

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name: LG Electronics USA 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 01/21/20 - 02/24/20 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M2001100004-01-R1.ZNF

FCC ID: ZNFT600TS

APPLICANT: LG ELECTRONICS U.S.A, INC.

DUT Type: Portable Tablet Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: LM-T600TS

Additional Models: LMT600TS, T600TS

Equipment	Band & Mode	Tx Frequency	SAR
Class	Baria a mode	TXTTOQUOTO	1g Body (W/kg)
PCB	UMTS 850	826.40 - 846.60 MHz	0.88
PCB	UMTS 1750	1712.4 - 1752.6 MHz	0.85
PCB	UMTS 1900	1852.4 - 1907.6 MHz	1.21
PCB	LTE Band 71	665.5 - 695.5 MHz	0.93
PCB	LTE Band 12	699.7 - 715.3 MHz	0.71
PCB	LTE Band 13	779.5 - 784.5 MHz	0.82
PCB	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.82
PCB	LTE Band 5 (Cell)	824.7 - 848.3 MHz	N/A
PCB	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	1.04
PCB	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A
PCB	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	1.28
PCB	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A
PCB	LTE Band 41	2498.5 - 2687.5 MHz	1.30
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.43
NII	U-NII-1	5180 - 5240 MHz	N/A
NII	U-NII-2A	5260 - 5320 MHz	0.51
NII	U-NII-2C	5500 - 5720 MHz	0.66
NII	U-NII-3	5745 - 5825 MHz	0.64
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.23
Simultaneou	s SAR per KDB 690783 D	01v01r03:	1.59

Note: This revised Test Report (S/N: 1M2001100004-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 1 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 1 of 95

© 2020 PCTEST REV 21.4 M 09/11/2019

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	11
3	INTROD	UCTION	12
4	DOSIME	TRIC ASSESSMENT	13
5	TEST C	ONFIGURATION POSITIONS	14
6	RF EXP	OSURE LIMITS	15
7	FCC ME	ASUREMENT PROCEDURES	16
8	RF CON	DUCTED POWERS	21
9	SYSTEM	/I VERIFICATION	69
10	SAR DA	TA SUMMARY	72
11	FCC MU	ILTI-TX AND ANTENNA SAR CONSIDERATIONS	83
12	SAR ME	ASUREMENT VARIABILITY	89
13	ADDITIO	NAL TESTING PER FCC GUIDANCE	90
14	EQUIPM	IENT LIST	91
15	MEASU	REMENT UNCERTAINTIES	92
16	CONCL	JSION	93
17	REFERE	ENCES	94
APPEN	NDIX A: NDIX B: NDIX C:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS	
APPEN	NDIX D:	SAR SYSTEM VALIDATION	
APPEN	NDIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
	NDIX F: NDIX G:	POWER REDUCTION VERIFICATION DOWNLINK LTE CA RF CONDUCTED POWERS	
	NDIX H:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 0 -4 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 2 of 95
© 202	0 PCTEST	<u> </u>			REV 21.4 M

DEVICE UNDER TEST

1.1 **Device Overview**

1	,
Operating Modes	Tx Frequency
Data	826.40 - 846.60 MHz
Data	1712.4 - 1752.6 MHz
Data	1852.4 - 1907.6 MHz
Data	665.5 - 695.5 MHz
Data	699.7 - 715.3 MHz
Data	779.5 - 784.5 MHz
Data	814.7 - 848.3 MHz
Data	824.7 - 848.3 MHz
Data	1710.7 - 1779.3 MHz
Data	1710.7 - 1754.3 MHz
Data	1850.7 - 1914.3 MHz
Data	1850.7 - 1909.3 MHz
Data	2498.5 - 2687.5 MHz
Data	2412 - 2462 MHz
Data	5180 - 5240 MHz
Data	5260 - 5320 MHz
Data	5500 - 5720 MHz
Data	5745 - 5825 MHz
Data	2402 - 2480 MHz
	Data Data Data Data Data Data Data Data

1.2 **Power Reduction for SAR**

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 2 of 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 3 of 95
© 202	0 PCTEST				REV 21.4 M

Nominal and Maximum Output Power Specifications 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

2g/3g/4g Output Power 1.3.1

	LIMTC Dand T /OF	:O V4H-/							
	UMTS Band 5 (85	_							
		Modulated Average Output Power (in dBm)							
Power Level	Mode / Band	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6					
N.4	Max allowed power	25.2	25.2	25.2					
Max	Nominal	24.7	24.7	24.7					
Dravimity Cancar Active	Max allowed power	18.7	18.7	18.7					
Proximity Sensor Active	Nominal	18.2	18.2	18.2					
	UMTS Band 4 (17	50 MHz)							
		Modulate	d Average Out (in dBm)	put Power					
Power Level	Mode / Band	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6					
NA	Max allowed power	25.2	25.2	25.2					
Max	Nominal	24.7	24.7	24.7					
Description Common Action	Max allowed power	12.7	12.7	12.7					
Proximity Sensor Active	Nominal	12.2	12.2	12.2					
	UMTS Band 2 (19	00 MHz)							
		Modulate	d Average Out (in dBm)	put Power					
Power Level	Mode / Band	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6					
Max	Max allowed power	24.7	24.7	24.7					
IVIdX	Nominal	24.2	24.2	24.2					
Dravimitu Cancar Active	Max allowed power	11.7	11.7	11.7					
Proximity Sensor Active	Nominal	11.2	11.2	11.2					

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Danis 4 of 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 4 of 95
© 202	0 PCTEST				REV 21.4 M

REV 21.4 M

09/11/2019

		Modulated Average O	utput Power (in dBm)				
Mode / Band		Max	Proximity Sensor Active				
LTE Band 71	Max allowed power	25.2	17.7				
LIE Ballu / I	Nominal	24.7	17.2				
LTE Band 12	Max allowed power	25.2	18.7				
LIE Ballu 12	Nominal	24.7	18.2				
LTE Band 13	Max allowed power	25.2	17.2				
LIE Ballu 15	Nominal	24.7	16.7				
LTE Band 26 (Cell)	Max allowed power	25.2	18.2				
LTE Ballu 20 (Cell)	Nominal	24.7	17.7				
LTE Band 5 (Cell)	Max allowed power	25.2	18.2				
LTE Ballu 5 (Cell)	Nominal	24.7	17.7				
LTE Band 66 (AWS)	Max allowed power	25.2	12.7				
LIE Ballu 00 (AWS)	Nominal	24.7	12.2				
LTE Dond 4 (ANAC)	Max allowed power	25.2	12.7				
LTE Band 4 (AWS)	Nominal	24.7	12.2				
LTE Dand 2E (DCC)	Max allowed power	24.7	11.7				
LTE Band 25 (PCS)	Nominal	24.2	11.2				
LTE Dand 2 (DCC)	Max allowed power	24.7	11.7				
LTE Band 2 (PCS)	Nominal	24.2	11.2				
LTE Dand 41 (DC2)	Max allowed power	23.2	13.7				
LTE Band 41 (PC3)	Nominal	22.7	13.2				
LTE Dand 41 (DC2)	Max allowed power	25.2	13.7				
LTE Band 41 (PC2)	Nominal	24.7	13.2				

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo F of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 5 of 95

Max WLAN Output Power 1.3.1

	Mode / Band					Modu	ulated .	Average (dBm		ntenna	1			Mod	e / Bar	nd			Мо	dulate		erage dBm)	- Anter	nna 2		
			С	hanne	el	1-2	3	4-9	10)	11					C	hanne	el	1-2	3		4-9	10	11	7	
	IEEE 802.11b	(2 A GH2)	M	aximu	um 20.0							IFFE	302 11	1b (2.4	CH4)	М	laximu	ım				17.0	.0			
L	1666 802.110	(2.4 GHZ)	N	omina								ILLE	302.11	10 (2.4	GHZ)	N	lomin	al				16.0				
	IEEE 802.11g	(2.4 GHz)	Mi	aximu	m	17.0	18.0	18.0	17.	.0 1	7.0	IFFF S	RO2 1	1g (2.4	GHz)	M	laximu	ım	14.0	15.	.0	15.0	14.5	14.0		
L	002.115	(2 02)	N	omina		16.0	17.0	17.0	16.		6.0		502.1.	18 (2.7	0112)	N	lomin	al	13.0			14.0	13.5	13.0	=	
	IEEE 802.11n	(2.4 GHz)		aximu	_	16.0	16.5	17.0	16		6.0	IEEE 8	302.11	1n (2.4	GHz)		laximu		13.0			14.0	13.5	13.0		
L		. ,	N	omina	al	15.0	15.5	16.0	15.	.0 1	5.0					_	lomin		12.0	12.	.5	13.0	12.5	12.0		
													Mod	dulate	ed Ave	erage	- MI	MC)							
						Ν	/lode	/ Band	d						(dE	3m)										
														20 N	1Hz B	andw	idth									
			-							^hon	n a l	1	<u>. </u>						11							
									T	Chan		1-		3	4-9		10	+	11							
				IEEE	E 802	.11g	(2.4 @	Hz)	IV	1axin	num	18	.5	19.5	19.	5	18.9		18.5							
							`		1	Nomi	nal	17	.5	18.5	18.	5	17.9		17.5							
				IEEG	- ดูกว	.11n	12 11 0	:H ₇ \	N	1axin	num	17	.5	18.0	18.	5	18.0		17.5							
				ICEE	- 002	. 1111	(2.40	1112)	1	Nomi	nal	16	.5	17.0	17.	5	17.0	1	16.5							
												Mod	lulated /	Average	- Antenn	na 1										
	Mode / Band					20.	ALI- D	4				1		(dBm)			_		- 1			00.8417	Daniel III			
		Chl	25.50		100	20 N 104-132	136	140-149	153	157	161-165	38-62	102		118-126	134	142	151	159	42	58	80 MHz 106	Bandwid 122	th 138	455	
		Channel Maximum	36-60 14.5	64 14.0	13.5	13.5	13.0	12.5	12.5	13.0	13.5	38-62	102	110	118-126	134	142	151	159	42	58	106	122	138	155	
IEEE 8	302.11a (5 GHz)	Nominal	13.5	13.0	12.5	12.5	12.0	11.5	11.5	12.0	12.5															
IEEE 8	302.11n (5 GHz)	Maximum	14.5	14.0	13.5	13.5	13.0	12.5	12.5	13.0	13.5	14.5	13.5	13.5				12.5	13.0							
		Nominal Maximum	13.5	13.0	12.5 13.5	12.5 13.5	12.0 13.0	11.5 12.5	11.5 12.5	12.0	12.5 13.5	13.5 14.5	12.5 13.5	12.5	12.5 13.5			11.5 12.5	12.0 13.0	13.5	13.5	13.0	13.5	12.5	12.5	
IEEE 8	02.11ac (5 GHz)	Nominal	13.5	13.0	12.5	12.5	12.0	11.5	11.5	12.0	12.5	13.5	12.5	12.5	12.5		_	11.5	12.0		12.5	12.0	12.5	11.5	11.5	
												Mod	ulated A	Average (dBm)	- Antenn	a 2										
	Mode / Band					20 N	MHz Banı	dwidth				40 MHz Bandwidth 80 MHz Bandwidth														
		Channel	36-60	64	100	104-132	136	140-149	153	157	161-165	38-62	102		118-126	134	142	151	159	42	58	106	122	138	155	
	202 44- (F CU-)	Maximum	14.5	14.5	13.5	13.5	13.5	13.5	14.0		13.5															
IEEE 8	302.11a (5 GHz)	Nominal	13.5	13.5	12.5	12.5	12.5	12.5	13.0	_																
IEEE 8	302.11n (5 GHz)	Maximum Nominal	14.5	14.5 13.5	13.5 12.5	13.5 12.5	13.5 12.5	13.5 12.5	14.0		13.5	14.5	13.5	13.5 12.5	13.5 12.5	13.5	13.5 12.5	14.0	13.5 12.5							
IFFF 8	02.11ac (5 GHz)	Maximum	14.5	14.5	13.5	13.5	13.5	13.5	14.0	14.0	13.5	14.5	13.5	13.5	13.5	13.5	13.5	14.0	13.5	13.5			13.5	13.5	13.5	
	02.1100 (5 0.12)	Nominal	13.5	13.5	12.5	12.5	12.5	12.5	13.0	13.0	12.5	13.5	12.5	12.5	12.5 e - MIM	12.5	12.5	13.0	12.5	12.5	12.5	12.5	12.5	12.5	12.5	
	Mode / Band											IVIC	Juulate	(dBm)	e - IVIIIVI	U										
	,					20 N	∕lHz Band	dwidth						40	MHz Ba	ndwidth	1					80 MHz	Bandwid	th		
		Channel	36-60	64	100	104-132	136	140-149	153	157	161-165	38-62	102	110	118-126	134	142	151	159	42	58	106	122	138	155	
IEEE 8	302.11a (5 GHz)	Maximum	17.5	17.0	16.5	16.5	16.0	16.0	16.0	16.5	16.5															
		Nominal Maximum	16.5 17.5	16.0 17.0	15.5 16.5	15.5 16.5	15.0 16.0	15.0 16.0	15.0 16.0	15.5 16.5	15.5 16.5	17.5	16.5	16.5	16.5	16.0	16.0	16.0	16.0							
IEEE 8	302.11n (5 GHz)	Nominal	16.5	16.0	15.5	15.5	15.0	15.0	15.0	15.5	15.5	16.5	15.5	15.5	15.5	15.0	15.0	15.0	15.0							
IEEE 8	02.11ac (5 GHz)	Maximum Nominal	17.5 16.5	17.0 16.0	16.5 15.5	16.5 15.5	16.0 15.0	16.0 15.0	16.0 15.0	16.5 15.5	16.5 15.5	17.5 16.5	16.5 15.5	16.5 15.5	16.5 15.5			16.0 15.0	16.0 15.0		16.5 15.5	16.3 15.3	16.5 15.5	16.0 15.0	16.0 15.0	
		Nominal	10.5	10.0	15.5	15.5	15.0	15.0	15.0	15.5	15.5	10.5	15.5	15.5	15.5	15.0	15.0	15.0	15.0	15.5	13.3	15.5	15.5	15.0	15.0	
								/lode	Rand				1	Modu	lated A	Avera	ge									
							ľ	vioue/	Danu						(dBn	n)										
																		_								
					1	Blueto	oth (1	. Mbps	s)	_	aximuı 	_			7.0											
							•	•		_	lomina				6.0											
					Div	atooth	FDR	(2,3 M	hns)	М	aximuı	m			6.5											
					Diu	ELUULII	LDI																			
					Blue		LDI	(2,5 101	- P5/	1	Iomina				5.5											
					Біш		etoot			М	Iomina aximui Iomina	m			5.5 -1.0 -2.0											

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg C of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 6 of 95

Reduced WLAN Output Power 1.3.2

M	ode / Band			Мо	dulated	l Average (dBm)		enna	1		1	Mod	le / Ban	d			М	odula	ted A	verage (dBm)	- Ante	nna 2	
		Cha	nnel	1-2	3	4-9	10		11					(hanne	el	1-2	3	3	4-9	10	1	.1
/		Maxi	mum			10.0		-				,_		М	aximu	m				7.0			
IEEE 802.11b (2	2.4 GHz)	Non	ninal			9.0				IEEE 80	2.11b	(2.4	l GHz)	_	Iomina	al				6.0			
		Maxi	mum			10.0								М	aximu	m				7.0			
IEEE 802.11g (2	2.4 GHz)	Non	ninal			9.0				IEEE 80	2.11g	(2.4	l GHz)		lomina	al				6.0			
			mum			10.0								+	aximu			7.0					
IEEE 802.11n (2	2.4 GHz)	Nominal 9.0 IEEE 802.11n (2.4 GHz) Nominal						6.0															
		110	iiiiai			5.0					\ 1 a d .	اداد	مما ۸۰۰۰			_		T		0.0			
			Modulated Average - MIMO																				
					Mode	e / Band	t			(dBm)													
											:	20 I	MHz B	andv	vidth								
							(hanr	nel	1-2		3	4-9)	10		11						
			ıccc	002 11	- /2 /	C11-)	M	axim	ıum				11	.5									
			IEEE	802.11	02.11g (2.4 GHz) Nominal		nal	10.5															
				000.44	(2.4	٠ ١	M	axim	ium				11	.5									
	IEEE 802.11n (2.4 GHz) Nominal					10	.5																
									Modul	ated Av	erage	- Antenn	-										
Mode / Band	I										(dBm))										
				20 MHz Bandwidth				40 MHz Bandwidth						80 MHz	Bandwid	th							
	Channel	36-60	64	100 104			153	157	161-16	38-62	102	110	118-126	134	142	151	159	42	58	106	122	138	155
IEEE 802.11a (5 GHz)	Maximum				7																		
,	Nominal Maximum					.5 .5							7.										
IEEE 802.11n (5 GHz)	Nominal				6	-							6.										
IEEE 802.11ac (5 GHz)	Maximum				7								7.								7.0		
1222 002:1100 (5 0112)	Nominal				6	.5							6.								6.0		
										Modul		erage dBm)	- Antenn	a 2									
Mode / Band	1				O MHz P	andwidth							40 MHz Ba	andwid	·h					80 MH	Bandwid	th	
	Channel	36-60	64	100 104			9 153	157	161-16	38-62	102	110	118-126	_	142	151	159	42	58	106	122	138	155
IEEE 002 44 (E CU)	Maximum				7	.5	_		-														
IEEE 802.11a (5 GHz)	Nominal				6																		
IEEE 802.11n (5 GHz)	Maximum	7.5 6.5						7.															
	Nominal Maximum					.5 .5							6. 7.								7.0		
IEEE 802.11ac (5 GHz)	Nominal					.5							6.								6.0		
Mode / Ban										Mod		Avera (dBm	ge - MIM)	0									
Wiode / Balli	•				0 MHz B	andwidth						_	0 MHz Ba	ndwidt	h					80 MHz	Bandwid	th	
	Channel	36-60	64	100 104	132 13	5 140-149	153	157	161-165	38-62	102	110	118-126	134	142	151	159	42	58	106	122	138	155
	1	1					1	1	1				1							1			1

10.5

Maximum

Nominal

Maximum

Nominal

Maximum

Nominal

IEEE 802.11a (5 GHz)

IEEE 802.11n (5 GHz)

IEEE 802.11ac (5 GHz)

10.5

9.5

10.5

10.5

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 7 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 7 of 95

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the location of the device antennas can be found in Appendix E. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filings.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
UMTS 850	Yes	No	Yes	No	Yes	Yes
UMTS 1750	Yes	No	Yes	No	Yes	Yes
UMTS 1900	Yes	No	Yes	No	Yes	Yes
LTE Band 71	Yes	No	Yes	No	Yes	Yes
LTE Band 12	Yes	No	Yes	No	Yes	Yes
LTE Band 13	Yes	No	Yes	No	Yes	Yes
LTE Band 26 (Cell)	Yes	No	Yes	No	Yes	Yes
LTE Band 66 (AWS)	Yes	No	Yes	No	Yes	Yes
LTE Band 25 (PCS)	Yes	No	Yes	No	Yes	Yes
LTE Band 41	Yes	No	Yes	No	No	Yes
2.4 GHz WLAN Ant 1	Yes	No	Yes	No	Yes	Yes
2.4 GHz WLAN Ant 2	Yes	No	Yes	No	Yes	Yes
5 GHz WLAN Ant 1	Yes	No	Yes	No	Yes	Yes
5 GHz WLAN Ant 2	Yes	No	Yes	No	Yes	Yes
Bluetooth	Yes	No	Yes	No	Yes	Yes

Note: Per FCC KDB Publication 616217 D04v01r01, particular edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v06. Additional edges may have been evaluated for simultaneous transmission analysis.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 9 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 8 of 95

PCTEST REV 21.4 09/11/20:

Table 1-2 **Simultaneous Transmission Scenarios**

No.	Capable Transmit Configuration	Body
1	UMTS + 2.4 GHz WI-FI	Yes
2	UMTS + 5 GHz WI-FI	Yes
3	UMTS + 2.4 GHz Bluetooth	Yes
4	UMTS + 2.4 GHz WI-FI MIMO	Yes
5	UMTS + 5 GHz WI-FI MIMO	Yes
6	LTE + 2.4 GHz WI-FI	Yes
7	LTE + 5 GHz WI-FI	Yes
8	LTE + 2.4 GHz Bluetooth	Yes
9	LTE + 2.4 GHz WI-FI MIMO	Yes
10	LTE + 5 GHz WI-FI MIMO	Yes

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac. 802.11a/g/n/ac supports CDD and STBC and 802.11n/ac additionally supports SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.

Miscellaneous SAR Test Considerations 1.6

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 2 Tx antenna output
- d) 256 QAM is supported
- d) TDWR and Band gap channels are supported

(B) Licensed Transmitter(s)

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 9 of 95
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 9 01 95

maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix E.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device supports both Power Class 2 (PC2) and Power Class 3 (PC3) for LTE Band 41. Per May 2017 TCB Workshop Notes, SAR tests were performed with Power Class 3 (given the specific UL/DL limitations for Power Class 2). Additionally, SAR testing for the power class condition was evaluated for the highest configuration in Power Class 3 for each test configuration to confirm the results were scalable linearly (See Section 13.1).

1.7 Guidance Applied

- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (3G/4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02 (Tablet)
- May 2017 TCB Workshop Notes (LTE Band 41 Power Class 2/3)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 10.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 10 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 10 of 95

	LT	TE Information						
Form Factor			Portable Tablet					
Frequency Range of each LTE transmission band			Band 71 (665.5 - 695.5					
			Band 12 (699.7 - 715.3 Band 13 (779.5 - 784.5					
			nd 26 (Cell) (814.7 - 848					
		LTE Band 5 (Cell) (824.7 - 848.3 MHz)						
	LTE Band 66 (AWS) (1710.7 - 1779.3 MHz)							
	LTE Band 4 (AWS) (1710.7 - 1754.3 MHz)							
	LTE Band 25 (PCS) (1850.7 - 1914.3 MHz)							
			d 2 (PCS) (1850.7 - 190					
Channel Bandwidths	LTE Band 41 (2498.5 - 2687.5 MHz) LTE Band 71: 5 MHz, 10 MHz, 15 MHz, 20 MHz							
Trial life Baridwidths	LTE Band 12: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz							
	LTE Band 13: 5 MHz, 10 MHz							
): 1.4 MHz, 3 MHz, 5 MH					
			Cell): 1.4 MHz, 3 MHz, 5					
			4 MHz, 3 MHz, 5 MHz, 1					
			4 MHz, 3 MHz, 5 MHz, 10 4 MHz, 3 MHz, 5 MHz, 1					
			MHz, 3 MHz, 5 MHz, 10					
	_		11: 5 MHz, 10 MHz, 15 N		-			
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High			
TE Band 71: 5 MHz	665.5 (1		680.5 (133297)		133447)			
TE Band 71: 10 MHz	668 (13		680.5 (133297)		33422)			
TE Band 71: 15 MHz	670.5 (1		680.5 (133297)		133397)			
TE Band 71: 20 MHz TE Band 12: 1.4 MHz	673 (13		680.5 (133297)		(23172)			
TE Band 12: 1.4 MHz TE Band 12: 3 MHz	699.7 (2		707.5 (23095)		(23173)			
TE Band 12: 5 MHz	700.5 (2 701.5 (2		707.5 (23095) 707.5 (23095)		(23165) (23155)			
TE Band 12: 10 MHz	701.5 (2		707.5 (23095)		23130)			
TE Band 13: 5 MHz	779.5 (2		782 (23230)		(23255)			
TE Band 13: 10 MHz	N/.		782 (23230)		VΑ			
TE Band 26 (Cell): 1.4 MHz	814.7 (2	26697)	831.5 (26865)	848.3	(27033)			
TE Band 26 (Cell): 3 MHz	815.5 (2	26705)	831.5 (26865)	847.5	(27025)			
TE Band 26 (Cell): 5 MHz	816.5 (2		831.5 (26865)		(27015)			
TE Band 26 (Cell): 10 MHz	819 (2	6740)	831.5 (26865)		26990)			
TE Band 26 (Cell): 15 MHz TE Band 5 (Cell): 1.4 MHz	821.5 (2		831.5 (26865)	841.5 (26965) 848.3 (20643)				
TE Band 5 (Cell): 1.4 WHz	824.7 (20407) 825.5 (20415)		836.5 (20525) 836.5 (20525)		(20635)			
TE Band 5 (Cell): 5 MHz	826.5 (2		836.5 (20525)		(20625)			
TE Band 5 (Cell): 10 MHz	829 (2		836.5 (20525)		20600)			
TE Band 66 (AWS): 1.4 MHz	1710.7 (1745 (132322)		(132665)			
TE Band 66 (AWS): 3 MHz	1711.5 (1745 (132322)		(132657)			
TE Band 66 (AWS): 5 MHz	1712.5 (131997)	1745 (132322)	1777.5	(132647)			
TE Band 66 (AWS): 10 MHz	1715 (1		1745 (132322)		132622)			
TE Band 66 (AWS): 15 MHz	1717.5 (1745 (132322)		(132597)			
TE Band 66 (AWS): 20 MHz TE Band 4 (AWS): 1.4 MHz	1720 (1		1745 (132322)		132572)			
TE Band 4 (AWS): 3 MHz	1710.7 (1711.5 (1732.5 (20175) 1732.5 (20175)		(20393) (20385)			
TE Band 4 (AWS): 5 MHz	1711.5 (1732.5 (20175)		(20375)			
TE Band 4 (AWS): 10 MHz	1715 (2		1732.5 (20175)		(20350)			
TE Band 4 (AWS): 15 MHz	1717.5 (1732.5 (20175)		(20325)			
TE Band 4 (AWS): 20 MHz	1720 (2		1732.5 (20175)	1745 ((20300)			
TE Band 25 (PCS): 1.4 MHz	1850.7 ((26047)	1882.5 (26365)	1914.3	(26683)			
TE Band 25 (PCS): 3 MHz	1851.5 (1882.5 (26365)		(26675)			
TE Band 25 (PCS): 5 MHz	1852.5 (1882.5 (26365)		(26665)			
TE Band 25 (PCS): 10 MHz	1855 (2		1882.5 (26365)		(26640)			
TE Band 25 (PCS): 15 MHz TE Band 25 (PCS): 20 MHz	1857.5 (1860 (2		1882.5 (26365) 1882.5 (26365)		(26615)			
TE Band 25 (PCS): 20 MHz TE Band 2 (PCS): 1.4 MHz	1850.7 (1880 (18900)		(19193)			
TE Band 2 (PCS): 3 MHz	1851.5 (1880 (18900)		(19185)			
TE Band 2 (PCS): 5 MHz	1852.5 (1880 (18900)		(19175)			
TE Band 2 (PCS): 10 MHz	1855 (1		1880 (18900)		(19150)			
TE Band 2 (PCS): 15 MHz	1857.5 ((18675)	1880 (18900)	1902.5	(19125)			
TE Band 2 (PCS): 20 MHz	1860 (1		1880 (18900)		(19100)			
TE Band 41: 5 MHz	2506 (39750)		2593 (40620)	2636.5 (41055)				
TE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055) 2636.5 (41055)	2680 (41490			
TE Band 41: 15 MHz TE Band 41: 20 MHz	2506 (39750) 2506 (39750)	2549.5 (40185) 2549.5 (40185)	2593 (40620) 2593 (40620)	2636.5 (41055) 2636.5 (41055)	2680 (41490) 2680 (41490)			
E Category	2000 (00100)		L UE Cat 7, UL UE Cat		2000 (41490)			
lodulations Supported in UL			QPSK, 16QAM, 64QAM					
TE MPR Permanently implemented per 3GPP TS								
6.101 section 6.2.3~6.2.5? (manufacturer attestation			YES					
be provided)			VEC					
A-MPR (Additional MPR) disabled for SAR Testing? TE Carrier Aggregation Possible Combinations			YES					
TE Carrier Aggregation Possible Combinations	The tec	hnical description incl	udes all the possible car	rier aggregation combi	nations			
TE Additional Information	This device does not s Release 8 Specification	support full CA features	s on 3GPP Release 11. A ations are done on the P	All uplink communication	ons are identical to Release 11 Featu			

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(1) LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 44 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 11 of 95
020 DCTEST				DEV/ 21 / M

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 12 of 95
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Fage 12 01 95

© 2020 PCTEST REV 21.4 M 09/11/2019

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

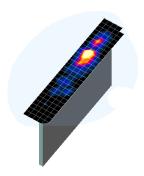


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
	t died ydiedy	1 200117	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, ,,, ,
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 12 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 13 of 95

© 2020 PCTEST REV 21.4 N

5 TEST CONFIGURATION POSITIONS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

5.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

5.3 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body.

When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix F.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 14 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 14 of 95

© 2020 PCTEST REV 21.4 N

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT					
	General Population (W/kg) or (mW/g)	Occupational (VV/kg) or (mVV/g)					
Peak Spatial Average SAR _{Head}	1.6	8.0					
Whole Body SAR	0.08	0.4					
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20					

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- The Spatial Average value of the SAR averaged over the whole body.
- The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 15 of 95
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 15 01 95
© 202	0 PCTEST				REV 21.4 M

7 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

7.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

7.4 SAR Measurement Conditions for UMTS

7.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 46 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 16 of 95

© 2020 PCTEST REV 21.4 I

7.4.2 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

7.4.3 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

7.4.4 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

7.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

7.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 17 of 95
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Fage 17 01 95

REV 21.4 M 09/11/2019

7.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

7.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

7.5.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

7.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 49 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 18 of 95

© 2020 PCTEST REV 21.4 M 09/11/2019 in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.6.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

7.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

2.4 GHz SAR Test Requirements 7.6.4

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel: i.e., all channels require testing.
- 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 40 -f 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 19 of 95
© 202	0 PCTEST				REV 21.4 M

7.6.5 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.6.6 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band. according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 7.6.5). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

7.6.7 **Subsequent Test Configuration Procedures**

For OFDM configurations in each frequency band and aggregated band. SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

MIMO SAR considerations 7.6.8

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Do ao 20 of 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 20 of 95
© 202	20 PCTEST				REV 21.4 M

8.1 UMTS Conducted Powers

Table 8-1
Maximum Conducted Power

Maximum Conducted Fower											
Mode	3GPP 34.121	Cellular Band [dBm]		AWS Band [dBm]		PCS Band [dBm]			3GPP MPR		
	Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	[dB]
WCDMA	12.2 kbps RMC	25.03	25.05	25.13	24.74	24.76	24.69	23.89	24.03	24.15	-
	Subtest 1	24.97	25.08	25.20	24.73	24.78	24.75	24.06	24.14	24.18	0
HSDPA	Subtest 2	24.97	25.07	25.19	24.70	24.79	24.77	24.11	24.10	24.05	0
HODEA	Subtest 3	24.53	24.68	24.70	24.25	24.30	24.29	23.57	23.67	23.70	0.5
	Subtest 4	24.51	24.63	24.69	24.31	24.28	24.32	23.58	23.65	23.70	0.5
	Subtest 1	24.44	24.05	24.25	23.94	23.98	24.00	23.40	23.46	23.49	0
	Subtest 2	23.15	23.16	23.20	23.02	23.08	23.06	22.46	22.50	22.56	2
HSUPA	Subtest 3	24.08	24.16	24.19	24.00	24.05	24.06	23.42	23.50	23.43	1
	Subtest 4	23.10	23.18	23.19	23.02	23.07	23.09	22.46	22.53	22.53	2
	Subtest 5	25.03	24.98	25.17	25.05	25.08	25.07	24.45	24.50	24.54	0

Table 8-2
Reduced Conducted Power

Mode	3GPP 34.121 Subtest				AWS Band [dBm]		PCS Band [dBm]			3GPP MPR	
	Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	[dB]
WCDMA	12.2 kbps RMC	18.70	18.66	18.68	12.64	12.65	12.58	11.45	11.57	11.54	-
	Subtest 1	18.52	18.59	18.70	12.47	12.52	12.48	11.36	11.43	11.44	0
HSDPA	Subtest 2	18.54	18.62	18.69	12.47	12.50	12.50	11.34	11.42	11.43	0
HODEA	Subtest 3	18.05	18.14	18.27	12.01	12.03	12.02	10.89	10.96	10.97	0.5
	Subtest 4	18.05	18.13	18.26	12.00	12.04	12.00	10.88	10.95	10.96	0.5
	Subtest 1	17.57	17.66	17.85	11.20	11.22	11.25	10.20	10.22	10.24	0
	Subtest 2	16.59	16.58	16.77	10.21	10.26	10.22	9.14	9.18	9.20	2
HSUPA	Subtest 3	17.56	17.56	17.79	11.52	11.54	11.55	10.40	10.46	10.48	1
	Subtest 4	16.58	16.67	16.78	10.54	10.57	10.55	9.43	9.50	9.50	2
	Subtest 5	18.52	18.62	18.70	12.47	12.51	12.50	11.39	11.44	11.44	0

This device does not support DC-HSDPA.

Figure 8-1 Power Measurement Setup

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 21 of 95

REV 21.4 M 09/11/2019

8.2 **LTE Conducted Powers**

8.2.1 LTE Band 71

Table 8-3 LTE Band 71 Max Conducted Powers - 20 MHz Bandwidth

	LTE Band 71 Max Conducted Powers - 20 MHz Bandwidth LTE Band 71 20 MHz Bandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	133297 (680.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power	JOFF [UB]						
			[dBm]							
	1	0	24.94		0					
	1	50	24.26	0	0					
	1	99	24.78		0					
QPSK	50	0	23.75		1					
	50	25	23.56	0-1	1					
	50	50	23.66	0-1	1					
	100	0	23.66		1					
	1	0	24.19		1					
	1	50	24.05	0-1	1					
	1	99	24.16		1					
16QAM	50	0	22.74		2					
	50	25	22.54	0-2	2					
	50	50	22.69	0-2	2					
	100	0	22.64		2					
	1	0	23.12		2					
	1	50	22.79	0-2	2					
	1	99	23.18		2					
64QAM	50	0	22.01		3					
	50	25	21.72	0-3	3					
	50	50	21.82	0-3	3					
	100	0	21.84		3					

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 22 of 95	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet			
© 202	0 PCTEST				REV 21.4 M	

Table 8-4
LTE Band 71 Max Conducted Powers - 15 MHz Bandwidth

	LTE Band 71 15 MHz Bandwidth									
Modulation	RB Size	RB Offset	Mid Channel 133297 (680.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]					
	1	0	25.02		0					
	1	36	24.66	0	0					
	1	74	24.54		0					
QPSK	36	0	23.52		1					
	36	18	23.66	0-1	1					
	36	37	23.60	0-1	1					
	75	0	23.64		1					
	1	0	23.79		1					
	1	36	23.78	0-1	1					
	1	74	23.70		1					
16QAM	36	0	22.79		2					
	36	18	22.69	0-2	2					
	36	37	22.67	0-2	2					
	75	0	22.83		2					
	1	0	23.17		2					
	1	36	23.12	0-2	2					
	1	74	22.92		2					
64QAM	36	0	21.31		3					
	36	18	21.28	0-3	3					
	36	37	21.25	1 0-3	3					
	75	0	21.25		3					

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-5
LTE Band 71 Max Conducted Powers - 10 MHz Bandwidth

	LTE Band 71 10 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	133172 (668.0 MHz)	133297 (680.5 MHz)	133422 (693.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			C	Conducted Power [dBm]					
	1	0	24.89	25.00	25.18		0			
	1	25	25.20	25.20	25.20	0	0			
	1	49	25.12	24.97	25.12		0			
QPSK	25	0	24.04	23.78	24.11		1			
	25	12	23.97	23.88	24.01	- 0-1	1			
	25	25	24.18	23.76	23.87		1			
	50	0	24.20	23.75	23.94		1			
	1	0	23.99	23.86	23.87	0-1	1			
	1	25	24.01	23.85	23.85		1			
	1	49	23.79	23.72	23.90		1			
16QAM	25	0	23.10	23.08	23.20		2			
	25	12	23.02	22.99	23.20	0-2	2			
	25	25	22.94	23.07	23.12	0-2	2			
	50	0	23.18	22.93	23.19		2			
	1	0	22.66	22.78	22.72		2			
	1	25	22.95	22.85	22.91	0-2	2			
	1	49	22.57	22.75	22.61]	2			
64QAM	25	0	21.68	21.46	21.69		3			
	25	12	21.68	21.56	21.71	0-3	3			
	25	25	21.57	21.45	21.57] 0-3	3			
	50	0	21.64	21.50	21.72	1	3			

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 22 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 23 of 95

Table 8-6 LTF Band 71 Max Conducted Powers - 5 MHz Bandwidth

		L Danu	7 I Wax Coi	LTE Band 71	1013 - 3 IVII 12	Danawiatii	
				5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 133147 (665.5 MHz)	Mid Channel 133297 (680.5 MHz)	High Channel 133447 (695.5 MHz)	MPR Allowed per	MPR [dB]
			,	Conducted Power [dBm	,	3GPP [dB]	
	1	0	24.90	24.99	25.04		0
	1	12	24.97	25.12	24.86	0	0
	1	24	25.00	25.01	24.98		0
QPSK	12	0	24.03	23.91	23.85		1
	12	6	24.06	23.90	23.82	0-1	1
	12	13	23.99	23.90	23.83		1
	25	0	24.01	23.79	23.78	1	1
	1	0	23.97	23.77	23.82		1
	1	12	23.97	23.96	23.79	0-1	1
	1	24	24.00	23.80	23.88		1
16QAM	12	0	23.20	23.15	23.10		2
	12	6	23.19	23.15	22.98	0-2	2
	12	13	23.02	23.10	23.20	0-2	2
	25	0	23.12	23.06	22.99		2
	1	0	22.94	22.69	22.70		2
	1	12	22.96	22.65	22.62	0-2	2
	1	24	22.79	22.60	22.73	1	2
64QAM	12	0	21.89	21.65	21.56		3
	12	6	21.92	21.67	21.53	1 ,,	3
	12	13	21.80	21.61	21.52	0-3	3
	25	0	21.91	21.53	21.46	1	3

Table 8-7 LTE Band 71 Reduced Conducted Powers - 20 MHz Bandwidth

	LTE Band 71 20 MHz Bandwidth									
Modulation	RB Size	RB Offset	Conducted Power [dBm]		MPR [dB]					
	1	0	17.51		0					
	1	50	16.89	0	0					
	1	99	16.98		0					
QPSK	50	0	17.05		0					
	50	25	16.88	0-1	0					
	50	50	16.90	0-1	0					
	100	0	16.94		0					
	1	0	17.48		0					
	1	50	17.11	0-1	0					
	1	99	17.19		0					
16QAM	50	0	17.00		0					
	50	25	16.88	0-2	0					
	50	50	16.82	0-2	0					
	100	0	16.89		0					
	1	0	17.43		0					
	1	50	17.07	0-2	0					
	1	99	17.12		0					
64QAM	50	0	16.99		0					
	50	25	16.88	0-3	0					
	50	50	16.83	0-3	0					
	100	0	16.94		0					

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 24 of 95	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet			
© 202	0 PCTEST	<u> </u>	·		REV 21.4 M	

Table 8-8 LTE Band 71 Reduced Conducted Powers - 15 MHz Bandwidth

			LTE Band 71 15 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 133297 (680.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	17.35		0
	1	36	17.29	0	0
	1	74	17.18		0
QPSK	36	0	17.25		0
	36	18	17.23	0-1	0
	36	37	17.35	0-1	0
	75	0	17.23		0
	1	0	17.40		0
	1	36	17.50	0-1	0
	1	74	17.27		0
16QAM	36	0	17.22		0
	36	18	17.10	0.0	0
	36	37	17.22	0-2	0
	75	0	17.28		0
	1	0	17.45		0
	1	36	17.47	0-2	0
	1	74	17.20		0
64QAM	36	0	17.10		0
	36	18	17.25	0.0	0
	36	37	17.29	0-3	0
	75	0	17.20	1	0

75 0 17.20 0

Note: LTE Band 71 at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 25 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 25 of 95

Table 8-9 LTE Band 71 Reduced Conducted Powers - 10 MHz Bandwidth

		LILDa	na 71 Neaucea	LTE Band 71	Vers - 10 Williz L	anawiath	
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	133172 (668.0 MHz)	133297 (680.5 MHz)	133422 (693.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	17.61	17.65	17.36		0
	1	25	17.54	17.65	17.40	0	0
	1	49	17.57	17.59	17.31		0
QPSK	25	0	17.55	17.68	17.56		0
	25	12	17.67	17.66	17.61	0-1	0
	25	25	17.51	17.68	17.46		0
	50	0	17.48	17.51	17.55		0
	1	0	17.63	17.69	17.54		0
	1	25	17.69	17.70	17.56	0-1	0
	1	49	17.68	17.67	17.48		0
16QAM	25	0	17.59	17.56	17.57		0
	25	12	17.62	17.64	17.61	0-2	0
	25	25	17.53	17.60	17.51	02	0
	50	0	17.55	17.54	17.48		0
	1	0	17.63	17.66	17.60		0
	1	25	17.33	17.70	17.64	0-2	0
	1	49	17.40	17.66	17.54		0
64QAM	25	0	17.52	17.54	17.49		0
	25	12	17.66	17.58	17.47		0
	25	25	17.36	17.56	17.42	0-3	0
	50	0	17.48	17.51	17.44		0

Table 8-10 LTE Band 71 Reduced Conducted Powers - 5 MHz Bandwidth

		LIL DO	ina / i iteaaoce	LTE Band 71	WCIS CHILLE	unamath	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	133147 (665.5 MHz)	133297 (680.5 MHz)	133447 (695.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	17.68	17.43	17.52		0
	1	12	17.46	17.46	17.53	0	0
	1	24	17.42	17.42	17.50		0
QPSK	12	0	17.59	17.59	17.50		0
	12	6	17.69	17.60	17.47	0-1	0
	12	13	17.70	17.58	17.48		0
	25	0	17.68	17.51	17.46		0
	1	0	17.65	17.58	17.70	0-1	0
	1	12	17.70	17.67	17.70		0
	1	24	17.63	17.56	17.68		0
16QAM	12	0	17.50	17.58	17.48		0
	12	6	17.66	17.60	17.53	0-2	0
	12	13	17.53	17.55	17.46	0-2	0
	25	0	17.47	17.54	17.50		0
	1	0	17.68	17.70	17.64		0
	1	12	17.65	17.69	17.69	0-2	0
	1	24	17.70	17.68	17.51		0
64QAM	12	0	17.59	17.63	17.52		0
	12	6	17.58	17.66	17.68		0
	12	13	17.66	17.69	17.48	0-3	0
	25	0	17.61	17.61	17.54		0

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 26 of 95	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet			
© 202	0 PCTEST				REV 21.4 M	

8.2.2 LTE Band 12

Table 8-11
LTE Band 12 Max Conducted Powers - 10 MHz Bandwidth

		Dana 12 Ma	LTE Band 12 10 MHz Bandwidth	TO MITE BUILDING	
			Mid Channel		
Modulation	RB Size		23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power	00.1 [02]	
			[dBm]		
	1	0	25.10		0
	1	25	24.88	0	0
	1	49	25.06		0
QPSK	25	0	23.99		1
	25	12	24.03	0-1	1
	25	25	24.02	0-1	1
	50	0	24.00		1
	1	0	23.93		1
	1	25	23.77	0-1	1
	1	49	23.83		1
16QAM	25	0	23.14		2
	25	12	23.13	0-2	2
	25	25	23.03	0-2	2
	50	0	23.01		2
	1	0	23.18		2
	1	25	23.02	0-2	2
	1	49	23.04		2
64QAM	25	0	22.02		3
	25	12	22.02	0.0	3
	25	25	21.94	0-3	3
	50	0	22.05		3

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 27 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 27 of 95

REV 21.4 M 09/11/2019

Table 8-12 LTE Band 12 Max Conducted Powers - 5 MHz Bandwidth

			zana iz max o	LTE Band 12	.c c z Bain		
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23035	23095	23155	MPR Allowed per	MPR [dB]
Wodulation	ND Size	IND Offset	(701.5 MHz)	(707.5 MHz)	(713.5 MHz)	3GPP [dB]	Wii K [GD]
	Conducted Power [dBm]						
	1	0	24.60	24.79	24.62		0
	1	12	24.80	24.76	24.75	0	0
	1	24	24.68	24.68	24.73		0
QPSK	12	0	23.76	23.74	23.87		1
	12	6	23.77	23.71	23.58	0-1	1
	12	13	23.72	23.80	23.78		1
	25	0	23.74	23.81	23.62		1
	1	0	23.85	24.18	24.02	0-1	1
	1	12	23.91	23.89	23.88		1
	1	24	23.81	23.68	23.85		1
16QAM	12	0	22.71	22.81	22.78		2
	12	6	22.78	22.88	23.00	0-2	2
	12	13	22.46	22.80	22.76	0-2	2
	25	0	22.76	22.84	22.79		2
	1	0	23.01	22.32	23.00		2
	1	12	23.20	23.00	23.09	0-2	2
	1	24	23.11	23.01	23.02		2
64QAM	12	0	22.11	22.13	22.03	0.2	3
	12	6	22.13	22.18	22.15		3
	12	13	22.05	22.12	22.10	0-3	3
	25	0	22.01	22.12	22.08	1	3

Table 8-13 LTE Band 12 Max Conducted Powers - 3 MHz Bandwidth

		<u> </u>	Dario 12 Max C	LTE Band 12	13 - 3 WILL Dall	awiatii	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.63	24.65	24.71		0
	1	7	24.68	24.84	24.86	0	0
	1	14	24.51	24.69	24.71		0
QPSK	8	0	23.64	23.69	23.93		1
	8	4	23.70	23.81	23.79	0-1	1
	8	7	23.66	23.69	23.72		1
	15	0	23.59	23.72	23.58		1
	1	0	24.07	24.03	23.93		1
	1	7	23.73	23.64	23.72	0-1	1
	1	14	23.75	23.87	23.70		1
16QAM	8	0	22.68	22.74	22.80		2
	8	4	22.74	22.82	22.91	0-2	2
	8	7	22.80	22.83	22.91] 0-2	2
	15	0	22.60	22.71	22.64		2
	1	0	23.03	23.20	23.10		2
	1	7	23.09	23.09	23.18	0-2	2
	1	14	23.19	23.03	23.18		2
64QAM	8	0	22.11	22.13	22.12		3
	8	4	22.14	22.20	22.17		3
	8	7	22.20	22.17	22.11	0-3	3
	15	0	22.14	22.14	22.11	1	3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 20 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 28 of 95

Table 8-14 LTE Band 12 Max Conducted Powers - 1.4 MHz Bandwidth

			Janu 12 Wax Co	muucteu rowers	5 - 1.7 WILL Dai	Idwidtii	
				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	24.57	24.23	24.42		0
	1	2	24.56	24.62	24.55		0
	1	5	24.50	24.62	24.48	0	0
QPSK	3	0	24.43	24.52	24.57		0
	3	2	24.49	24.48	24.69		0
	3	3	24.56	24.56	24.50		0
	6	0	23.61	23.64	23.60	0-1	1
	1	0	23.73	23.78	23.65	_	1
	1	2	23.43	23.70	23.75		1
	1	5	23.56	23.49	23.77	0-1	1
16QAM	3	0	23.65	23.65	23.65] 0-1	1
	3	2	23.73	23.77	23.72		1
	3	3	23.61	23.73	23.65		1
	6	0	22.69	22.70	22.59	0-2	2
	1	0	22.95	22.98	23.06		2
	1	2	23.13	22.79	23.09		2
	1	5	22.96	23.00	23.06	0-2	2
64QAM	3	0	22.92	22.94	23.11	0-2	2
	3	2	23.04	23.07	23.14		2
	3	3	22.95	23.05	22.95		2
	6	0	21.87	21.90	21.91	0-3	3

Table 8-15 LTE Band 12 Reduced Conducted Powers - 10 MHz Bandwidth

			LTE Band 12 10 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 23095 (707.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	18.55		0
	1	25	18.52	0	0
	1	49	18.53		0
QPSK	25	0	18.51		0
	25	12	18.54	0-1	0
	25	25	18.50	0-1	0
	50	50 0 18.53		0	
	1	0	18.22		0
	1	25	18.09	0-1	0
	1	49	18.23		0
16QAM	25	0	18.60		0
	25	12	18.62	0-2	0
	25	25	18.58	0-2	0
	50	0	18.58		0
	1	0	18.64		0
	1	25	18.41	0-2	0
	1	49	18.52		0
64QAM	25	0	18.29		0
	25	12	18.28	0-3	0
	25	25	18.18	0-3	0
	50	0	18.20		0

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFT600TS	<u> PCTEST</u>	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 00 -f 05	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 29 of 95	
© 202	0 PCTEST				REV 21.4 M	

Table 8-16 LTE Band 12 Reduced Conducted Powers - 5 MHz Bandwidth

				LTE Band 12		arrawiatri	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23035	23095	23155	MPR Allowed per	MDD [4D]
Woddiation	ND SIZE	KB Oliset	(701.5 MHz) (707.5 MHz) (713.5 MHz)	3GPP [dB]	MPR [dB]		
	Conducted Power [dBm]						
	1	0	18.23	18.44	18.37		0
	1	12	18.26	18.44	18.43	0	0
	1	24	18.21	18.32	18.35		0
QPSK	12	0	18.36	18.38	18.33		0
	12	6	18.34	18.40	18.44	0-1	0
	12	13	18.36	18.44	18.42		0
	25	0	18.41	18.45	18.39		0
	1	0	18.45	18.69	18.60		0
	1	12	18.44	18.66	18.70	0-1	0
	1	24	18.43	18.54	18.65		0
16QAM	12	0	18.44	18.39	18.31		0
	12	6	18.39	18.40	18.39	0-2	0
	12	13	18.38	18.43	18.43	0-2	0
	25	0	18.47	18.47	18.34		0
	1	0	18.57	18.70	18.65		0
	1	12	18.67	18.62	18.69	0-2	0
	1	24	18.59	18.69	18.57		0
64QAM	12	0	18.40	18.49	18.47	0-3	0
	12	6	18.60	18.52	18.59		0
	12	13	18.53	18.64	18.41		0
	25	0	18.50	18.54	18.52		0

Table 8-17 LTE Band 12 Reduced Conducted Powers - 3 MHz Bandwidth

			=	LTE Band 12			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
]				
	1	0	18.35	18.36	18.33		0
	1	7	18.46	18.47	18.49	0	0
	1	14	18.31	18.28	18.36		0
QPSK	8	0	18.41	18.40	18.46		0
	8	4	18.45	18.44	18.45	0-1	0
	8	7	18.38	18.39	18.41		0
	15	0	18.45	18.48	18.45		0
	1	0	18.67	18.63	18.42		0
	1	7	18.69	18.70	18.62	0-1	0
	1	14	18.40	18.58	18.42		0
16QAM	8	0	18.51	18.49	18.36		0
	8	4	18.51	18.48	18.43	0-2	0
	8	7	18.44	18.45	18.39	0-2	0
	15	0	18.49	18.50	18.44		0
	1	0	18.62	18.59	18.63		0
	1	7	18.65	18.70	18.65	0-2	0
	1	14	18.64	18.62	18.70		0
64QAM	8	0	18.48	18.54	18.56	0-3	0
	8	4	18.56	18.48	18.56		0
	8	7	18.69	18.59	18.65		0
	15	0	18.37	18.56	18.52		0

	FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 00 (05	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 30 of 95	
© 202	0 PCTEST				REV 21.4 M	

Table 8-18 LTF Band 12 Reduced Conducted Powers - 1 4 MHz Bandwidth

				LTE Band 12			
			Low Channel	1.4 MHz Bandwidth	High Channel	T	
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	Mid Channel 23095 (707.5 MHz)	High Channel 23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	18.26	18.40	18.15		0
	1	2	18.29	18.45	18.22		0
	1	5	18.26	18.40	18.25	0	0
QPSK	3	0	18.30	18.42	18.31		0
	3	2	18.27	18.35	18.39		0
	3	3	18.30	18.32	18.27		0
	6	0	18.34	18.40	18.30	0-1	0
	1	0	18.46	18.30	18.50		0
	1	2	18.45	18.39	18.59		0
	1	5	18.36	18.26	18.56	0-1	0
16QAM	3	0	18.30	18.43	18.36] 0-1	0
	3	2	18.28	18.46	18.37		0
	3	3	18.31	18.41	18.27		0
	6	0	18.48	18.57	18.40	0-2	0
	1	0	18.67	18.55	18.70		0
	1	2	18.61	18.70	18.67		0
	1	5	18.38	18.50	18.69		0
64QAM	3	0	18.47	18.62	18.47	0-2	0
	3	2	18.53	18.55	18.56		0
	3	3	18.10	18.61	18.59		0
	6	0	18.55	18.44	18.45	0-3	0

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 31 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 31 of 95

8.2.3 LTE Band 13

Table 8-19 LTE Band 13 Max Conducted Powers - 10 MHz Bandwidth

	LTE Band 13 Max Conducted Powers - 10 MHz Bandwidth LTE Band 13								
	10 MHz Bandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	3311 [ub]					
	1	0	25.19		0				
	1	25	25.03	0	0				
	1	49	25.14		0				
QPSK	25	0	24.02		1				
	25	12	24.13	0-1	1				
	25	25	24.05	0-1	1				
	50	0	24.03		1				
	1	0	23.96		1				
	1	25	23.85	0-1	1				
	1	49	23.91		1				
16QAM	25	0	23.13		2				
	25	12	23.03	0-2	2				
	25	25	23.16	0-2	2				
	50	0	23.06		2				
	1	0	23.20		2				
	1	25	23.08	0-2	2				
	1	49	23.18		2				
64QAM	25	0	22.20		3				
	25	12	22.12	0-3	3				
	25	25	22.08	0-3	3				
	50	0	22.15		3				

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 22 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 32 of 95

Table 8-20 LTE Band 13 Max Conducted Powers - 5 MHz Bandwidth

			LTE Band 13 5 MHz Bandwidth	o mile Ballawiatii	
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	25.20		0
	1	12	25.18	0	0
	1	24	25.13		0
QPSK	12	0	23.96		1
	12	6	24.04	0-1	1
	12	13	23.96	0-1	1
	25	0	23.91		1
	1	0	24.05		1
	1	12	24.15	0-1	1
	1	24	24.06		1
16QAM	12	0	22.93		2
	12	6	23.02	0-2	2
	12	13	23.00	0-2	2
	25	0	23.00		2
	1	0	23.15		2
	1	12	23.20	0-2	2
	1	24	23.12		2
64QAM	12	0	22.05		3
	12	6	22.16	0-3	3
	12	13	22.06	0-3	3
	25	0	21.97		3

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 22 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 33 of 95

Table 8-21
LTE Band 13 Reduced Conducted Powers - 10 MHz Bandwidth

LTE Band 13 Reduced Conducted Powers - 10 MHZ Bandwidth								
LIE Band 13 10 MHz Bandwidth								
			Mid Channel					
Modulation	RB Size	RB Size RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]	0011 [db]				
	1	0	17.20		0			
	1	25	17.05	0	0			
	1	49	17.08		0			
QPSK	25	0	17.19		0			
	25	12	17.18	0-1	0			
	25	25	17.12	0-1	0			
	50	0	17.18		0			
	1	0	17.20		0			
	1	25	17.17	0-1	0			
	1	49	17.19		0			
16QAM	25	0	17.18		0			
	25	12	17.14	0-2	0			
	25	25	17.12	0-2	0			
	50	0	17.16		0			
	1	0	17.20		0			
	1	25	17.15	0-2	0			
	1	49	17.14		0			
64QAM	25	0	17.20		0			
	25	12	17.19	0-3	0			
	25	25	17.14] 0-3	0			
	50	0	17.17		0			

Table 8-22
LTE Band 13 Reduced Conducted Powers - 5 MHz Bandwidth

	LTE Band 13 5 MHz Bandwidth							
			Mid Channel					
Modulation	RB Size	RB Offset	RB Offset 23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]					
	1	0	16.96		0			
	1	12	17.09	0	0			
	1	24	16.90		0			
QPSK	12	0	17.07		0			
	12	6	17.14	0-1	0			
	12	13	17.11	0-1	0			
	25	0	17.07		0			
	1	0	17.19		0			
	1	12	17.20	0-1	0			
	1	24	17.17		0			
16QAM	12	0	17.07		0			
	12	6	17.16	0-2	0			
	12	13	17.11	0-2	0			
	25	0	17.12		0			
	1	0	17.18		0			
	1	12	17.20	0-2	0			
	1	24	17.17		0			
64QAM	12	0	17.11		0			
	12	6	17.18	0-3	0			
	12	13	17.13		0			
	25	0	17.10		0			

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 34 of 95

© 2020 PCTEST

REV 21.4 M 09/11/2019

8.2.4 LTE Band 26 (Cell)

Table 8-23
LTE Band 26 (Cell) Max Conducted Powers - 15 MHz Bandwidth

	LTE Band 26 (Cell) 15 MHz Bandwidth								
Modulation	RB Size	RB Offset	Mid Channel 26865 (831.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]				
	1	0	24.92		0				
	1	36	24.87	0	0				
	1	74	24.84		0				
QPSK	36	0	24.06		1				
	36	18	24.16	0-1	1				
	36	37	24.00	U - 1	1				
	75	0	24.01		1				
	1	0	23.86		1				
	1	36	23.82	0-1	1				
	1	74	23.85		1				
16QAM	36	0	23.09		2				
	36	18	23.09	0-2	2				
	36	37	23.07	0-2	2				
	75	0	23.05		2				
	1	0	23.19		2				
	1	36	23.13	0-2	2				
	1	74	23.18		2				
64QAM	36	0	22.20		3				
	36	18	22.20	0-3	3				
	36	37	22.17	0-3	3				
	75	0	22.17		3				

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 25 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 35 of 95

Table 8-24 LTE Band 26 (Cell) Max Conducted Powers - 10 MHz Bandwidth

		LIL Dai	iu zo (Ceii) iviaz	LTE Pand 26 (Call)	WEIS - IU WILLE L	Danuwium	
				LTE Band 26 (Cell) 10 MHz Bandwidth			
	DD Cine		Low Channel 26740	Mid Channel 26865	High Channel 26990	MPR Allowed per	MDD (4D)
Modulation	RB Size	RB Offset	(819.0 MHz)	(831.5 MHz)	(844.0 MHz)	3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.70	25.13	25.16		0
	1	25	24.90	24.95	24.98	0	0
	1	49	25.20	25.13	24.50]	0
QPSK	25	0	24.03	24.14	24.17		1
	25	12	24.00	24.11	24.05	0-1	1
	25	25	24.03	24.13	24.03	0-1	1
	50	0	24.00	24.10	24.08		1
	1	0	23.96	24.20	24.20		1
	1	25	24.12	23.93	24.15	0-1	1
	1	49	24.13	24.08	24.16		1
16QAM	25	0	23.03	23.17	23.18		2
	25	12	22.98	23.15	23.01	0-2	2
	25	25	23.04	23.14	23.03	0-2	2
	50	0	23.04	23.14	23.06		2
	1	0	23.20	23.20	23.20		2
	1	25	23.12	23.13	23.13	0-2	2
	1	49	23.12	23.20	23.17]	2
64QAM	25	0	22.18	22.15	22.16		3
	25	12	22.19	22.19	22.17	1	3
	25	25	22.08	22.15	22.09	0-3	3
	50	0	22.07	22.13	22.16	1	3

Table 8-25 LTE Band 26 (Cell) Max Conducted Powers - 5 MHz Bandwidth

				LTE Band 26 (Cell) 5 MHz Bandwidth			
Modulation RB Size	RB Offset	Low Channel 26715 (816.5 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Conducted Power [dBm			
	1	0	24.99	24.92	24.95		0
	1	12	24.72	24.87	24.60	0	0
	1	24	24.64	24.90	24.94		0
QPSK	12	0	24.09	24.20	24.13		1
	12	6	24.04	24.15	24.09	0-1	1
	12	13	23.99	24.09	23.99	0-1	1
	25	0	24.03	24.13	24.11		1
	1	0	23.95	24.19	24.19		1
	1	12	24.16	24.17	24.19	0-1	1
	1	24	23.97	23.92	24.00		1
16QAM	12	0	23.04	23.18	23.19		2
	12	6	23.03	23.20	23.06	0-2	2
	12	13	23.07	23.17	23.06	0-2	2
	25	0	23.04	23.14	23.06		2
	1	0	23.16	23.16	23.16		2
	1	12	23.05	23.06	23.06	0-2	2
	1	24	22.94	23.02	22.99	<u> </u>	2
64QAM	12	0	22.17	22.14	22.15		3
	12	6	22.05	22.05	22.03		3
	12	13	22.11	22.18	22.12	0-3	3
	25	0	22.10	22.16	22.19		3

	FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 36 of 95
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		
© 202	© 2020 PCTEST				

Table 8-26 LTE Band 26 (Cell) Max Conducted Powers - 3 MHz Bandwidth

			ind 20 (Goil) ilia	LTE Band 26 (Cell)		anawian	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	24.78	24.99	25.06		0
	1	7	24.64	24.97	25.00	0	0
	1	14	24.35	24.82	24.80		0
QPSK	8	0	24.01	23.98	24.07		1
	8	4	24.09	24.17	24.02	0-1	1
	8	7	23.86	24.02	24.12		1
	15	0	23.94	24.00	24.10		1
	1	0	23.61	23.96	24.12		1
	1	7	24.05	24.00	24.10	0-1	1
	1	14	23.74	23.90	24.13		1
16QAM	8	0	22.96	23.12	23.10		2
	8	4	22.97	23.11	23.05	0-2	2
	8	7	23.00	23.08	23.01	0-2	2
	15	0	22.95	23.02	23.08		2
	1	0	23.15	23.17	23.20		2
	1	7	23.05	23.12	23.11	0-2	2
	1	14	22.92	23.17	23.15		2
64QAM	8	0	22.13	22.18	22.11	0-3	3
	8	4	22.06	22.18	22.13		3
	8	7	22.13	22.16	22.10		3
	15	0	22.14	22.14	22.15		3

Table 8-27 LTE Band 26 (Cell) Max Conducted Powers -1.4 MHz Bandwidth

				LTE Band 26 (Cell)			
	T	1		1.4 MHz Bandwidth	1	1	
Modulation	RB Size	RB Offset	Low Channel 26697 (814.7 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.64	25.04	24.46		0
	1	2	24.56	24.89	24.64		0
	1	5	24.27	24.74	24.72		0
QPSK	3	0	24.65	24.62	24.71		0
	3	2	24.57	24.65	24.50		0
	3	3	24.42	24.58	24.68		0
	6	0	23.94	24.00	24.10	0-1	1
	1	0	23.60	23.95	24.11		1
	1	2	24.07	24.02	24.12		1
	1	5	23.79	23.95	24.18	0-1	1
16QAM	3	0	23.59	23.75	23.73	0-1	1
	3	2	23.65	23.79	23.73		1
	3	3	23.66	23.74	23.67		1
	6	0	22.99	23.06	23.12	0-2	2
	1	0	22.99	23.01	23.04		2
	1	2	22.96	23.03	23.02		2
	1	5	22.80	23.05	23.03	0-2	2
64QAM	3	0	22.93	22.98	22.91] "-2	2
	3	2	22.93	23.05	23.00	1	2
	3	3	22.95	22.98	22.92		2
	6	0	22.15	22.15	22.16	0-3	3

	FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 37 of 95	
© 202	0 PCTEST				REV 21.4 M	

Table 8-28
LTE Band 26 (Cell) Reduced Conducted Powers - 15 MHz Bandwidth

			LTE Band 26 (Cell) 15 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 26865 (831.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	17.90		0
	1	36	17.83	0	0
	1	74	17.94		0
QPSK	36	0	17.85		0
	36	18	17.77	0-1	0
	36	37	17.97	U- I	0
	75	0	17.92		0
	1	0	17.99		0
	1	36	18.04	0-1	0
	1	74	18.10		0
16QAM	36	0	17.90		0
	36	18	17.86	0-2	0
	36	37	17.94	0-2	0
	75	0	17.96		0
	1	0	18.08		0
	1	36	18.11	0-2	0
	1	74	18.07		0
64QAM	36	0	17.98		0
	36	18	17.91	0-3	0
	36	37	17.97	0-3	0
	75	0	17.96		0

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-29
LTE Band 26 (Cell) Reduced Conducted Powers - 10 MHz Bandwidth

		,		LTE Band 26 (Cell)			
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MDD Allers days	
Modulation	RB Size	RB Offset	26740	26865	26990	MPR Allowed per 3GPP [dB]	MPR [dB]
			(819.0 MHz)	(831.5 MHz) Conducted Power [dBm	(844.0 MHz)	JGFF [GB]	
	1	0	18.03	18.06	18.09		0
	1	25	17.75	18.07	17.84	0	0
	1	49	18.20	18.11	17.84	- '	0
QPSK	<u> </u>						
QPSK	25	0	18.08	18.07	18.20	0-1	0
	25	12	18.00	18.07	18.18		0
	25	25	17.95	18.15	18.04		0
	50	0	17.99	18.11	18.12		0
	1	0	18.14	18.13	18.15	0-1	0
	1	25	18.20	18.20	18.20		0
	1	49	18.07	18.12	18.02		0
16QAM	25	0	18.04	18.10	18.15		0
	25	12	17.96	17.98	18.02	0-2	0
	25	25	17.99	18.08	18.11	0-2	0
	50	0	18.01	18.10	18.07		0
	1	0	18.09	18.13	18.16		0
	1	25	18.09	18.14	18.13	0-2	0
	1	49	18.19	18.18	18.15		0
64QAM	25	0	18.04	18.13	18.19		0
	25	12	17.95	18.15	17.89	1	0
	25	25	18.02	18.05	18.03	0-3	0
	50	0	17.98	18.10	18.05	†	0

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 38 of 95

Table 8-30 LTE Band 26 (Cell) Reduced Conducted Powers - 5 MHz Bandwidth

		LIL Bana	20 (Ocil) Read	LTE Band 26 (Cell)	TOWCIS O MILIZ	Banawiath	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	17.97	17.95	18.00		0
	1	12	17.81	17.89	17.94	0	0
	1	24	17.87	17.80	17.86		0
QPSK	12	0	17.85	17.96	18.04		0
	12	6	17.99	17.94	18.10	0-1	0
	12	13	17.89	17.90	17.98		0
	25	0	17.92	17.96	17.91		0
	1	0	18.03	18.10	18.17		0
	1	12	18.12	18.10	18.04	0-1	0
	1	24	18.01	17.99	18.13		0
16QAM	12	0	17.90	18.08	18.04		0
	12	6	17.87	18.07	18.09	0-2	0
	12	13	17.90	17.94	17.96	0-2	0
	25	0	18.03	17.97	17.99		0
	1	0	18.08	18.11	18.20		0
	1	12	18.13	18.14	18.11	0-2	0
	1	24	18.04	18.10	17.91		0
64QAM	12	0	17.92	18.10	18.09		0
	12	6	17.98	18.08	18.08	0-3	0
	12	13	18.00	18.07	17.95		0
	25	0	17.93	18.07	18.01		0

Table 8-31 LTE Band 26 (Cell) Reduced Conducted Powers - 3 MHz Bandwidth

		LIE Dano	26 (Cell) Reduc	ced Conducted	Powers - 3 MHZ	Danawiath	
				LTE Band 26 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	17.81	18.02	17.93		0
	1	7	17.91	18.08	17.91	0	0
	1	14	17.82	18.01	17.82		0
QPSK	8	0	17.85	18.10	17.92		0
	8	4	17.96	18.06	18.01	0-1	0
	8	7	17.92	18.08	18.01		0
	15	0	17.97	17.94	17.92		0
	1	0	17.71	18.08	18.13	0-1	0
	1	7	18.19	18.02	18.20		0
	1	14	18.11	18.10	18.04		0
16QAM	8	0	18.00	18.04	17.99		0
	8	4	18.00	18.16	17.99	0-2	0
	8	7	17.97	18.13	17.99	0-2	0
	15	0	17.96	18.08	17.98		0
	1	0	18.17	18.09	18.06		0
	1	7	18.20	18.19	18.20	0-2	0
	1	14	18.01	18.19	18.06		0
64QAM	8	0	18.01	18.10	18.02		0
	8	4	17.90	18.12	18.08	0-3	0
	8	7	18.12	18.16	17.98	0-3	0
	15	0	17.92	18.14	17.86		0

	FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 39 of 95	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet			
© 202	0 PCTEST				REV 21.4 M	

Table 8-32 LTE Band 26 (Cell) Reduced Conducted Powers - 1.4 MHz Bandwidth

	<u> </u>	ITE Bana	Lo (Goil) Rodao	LTE Band 26 (Cell)	011010 114 1111	<u> Danawian</u>	
			J Ob	1.4 MHz Bandwidth	History Observed		
			Low Channel 26697	Mid Channel	High Channel 27033	MPR Allowed per	
Modulation	RB Size	RB Offset	(814.7 MHz)		(848.3 MHz)	3GPP [dB]	MPR [dB]
				Conducted Power [dBm]			
	1	0	17.82	17.99	17.92		0
	1	2	17.74	18.15	17.82		0
	1	5	17.73	17.99	17.83	1 , [0
QPSK	3	0	17.80	17.90	17.81	0	0
	3	2	17.85	17.91	17.80		0
	3	3	17.82	17.94	17.84		0
	6	0	17.83	17.93	17.81	0-1	0
	1	0	17.52	18.02	17.99		0
	1	2	17.77	18.20	18.00		0
	1	5	17.95	18.19	18.19		0
16QAM	3	0	18.00	18.19	17.92] ⁰⁻¹ [0
	3	2	18.13	18.04	18.10		0
	3	3	17.97	18.09	17.98		0
	6	0	17.86	17.98	17.87	0-2	0
	1	0	17.91	18.10	17.90		0
	1	2	17.94	18.20	18.00		0
	1	5	17.95	18.16	17.94	0-2	0
64QAM	3	0	17.74	18.19	17.92	- 0-2	0
	3	2	18.06	18.18	18.00		0
	3	3	17.86	18.20	18.05		0
	6	0	17.81	17.98	17.85	0-3	0

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 40 of 95

LTE Band 66 (AWS) 8.2.5

Table 8-33 LTE Band 66 (AWS) Max Conducted Powers - 20 MHz Bandwidth

		LIL Build	i oo (Airo) iilax	LTE Band 66 (AWS)	TOIS ZO MILIZ I	Barrawiatri	
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]]		
	1	0	25.02	25.16	24.70		0
	1	50	24.88	24.98	24.59	0	0
	1	99	24.83	25.12	24.73		0
QPSK	50	0	23.80	23.86	23.60		1
	50	25	23.51	24.15	23.62	0-1	1
	50	50	23.86	23.89	23.57		1
	100	0	23.85	23.87	23.53		1
	1	0	23.83	23.66	23.53	0-1	1
	1	50	23.75	23.63	23.23		1
	1	99	23.96	24.12	23.75		1
16QAM	50	0	22.99	23.01	22.73		2
	50	25	23.13	22.81	22.73	0-2	2
	50	50	23.02	22.97	22.72	0-2	2
	100	0	23.02	23.12	22.78		2
	1	0	23.07	23.08	23.16		2
	1	50	23.20	23.14	23.05	0-2	2
	1	99	23.20	23.20	23.19		2
64QAM	50	0	22.11	22.12	22.04	0-3	3
	50	25	22.17	22.19	22.14		3
	50	50	22.20	21.84	22.01		3
	100	0	22.15	22.11	22.02		3

Table 8-34 LTE Band 66 (AWS) Max Conducted Powers - 15 MHz Bandwidth

				LTE Band 66 (AWS)		<u>Janawian</u>	
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	3 Offset 132047 132322 (1717.5 MHz) (1745.0 MHz) (1	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Conducted Power [dBm		3011 [05]	
	1	0	25.04	24.85	24.86		0
	1	36	24.97	25.15	25.04	0	0
	1	74	24.94	24.91	24.87		0
QPSK	36	0	23.81	23.93	24.09		1
	36	18	23.89	24.00	24.16	0-1	1
	36	37	23.89	24.02	24.16		1
	75	0	23.76	23.86	24.08		1
	1	0	23.17	23.71	23.24	0-1	1
	1	36	23.32	23.87	23.45		1
	1	74	23.35	23.71	23.55		1
16QAM	36	0	22.80	22.95	23.10		2
	36	18	22.94	23.13	22.99	0-2	2
	36	37	23.08	23.01	23.00	0-2	2
	75	0	23.11	22.93	23.10		2
	1	0	22.98	23.04	23.16		2
	1	36	23.02	23.07	23.14	0-2	2
	1	74	23.04	23.02	23.17		2
64QAM	36	0	22.04	21.96	22.09		3
	36	18	22.11	22.16	22.14	0-3	3
	36	37	22.13	22.19	22.10		3
	75	0	22.17	21.99	22.19		3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 41 of 95
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Faye 41 01 95

Table 8-35 LTE Band 66 (AWS) Max Conducted Powers - 10 MHz Bandwidth

			res (rere) max	LTE Band 66 (AWS)			
			J 01	10 MHz Bandwidth	Litter Observed		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			,	Conducted Power [dBm]		
	1	0	25.02	25.16	24.70		0
	1	25	24.88	24.98	24.95	0	0
	1	49	24.83	25.12	24.96		0
QPSK	25	0	23.80	23.86	23.68		1
	25	12	23.68	23.95	23.77	0-1	1
	25	25	23.86	23.89	23.85		1
	50	0	23.85	23.87	23.89		1
	1	0	23.83	23.66	23.67	0-1	1
	1	25	23.75	23.63	23.63		1
	1	49	23.96	24.12	23.75		1
16QAM	25	0	22.99	23.01	22.73		2
	25	12	23.13	22.81	22.73	0-2	2
	25	25	23.02	22.97	22.72	0 2	2
	50	0	23.02	23.12	22.78		2
	1	0	23.08	23.05	23.02		2
	1	25	22.97	22.79	22.84	0-2	2
	1	49	22.97	22.61	22.88		2
64QAM	25	0	22.09	22.11	21.98		3
	25	12	22.09	22.09	22.10	0-3	3
	25	25	22.10	22.09	22.14	0-3	3
	50	0	21.96	22.12	22.07		3

Table 8-36 LTE Band 66 (AWS) Max Conducted Powers - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 131997 (1712.5 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	24.90	24.89	24.87		0
	1	12	24.76	24.80	24.80	0	0
	1	24	24.67	24.75	24.87		0
QPSK	12	0	23.87	23.90	23.98		1
	12	6	23.83	23.84	24.01	0-1	1
	12	13	23.78	23.86	24.05		1
	25	0	23.76	23.78	23.89		1
	1	0	23.85	23.72	23.68	0-1	1
	1	12	23.81	24.03	23.98		1
	1	24	23.88	23.89	23.87		1
16QAM	12	0	22.94	22.99	23.01		2
	12	6	22.92	22.98	23.10	0-2	2
	12	13	22.87	23.03	23.16	0-2	2
	25	0	22.79	22.92	23.12		2
	1	0	23.04	23.08	23.06		2
	1	12	23.03	22.90	22.91	0-2	2
	1	24	22.94	22.88	22.78		2
64QAM	12	0	21.82	21.82	22.05		3
	12	6	21.77	21.83	22.07	0-3	3
	12	13	21.72	21.78	22.00	U-3	3
	25	0	21.72	21.81	21.99	7	3

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 40 -f 05	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 42 of 95	
© 202	0 PCTEST		•		REV 21.4 M	

Table 8-37 LTE Band 66 (AWS) Max Conducted Powers - 3 MHz Bandwidth

			a oo (/ tirro) iiia/	LTE Band 66 (AWS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.71	24.77	25.05		0
	1	7	24.75	24.90	24.75	0	0
	1	14	24.56	24.87	24.98		0
QPSK	8	0	23.81	23.87	24.08		1
	8	4	23.84	23.95	23.89	0-1	1
	8	7	23.78	23.86	23.80		1
	15	0	23.84	23.98	23.98		1
	1	0	23.65	23.66	23.73	0-1	1
	1	7	23.59	23.81	23.66		1
	1	14	23.71	23.67	23.71		1
16QAM	8	0	22.79	22.93	22.81		2
	8	4	22.80	22.89	22.82	0-2	2
	8	7	22.76	22.85	22.76		2
	15	0	22.76	22.78	22.71		2
	1	0	23.11	23.15	22.98		2
	1	7	23.06	23.12	23.04	0-2	2
	1	14	23.11	23.15	22.88		2
64QAM	8	0	21.92	22.01	22.03		3
	8	4	21.92	22.02	22.08	0-3	3
	8	7	21.90	21.99	22.11		3
	15	0	21.96	21.99	22.09		3

Table 8-38 LTE Band 66 (AWS) Max Conducted Powers - 1.4 MHz Bandwidth

				LTE Band 66 (AWS)			
			Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.85	24.69	24.69		0
	1	2	24.79	24.83	24.73		0
	1	5	24.84	24.74	24.69	0	0
QPSK	3	0	24.77	24.79	24.74		0
	3	2	24.81	24.79	24.68		0
	3	3	24.72	24.70	24.75		0
	6	0	23.72	23.68	8 24.06 0-1	0-1	1
	1	0	23.60	23.85	23.77		1
	1	2	23.78	23.75	23.81		1
	1	5	23.74	23.63	23.84	0-1	1
16QAM	3	0	23.82	23.89	23.63		1
	3	2	23.84	23.82	23.75		1
	3	3	23.80	23.76	23.65		1
	6	0	22.87	22.62	22.86	0-2	2
	1	0	23.04	23.10	23.04		2
	1	2	23.11	23.19	23.04		2
	1	5	23.12	23.13	22.72	0-2	2
64QAM	3	0	23.14	23.06	23.05	0-2	2
	3	2	23.02	23.09	23.00]	2
	3	3	22.98	23.02	22.88	<u> </u>	2
	6	0	21.96	21.99	22.09	0-3	3

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 42 of 05	
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 43 of 95	

Table 8-39 LTE Band 66 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth

Nodulation RB Size RB Offset Low Channel Mid Channel High Channel 132572 (1720.0 MHz) 132322 132572 (1770.0 MHz) (1770.0 MHz) 3GPP [dB]	MPR [dB]
RB Size RB Offset RB Offset Low Channel Mid Channel High Channel 132072 132322 132572 (1770.0 MHz) Conducted Power [dBm]	
Modulation RB Size RB Offset 132072 (1720.0 MHz) (1745.0 MHz) (1770.0 MHz) (1770.0 M	
Conducted Power [dBm] 1	
Conducted Power [dBm] 1	
1	
QPSK 1 50 12.13 12.38 12.08 0 1 99 12.09 12.36 12.05 50 0 12.11 12.19 11.94 50 25 12.16 12.25 11.88 50 50 12.13 12.24 11.93 100 0 12.18 12.24 11.94 1 0 11.83 12.51 12.26 1 50 11.92 12.62 12.32 0-1 16QAM 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90 0-2	_
QPSK 1 99 12.09 12.36 12.05 50 0 12.11 12.19 11.94 50 25 12.16 12.25 11.88 50 50 12.13 12.24 11.93 100 0 12.18 12.24 11.94 1 0 11.83 12.51 12.26 1 50 11.92 12.62 12.32 0-1 16QAM 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90	0
QPSK 50 0 12.11 12.19 11.94 50 25 12.16 12.25 11.88 50 50 12.13 12.24 11.93 100 0 12.18 12.24 11.94 1 0 11.83 12.51 12.26 1 50 11.92 12.62 12.32 0-1 1 99 11.86 12.66 12.30 16QAM 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90	0
50 25 12.16 12.25 11.88 50 50 50 12.13 12.24 11.93 100 0 12.18 12.24 11.94 11.94 1 0 11.83 12.51 12.26 1 12.26 1 1 50 11.92 12.62 12.32 0-1 1 99 11.86 12.66 12.30 16QAM 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90 0-2	0
16QAM 50 0 12.09 12.15 12.91 11.98 0-1 16QAM 50 0 12.09 12.15 12.31 11.90 0-2	0
16QAM 50 50 12.13 12.24 11.93 100 0 12.18 12.24 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.94 11.95 11.86 12.66 12.30 11.99 11.86 12.66 12.30 11.99 12.21 11.88 11.90 11.90 12.21 11.88 11.90 10.2	0
1 0 11.83 12.51 12.26 1 50 11.92 12.62 12.32 0-1 1 99 11.86 12.66 12.30 16QAM 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90	0
1 50 11.92 12.62 12.32 0-1 1 99 11.86 12.66 12.30 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90	0
1 99 11.86 12.66 12.30 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90	0
16QAM 50 0 12.09 12.21 11.88 50 25 12.15 12.31 11.90 0-2	0
50 25 12.15 12.31 11.90	0
(1-2)	0
	0
50 50 12.12 12.25 11.89	0
100 0 12.18 12.25 11.89	0
1 0 12.54 12.58 12.55	0
1 50 12.62 12.64 12.53 0-2	0
1 99 12.58 12.68 12.54	0
64QAM 50 0 12.19 12.29 11.94	0
50 25 12.21 12.36 11.96	0
50 50 12.18 12.31 11.95	
100 0 12.15 12.33 11.91	0

Table 8-40

LTE Band 66 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth

		TE Bana o	o (71110) Itodao	LTE Band 66 (AWS)	011010 10 11111	2 Banaman	
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047	132322	132597	MPR Allowed per	MPR [dB]
Wodulation	ND Size	KB Oliset	(1717.5 MHz)	(1745.0 MHz)	(1772.5 MHz)	3GPP [dB]	WIFK [UD]
				Conducted Power [dBm]		
	1	0	11.87	12.12	11.75		0
	1	36	12.03	12.29	11.74	0	0
	1	74	12.07	12.28	11.72		0
QPSK	36	0	12.09	12.11	11.98		0
	36	18	12.20	12.24	11.96	0-1	0
	36	37	12.19	12.19	11.88		0
	75	0	12.08	12.15	11.87		0
	1	0	12.36	12.12	11.67	0-1	0
	1	36	12.65	12.23	11.79		0
	1	74	12.50	12.26	11.75		0
16QAM	36	0	12.13	12.13	11.95		0
	36	18	12.44	12.22	11.98	0-2	0
	36	37	12.26	12.16	11.89		0
	75	0	12.17	12.14	11.86		0
	1	0	11.84	12.62	11.90		0
	1	36	11.96	12.10	12.07	0-2	0
	1	74	12.00	12.11	12.06		0
64QAM	36	0	12.25	12.26	12.04		0
	36	18	12.48	12.25	12.05	0-3	0
	36	37	12.38	12.19	11.96		0
	75	0	12.20	12.32	11.88		0

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 05	
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 44 of 95	

Table 8-41 LTE Band 66 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth

	_	. L Bana o	o (/ tire) itodae	LTE Bond 66 (AWE)	011010 10 11111	2 Banawatii	
				LTE Band 66 (AWS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]]		
	1	0	12.12	12.14	12.20		0
	1	25	12.34	12.00	11.93	0	0
	1	49	12.20	12.22	12.21		0
QPSK	25	0	12.24	12.21	12.09		0
	25	12	12.26	12.13	12.16	0-1	0
	25	25	12.17	12.21	12.20		0
	50	0	12.21	12.23	12.22		0
	1	0	12.48	12.50	12.25	0-1	0
	1	25	12.62	12.27	12.07		0
	1	49	12.57	12.03	12.23		0
16QAM	25	0	12.42	12.41	12.17		0
	25	12	12.51	12.38	12.19	0-2	0
	25	25	12.38	12.30	12.28	0-2	0
	50	0	12.30	12.29	12.20		0
	1	0	12.11	12.39	12.50		0
	1	25	11.99	12.25	12.32	0-2	0
	1	49	12.17	12.38	12.54		0
64QAM	25	0	12.61	12.51	12.12		0
	25	12	12.53	12.42	12.15	0-3	0
	25	25	12.56	12.35	12.21		0
	50	0	12.68	12.40	12.21		0

Table 8-42 LTE Band 66 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth

			· ,	LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	12.18	12.39	11.99		0
	1	12	12.14	12.36	11.97	0	0
	1	24	12.10	12.17	11.93		0
QPSK	12	0	12.22	12.16	12.13		0
	12	6	12.33	12.24	12.13	0-1	0
	12	13	12.18	12.00	12.04	0-1	0
	25	0	12.24	12.04	12.13		0
	1	0	12.44	12.25	12.12		0
	1	12	12.47	12.09	12.21	0-1	0
	1	24	12.57	12.06	12.03		0
16QAM	12	0	12.61	12.45	12.18		0
	12	6	12.62	12.48	12.21	0-2	0
	12	13	12.54	12.11	12.15	0-2	0
	25	0	12.56	12.19	12.11		0
	1	0	12.40	12.30	12.25		0
	1	12	12.31	12.61	12.24	0-2	0
	1	24	12.25	12.46	12.19		0
64QAM	12	0	12.65	12.54	12.19		0
	12	6	12.59	12.57	12.15	0-3	0
	12	13	12.58	12.10	12.10	0-3	0
	25	0	12.54	12.37	12.06		0

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 45 -f 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 45 of 95
© 202	0 PCTEST				REV 21.4 M

Table 8-43 LTE Band 66 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

			o (21110) Itourus	LTE Band 66 (AWS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	12.34	12.17	11.98		0
	1	7	12.08	12.05	12.10	0	0
	1	14	12.29	11.99	11.91		0
QPSK	8	0	12.26	12.17	12.12		0
	8	4	12.22	12.24	12.17	0-1	0
	8	7	12.30	12.02	12.10		0
	15	0	12.28	12.11	12.11		0
	1	0	12.58	11.99	12.07		0
	1	7	12.70	11.97	12.15	0-1	0
	1	14	12.55	11.81	11.98		0
16QAM	8	0	12.66	12.22	12.16		0
	8	4	12.51	12.24	12.21	0-2	0
	8	7	12.65	12.09	12.12	0-2	0
	15	0	12.57	12.27	12.19		0
	1	0	12.12	12.19	12.36		0
	1	7	12.08	12.39	12.44	0-2	0
	1	14	11.99	12.15	12.25		0
64QAM	8	0	12.52	12.50	12.17		0
	8	4	12.54	12.50	12.17	0-3	0
	8	7	12.48	12.09	12.16		0
	15	0	12.67	12.51	12.14		0

Table 8-44 LTE Band 66 (AWS) Reduced Conducted Powers - 1.4 MHz Bandwidth

		. 	(71110) House	LTE Band 66 (AWS)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	(1710.7 MHz) (1745.0 MHz) (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm			
	1	0	12.10	12.02	12.10		0
	1	2	12.17	12.00	12.14	1	0
	1	5	12.03	11.93	12.01	0	0
QPSK	3	0	12.15	12.12	12.06		0
	3	2	12.33	12.22	12.08	1	0
3	3	12.22	12.07	12.03	1	0	
	6	0	12.16	11.98	12.00	0-1	0
	1	0	12.47	11.79	11.84		0
	1	2	12.55	11.94	11.89	1	0
	1	5	12.48	11.84	11.84	0-1	0
16QAM	3	0	12.46	12.24	12.27	0-1	0
	3	2	12.51	12.33	12.32	1	0
	3	3	12.48	12.21	12.25	1	0
	6	0	12.32	12.45	12.25	0-2	0
	1	0	11.93	12.06	12.28		0
	1	2	11.97	12.23	12.38	1	0
	1	5	11.88	12.15	12.23	1 ,,	0
64QAM	3	0	12.65	12.27	12.38	0-2	0
	3	2	12.62	12.25	12.42	1	0
	3	3	12.47	12.20	12.35	1	0
	6	0	12.56	12.23	12.03	0-3	0

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 46 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 46 of 95

Table 8-45 LTE Band 25 (PCS) Max Conducted Powers - 20 MHz Bandwidth

		ETE Bui	ia 20 (i 00) iiia)	LTE Band 25 (PCS)	20 111112 1	Janamati	
				20 MHz Bandwidth			
Modulation	RB Size	ze RB Offset	Low Channel 26140	Mid Channel 26365	High Channel 26590	MPR Allowed per	MPR [dB]
			(1860.0 MHz)	(1882.5 MHz) Conducted Power [dBm	(1905.0 MHz)	3GPP [dB]	
	1	0	24.28	24.31	24.54		0
	1	50	24.26	24.12	24.34	- o - F	0
	1	99	24.43	24.12	24.25	- · · ·	0
QPSK	50	0	23.24	23.43	23.24		1
QPSK	50	25	23.18	23.20	23.29	-	1 1
	50	50	23.18	23.20	23.29	0-1	1
	100	0	23.19	23.15	23.42	+	1
	100	0	23.12		-		1
	1	_		23.40	23.67	0-1	1
	1	50 99	23.05	23.00	23.15		1
16QAM	•		23.04	23.05	23.33		2
IOQAW	50 50	0 25	22.22 22.38	22.45 22.22	22.21 22.22	+	2
	50	50	22.36	22.13	22.22	0-2	2
	100	0	22.16	22.13	22.30	 	2
	100	0	22.53	22.50	22.45		2
	1	50	22.68	22.60	22.45	0-2	2
	1	99	22.68	22.60	22.50		
64QAM	50	0	22.64	22.70	22.50		2 3
04QAIVI	50	25	21.64	21.64	21.57	-	3
					_	0-3	
	50	50	21.70	21.69	21.64		3
	100	0	21.67	21.64	21.59		3

Table 8-46 LTE Band 25 (PCS) Max Conducted Powers - 15 MHz Bandwidth

				LTE Band 25 (PCS)			
			1 011	15 MHz Bandwidth	High Observat		
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.64	24.45	24.46		0
	1	36	24.57	24.45	24.41	0	0
	1	74	24.54	24.51	23.99		0
QPSK	36	0	23.41	23.53	23.69		1
	36	18	23.49	23.60	23.33	0-1	1
	36	37	23.49	23.62	23.46	0-1	1
	75	0	23.36	23.46	23.68		1
	1	0	22.96	23.31	23.01	0-1	1
	1	36	23.11	23.47	23.25		1
	1	74	23.15	23.31	23.15		1
16QAM	36	0	22.40	22.55	22.35		2
	36	18	22.54	22.31	22.24	0-2	2
	36	37	22.47	22.61	22.30	0-2	2
	75	0	22.36	22.53	22.38		2
	1	0	22.36	22.28	22.29		2
	1	36	22.40	22.39	22.42	0-2	2
	1	74	22.61	22.28	22.31		2
64QAM	36	0	21.63	21.69	21.70		3
	36	18	21.57	21.59	21.54	0-3	3
	36	37	21.52	21.53	21.67	0-3	3
	75	0	21.66	21.59	21.64		3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 47 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 47 of 95

Table 8-47 LTE Band 25 (PCS) Max Conducted Powers - 10 MHz Bandwidth

			<u></u> _ (,	LTE Band 25 (PCS)			
				10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26090 (1855.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.55	24.53	24.24		0
	1	25	24.25	24.40	24.51	0	0
	1	49	24.33	24.50	24.32		0
QPSK	25	0	23.38	23.50	23.26		1
	25	12	23.49	23.54	23.43	0-1	1
	25	25	23.39	23.59	23.35	0-1	1
	50	0	23.28	23.45	23.29		1
	1	0	23.25	23.40	23.52		1
	1	25	23.22	23.70	23.43	0-1	1
	1	49	23.29	23.26	23.25		1
16QAM	25	0	22.40	22.47	22.36		2
	25	12	22.50	22.21	22.24	0-2	2
	25	25	22.37	22.24	22.25	0-2	2
	50	0	22.32	22.38	22.17		2
	1	0	22.58	22.45	22.67		2
	1	25	22.56	22.29	22.58	0-2	2
	1	49	22.68	22.65	22.54		2
64QAM	25	0	21.55	21.51	21.64		3
	25	12	21.49	21.50	21.62	0-3	3
	25	25	21.69	21.48	21.40	0-3	3
	50	0	21.40	21.52	21.60		3

Table 8-48 LTE Band 25 (PCS) Max Conducted Powers - 5 MHz Bandwidth

			= 0 (1 00)	LTE Band 25 (PCS)			
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26065 (1852.5 MHz)	26365 (1882.5 MHz)	26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.50	24.49	24.47		0
	1	12	24.36	24.40	24.40	0	0
	1	24	24.27	24.35	24.50		0
QPSK	12	0	23.47	23.50	23.54		1
	12	6	23.43	23.44	23.40	0-1	1
	12	13	23.38	23.46	23.65	0-1	1
	25	0	23.36	23.50	23.48		1
	1	0	22.94	23.40	23.28	0-1	1
	1	12	22.79	23.63	23.19		1
	1	24	22.70	23.49	23.00		1
16QAM	12	0	22.54	22.59	22.39		2
	12	6	22.52	22.58	22.61	0-2	2
	12	13	22.47	22.63	22.67	0-2	2
	25	0	22.39	22.52	22.47		2
	1	0	22.57	22.59	22.67		2
	1	12	22.55	22.60	22.61	0-2	2
	1	24	22.64	22.58	21.88		2
64QAM	12	0	21.52	21.52	21.57		3
	12	6	21.47	21.53	21.67	0-3	3
	12	13	21.42	21.48	21.56	0-3	3
	25	0	21.42	21.51	21.69		3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 49 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 48 of 95

Table 8-49 LTE Band 25 (PCS) Max Conducted Powers - 3 MHz Bandwidth

		LIL Da	114 23 (1 CO) IVIA	LTE Band 25 (PCS)	WCIS - 5 WII IZ L	anawiam	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26055	26365	26675	MPR Allowed per	MPR [dB]
			(1851.5 MHz)	(1882.5 MHz)	(1913.5 MHz)	3GPP [dB]	[]
	Conducted Power [dBm]						
	1	0	24.21	24.37	24.52	_	0
	1	7	24.35	24.50	24.21	0	0
	1	14	24.26	24.47	24.35		0
QPSK	8	0	23.22	23.27	23.42		1
	8	4	23.37	23.55	23.47	0-1	1
	8	7	23.38	23.46	23.34		1
	15	0	23.44	23.40	23.58		1
	1	0	23.32	23.26	23.41	0-1	1
	1	7	23.41	23.41	23.31		1
	1	14	23.45	23.27	23.40		1
16QAM	8	0	22.39	22.53	22.27		2
	8	4	22.40	22.49	22.36	0-2	2
	8	7	22.36	22.45	22.22	0-2	2
	15	0	22.36	22.38	22.39		2
	1	0	22.39	22.34	22.42		2
	1	7	22.50	22.24	22.40	0-2	2
	1	14	22.25	22.41	22.57		2
64QAM	8	0	21.32	21.41	21.65		3
	8	4	21.42	21.55	21.65	1 , 1	3
	8	7	21.55	21.50	21.60	0-3	3
	15	0	21.63	21.59	21.44		3

Table 8-50 LTE Band 25 (PCS) Max Conducted Powers -1.4 MHz Bandwidth

		212 541	ia 20 (i 00) iiia)	LTE Band 25 (PCS)		Jana Wiatii	
				1.4 MHz Bandwidth			
			Low Channel Mid Channel 26047 26365		High Channel 26683	MPR Allowed per	
Modulation	RB Size	RB Offset	(1850.7 MHz)	(1882.5 MHz)	(1914.3 MHz)	3GPP [dB]	MPR [dB]
			, ,	Conducted Power [dBm]		
	1	0	24.38	24.49	24.31		0
	1	2	24.46	24.63	24.36		0
	1	5	24.34	24.54	24.52	0	0
QPSK	3	0	24.57	24.59	24.36		0
	3	2	24.61	24.59	24.43		0
	3	3	24.52	24.50	24.35		0
	6	0	23.52	23.48	23.47	0-1	1
	1	0	23.47	23.39	23.49		1
	1	2	23.41	23.46	23.41		1
	1	5	23.50	23.43	23.33	0-1	1
16QAM	3	0	23.39	23.33	23.43] 0-1	1
	3	2	23.21	23.32	23.37		1
	3	3	23.22	23.23	23.26		1
	6	0	22.67	22.42	22.37	0-2	2
	1	0	22.34	22.20	22.34		2
	1	2	22.51	22.29	22.43		2
	1	5	22.47	22.23	22.49	0-2	2
64QAM	3	0	22.34	22.56	22.55	0-2	2
	3	2	22.45	22.59	22.50		2
	3	3	22.36	22.51	22.57		2
	6	0	21.49	21.60	21.63	0-3	3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 40 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 49 of 95

Table 8-51 LTE Band 25 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth

		<u> </u>	20 (1 00) 110440	ced Conducted	011010 20 IIII	z Banamani	
				LTE Band 25 (PCS)			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MDD Alleum deren	
Modulation	RB Size	RB Offset	26140	26365	26590	MPR Allowed per	MPR [dB]
			(1860.0 MHz)	(1882.5 MHz)	(1905.0 MHz)	3GPP [dB]	
				Conducted Power [dBm	-		
	1	0	11.27	11.37	11.60		0
	1	50	11.22	11.38	11.62	0	0
	1	99	11.36	11.41	11.70		0
QPSK	50	0	11.50	11.60	11.65		0
	50	25	11.52	11.65	11.62	0-1	0
	50	50	11.49	11.68	11.69		0
	100	0	11.57	11.64	11.66		0
	1	0	11.21	11.28	11.67		0
	1	50	11.16	11.31	11.69	0-1	0
	1	99	11.26	11.29	11.70		0
16QAM	50	0	11.49	11.61	11.62		0
	50	25	11.49	11.63	11.64	0-2	0
	50	50	11.47	11.60	11.70	0-2	0
	100	0	11.54	11.58	11.63		0
	1	0	11.64	11.64	11.63		0
	1	50	11.62	11.67	11.68	0-2	0
	1	99	11.70	11.65	11.70		0
64QAM	50	0	11.47	11.57	11.64		0
	50	25	11.48	11.65	11.68	0-3	0
	50	50	11.46	11.61	11.69	0-3	0
	100	0	11.56	11.65	11.70		0

Table 8-52 LTE Band 25 (PCS) Reduced Conducted Powers - 15 MHz Bandwidth

			20 (1 00) 11000	LTE Band 25 (PCS) 15 MHz Bandwidth				
Modulation	RB Size	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm				
	1	0	11.37	11.42	11.52	」	0	
	1	36	11.43	11.49	11.14	0	0	
	1	74	11.47	11.55	11.12		0	
QPSK	36	0	11.49	11.51	11.69		0	
	36	18	11.60	11.64	11.63	0-1	0	
	36	37	11.59	11.59	11.48		0	
	75	0	11.48	11.55	11.37		0	
	1	0	11.55	11.52	11.45		0	
	1	36	11.36	11.63	11.19	0-1	0	
	1	74	11.29	11.66	11.15		0	
16QAM	36	0	11.35	11.53	11.45		0	
	36	18	11.19	11.62	11.38	0-2	0	
	36	37	11.45	11.56	11.29	0-2	0	
	75	0	11.57	11.54	11.26		0	
	1	0	11.24	11.43	11.30		0	
	1	36	11.36	11.42	11.47	0-2	0	
	1	74	11.40	11.50	11.46] [0	
64QAM	36	0	11.56	11.66	11.44		0	
	36	18	11.44	11.65	11.45] ,,	0	
	36	37	11.56	11.59	11.36	0-3	0	
	75	0	11.60	11.48	11.28	1	0	

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga FO of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 50 of 95

Table 8-53 LTE Band 25 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

	-	20 (1 00) 110440		OWOIG TO IIII	2 Banawatii	
				1 111 1 01 1		
RB Size	RB Offset				•	MPR [dB]
					3GPP [dB]	• •
1		-				0
1		11.54	11.20	11.13	0	0
1	49	11.40	11.42	11.41		0
25	0	11.44	11.41	11.29		0
25	12	11.46	11.33	11.36	0.1	0
25	25	11.37	11.41	11.40	0-1	0
50	0	11.41	11.43	11.42		0
1	0	11.57	11.21	11.45		0
1	25	11.38	11.05	11.27	0-1	0
1	49	11.59	11.23	11.43		0
25	0	11.62	11.61	11.37		0
25	12	11.37	11.58	11.39] 02	0
25	25	11.58	11.50	11.48	0-2	0
50	0	11.50	11.49	11.40		0
1	0	11.31	11.59	11.70		0
1	25	11.19	11.45	11.52	0-2	0
1	49	11.37	11.58	11.47		0
25	0	11.48	11.55	11.32		0
25	12	11.47	11.62	11.35	1	0
25	25	11.46	11.55	11.41] 0-3	0
50	0	11.55	11.60	11.41		0
	RB Size 1 1 1 1 25 25 25 50 1 1 1 25 25 50 1 1 1 25 25 50 1 1 1 25 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 50 50 50 50 50 50 50 50 50 50 50 50	RB Size RB Offset 1 0 1 25 1 49 25 0 25 12 25 25 50 0 1 0 1 25 1 49 25 0 25 12 25 12 25 10 25 11 25 10 25 10 25 11 25 10 25 12 25 25 50 0 1 0 1 0 1 25 1 49 25 0 25 12 25 25 50 0 25 12 25 25 50 0 25 12 25 25 50 0 25 12 25 25 50 0 25 12 25 25 50 0 25 12 25 25 50 0 25 12 25 25 50 0 25 12 25 25	RB Size RB Offset	RB Size RB Offset	RB Size RB Offset Low Channel Mid Channel High Channel 26090 (1855.0 MHz) (1882.5 MHz) (1910.0 MHz) To 1 0 11.32 11.34 11.40 11.42 11.41 11.29 11.44 11.41 11.29 11.44 11.41 11.29 11.44 11.41 11.29 11.46 11.33 11.36 11.36 11.37 11.41 11.45 11.25 11.38 11.36 11.27 11.25 11.38 11.05 11.27 11.27 11.49 11.59 11.23 11.43 11.45 11.25 12.5 12 11.37 11.58 11.37 11.48 11.39 12.5 12 11.37 11.58 11.39 12.5 12 11.37 11.58 11.39 12.5 12 11.37 11.58 11.39 12.5 12 11.37 11.58 11.39 12.5 12.5 12 11.37 11.58 11.39 11.49 11.49 11.50 11.49 11.49 11.49 11.50 11.49 11.49 11.49 11.50 11.48 11.50 11.48 11.50 11.48 11.50 11.47 11.52 11.49 11.40 11.49 11.40 11.49 11.40 11.49 11.40 11.49 11.40 11.49 11.40 11.49 11.40 11.49 11.40 11.49 11.40 11.49 11.49 11.40 11.49 11.49 11.40 11.49 1	RB Size RB Offset Low Channel Mid Channel High Channel 26090 26365 26640 (1855.0 MHz) (1882.5 MHz) (1910.0 MHz) 3GPP [dB]

Table 8-54 LTE Band 25 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth

			20 (1 00) 11044	LTE Band 25 (PCS)			
				5 MHz Bandwidth			
	RB Size		Low Channel	Mid Channel	High Channel		
Modulation		RB Offset	26065 (1852.5 MHz)	26365 (1882.5 MHz)	26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	11.38	11.39	11.19		0
	1	12	11.34	11.28	11.17	0	0
	1	24	11.30	11.23	11.13		0
QPSK	12	0	11.42	11.36	11.33		0
	12	6	11.53	11.44	11.33	0-1	0
	12	13	11.38	11.20	11.24	0-1	0
	25	0	11.44	11.24	11.33		0
	1	0	11.44	11.45	11.32		0
	1	12	11.65	11.29	11.41	0-1	0
	1	24	11.49	11.26	11.23		0
16QAM	12	0	11.48	11.65	11.38		0
	12	6	11.38	11.68	11.41	0-2	0
	12	13	11.46	11.31	11.35	0-2	0
	25	0	11.35	11.39	11.31		0
	1	0	11.60	11.33	11.45		0
	1	12	11.51	11.49	11.44	0-2	0
	1	24	11.45	11.50	11.39		0
64QAM	12	0	11.58	11.52	11.39		0
	12	6	11.49	11.48	11.35	0-3	0
	12	13	11.38	11.30	11.30	0-3	0
	25	0	11.47	11.57	11.26		0

	FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 51 of 95	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet			
© 202	0 PCTEST				REV 21.4 M	

Table 8-55 LTE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

		LIL Bana	20 (1 00) 11000	LTE Band 25 (PCS)	1 0 11 0 10 11 11	- Banawiatii	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Madulation	RB Size	RB Offset	26055	26365	26675	MPR Allowed per	MPR [dB]
Modulation	KB Size	RB Offset	(1851.5 MHz)	(1882.5 MHz)	(1913.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	11.54	11.37	11.18		0
	1	7	11.28	11.25	11.30	0	0
	1	14	11.49	11.19	11.11		0
QPSK	8	0	11.46	11.37	11.32		0
	8	4	11.42	11.44	11.37	0-1	0
	8	7	11.50	11.22	11.30	0-1	0
	15	0	11.48	11.31	11.31		0
	1	0	11.38	11.19	11.27		0
	1	7	11.50	11.17	11.35	0-1	0
	1	14	11.42	11.21	11.18		0
16QAM	8	0	11.36	11.42	11.36		0
	8	4	11.39	11.44	11.41	0-2	0
	8	7	11.58	11.29	11.32		0
	15	0	11.57	11.47	11.39		0
	1	0	11.32	11.39	11.56		0
	1	7	11.28	11.59	11.64	0-2	0
	1	14	11.19	11.35	11.45		0
64QAM	8	0	11.40	11.70	11.37		0
	8	4	11.47	11.70	11.37	0-3	0
	8	7	11.68	11.29	11.36		0
	15	0	11.60	11.49	11.34		0

Table 8-56 LTE Band 25 (PCS) Reduced Conducted Powers - 1.4 MHz Bandwidth

	_		<u> </u>	LTE Band 25 (PCS)			
				1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm		00.1 [42]	
	1	0	11.30	11.22	11.30		0
	1	2	11.37	11.20	11.34		0
	1	5	11.23	11.13	11.21		0
QPSK	3	0	11.35	11.32	11.26	0	0
	3	2	11.53	11.42	11.28	1	0
	3	3	11.42	11.27	11.23		0
	6	0	11.36	11.18	11.20	0-1	0
	1	0	11.67	11.31	11.32		0
	1	2	11.70	11.41	11.29		0
	1	5	11.68	11.24	11.30	0-1	0
16QAM	3	0	11.66	11.44	11.31	0-1	0
	3	2	11.68	11.53	11.52		0
	3	3	11.68	11.41	11.45		0
	6	0	11.52	11.65	11.45	0-2	0
	1	0	11.13	11.26	11.48		0
	1	2	11.17	11.43	11.58] [0
	1	5	11.08	11.35	11.43	0-2	0
64QAM	3	0	11.58	11.47	11.58] ""2	0
	3	2	11.48	11.45	11.62		0
	3	3	11.67	11.40	11.55		0
	6	0	11.60	11.43	11.23	0-3	0

	FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 52 of 95	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet			
© 202	0 PCTEST				REV 21.4 M	

LTE Band 41 8.2.7

Table 8-57 LTE Band 41 PC3 Max Conducted Powers - 20 MHz Bandwidth

			. Danu 41 F	CS IVIAX COI	LTE Band 41	vers - Zu ivin	Z Danuwiu	.11	
				2	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	m]			
	1	0	22.63	23.02	22.62	22.91	22.93		0
	1	50	22.80	23.11	23.05	23.11	23.18	0	0
	1	99	22.92	23.16	22.89	23.16	23.12		0
QPSK	50	0	22.10	22.05	22.18	22.03	22.16		1
	50	25	22.11	22.06	22.19	22.06	22.03	0-1	1
	50	50	22.09	21.89	22.06	22.10	21.89]	1
	100	0	21.99	21.88	22.06	22.13	22.00		1
	1	0	21.99	21.90	21.76	21.80	21.90	0-1	1
	1	50	22.00	21.84	22.00	22.03	21.96		1
	1	99	22.06	21.90	21.98	21.89	21.78		1
16QAM	50	0	20.89	21.08	21.09	21.06	20.99		2
	50	25	20.84	20.89	21.07	21.00	21.06	0-2	2
	50	50	20.97	21.10	21.14	21.00	21.16	0-2	2
	100	0	21.00	21.06	21.06	21.06	21.03		2
	1	0	20.63	20.88	20.33	20.54	20.71		2
	1	50	20.23	20.81	20.60	20.72	20.99	0-2	2
	1	99	20.47	21.20	20.36	20.79	20.55		2
64QAM	50	0	19.65	20.07	19.77	19.95	20.17		3
	50	25	19.50	20.14	19.95	20.13	20.20	1 ,,	3
	50	50	19.47	20.11	19.67	20.02	20.05	0-3	3
	100	0	19.59	20.18	19.80	20.12	20.12		3

Table 8-58 LTE Band 41 PC3 Max Conducted Powers - 15 MHz Bandwidth

			Danu 41 F	CO WAX COIL	LTE Band 41	vers - 13 ivin	Z Danuwiui	11	
				1:	5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co					
	1	0	22.66	22.65	22.54	22.60	22.59		0
	1	36	22.73	22.53	22.49	22.87	22.76	0	0
	1	74	22.79	22.50	22.46	22.80	22.70		0
QPSK	36	0	21.83	21.79	21.61	21.81	21.83		1
	36	18	22.02	21.76	21.76	22.06	21.93	0-1	1
	36	37	21.89	21.77	21.80	21.98	21.92	0-1	1
	75	0	21.92	21.72	21.63	21.98	21.85		1
	1	0	21.56	21.84	21.98	21.78	21.34		1
	1	36	21.63	21.75	21.43	22.01	21.60	0-1	1
	1	74	21.81	21.89	21.38	22.01	21.52		1
16QAM	36	0	20.88	20.75	20.66	20.95	20.93		2
	36	18	21.02	20.80	20.78	21.17	21.07	0-2	2
	36	37	20.94	20.77	20.85	21.12	21.05	0-2	2
	75	0	20.88	20.77	20.60	20.96	20.92		2
	1	0	20.93	21.11	20.43	21.01	20.70		2
	1	36	20.98	21.09	20.78	20.97	20.92	0-2	2
	1	74	21.10	21.15	20.72	20.93	20.86		2
64QAM	36	0	19.66	19.86	19.51	19.81	19.78]	3
	36	18	19.86	19.94	19.65	20.02	19.91	0-3	3
	36	37	19.74	19.87	19.68	19.97	19.88		3
l	75	0	19.64	19.88	19.47	19.78	19.73		3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 52 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 53 of 95

Table 8-59 LTE Rand 41 PC3 May Conducted Powers - 10 MHz Randwidth

		LIE	Band 41 P	C3 Wax Con	LTE Band 41	vers - 10 MH	z bandwidi	ın	
				1	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
•	1	0	22.44	22.68	22.51	22.64	22.68		0
	1	25	22.59	22.47	22.71	22.56	22.66	0	0
	1	49	22.66	22.63	22.61	22.82	22.67		0
QPSK	25	0	21.69	21.78	21.59	21.76	21.69		1
	25	12	21.70	21.77	21.54	21.75	21.59	0-1	1
	25	25	21.63	21.81	21.60	21.83	21.69	0-1	1
	50	0	21.61	21.80	21.57	21.79	21.70		1
	1	0	22.18	21.48	21.46	21.77	21.61	0-1	1
	1	25	21.98	21.67	21.67	21.65	21.36		1
	1	49	21.59	21.48	21.62	22.01	21.86		1
16QAM	25	0	20.79	20.71	20.59	20.66	20.69		2
	25	12	20.87	20.71	20.52	20.68	20.68	0-2	2
	25	25	20.74	20.75	20.61	20.82	20.77	0-2	2
	50	0	20.77	20.76	20.62	20.81	20.79		2
	1	0	20.66	20.47	20.45	20.77	20.59		2
	1	25	20.52	20.65	20.61	20.59	20.74	0-2	2
	1	49	20.66	20.44	20.65	20.77	20.83		2
64QAM	25	0	19.45	19.71	19.57	19.72	19.66		3
	25	12	19.52	19.71	19.49	19.69	19.65	0-3	3
	25	25	19.54	19.73	19.56	19.78	19.73	0.3	3
	50	0	19.76	19.77	19.59	19.75	19.79		3

Table 8-60 LTE Band 41 PC3 May Conducted Powers - 5 MHz Bandwidth

		LII	E Band 41 F	CS WAX COL		wers - 5 MHz	Bandwidt	n			
					LTE Band 41 MHz Bandwidth						
	Low Channel Low-Mid Channel Mid-High Channel High Channel										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [dE	Bm]					
	1	0	22.66	22.51	22.56	22.34	22.43		0		
	1	12	22.73	22.67	22.63	22.38	22.55	0	0		
	1	24	22.66	22.45	22.46	22.38	22.57		0		
QPSK	12	0	21.79	21.76	21.48	21.72	21.53		1		
	12	6	21.80	21.82	21.50	21.76	21.61	0-1	1		
	12	13	21.79	21.77	21.41	21.74	21.60	0-1	1		
	25	0	21.78	21.74	21.50	21.68	21.55		1		
	1	0	21.76	21.73	21.46	21.66	21.59	0-1	1		
	1	12	21.92	21.57	21.54	21.77	21.56		1		
	1	24	21.90	21.52	21.46	21.72	21.62		1		
16QAM	12	0	20.80	20.79	20.52	20.71	20.67		2		
	12	6	20.89	20.75	20.54	20.73	20.71	0-2	2		
	12	13	20.81	20.71	20.46	20.65	20.63	0-2	2		
	25	0	20.73	20.76	20.39	20.79	20.55		2		
	1	0	20.47	20.66	20.45	20.68	20.53		2		
	1	12	20.57	20.62	20.49	20.72	20.54	0-2	2		
	1	24	20.53	20.54	20.45	20.63	20.59		2		
64QAM	12	0	19.45	19.77	19.52	19.65	19.66		3		
	12	6	19.52	19.76	19.51	19.71	19.70	0-3	3		
	12	13	19.49	19.71	19.43	19.68	19.62		3		
	25	0	19.39	19.72	19.42	19.77	19.54		3		

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 54 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 54 of 95

Table 8-61 LTE Rand 41 PC2 May Conducted Powers - 20 MHz Randwidth

			Ballu 41 P	CZ IVIAX COII	LTE Band 41	vers - 20 MH	Z Balluwiui	LT 1	
				2	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [de	Bm]			
	1	0	24.70	24.66	24.72	24.69	24.70		0
	1	50	24.95	25.00	25.09	25.01	24.89	0	0
	1	99	24.94	25.03	24.91	24.88	24.81		0
QPSK	50	0	24.06	24.03	24.17	24.06	24.10		1
	50	25	23.98	24.11	24.18	24.06	24.13	0-1	1
	50	50	23.99	24.14	24.04	24.01	24.06	0-1	1
	100	0	24.00	24.09	24.08	24.11	24.03		1
	1	0	23.66	23.55	23.63	23.78	23.88	0-1	1
	1	50	24.00	24.06	24.10	24.06	24.00		1
	1	99	23.95	23.89	24.03	24.05	24.00		1
16QAM	50	0	23.10	23.06	23.16	23.05	23.06		2
	50	25	23.06	23.04	23.15	23.06	23.15	0-2	2
	50	50	22.95	23.08	23.03	23.05	23.04	J 0-2	2
	100	0	22.99	23.11	23.10	23.16	22.98		2
	1	0	22.76	23.12	22.57	22.72	22.95		2
	1	50	22.38	23.05	22.92	23.14	23.12	0-2	2
	1	99	22.54	23.18	22.40	22.99	22.82		2
64QAM	50	0	21.61	22.07	21.65	22.06	22.13		3
	50	25	21.47	22.17	21.91	22.13	22.11] <u>,</u> [3
	50	50	21.50	22.12	21.89	22.07	22.08	0-3	3
	100	0	21.52	22.12	21.75	22.15	22.10	Τ Γ	3

Table 8-62 LTE Band 41 PC2 Max Conducted Powers - 15 MHz Bandwidth

			- Bana 411	OZ INIAK OOTI	LTE Band 41	vers - 15 Min	z Bariawiai	.11	
				1	5 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
	1	0	24.46	24.68	24.82	24.88	25.09		0
	1	36	24.61	24.96	25.08	24.99	24.75	0	0
	1	74	24.59	24.75	25.18	25.11	24.67		0
QPSK	36	0	23.49	23.72	23.71	23.88	23.74		1
	36	18	23.61	23.71	24.11	24.02	23.78	0-1	1
	36	37	23.54	23.66	23.78	24.02	23.69	0-1	1
	75	0	23.54	23.65	24.11	24.18	23.91		1
	1	0	23.79	23.90	24.18	23.79	23.72		1
	1	36	23.96	23.71	23.63	23.71	23.94	0-1	1
	1	74	23.96	23.80	23.75	23.80	23.83		1
16QAM	36	0	22.67	22.81	22.77	22.66	22.66		2
	36	18	22.78	22.80	22.71	22.64	22.71	0-2	2
	36	37	22.72	22.76	22.68	22.96	22.62		2
	75	0	22.58	22.74	22.71	22.80	22.80		2
	1	0	22.81	22.71	22.63	22.88	22.74		2
	1	36	22.94	22.66	22.64	22.96	22.68	0-2	2
	1	74	23.00	22.63	22.71	22.98	23.00		2
64QAM	36	0	21.68	21.95	21.73	21.63	21.79]	3
	36	18	21.76	21.62	21.63	21.80	21.68	0-3	3
1	36	37	21.74	21.72	21.67	21.64	21.74		3
L	75	0	21.57	21.60	21.94	21.62	21.77		3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done EE of OE
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 55 of 95

Table 8-63 LTE Band 41 PC2 Max Conducted Powers - 10 MHz Bandwidth

			- Dana 411	OZ INIAX OOII	LTE Band 41	vers - 10 Min	Z Barrawiai	•11	
				1	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
	1	0	24.75	24.79	24.96	24.79	24.77		0
	1	25	24.63	24.60	25.06	24.82	24.71	0	0
	1	49	24.55	24.75	24.80	24.96	24.93		0
QPSK	25	0	23.57	23.90	23.73	23.97	23.87		1
	25	12	23.63	23.89	23.66	23.95	23.80	0-1	1
	25	25	23.70	23.85	23.69	23.96	23.87	0-1	1
	50	0	23.56	23.80	23.63	23.91	23.81		1
	1	0	23.66	24.00	24.01	24.11	24.04	0-1	1
	1	25	23.68	23.88	24.12	24.07	23.96		1
	1	49	23.89	24.10	24.07	24.12	23.87		1
16QAM	25	0	22.69	22.84	22.79	22.74	22.91		2
	25	12	22.71	22.82	22.73	22.81	22.86	0-2	2
	25	25	22.78	22.83	22.76	22.93	22.93	0-2	2
	50	0	22.68	22.85	22.70	22.94	22.85		2
	1	0	22.71	22.79	22.72	22.68	22.78		2
	1	25	22.68	22.77	22.82	22.72	22.78	0-2	2
	1	49	22.70	22.82	22.70	22.71	22.94		2
64QAM	25	0	21.69	21.81	21.80	21.66	21.67		3
	25	12	21.89	21.85	21.67	21.66	21.61	0-3	3
	25	25	21.85	21.93	21.77	21.72	21.70		3
	50	0	21.74	21.78	21.75	21.67	21.64		3

Table 8-64 LTE Band 41 PC2 Max Conducted Powers - 5 MHz Bandwidth

					LTE Band 41 MHz Bandwidth	WEIS - J WII IZ			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		MPR [dB]
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	
				Co	nducted Power [dE	Bm]			
	1	0	24.78	24.90	24.83	24.65	24.96		0
	1	12	24.69	24.96	24.87	24.89	24.93	0	0
	1	24	24.72	24.76	24.62	24.76	24.87		0
QPSK	12	0	23.46	23.69	23.71	23.74	23.95		1
	12	6	23.57	23.74	23.69	23.73	23.73	0-1	1
	12	13	23.74	23.64	23.77	23.79	23.80	0-1	1
	25	0	23.75	23.69	23.83	23.84	23.75		1
	1	0	23.95	23.96	24.01	23.82	24.11	0-1	1
	1	12	24.05	24.08	24.03	23.80	24.15		1
	1	24	24.03	23.96	23.92	23.83	24.09		1
16QAM	12	0	22.78	22.75	22.78	22.72	22.70		2
	12	6	22.84	22.78	22.80	22.80	22.64	0-2	2
	12	13	22.77	22.64	22.69	22.76	22.68	0-2	2
	25	0	22.72	22.75	22.69	22.80	22.60		2
	1	0	22.91	22.87	22.91	22.70	22.78		2
	1	12	22.99	23.08	22.93	22.71	23.08	0-2	2
	1	24	22.97	22.79	22.85	22.79	23.05		2
64QAM	12	0	21.40	21.72	21.44	21.67	21.74		3
	12	6	21.45	21.69	21.48	21.74	21.66	0-3	3
	12	13	21.42	21.65	21.31	21.69	21.95		3
	25	0	21.34	21.69	21.31	21.70	21.61		3

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done EC of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 56 of 95

Table 8-65 LTE Band 41 PC3 Reduced Conducted Powers - 20 MHz Bandwidth

			una +1 1 00	illeduced O	LTE Band 41	OWEIS - 20 I	III Dallaw	Ideli	
				2	0 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
	1	0	13.04	13.35	13.06	13.01	12.98		0
	1	50	12.72	13.17	13.40	13.37	13.22	0	0
	1	99	12.97	13.49	12.97	13.50	12.92		0
QPSK	50	0	13.16	13.46	13.43	13.57	13.46		0
	50	25	13.00	13.47	13.63	13.60	13.50	0-1	0
	50	50	12.96	13.56	13.45	13.70	13.32	0-1	0
	100	0	13.15	13.44	13.38	13.49	13.39		0
	1	0	13.22	13.56	13.22	13.20	13.25	0-1	0
	1	50	12.89	13.39	13.56	13.67	13.50		0
	1	99	13.11	13.70	13.10	13.35	13.12		0
16QAM	50	0	13.26	13.55	13.48	13.62	13.54		0
	50	25	13.09	13.52	13.66	13.69	13.56	0-2	0
	50	50	13.10	13.66	13.52	13.64	13.42	0-2	0
	100	0	13.22	13.58	13.47	13.59	13.54		0
	1	0	12.99	13.22	12.88	12.83	12.87		0
	1	50	12.63	13.03	13.18	13.32	13.14	0-2	0
	1	99	12.84	13.38	12.79	13.06	12.80	Γ	0
64QAM	50	0	13.31	13.56	13.42	13.61	13.53		0
	50	25	13.12	13.57	13.65	13.70	13.62	1	0
	50	50	13.09	13.61	13.48	13.70	13.44	0-3	0
	100	0	13.21	13.58	13.43	13.60	13.55]	0

Table 8-66 LTE Band 41 PC3 Reduced Conducted Powers - 15 MHz Bandwidth

	LTE Band 41 FCS Reduced Conducted Fowers - 13 WH 2 Bandwidth LTE Band 41 15 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [dB	Bm]					
	1	0	13.02	13.53	12.98	13.30	13.01		0		
	1	36	13.09	13.33	12.96	13.24	13.18	0	0		
	1	74	13.18	13.35	12.99	13.18	13.10		0		
QPSK	36	0	13.13	13.45	13.05	13.27	13.22		0		
	36	18	13.27	13.47	13.16	13.46	13.39	0-1	0		
	36	37	13.18	13.42	13.21	13.43	13.36	0-1	0		
	75	0	13.20	13.43	13.06	13.36	13.26		0		
	1	0	13.31	13.44	13.22	13.36	13.36	0-1	0		
	1	36	13.26	13.28	13.13	13.37	13.02		0		
	1	74	13.33	13.31	13.01	13.28	12.90		0		
16QAM	36	0	13.31	13.48	13.19	13.33	13.42		0		
	36	18	13.42	13.54	13.28	13.49	13.52	0-2	0		
	36	37	13.39	13.47	13.35	13.49	13.51	0-2	0		
	75	0	13.25	13.47	13.07	13.46	13.32		0		
	1	0	13.22	13.22	12.83	13.12	13.15		0		
	1	36	13.24	13.12	13.17	13.51	13.37	0-2	0		
	1	74	13.34	13.14	13.13	13.39	13.22		0		
64QAM	36	0	13.30	13.53	13.15	13.39	13.35		0		
	36	18	13.44	13.53	13.31	13.54	13.53	0-3	0		
	36	37	13.32	13.53	13.39	13.52	13.48		0		
	75	0	13.32	13.54	13.16	13.48	13.40		0		

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 57 - 605
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 57 of 95
© 202	0 PCTEST				REV 21.4 M

Table 8-67 LTE Band 41 PC3 Reduced Conducted Powers - 10 MHz Bandwidth

			<u> </u>	- Roudood O	LTE Band 41	OWEIS - IUI	Danan				
	10 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [dB	im]					
	1	0	13.28	13.54	13.35	12.95	13.48		0		
	1	25	13.13	13.34	13.09	13.24	13.23	0	0		
	1	49	13.25	13.47	13.55	13.66	13.68	1	0		
QPSK	25	0	13.23	13.55	13.38	13.59	13.47		0		
	25	12	13.28	13.55	13.34	13.55	13.41	0-1	0		
	25	25	13.32	13.58	13.41	13.59	13.53	0-1	0		
	50	0	13.25	13.57	13.37	13.63	13.46		0		
	1	0	13.52	13.51	13.67	13.53	13.40	0-1	0		
	1	25	13.41	13.30	13.41	13.31	13.55		0		
	1	49	13.51	13.48	13.38	13.21	13.49		0		
16QAM	25	0	13.32	13.48	13.49	13.52	13.54		0		
	25	12	13.38	13.45	13.41	13.51	13.48	0-2	0		
	25	25	13.43	13.49	13.48	13.61	13.62	0-2	0		
	50	0	13.33	13.57	13.45	13.60	13.54		0		
	1	0	12.96	13.26	13.08	13.63	13.20		0		
	1	25	12.79	13.09	12.79	13.42	12.88	0-2	0		
	1	49	12.96	13.24	13.26	13.48	13.37		0		
64QAM	25	0	13.35	13.64	13.51	13.53	13.58		0		
	25	12	13.38	13.60	13.46	13.50	13.53	0-3	0		
	25	25	13.41	13.63	13.51	13.63	13.60		0		
	50	0	13.33	13.61	13.45	13.65	13.57		0		

Table 8-68 LTE Band 41 PC3 Reduced Conducted Powers - 5 MHz Bandwidth

	LTE Band 41 FG5 Reduced Conducted Fowers - 5 Will 2 Bandwidth LTE Band 41 5 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1	0	13.21	13.37	13.39	13.28	13.41		0		
	1	12	13.05	13.40	13.10	13.23	13.18	0	0		
	1	24	13.10	13.25	13.11	13.19	13.22		0		
QPSK	12	0	13.23	13.50	13.25	13.42	13.38		0		
	12	6	13.25	13.49	13.26	13.49	13.41	0-1	0		
	12	13	13.22	13.46	13.18	13.46	13.32]	0		
	25	0	13.24	13.50	13.23	13.43	13.37		0		
	1	0	13.28	13.44	13.33	13.26	13.41		0		
	1	12	13.34	13.37	13.31	13.24	13.45	0-1	0		
	1	24	13.30	13.35	13.22	13.23	13.41		0		
16QAM	12	0	13.22	13.58	13.37	13.45	13.35		0		
	12	6	13.28	13.55	13.28	13.46	13.41	0-2	0		
	12	13	13.23	13.52	13.19	13.42	13.35	0-2	0		
	25	0	13.22	13.58	13.26	13.47	13.37		0		
	1	0	13.50	13.16	13.52	13.25	13.61		0		
	1	12	13.51	13.16	13.49	13.24	13.58	0-2	0		
	1	24	13.51	13.10	13.44	13.25	13.56		0		
64QAM	12	0	13.29	13.69	13.35	13.32	13.44		0		
	12	6	13.32	13.45	13.34	13.36	13.45	0-3	0		
	12	13	13.31	13.46	13.30	13.29	13.45		0		
	25	0	13.19	13.56	13.23	13.43	13.35		0		

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done EQ of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 58 of 95

Table 8-69 LTE Band 41 PC2 Reduced Conducted Powers - 20 MHz Bandwidth

					LTE Band 41	OWE13 - 20 1	= Danav				
	20 MHz Bandwidth										
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [dB	m]					
	1	0	13.07	13.31	12.81	12.99	12.93		0		
	1	50	12.70	13.15	13.15	13.39	13.10	0	0		
	1	99	12.93	13.45	12.70	13.56	12.86		0		
QPSK	50	0	13.21	13.49	13.27	13.52	13.49		0		
	50	25	13.07	13.53	13.47	13.59	13.52	0-1	0		
	50	50	13.07	13.59	13.31	13.65	13.37	0-1	0		
	100	0	13.24	13.53	13.31	13.55	13.50		0		
	1	0	13.41	13.64	13.16	13.23	13.29	0-1	0		
	1	50	13.05	13.50	13.48	13.70	13.58		0		
	1	99	13.27	13.65	13.08	13.41	13.23		0		
16QAM	50	0	13.32	13.61	13.36	13.58	13.56		0		
	50	25	13.21	13.66	13.58	13.67	13.65	0-2	0		
	50	50	13.18	13.69	13.39	13.66	13.46	0-2	0		
	100	0	13.29	13.65	13.37	13.61	13.56		0		
	1	0	13.33	13.53	13.08	13.17	13.16		0		
	1	50	13.01	13.41	13.40	13.63	13.57	0-2	0		
	1	99	13.16	13.70	12.93	13.31	13.12		0		
64QAM	50	0	13.36	13.61	13.34	13.55	13.55		0		
	50	25	13.14	13.60	13.54	13.63	13.63	0-3	0		
	50	50	13.17	13.68	13.38	13.68	13.47		0		
	100	0	13.29	13.65	13.37	13.62	13.55		0		

Table 8-70 LTE Band 41 PC2 Reduced Conducted Powers - 15 MHz Bandwidth

	LTE Band 41 FG2 Reduced Conducted Fowers - 13 WHI2 Bandwidth										
					5 MHz Bandwidth						
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel				
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [dB	Bm]					
	1	0	13.13	13.56	13.24	13.25	13.20		0		
	1	36	13.26	13.40	13.24	13.29	13.44	0	0		
	1	74	13.32	13.44	13.24	13.19	13.33		0		
QPSK	36	0	13.18	13.56	13.22	13.38	13.42		0		
	36	18	13.34	13.68	13.34	13.56	13.53	0-1	0		
	36	37	13.27	13.66	13.32	13.54	13.52		0		
	75	0	13.28	13.64	13.15	13.45	13.47		0		
	1	0	13.45	13.70	13.08	13.57	13.51		0		
	1	36	13.62	13.65	13.58	13.50	13.67	0-1	0		
	1	74	13.65	13.68	13.45	13.48	13.65		0		
16QAM	36	0	13.39	13.70	13.29	13.43	13.60		0		
	36	18	13.51	13.64	13.53	13.63	13.47	0-2	0		
	36	37	13.46	13.62	13.48	13.61	13.69	0-2	0		
	75	0	13.36	13.69	13.11	13.52	13.48		0		
	1	0	13.66	13.55	13.44	13.60	13.50		0		
	1	36	13.67	13.47	13.38	13.62	13.44	0-2	0		
	1	74	13.59	13.41	13.37	13.55	13.39		0		
64QAM	36	0	13.46	13.54	13.21	13.48	13.54]	0		
	36	18	13.53	13.60	13.40	13.65	13.47	0-3	0		
	36	37	13.44	13.55	13.46	13.61	13.41		0		
	75	0	13.41	13.47	13.23	13.57	13.56		0		

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 50 -4 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 59 of 95
© 202	0 PCTEST				REV 21.4 M

Table 8-71 LTE Band 41 PC2 Reduced Conducted Powers - 10 MHz Bandwidth

	LTE Band 41 FG2 Reduced Conducted Fowers - 10 Min2 Bandwidth										
	10 MHz Bandwidth										
			Low Channel	Low-Mid Channel	annel Mid Channel Mid-High Channel High Cha	High Channel					
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [dB	m]					
	1	0	13.12	13.37	13.19	13.42	13.37		0		
	1	25	12.96	13.19	13.01	13.18	13.13	0	0		
	1	49	13.17	13.35	13.41	13.57	13.56	1	0		
QPSK	25	0	13.21	13.54	13.37	13.55	13.42		0		
	25	12	13.23	13.52	13.30	13.50	13.39	0-1	0		
	25	25	13.31	13.52	13.37	13.56	13.48	0-1	0		
	50	0	13.22	13.56	13.33	13.62	13.43		0		
	1	0	13.25	13.48	13.28	13.55	13.33	0-1	0		
	1	25	13.37	13.50	13.33	13.47	13.21		0		
	1	49	13.16	13.47	13.36	13.28	13.39		0		
16QAM	25	0	13.30	13.53	13.46	13.40	13.55		0		
	25	12	13.38	13.51	13.42	13.49	13.49	0-2	0		
	25	25	13.42	13.52	13.49	13.58	13.57	0-2	0		
	50	0	13.30	13.58	13.42	13.62	13.52		0		
	1	0	13.53	13.41	13.59	13.41	13.34		0		
	1	25	13.42	13.51	13.33	13.39	13.43	0-2	0		
	1	49	13.54	13.46	13.28	13.35	13.39		0		
64QAM	25	0	13.32	13.61	13.58	13.54	13.62		0		
	25	12	13.40	13.63	13.45	13.48	13.60	0-3	0		
	25	25	13.43	13.65	13.48	13.60	13.62	J 0-3	0		
	50	0	13.33	13.63	13.40	13.69	13.58		0		

Table 8-72 LTE Band 41 BC2 Poduced Conducted Powers - 5 MHz Bandwidth

					LTE Band 41	Powers - 5 N	IIIZ Daliuwi	uiii		
	5 MHz Bandwidth									
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel			
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Co	nducted Power [dE	Bm]				
	1	0	13.09	13.21	13.17	13.19	13.27		0	
	1	12	13.10	13.28	13.12	13.20	13.20	0	0	
	1	24	13.09	13.30	13.04	13.18	13.18		0	
QPSK	12	0	13.29	13.55	13.35	13.53	13.45		0	
	12	6	13.36	13.61	13.36	13.58	13.48	0-1	0	
	12	13	13.29	13.50	13.31	13.53	13.41	0-1	0	
	25	0	13.29	13.57	13.30	13.56	13.43		0	
	1	0	13.28	13.32	13.38	13.58	13.29		0	
	1	12	13.38	13.29	13.23	13.56	13.30	0-1	0	
	1	24	13.28	13.26	13.36	13.55	13.41		0	
16QAM	12	0	13.34	13.55	13.41	13.56	13.52		0	
	12	6	13.38	13.50	13.42	13.62	13.54	0-2	0	
	12	13	13.34	13.62	13.33	13.58	13.47	0-2	0	
	25	0	13.32	13.66	13.36	13.60	13.48		0	
	1	0	13.29	13.64	13.31	13.40	13.22		0	
	1	12	13.31	13.38	13.34	13.42	13.36	0-2	0	
	1	24	13.31	13.56	13.20	13.34	13.27		0	
64QAM	12	0	13.41	13.33	13.50	13.44	13.60		0	
	12	6	13.43	13.52	13.43	13.48	13.61	0-3	0	
	12	13	13.41	13.36	13.39	13.42	13.54		0	
	25	0	13.28	13.64	13.30	13.53	13.41		0	

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 60 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 60 of 95

8.3 **WLAN Conducted Powers**

Table 8-73 2.4 GHz WLAN Maximum Average RF Power - Ant 1

	2.4 GILL VEZAR MAXIMAM AVOINGS AT TOWN AND THE									
	2.4GHz Conducted Power [dBm]									
		IEEE Transmission Mode								
Freq [MHz]	Channel	802.11b	802.11g	802.11n						
	Average Average Average									
2412	1	19.34	16.10	15.20						
2437	2437 6 19.16 17.56 16.69									
2462	11	19.02	16.69	15.21						

Table 8-74 2.4 GHz WLAN Maximum Average RF Power - Ant 2

2.4GHz Conducted Power [dBm]					
		IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	
		Average	Average	Average	
2412	1	16.21	13.36	12.10	
2437	6	16.34	14.94	13.79	
2462	11	16.26	13.81	12.23	

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 61 of 95
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Faye 01 01 95

Table 8-75 5 GHz WLAN Maximum Average RF Power - Ant 1

5GHz (40MHz) Conducted Power [dBm]							
				IEEE	Transm	iss	sion Mode
Freq [MHz	z]	Chan	nel	80	2.11n	8	302.11ac
				Av	erage	4	Average
5190		38		1	3.87		13.84
5230		46		1	3.89		13.95
5270		54		1	3.78		13.82
5310		62		1	4.27		13.53
5GHz (80MHz) Conducted Power [dBm]							
				IEEE Transmission Mode			ion Mode
Freq [MHz	<u>.</u>]	Chanı	nel	802.11ac			
				Average			е
5530		106		12.15			
5610		122			12.	52	
5690		138	}		11.0	62	
	5G	Hz (20MHz) Cond		Power [dB	_	
					Transmissi		
Freq [MHz]	(Channel		.11a	802.11n		802.11ac
				rage	Average	•	Average
5745		149		.02	11.78		11.80
5785		157		.54	12.11		12.18
5805		161	12	71	12.52		12.56
5825		165	12	.67	12.55		12.53

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 62 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 62 of 95

Table 8-76 5 GHz WLAN Maximum Average RF Power - Ant 2

5GHz	5GHz (40MHz) Conducted Power [dBm]			
		IEEE Transm	nission Mode	
Freq [MHz]	Channel	802.11n	802.11ac	
		Average	Average	
5190	38	14.22	14.22	
5230	46	14.39	14.37	
5270	54	14.25	14.21	
5310	62	14.09	14.06	
5GHz	(80MHz) Cond	ducted Power	[dBm]	
		IEEE Transm	nission Mode	
Freq [MHz]	Channel	802.11ac		
		Aver	age	
5530	106	13.	38	
5610	122	13.	44	
5690	138	13.	40	
5GHz	(40MHz) Cond	ducted Power	[dBm]	
		IEEE Transm	nission Mode	
Freq [MHz]	Channel	802.11n	802.11ac	
		Average	Average	
5755	151	13.76	13.77	
5795	159	13.42	13.46	

Table 8-77 5 GHz WLAN Maximum Average RF Power - MIMO

5GH	5GHz (40MHz) 802.11n Conducted Power [dBm]					
Freq [MHz]	Channel	ANT1	ANT2	MIMO		
5190	38	13.87	14.22	17.06		
5230	46	13.89	14.39	17.16		
5270	54	13.78	14.25	17.03		
5310	62	14.27	14.09	17.19		
5GH	5GHz (80MHz) 802.11ac Conducted Power [dBm]					
Freq [MHz]	Channel	ANT1	ANT2	MIMO		
5530	106	12.15	13.38	15.82		
5610	122	12.52	13.44	16.01		
5690	138	11.62	13.40	15.61		
5GF	łz (20MHz) 80	2.11n Conduc	ted Power [d	Bm]		
Freq [MHz]	Channel	ANT1	ANT2	MIMO		
5745	149	11.78	13.48	15.72		
5785	157	12.11	13.42	15.82		
5825	165	12.55	13.26	15.93		

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 62 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 63 of 95

Table 8-78 2.4 GHz WLAN Reduced Average RF Power - Ant 1

2.4GHz Conducted Power [dBm]					
		IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	
		Average	Average	Average	
2412	1	9.46	9.40	9.12	
2437	6	9.59	9.51	9.24	
2462	11	9.49	9.36	9.11	

Table 8-79 2.4 GHz WLAN Reduced Average RF Power - Ant 2

2.4GHz Conducted Power [dBm]					
		IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b 802.11g 802.11			
		Average	Average	Average	
2412	1	6.49	6.17	6.06	
2437	6	6.41	6.28	6.04	
2462	11	6.29	6.21	5.81	

Table 8-80 5 GHz WLAN Reduced Average RF Power - Ant 1

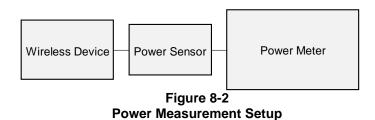
5GHz (40MHz) Conducted Power [dBm]					
		IEEE Transmission Mod			
Freq [MHz]	Channel	802.11n	802.11ac		
		Average	Average		
5190	38	7.13	7.06		
5230	46	7.08	7.04		
5270	54	6.82	6.77		
5310	62	6.63	6.64		
5510	102	6.52	6.51		
5590	118	6.25	6.23		
5630	126	6.59	6.61		
5710	142	6.31	6.35		
5755	151	6.54	6.51		
5795	159	6.46	6.52		

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo C4 of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 64 of 95

Table 8-81
5 GHz WLAN Reduced Average RF Power – Ant 2

5GHz (40MHz) Conducted Power [dBm]					
		IEEE Transmission Mode			
Freq [MHz]	Channel	802.11n	802.11ac		
		Average	Average		
5190	38	7.24	7.46		
5230	46	7.31	7.28		
5270	54	7.01	6.97		
5310	62	6.98	7.05		
5510	102	7.40	7.45		
5590	118	7.39	7.41		
5630	126	7.37	7.37		
5710	142	7.43	7.48		
5755	151	7.49	7.40		
5795	159	7.44	7.41		

Table 8-82
5 GHz WLAN Reduced Average RF Power – MIMO


		2.11n Conduc	ted Power [d	Bm]
Freq [MHz]	Channel	ANT1	ANT2	MIMO
5190	38	7.13	7.24	10.20
5230	46	7.08	7.31	10.21
5270	54	6.82	7.01	9.93
5310	62	6.63	6.98	9.82
5510	102	6.52	7.40	9.99
5590	118	6.25	7.39	9.87
5630	126	6.59	7.37	10.01
5710	142	6.31	7.43	9.92
5755	151	6.54	7.49	10.05
5795	159	6.46	7.44	9.99

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 65 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 65 of 95

• For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 66 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 66 of 95

Bluetooth Conducted Powers 8.4

Table 8-83 Bluetooth Average RF Power

	Data	Average K	Avg Co	nducted wer
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	1.0	0	5.46	3.517
2441	1.0	39	6.54	4.510
2480	1.0	78	5.68	3.702
2402	2.0	0	4.86	3.065
2441	2.0	39	5.95	3.937
2480	2.0	78	5.10	3.239
2402	3.0	0	4.93	3.112
2441	3.0	39	6.01	3.992
2480	3.0	78	5.16	3.279

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 67 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 67 of 95

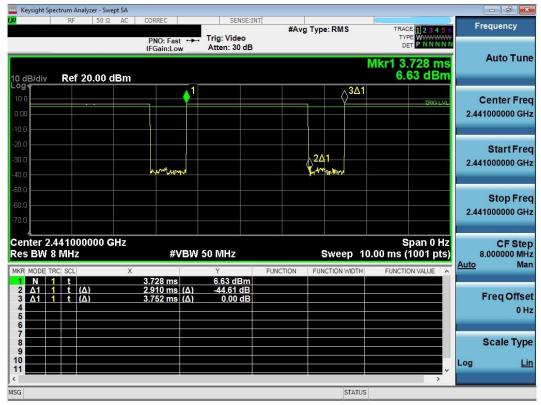


Figure 8-3
Bluetooth Transmission Plot

Equation 8-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.91 \, \textit{ms}}{3.752 \, \textit{ms}} * 100\% = 77.60\%$$

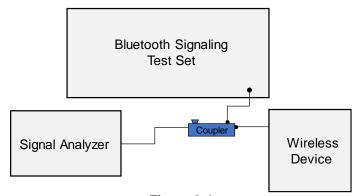


Figure 8-4
Power Measurement Setup

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done CO of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 68 of 95

Tissue Verification 9.1

Table 9-1 **Measured Tissue Properties**

02/03/2020	700 Body	19.5	680 695 700 710 725 740 750 755 770	0.923 0.929 0.930 0.934 0.940 0.946 0.950	53.667 53.620 53.603 53.576 53.535 53.501 53.477	0.958 0.959 0.959 0.960 0.961 0.963	55.804 55.745 55.726 55.687 55.629 55.570	-3.65% -3.13% -3.02% -2.71% -2.19%	-3.83% -3.81% -3.81% -3.79% -3.76%
02/03/2020	700 Body	19.5	700 710 725 740 750 755 770	0.930 0.934 0.940 0.946 0.950 0.952	53.603 53.576 53.535 53.501	0.959 0.960 0.961	55.726 55.687 55.629	-3.02% -2.71% -2.19%	-3.81% -3.79%
02/03/2020	700 Body	19.5	710 725 740 750 755 770	0.934 0.940 0.946 0.950 0.952	53.576 53.535 53.501	0.960 0.961	55.687 55.629	-2.71% -2.19%	-3.79%
02/03/2020	700 Body	19.5	725 740 750 755 770	0.940 0.946 0.950 0.952	53.535 53.501	0.961	55.629	-2.19%	
02/03/2020	700 Body	19.5	740 750 755 770	0.946 0.950 0.952	53.501				-3.76%
02/03/2020	700 Body	19.5	750 755 770	0.950 0.952		0.963	55 570		
			755 770	0.952	53.477			-1.77%	-3.72%
			770			0.964	55.531	-1.45%	-3.70%
					53.465	0.964	55.512	-1.24%	-3.69%
			785	0.958	53.428	0.965	55.453	-0.73%	-3.65%
				0.963	53.385	0.966	55.395	-0.31%	-3.63%
			800	0.969	53.343	0.967	55.336	0.21%	-3.60%
'			680	0.933	53.620	0.958	55.804	-2.61%	-3.91%
			695	0.938	53.597	0.959	55.745	-2.19%	-3.85%
			700	0.940	53.588	0.959	55.726	-1.98%	-3.84%
			710	0.944	53.566	0.960	55.687	-1.67%	-3.81%
			725	0.950	53.533	0.961	55.629	-1.14%	-3.77%
02/24/2020	700 Body	19.7	740	0.956	53.491	0.963	55.570	-0.73%	-3.74%
			750	0.959	53.459	0.964	55.531	-0.52%	-3.73%
			755	0.961	53.445	0.964	55.512	-0.31%	-3.72%
			770	0.966	53.396	0.965	55.453	0.10%	-3.71%
			785	0.972	53.358	0.966	55.395	0.62%	-3.68%
			800	0.978	53.322	0.967	55.336	1.14%	-3.64%
			820	0.944	54.604	0.969	55.258	-2.58%	-1.18%
01/31/2020	835 Body	21.0	835	0.961	54.458	0.970	55.200	-0.93%	-1.34%
			850	0.976	54.299	0.988	55.154	-1.21%	-1.55%
			820	0.985	53.197	0.969	55.258	1.65%	-3.73%
02/19/2020	835 Body	20.7	835	0.991	53.158	0.970	55.200	2.16%	-3.70%
			850	0.998	53.118	0.988	55.154	1.01%	-3.69%
			1710	1.432	55.224	1.463	53.537	-2.12%	3.15%
			1720	1.441	55.170	1.469	53.511	-1.91%	3.10%
02/07/2020	1750 Body	21.3	1745	1.470	55.079	1.485	53.445	-1.01%	3.06%
02/07/2020	1750 Body	21.3	1750	1.477	55.071	1.488	53.432	-0.74%	3.07%
			1770	1.499	55.003	1.501	53.379	-0.13%	3.04%
			1790	1.518	54.917	1.514	53.326	0.26%	2.98%
			1710	1.454	56.197	1.463	53.537	-0.62%	4.97%
			1720	1.466	56.161	1.469	53.511	-0.20%	4.95%
02/17/2020	1750 Body	21.5	1745	1.495	56.078	1.485	53.445	0.67%	4.93%
02/17/2020	1750 Body	21.5	1750	1.500	56.062	1.488	53.432	0.81%	4.92%
			1770	1.521	55.995	1.501	53.379	1.33%	4.90%
			1790	1.542	55.929	1.514	53.326	1.85%	4.88%
			1850	1.522	52.071	1.520	53.300	0.13%	-2.31%
			1860	1.533	52.035	1.520	53.300	0.86%	-2.37%
	4000 D. I	00.5	1880	1.554	51.971	1.520	53.300	2.24%	-2.49%
01/21/2020	1900 Body	22.5	1900	1.576	51.912	1.520	53.300	3.68%	-2.60%
,			1905	1.581	51.897	1.520	53.300	4.01%	-2.63%
,			1910	1.587	51.882	1.520	53.300	4.41%	-2.66%
			1850	1.506	51.968	1.520	53.300	-0.92%	-2.50%
,			1860	1.516	51.933	1.520	53.300	-0.26%	-2.56%
04/00/07	1000 F :	05 -	1880	1.538	51.861	1.520	53.300	1.18%	-2.70%
01/22/2020	1900 Body	23.8	1900	1.560	51.782	1.520	53.300	2.63%	-2.85%
,			1905	1.565	51.761	1.520	53.300	2.96%	-2.89%
,			1910	1.570	51.742	1.520	53.300	3.29%	-2.92%

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg CO of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 69 of 95

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev	
			2400	1.934	51.515	1.902	52.767	1.68%	-2.37	
			2450	2.010	51.325	1.950	52.700	3.08%	-2.61	
			2500	2.076	51.117	2.021	52.636	2.72%	-2.89	
			2510	2.092	51.070	2.035	52.623	2.80%	-2.95	
			2535	2.134	50.969	2.071	52.592	3.04%	-3.09	
01/22/2020	2400 Body	22.5	2550	2.156	50.924	2.092	52.573	3.06%	-3.14	
			2560	2.170	50.895	2.106	52.560	3.04%	-3.17	
			2600	2.227	50.726	2.163	52.509	2.96%	-3.40	
			2650	2.302	50.541	2.234	52.445	3.04%	-3.63	
			2680	2.338	50.430	2.277	52.407	2.68%	-3.77	
			2700	2.364	50.326	2.305	52.382	2.56%	-3.93	
			2400	1.976	51.125	1.902	52.767	3.89%	-3.11	
01/24/2020	2400 Body	22.6	2450	2.046	50.923	1.950	52.700	4.92%	-3.37	
	-		2500	2.114	50.719	2.021	52.636	4.60%	-3.64	
			2510	2.127	50.681	2.035	52.623	4.52%	-3.69	
			2400	1.966	51.530	1.902	52.767	3.36%	-2.34	
01/30/2020	2400 Body	22.8	2450	2.024	51.394	1.950	52.700	3.79%	-2.48	
	,		2500	2.083	51.258	2.021	52.636	3.07%	-2.62	
				2510	2.095	51.230	2.035	52.623	2.95%	-2.65
			5180	5.441	47.224	5.276	49.041	3.13%	-3.71	
			5190	5.453	47.224	5.288	49.028	3.12%	-3.68	
			5200	5.472	47.217	5.299	49.014	3.26%	-3.67	
			5210	5.488	47.185	5.311	49.001	3.33%	-3.71	
			5220	5.497	47.152	5.323	48.987	3.27%	-3.75	
			5240	5.522	47.119	5.346	48.960	3.29%	-3.76	
			5250	5.540	47.095	5.358	48.947	3.40%	-3.78	
			5260	5.555	47.063	5.369	48.933	3.46%	-3.82	
			5270	5.568	47.040	5.381	48.919	3.48%	-3.84	
			5280	5.579	47.032	5.393	48.906	3.45%	-3.83	
			5290	5.593	47.030	5.404	48.892	3.50%	-3.81	
			5300	5.606	47.018	5.416	48.879	3.51%	-3.81	
			5310	5.617	46.999	5.428	48.865	3.48%	-3.82	
			5320	5.625	46.973	5.439	48.851	3.42%	-3.84	
			5500	5.870	46.664	5.650	48.607	3.89%	-4.00	
			5510	5.886	46.644	5.661	48.594	3.97%	-4.01	
			5520	5.897	46.636	5.673	48.580	3.95%	-4.00	
			5530	5.908	46.641	5.685	48.566	3.92%	-3.96	
			5540	5.923	46.634	5.696	48.553	3.99%	-3.95	
			5550	5.936	46.597	5.708	48.539	3.99%	-4.00	
			5560	5.947	46.560	5.720	48.526	3.97%	-4.05	
02/10/2020	5200-5800 Body	23.1	5580	5.975	46.528	5.743	48.499	4.04%	-4.06	
			5600	6.006	46.496	5.766	48.471	4.16%	-4.07	
			5610	6.020	46.465	5.778	48.458	4.19%	-4.11	
			5620	6.034	46.447	5.790	48.444	4.21%	-4.12	
			5640	6.065	46.443	5.813	48.417	4.34%	-4.08	
			5660	6.093	46.402	5.837	48.390	4.39%	-4.11	
			5670	6.103	46.381	5.848	48.376	4.36%	-4.12	
			5680	6.113	46.364	5.860	48.363	4.32%	-4.13	
			5690	6.128	46.343	5.872	48.349	4.36%	-4.15	
			5700	6.146	46.311	5.883	48.336	4.47%	-4.19	
I			5710	6.160	46.293	5.895	48.322	4.50%	-4.20	
I			5720	6.170	46.287	5.907	48.309	4.45%	-4.19	
			5745	6.210	46.260	5.936	48.275	4.62%	-4.17	
			5750	6.219	46.246	5.942	48.268	4.66%	-4.19	
I			5755	6.225	46.234	5.947	48.261	4.67%	-4.20	
			5765	6.234	46.221	5.959	48.248	4.61%	-4.20	
			5775	6.248	46.218	5.971	48.234	4.64%	-4.18	
			5785	6.263	46.215	5.982	48.220	4.70%	-4.16	
I			5795	6.280	46.182	5.994	48.207	4.77%	-4.20	
				6.285	46.161	6.000	48.200	4.75%	-4.23	
I			0000							
			5800 5805	6.289	46.144	6.006	48.193	4.71%	-4.25	

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 70 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 70 of 95

9.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

Table 9-2 System Verification Results – 1g

	System verification results – 1g											
						ystem Ve						
	TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
К	750	BODY	02/03/2020	23.1	19.5	0.200	1054	7547	1.830	8.550	9.150	7.02%
Е	750	BODY	02/24/2020	22.7	19.7	0.200	1003	3589	1.810	8.580	9.050	5.48%
Н	835	BODY	01/31/2020	22.8	21.0	0.200	4d047	7406	2.020	9.470	10.100	6.65%
0	835	BODY	02/19/2020	21.9	20.7	0.200	4d132	7552	2.100	9.960	10.500	5.42%
I	1750	BODY	02/07/2020	22.8	21.3	0.100	1148	7357	3.920	37.700	39.200	3.98%
I	1750	BODY	02/17/2020	21.9	21.5	0.100	1148	7357	3.990	37.700	39.900	5.84%
Р	1900	BODY	01/21/2020	22.0	21.4	0.100	5d080	7551	4.010	39.200	40.100	2.30%
J	1900	BODY	01/22/2020	23.3	22.4	0.100	5d148	7571	4.160	39.100	41.600	6.39%
L	2450	BODY	01/22/2020	23.5	21.0	0.100	797	7410	5.090	51.100	50.900	-0.39%
L	2450	BODY	01/24/2020	24.5	22.6	0.100	981	7410	5.220	50.900	52.200	2.55%
К	2450	BODY	01/30/2020	23.9	22.8	0.100	797	7547	5.170	51.100	51.700	1.17%
L	2600	BODY	01/22/2020	23.5	21.0	0.100	1004	7410	5.420	54.800	54.200	-1.09%
G	5250	BODY	02/10/2020	22.3	23.1	0.050	1057	7409	3.750	75.900	75.000	-1.19%
G	5600	BODY	02/10/2020	22.3	23.1	0.050	1057	7409	3.980	79.900	79.600	-0.38%
G	5750	BODY	02/10/2020	22.3	23.1	0.050	1057	7409	3.870	76.700	77.400	0.91%

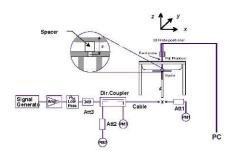


Figure 9-1
System Verification Setup Diagram

Figure 9-2
System Verification Setup Photo

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 74 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 71 of 95

10.1 Standalone Body-Worn SAR Data

Table 10-1 UMTS Body SAR Data

	UMIS BODY SAR Data														
MEASUREMENT RESULTS															
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#	
MHz	Ch.			Power [dBm]				Number	Cycle		(W/kg)		(W/kg)		
836.60	4183	UMTS 850	RMC	25.2	25.05	0.02	17 mm	00309	1:1	back	0.604	1.035	0.625		
826.40	4132	UMTS 850	RMC	25.2	25.03	-0.13	17 mm	00309	1:1	top	0.608	1.040	0.632		
836.60	4183	UMTS 850	RMC	25.2	25.05	-0.01	17 mm	00309	1:1	top	0.767	1.035	0.794		
846.60	4233	UMTS 850	RMC	25.2	25.13	-0.07	17 mm	00309	1:1	top	0.688	1.016	0.699		
836.60	4183	UMTS 850	RMC	25.2	25.05	0.01	0 mm	00309	1:1	right	0.168	1.035	0.174		
836.60	4183	UMTS 850	RMC	25.2	25.05	0.07	0 mm	00309	1:1	left	0.301	1.035	0.312		
826.40	4132	UMTS 850	RMC	18.7	18.70	0.00	0 mm	00309	1:1	back	0.883	1.000	0.883	A1	
836.60	4183	UMTS 850	RMC	18.7	18.66	-0.03	0 mm	00309	1:1	back	0.860	1.009	0.868		
846.60	4233	UMTS 850	RMC	18.7	18.68	0.09	0 mm	00309	1:1	back	0.850	1.005	0.854		
836.60	4183	UMTS 850	RMC	18.7	18.66	0.01	0 mm	00309	1:1	top	0.678	1.009	0.684		
826.40	4132	UMTS 850	RMC	18.7	18.70	0.00	0 mm	00309	1:1	back	0.865	1.000	0.865		
1732.40	1412	UMTS 1750	RMC	25.2	24.76	-0.02	17 mm	00309	1:1	back	0.574	1.107	0.635		
1732.40	1412	UMTS 1750	RMC	25.2	24.76	-0.01	17 mm	00309	1:1	top	0.479	1.107	0.530		
1732.40	1412	UMTS 1750	RMC	25.2	24.76	-0.01	0 mm	00309	1:1	right	0.205	1.107	0.227		
1712.40	1312	UMTS 1750	RMC	25.2	24.74	0.02	0 mm	00309	1:1	left	0.631	1.112	0.702		
1732.40	1412	UMTS 1750	RMC	25.2	24.76	0.03	0 mm	00309	1:1	left	0.725	1.107	0.803		
1752.60	1513	UMTS 1750	RMC	25.2	24.69	0.02	0 mm	00309	1:1	left	0.751	1.125	0.845		
1732.40	1412	UMTS 1750	RMC	12.7	12.65	-0.18	0 mm	00408	1:1	back	0.756	1.012	0.765	A2	
1732.40	1412	UMTS 1750	RMC	12.7	12.65	-0.03	0 mm	00408	1:1	top	0.535	1.012	0.541		
1852.40	9262	UMTS 1900	RMC	24.7	23.89	0.01	17 mm	00408	1:1	back	0.866	1.205	1.044		
1880.00	9400	UMTS 1900	RMC	24.7	24.03	0.08	17 mm	00408	1:1	back	0.940	1.167	1.097		
1907.60	9538	UMTS 1900	RMC	24.7	24.15	-0.02	17 mm	00408	1:1	back	1.020	1.135	1.158		
1852.40	9262	UMTS 1900	RMC	24.7	23.89	0.03	17 mm	00408	1:1	top	0.971	1.205	1.170		
1880.00	9400	UMTS 1900	RMC	24.7	24.03	0.00	17 mm	00408	1:1	top	1.030	1.167	1.202		
1907.60	9538	UMTS 1900	RMC	24.7	24.15	0.11	17 mm	00408	1:1	top	1.070	1.135	1.214	A3	
1880.00	9400	UMTS 1900	RMC	24.7	24.03	0.09	0 mm	00408	1:1	right	0.216	1.167	0.252		
1880.00	9400	UMTS 1900	RMC	24.7	24.03	-0.03	0 mm	00408	1:1	left	0.531	1.167	0.620		
1852.40	9262	UMTS 1900	RMC	11.7	11.45	-0.19	0 mm	00408	1:1	back	0.733	1.059	0.776		
1880.00	9400	UMTS 1900	RMC	11.7	11.57	-0.11	0 mm	00408	1:1	back	0.761	1.030	0.784		
1907.60	9538	UMTS 1900	RMC	11.7	11.54	-0.10	0 mm	00408	1:1	back	0.779	1.038	0.809		
1880.00	9400	UMTS 1900	RMC	11.7	11.57	0.05	0 mm	00408	1:1	top	0.237	1.030	0.244		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Body						
	Spatial Peak						1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population						averaged over 1 gram								

Note: Blue entry represents variability measurement.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	ent S/N: Test Dates: DUT Type:			Dogg 72 of 05	
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 72 of 95		

Table 10-2 LTE B71 Body SAR

									ים ויו	ouy SA	111								
								MEASU	JREMENT	result	s								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cł	۱.		[IMPIZ]	Power [dBm]	Power [abm]	Driit [db]		Number							(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	25.2	24.94	-0.04	0	00309	QPSK	1	0	17 mm	back	1:1	0.477	1.062	0.507	
680.50	133297	Mid	LTE Band 71	20	24.2	23.75	0.01	1	00309	QPSK	50	0	17 mm	back	1:1	0.331	1.109	0.367	
680.50	133297	Mid	LTE Band 71	20	25.2	24.94	-0.09	0	00309	QPSK	1	0	17 mm	top	1:1	0.380	1.062	0.404	
680.50	133297	Mid	LTE Band 71	20	24.2	23.75	-0.02	1	00309	QPSK	50	0	17 mm	top	1:1	0.275	1.109	0.305	
680.50	133297	Mid	LTE Band 71	20	25.2	24.94	-0.18	0	00309	QPSK	1	0	0 mm	right	1:1	0.203	1.062	0.216	
680.50	133297	Mid	LTE Band 71	20	24.2	23.75	-0.13	1	00309	QPSK	50	0	0 mm	right	1:1	0.114	1.109	0.126	
680.50	133297	Mid	LTE Band 71	20	25.2	24.94	-0.04	0	00309	QPSK	1	0	0 mm	left	1:1	0.290	1.062	0.308	
680.50	133297	Mid	LTE Band 71	20	24.2	23.75	0.04	1	00309	QPSK	50	0	0 mm	left	1:1	0.208	1.109	0.231	
680.50	133297	Mid	LTE Band 71	20	17.7	17.51	-0.01	0	00309	QPSK	1	0	0 mm	back	1:1	0.890	1.045	0.930	A4
680.50	133297	Mid	LTE Band 71	20	17.7	17.05	-0.04	0	00309	QPSK	50	0	0 mm	back	1:1	0.784	1.161	0.910	
680.50	133297	Mid	LTE Band 71	20	17.7	16.94	0.00	0	00309	QPSK	100	0	0 mm	back	1:1	0.741	1.191	0.883	
680.50	133297	Mid	LTE Band 71	20	17.7	17.51	0.07	0	00309	QPSK	1	0	0 mm	top	1:1	0.666	1.045	0.696	
680.50	133297	Mid	LTE Band 71	20	17.7	17.05	0.18	0	00309	QPSK	50	0	0 mm	top	1:1	0.609	1.161	0.707	
680.50	133297	Mid	LTE Band 71	20	17.7	17.51	0.02	0	00309	QPSK	1	0	0 mm	back	1:1	0.850	1.045	0.888	
			ANSI / IEEE C95.		FETY LIMIT									Body					
			•	atial Peak										/kg (mV	•				
		Ur	controlled Expo	sure/Gener	al Population	n							average	ed over 1	gram				

Note: Blue entry represents variability measurement.

Table 10-3 LTE B12 Body SAR

								MEASU	JREMENT	RESULT	s								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[12]	Power [dBm]	. one: [ub]	D.I.K [GD]		Number							(W/kg)	1 40.01	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.2	25.10	0.01	0	00309	QPSK	1	0	17 mm	back	1:1	0.456	1.023	0.466	
707.50	23095	Mid	LTE Band 12	10	24.2	24.03	-0.01	1	00309	QPSK	25	12	17 mm	back	1:1	0.318	1.040	0.331	
707.50	23095	Mid	LTE Band 12	10	25.2	25.10	0.00	0	00309	QPSK	1	0	17 mm	top	1:1	0.348	1.023	0.356	
707.50	23095	Mid	LTE Band 12	10	24.2	24.03	-0.10	1	00309	QPSK	25	12	17 mm	top	1:1	0.237	1.040	0.246	
707.50	23095	Mid	LTE Band 12	10	25.2	25.10	-0.08	0	00309	QPSK	1	0	0 mm	right	1:1	0.141	1.023	0.144	
707.50	23095	Mid	LTE Band 12	10	24.2	24.03	-0.05	1	00309	QPSK	25	12	0 mm	right	1:1	0.108	1.040	0.112	
707.50	23095	Mid	LTE Band 12	10	25.2	25.10	-0.01	0	00309	QPSK	1	0	0 mm	left	1:1	0.334	1.023	0.342	
707.50	23095	Mid	LTE Band 12	10	24.2	24.03	0.02	1	00309	QPSK	25	12	0 mm	left	1:1	0.206	1.040	0.214	
707.50	23095	Mid	LTE Band 12	10	18.7	18.55	-0.13	0	00309	QPSK	1	0	0 mm	back	1:1	0.683	1.035	0.707	A5
707.50	23095	Mid	LTE Band 12	10	18.7	18.54	-0.12	0	00309	QPSK	25	12	0 mm	back	1:1	0.638	1.038	0.662	
707.50	23095	Mid	LTE Band 12	10	18.7	18.55	0.12	0	00309	QPSK	1	0	0 mm	top	1:1	0.484	1.035	0.501	
707.50	23095	Mid	LTE Band 12	10	18.7	0.11	0	00309	QPSK	25	12	0 mm	top	1:1	0.477	1.038	0.495		
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT								Body						
			Spa	atial Peak									1.6 W	/kg (m\	V/g)				
		Un	controlled Expo	sure/Gener	al Population	n							average	ed over 1	gram				

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 72 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 73 of 95

Table 10-4 LTE B13 Body SAR

								-	, 13 00	ouy SF	717								
								MEASU	JREMENT	RESULT	s								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	١.		[2]	Power [dBm]	· one [abiii]	D.I.K [GD]		Number							(W/kg)	- uotoi	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.2	25.19	-0.07	0	00309	QPSK	1	0	17 mm	back	1:1	0.448	1.002	0.449	
782.00	23230	Mid	LTE Band 13	10	24.2	24.13	0.00	1	00309	QPSK	25	12	17 mm	back	1:1	0.326	1.016	0.331	
782.00	23230	Mid	LTE Band 13	10	25.2	25.19	0.08	0	00309	QPSK	1	0	17 mm	top	1:1	0.289	1.002	0.290	
782.00	23230	Mid	LTE Band 13	10	24.2	24.13	0.01	1	00309	QPSK	25	12	17 mm	top	1:1	0.239	1.016	0.243	
782.00	23230	Mid	LTE Band 13	10	25.2	25.19	-0.12	0	00309	QPSK	1	0	0 mm	right	1:1	0.127	1.002	0.127	
782.00	23230	Mid	LTE Band 13	10	24.2	24.13	0.21	1	00309	QPSK	25	12	0 mm	right	1:1	0.081	1.016	0.082	
782.00	23230	Mid	LTE Band 13	10	25.2	25.19	0.14	0	00309	QPSK	1	0	0 mm	left	1:1	0.324	1.002	0.325	
782.00	23230	Mid	LTE Band 13	10	24.2	24.13	0.17	1	00309	QPSK	25	12	0 mm	left	1:1	0.226	1.016	0.230	
782.00	23230	Mid	LTE Band 13	10	17.2	17.20	0.02	0	00309	QPSK	1	0	0 mm	back	1:1	0.793	1.000	0.793	
782.00	23230	Mid	LTE Band 13	10	17.2	17.19	-0.01	0	00309	QPSK	25	0	0 mm	back	1:1	0.814	1.002	0.816	A6
782.00	23230	Mid	LTE Band 13	10	17.2	17.18	0.01	0	00309	QPSK	50	0	0 mm	back	1:1	0.796	1.005	0.800	
782.00	23230	Mid	LTE Band 13	10	17.2	17.20	-0.03	0	00309	QPSK	1	0	0 mm	top	1:1	0.600	1.000	0.600	
782.00	23230	Mid	LTE Band 13	10	17.2	17.19	-0.07	0	00309	QPSK	25	0	0 mm	top	1:1	0.608	1.002	0.609	
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	ral Population	n							average	ed over 1	gram				

Table 10-5 LTE B26 Body SAR

									20 D	oay SA	1K								
								MEASU	REMENT	Γ RESULT	s								
FRI	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RR Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.	ouc	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[ab]	Number	modulation	ND GIEG	TLD GIIGGE	opuomg	oluc	Daily Gyold	(W/kg)	Factor	(W/kg)	1 101 #
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	24.92	0.00	0	00309	QPSK	1	0	17 mm	back	1:1	0.543	1.067	0.579	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.16	0.00	1	00309	QPSK	36	18	17 mm	back	1:1	0.408	1.009	0.412	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	24.92	-0.03	0	00309	QPSK	1	0	17 mm	top	1:1	0.657	1.067	0.701	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.16	-0.04	1	00309	QPSK	36	18	17 mm	top	1:1	0.510	1.009	0.515	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	24.92	-0.03	0	00309	QPSK	1	0	0 mm	right	1:1	0.160	1.067	0.171	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.16	-0.16	1	00309	QPSK	36	18	0 mm	right	1:1	0.126	1.009	0.127	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	24.92	-0.03	0	00309	QPSK	1	0	0 mm	left	1:1	0.292	1.067	0.312	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.16	-0.03	1	00309	QPSK	36	18	0 mm	left	1:1	0.202	1.009	0.204	
831.50	26865	Mid	LTE Band 26 (Cell)	15	18.2	17.94	0.00	0	00309	QPSK	1	74	0 mm	back	1:1	0.775	1.062	0.823	
831.50	26865	Mid	LTE Band 26 (Cell)	15	18.2	17.97	0.01	0	00309	QPSK	36	37	0 mm	back	1:1	0.782	1.054	0.824	A7
831.50	26865	Mid	LTE Band 26 (Cell)	15	18.2	17.92	-0.01	0	00309	QPSK	75	0	0 mm	back	1:1	0.605	1.067	0.646	
831.50	26865	Mid	LTE Band 26 (Cell)	15	18.2	17.94	-0.05	0	00309	QPSK	1	74	0 mm	top	1:1	0.565	1.062	0.600	
831.50	26865	Mid	LTE Band 26 (Cell)	15	18.2	17.97	-0.02	0	00309	QPSK	36	37	0 mm	top	1:1	0.571	1.054	0.602	
		,	ANSI / IEEE C95.		FETY LIMIT								Body						
			Spa	atial Peak									1.6 W	/kg (mV	V/g)				
		Ur	controlled Expo	sure/Gener	al Populatio	n		1					average	ed over 1	gram				

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 74 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 74 of 95

Table 10-6 LTE B66 Body SAR

								MEASU	JREMENT	RESULT	s								
FRE	QUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RR Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	iiii ii (ab)	Number	modulation	115 0120	no once	орионія	Oido	Daily Gyold	(W/kg)	Factor	(W/kg)	1 101 11
1745.00	132322	Mid	LTE Band 66 (AWS)	20	25.2	25.16	-0.02	0	00408	QPSK	1	0	17 mm	back	1:1	0.632	1.009	0.638	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.15	0.04	1	00408	QPSK	50	25	17 mm	back	1:1	0.425	1.012	0.430	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	25.2	25.16	0.00	0	00408	QPSK	1	0	17 mm	top	1:1	0.587	1.009	0.592	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.15	0.01	1	00408	QPSK	50	25	17 mm	top	1:1	0.411	1.012	0.416	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	25.2	25.16	0.08	0	00408	QPSK	1	0	0 mm	right	1:1	0.225	1.009	0.227	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.15	0.00	1	00408	QPSK	50	25	0 mm	right	1:1	0.171	1.012	0.173	
1720.00	132072	Low	LTE Band 66 (AWS)	20	25.2	25.02	0.07	0	00408	QPSK	1	0	0 mm	left	1:1	0.811	1.042	0.845	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	25.2	25.16	0.04	0	00408	QPSK	1	0	0 mm	left	1:1	0.894	1.009	0.902	
1770.00	132572	High	LTE Band 66 (AWS)	20	25.2	24.73	0.10	0	00408	QPSK	1	99	0 mm	left	1:1	0.937	1.114	1.044	A8
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.15	0.07	1	00408	QPSK	50	25	0 mm	left	1:1	0.598	1.012	0.605	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	23.87	0.04	1	00408	QPSK	100	0	0 mm	left	1:1	0.616	1.079	0.665	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	12.7	12.38	-0.12	0	00408	QPSK	1	50	0 mm	back	1:1	0.595	1.076	0.640	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	12.7	12.25	-0.16	0	00408	QPSK	50	25	0 mm	back	1:1	0.591	1.109	0.655	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	12.7	12.38	0.02	0	00408	QPSK	1	50	0 mm	top	1:1	0.464	1.076	0.499	
1745.00	LTE Bond 66								00408	QPSK	50	25	0 mm	top	1:1	0.448	1.109	0.497	
1770.00	132572		LTE Band 66 (AWS)	20	25.2	24.73	0.10	0	00408	QPSK	1	99	0 mm	left	1:1	0.932	1.114	1.038	
			ANSI / IEEE C95.		FETY LIMIT					-				Body		-			
				atial Peak									1.6 W	//kg (mV	V/g)				
		Ur	ncontrolled Expo	sure/Gene	ral Populatio	n							average	ed over 1	gram				

Note: Blue entry represents variability measurement.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 75 - 6 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 75 of 95
© 202	0 PCTEST				REV 21.4 M

Table 10-7 LTE B25 Body SAR

										result									
FRE	EQUENCY	′	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[WITIZ]	Power [dBm]	Fower [ubili]	Dilit [ub]		Number							(W/kg)	racioi	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.43	-0.02	0	00408	QPSK	1	99	17 mm	back	1:1	1.010	1.064	1.075	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.54	0.05	0	00408	QPSK	1	99	17 mm	back	1:1	1.040	1.038	1.080	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.40	-0.04	0	00408	QPSK	1	0	17 mm	back	1:1	1.190	1.072	1.276	A9
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.43	0.02	1	00408	QPSK	50	0	17 mm	back	1:1	0.714	1.064	0.760	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.42	-0.07	1	00408	QPSK	100	0	17 mm	back	1:1	0.760	1.067	0.811	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.43	0.00	0	00408	QPSK	1	99	17 mm	top	1:1	0.807	1.064	0.859	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.54	0.01	0	00408	QPSK	1	99	17 mm	top	1:1	0.853	1.038	0.885	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.40	0.03	0	00408	QPSK	1	0	17 mm	top	1:1	0.995	1.072	1.067	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.43	0.02	1	00408	QPSK	50	0	17 mm	top	1:1	0.579	1.064	0.616	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.42	0.02	1	00408	QPSK	100	0	17 mm	top	1:1	0.638	1.067	0.681	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.54	0.04	0	00408	QPSK	1	99	0 mm	right	1:1	0.175	1.038	0.182	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.43	-0.06	1	00408	QPSK	50	0	0 mm	right	1:1	0.129	1.064	0.137	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.54	-0.17	0	00408	QPSK	1	99	0 mm	left	1:1	0.609	1.038	0.632	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.43	0.02	1	00408	QPSK	50	0	0 mm	left	1:1	0.378	1.064	0.402	
1860.00	26140	Low	LTE Band 25 (PCS)	20	11.7	11.36	-0.16	0	00408	QPSK	1	99	0 mm	back	1:1	0.754	1.081	0.815	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	11.7	11.41	-0.15	0	00408	QPSK	1	99	0 mm	back	1:1	0.787	1.069	0.841	
1905.00	26590	High	LTE Band 25 (PCS)	20	11.7	11.70	-0.18	0	00408	QPSK	1	99	0 mm	back	1:1	0.823	1.000	0.823	
1860.00	26140	Low	LTE Band 25 (PCS)	20	11.7	11.52	-0.10	0	00408	QPSK	50	25	0 mm	back	1:1	0.754	1.042	0.786	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	11.7	11.68	-0.18	0	00408	QPSK	50	50	0 mm	back	1:1	0.780	1.005	0.784	
1905.00	26590	High	LTE Band 25 (PCS)	20	11.7	11.69	-0.11	0	00408	QPSK	50	50	0 mm	back	1:1	0.844	1.002	0.846	
1905.00	26590	High	LTE Band 25 (PCS)	20	11.7	11.66	-0.16	0	00408	QPSK	100	0	0 mm	back	1:1	0.817	1.009	0.824	
1905.00	(PCS)								00408	QPSK	1	99	0 mm	top	1:1	0.240	1.000	0.240	
1905.00	26590	High	(PCS)	20	11.7	11.69	0.02	0	00408	QPSK	50	50	0 mm	top	1:1	0.246	1.002	0.246	
1905.00	26590	High	LTE Band 25 (PCS) ANSI / IEEE C95.	20	24.7	24.40	-0.09	0	00408	QPSK	1	0	17 mm	back	1:1	1.090	1.072	1.168	
		,						l					4.614	Body	u (\				ļ
			•	atial Peak										/kg (mV	.				
		Un	controlled Expo	sure/Gener	al Populatio	n		l					average	ed over 1	gram				

Note: Blue entry represents variability measurement.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 70 -4 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 76 of 95
© 202	0 PCTEST				REV 21.4 M

Table 10-8 LTE B41 Body SAR

										RESULTS										
Power Class		EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
	MHz	С	h.		[2]	Power [dBm]	r ower (abiii)	Dinit [GD]		Number							(W/kg)	1 40101	(W/kg)	
Power Class 3	2680.00	41490	High	LTE Band 41	20	23.2	23.18	-0.12	0	00309	QPSK	1	50	17 mm	back	1:1.58	0.210	1.005	0.211	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	22.2	22.19	-0.07	1	00309	QPSK	50	25	17 mm	back	1:1.58	0.160	1.002	0.160	
Power Class 3	2680.00	41490	High	LTE Band 41	20	23.2	23.18	-0.07	0	00309	QPSK	1	50	17 mm	top	1:1.58	0.275	1.005	0.276	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	22.2	22.19	-0.03	1	00309	QPSK	50	25	17 mm	top	1:1.58	0.209	1.002	0.209	
Power Class 3	2506.00	39750	Low	LTE Band 41	20	23.2	22.92	0.00	0	00309	QPSK	1	99	0 mm	left	1:1.58	0.674	1.067	0.719	
Power Class 3	2549.50	40185	Low- Mid	LTE Band 41	20	23.2	23.16	-0.08	0	00309	QPSK	1	99	0 mm	left	1:1.58	0.799	1.009	0.806	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	23.2	23.05	-0.03	0	00309	QPSK	1	50	0 mm	left	1:1.58	0.971	1.035	1.005	
Power Class 3	2636.50	41055	Mid- High	LTE Band 41	20	23.2	23.16	-0.02	0	00309	QPSK	1	99	0 mm	left	1:1.58	0.967	1.009	0.976	
Power Class 3	2680.00	41490	High	LTE Band 41	20	23.2	23.18	-0.02	0	00309	QPSK	1	50	0 mm	left	1:1.58	1.290	1.005	1.296	A10
Power Class 3	2506.00	39750	Low	LTE Band 41	20	22.2	22.11	-0.02	1	00309	QPSK	50	25	0 mm	left	1:1.58	0.505	1.021	0.516	
Power Class 3	2549.50	40185	Low- Mid	LTE Band 41	20	22.2	22.06	-0.03	1	00309	QPSK	50	25	0 mm	left	1:1.58	0.618	1.033	0.638	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	22.2	22.19	-0.02	1	00309	QPSK	50	25	0 mm	left	1:1.58	0.805	1.002	0.807	
Power Class 3	2636.50	41055	Mid- High	LTE Band 41	20	22.2	22.10	-0.04	1	00309	QPSK	50	50	0 mm	left	1:1.58	0.843	1.023	0.862	
Power Class 3	2680.00	41490	High	LTE Band 41	20	22.2	22.16	-0.04	1	00309	QPSK	50	0	0 mm	left	1:1.58	1.010	1.009	1.019	
Power Class 3	2636.50	41055	Mid- High	LTE Band 41	20	22.2	22.13	-0.05	1	00309	QPSK	100	0	0 mm	left	1:1.58	0.836	1.016	0.849	
Power Class 2	2680.00	41490	High	LTE Band 41	20	25.2	24.89	-0.14	0	00309	QPSK	1	50	0 mm	left	1:2.31	1.190	1.074	1.278	
Power Class 3	2636.50	41055	Mid- High	LTE Band 41	20	13.7	13.50	-0.14	0	00408	QPSK	1	99	0 mm	back	1:1.58	0.531	1.047	0.556	
Power Class 3	2506.00	39750	Low	LTE Band 41	20	13.7	13.16	-0.01	0	00408	QPSK	50	0	0 mm	back	1:1.58	0.561	1.132	0.635	
Power Class 3	2549.50	40185	Low- Mid	LTE Band 41	20	13.7	13.56	0.06	0	00408	QPSK	50	50	0 mm	back	1:1.58	0.609	1.033	0.629	
Power Class 3	2593.00	40620	Mid	LTE Band 41	20	13.7	13.63	0.18	0	00408	QPSK	50	25	0 mm	back	1:1.58	0.599	1.016	0.609	
Power Class 3	2636.50	41055	Mid- High	LTE Band 41	20	13.7	13.70	-0.18	0	00408	QPSK	50	50	0 mm	back	1:1.58	0.602	1.000	0.602	
Power Class 3	2680.00	41490	High	LTE Band 41	20	13.7	13.50	-0.14	0	00408	QPSK	50	25	0 mm	back	1:1.58	0.710	1.047	0.743	
Power Class 3	2636.50	41055	Mid- High	LTE Band 41	20	13.7	13.49	-0.17	0	00408	QPSK	100	0	0 mm	back	1:1.58	0.594	1.050	0.624	
Power Class 3	High						13.50	-0.03	0	00408	QPSK	1	99	0 mm	top	1:1.58	0.217	1.047	0.227	
Power Class 3	2636.50	41055	Mid- High	LTE Band 41	20	13.7	13.70	-0.03	0	00408	QPSK	50	50	0 mm	top	1:1.58	0.244	1.000	0.244	
Power Class 3	2680.00	41490	High	LTE Band 41	20	23.2	23.18	-0.02	0	00309	QPSK	1	50	0 mm	left	1:1.58	1.240	1.005	1.246	
		ANSI /	IEEE C	95.1 1992 - SAF	ETY LIMIT										Body					
				Spatial Peak											/kg (mV					
	ı	Jncontr	olled E	xposure/Genera	I Populatio	n			l					average	d over 1	gram				

Note: Blue entry represents variability measurement.

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 77 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 77 of 95
ON DOTECT				DEV/ 24 4 M

Table 10-9 DTS Body SAR

								, 500	IY OA									
							MEASU	REMEN	T RESUI	LTS								
FREQU		Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.				[dBm]					Number	(Mbps)		(%)	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	20.0	19.34	-0.02	17 mm	1	02156	1	back	99.1	0.134	1.164	1.009	0.157	
2437	6	802.11b	DSSS	22	10.0	9.59	-0.05	0 mm	1	02156	1	back	99.1	0.387	1.099	1.009	0.429	A11
2412	1	802.11b	DSSS	22	20.0	19.34	-0.04	17 mm	1	02156	1	top	99.1	0.137	1.164	1.009	0.161	
2437	6	802.11b	DSSS	22	10.0	9.59	0.19	0 mm	1	02156	1	top	99.1	0.264	1.099	1.009	0.293	
2412	1	802.11b	DSSS	22	20.0	19.34	-0.19	0 mm	1	02156	1	right	99.1	0.207	1.164	1.009	0.243	
2412	1	802.11b	DSSS	22	20.0	19.34	0.15	0 mm	1	02156	1	left	99.1	0.108	1.164	1.009	0.127	
2437	6	802.11b	DSSS	22	17.0	16.34	0.00	17 mm	2	02156	1	back	99.1	0.033	1.164	1.009	0.039	
2412	1	802.11b	DSSS	22	7.0	6.49	-0.11	0 mm	2	02156	1	back	99.1	0.107	1.125	1.009	0.121	
2437	6	802.11b	DSSS	22	17.0	16.34	0.15	17 mm	2	02156	1	top	99.1	0.049	1.164	1.009	0.058	
2412	1	802.11b	DSSS	22	7.0	6.49	0.17	0 mm	2	02156	1	top	99.1	0.079	1.125	1.009	0.090	
2437	6	802.11b	DSSS	22	17.0	16.34	-0.04	0 mm	2	02156	1	right	99.1	0.128	1.164	1.009	0.150	
2437	6	802.11b	DSSS	DSSS 22 17.0 16.34 -0.07						07 0 mm 2 02156 1 left 99.1 0.023 1.164 1.009 0.027								
		AN	ISI / IEEE	C95.1 1992 -	SAFETY LIMIT			Body										
				Spatial Pea	ık								1.6 W/	kg (mW/g)				
	Uncontrolled Exposure/General Population												averageo	d over 1 gram	1			
													-					

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 79 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 78 of 95

Table 10-10 NII SISO BODY SAR

										EASUREMENT RESULTS									
					1	ı	ı	MEASU	REMEN	T RESU	_					T		I	
50. 61. <th></th> <th></th> <th>Mode</th> <th>Service</th> <th></th> <th>Allowed Power</th> <th></th> <th></th> <th>Spacing</th> <th></th> <th>Serial</th> <th>Rate</th> <th>Side</th> <th>Cycle</th> <th></th> <th>Factor</th> <th>Factor (Duty</th> <th>(1g)</th> <th>Plot #</th>			Mode	Service		Allowed Power			Spacing		Serial	Rate	Side	Cycle		Factor	Factor (Duty	(1g)	Plot #
SST QLA CEATING CPAM AUTHOR CLAS	5310	62	802.11n	OFDM	40	14.5	14.27	-0.10	17 mm	1	02156	13.5	back	92.3	0.020	1.054	1.083	0.023	
SS QC COLTIN OPM 440 75 682 0.44 0 mm 11 619 135 20 100 100 140 145 1427 0.20 0 mm 11 619 135 0.20 100<	5270	54	802.11n	OFDM	40	7.5	6.82	-0.18	0 mm	1	02156	13.5	back	92.3	0.389	1.169	1.083	0.492	
80 Column OFFI And 14.27 Again ORD 11.0 Column 11.0	5310	62	802.11n	OFDM	40	14.5	14.27	0.19	17 mm	1	02156	13.5	top	92.3	0.043	1.054	1.083	0.049	
SS QC CENTIN OFFINA 440 14.54 14.27 0.33 0.00 11.00 12.00 10.00 </td <td>5270</td> <td>54</td> <td>802.11n</td> <td>OFDM</td> <td>40</td> <td>7.5</td> <td>6.82</td> <td>-0.14</td> <td>0 mm</td> <td>1</td> <td>02156</td> <td>13.5</td> <td>top</td> <td>92.3</td> <td>0.217</td> <td>1.169</td> <td>1.083</td> <td>0.275</td> <td></td>	5270	54	802.11n	OFDM	40	7.5	6.82	-0.14	0 mm	1	02156	13.5	top	92.3	0.217	1.169	1.083	0.275	
Section 1 ORG 4.00 4.14	5310	62	802.11n	OFDM	40	14.5	14.27	-0.20	0 mm	1	02156	13.5	right	92.3	0.005	1.054	1.083	0.006	
500 44 002-111 OFM 44 7.5 7.7 0.40 0.00 0.00 2.00 1.5 0.00 1.00 0.10 1.00 0.10 1.00 0.10 1.00 0.10 1.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.00<	5310	62	802.11n	OFDM	40	14.5	14.27	0.13	0 mm	1	02156	13.5	left	92.3	0.022	1.054	1.083	0.025	
Section Sect	5270	54	802.11n	OFDM	40	14.5	14.25	0.10	17 mm	2	02156	13.5	back	92.9	0.097	1.059	1.076	0.111	
	5270	54	802.11n	OFDM	40	7.5	7.01	-0.16	0 mm	2	02156	13.5	back	92.9	0.272	1.119	1.076	0.327	
	5270	54	802.11n	OFDM	40	14.5	14.25	0.14	17 mm	2	02156	13.5	top	92.9	0.135	1.059	1.076	0.154	
527 54 682-11m OFDM 440 14.5 14.25 0.09 0.0m 2 0.156 0.32 0.021 0.021 1.020 0.021 0.020 1.030 0.020 0.030	5270	54	802.11n	OFDM	40	7.5	7.01	-0.16	0 mm	2	02156	13.5	top	92.9	0.424	1.119	1.076	0.511	
	5270	54	802.11n	OFDM	40	14.5	14.25	0.13	0 mm	2	02156	13.5	right	92.9	0.275	1.059	1.076	0.313	
550 102 692.11 OFDM 4.0 7.5 6.52 0.17 0 mm 1 0.215 13.5 13.6 0.23 0.407 1.23 1.083 0.584 5630 128 002.11m OFDM 4.0 7.5 6.59 -0.10 0 mm 1 0.216 1.55 back 0.23 0.407 1.233 1.083 0.664 570 142 0.02.11m OFDM 4.00 7.5 6.59 -0.14 0 mm 1 0.216 125 back 0.23 0.01 1.009 1.13 0.050 0.050 0.000 0 mm 1 0.216 0.20 0.000	5270	54	802.11n	OFDM	40	14.5	14.25	0.09	0 mm	2	02156	13.5	left	92.9	0.021	1.059	1.076	0.024	
	5610	122	802.11ac	OFDM	80	13.5	12.52	0.05	17 mm	1	02156	29.3	back	91.1	0.028	1.253	1.098	0.039	
5710 142 8021110 OFDM 40 7.5 8.31 0.14 0 mm 1 0216 13.5 back 92.3 0.01 1.315 1.083 0.571 6610 122 802.11m OFDM 80 13.5 12.52 -0.17 17 mm 1 0216 23.3 top 91.1 0.039 1.233 1.083 0.024 5830 122 802.11m OFDM 40 7.5 6.89 0.09 0 mm 1 0.166 13.5 10.23 1.083 0.228 5610 122 802.11m OFDM 80 13.5 12.22 0.12 0 mm 1 0.166 23.3 left 91.1 0.024 1.108 0.033 5610 122 802.11m OFDM 80 13.5 13.44 0.08 17 mm 2 0.216 23.3 left 91.0 0.422 0.014 1.009 0.422 0.014 0.010 0	5510	102	802.11n	OFDM	40	7.5	6.52	-0.17	0 mm	1	02156	13.5	back	92.3	0.407	1.253	1.083	0.552	
Seed 122 802.11ac OFDM 80	5630	126	802.11n	OFDM	40	7.5	6.59	-0.10	0 mm	1	02156	13.5	back	92.3	0.497	1.233	1.083	0.664	
5630 126 882 11m OFDM 40 7.5 6.59 0.09 0 mm 1 0215e 13.5 10p 22.3 0.171 1.233 1.083 0.235 5610 122 802.11ac OFDM 80 13.5 12.52 0.18 0 mm 1 0215e 23 16th 1.1 0.024 1.253 1.083 0.033 5610 122 802.11ac OFDM 80 13.5 12.52 0.12 0 mm 1 0215e 23 1eth 9.11 0.010 1.253 1.088 0.075 5710 142 802.11ac OFDM 40 7.5 7.43 -0.18 0 mm 2 0215e 23 1eth 9.01 1.014 1.083 0.075 5710 142 802.11ac OFDM 40 7.5 7.43 -0.15 0 mm 2 0215e 13.5 1op 2.0 0.482 1.076 1.076 0.422 <td>5710</td> <td>142</td> <td>802.11n</td> <td>OFDM</td> <td>40</td> <td>7.5</td> <td>6.31</td> <td>-0.14</td> <td>0 mm</td> <td>1</td> <td>02156</td> <td>13.5</td> <td>back</td> <td>92.3</td> <td>0.401</td> <td>1.315</td> <td>1.083</td> <td>0.571</td> <td></td>	5710	142	802.11n	OFDM	40	7.5	6.31	-0.14	0 mm	1	02156	13.5	back	92.3	0.401	1.315	1.083	0.571	
680 122 80211ac OFDM 80 13.5 12.52 0.18 0 mm 1 0215e 23 right 91.1 0.024 1.253 1.088 0.031 5610 122 802.11ac OFDM 80 13.5 12.52 0.12 0 mm 1 0215e 23 left 9.11 0.010 1.253 1.088 0.014 5610 122 802.11ac OFDM 80 13.5 13.44 0.16 17 mm 2 0215e 23.3 leak 82.3 0.011 1.014 1.083 0.075 5710 142 802.11ac OFDM 40 7.5 7.43 -0.18 0 mm 2 0.215e 0.02 0.025e 0.02 0.025e 0.02 0.025e 0.025e 0.02 0.025e 0.025e 0.025e 0.02 0.025e 0.025e 0.025e 0.025e 0.025e 0.025e 0.025e 0.025e 0.025e 0.027e 0.025e <td>5610</td> <td>122</td> <td>802.11ac</td> <td>OFDM</td> <td>80</td> <td>13.5</td> <td>12.52</td> <td>-0.17</td> <td>17 mm</td> <td>1</td> <td>02156</td> <td>29.3</td> <td>top</td> <td>91.1</td> <td>0.039</td> <td>1.253</td> <td>1.098</td> <td>0.054</td> <td></td>	5610	122	802.11ac	OFDM	80	13.5	12.52	-0.17	17 mm	1	02156	29.3	top	91.1	0.039	1.253	1.098	0.054	
Section 122 802-11ac OFDM 80	5630	126	802.11n	OFDM	40	7.5	6.59	0.09	0 mm	1	02156	13.5	top	92.3	0.171	1.233	1.083	0.228	
680 122 802-11ac OFDM 80 13.5 12.52 0.12 0 mm 1 0215e 29.3 left 91.1 0.010 1.283 1.098 0.014 5610 122 802-11ac OFDM 80 13.5 13.44 0.16 17 mm 2 0215e 29.3 back 92.3 0.071 1.014 1.083 0.078 5710 142 802-11ac OFDM 40 7.5 7.43 -0.18 0 mm 2 0215e 13.5 back 92.9 0.432 1.016 1.076 0.472 5610 122 802-11ac OFDM 40 7.5 7.40 -0.15 0 mm 2 0215e 13.5 top 92.9 0.497 1.023 1.076 0.542 5500 118 802-11m OFDM 40 7.5 7.43 -0.10 0 mm 2 0215e 13.5 top 92.9 0.491 1.026 <th< td=""><td>5610</td><td>122</td><td>802.11ac</td><td>OFDM</td><td>80</td><td>13.5</td><td>12.52</td><td>0.18</td><td>0 mm</td><td>1</td><td>02156</td><td>29.3</td><td>right</td><td>91.1</td><td>0.024</td><td>1.253</td><td>1.098</td><td>0.033</td><td></td></th<>	5610	122	802.11ac	OFDM	80	13.5	12.52	0.18	0 mm	1	02156	29.3	right	91.1	0.024	1.253	1.098	0.033	
5710 142 802.11n OFDM 40 7.5 7.43 -0.18 0 mm 2 02156 13.5 back 92.9 0.432 1.016 1.076 0.472 5610 122 802.11ac OFDM 80 13.5 13.44 0.08 17mm 2 02156 13.5 back 92.9 0.432 1.016 1.076 0.673 5510 102 802.11n OFDM 40 7.5 7.40 -0.15 0 mm 2 02156 13.5 back 92.9 0.497 1.023 1.076 0.547 5580 118 802.11n OFDM 40 7.5 7.39 -0.14 0 mm 2 02156 13.5 back 92.9 0.491 1.026 1.076 0.542 5710 142 802.11n OFDM 40 7.5 7.43 -0.10 0 mm 2 02156 13.5 back 92.9 0.491 1.026 1.076 0.603 5610 122 802.11ac OFDM 80 13.5 13.44 0.14 0 mm 2 02156 13.5 back 92.9 0.491 1.026 1.076 0.603 5610 122 802.11ac OFDM 80 13.5 13.44 0.14 0 mm 2 02156 29.3 back 92.3 0.014 1.014 1.083 0.278 5806 161 802.11a OFDM 80 13.5 13.44 0.08 0 mm 2 02156 29.3 back 92.3 0.014 1.014 1.083 0.015 5806 161 802.11a OFDM 20 13.5 12.71 0.17 17mm 1 0.016 6 back 95.0 0.047 1.199 1.053 0.069 5755 151 802.11a OFDM 40 7.5 6.54 0.18 0 mm 1 0.016 1.006 1.0	5610	122	802.11ac	OFDM	80	13.5	12.52	0.12	0 mm	1	02156	29.3		91.1	0.010	1.253	1.098	0.014	
5510 122 802.11ac OFDM 80 13.5 13.44 0.08 17 mm 2 02166 29.3 10p 92.3 0.088 1.014 1.083 0.097 5510 102 802.11n OFDM 40 7.5 7.40 -0.15 0 mm 2 02166 13.5 top 92.9 0.497 1.023 1.076 0.547 5590 118 802.11n OFDM 40 7.5 7.43 -0.10 0 mm 2 02156 13.5 top 92.9 0.491 1.026 1.076 0.542 5710 142 802.11n OFDM 40 7.5 7.43 -0.10 0 mm 2 02156 13.5 top 92.9 0.491 1.026 1.076 0.603 5610 122 802.11a OFDM 80 13.5 13.44 0.08 0 mm 2 02156 29.3 left 92.3 0.014 1.014 1.0	5610	122	802.11ac	OFDM	80	13.5	13.44	0.16	17 mm	2	02156	29.3	back	92.3	0.071	1.014	1.083	0.078	
Second S	5710	142	802.11n	OFDM	40	7.5	7.43	-0.18	0 mm	2	02156	13.5	back	92.9	0.432	1.016	1.076	0.472	
5590 118 80211n OFDM 40 7.5 7.39 -0.14 0 mm 2 0216e 13.5 top 92.9 0.491 1.026 1.076 0.542 5710 142 802.11n OFDM 40 7.5 7.43 -0.10 0 mm 2 0215e 13.5 top 92.9 0.552 1.016 1.076 0.603 5610 122 802.11ac OFDM 80 13.5 13.44 0.08 0 mm 2 0215e 29.3 left 92.3 0.014 1.044 1.083 0.278 5610 122 802.11ac OFDM 80 13.5 13.44 0.08 0 mm 2 0215e 29.3 left 92.3 0.014 1.044 1.083 0.071 8005 161 802.11a OFDM 20 13.5 12.71 0.17 17 mm 1 0216e 6 back 92.3 0.475 1.247 1.0	5610	122	802.11ac						17 mm			29.3	top				1.083	-	
5590 118 80211n OFDM 40 7.5 7.39 -0.14 0 mm 2 0216e 13.5 top 92.9 0.491 1.026 1.076 0.542 5710 142 802.11n OFDM 40 7.5 7.43 -0.10 0 mm 2 0215e 13.5 top 92.9 0.552 1.016 1.076 0.603 5610 122 802.11ac OFDM 80 13.5 13.44 0.08 0 mm 2 0215e 29.3 left 92.3 0.014 1.044 1.083 0.278 5610 122 802.11ac OFDM 80 13.5 13.44 0.08 0 mm 2 0215e 29.3 left 92.3 0.014 1.044 1.083 0.071 8005 161 802.11a OFDM 20 13.5 12.71 0.17 17 mm 1 0216e 6 back 92.3 0.475 1.247 1.0	5510	102	802.11n	OFDM	40	7.5	7.40	-0.15	0 mm	2	02156	13.5	top	92.9	0.497	1.023	1.076	0.547	
5610 122 802.11ac OFDM 80 13.5 13.44 0.14 0 mm 2 02156 29.3 right 92.3 0.253 1.014 1.083 0.278 5610 122 802.11ac OFDM 80 13.5 13.44 0.08 0 mm 2 02156 29.3 left 92.3 0.014 1.014 1.083 0.015 5805 161 802.11a OFDM 20 13.5 12.71 0.17 17 mm 1 02156 6 back 95.0 0.047 1.199 1.053 0.059 7755 151 802.11a OFDM 40 7.5 6.54 -0.11 0 mm 1 02156 13.5 back 92.3 0.475 1.247 1.083 0.641 8005 161 802.11a OFDM 20 13.5 12.71 0.15 17 mm 1 02156 6 top 95.0 0.061 1.199 1																			
5610 122 802.11ac OFDM 80 13.5 13.44 0.14 0 mm 2 02156 29.3 right 92.3 0.253 1.014 1.083 0.278 5610 122 802.11ac OFDM 80 13.5 13.44 0.08 0 mm 2 02156 29.3 left 92.3 0.014 1.014 1.083 0.015 5805 161 802.11a OFDM 20 13.5 12.71 0.17 17 mm 1 02156 6 back 95.0 0.047 1.199 1.053 0.059 7755 151 802.11a OFDM 40 7.5 6.54 -0.11 0 mm 1 02156 13.5 back 92.3 0.475 1.247 1.083 0.641 8005 161 802.11a OFDM 20 13.5 12.71 0.15 17 mm 1 02156 6 top 95.0 0.061 1.199 1	5710	142	802.11n	OFDM	40	7.5	7.43	-0.10	0 mm	2	02156	13.5	top	92.9	0.552	1.016	1.076	0.603	
5610 122 802.11ac OFDM 80 13.5 13.44 0.08 0 mm 2 02156 29.3 left 92.3 0.014 1.014 1.083 0.015 5805 161 802.11a OFDM 20 13.5 12.71 0.17 17 mm 1 02156 6 back 95.0 0.047 1.199 1.053 0.059 5755 151 802.11a OFDM 40 7.5 6.54 -0.11 0 mm 1 02156 13.5 back 92.3 0.475 1.247 1.083 0.641 8005 161 802.11a OFDM 20 13.5 12.71 0.15 17 mm 1 02156 6 top 95.0 0.061 1.199 1.063 0.077 5755 151 802.11a OFDM 40 7.5 6.54 0.18 0 mm 1 02156 6 right 95.0 0.021 1.199 1.053 </td <td>5610</td> <td>122</td> <td>802.11ac</td> <td>OFDM</td> <td>80</td> <td>13.5</td> <td>13.44</td> <td>0.14</td> <td>0 mm</td> <td></td> <td>02156</td> <td>29.3</td> <td></td> <td>92.3</td> <td>0.253</td> <td>1.014</td> <td>1.083</td> <td>0.278</td> <td></td>	5610	122	802.11ac	OFDM	80	13.5	13.44	0.14	0 mm		02156	29.3		92.3	0.253	1.014	1.083	0.278	
5805 161 802.11a OFDM 20 13.5 12.71 0.17 17 mm 1 0.2166 6 back 95.0 0.047 1.199 1.053 0.059 5755 151 802.11n OFDM 40 7.5 6.54 -0.11 0 mm 1 0.2166 6 back 92.3 0.475 1.247 1.083 0.641 5805 161 802.11a OFDM 20 13.5 12.71 0.15 17 mm 1 0.2156 6 top 95.0 0.061 1.199 1.053 0.077 5755 151 802.11a OFDM 40 7.5 6.54 0.18 0 mm 1 0.2156 6.5 top 95.0 0.061 1.199 1.063 0.077 5755 151 802.11a OFDM 20 13.5 12.71 0.07 0 mm 1 0.2156 6 right 95.0 0.021 1.199 1.053 <td></td> <td></td> <td></td> <td></td> <td>80</td> <td></td> <td></td> <td></td> <td>0 mm</td> <td></td> <td></td> <td></td> <td>left</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					80				0 mm				left						
5756 151 802.11n OFDM 40 7.5 6.54 -0.11 0 mm 1 02166 13.5 back 92.3 0.475 1.247 1.083 0.641 5805 161 802.11a OFDM 20 13.5 12.71 0.15 17 mm 1 02156 6 top 95.0 0.061 1.199 1.053 0.077 5755 151 802.11a OFDM 40 7.5 6.54 0.18 0 mm 1 02156 13.5 top 92.3 0.148 1.247 1.083 0.200 5805 161 802.11a OFDM 20 13.5 12.71 -0.07 0 mm 1 02156 6 right 95.0 0.021 1.199 1.053 0.027 8005 161 802.11a OFDM 20 13.5 12.71 0.17 0 mm 1 02156 6 left 95.0 0.009 1.199 1.053 <td></td> <td>1</td> <td></td>																		1	
5806 161 802.11a OFDM 20 13.5 12.71 0.15 17 mm 1 02156 6 top 95.0 0.061 1.199 1.053 0.077 5755 151 802.11n OFDM 40 7.5 6.54 0.18 0 mm 1 02156 13.5 top 92.3 0.148 1.247 1.083 0.200 8006 161 802.11a OFDM 20 13.5 12.71 -0.07 0 mm 1 02156 6 right 95.0 0.021 1.199 1.053 0.027 8005 161 802.11a OFDM 20 13.5 12.71 0.17 0 mm 1 02156 6 left 95.0 0.009 1.199 1.053 0.027 8005 161 802.11a OFDM 20 13.5 0.17 0 mm 1 02156 6 left 95.0 0.009 1.199 1.053 0.011	5755	151	802.11n		40	7.5	6.54	-0.11	0 mm	1			back	92.3	0.475	1,247	1.083	0.641	
5756 151 802.11n OFDM 40 7.5 6.54 0.18 0 mm 1 02166 13.5 top 92.3 0.148 1.247 1.083 0.202 5806 161 802.11a OFDM 20 13.5 12.71 0.07 0 mm 1 02166 6 right 95.0 0.021 1.199 1.053 0.027 806 161 802.11a OFDM 20 13.5 12.71 0.17 0 mm 1 02156 6 left 95.0 0.021 1.199 1.053 0.011 5755 151 802.11n OFDM 40 14.0 13.76 -0.15 17 mm 2 02156 13.5 back 92.9 0.086 1.057 1.076 0.088 5755 151 802.11n OFDM 40 7.5 7.49 -0.14 0 mm 2 02156 13.5 top 92.9 0.100 1.076 0.483 </td <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>				<u> </u>															
5805 161 802.11a OFDM 20 13.5 12.71 -0.07 0 mm 1 02156 6 right 95.0 0.021 1.199 1.053 0.027 8805 161 802.11a OFDM 20 13.5 12.71 0.17 0 mm 1 02156 6 left 95.0 0.009 1.199 1.053 0.011 5755 151 802.11n OFDM 40 14.0 13.76 -0.15 17 mm 2 02156 13.5 back 92.9 0.086 1.057 1.076 0.088 5755 151 802.11n OFDM 40 7.5 7.49 -0.14 0 mm 2 02156 13.5 back 92.9 0.086 1.076 0.463 5755 151 802.11n OFDM 40 14.0 13.76 0.12 17 mm 2 02156 13.5 top 92.9 0.100 1.076 0.144				<u> </u>									<u> </u>						
5806 161 802.11a OFDM 20 13.5 12.71 0.17 0 mm 1 02156 6 left 95.0 0.009 1.199 1.053 0.011 5755 151 802.11n OFDM 40 14.0 13.76 -0.15 17 mm 2 02156 13.5 back 92.9 0.086 1.057 1.076 0.088 5755 151 802.11n OFDM 40 7.5 7.49 -0.14 0 mm 2 02156 13.5 back 92.9 0.429 1.002 1.076 0.483 5755 151 802.11n OFDM 40 14.0 13.76 0.12 17 mm 2 02156 13.5 top 92.9 0.429 1.002 1.076 0.483 5755 151 802.11n OFDM 40 14.0 13.76 0.12 17 mm 2 02156 13.5 top 92.9 0.100 1.076				<u> </u>															
5756 151 802.11n OFDM 40 7.5 7.49 -0.14 0 mm 2 02156 13.5 back 92.9 0.429 1.002 1.076 0.463 5755 151 802.11n OFDM 40 14.0 13.76 0.12 17 mm 2 02156 13.5 top 92.9 0.100 1.076 0.114 5755 151 802.11n OFDM 40 7.5 7.49 -0.13 0 mm 2 02156 13.5 top 92.9 0.553 1.002 1.076 0.596 5756 151 802.11n OFDM 40 14.0 13.76 0.18 0 mm 2 02156 13.5 top 92.9 0.553 1.002 1.076 0.596 5756 151 802.11n OFDM 40 14.0 13.76 0.18 0 mm 2 02156 13.5 right 92.9 0.196 1.057 1.076 0										-									
5756 151 802.11n OFDM 40 7.5 7.49 -0.14 0 mm 2 02156 13.5 back 92.9 0.429 1.002 1.076 0.463 5755 151 802.11n OFDM 40 14.0 13.76 0.12 17 mm 2 02156 13.5 top 92.9 0.100 1.076 0.114 5755 151 802.11n OFDM 40 7.5 7.49 -0.13 0 mm 2 02156 13.5 top 92.9 0.553 1.002 1.076 0.596 5756 151 802.11n OFDM 40 14.0 13.76 0.18 0 mm 2 02156 13.5 top 92.9 0.553 1.002 1.076 0.596 5756 151 802.11n OFDM 40 14.0 13.76 0.18 0 mm 2 02156 13.5 right 92.9 0.196 1.057 1.076 0	5755	151	802.11n	OFDM	40	14.0	13.76	-0.15	17 mm	2	02156	13.5	back	92.9	0.086	1.057	1.076	0.098	
5755 151 802.11n OFDM 40 14.0 13.76 0.12 17 mm 2 02156 13.5 top 92.9 0.100 1.057 1.076 0.114 5755 151 802.11n OFDM 40 7.5 7.49 -0.13 0 mm 2 02156 13.5 top 92.9 0.553 1.002 1.076 0.596 5755 151 802.11n OFDM 40 14.0 13.76 0.18 0 mm 2 02156 13.5 right 92.9 0.196 1.057 1.076 0.223																			
5755 151 802.11n OFDM 40 7.5 7.49 -0.13 0 mm 2 02156 13.5 top 92.9 0.553 1.002 1.076 0.596 5755 151 802.11n OFDM 40 14.0 13.76 0.18 0 mm 2 02156 13.5 right 92.9 0.196 1.057 1.076 0.223		_		_															
5755 151 802.11n OFDM 40 14.0 13.76 0.18 0 mm 2 02156 13.5 right 92.9 0.196 1.057 1.076 0.223													<u> </u>						
	5755	151	802.11n	OFDM	40	14.0	13.76	-0.19	0 mm	2	02156	13.5	left	92.9	0.032	1.057	1.076	0.036	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body											1								
Spatial Peak 1.6 W/kg (mW/g)			~																
Uncontrolled Exposure/General Population averaged over 1 gram			Unc	ontrolled			n												

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 70 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 79 of 95

Table 10-11 NII MIMO BODY SAR

								MEASUREM	ENT RE	SULTS										
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant 1) [dBm]	Maximum Allowed Power	Conducted Power (Ant 2) [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[WHZ]	(Ant 1) [dBm]	(Ant I) [dBill]	(Ant 2) [dBm]	(Ant 2) [uBm]	[ub]		comig.	Number	(Mbps)		(%)	(W/kg)	(Power)	Cycle)	(W/kg)	
5270	54	802.11n	OFDM	40	7.5	6.82	7.5	7.01	-0.15	0 mm	MIMO	02156	27	back	92.9	0.297	1.169	1.076	0.374	
5270	54	802.11n	OFDM	40	7.5	6.82	7.5	7.01	-0.19	0 mm	MIMO	02156	27	top	92.9	0.418	1.169	1.076	0.526	
5310	62	802.11n	OFDM	40	14.5	14.27	14.5	14.09	0.20	0 mm	MIMO	02156	27	right	92.9	0.307	1.099	1.076	0.363	
5310	62	802.11n	OFDM	40	14.5	14.27	14.5	14.09	0.16	0 mm	MIMO	02156	27	left	92.9	0.046	1.099	1.076	0.054	
5630	126	802.11n	OFDM	40	7.5	6.59	7.5	7.37	-0.14	0 mm	MIMO	02156	27	back	92.9	0.398	1.233	1.076	0.528	
5630	126	802.11n	OFDM	40	7.5	6.59	7.5	7.37	-0.13	0 mm	MIMO	02156	27	top	92.9	0.563	1.233	1.076	0.747	
5610	122	802.11ac	OFDM	80	13.5	12.52	13.5	13.44	0.02	0 mm	MIMO	02156	58.5	right	92.4	0.273	1.253	1.082	0.370	
5610	122	802.11ac	OFDM	80	13.5	12.52	13.5	13.44	0.14	0 mm	MIMO	2156	58.5	left	92.4	0.032	1.253	1.082	0.043	
5755	151	802.11n	OFDM	40	7.5	6.54	7.5	7.49	-0.13	0 mm	MIMO	02156	27	back	92.9	0.392	1.247	1.076	0.526	
5755	151	802.11n	OFDM	40	7.5	6.54	7.5	7.49	-0.16	0 mm	MIMO	02156	27	top	92.9	0.572	1.247	1.076	0.767	
5795	159	802.11n	OFDM	40	7.5	6.46	7.5	7.44	-0.02	0 mm	MIMO	02156	27	top	92.9	0.583	1.271	1.076	0.797	A12
5825	165	802.11n	OFDM	20	13.5	12.55	13.5	13.26	0.08	0 mm	MIMO	02156	13	right	94.5	0.195	1.245	1.058	0.257	
5825	165	802.11n	OFDM	20	13.5	12.55	13.5	13.26	0.06	0 mm	MIMO	02156	13	left	94.5	0.048	1.245	1.058	0.063	
				ANSI / IE	EEE C95.1 1992	- SAFETY LIMIT				Body										
	Spatial Peak Uncontrolled Exposure/General Population														kg (mW/g) I over 1 gram					

For channels 54, 126, 151, and 159 to achieve the 10.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 7.5 dBm. For channel 62 to achieve the 17.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 14.5 dBm. For channels 122 and 165 to achieve the 16.5 dBm maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 13.5 dBm.

Table 10-12 DSS BODY SAR

							<u> </u>		•							
						ME	ASURE	MENT F	RESUL	ΓS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [abm]	[dB]	,	Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	7.0	6.54	-0.01	0 mm	02156	1	back	77.6	0.157	1.112	1.289	0.225	A13
2441	39	Bluetooth	FHSS	7.0	6.54	-0.16	.16 0 mm 02156 1 top 77.6 0.125 1.112 1.289 0.179									
2441	39	Bluetooth	FHSS	7.0	6.54	0.03	0 mm	02156	1	right	77.6	0.009	1.112	1.289	0.013	
2441	41 39 Bluetooth FHSS 7.0 6.54 0.14						0 mm	02156	1	left	77.6	0.004	1.112	1.289	0.006	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body									
	Spatial Peak						1.6 W/kg (mW/g)									
	Uncontrolled Exposure/General Population						averaged over 1 gram									

10.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dags 80 of 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 80 of 95
© 202	0 PCTEST				REV 21.4 M

- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 12 for variability analysis.
- 7. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determine SAR test exclusion for adjacent edge configurations.

UMTS Notes:

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.
- 7. This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance, all SAR tests were performed using Power Class 3. SAR with power class 2 at the available duty factor was additionally performed for the power class 3 configuration with the highest SAR configuration for each exposure conditions. Please see Section 13 for linearity results.

WLAN Notes:

1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 94 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 81 of 95
20 DCTEST				DEV/ 21 / M

- the maximum allowed powers and the highest reported DSSS SAR. See Section 7.6.4 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 7.6.5 for more information.
- 3. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Section 11 for complete analysis.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

Bluetooth Notes

Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5
operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was
scaled to the 100% transmission duty factor to determine compliance. See Section 8 for the time domain
plot and calculation for the duty factor of the device.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 92 of 95
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 82 of 95

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g.

When the antenna separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine the simultaneous transmission SAR exclusion for test positions excluded per FCC KDB Publication 447498 D01v06.

11.3 Body Simultaneous Transmission Analysis

Table 11-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 1.7 cm)

	U	IIIIaita	IIICOUS	, iiaii	3111133		Citaric	, 441611	2. 7 01 12		11 (DO	ay ut i	., 0111	,	
Simult Tx	Configuration	UMTS 850 SAR (W/kg)			Σ	SAR (W/kg)	Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	1 at 17 mm	2.4 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	;	Σ SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
Body SAR	Back Top	0.625 0.794	0.157 0.161	0.039 0.058	0.782 0.955	0.664 0.852	0.821 1.013	Body SAR	Back Top	0.635 0.530	0.157 0.161	0.039 0.058	0.792 0.691	0.674 0.588	0.831 0.749
Simult Tx		UMTS 1900 SAR (W/kg)			Σ	SAR (W/kg)	Simult Tx	Configuration	LTE Band 71 SAR (W/kg)		2.4 GHz WLAN Ant 2 at 17 mm SAR (W/kg)		Σ SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
Body SAR	Back	1.158	0.157	0.039	1.315	1.197	1.354	Body SAR	Back	0.507	0.157	0.039	0.664	0.546	0.703
Dody Orac	Тор	1.214	0.161	0.058	1.375	1.272	1.433	Dody Or at	Тор	0.404	0.161	0.058	0.565	0.462	0.623
Simult Tx	Configuration	LTE Band 12 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 17 mm SAR (W/kg)		Σ	SAR (W/kg)	Simult Tx	Configuration	LTE Band 13 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	;	Σ SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
Body SAR	Back	0.466	0.157	0.039	0.623	0.505	0.662	Body SAR	Back	0.449	0.157	0.039	0.606	0.488	0.645
Dody SAIN	Тор	0.356	0.161	0.058	0.517	0.414	0.575	Dody SAIN	Top	0.290	0.161	0.058	0.451	0.348	0.509
Simult Tx	Configuration	LTE Band 26 (Cell) SAR (W/kg)	2.4 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	Σ	SAR (W/kg)	Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	2.4 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	;	Σ SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
Body SAR	Back	0.579	0.157	0.039	0.736	0.618	0.775	Body SAR	Back	0.638	0.157	0.039	0.795	0.677	0.834
,	Тор	0.701	0.161	0.058	0.862	0.759	0.920	,	Тор	0.592	0.161	0.058	0.753	0.650	0.811
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	2.4 GHz WLAN Ant 1 at 17 mm SAR (W/kg)		Σ	SAR (W/kg)	Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	:	Σ SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
Body SAR	Back	1.276	0.157	0.039	1.433	1.315	1.472	Body SAR	Back	0.211	0.157	0.039	0.368	0.250	0.407
Dody Orac	Top	1.067	0.161	0.058	1.228	1.125	1.286	Dody Orac	Top	0.276	0.161	0.058	0.437	0.334	0.495

	FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogg 92 of 05
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 83 of 95
© 202	0 PCTEST				REV 21.4 M

Table 11-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 0.0 cm)

	J	IIIIuita	meous	o ilali	31111331	ion sc	Cilaiic	, AAILII /	2.4 G П 2	LVVLA	אסם) או	ay at u	.0 6111	,	
Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ	SAR (W/kg	j)	Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	1 at 0 mm	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	;	ΣSAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
	Back	0.883	0.429	0.121	1.312	1.004	1.433		Back	0.765	0.429	0.121	1.194	0.886	1.315
Body SAR	Тор	0.684	0.293	0.090	0.977	0.774	1.067	Body SAR	Тор	0.541	0.293	0.090	0.834	0.631	0.924
bouy SAR	Right	0.174	0.243	0.150	0.417	0.324	0.567	Body SAR	Right	0.227	0.243	0.150	0.470	0.377	0.620
	Left	0.312	0.127	0.027	0.439	0.339	0.466		Left	0.845	0.127	0.027	0.972	0.872	0.999
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	1 at 0 mm	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ	SAR (W/kg	1)	Simult Tx	Configuration	LTE Band 12 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	:	∑SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
1	Back	0.809	0.429	0.121	1.238	0.930	1.359		Back	0.707	0.429	0.121	1.136	0.828	1.257
Body SAR	Тор	0.244	0.293	0.090	0.537	0.334	0.627	Body SAR	Тор	0.501	0.293	0.090	0.794	0.591	0.884
	Right	0.252	0.243	0.150	0.495	0.402	0.645		Right	0.144	0.243	0.150	0.387	0.294	0.537
	Left	0.620	0.127	0.027	0.747	0.647	0.774		Left	0.342	0.127	0.027	0.469	0.369	0.496
Simult Tx	Configuration	LTE Band 71 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ	SAR (W/kg	1)	Simult Tx	Configuration	LTE Band 26 (Cell) SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	:	ESAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
	Back	0.930	0.429	0.121	1.359	1.051	1.480		Back	0.824	0.429	0.121	1.253	0.945	1.374
Body SAR	Top	0.707	0.293	0.090	1.000	0.797	1.090	Body SAR	Top	0.602	0.293	0.090	0.895	0.692	0.985
Dody Orac	Right	0.216	0.243	0.150	0.459	0.366	0.609	Dody Orac	Right	0.171	0.243	0.150	0.414	0.321	0.564
	Left	0.308	0.127	0.027	0.435	0.335	0.462		Left	0.312	0.127	0.027	0.439	0.339	0.466
Simult Tx	Configuration	LTE Band 13 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ	SAR (W/kg	1)	Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	:	ΣSAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
	Back	0.816	0.429	0.121	1.245	0.937	1.366		Back	0.846	0.429	0.121	1.275	0.967	1.396
Body SAR	Тор	0.609	0.293	0.090	0.902	0.699	0.992	Body SAR	Тор	0.246	0.293	0.090	0.539	0.336	0.629
	Right	0.127	0.243	0.150	0.370	0.277	0.520		Right	0.182	0.243	0.150	0.425	0.332	0.575
	Left	0.325	0.127	0.027	0.452	0.352	0.479		Left	0.632	0.127	0.027	0.759	0.659	0.786
Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ	SAR (W/kg	1	Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	2.4 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	2.4 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	:	SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3
1	Back	0.655	0.429	0.121	1.084	0.776	1.205		Back	0.743	0.429	0.121	1.172	0.864	1.293
Body SAR	Тор	0.499	0.293	0.090	0.792	0.589	0.882	Body SAR	Тор	0.244	0.293	0.090	0.537	0.334	0.627
,	Right	0.227	0.243	0.150	0.470	0.377	0.620	,	Right	0.400	0.243	0.150	0.643	0.550	0.793
1	Left	1.044	0.127	0.027	1.171	1.071	1.198		Left	1.296	0.127	0.027	1.423	1.323	1.450

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 94 of 05	
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 84 of 95	

Table 11-3
Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 1.7 cm)

	•	Siiiiuit	aneou	5 IIai	1211112	Siuli S	Cenan	O WILLI	э впи	VVLAIN	ı (Dou	y at i	<i>r</i> Cili)										
Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	Σ	SAR (W/kg	1)	Simult Tx		UMTS 1750 SAR (W/kg)	5 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	;	Σ SAR (W/kg)								
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3								
Body SAR	Back	0.625	0.059	0.111	0.684	0.736	0.795	Body SAR	Back	0.635	0.059	0.111	0.694	0.746	0.805								
Douy SAIN	Top	0.794	0.077	0.154	0.871	0.948	1.025	Body Orac	Top	0.530	0.077	0.154	0.607	0.684	0.761								
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)			Σ SAR (W/kg)		Σ SAR (W/kg)		Σ SAR (W/kg)		Σ SAR (W/kg)		Σ SAR (W/kg)		Σ SAR (W/kg)		Configuration	LTE Band 71 SAR (W/kg)		5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	;	Σ SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3								
Body SAR	Back	1.158	0.059	0.111	1.217	1.269	1.328	Body SAR	Back	0.507	0.059	0.111	0.566	0.618	0.677								
Dody Ortic	Top	1.214	0.077	0.154	1.291	1.368	1.445	Body Orac	Тор	0.404	0.077	0.154	0.481	0.558	0.635								
Simult Tx	Configuration	LTE Band 12 SAR (W/kg)	5 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	Σ	Σ SAR (W/kg)		Simult Tx	Configuration	LTE Band 13 SAR (W/kg)		5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	;	Σ SAR (W/kg)									
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3								
Body SAR	Back	0.466	0.059	0.111	0.525	0.577	0.636	Body SAR	Back	0.449	0.059	0.111	0.508	0.560	0.619								
Dody SAIN	Top	0.356	0.077	0.154	0.433	0.510	0.587	Dody SAIN	Top	0.290	0.077	0.154	0.367	0.444	0.521								
Simult Tx	Configuration	LTE Band 26 (Cell) SAR (W/kg)	5 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	Σ	Σ SAR (W/kg)		Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	;	Σ SAR (W/kg)								
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3								
Body SAR	Back	0.579	0.059	0.111	0.638	0.690	0.749	Body SAR	Back	0.638	0.059	0.111	0.697	0.749	0.808								
200, 0.110	Тор	0.701	0.077	0.154	0.778	0.855	0.932		Тор	0.592	0.077	0.154	0.669	0.746	0.823								
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	5 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	Σ	Σ SAR (W/kg)		Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN Ant 1 at 17 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 17 mm SAR (W/kg)	:	Σ SAR (W/kg)								
		1	2	3	1+2	1+3	1+2+3			1	2	3	1+2	1+3	1+2+3								
Body SAR	Back Top	1.276 1.067	0.059 0.077	0.111 0.154	1.335 1.144	1.387 1.221	1.446 1.298	Body SAR	Back Top	0.211 0.276	0.059 0.077	0.111 0.154	0.270 0.353	0.322 0.430	0.381 0.507								

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg OF of OF
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 85 of 95

Table 11-4 Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 0.0 cm)

	SII	nunant	:0u5 11	ansiiii	รรเบเเ จ	Cenan	O WILL S	GHZ W	LAN (D	ouy at	U.U CIII)			
Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	ΣSAR	(W/kg)	Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	ΣSAR	(W/kg)		
		1	2	3	1+2	1+3			1	2	3	1+2	1+3		
	Back	0.883	0.664	0.472	1.547	1.355		Back	0.765	0.664	0.472	1.429	1.237		
Body SAR	Тор	0.684	0.275	0.603	0.959	1.287	Body SAR	Тор	0.541	0.275	0.603	0.816	1.144		
bouy SAR	Right	0.174	0.033	0.313	0.207	0.487	Dody SAR	Right	0.227	0.033	0.313	0.260	0.540		
	Left	0.312	0.025	0.036	0.337	0.348		Left	0.845	0.025	0.036	0.870	0.881		
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ SAR (W/kg)		Σ SAR (W/kg)		Simult Tx	Configuration	LTE Band 71 SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	ΣSAR	(W/kg)
		1	2	3	1+2	1+3			1	2	3	1+2	1+3		
,	Back	0.809	0.664	0.472	1.473	1.281	↓	Back	0.930	0.664	0.472	1.594	1.402		
Body SAR	Тор	0.244	0.275	0.603	0.519	0.847	Body SAR	Тор	0.707	0.275	0.603	0.982	1.310		
	Right	0.252	0.033	0.313	0.285	0.565	´	Right	0.216	0.033	0.313	0.249	0.529		
	Left	0.620	0.025	0.036	0.645	0.656		Left	0.308	0.025	0.036	0.333	0.344		
Simult Tx	Configuration	LTE Band 12 SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ SAR	Σ SAR (W/kg)		Configuration	LTE Band 13 SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	ΣSAR	(W/kg)		
		1	2	3	1+2	1+3			1	2	3	1+2	1+3		
	Back	0.707	0.664	0.472	1.371	1.179		Back	0.816	0.664	0.472	1.480	1.288		
Body SAR	Тор	0.501	0.275	0.603	0.776	1.104	Body SAR	Тор	0.609	0.275	0.603	0.884	1.212		
Body Orac	Right	0.144	0.033	0.313	0.177	0.457	Dody Orac	Right	0.127	0.033	0.313	0.160	0.440		
	Left	0.342	0.025	0.036	0.367	0.378		Left	0.325	0.025	0.036	0.350	0.361		
Simult Tx	Configuration	LTE Band 26 (Cell) SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ SAR	(W/kg)	Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	Σ SAR	(W/kg)		
		1	2	3	1+2	1+3			1	2	3	1+2	1+3		
ļ	Back	0.824	0.664	0.472	1.488	1.296		Back	0.655	0.664	0.472	1.319	1.127		
Body SAR	Тор	0.602	0.275	0.603	0.877	1.205	Body SAR	Тор	0.499	0.275	0.603	0.774	1.102		
Dody CAIN	Right	0.171	0.033	0.313	0.204	0.484	Louy OAK	Right	0.227	0.033	0.313	0.260	0.540		
	Left	0.312	0.025	0.036	0.337	0.348		Left	1.044	0.025	0.036	1.069	1.080		
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	ΣSAR	(W/kg)	Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN Ant 1 at 0 mm SAR (W/kg)	5 GHz WLAN Ant 2 at 0 mm SAR (W/kg)	ΣSAR	(W/kg)		
		1	2	3	1+2	1+3			1	2	3	1+2	1+3		
	Back	0.846	0.664	0.472	1.510	1.318		Back	0.743	0.664	0.472	1.407	1.215		
Body SAR	Тор	0.246	0.275	0.603	0.521	0.849	Body SAR	Тор	0.244	0.275	0.603	0.519	0.847		
Dody CAIN	Right	0.182	0.033	0.313	0.215	0.495	Jour Oak	Right	0.400	0.033	0.313	0.433	0.713		
	Left	0.632	0.025	0.036	0.657	0.668		Left	1.296	0.025	0.036	1.321	1.332		

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dame 90 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 86 of 95

Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.883	0.528	1.411		Back	0.765	0.528	1.293
Body SAR	Тор	0.684	0.797	1.481	Body SAR	Тор	0.541	0.797	1.338
BOUY SAK	Right	0.174	0.370	0.544	Body SAR	Right	0.227	0.370	0.597
	Left	0.312	0.063	0.375		Left	0.845	0.063	0.908
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 12 SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.809	0.528	1.337]	Back	0.707	0.528	1.235
Body SAR	Тор	0.244	0.797	1.041	Body SAR	Тор	0.501	0.797	1.298
200, 07	Right	0.252	0.370	0.622		Right	0.144	0.370	0.514
	Left	0.620	0.063	0.683		Left	0.342	0.063	0.405
Simult Tx	Configuration	LTE Band 71 SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 26 (Cell) SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.930	0.528	1.458		Back	0.824	0.528	1.352
Body SAR	Тор	0.707	0.797	1.504	Body SAR	Тор	0.602	0.797	1.399
200, 07	Right	0.216	0.370	0.586		Right	0.171	0.370	0.541
	Left	0.308	0.063	0.371		Left	0.312	0.063	0.375
Simult Tx	Configuration	LTE Band 13 SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.816	0.528	1.344		Back	0.846	0.528	1.374
Body SAR	Тор	0.609	0.797	1.406	Body SAR	Тор	0.246	0.797	1.043
Body Orac	Right	0.127	0.370	0.497	Body Orac	Right	0.182	0.370	0.552
	Left	0.325	0.063	0.388		Left	0.632	0.063	0.695
Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN MIMO at 0 mm SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2			1	2	1+2
	Back	0.655	0.528	1.183		Back	0.743	0.528	1.271
Body SAR	Тор	0.499	0.797	1.296	Body SAR	Тор	0.244	0.797	1.041
200, 0, 110	Right	0.227	0.370	0.597	200, 0, 110	Right	0.400	0.370	0.770
	Left	1.044	0.063	1.107		Left	1.296	0.063	1.359

FCC ID: ZNFT600TS	@\PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 97 of 95
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 87 of 95

Table 11-5
Simultaneous Transmission Scenario with Bluetooth

Exposure Condition	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	UMTS 850	0.883	0.225	1.108
	UMTS 1750	0.845	0.225	1.070
	UMTS 1900	1.214	0.225	1.439
	LTE Band 71	0.930	0.225	1.155
Body SAR	LTE Band 12	0.707	0.225	0.932
Body SAN	LTE Band 13	0.816	0.225	1.041
	LTE Band 26 (Cell)	0.824	0.225	1.049
	LTE Band 66 (AWS)	1.044	0.225	1.269
	LTE Band 25 (PCS)	1.276	0.225	1.501
	LTE Band 41	1.296	0.225	1.521

Note: For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

11.4 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 99 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 88 of 95

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 12-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS														
Band	FREQUENCY		Mode	Service	# of Time Slots	Slots Rate	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Repeated	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.				(Mbps)			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
835	826.40	4132	UMTS 850	RMC	N/A	N/A	back	0 mm	0.883	0.865	1.02	N/A	N/A	N/A	N/A
750	#N/A	133297	LTE Band 71, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	N/A	back	0 mm	0.890	0.850	1.05	N/A	N/A	N/A	N/A
1750	1770.00	132572	LTE Band 66 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 99 RB Offset	N/A	N/A	left	0 mm	0.937	0.932	1.01	N/A	N/A	N/A	N/A
1900	1905.00	26590	LTE Band 25 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	N/A	back	17 mm	1.190	1.090	1.09	N/A	N/A	N/A	N/A
2600	2680.00	41490	LTE Band 41, 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	N/A	N/A	left	0 mm	1.290	1.240	1.04	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body							
	Spatial Peak						1.6 W/kg (mW/g)								
			Uncontrolled Exposure/General	l Population						ave	eraged o	ver 1 gram			

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 80 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 89 of 95

© 2020 PCTEST REV 21.4 M 09/11/2019

13.1 LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g.

LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

Table 13-1
LTE Band 41 Body Linearity Data

miles Data	
LTE Band 41 PC3	LTE Band 41 PC2
23.2	25.2
23.18	24.89
1.29	1.19
207.97	308.32
63.3%	43.3%
131.64	133.50
	-9.04%
	23.2 23.18 1.29 207.97 63.3%

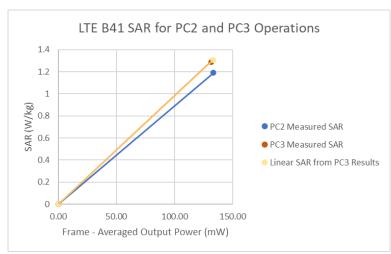


Figure 13-1 LTE Band 41 Body-Worn Linearity

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 00 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 90 of 95

© 2020 PCTEST REV 21.4 M 09/11/2019

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	CBT	N/A	Car Due	3051A00187
Agilent	E4438C	ESG Vector Signal Generator	3/8/2019	Biennial	3/8/2021	MY42082385
Agilent	E4438C	ESG Vector Signal Generator	3/11/2019	Biennial	3/11/2021	MY45090700
Agilent	N9020A	MXA Signal Analyzer	4/20/2019	Annual	4/20/2020	US46470561
Agilent	N5182A	MXG Vector Signal Generator	7/10/2019	Annual	7/10/2020	MY47420800
Agilent	N9030A	PXA Signal Analyzer (44GHz)	6/12/2019	Annual	6/12/2020	MY52350166
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40000670
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/19/2019	Annual	9/19/2020	MY40003841
Agilent	E5515C	Wireless Communications Test Set	9/25/2019	Annual	9/25/2020	GB43304278
Agilent	E5515C	Wireless Communications Test Set	2/7/2018	Triennial	2/7/2021	GB43304447
Agilent	E5515C	Wireless Communications Test Set	6/26/2019	Annual	6/26/2020	MY50267125
Agilent	N4010A	Wireless Connectivity Test Set	CBT	N/A	CBT	GB44450273
Amplifier Research	155166	Amplifier	CBT	N/A	CBT	353317
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	353468
Amplifier Research	1551G6	Amplifier	CBT	N/A	CBT	353469
Anritsu	MA2411B	Pulse Power Sensor	6/11/2019	Annual	6/11/2020	1207364
Anritsu	MA2411B MA2411B	Pulse Power Sensor Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	MA2411B	Pulse Power Sensor	3/6/2019	Annual	3/6/2020	1339018
Anritsu	MT8820C	Radio Communication Analyzer	3/29/2019	Annual	3/29/2020	6201300731
Anritsu	MT8821C	Radio Communication Analyzer	3/6/2019	Annual	3/6/2020	6201381794
Anritsu	MT8862A	Wireless Connectivity Test Set	8/8/2019	Annual	8/8/2020	6261782395
Anritsu	MA24106A	USB Power Sensor	5/22/2019	Annual	5/22/2020	1231535
Anritsu	MA24106A	USB Power Sensor	5/6/2019	Annual	5/6/2020	1231538
Anritsu	ML2496A	Power Meter	10/29/2019	Annual	10/29/2020	1840005
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282739
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282744
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647802
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766777
Keysight Keysight Technologies	772D N6705B	Dual Directional Coupler DC Power Analyzer	CBT 4/27/2019	N/A Biennial	CBT 4/27/2021	MY52180215 MY53004059
-,-0						
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	4/19/2019	Annual	4/19/2020	11401010036
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mitutoyo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	6/3/2019	Annual	6/3/2020	109892
Rohde & Schwarz	CMW500	Radio Communication Tester	8/26/2019	Annual	8/26/2020	100976
Rohde & Schwarz	CMW500	Radio Communication Tester	10/15/2019	Annual	10/15/2020	109366
Rohde & Schwarz	CMW500	Radio Communication Tester	6/26/2019	Annual	6/26/2020	112347
Rohde & Schwarz	CMW500	Radio Communication Tester	8/27/2019	Annual	8/27/2020	116743
Rohde & Schwarz	CMW500	Radio Communication Tester	4/19/2019	Annual	4/19/2020	128633
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Seekonk	NC-100	Torque Wrench	4/18/2018	Biennial	4/18/2020	N/A
SPEAG	D1750V2	1750 MHz SAR Dipole	5/15/2019	Annual	5/15/2020	1148
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Biennial	10/23/2020	5d080
SPEAG	D1900V2	1900 MHz SAR Dipole	2/21/2019	Annual	2/21/2020	5d148
SPEAG	D1900V2 D2450V2	2450 MHz SAR Dipole	9/11/2017	Triennial	9/11/2020	797
SPEAG	D2450V2 D2450V2	2450 MHz SAR Dipole 2450 MHz SAR Dipole	8/16/2018	Biennial	8/16/2020	981
SPEAG	D2450V2 D2600V2	2450 MHz SAR Dipole 2600 MHz SAR Dipole	8/16/2018 4/11/2018	Biennial	8/16/2020 4/11/2020	981 1004
SPEAG						
	D5GHzV2	5 GHz SAR Dipole	1/16/2018	Triennial	1/16/2021	1057
SPEAG	D750V3	750 MHz Dipole	3/18/2019	Annual	3/18/2020	1054
SPEAG	D750V3	750 MHz SAR Dipole	1/15/2018	Triennial	1/15/2021	1003
SPEAG	D835V2	835 MHz SAR Dipole	3/13/2019	Annual	3/13/2020	4d047
SPEAG	D835V2	835 MHz SAR Dipole	1/13/2020	Annual	1/13/2021	4d132
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	728
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/12/2019	Annual	9/12/2020	1449
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/20/2019	Annual	6/20/2020	1334
J. LAU		Dudy Duta requisition Electronics	4/18/2019	Annual	4/18/2020	1407
Spence		Dasy Data Acquisition Electronics				
SPEAG	DAE4	Dasy Data Acquisition Electronics	7,20,2020		12/5/2020	1522
SPEAG	DAE4 DAE4	Data Acquisition Electronics	12/5/2019	Annual	12/5/2020	1533
SPEAG SPEAG	DAE4 DAE4 DAK-3.5	Data Acquisition Electronics Dielectric Assessment Kit	12/5/2019 10/22/2019	Annual Annual	10/22/2020	1091
SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe	12/5/2019 10/22/2019 5/16/2019	Annual Annual Annual	10/22/2020 5/16/2020	1091 7406
SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe SAR Probe	12/5/2019 10/22/2019 5/16/2019 6/19/2019	Annual Annual Annual Annual	10/22/2020 5/16/2020 6/19/2020	1091 7406 7409
SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe SAR Probe SAR Probe	12/5/2019 10/22/2019 5/16/2019 6/19/2019 7/15/2019	Annual Annual Annual Annual Annual	10/22/2020 5/16/2020 6/19/2020 7/15/2020	1091 7406 7409 7547
SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe SAR Probe	12/5/2019 10/22/2019 5/16/2019 6/19/2019	Annual Annual Annual Annual	10/22/2020 5/16/2020 6/19/2020	1091 7406 7409
SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe SAR Probe SAR Probe	12/5/2019 10/22/2019 5/16/2019 6/19/2019 7/15/2019	Annual Annual Annual Annual Annual	10/22/2020 5/16/2020 6/19/2020 7/15/2020	1091 7406 7409 7547
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe SAR Probe SAR Probe SAR Probe	12/5/2019 10/22/2019 5/16/2019 5/16/2019 6/19/2019 7/15/2019 1/21/2020	Annual Annual Annual Annual Annual Annual	10/22/2020 5/16/2020 6/19/2020 7/15/2020 1/21/2021	1091 7406 7409 7547 3589
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment KI SAR Probe SAR Probe SAR Probe SAR Probe SAR Wobe SAR Wobe SAR Wobe	12/5/2019 10/22/2019 5/16/2019 6/19/2019 7/15/2019 1/21/2020 4/24/2019	Annual Annual Annual Annual Annual Annual Annual Annual Annual	10/22/2020 5/16/2020 6/19/2020 7/15/2020 1/21/2021 4/24/2020	1091 7406 7409 7547 3589 7357
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe SAR Probe	12/5/2019 10/22/2019 5/16/2019 6/19/2019 7/15/2019 1/21/2020 4/24/2019 9/19/2019 9/19/2019	Annual	10/22/2020 5/16/2020 6/19/2020 7/15/2020 1/21/2021 4/24/2020 9/19/2020	1091 7406 7409 7547 3589 7357 7552
SPEAG	DAE4 DAE4 DAK-3.5 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	Data Acquisition Electronics Dielectric Assessment Kit SAR Probe	12/5/2019 10/22/2019 5/16/2019 6/19/2019 7/15/2019 1/21/2020 4/24/2019 9/19/2019	Annual	10/22/2020 5/16/2020 6/19/2020 7/15/2020 1/21/2021 4/24/2020 9/19/2020	1091 7406 7409 7547 3589 7357 7552 7551

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 01 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 91 of 95

© 2020 PCTEST

REV 21.4 M 09/11/2019

Measurement System Probability Component March	a	С	d	e=	f	g	h =	i =	k
Measurement System				f(d,k)			c x f/e	c x a/e	
Neasurement System		Tol	Proh	.(=,,	Cı	Cı			
Measurement System Column 1 Column 2 Column 3 Column 3 <th>Uncertainty Component</th> <th></th> <th></th> <th>Div</th> <th>·</th> <th>· ·</th> <th></th> <th></th> <th>١., ١</th>	Uncertainty Component			Div	·	· ·			١., ١
Measurement System Probe Calibration 6.55 N 1 1.0 1.0 6.6 6.6 ∞ Axial Isotropy 0.25 N 1 0.7 0.7 0.2 0.2 ∞ Hemishperical Isotropy 1.3 N 1 0.7 0.7 0.9 0.9 ∞ Boundary Effect 2.0 R 1.73 1.0 1.0 1.0 1.2 1.2 ∞ Inearity 0.3 N 1 1.0 1.0 1.0 0.3 0.3 ∞ System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.1 0.3 0.3 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.0 0.3 0.3 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.0 0.3 0.3 % Response Time 0.8 R 1.73 1.0 1.0		(± 70)	טוגנ.	DIV.	igili	TO gills			"
Axial Isotropy Axial	Measurement System			l			(1 70)	(1 /0)	
Hemishperical Isotropy	Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Boundary Effect 2.0 R 1.73 1.0 1.0 1.2 1.2 ∞ Linearity 0.3 N 1 1.0 1.0 1.0 0.3 0.3 ∞ System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.1 ∞ Readout Electronics 0.3 N 1 1.0 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 1.6 R 1.73 1.0 1.0 1.0 1.5 1.5 ∞ REAmbient Conditions - Noise 1.0 1.0 1.0 1.0 1.5 1.5 1.5 ∞ RF Ambient Conditions - Reflections 1.0 R 1.73 1.0 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 1.0 R 1.73 1.0 1.0 1.0 1.7 1.7 ∞ Probe Positioning w/ respect to Phantom 1.0 R 1.73 1.0 1.0 1.0 1.0 1.7 1.7 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 1.0 Line polation & Integration algorithms for Max. SAR Evaluation 1.0 R 1.73 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Max. SAR Evaluation 1.0 R 1.67 N 1 1.0 1.0 1.0 1.7 1.7 5.0 Max. SAR Scaling 1.0 R 1.73 1.0 1.0 1.0 1.7 1.7 5.0 Max. SAR Scaling 1.0 R 1.73 1.0 1.0 1.0 1.7 1.7 5.0 Max. SAR Scaling 1.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 5.0 Max. SAR Scaling 1.0 R 1.67 N 1 1.0 1.0 1.0 1.7 1.7 1.5 5.0 Max. SAR Scaling 1.0 R 1.73 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 5.0 Max. SAR Scaling 1.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 5.0 Max. SAR Scaling 1.0 R 1.0 R 1.73 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 5.0 Max. SAR Scaling 1.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Linearity 0.3 N 1 1.0 1.0 0.3 0.3 ∞	Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.1 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioning Mechanical Tolerance 0.4 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioning Wirespect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 <t< td=""><td>Boundary Effect</td><td>2.0</td><td>R</td><td>1.73</td><td>1.0</td><td>1.0</td><td>1.2</td><td>1.2</td><td>oc</td></t<>	Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	oc
Readout Electronics 0.3 N 1 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning Wirespect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 <td< td=""><td>Linearity</td><td>0.3</td><td>Ν</td><td>1</td><td>1.0</td><td>1.0</td><td>0.3</td><td>0.3</td><td>×</td></td<>	Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	×
Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞	System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Integration Time	Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
RF Ambient Conditions - Noise RF Ambient Conditions - Noise RF Ambient Conditions - Reflections RF 1.73 1.0 1.0 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning W/ respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR driff measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ Phantom & Tissue Parameters Phantom & Tissue Parameters Phantom & Tissue Parameters 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Cond	Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning W respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ <td< td=""><td>RF Ambient Conditions - Noise</td><td>3.0</td><td>R</td><td>1.73</td><td>1.0</td><td>1.0</td><td>1.7</td><td>1.7</td><td>∞</td></td<>	RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioning W respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10	RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Co	Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 <	Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty	, , , , , , , , , , , , , , , , , , , ,	4.0	R	1.73	1.0	1.0	2.3	2.3	× ×
Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.64 0.43 1.8 1.2 ∞ Liqu	Test Sample Related								
Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ </td <td>Test Sample Positioning</td> <td>2.7</td> <td>Ν</td> <td>1</td> <td>1.0</td> <td>1.0</td> <td>2.7</td> <td>2.7</td> <td>35</td>	Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - Temperature Uncertainty 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞	Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty k=2 23.0 22.6 22.6	Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty 23.0 22.6 22.6 23.0 22.6	Phantom & Tissue Parameters								
Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	, , , , , , , , , , , , , , , , , , , ,	0.6	R		0.23	0.26		0.1	∞
Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	, , , , , , , , , , , , , , , , , , , ,								
Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	, ,								∞
Expanded Uncertainty k=2 23.0 22.6	· · · · · · · · · · · · · · · · · · ·	0.0	1		0.00	0			
	• • • • • • • • • • • • • • • • • • • •								
			N=Z				∠3.∪	22.0	

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dagg 02 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet	Page 92 of 95

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 02 of 05
1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 93 of 95

© 2020 PCTEST REV 21.4 M 09/11/2019

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002. IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.

thereof, please contact INFO@PCTEST.COM.

- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 04 (05	
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 94 of 95	
© 202	20 PCTEST				REV 21.4 M	

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: ZNFT600TS	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		D 05 (05		
	1M2001100004-01-R1.ZNF	01/21/20 - 02/24/20	Portable Tablet		Page 95 of 95		
© 202	2020 PCTEST						