

FCC/IC BT LE REPORT

FCC/IC Class II Permissive Change

Applicant Name:

LG Electronics MobileComm U.S.A., Inc.

Address:

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Date of Issue: March 11, 2016 Test Site/Location: HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majangmyeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA Report No.: HCT-R-1603-F061 HCT FRN: 0005866421

IC Recognition No.: 5944A-5

FCC ID	:ZNFR105
IC	:2703C-R105
APPLICANT	:LG Electronics MobileComm U.S.A., Inc.

FCC/IC Model(s):	LG-R105
EUT Type:	360 Camera
Frequency Range:	2402 MHz -2480 MHz
Modulation type	GFSK
FCC Classification:	Digital Transmission System(DTS)
FCC Rule Part(s):	Part 15.247
IC Rule Part(s):	RSS-GEN Issue 4 (November 2014), RSS-247 Issue 1 (May 2015)
Note :	The device, LG-R105 is electrically identical for conducted characteristic compare to original LG-R105(report No. HCT-R-1602-F056), confirmed by spot-check tests. Therefore, the conducted test result data is provided in the report No. HCT-R-1602-F056.

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this

equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Kyung Soo Kang Test Engineer of RF Team

Approved by : Sang Jun Lee Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1603-F061	March 11, 2016	- First Approval Report

Table of Contents

Model: LG-R105

1. GENERAL INFORMATION

Applicant:	LG Electronics MobileComm U.S.A., Inc			
Address:	1000 Sylvan Avenue, Englewood Cliffs NJ 07632			
FCC ID:	ZNFR105			
IC:	2703C-R105			
EUT Type:	360 Camera			
Model name(s):	LG-R105			
Date(s) of Tests:	February 17, 2016 ~ March 08, 2016			
Place of Tests:	HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea			
	(IC Recognition No. : 5944A-5)			

2. EUT DESCRIPTION

FCC/ IC Model Name	LG-R105		
ЕИТ Туре	360 Camera		
Power Supply	DC 3.7 V		
Frequency Range	TX: 2402 MHz ~ 2480 MHz		
	RX: 2402 MHz ~ 2480 MHz		
BT Operating Mode	BT _Low Energy Mode		
Modulation Type	GFSK		
Number of Channels	40 Channels		
	Manufacturer: Ace Technology		
Antenna Specification	Antenna type: Internal ANTENNA		
	Peak Gain : -0.98 dBi		

3. TEST METHODOLOGY

FCC KDB 558074 D01 DTS Meas Guidance v03r04 dated January 07, 2016 entitled "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) and the measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) Operating Under §15.247" were used in the measurement.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C / the RSS-GEN issue 4, RSS-247 issue 1.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

Conducted Antenna Terminal

See Section from 9.1 to 9.2.(KDB 558074)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

All equipments(spectrum, antenna, accessory, etc.) for measurement is calibrated in accordance with the requirements of C63.5 (latest edition).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661) / June 22, 2015 (IC Registration Number: 5944A-5)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203 / RSS-GEN(Issue 4) Section 8.3:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

*The E.U.T Complies with the requirement of §15.203 / RSS-GEN

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	6.07

8. SUMMARY TEST OF RESULTS

8.1 FCC Part

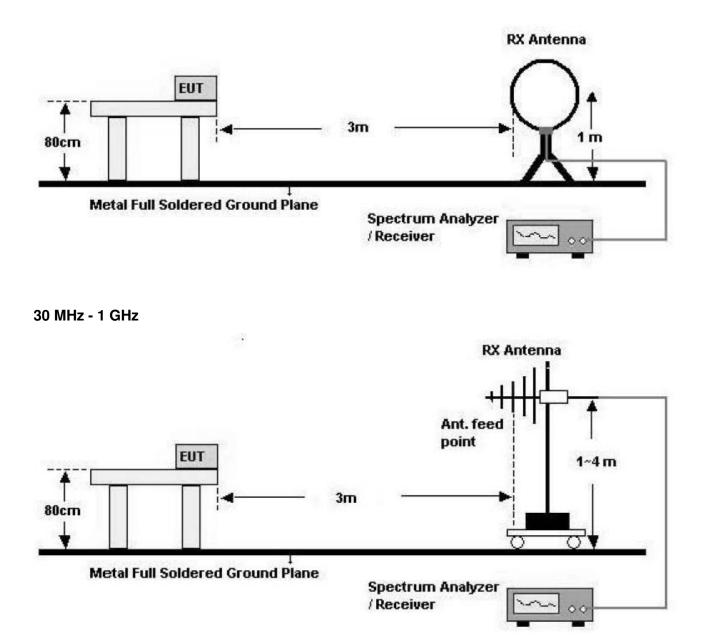
Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
Radiated Spurious Emissions	§15.205, 15.209	cf. Section 8.6.1		PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.6.2	RADIATED	PASS

8.2 IC Part

Test Description	IC Part Section(s)	Test Limit	Test Condition	Test Result
Radiated Spurious Emissions	RSS-GEN, 8.9	RSS-GEN section 8.9 table 4, 5		PASS
Receiver Spurious Emissions	RSS-GEN, 5 RSS-GEN, 7.1.2	RSS-GEN section 7.1.2 table 2	RADIATED	PASS
Radiated Restricted Band Edge	RSS-GEN, 8.10	RSS-GEN section 8.10 table 6		PASS

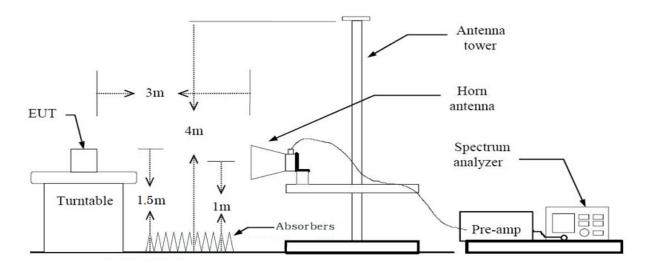
9. RADIATED MEASUREMENT.

9.1 RADIATED SPURIOUS EMISSIONS.


Test Requirements and limit, §15.205, §15.209 / RSS-GEN(Issue 4) Section 8.9

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration


Below 30 MHz

Model: LG-R105

Above 1 GHz

TEST PROCEDURE USED

Method 12.1 in KDB 558074, issued 06/09/2015

Spectrum Setting

- Peak

Peak emission levels are measured by setting the instrument as follows:

RBW = cf. Table 1.

VBW \geq 3 x RBW.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

(Note that the required measurement time may be longer for low duty cycle applications).

Table 1 How as a function of nequency				
Frequency	RBW			
9-150 kHz	200-300 Hz			
0.15-30 MHz	9-10 kHz			
30-1000 MHz	100-120 kHz			
> 1000 MHz	1 MHz			

Table 1 — RBW as a function of frequency

Average (duty cycle ≥ 98%)
Set RBW = 1 MHz
Set VBW ≥ 3 x RBW
Detector = RMS
Averaging type = power (*i.e.*, RMS).
Sweep time = auto.
Trace mode = average (at least 100 traces).

- Average (duty cycle < 98%, duty cycle variations are less than $\pm 2\%$)

Set RBW = 1 MHz Set VBW ≥ 3 x RBW Detector = RMS. Averaging type = power (*i.e.*, RMS). Sweep time = auto. Trace mode = average (at least 100 traces). A correction factor shall be added to the measurement results prior to

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

Average (duty cycle < 98%)
Set RBW = 1 MHz
Set VBW ≥ 1/T.(at least 100 times less than the resolution bandwidth, but no less than 10 Hz.)
Select spectrum analyzer linear display mode.
Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Marker-delta method 6.10.6 in ANSI C63.10: 2013

The following procedure shall be used for the marker-delta method:

a) Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function required for the frequency being measured. For example, for a device operating in the 902 MHz to 928 MHz band, use a 120 kHz RBW with a CISPR QP detector (a peak detector with 100 kHz RBW alternatively may be used). For transmitters operating above 1 GHz, use a 1 MHz RBW, a 3 MHz VBW, and a peak detector, as required. Repeat the measurement with an average detector (or alternatively, a peak detector and reduced VBW). For pulsed emissions, other factors shall be included; see 4.1.4.2.6.

b) Choose an EMI receiver or spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the instrument RBW to 1% of the total span (but never less than 30 kHz), with a VBW equal to or greater than three times the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission(i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

c) Subtract the delta measured in step b) from the field strengths measured in step a). The resulting field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge emissions compliance, where required.

Note :

The duty cycle factor for BT LE mode.

	T _{on}	T _{total}	Duty Cycle	Duty Cycle	VBW(1/T)
BT LE Mode	(ms)	(ms)	(%)	Factor	(Hz)
	0.3914	0.6257	62.55	2.04	2555

TEST RESULTS

9 kHz – 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBµN/m	dBm /m	dBm	(H/V)	dBµN/m	dBµN/m	dB
No Critical peaks found							

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBµN/m	dBm /m	dBm	(H/V)	dBµN/m	dBµN/m	dB
No Critical peaks found							

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Model: LG-R105

Above 1 GHz

Operation Mode: CH Low(LE Mode)

Frequency	Reading	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	49.58	0.11	V	49.69	73.98	24.29	PK
4804	37.84	0.11	V	37.95	53.98	16.03	AV
7206	48.88	6.86	V	55.74	73.98	18.24	PK
7206	37.12	6.86	V	43.98	53.98	10.00	AV
4804	50.42	0.11	Н	50.53	73.98	23.45	PK
4804	38.72	0.11	Н	38.83	53.98	15.15	AV
7206	48.98	6.86	Н	55.84	73.98	18.14	PK
7206	37.14	6.86	Н	44	53.98	9.98	AV

Notes:

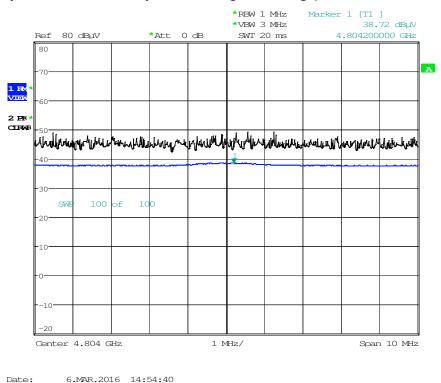
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. The Reading values are already added value of the duty cycle factor.
- 5. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

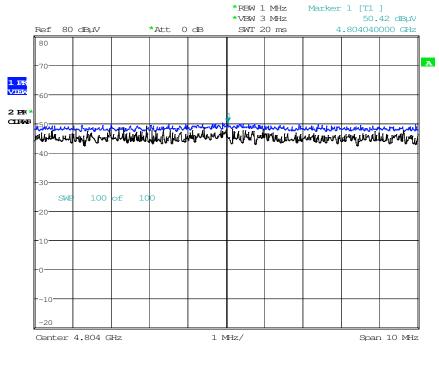
Frequency	Reading	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	48.81	0.23	V	49.04	73.98	24.94	PK
4882	37.02	0.23	V	37.25	53.98	16.73	AV
7323	48.39	7.06	V	55.45	73.98	18.53	PK
7323	36.57	7.06	V	43.63	53.98	10.35	AV
4882	48.85	0.23	Н	49.08	73.98	24.90	PK
4882	37.05	0.23	Н	37.28	53.98	16.70	AV
7323	48.42	7.06	Н	55.48	73.98	18.50	PK
7323	36.60	7.06	Н	43.66	53.98	10.32	AV

Operation Mode: CH Mid(LE Mode)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. The Reading values are already added value of the duty cycle factor.
- 5. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.


Frequency	Reading	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	48.21	0.98	V	49.19	73.98	24.79	PK
4960	36.28	0.98	V	37.26	53.98	16.72	AV
7440	49.27	7.69	V	56.96	73.98	17.02	PK
7440	37.48	7.69	V	45.17	53.98	8.81	AV
4960	48.27	0.98	Н	49.25	73.98	24.73	PK
4960	36.32	0.98	Н	37.3	53.98	16.68	AV
7440	49.30	7.69	Н	56.99	73.98	16.99	PK
7440	37.53	7.69	Н	45.22	53.98	8.76	AV

Operation Mode: CH High(LE Mode)


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. The Reading values are already added value of the duty cycle factor.
- 5. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

RESULT PLOTS(Worst Case : z-H) Radiated Spurious Emissions plot – Average Reading (LE, Ch. Low 2nd Harmonic)

Radiated Spurious Emissions plot – Peak Reading (LE, Ch. Low 2nd Harmonic)

Date: 6.MAR.2016 14:55:42

Note : Only the worst case plots for Radiated Spurious Emissions.

9.2 RECEIVER SPURIOUS EMISSIONS

IC Rule(s)	RSS-GEN
Test Requirements:	Blow the table
Operating conditions:	Under normal test conditions
Method of testing:	Radiated
S/A. Settings:	F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)
5/A. Settings.	F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)
Mode of operation:	Receive

Frequency	Field Strength
(MHz)	(microvolts/m at 3 meters)
30 - 88	100
88 - 216	150
216 – 960	200
Above 960	500

Operation Mode: Receive:

30 MHz ~ 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBμN	dB /m	dB	(H/V)	dBµN/m	dBµN/m	dB
No critical peaks found							

Above 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dΒμN	dB /m	dB	(H/V)	dBµN/m	dBµN/m	dB
No critical peaks found							

9.3 RADIATED RESTRICTED BAND EDGES

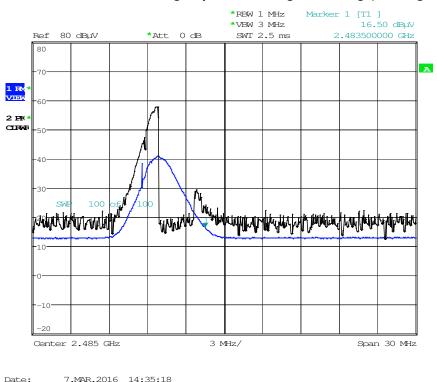
Test Requirements and limit, §15.247(d) §15.205, §15.209 / RSS-GEN(Issue 4) Section 8.10

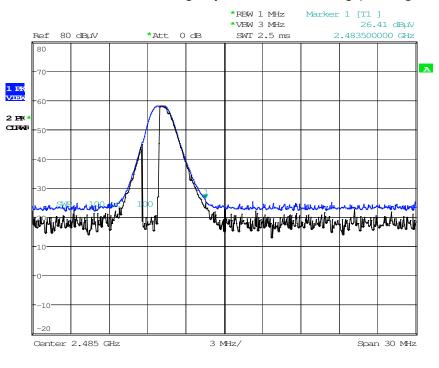
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

Operation Mode	BT_LE	
Operating Frequency	2402 MHz	
Channel No	0 Ch	

Frequency [MHz]	Reading [dBuV/m]	A.F.+CL [dBm]	Ant. Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	25.24	32.32	Н	57.56	73.98	16.42	PK
2390.0	14.21	32.32	н	46.53	53.98	7.45	AV
2390.0	25.21	32.32	V	57.53	73.98	16.45	PK
2390.0	14.18	32.32	V	46.50	53.98	7.48	AV

- 1. Frequency range of measurement = 2310 MHz ~ 2390 MHz
- 2. The Reading values are already added value of the duty cycle factor.
- 3. Total = Reading Value + Antenna Factor + Cable Loss
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The radiated restricted band edge measurements are measured with a spectrum analyzer connected to the receive antenna while the EUT is transmitting.


Operation Mode	BT_LE
Operating Frequency	2480 MHz
Channel No	39 Ch


Frequency [MHz]	Reading [dBuV/m]	A.F.+CL [dBm]	Ant. Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2483.5	26.41	32.68	н	59.09	73.98	14.89	PK
2483.5	16.50	32.68	н	49.18	53.98	4.80	AV
2483.5	25.34	32.68	V	58.02	73.98	15.96	PK
2483.5	16.34	32.68	V	49.02	53.98	4.96	AV

- 1. Frequency range of measurement = 2483.5 MHz \sim 2500 MHz
- 2. The Reading values are already added value of the duty cycle factor.
- 3. Total = Reading Value + Antenna Factor + Cable Loss
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The radiated restricted band edge measurements are measured with a spectrum analyzer connected to the receive antenna while the EUT is transmitting.

RESULT PLOTS(Worst Case : x-H) Radiated Restricted Band Edges plot – Average Reading (LE, High Ch.)

Radiated Restricted Band Edges plot – Peak Reading (LE, High Ch.)

Date: 7.MAR.2016 14:27:38

Note : Only the worst case plots for Radiated Restricted Band Edges.

10. LIST OF TEST EQUIPMENT

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Audix	ACT-A400 / Antenna Master	N/A	N/A	N/A
Audix	ACT-T150 / Turn Table	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	C060518
Rohde & Schwarz	Loop Antanna	02/04/2016	Biennial	100179
Schwarzbeck	VULB 9160 / Trilog Antenna	10/10/2014	Biennial	3368
Schwarzbeck	BBHA 9120D / Horn Antenna	07/31/2015	Biennial	1151
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	09/03/2015	Biennial	BBHA9170541
Rohde & Schwarz	FSP / Spectrum Analyzer	01/15/2016	Annual	839117/011
Wainwright Instruments	F6_HPF 3.0 / High Pass Filter	09/11/2015	Annual	F6
Wainwright Instruments	WHKX8-6090-7000-18000-40SS / High Pass Filter	09/11/2015	Annual	34
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	07/06/2015	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/26/2016	Annual	2
Weinshel	2-3 / Attenuator(3 dB)	10/26/2015	Annual	BR0617
CERNEX	CBLU1183540B-01 / Low Noise Amplifier	07/21/2015	Annual	25539
Rohde & Schwarz	SCU-18 / Signal Condigioning Unit	09/07/2015	Annual	10094
CERNEX	CBL18265035 / Power Amplifier	07/27/2015	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	07/09/2015	Annual	25956