.51 GHz

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

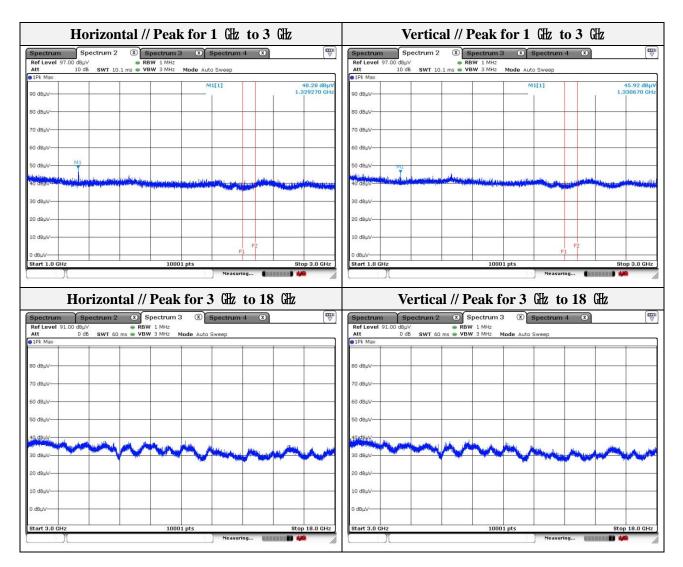
Note.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (41) of (56)

Mode:	EDR
Transfer rate:	3 Mbps(Worst case)
Distance of measurement:	3 meter
Channel:	00

Spurious

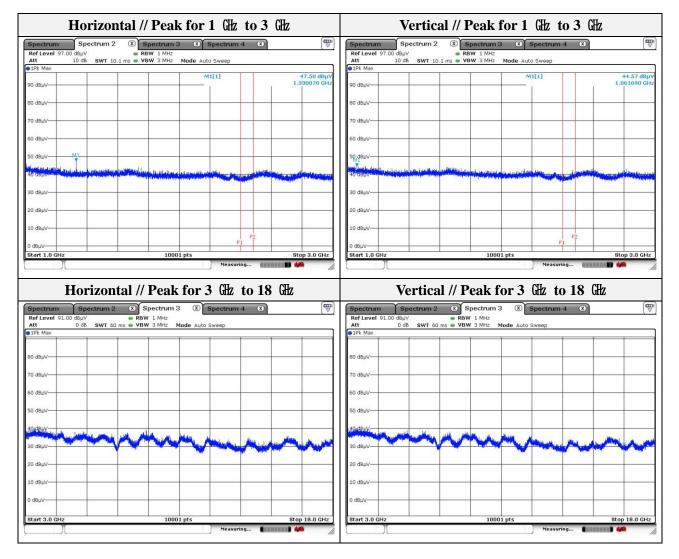
_


Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)			Limit (dBµN/m)	Margin (dB)	
1 329.27	48.28	Peak	Н	-7.49	-	40.79	74.00	33.21	
1 330.67	45.92	Peak	V	-7.48	-	38.44	74.00	35.56	

- Band edge

Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2 372.85	42.23	Peak	V	-0.84	-	41.39	74.00	32.61
2 376.96	42,08	Peak	Н	-0.84	-	41.24	74.00	32.76

Spectrum S	pectrum 2 🙁 Sp	ectrum 3 🛛 🗴 S	pectrum 4 🙁			Spectrur	n Sp	ectrum 2	× Spectr	.m 3 🔍 🗵	Spectrum 4	×		
Ref Level 100.00 dB		W 1 MHz	2.00 A. 200 A				100.00 dB		RBW 1		20			
Att 10	dB SWT 15.3 μs 🖷 VB	W 3 MHz Mode Aut	o FFT			Att Pk Max	10 0	B SWT 15.3	µs 🖷 VBW 3	MHz Mode	Auto FFT			
IPK Mda		M	2[1]	1	42.08 dBus	The max					M2[1]		4	2.23 dBu
				2	.3769630 GHz									28470
90 dBµV		M	1[1]		97.69 dBµV	90 dBµV		+ +			-M1[1]			5.44 dBj 17820 GH
			- T - 1	r í							1 1	Ť	2.401	702010
i0 dBµV-						80 dBµV							++	-
						-								
0 dBµV-						70 dBµV								
io dBµV						60 dBµV							++	
50 dBµV						50 dBµV							\rightarrow	
		and the strength	M2		and a	10000.01	10000		and the second		M2	-		N
JavaBerry Warner	part man war	montones	mun has	1000 C	Vilv	and and and	Manuel	man	mer hand	mon	and the way	allower	20.00	Y
30 dBµV-						30 dBµV			-		1.00			
20 dBµV						20 dBµV							\rightarrow	
LO dBuV-						10 dBuV-								
F1				F2		F COURT	1						F2	
start 2.3 GHz		10001 pts		St	op 2.405 GHz	Start 2.3	CH7			10001 pts			Stop 2	.405 GH


Note.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (43) of (56)

Frequency Level				Ant. Pol.				
- Spurio	us							
Channel:			40					
Distance o	f measurem	ent:	3 meter					
Transfer ra	ite:		3 Mbps(Worst case)					
Mode:			EDR					

Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 061.69	44.57	Peak	V	-9.08	-	35.49	74.00	38.51
1 330.07	47.50	Peak	Н	-7.48	-	40.02	74.00	33.98

Note.

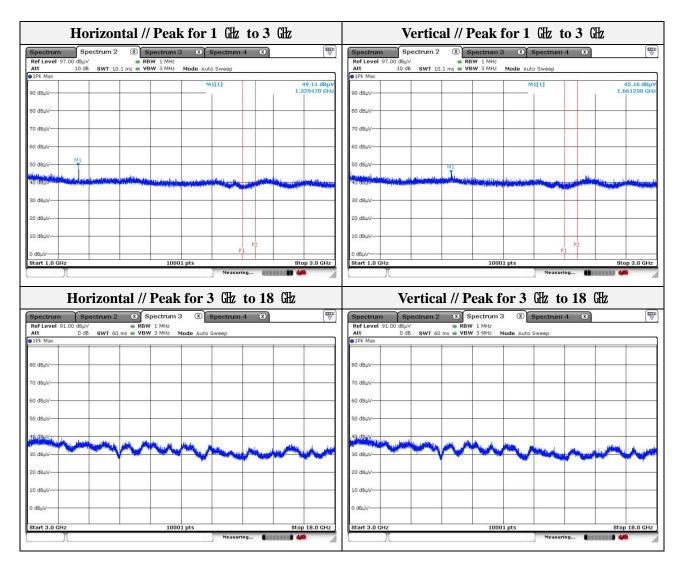
1. Average test would be performed if the peak result were greater than the average limit.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (44) of (56)

Mode:	EDR
Transfer rate:	3 Mbps(Worst case)
Distance of measurement:	3 meter
Channel:	78

Spurious

_


Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 329.47	49.11	Peak	Н	-7.49	-	41.62	74.00	32.38
1 661.23	45.16	Peak	V	-4.88	-	40.28	74.00	33.72

- Band edge

Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2 483.89	43.42	Peak	V	-0.77	-	42.65	74.00	31.35
2 496.75	43.53	Peak	Н	-0.76	-	42.77	74.00	31.23

Restricted band // Horizontal // Peak			Restric	cted band // Vertica	l // Peak
Spectrum Spectrum 2 Ref Level 100.00 dBuV	Spectrum 3 Spectrum 4 RBW 1 MHz		Spectrum Spectrum 2 Ref Level 100.00 dBuV	Spectrum 3 Spectrum BBW 1 MHz	m 4 🛞 🕅
	s VBW 3 MHz Mode Auto FFT			ST μS ST VBW 3 MHz Mode Auto FFT	
	M2[1] M1[1]	43.53 dBμV 2.49674530 GHz 95.46 dBμV 2.47998860 GHz	M1 90 dBTN	M2[1] M1[1]	43.42 dBµ\ 2.48389220 GH 91.43 dBµ\ 2.47998860 GH
86 dBµV			80 dBµV		
60 dBµV	M2		60 dBµV		
40 dBµV		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40 dBµV		
20 dBµV-			20 dBµV		
10 dBµV-F1	F2		10 dBµV		F2
Start 2.478 GHz	10001 pts Measuring	Stop 2.51 GHz	Start 2.478 GHz	10001 pts Meas	Stop 2.51 GHz

Note.

1. No spurious emission were detected above 3 GHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (46) of (56)

Test results (18 GHz to 30	(Hz) – Worst case
Mode:	BDR
Transfer rate:	1 Mbps
Distance of measurement:	3 meter
Channel:	0 (Worst case)

Ref Level 91.00 dbj// Att 0 db JWT 48 ms W War M Mez M de Auto Sweep 01/k 0 db JWT 48 ms 0 db Auto Sweep 0 db JWT 48 ms 0	Horizontal			Vertical				
B0 dB/V- Image: Second Secon	Ref Level 91.00 d8µV ● RBW 1 MHz Att 0 dB SWT 48 ms ● VBW 3 MHz Mode Auto Sweep		Ref Level 91.00 Att	dBµV 😐	RBW 1 MHz		4 🗷	
1 1 <th>PPk Max</th> <th></th> <th>●1Pk Max</th> <th>_</th> <th></th> <th></th> <th><u> </u></th> <th>-</th>	PPk Max		●1Pk Max	_			<u> </u>	-
60 dBU/- Image: Book and the second	80 dBµV		80 dBµV					
So deµv	70 dBµV		70 dBµV					
40 dBµ/ Image: Constraint of the second of	60 dbµv-		60 dBµV					
20 dBµV	50 dBµV		50 dBµV					
20 dBµ/	and a standard and a standard and a standard	ala and a state of the state	40 dBµV	Beek and a second second	Anna I an ababat I ate		the state of the	
			20 dBµV-					
	10 dBµV		10 dBµV					_
	0 d8µV		0 dBµV					
Start 18.0 GHz 10001 pts Stop 30.0 GHz Stop 30.0 GHz Start 18.0 GHz 10001 pts Stop 30.0 GHz	Start 18.0 GHz 10001 pts	Stop 30.0 GHz	Start 18.0 GHz		10001 p	ts	SI	op 30.0 GHz

Note.

1. No spurious emission were detected above 18 GHz.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (47) of (56)

3.8. Conducted band edge and out of band emissions

Test procedure

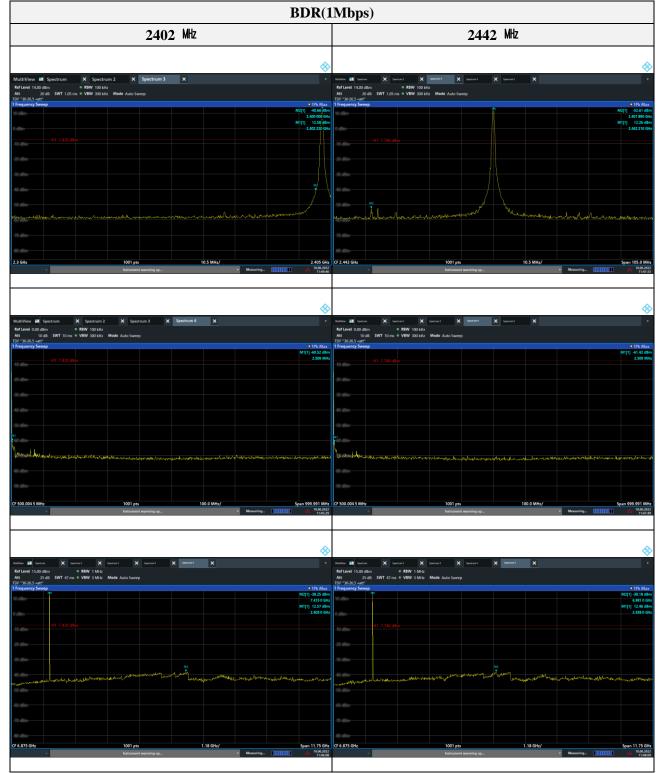
KDB 558074 v05r02 & ANSI 63.10-2013

Test setting

- 1. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
- 2. RBW = 100 kHz
- $3. \text{VBW} \geq 300 \text{ kHz}$
- 4. Detector = Peak
- 5. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))


Limit

According to RSS-247 5.5, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (48) of (56)

Test results



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (49) of (56)

BDR(1	BDR(1Mbps)					
2480 MHz	-					
Arrow a wave a wav	BLANK					
Autor i uno i vino	BLANK					
Name: Name: <td< td=""><td>BLANK</td></td<>	BLANK					



3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (50) of (56)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (51) of (56)

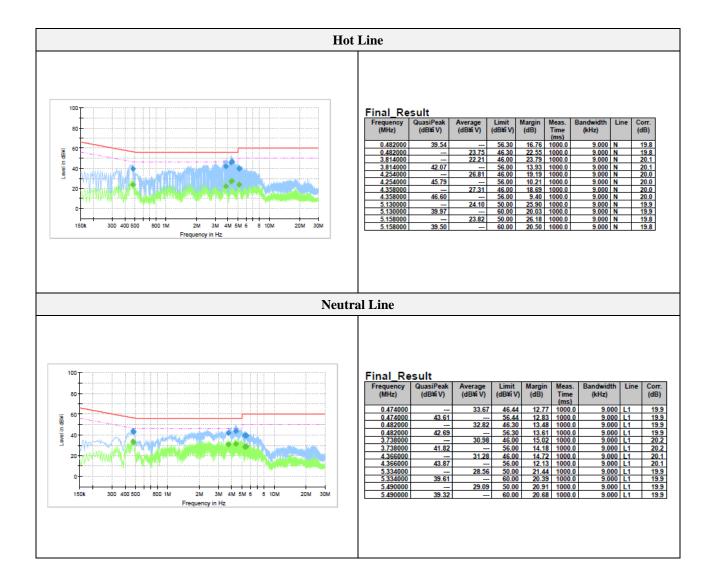
3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (52) of (56)

Hopping mode_EDR(3Mbps)										
				\$						~
Att 20 dB SWT 1.2 ms • VB	X Spec.ml X Spec.ml X Spec.ml W 100 kHz Wode Auto Sweep V Spec.ml X Spec.ml Spec.ml Spec.ml Spec.ml X Spec.ml Spec.ml <th>X tys.ml X tys.ml</th> <th>×</th> <th></th> <th></th> <th>X 20.ml K</th> <th>la construction of the</th> <th>Spa.ed X Spa.ed</th> <th>X 191.47 X</th> <th></th>	X tys.ml X tys.ml	×			X 20.ml K	la construction of the	Spa.ed X Spa.ed	X 191.47 X	
TDF "30-26.5 +att"					TDF "30-26.5 +att"					• 1Pk Max
Frequency Sweep			M2[1]	 TPk Max -38.99 d8m 	1 Frequency Sweep				M1[1]	
0 dBm			MIN MIN	8.36 dBm 2.418 980 GHz	hunnun					2.483 874 0 GH
				2.410 500 0112						
20 dBm			N		-20 dBm	M				
30 dBm										
						W				
50 dBm					-50 dBm	W				
Munthensen market	and and a second and a second s		Maria		-60 dBm	" WWW	moundary	nt-manana	mannaharman	Mannahaman
30 dBm					-80 dBm					
.3 GHz	1001 pts	12.0 MHz/			2.476 GHz		1001 pts	3.4 MHz/		2.51 GH
		- Measuri	ng	10.06.2022 12:57:59					- Measuring	10.06.2022

3.8. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.


Engineer of Emission (Mg)	Conducted limit (dBµN/m)				
Frequency of Emission (Mz)	Quasi-peak	Average			
0.15 - 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (54) of (56)

Test results

Mode:	BDR
Transfer rate:	1 Mbps
Distance of measurement:	3 meter
Channel:	0 (Worst case)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0055 Page (55) of (56)

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV3044	101272	1 year	2023.03.14
SIGNAL GENERATOR	KEYSIGHT	N5182B	MY59100115	1 year	2023.04.27
SIGNAL GENERATOR	Anritsu	68369B	002118	1 year	2023.05.13
Power Meter	Anritsu	ML2495A	2010001	1 year	2023.04.27
Pulse Power Sensor	Anritsu	MA2411B	1911111	1 year	2023.04.27
Attenuator	Mini-Circuits	BW-S10-2W263+	3	1 year	2023.01.17
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2023.01.18
BILOG ANTENNA	Schwarzbeck	VULB 9168	9168-461	2 years	2022.12.22
Horn Antenna	A.H	SAS-571	414	1 year	2023.01.18
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA 9170550	1 year	2023.01.18
Amplifier	SONOMA INSTRUMENT	310N	401123	1 year	2023.06.02
PREAMPLIFIER	HP	8449B	3008A00538	1 year	2023.06.02
BROADBAND AMPLIFIER	SCHWARZBECK	BBV9721	PS9721-003	1 year	2023.01.17
Attenuator	HUBER+SHHNER	6806.17.A	NONE	1 year	2023.04.01
DC POWER SUPPLY	AGILENT	6632B	MY43004090	1 year	2022.06.21
EMI Test Receiver	R&S	ESU26	100552	1 year	2023.03.31
LISN	ENV216	R & S	101787	1 year	2022.12.27
EMI TEST RECEIVER	ESR3	R & S	101783	1 year	2022.12.28
PULSE LIMITER	ESH3-Z2	R & S	101915	1 year	2022.12.27

Appendix A. Measurement equipment

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	
Notebook computer	Notebook computer LG Electronics Inc.,		306QCZP560949	

Report No.: KES-RF1-22T0055 Page (56) of (56)

Test setup photo Appendix B. **Radiated test AC Conducted test** ES K EC BLANK

The end of test report.