

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (1) of (83)

Test Report

Part 15 Subpart C 15.247

Equipment under test Bluetooth Earbud

Model name TONE-T90Q

HVINs TONE-T90Q, TONE-UF90Q,

TONE-DF90Q

FVIN 1.0

FCC ID ZNFTONET90Q

Applicant LG Electronics USA, Inc.

Manufacturer LG Electronics Inc.

Date of test(s) 2022.06.09 ~ 2022.06.13

Date of issue 2022.06.14

Issued to

LG Electronics USA, Inc.

111 Sylvan Avem North Building, Englewood Cliffs, New Jersey, United States Tel: +82-10-9193-9881

Issued by

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
	7/0
Bong-Seok, Kim	Yeong-Jun Cho
Test engineer	Technical manager

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (2) of (83)

Revision history

Revision	Date of issue	Test report No.	Description
-	2022.06.14	KES-RF1-22T0056	Initial

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (3) of (83)

TABLE OF CONTENTS

1.	General in	formation	4
	1.1.	EUT description	4
	1.2.	Requirements for Bluetooth transmitter	5
	1.3.	Test configuration	6
	1.4.	Information about derivative model	6
	1.5.	Accessory information	6
	1.6.	Sample calculation	6
	1.7.	Measurement Uncertainty	6
	1.8.	Frequency/channel operations	7
2.	Summary	of tests	8
3.	Test result	S	9
	3.1.	99% Occupied Bandwidth	9
	3.2.	20 dB bandwidth	18
	3.3.	Output power	24
	3.4.	Carrier frequency separation	26
	3.5.	Number of hopping frequency	28
	3.6.	Time of occupancy	31
	3.7.	Radiated restricted band and emissions	38
	3.8.	Conducted band edge and out of band emissions	71
App	endix A.	Measurement equipment	82
App	endix B.	Test setup photo	83

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (4) of (83)

1. General information

Applicant address:111 Sylvan Avem North Building, Englewood Cliffs, New Jersey, United STest site:KES Co., Ltd.	tates
Test site: KES Co., Ltd.	
Test site address: 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,	
Gyeonggi-do, 14057, Korea	
🖂 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea	
Test Facility FCC Accreditation Designation No.: KR0100, Registration No.: 444148	
ISED Registration No.: 23298	
FCC,IC rule part(s): FCC : 15.247 / IC : RSS-247	
FCC ID: ZNFTONET90Q	
IC ID: 2703C-TONET90Q	
Test device serial No.: \square Production \square Engin	eering

1.1. EUT description

Equipment under test	Bluetooth Earbud
Frequency range	2 402 MHz ~ 2 480 MHz (BDR/EDR)
	2 402 MHz ~ 2 480 MHz (LE 1,2Mbps) TONE-
Model	T90Q
Modulation technique	GFSK, π/4DQPSK, 8DPSK
Number of channels	2 402 MHz ~ 2 480 MHz (BDR / EDR) : 79ch
	2 402 MHz ~ 2 480 MHz (LE 1,2Mbps) : 40ch
Antenna specification	LEFT : PCB Antenna // Peak gain: 0.65 dBi
	RIGHT : PCB Antenna // Peak gain: 0.95 dBi
Power source	DC 3.85 V (Battery)
H/W version	1.0
S/W version	1.0

1.2. Requirements for Bluetooth transmitter

15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted signals.

Pseudorandom frequency hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

Equal hopping frequency use

The channels of this system will be used equally over the long-term distribution of the hopsets.

Example of a 79 hopping sequence in data mode:

32, 52, 6, 30, 41, 12, 7, 67, 22, 60, 8, 64, 10, 55, 13, 26, 33, 54, 74, 00, 44, 27, 48, 69, 23, 28, 57, 46, 20, 2, 78, 77, 68, 45, 63, 36, 1, 19, 14, 73, 25, 5, 72, 3, 43, 56, 40, 17, 58, 15, 59, 42, 37, 75, 49, 51, 21, 61, 29, 31, 53, 47, 39, 35, 76, 38, 24, 11, 65, 4, 62, 66, 70, 50, 9, 34, 71, 16, 18, 76, 35, 62, 5, 12, 36, 27, 46, 70, 60, 10, 3, 2, 38, 66, 25, 53, 11, 74, 31, 29, 33, 9, 4, 72, 77, 65, 73, 49, 43, 59, 42, 24, 28, 37, 47, 68, 39, 64, 57, 20, 8, 75, 69, 44, 18, 34, 51, 00, 58, 50, 61, 21, 48, 16, 40, 54, 6, 71, 78, 23, 55, 41, 45, 7, 30, 15, 19, 13, 52, 26, 17, 56, 67, 32, 63, 14, 1, 22

System receiver input bandwidth

Each channel bandwidth is 1 MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

1.3. Test configuration

The LG Electronics USA, Inc. // Bluetooth Earbud // TONE-T90Q //

FCC ID: ZNFTONET90Q// IC ID: 2703C-TONET90Q was tested according to the specification of EUT,

the EUT must comply with following standards and KDB documents.

FCC Part 15.247 ISED RSS-247 Issue 2 and RSS-Gen Issue 5 KDB 558074 D01 v05 r02 ANSI C63.10-2013

1.4. Information about derivative model

N/A

1.5. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	_	-

1.6. Sample calculation

Where relevant, the following sample calculation is provided For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).= 0.72 + 10 = 10.72 (dB)

For Radiation test :

Field strength level $(^{dB}\mu / m) =$ Measured level $(^{dB}\mu / m) +$ Antenna factor $(^{dB}) +$ Cable loss $(^{dB}) -$ Amplifier gain $(^{dB})$

1.7. Measurement Uncertainty

Test Item		Uncertainty
Uncertainty for Conduction emission test		2.46 dB
Uncertainty for Radiation emission test	Below 1GHz	4.40 dB
(include Fundamental emission)	Above 10Hz	5.94 dB
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.		

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

www.kes.co.kr

Report No.: KES-RF1-22T0056 Page (7) of (83)

1.8. Frequency/channel operations

Ch.	Frequency (Mbz)	Rate(Mbps)
00	2402	BDR 1 Mbps, EDR 2 Mbps, EDR 3 Mbps
•	•	•
40	2442	BDR 1 Mbps, EDR 2 Mbps, EDR 3 Mbps
•	•	•
78	2480	BDR 1 Mbps, EDR 2 Mbps, EDR 3 Mbps

Ch.	Frequency (Mb)	Rate(Mbps)
00	2402	LE 1,2 Mbps
20	2442	LE 1,2 Mbps
39	2480	LE 1,2 Mbps

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (8) of (83)

2. Summar	y of tests		
Section in FCC Part 15	Section in RSS-247 & Gen	Parameter	Test results
-	RSS-Gen 6.7	99% Occupied bandwidth	Pass
15.247(a)(1)(iii)	RSS-247 5.1(a)	20 dB bandwidth	Pass
15.247(b)(1)	RSS-247 5.4(b)	Output power	Pass
15.247(a)(1)	RSS-247 5.1(b)	Channel separation	Pass
15.247(a)(1)(iii)	RSS-247 5.1(d)	Number of channels	Pass
15.247(a)(1)(iii)	RSS-247 5.1(d)	Time of occupancy	Pass
15.205, 15.209	RSS-247 5.5 RSS-Gen 8.9,8,10	Radiated restricted band and emission	Pass
15.207(a)	RSS-Gen 8.8	AC Conducted emissions	N/A ⁽¹⁾
15.207(d)	RSS-247 5.5	Conducted spurious emission and band edge	Pass

Note.

1. This product is powered by battery.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (9) of (83)

Test results 99% Occupied Bandwidth Test procedure

ANSI C63.10-2013 clause 6.9.2 and 6.9.3

Test setup

Test setting

- 1. Span = The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- 2. RBW = The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW 3.

VBW = shall be approximately three times the RBW

- 4. Sweep = auto
- 5. Detector function = Peak
- 6. Trace = Max hold

Limit

None; for reporting purpose only.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

[Left unit]

Mode : BDR 1Mbps

Frequency(Mb)	99% occupied bandwidth(Mz)	Limit(Mb)
2 402	0.886	
2 442	0.881	-
2 480	0.880	1

Mode : EDR 2Mbps

Frequency (Mbz)	99% occupied bandwidth(Mb)	Limit(朏)
2 402	1.190	
2 442	1.189	-
2 480	1.189	

Mode : EDR 3Mbps

Frequency (Mb)	99% occupied bandwidth(Mb)	Limit(M拉)
2 402	1.198	
2 442	1.199	-
2 480	1.199	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

[Right unit] Mode : BDR 1Mbps

Frequency (Mb)	99% occupied bandwidth(Mz)	Limit(Mb)
2 402	0.880	
2 442	0.876	-
2 480	0.874	

Mode : EDR 2Mbps

Frequency (Mb)	99% occupied bandwidth(Mb)	Limit(Mz)
2 402	1.186	
2 442	1.192	-
2 480	1.192	

Mode : EDR 3Mbps

Frequency (Mb)	99% occupied bandwidth(Mb)	Limit(M拉)
2 402	1.199	
2 442	1.195	-
2 480	1.191	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (12) of (83)

Test plots

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (15) of (83)

[Right unit]

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (16) of (83)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (18) of (83)

3.2. 20 dB bandwidth

Test procedure ANSI 63.10-2013

Test setun

rest setup		_	
EUT	Attenuator		Spectrum analyzer

Test setting

- 1. Span = Set between two times and five times the OBW
- 2. $RBW \ge 1$ % to 5 % of the OBW
- 3. VBW \geq 3 * RBW
- 4. Sweep = Auto
- 5. Detector function = Peak
- 6. Sweep = Auto couple
- 7. Trace mode = Max hold
- 8. All the trace to stabilize

Limit

Not applicable

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No .: KES-RF1-22T0056 Page (19) of (83)

[Left unit]			
Frequency(Mz)	Channel no.	Data rate(Mbps)	Measured bandwidth(Mz)
2 402	00		0.81
2 442	40	BDR 1 Mbps	0.81
2 480	78		0.81
2 402	00		1.35
2 442	40	EDR 2 Mbps	1.34
2 480	78		1.34
2 402	00		1.35
2 442	40	EDR 3 Mbps	1.35
2 480	78		1.34

[Right unit]

Frequency(Mz)	Channel no.	Data rate(Mbps)	Measured bandwidth(Mb)
2 402	00		0.82
2 442	40	BDR 1 Mbps	0.81
2 480	78		0.81
2 402	00		1.35
2 442	40	EDR 2 Mbps	1.34
2 480	78		1.33
2 402	00		1.34
2 442	40	EDR 3 Mbps	1.34
2 480	78		1.34

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (20) of (83)

[Left unit]

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (21) of (83)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (22) of (83)

[Right unit]

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (23) of (83)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (24) of (83)

3.3. Output power

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013 – Section 11.9.2.1 and 11.9.2.3.2

Test setup

Test setting

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Limit

According to \$15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to \$15.247(b)(1), For frequency hopping systems operating in the 2 400 ~ 2 483.5 Mz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 ~ 5 805 Mz band: 1 Watt.

According to §15.247(a)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Limit

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (25) of (83)

Test results [Left unit]

Frequency(Mz)	Channel no.	Data rate(Mbps)	Average Power (dBm)	Peak Power (dBm)	Power Limit (dBm)
2 402	00		13.79	13.82	20.97
2 442	40	BDR 1 Mbps	13.56	13.60	20.97
2 480	78		13.47	13.50	20.97
2 402	00		10.29	13.00	20.97
2 442	40	EDR 2 Mbps	10.16	12.88	20.97
2 480	78		10.03	12.76	20.97
2 402	00		10.29	13.57	20.97
2 442	40	EDR 3 Mbps	10.16	13.43	20.97
2 480	78		10.04	13.33	20.97

[Right unit]

Frequency(Mz)	Channel no.	Data rate(Mbps)	Average Power (dBm)	Peak Power (dBm)	Power Limit (dBm)
2 402	00		13.48	13.52	20.97
2 442	40	BDR 1 Mbps	13.39	13.43	20.97
2 480	78		13.37	13.42	20.97
2 402	00		10.15	12.76	20.97
2 442	40	EDR 2 Mbps	10.04	12.69	20.97
2 480	78		9.95	12.64	20.97
2 402	00		10.15	13.29	20.97
2 442	40	EDR 3 Mbps	10.01	13.21	20.97
2 480	78		9.95	13.20	20.97

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3.4. Carrier frequency separation

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013

Test Setting

- 1. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:
- 2. Span = wide enough to capture the peaks of two adjacent channels

3. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

- 4. Video (or Average) Bandwidth (VBW) \geq RBW
- 5. Sweep = auto
- 6. Detector function = peak
- 7. Trace = max hold
- 8. Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Limit

According to 15.247(a)(1), frequency hopping system operating in 2 400 ~ 2 483.5 Mz. Band may have hopping channel carrier frequencies that are separated by 25 kz or two-third of 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No.: KES-RF1-22T0056 Page (27) of (83)

Test results [Left unit]

Frequency(Mz)	Channel no.	Data rate(Mbps)	Channel Separation (Mz)	Limit (M±z)
2 442	40	BDR 1 Mbps	1.000	≥ 0.540
2 442	40	EDR 3 Mbps	1.101	≥ 0.900

Hopping mode_BDR(1Mbps)	Hopping mode_EDR(3Mbps)
*	*
MultiVers Spectrum X Spectrum 2 X Spectrum 3 X - Method 100.0mm NMT 1	MultiVerse #1 Spectrum X Spectrum 3 X sectrum 3 X
B Trequency Sweep • The Max 10 dlm	1Frequency Sweep 0.318 /ml 0.2011 1.316 /ml
	30 dbm
80.48m	30 dbn
60 dBm	60 dbm
-70 dBm	50 d0m
CF 2 442 GHz 10001 pts 300.0 kHz/ 5pain 3.0 MHz 10001 pts 300.0 kHz/ 10001 pts 10001 pts 10001 pts 10001000	GF 2. 442 GHz 500.0 kHz/ Span 3.0 MHz Maxwoling_ Maxwoling_ Maxwoling_ 1111111

[Right unit]

Frequency(Mz)	Channel no.	Data rate(Mbps)	Channel Separation (Mtz)	Limit (MEz)
2 442	40	BDR 1 Mbps	1.002	≥ 0.547
2 442	40	EDR 3 Mbps	1.184	≥ 0.893

Hopping mode_BDR(1Mbps)	Hopping mode_EDR(3Mbps)
*	*
Annue Million Million	name affite a variable of the state of the s
I Frequency Sweep IPk Max	IPic Max IPic Max
20 dBn	23 dan
40.00e	40 dbs
All dates	
10.00m	21 dBo
CF 2.442 GHz 10001 pts 300.0 kHz/ Span 3.0 MHz	CF 2.442 GHz 10001 pts 300.0 kHz/ Span 3.0 MHz
Mexanting 1968-2017 1969-1969	- Meauring

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3.5. Number of hopping frequency

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013

Test setup

FIT	Attenuator	Spectrum analyzer
LUI	Attendator	Spectrum analyzer

Test setting

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings.

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW \geq RBW.
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Limit

According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mz bands shall use at least 15 hopping frequencies.

Limit

FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test results

	umit1
Leit	umu

Frequency	Data rate(Mbps)	Number of hopping frequency	Limit
2 402 ~ 2 480 MHz	BDR 1 Mbps	79	≥15
2 402 ~ 2 480 MHz	EDR 3 Mbps	79	≥ 15

[Right unit]

Frequency	Data rate(Mbps)	Number of hopping frequency	Limit
2 402 ~ 2 480 MHz	BDR 1 Mbps	79	≥ 15
2 402 ~ 2 480 MHz	EDR 3 Mbps	79	≥ 15

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (29) of (83)

[Left unit]

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No.: KES-RF1-22T0056 Page (30) of (83)

Right unit] Hopping mode_BDR(1 Mbps) Hopping mode_BDR(1 Mbps) Hopping mode_BDR(1 Mbps) Image: marging mode_BDR(1 Mbps) <

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (31) of (83)

3.6. Time of occupancy

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2013

Test setup

FUT	Attonuctor	Spectrum analyzar
LUI	Altenualor	Spectrum analyzer

Test setting

- 1. The EUT must have its hopping function enabled.
- 2. Span = zero span, centered on a hopping channel
- 3. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 4. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 5. Detector function = peak
- 6. Trace = max hold

Limit

According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = $0.4(s) \times 79 = 31.6(s)$

Time of occupancy on the TX channel in 31.6 sec = time domain slot length \times (hop rate \div number of hop per channel) \times 31.6

Limit

According to RSS-247 5.1(d), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = $0.4(s) \times 79 = 31.6(s)$

Time of occupancy on the TX channel in 31.6 sec = time domain slot length \times (hop rate \div number of hop per channel) \times 31.6

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Operation mode: GFSK , $\pi/4\text{-}DQPSK, 8DPSK$

[Left unit]				
Packet type	Frequency (Mbz)	Dwell time (ms)	Time of occupancy on the Tx channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx channel in 31.6 sec (ms)
DH1	2 442	0.41	132.48	400
DH3	2 442	1.66	265.44	400
DH5	2 442	2.91	310.40	400
2-DH1	2 442	0.41	132.16	400
2-DH3	2 442	1.66	265.60	400
2-DH5	2 442	2.91	310.40	400
3-DH1	2 442	0.41	132.16	400
3-DH3	2 442	1.66	265.60	400
3-DH5	2 442	2.91	310.40	400

Note:

Normal Mode

DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 132.48$ (ms) DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.44$ (ms) DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 310.40$ (ms) 2-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 132.16$ (ms) 2-DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.60$ (ms) 2-DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 310.40$ (ms) 3-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 132.16$ (ms) 3-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 132.16$ (ms) 3-DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.60$ (ms) 3-DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.60$ (ms) 3-DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 310.40$ (ms)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Operation mode: GFSK , $\pi/4\text{-}DQPSK, 8DPSK$

[Right unit]				
Packet type	Frequency (Mb)	Dwell time (ms)	Time of occupancy on the Tx channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx channel in 31.6 sec (ms)
DH1	2 442	0.41	130.88	400
DH3	2 442	1.66	265.44	400
DH5	2 442	2.91	310.40	400
2-DH1	2 442	0.41	131.84	400
2-DH3	2 442	1.66	265.60	400
2-DH5	2 442	2.91	310.40	400
3-DH1	2 442	0.41	132.16	400
3-DH3	2 442	1.66	265.60	400
3-DH5	2 442	2.91	310.40	400

Note:

Normal Mode

DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 130.88$ (ms) DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.44$ (ms) DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 310.40$ (ms) 2-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 131.84$ (ms) 2-DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.60$ (ms) 2-DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 310.40$ (ms) 3-DH1: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 132.16$ (ms) 3-DH3: Dwell time (ms) × $[(1\ 600 \div 2) \div 79] \times 31.6(s) = 132.16$ (ms) 3-DH3: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.60$ (ms) 3-DH5: Dwell time (ms) × $[(1\ 600 \div 4) \div 79] \times 31.6(s) = 265.60$ (ms) 3-DH5: Dwell time (ms) × $[(1\ 600 \div 6) \div 79] \times 31.6(s) = 310.40$ (ms)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

[Left unit]

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (35) of (83)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (36) of (83)

[Right unit]

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No.: KES-RF1-22T0056 Page (38) of (83)

3.7. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

Report No.: KES-RF1-22T0056 Page (39) of (83)

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel, ground parallel and perpendicular of the antenna are set to make the measurement. It was determined that **parallel** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **parallel**.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mz

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The antenna is a bi-log antenna, a horn antenna, and its height are varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (40) of (83)

- 5. Spectrum analyzer settings for f < 1 GHz:
 - 1 Span = wide enough to fully capture the emission being measured
 - 2 RBW = 100 kHz
 - $③ VBW \ge RBW$
 - ④ Detector = quasi peak
 - \bigcirc Sweep time = auto
 - \bigcirc Trace = max hold
- 6. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - ③ VBW \ge 3 MHz
 - (4) Detector = peak
 - \bigcirc Sweep time = auto
 - \bigcirc Trace = max hold
 - \bigcirc Trace was allowed to stabilize
- 7. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - (3) $VBW \ge 3 \times RBW$
 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Report No.: KES-RF1-22T0056 Page (41) of (83)

Note.

- 1. f < 30 Mb, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$
 - $f \ge 30$ Mz, extrapolation factor of 20 dB/decade of distance. $F_d = 20\log(D_m/Ds)$ Where:
 - F_d = Distance factor in dB
 - D_m = Measurement distance in meters
 - D_s = Specification distance in meters
- 2. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 3. Margin(dB) = Limit(dB μ /m) Field strength(dB μ /m)
- 4. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mb)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

KES Co., Ltd. 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Report No.: KES-RF1-22T0056 Page (42) of (83)

Limit

According to RSS-Gen, Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits :

Frequency (Mz)	Distance (Meters)	Radiated (μ V/m)
0.009 ~ 0.490	300	2 400 / F(kHz)
0.490 ~ 1.705	30	24 000 / F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960*	3	500

* Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licenceexempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

Duty cycle

Regarding to KDB 558074 D01_v05 r02, 6. Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

a) A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal.

b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal.

[Left unit]

Mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
BDR(1 Mbps)	2.91	3.75	0.78	77.60	1.10
EDR(3 Mbps)	2.91	3.75	0.78	77.60	1.10

[Right unit]

Mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
BDR(1 Mbps)	2.91	3.75	0.78	77.60	1.10
EDR(3 Mbps)	2.91	3.75	0.78	77.60	1.10

Duty cycle (Linear) = T_{on} time/Period

DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

[Left unit]

[Right unit]

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (45) of (83)

Test results (Below 30 Mz)		
Mode:	BDR-Left unit	
Distance of measurement:	3 meter	
Channel:	0 (Worst case)	

Note.

1. No spurious emission were detected under 30 MHz, the above test result is the peak result.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (46) of (83)

Test results (Below 1 000	Mbz) – Worst case
Mode:	BDR-Left unit
Distance of measurement:	3 meter
Channel:	0 (Worst case)

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (47) of (83)

Test results (Below 30 Mz)	
Mode:	BDR-Right unit
Distance of measurement:	3 meter
Channel:	0 (Worst case)

Note.

1. No spurious emission were detected under 30 MHz, the above test result is the peak result.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Report No.: KES-RF1-22T0056 Page (48) of (83)

Test results (Below 1 000	MEz) – Worst case
Mode:	BDR-Right unit
Distance of measurement:	3 meter
Channel:	0 (Worst case)

