

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

ZNFQ910QM

Applicant Name:

LG ELECTRONICS U.S.A., INC 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: 08/20/18 - 09/05/18 Test Site/Location: PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 1M1808210167-01-R1.ZNF

FCC ID:

APPLICANT:

LG ELECTRONICS U.S.A., INC.

DUT Type: Application Type: FCC Rule Part(s): Model: Additional Model(s): Permissive Change(s): Portable Handset **Class II Permissive Change** CFR §2.1093 LM-Q910QM LMQ910QM, Q910QM, LM-Q910UM, LMQ910UM, Q910UM See FCC Change Document

Equipment	Band & Mode Tx Frequency		SAR				
Class	Band & Mode	Tx Frequency	1g Head (W/kg)	1g Body-Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)	
PCE	GSWGPRS/EDGE 850	824.20 - 848.80 MHz	0.27	0.76	0.76	N/A	
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.12	0.53	1.01	N/A	
PCE	UMTS 850	826.40 - 846.60 MHz	0.24	0.50	0.50	N/A	
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.21	0.79	1.07	2.78	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.18	0.75	1.03	2.43	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.19	0.43	0.43	N/A	
PCE	LTE Band 17	706.5 - 713.5 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 13	779.5 - 784.5 MHz	0.25	0.52	0.52	N/A	
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.28	0.51	0.51	N/A	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.24	0.55	0.55	N/A	
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.21	0.84	1.21	3.20	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.14	0.98	1.30	3.13	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 30	2307.5 - 2312.5 MHz	< 0.1	0.71	0.78	N/A	
PCE	LTE Band 7	2502.5 - 2567.5 MHz	< 0.1	1.18	1.30	2.83	
PCE	LTE Band 41	2498.5 - 2687.5 MHz	< 0.1	1.11	1.11	N/A	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.39	0.34	0.34	N/A	
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	0.76	N/A	
NII	U-NII-2A	5260 - 5320 MHz	0.43	1.13	N/A	2.61	
NII	U-NII-2C	5500 - 5720 MHz	0.65	0.64	N/A	1.70	
NII	U-NII-3	5745 - 5825 MHz	0.61	0.72	0.72	N/A	
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.11	< 0.1	< 0.1	N/A	
Simultaneous §	SAR per KDB 690783 D01v01r03	3:	1.01	1.57	1.59	3.60	

Note: This revised Test Report (S/N: 1M1808210167-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: ZNFQ910QM		PCTEST	SAR EVALUATION REPORT	🕒 LG	Approved by:	
		SNOINEEEEE LABORATORY, INC.	SAR EVALUATION REPORT		Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 1 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 1 01 144	
© 2018 PCTEST Engineering Laboratory, Inc. R						

REV 20.11 M 06/19/2018

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	15
3	INTROD	JCTION	16
4	DOSIME	TRIC ASSESSMENT	17
5	DEFINIT	ON OF REFERENCE POINTS	18
6	TEST CO	NFIGURATION POSITIONS	19
7	RF EXPO	OSURE LIMITS	23
8	FCC ME	ASUREMENT PROCEDURES	
9		DUCTED POWERS	
10		VERIFICATION	
11		A SUMMARY	
12		_TI-TX AND ANTENNA SAR CONSIDERATIONS	
		ASUREMENT VARIABILITY	
13			
14	EQUIPM	ENT LIST	140
15	MEASUF	EMENT UNCERTAINTIES	141
16	CONCLU	SION	142
17	REFERE	NCES	143
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	IDIX G:	POWER REDUCTION VERIFICATION	
APPEN	IDIX H:	DOWNLINK LTE CA RF CONDUCTED POWERS	

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 0 of 444
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 2 of 144
2018 PCTEST Engineering Laboratory, Inc		·		REV 20.11 M

1 **DEVICE UNDER TEST**

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 3 of 144
© 2018 PCTEST Engineering Laboratory, Inc		·		REV 20.11 M

R 06/19/2018

1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1

Maximum PCE Output Power

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.7	33.7	32.7	30.7	28.7	27.7	27.7	26.7	26.7
GSIM/GPRS/EDGE 830	Nominal	33.2	33.2	32.2	30.2	28.2	27.2	27.2	26.2	26.2
GSM/GPRS/EDGE 1900	Maximum	30.7	30.7	29.7	27.7	25.7	26.7	26.7	25.7	25.7
	Nominal	30.2	30.2	29.2	27.2	25.2	26.2	26.2	25.2	25.2

	Modulated Average (dBm)				
Mode / Band	3GPP	3GPP	3GPP	3GPP	
	WCDMA	HSDPA	HSUPA	DC-HSDPA	
	Maximum	25.5	25.5	25.5	25.5
UMTS Band 5 (850 MHz)	Nominal	25.0	25.0	25.0	25.0
	Maximum	24.7	24.7	24.7	24.7
UMTS Band 4 (1750 MHz)	Nominal	24.2	24.2	24.2	24.2
UMTS Band 2 (1900 MHz)	Maximum	24.4	24.4	24.4	24.4
	Nominal	23.9	23.9	23.9	23.9

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates: DUT Type:			Page 4 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 4 01 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

Mode / Ban	Modulated Average (dBm)	
	Maximum	25.5
LTE Band 12	Nominal	25.0
	Maximum	25.5
LTE Band 17	Nominal	25.0
	Maximum	25.5
LTE Band 13	Nominal	25.0
	Maximum	25.5
LTE Band 5 (Cell)	Nominal	25.0
	Maximum	25.5
LTE Band 26 (Cell)	Nominal	25.0
	Maximum	23.0
LTE Band 66 (AWS)	Nominal	23.7
LTE Band 4 (AWS)	Maximum	24.2
	Nominal	23.7
LTE Band 25 (PCS)	Maximum	24.4
	Nominal	23.9
LTE Band 2 (PCS)	Maximum	24.4
	Nominal	23.9
LTE Band 30	Maximum	23.0
	Nominal	22.5
LTE Band 7	Maximum	23.7
	Nominal	23.2
LTE Dand 41	Maximum	24.9
LTE Band 41	Nominal	24.4

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 5 of 144
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc	D.	·		REV 20.11 M

-		•	-		
	Modulated Average (dBm)				
Mode / Band	3GPP	3GPP	3GPP	3GPP	
		WCDMA	HSDPA	HSUPA	DC-HSDPA
UMTS Band 4 (1750 MHz)	Maximum	23.7	23.7	23.7	23.7
	Nominal	23.2	23.2	23.2	23.2
UMTS Band 2 (1900 MHz)	Maximum	23.4	23.4	23.4	23.4
	Nominal	22.9	22.9	22.9	22.9

Reduced PCE Output Power 1.3.2

Mode / Band	Modulated Average (dBm)	
LTE Band 66 (AWS)	Maximum	23.2
	Nominal	22.7
LTE Band 4 (A)A(S)	Maximum	23.2
LTE Band 4 (AWS)	Nominal	22.7
LTE Dand 2E (DCC)	Maximum	23.4
LTE Band 25 (PCS)	Nominal	22.9
LTE Band 2 (BCS)	Maximum	23.4
LTE Band 2 (PCS)	Nominal	22.9

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 6 of 144	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

	Modulated Average - Single Tx			
Mada / Dand			Chain	
Mode / Band			(dBm)	
		Ch. 1-2	Ch. 3-9	Ch. 10-11
	Maximum	20.5	20.5	20.5
IEEE 802.11b (2.4 GHz)	Nominal	19.5	19.5	19.5
	Maximum	18.0	19.5	17.0
IEEE 802.11g (2.4 GHz)	Nominal	17.0	18.5	16.0
	Maximum	17.0	18.5	16.0
IEEE 802.11n (2.4 GHz)	Nominal	16.0	17.5	15.0
	Maximum	17.0	18.5	16.0
IEEE 802.11ac (2.4 GHz)	Nominal	16.0	17.5	15.0

Maximum WLAN and Bluetooth Output Power

Mode / Band	Modulated Average - MIMO (dBm)			
		Ch. 1-2	Ch. 3-9	Ch. 10-11
1555 802 11b (2.4 CH-)	Maximum	23.5	23.5	23.5
IEEE 802.11b (2.4 GHz)	Nominal	22.5	22.5	22.5
	Maximum	21.0	22.5	20.0
IEEE 802.11g (2.4 GHz)	Nominal	20.0	21.5	19.0
	Maximum	20.0	21.5	19.0
IEEE 802.11n (2.4 GHz)	Nominal	19.0	20.5	18.0
	Maximum	20.0	21.5	19.0
IEEE 802.11ac (2.4 GHz)	Nominal	19.0	20.5	18.0

Т

				Modulated Av	erage - Single Tx Chain (dBm)			
Mode / Band		20 MHz Bandwidth		40 MHz Bandwidth			80 MHz Bandwidth	
		Ch. 40, 56, 157, 161	Ch. 36, 44-52, 60-153, 165	Ch. 62-102	Ch. 38	Ch. 46-54, 110-159	Ch. 58	Ch. 42, 106-155
IEEE 802.11a (5 GHz)	Maximum	18.0	17.0					
TEEE 802.118 (5 GH2)	Nominal	17.0	16.0					
	Maximum	18.0	17.0	12.5	13.0	16.0		
IEEE 802.11n (5 GHz)	Nominal	17.0	16.0	11.5	12.0	15.0		
IEEE 802.11ac (5 GHz)	Maximum	18.0	17.0	12.5	13.0	16.0	10.5	13.5
TEEE 802.11aC (5 GHz)	Nominal	17.0	16.0	11.5	12.0	15.0	9.5	12.5

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 7 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.11 M

KEV 20.11 M 06/19/2018 © 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

1.3.3

Г

				Modulated	d Average - MIMO (dBm)				
Mode / Band		20 MHz Bandwidth			40 MHz Bandwidth			80 MHz Bandwidth	
		Ch. 40, 56, 157, 161	Ch. 36, 44-52, 60-153, 165	Ch. 62-102	Ch. 38	Ch. 46-54, 110-159	Ch. 58	Ch. 42, 106-155	
IEEE 802.11a (5 GHz)	Maximum	21.0	20.0						
TEEE 802.113 (5 GHZ)	Nominal	20.0	19.0						
	Maximum	21.0	20.0	15.5	16.0	19.0			
IEEE 802.11n (5 GHz)	Nominal	20.0	19.0	14.5	15.0	18.0			
IEEE 802.11ac (5 GHz)	Maximum	21.0	20.0	15.5	16.0	19.0	13.5	16.5	
TEEE 802.11aC (5 GHz)	Nominal	20.0	19.0	14.5	15.0	18.0	12.5	15.5	

Mode / Band	Modulated Average (dBm)	
Bluetooth	Maximum	12.0
Bidetootii	Nominal	11.0
Bluetooth LE	Maximum	5.0
BidetOOtfi LE	Nominal	4.0

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		5 6 6 6 6 6	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 8 of 144	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

r		1		
	Modulated Average - Single Tx			
Mada / Dand			Chain	
Mode / Band			(dBm)	
		Ch. 1-2	Ch. 3-9	Ch. 10-11
	Maximum	18.0	18.0	18.0
IEEE 802.11b (2.4 GHz)	Nominal	17.0	17.0	17.0
	Maximum	18.0	18.0	17.0
IEEE 802.11g (2.4 GHz)	Nominal	17.0	17.0	16.0
	Maximum	17.0	18.0	16.0
IEEE 802.11n (2.4 GHz)	Nominal	16.0	17.0	15.0
	Maximum	17.0	18.0	16.0
IEEE 802.11ac (2.4 GHz)	Nominal	16.0	17.0	15.0

1.3.4

Г

Reduced WLAN Output Power (Held-to-Ear)

Mode / Band	Modulated Average - MIMO (dBm)			
		Ch. 1-2	Ch. 3-9	Ch. 10-11
1555 902 11b (2.4 CHz)	Maximum	21.0	21.0	21.0
IEEE 802.11b (2.4 GHz)	Nominal	20.0	20.0	20.0
	Maximum	21.0	21.0	20.0
IEEE 802.11g (2.4 GHz)	Nominal	20.0	20.0	19.0
	Maximum	20.0	21.0	19.0
IEEE 802.11n (2.4 GHz)	Nominal	19.0	20.0	18.0
	Maximum	20.0	21.0	19.0
IEEE 802.11ac (2.4 GHz)	Nominal	19.0	20.0	18.0

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 9 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset			
© 20′	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.11 M	

06/19/2018

Mode / Band	Modulated Average - Single Tx Chain (dBm)			
	Ch. 1-2	Ch. 3-9	Ch. 10-11	
	Maximum	18.0	18.0	18.0
IEEE 802.11b (2.4 GHz)	Nominal	17.0	17.0	17.0
	Maximum	18.0	18.0	17.0
IEEE 802.11g (2.4 GHz)	Nominal	17.0	17.0	16.0
	Maximum	17.0	18.0	16.0
IEEE 802.11n (2.4 GHz)	Nominal	16.0	17.0	15.0
	Maximum	17.0	18.0	16.0
IEEE 802.11ac (2.4 GHz)	Nominal	16.0	17.0	15.0

1.3.5

Output Power during Scenarios with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2

Mode / Band		Modulated Average - Single Tx Chain (dBm)						
		20 MHz Bandwidth	40 MHz Bandwidth			80 MHz Bandwidth		
		Ch. 36-165	Ch. 62-102	Ch. 38	Ch. 46-54, 110-159	Ch. 58	Ch. 42, 106-155	
	Maximum	15.0						
IEEE 802.11a (5 GHz)	Nominal	14.0						
	Maximum	15.0	12.5	13.0	15.0			
IEEE 802.11n (5 GHz)	Nominal	14.0	11.5	12.0	14.0			
	Maximum	15.0	12.5	13.0	15.0	10.5	13.5	
IEEE 802.11ac (5 GHz)	Nominal	14.0	11.5	12.0	14.0	9.5	12.5	

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	ii.	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 10 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 10 01 144	
© 20'	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Device Edges/Sides for SAR Testing									
Back	Front	Тор	Bottom	Right	Left				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	No	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	No	Yes				
Yes	Yes	No	Yes	No	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	No	Yes				
Yes	Yes	No	Yes	No	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	No	Yes	Yes	Yes				
Yes	Yes	Yes	No	No	Yes				
Yes	Yes	Yes	No	No	Yes				
Yes	Yes	Yes	No	No	Yes				
Yes	Yes	Yes	No	No	Yes				
Yes	Yes	Yes	No	No	Yes				
	BackYes	BackFrontYes	BackFrontTopYesYesNoYesNoYesYesYesYesYesNoYesYesYesYesYesNoYesYesYesYesYesNoYesYesNoYesYesNoYes	BackFrontTopBottomYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesNoYesYesYesNoYesYesYesNoYesYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNoYesYesYesYesYesYesYesNo	BackFrontTopBottomRightYesYesYesNoYesYesYesYesYesNoYesNoYesYesYesNoYesYesYesYesYesNoYesYesYesYesYesNoYesNoYesYesNoYesNoYesYesNoYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesNoYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesYesNoNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNoYesYesYesYesNo <tr< td=""></tr<>				

Table 1-1
Device Edges/Sides for SAR Testing

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A and U-NII-2C operations are disabled.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	0/05/18 Portable Handset		Page 11 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

Simultaneous Transmission Capabilities 1.6

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Simultaneous Transmission Scenarios									
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes			
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes				
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes				
3	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered			
4	GSM voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A	Yes				
5	GSM voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes				
6	GSM voice + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes	Yes	N/A	Yes				
7	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes				
8	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	Yes				
9	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered			
10	UMTS + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes				
11	UMTS + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes				
12	UMTS + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes	Yes	Yes	Yes				
13	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes				
14	LTE + 5 GHz WI-FI	Yes	Yes	Yes	Yes				
15	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered			
16	LTE + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes				
17	LTE + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes				
18	LTE + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes	Yes	Yes	Yes				
19	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered			
20	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered			
21	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^Bluetooth Tethering is considered			
22	GPRS/EDGE + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered			
23	GPRS/EDGE + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered			
24	GPRS/EDGE + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered			

Table 1-2 - - -

- 1. Bluetooth cannot transmit simultaneously with WLAN.
- All licensed modes share the same antenna path and cannot transmit simultaneously. 2.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, the simultaneous transmission scenarios involving WIFI are listed in the above table.
- 5. 5 GHz Wireless Router is only supported for U-NII-1 and U-NII-3 by S/W, therefore U-NII2A, and U-NII2C were not evaluated for wireless router conditions.
- 6. This device supports 2x2 MIMO Tx for WLAN. 802.11a/g/n/ac modes support CDD, 802.11b mode supports TDD operations only, and 802.11n/ac modes additionally support SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 7. This device supports VOLTE.
- 8. This device supports VoWIFI.
- 9. This device supports BT Tethering.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 12 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 12 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power, when the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02. When the highest reported SAR for U-NII-2A is > 1.2 W/kg, SAR is required for U-NII-1 band.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz, U-NII-1 and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 2 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for Bluetooth, 2.4 GHz, U-NII-1, and U-NII-3 WLAN operations since wireless router 1g SAR was <1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. Per FCC guidance, downlink LTE CA conducted power measurements for bands impacted by this permissive change are included Appendix H.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 13 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 13 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

06/19/2018

has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

1.8 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:				Page 14 of 144
	1M1808210167-01-R1.ZNF				Tage 14 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

2 LTE INFORMATION

		LTE Information				
CC ID			ZNFQ910QM			
orm Factor			Portable Handset			
requency Range of each LTE transmission band			LTE Band 12 (699.7 - 715.3 MHz)			
	LTE Band 17 (706.5 - 713.5 MHz)					
			LTE Band 13 (779.5 - 784.5 MHz)	2)		
			E Band 26 (Cell) (814.7 - 848.3 MH: E Band 5 (Cell) (824.7 - 848.3 MHz			
			Band 66 (AWS) (1710.7 - 1779.3 M			
			Band 4 (AWS) (1710.7 - 1754.3 MI			
			Band 25 (PCS) (1850.7 - 1914.3 M			
			Band 2 (PCS) (1850.7 - 1909.3 MH	Hz)		
			TE Band 30 (2307.5 - 2312.5 MHz)			
			TE Band 7 (2502.5 - 2567.5 MHz)			
hannal Dandwidtha			TE Band 41 (2498.5 - 2687.5 MHz) and 12: 1.4 MHz, 3 MHz, 5 MHz, 10	MH-		
hannel Bandwidths		LIE Da	LTE Band 17: 5 MHz, 10 MHz			
			LTE Band 13: 5 MHz, 10 MHz			
			Cell): 1.4 MHz, 3 MHz, 5 MHz, 10 I			
			5 (Cell): 1.4 MHz, 3 MHz, 5 MHz,			
): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz			
			: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz			
			1.4 MHz, 3 MHz, 5 MHz, 10 MHz,			
			LTE Band 30: 5 MHz, 10 MHz			
			and 7: 5 MHz, 10 MHz, 15 MHz, 20			
			nd 41: 5 MHz, 10 MHz, 15 MHz, 20			
hannel Numbers and Frequencies (MHz) TE Band 12: 1.4 MHz	Low 600.7 (220	Low-Mid	Mid 707 5 (22005)	Mid-High	High 72)	
E Band 12: 1.4 MHz E Band 12: 3 MHz	699.7 (230 700.5 (230		707.5 (23095) 707.5 (23095)	715.3 (231)		
TE Band 12: 3 MHz				714.5 (2316		
E Band 12: 10 MHz	701.5 (230 704 (2306		707.5 (23095) 707.5 (23095)	713.5 (231) 711 (2313		
E Band 12: 10 MHz E Band 17: 5 MHz			707.5 (23095) 710 (23790)	711 (2313 713.5 (2382		
TE Band 17: 10 MHz	706.5 (23755) 709 (23780)		710 (23790) 710 (23790)	713.5 (238) 711 (2380		
TE Band 13: 5 MHz			782 (23230)	711 (2380 784.5 (232		
TE Band 13: 10 MHz	779.5 (23205) N/A		782 (23230)	764.5 (2523 N/A		
TE Band 26 (Cell): 1.4 MHz	814.7 (266	97)	831.5 (26865)	848.3 (2703	33)	
E Band 26 (Cell): 3 MHz	815.5 (267	,	831.5 (26865)	847.5 (2702		
E Band 26 (Cell): 5 MHz	816.5 (267		831.5 (26865)	846.5 (27015)		
E Band 26 (Cell): 10 MHz	819 (2674		831.5 (26865)	844 (26990)		
TE Band 26 (Cell): 15 MHz	819 (26740) 821.5 (26765)		831.5 (26865)	841.5 (26965)		
TE Band 5 (Cell): 1.4 MHz	824.7 (204	07)	836.5 (20525)	848.3 (20643)		
TE Band 5 (Cell): 3 MHz	825.5 (20415)		836.5 (20525)	847.5 (2063	35)	
TE Band 5 (Cell): 5 MHz	826.5 (20425)		836.5 (20525)	846.5 (2062		
TE Band 5 (Cell): 10 MHz	829 (2045		836.5 (20525)	844 (20600)		
TE Band 66 (AWS): 1.4 MHz	1710.7 (131979)		1745 (132322)	1779.3 (132665)		
TE Band 66 (AWS): 3 MHz	1711.5 (131		1745 (132322)	1778.5 (132657)		
TE Band 66 (AWS): 5 MHz	1712.5 (131		1745 (132322)	1777.5 (132647)		
TE Band 66 (AWS): 10 MHz TE Band 66 (AWS): 15 MHz	1715 (1320		1745 (132322)	1775 (132622) 1772.5 (132597)		
TE Band 66 (AWS): 20 MHz	1717.5 (132		1745 (132322) 1745 (132322)	1772.3 (1325		
TE Band 4 (AWS): 1.4 MHz	1710.7 (19		1732.5 (20175)	1754.3 (203		
E Band 4 (AWS): 3 MHz	1711.5 (19		1732.5 (20175)	1753.5 (203		
E Band 4 (AWS): 5 MHz	1712.5 (19		1732.5 (20175)	1752.5 (203		
E Band 4 (AWS): 10 MHz	1715 (200		1732.5 (20175)	1750 (2035		
E Band 4 (AWS): 15 MHz	1717.5 (20)		1732.5 (20175)	1747.5 (203	25)	
E Band 4 (AWS): 20 MHz	1720 (200	50)	1732.5 (20175)	1745 (2030	0)	
E Band 25 (PCS): 1.4 MHz	1850.7 (26		1882.5 (26365)	1914.3 (266		
E Band 25 (PCS): 3 MHz	1851.5 (26		1882.5 (26365)	1913.5 (266		
E Band 25 (PCS): 5 MHz	1852.5 (26		1882.5 (26365)	1912.5 (266		
E Band 25 (PCS): 10 MHz	1855 (260		1882.5 (26365)	1910 (2664		
E Band 25 (PCS): 15 MHz E Band 25 (PCS): 20 MHz	1857.5 (26) 1860 (26)		1882.5 (26365) 1882.5 (26365)	1907.5 (266 1905 (2659		
E Band 2 (PCS): 1.4 MHz	1850.7 (18		1882.5 (26365) 1880 (18900)	1905 (2655		
E Band 2 (PCS): 3 MHz				1909.3 (191		
E Band 2 (PCS): 5 MHz	1851.5 (18)			1908.5 (191		
E Band 2 (PCS): 10 MHz	1855 (186		1880 (18900)	1905 (1915		
E Band 2 (PCS): 15 MHz	1857.5 (18		1880 (18900)	1902.5 (191		
E Band 2 (PCS): 20 MHz	1860 (187		1880 (18900)	1900 (1910		
E Band 30: 5 MHz	2307.5 (27)		2310 (27710)	2312.5 (277		
E Band 30: 10 MHz	N/A		2310 (27710)	N/A		
E Band 7: 5 MHz	2502.5 (20)		2535 (21100)	2567.5 (214		
E Band 7: 10 MHz	2505 (208		2535 (21100)	2565 (2140		
E Band 7: 15 MHz	2507.5 (20		2535 (21100)	2562.5 (213		
E Band 7: 20 MHz	2510 (208		2535 (21100)	2560 (2135		
E Band 41: 5 MHz E Band 41: 10 MHz	2506 (39750) 2506 (39750)	2549.5 (40185) 2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)	
E Band 41: 10 MHz E Band 41: 15 MHz	2506 (39750) 2506 (39750)	2549.5 (40185) 2549.5 (40185)	2593 (40620) 2593 (40620)	2636.5 (41055) 2636.5 (41055)	2680 (41490) 2680 (41490)	
E Band 41: 10 MHz	2506 (39750) 2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)	
Category		DL UE Cat 15 (QPSK, 16QAN	1, 64QAM, 256QAM), UL UE Cat 5 (QPSK, 16QAM, 64QAM)		
odulations Supported in UL			QPSK, 16QAM, 64QAM			
E MPR Permanently implemented per 3GPP TS 36.101 section			YES			
2.3~6.2.5? (manufacturer attestation to be provided)						
MPR (Additional MPR) disabled for SAR Testing? E Carrier Aggregation Possible Combinations		The technical docaristion	YES	areastion combinations		
E Carrier Aggregation Possible Combinations	This device does not support full CA	features on 3GPP Release 12.	All uplink communications are iden	gregation combinations ntical to the Release 8 Specifications.	Uplink Communicatio	
				MIMO, eICIC, MDH, eMBMS, Cross-	Device Ocheckeller Fr	

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dogo 15 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18 Portable Handset		Page 15 of 144	
~~ 4	A DOTEOT E C C L L L L				-

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (\Box). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation $SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dogo 16 of 111	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 16 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

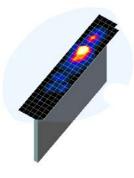


Figure 4-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

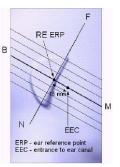
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

_	Maximum Area Scan Maximum Zoom Scan		Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	Gi	raded Grid	Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	Δz _{zoom} (n>1)*	
≤2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
3-4 GHz	≤12	≤ 5	≤4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤ 4	≤3	≤ 2.5	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dece 17 of 114	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 17 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.11 06/19/2018

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 **Close-Up Side view** of ERP

HANDSET REFERENCE POINTS 5.2

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

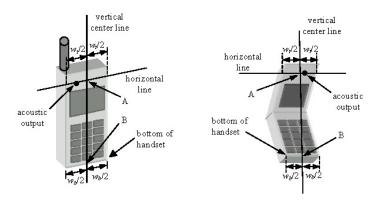


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dogo 19 of 114	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 18 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02.

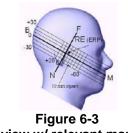
6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15º Tilt

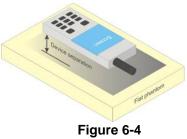

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Daga 10 of 111	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 19 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

Position

Side view w/ relevant markings Figure 6-2 Front, Side and Top View of Ear/15º Tilt


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 20 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 20 01 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.11 06/19/2018

dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Extremity Exposure Configurations 6.6

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body. SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 21 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.11 M 06/19/2018

should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

6.9 Additional Test Positions due to Proximity Conditions

This device uses a sensor to reduce voice and data powers in extremity (hand-held) use conditions.

When the sensor detects a user is touching the device on or near to the antenna the device reduces the maximum allowed output power However, the proximity sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, an additional exposure condition is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level.

The proximity sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the proximity sensor entirely covers the antenna. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G.

	FCC ID: ZNFQ910QM	PCTEST	SAR EVALUATION REPORT	🕒 LG	Approved by:
		W SNGINEERINE LABORATORY, INC.			Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dago 22 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 22 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

7 **RF EXPOSURE LIMITS**

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)			
Peak Spatial Average SAR Head	1.6	8.0			
Whole Body SAR	0.08	0.4			
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20			

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over 1. the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body. 2

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and 3. over the appropriate averaging time.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 23 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 23 01 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 **3G SAR Test Reduction Procedure**

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 **Output Power Verification**

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 24 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

SAR Measurements with Rel 5 HSDPA 8.4.4

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode: otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

SAR Measurement Conditions for DC-HSDPA 8.4.6

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 05 () ()	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 25 of 144	
© 20′	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 **MPR**

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.5.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.5.6 **Downlink Only Carrier Aggregation**

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 26 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 20 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M 06/19/2018

downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands. SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 - 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled. SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 27 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 27 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M 06/19/2018

initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b. adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by: Quality Manager					
	Document S/N:	Test Dates:	DUT Type:	Dage 28 of 144					
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Page 28 of 144					
© 201	© 2018 PCTEST Engineering Laboratory, Inc.								

REV 20.11 06/19/2018

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or n including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about the second ional copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8.6.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.9 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 20 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 29 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M 06/19/2018

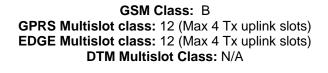
9 **RF CONDUCTED POWERS**

9.1 **GSM Conducted Powers**

Maximum Conducted Power													
	Maximum Burst-Averaged Output Power												
		Voice			DGE Data /ISK)				E Data PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot			
	128	32.88	32.79	31.44	28.96	27.22	26.77	26.45	25.69	25.52			
GSM 850	190	32.80	32.72	31.43	29.06	27.43	26.71	26.39	25.60	25.39			
	251	32.96	32.89	31.11	29.31	27.36	26.65	26.36	25.65	25.41			
	512	29.98	30.10	29.15	26.79	24.89	25.68	25.42	24.65	24.38			
GSM 1900	661	29.98	30.11	29.16	26.81	24.90	25.53	25.33	24.48	24.11			
	810	29.91	30.05	29.09	26.76	24.93	25.55	25.29	24.50	24.09			

Table 9-1

Calculated Maximum Frame-Averaged Output Power											
		Voice			DGE Data /ISK)		EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	23.85	23.76	25.42	24.70	24.21	17.74	20.43	21.43	22.51	
GSM 850	190	23.77	23.69	25.41	24.80	24.42	17.68	20.37	21.34	22.38	
	251	23.93	23.86	25.09	25.05	24.35	17.62	20.34	21.39	22.40	
	512	20.95	21.07	23.13	22.53	21.88	16.65	19.40	20.39	21.37	
GSM 1900	661	20.95	21.08	23.14	22.55	21.89	16.50	19.31	20.22	21.10	
	810	20.88	21.02	23.07	22.50	21.92	16.52	19.27	20.24	21.08	
GSM 850	Frame	24.17	24.17	26.18	25.94	25.19	18.17	21.18	21.94	23.19	


GSM 850	Frame	24.17	24.17	26.18	25.94	25.19	18.17	21.18	21.94	23.19
GSM 1900	Avg.Targets:	21.17	21.17	23.18	22.94	22.19	17.17	20.18	20.94	22.19

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 30 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 50 01 144	
20 ⁻	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

© 2018 PCTEST Engineering Laboratory, Inc.

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

Power Measurement Setup

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dage 21 of 111		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 31 of 144		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

9.2 **UMTS Conducted Powers**

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band ∣	[dBm]	AW	S Band [d	IBm]	PCS	6 Band [d	Bm]	3GPP MPR [dB]
Version		Sublesi	4132	4183	4233	1312	1412	1513	9262	9400	9538	ואורא נטטן
99	WCDMA	12.2 kbps RMC	25.45	25.37	25.50	24.48	24.49	24.34	23.63	23.47	23.58	-
99	VV CDIVIA	12.2 kbps AMR	25.33	25.40	25.48	24.46	24.42	24.36	23.75	23.55	23.51	-
6		Subtest 1	25.28	25.04	25.22	24.41	24.37	24.25	23.88	23.75	23.67	0
6	HSDPA	Subtest 2	25.31	25.06	25.23	24.37	24.38	24.22	23.90	23.80	23.65	0
6	HODEA	Subtest 3	24.87	24.60	24.76	23.92	23.89	23.71	23.39	23.30	23.15	0.5
6		Subtest 4	24.85	24.61	24.77	23.90	23.87	23.72	23.42	23.27	23.18	0.5
6		Subtest 1	25.23	25.02	25.14	24.30	24.31	24.14	23.70	23.56	23.48	0
6		Subtest 2	22.34	22.11	22.23	21.41	21.39	21.28	20.92	20.80	20.68	2
6	HSUPA	Subtest 3	23.30	23.07	23.25	22.43	22.43	22.32	21.94	21.79	21.73	1
6		Subtest 4	22.30	22.09	22.26	21.39	21.41	21.28	20.92	20.78	20.61	2
6		Subtest 5	25.34	25.06	25.24	24.43	24.40	24.26	23.90	23.79	23.72	0
8		Subtest 1	25.33	25.07	24.25	24.39	24.41	24.27	23.91	23.76	23.72	0
8		Subtest 2	25.33	25.11	25.26	24.37	24.39	24.23	23.88	23.76	23.67	0
8	DC-HSDPA	Subtest 3	24.85	24.63	24.74	23.93	23.88	23.77	23.41	23.23	23.15	0.5
8		Subtest 4	24.87	24.62	24.71	23.86	23.89	23.78	23.39	23.24	23.17	0.5

Table 9-2 Maximum Conducted Power

Table 9-3 **Reduced Conducted Power**

3GPP Release	Mode	3GPP 34.121 Subtest	AWS Band [dBm]			PCS	6 Band [d	Bm]	3GPP MPR [dB]
Version		Sublesi	1312	1412	1513	9262	9400	9538	שרא נטטן
99	WCDMA	12.2 kbps RMC	23.18	23.14	23.19	22.93	22.76	22.88	-
99	VV CDIVIA	12.2 kbps AMR	23.14	23.15	23.17	22.96	22.78	22.78	-
6		Subtest 1	23.20	23.15	23.22	22.85	22.56	22.64	0
6	HSDPA	Subtest 2	23.24	23.16	23.24	22.81	22.53	22.72	0
6		Subtest 3	22.76	22.66	22.77	22.40	22.02	22.26	0.5
6		Subtest 4	22.75	22.67	22.73	22.36	22.08	22.23	0.5
6		Subtest 1	23.04	22.98	23.01	22.64	22.30	22.51	0
6		Subtest 2	20.25	20.16	20.24	19.85	19.54	19.73	2
6	HSUPA	Subtest 3	21.25	21.14	21.25	20.86	20.53	20.75	1
6		Subtest 4	20.20	20.14	20.21	19.82	19.50	19.61	2
6		Subtest 5	23.23	23.12	23.23	22.84	22.53	22.73	0
8		Subtest 1	23.23	23.14	23.21	22.83	22.52	22.71	0
8	DC-HSDPA	Subtest 2	23.21	23.12	23.22	22.79	22.52	22.69	0
8	DC-HSDPA	Subtest 3	22.74	22.62	22.69	22.32	22.00	22.15	0.5
8		Subtest 4	22.71	22.62	22.70	22.32	22.02	22.18	0.5

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 22 of 111
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 32 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

RE 06/19/2018

DC-HSDPA considerations

©

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 9-2 Power Measurement Setup

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 33 of 144
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

9.3 **LTE Conducted Powers**

9.3.1 LTE Band 12

			LTE Band 12 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	Size RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	25.24		0
	1	25	25.22	0	0
	1	49	25.23		0
QPSK	25	0	24.31	- 0-1	1
	25	12	24.33		1
	25	25	24.30	0-1	1
	50	0	24.24		1
	1	0	24.19		1
	1	25	24.28	0-1	1
	1	49	24.50		1
16QAM	25	0	23.29		2
	25	12	23.25	0-2	2
	25	25	23.31	0-2	2
	50	0	23.28		2
	1	0	23.42		2
	1	25	23.27	0-2	2
	1	49	23.41		2
64QAM	25	0	22.44		3
	25	12	22.32	0-3	3
	25	25	22.34	0-3	3
	50	0	22.32		3

Table 9-4

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 04 at 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 34 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

LTE Band 12 Conducted Powers - 5 MHz Bandwidth									
LTE Band 12 5 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm	ı]	1			
	1	0	25.33	25.12	25.11		0		
	1	12	25.13	25.28	25.22	0	0		
	1	24	25.16	25.18	25.13		0		
QPSK	12	0	24.26	24.24	24.30		1		
	12	6	24.31	24.30	24.24	0-1	1		
	12	13	24.30	24.17	24.22		1		
	25	0	24.29	24.17	24.18		1		
	1	0	24.21	24.07	24.09	0-1	1		
	1	12	24.13	24.30	24.31		1		
	1	24	24.20	24.25	24.49		1		
16QAM	12	0	23.17	23.21	23.32		2		
	12	6	23.26	23.17	23.31		2		
	12	13	23.36	23.27	23.29	0-2	2		
	25	0	23.29	23.24	23.30	1 [2		
	1	0	23.36	23.37	23.40		2		
	1	12	23.26	23.35	23.29	0-2	2		
	1	24	23.34	23.47	23.32	1 [2		
64QAM	12	0	22.41	22.43	22.38		3		
	12	6	22.33	22.26	22.28	Τ 🔬 Γ	3		
	12	13	22.28	22.33	22.29	0-3	3		
	25	0	22.27	22.28	22.23	1 1	3		

Table 9-5 I TE Band 12 Condu ted Powers - 5 MHz Bandwidth

Table 9-6 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

				LTE Band 12			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	25.24	25.24	25.13		0
	1	7	25.27	25.17	25.23	0	0
	1	14	25.19	25.28	25.13		0
QPSK	8	0	24.33	24.35	24.29	0-1	1
	8	4	24.35	24.30	24.35		1
	8	7	24.22	24.27	24.31		1
	15	0	24.30	24.19	24.22		1
	1	0	24.17	24.25	24.19	0-1	1
	1	7	24.27	24.22	24.33		1
	1	14	24.42	24.39	24.39		1
16QAM	8	0	23.21	23.30	23.32		2
	8	4	23.27	23.35	23.20	0-2	2
	8	7	23.22	23.22	23.28	0-2	2
	15	0	23.18	23.26	23.31		2
	1	0	23.38	23.41	23.33		2
	1	7	23.26	23.24	23.14	0-2	2
	1	14	23.32	23.46	23.35		2
64QAM	8	0	22.35	22.30	22.49		3
	8	4	22.27	22.44	22.25	0-3	3
	8	7	22.31	22.35	22.41	0-3	3
	15	0	22.37	22.24	22.31		3

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dage 25 of 144		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 35 of 144		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

LTE Band 12 Conducted Powers -1.4 MHz Bandwidth									
LTE Band 12 1.4 MHz Bandwidth									
		La	Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm	ן				
	1	0	25.23	25.23	25.16		0		
	1	2	25.26	25.24	25.16		0		
	1	5	25.19	25.12	25.27		0		
QPSK	3	0	25.25	25.26	25.12	0	0		
	3	2	25.21	25.34	25.14		0		
	3	3	25.28	25.13	25.12		0		
	6	0	24.15	24.27	24.33	0-1	1		
	1	0	24.18	24.22	24.18	0-1	1		
	1	2	24.15	24.31	24.37		1		
	1	5	24.45	24.35	24.46		1		
16QAM	3	0	24.20	24.19	24.21		1		
	3	2	24.36	24.29	24.29		1		
	3	3	24.33	24.37	24.27		1		
	6	0	23.36	23.19	23.26	0-2	2		
	1	0	23.44	23.46	23.36		2		
	1	2	23.38	23.23	23.32	1	2		
	1	5	23.40	23.38	23.37	0-2	2		
64QAM	3	0	23.33	23.28	23.22	0-2	2		
	3	2	23.38	23.28	23.39	1	2		
	3	3	23.24	23.26	23.31	1	2		
	6	0	22.26	22.28	22.40	0-3	3		

 Table 9-7

 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 36 of 144		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 30 01 144		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

9.3.2 LTE Band 13

LTE Band 13 Conducted Powers - 10 MHz Bandwidth									
			LTE Band 13 10 MHz Bandwidth						
			Mid Channel						
			23230						
Modulation	RB Size	RB Offset	(782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power						
			[dBm]						
	1	0	25.05		0				
	1	25	25.43	0	0				
	1	49	25.40		0				
QPSK	25	0	24.49		1				
	25	12	24.50	0-1	1				
	25	25	24.37	0-1	1				
	50	0	24.47		1				
	1	0	24.24		1				
	1	25	24.50	0-1	1				
	1	49	24.35		1				
16QAM	25	0	23.46		2				
	25	12	23.50	0-2	2				
	25	25	23.35	0-2	2				
	50	0	23.50		2				
	1	0	23.34		2				
	1	25	23.50	0-2	2				
	1	49	23.46		2				
64QAM	25	0	22.50		3				
	25	12	22.49	0-3	3				
	25	25	22.46	0-3	3				
	50	0	22.48		3				

Table 9-8 I TE Band 12 Conducted Bowers - 10 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 37 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Tage of or 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

LTE Band 13 5 MHz Bandwidth								
Modulation RB Size		RB Offset	Mid Channel 23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]					
	1	0	25.03		0			
	1	12	25.34	0	0			
	1	24	25.42		0			
QPSK	12	0	24.36		1			
	12	6	24.48	0-1	1			
	12	13	24.38	0-1	1			
	25	0	24.36		1			
	1	0	24.28		1			
	1	12	24.46	0-1	1			
	1	24	24.29		1			
16QAM	12	0	23.38		2			
	12	6	23.50	0-2	2			
	12	13	23.29	0-2	2			
	25	0	23.45		2			
	1	0	23.21		2			
	1	12	23.39	0-2	2			
	1	24	23.36		2			
64QAM	12	0	22.25		3			
	12	6	22.46	0-3	3			
	12	13	22.34	00	3			
	25	0	22.31		3			

Table 9-9 LTE Band 13 Conducted Powers - 5 MHz Bandwidth

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by:
		THE RELEVENCE LARGENTING, INC.	•	Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 38 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Fage 30 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.11 M

9.3.1 LTE Band 26 (Cell)

LTE Band 26 (Cell) 15 MHz Bandwidth								
<i>l</i> odulation	RB Size RB Offset MPR Allowed p (831.5 MHz) 3GPP [dB] [dBm]		MPR Allowed per 3GPP [dB]	MPR [dB]				
	1	0	25.47		0			
	1	36	25.39	0	0			
	1	74	25.35		0			
QPSK	36	0	24.50		1			
	36	18	24.47	0-1	1			
	36	37	24.44	0-1	1			
	75	0	24.44		1			
	1	0	24.49		1			
	1	36	24.50	0-1	1			
	1	74	24.49		1			
16QAM	36	0	23.46		2			
	36	18	23.49	0-2	2			
	36	37	23.42	0-2	2			
	75	0	23.45		2			
	1	0	23.50		2			
	1	36	23.46	0-2	2			
	1	74	23.48		2			
64QAM	36	0	22.47		3			
	36	18	22.45	0-3	3			
	36	37	22.43	0-3	3			
	75	0	22.50		3			

Table 9-10
LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFQ910QM	CTEST	SAR EVALUATION REPORT	Approved by:
		Y SNOTHEREN LAROKATORY, INC.	•	Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 39 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Fage 39 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.11 M

KEV 20.11 M 06/19/2018

			band 26 (Cell) C	LTE Band 26 (Cell)		nawiath	
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26740 (819.0 MHz)	26865 (831.5 MHz)	26990 (844.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	25.44	25.41	25.46		0
	1	25	25.37	25.28	25.36	0	0
	1	49	25.30	25.25	25.30		0
QPSK	25	0	24.48	24.42	24.42		1
	25	12	24.44	24.39	24.37	0-1	1
	25	25	24.43	24.39	24.39	0-1	1
	50	0	24.42	24.39	24.39		1
	1	0	24.44	24.45	24.45		1
	1	25	24.46	24.46	24.50	0-1	1
	1	49	24.47	24.39	24.38		1
16QAM	25	0	23.34	23.37	23.42		2
	25	12	23.49	23.39	23.45	0-2	2
	25	25	23.38	23.33	23.34	0-2	2
	50	0	23.43	23.33	23.36		2
	1	0	23.41	23.40	23.47		2
	1	25	23.45	23.40	23.41	0-2	2
	1	49	23.47	23.45	23.46	1	2
64QAM	25	0	22.41	22.35	22.43		3
	25	12	22.34	22.33	22.33	Γ 🚊 Γ	3
	25	25	22.40	22.42	22.34	0-3	3
	50	0	22.42	22.39	22.41	1 [3

Table 9-11 I TE Band 26 (Cell) Con ducted Powers - 10 MHz Bandwidth

Table 9-12	
LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth	LTE Band 26 (
LTE David 20 (Call)	

Г

			Low Channel	5 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	25.44	25.46	25.40		0
	1	12	25.34	25.32	25.27	0	0
	1	24	25.26	25.33	25.28		0
QPSK	12	0	24.46	24.45	24.46		1
	12	6	24.37	24.39	24.43	0-1	1
	12	13	24.33	24.43	24.39	0-1	1
	25	0	24.40	24.42	24.34		1
	1	0	24.38	24.37	24.42		1
	1	12	24.45	24.46	24.40	0-1	1
	1	24	24.44	24.37	24.41		1
16QAM	12	0	23.43	23.43	23.40		2
	12	6	23.48	23.47	23.44	0-2	2
	12	13	23.34	23.34	23.32	0-2	2
	25	0	23.39	23.34	23.41		2
	1	0	23.40	23.46	23.39		2
	1	12	23.45	23.37	23.46	0-2	2
	1	24	23.48	23.47	23.45	1	2
64QAM	12	0	22.39	22.39	22.46		3
	12	6	22.34	22.35	22.38	0-3	3
	12	13	22.36	22.38	22.37	0-3	3
	25	0	22.44	22.47	22.47	7	3

	Approved by: Quality Manager
Document S/N: Test Dates: DUT Type:	Dama 40 of 144
1M1808210167-01-R1.ZNF 08/20/18 - 09/05/18 Portable Handset	Page 40 of 144

				LTE Band 26 (Cell) 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26705	Mid Channel 26865	High Channel 27025	MPR Allowed per	MPR [dB]
			(815.5 MHz) (831.5 MHz) (847.5 MHz) Conducted Power [dBm]	3GPP [dB]			
	1	0	25.35	25.46	25.37		0
	1	7	25.28	25.38	25.32	0	0
	1	14	25.33	25.26	25.24	1 –	0
QPSK	8	0	24.48	24.42	24.49		1
	8	4	24.40	24.43	24.40	1 [1
	8	7	24.41	24.33	24.39	- 0-1 -	1
	15	0	24.41	24.34	24.39		1
	1	0	24.48	24.38	24.41	0-1	1
	1	7	24.45	24.42	24.49		1
	1	14	24.48	24.39	24.41		1
16QAM	8	0	23.42	23.37	23.35	0-2	2
	8	4	23.43	23.47	23.37		2
	8	7	23.42	23.40	23.40		2
	15	0	23.33	23.38	23.42	1	2
	1	0	23.41	23.43	23.39		2
	1	7	23.34	23.41	23.40	0-2	2
	1	14	23.48	23.37	23.47	1	2
64QAM	8	0	22.45	22.39	22.43		3
	8	4	22.35	22.36	22.38		3
	8	7	22.40	22.38	22.41	0-3	3
	15	0	22.47	22.39	22.41	1	3

Table 9-13 I TE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

	Table 9-14						
LTE Band 26 (Cel) Conducted Powers -1.4 MHz Bandwidth						

	LTE Band 26 (Cell) 1.4 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	26697 (814.7 MHz)	26865 (831.5 MHz)	27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm	n]				
	1	0	25.40	25.44	25.39		0		
	1	2	25.34	25.32	25.35		0		
	1	5	25.23	25.32	25.29	0	0		
QPSK	3	0	25.43	25.36	25.39	U U	0		
	3	2	25.34	25.34	25.30]	0		
	3	3	25.27	25.31	25.32		0		
	6	0	24.41	24.35	24.40	0-1	1		
	1	0	24.45	24.39	24.47		1		
	1	2	24.38	24.38	24.46		1		
	1	5	24.41	24.45	24.37	0-1	1		
16QAM	3	0	24.43	24.42	24.50	0-1	1		
	3	2	24.46	24.40	24.36]	1		
	3	3	24.43	24.38	24.38		1		
	6	0	23.44	23.37	23.44	0-2	2		
	1	0	23.46	23.41	23.42		2		
	1	2	23.38	23.45	23.34		2		
	1	5	23.46	23.48	23.44	0-2	2		
64QAM	3	0	23.42	23.38	23.37	0-2	2		
	3	2	23.32	23.32	23.30] [2		
	3	3	23.40	23.33	23.40]	2		
	6	0	22.42	22.50	22.45	0-3	3		

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dama 44 af 444		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 41 of 144		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.11 M

9.3.1 LTE Band 5 (Cell)

LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth										
			LTE Band 5 (Cell)							
10 MHz Bandwidth Mid Channel										
Modulation	RB Size	e RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	25.41		0					
	1	25	25.27	0	0					
	1	49	25.26		0					
QPSK	25	0	24.49		1					
	25	12	24.46		1					
	25	25	24.34	0-1	1					
	50	0	24.41		1					
	1	0	24.50		1					
	1	25	24.33	0-1	1					
	1	49	24.38		1					
16QAM	25	0	23.50		2					
	25	12	23.49	0-2	2					
	25	25	23.34	0-2	2					
	50	0	23.43		2					
	1	0	23.50		2					
	1	25	23.44	0-2	2					
	1	49	23.46		2					
64QAM	25	0	22.48		3					
	25	12	22.49	0-3	3					
	25	25	22.36	0-3	3					
	50	0	22.49		3					

 Table 9-15

 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFQ910QM			Approved by:
				Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 42 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Fage 42 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.11 M

KEV 20.11 M 06/19/2018

		LIE	Band 5 (Cell) C	Conducted Powe		awiath				
				LTE Band 5 (Cell) 5 MHz Bandwidth						
	Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm	n]					
	1	0	25.39	25.28	25.45		0			
	1	12	25.16	25.27	25.36	0	0			
	1	24	25.19	25.25	25.31		0			
QPSK	12	0	24.47	24.45	24.39		1			
	12	6	24.46	24.44	24.23	0-1	1			
	12	13	24.32	24.31	24.19	0-1	1			
	25	0	24.41	24.41	24.42		1			
	1	0	24.45	24.50	24.46		1			
	1	12	24.31	24.29	24.29	0-1	1			
	1	24	24.40	24.27	24.36		1			
16QAM	12	0	23.48	23.40	23.42		2			
	12	6	23.49	23.34	23.44	0-2	2			
	12	13	23.23	23.33	23.27	0-2	2			
	25	0	23.45	23.39	23.34		2			
	1	0	23.42	23.34	23.48		2			
	1	12	23.48	23.48	23.45	0-2	2			
	1	24	23.40	23.39	23.42	1 Г	2			
64QAM	12	0	22.33	22.41	22.15		3			
	12	6	22.45	22.43	22.39	Τ 🔬 Γ	3			
	12	13	22.29	22.03	22.25	0-3	3			
	25	0	22.44	22.40	22.40	1	3			

Table 9-16 I TE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

Table 9-17 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

				LTE Band 5 (Cell)			
				3 MHz Bandwidth	r		
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	25.41	25.29	25.36		0
	1	7	25.28	25.34	25.28	0	0
	1	14	25.32	25.21	25.24		0
QPSK	8	0	24.41	24.43	24.45		1
	8	4	24.31	24.43	24.37	0.1	1
	8	7	24.30	24.24	24.32	0-1	1
	15	0	24.37	24.31	24.49		1
	1	0	24.48	24.46	24.49		1
	1	7	24.34	24.39	24.23	0-1	1
	1	14	24.35	24.35	24.40		1
16QAM	8	0	23.42	23.40	23.50		2
	8	4	23.13	23.43	23.43	0-2	2
	8	7	23.32	23.32	23.40	0-2	2
	15	0	23.34	23.37	23.36		2
	1	0	23.16	23.41	23.44		2
	1	7	23.47	23.41	23.44	0-2	2
	1	14	23.50	23.48	23.39	┃「	2
64QAM	8	0	22.45	22.45	22.41		3
	8	4	22.40	22.43	22.38	0-3	3
	8	7	22.32	22.37	22.25	0-3	3
	15	0	22.43	22.44	22.49	ך ד	3

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 42 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 43 of 144
20 [.]	18 PCTEST Engineering Laboratory, Inc.		•		REV 20.11 M

		LIE	Sand 5 (Cell) C	onducted Power	rs -1.4 MHZ Bar	lawiath			
				LTE Band 5 (Cell) 1.4 MHz Bandwidth					
Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
		[Conducted Power [dBm	ן				
	1	0	25.40	25.45	25.44		0		
	1	2	25.15	25.25	25.20		0		
	1	5	25.35	25.13	25.24		0		
QPSK	3	0	25.31	25.39	25.41	0	0		
	3	2	25.20	25.25	25.30		0		
	3	3	25.18	25.25	25.34		0		
	6	0	24.47	24.46	24.28	0-1	1		
	1	0	24.44	24.41	24.47		1		
	1	2	24.28	24.25	24.34	1 – – – – –	1		
	1	5	24.37	24.38	24.34		1		
16QAM	3	0	24.15	24.06	24.25	0-1	1		
	3	2	24.47	24.42	24.44		1		
	3	3	24.26	24.29	24.37		1		
	6	0	23.33	23.25	23.30	0-2	2		
	1	0	23.40	23.40	23.48		2		
	1	2	23.41	23.44	23.34	1	2		
	1	5	23.41	23.44	23.44		2		
64QAM	3	0	23.50	23.45	23.50	0-2	2		
	3	2	23.33	23.27	23.35	1	2		
	3	3	23.40	23.43	23.47	1 [2		
	6	0	22.40	22.49	22.42	0-3	3		

Table 9-18 I TE Band 5 (Cell) Conducted Powers -1 4 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 44 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 44 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

9.3.2

LTE Band 66 (AWS)

LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth										
	LTE Band 66 (AWS) 20 MHz Bandwidth									
	Low Channel Mid Channel High Channel									
			132072	132322	132572	MPR Allowed per				
Modulation	RB Size	RB Offset	(1720.0 MHz)	(1745.0 MHz)	(1770.0 MHz)	3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	24.13	24.06	24.04		0			
	1	50	24.07	23.85	23.92	0	0			
	1	99	24.02	23.85	23.88		0			
QPSK	50	0	23.00	22.82	22.80	0-1	1			
	50	25	22.92	22.80	22.79		1			
	50	50	22.89	22.76	22.79		1			
	100	0	22.97	22.80	22.84		1			
	1	0	23.04	22.78	22.94		1			
	1	50	22.93	22.54	22.79	0-1	1			
	1	99	22.90	22.50	22.81		1			
16QAM	50	0	22.00	21.64	21.82		2			
	50	25	21.94	21.55	21.83	0-2	2			
	50	50	21.85	21.51	21.81	0-2	2			
	100	0	21.93	21.58	21.84		2			
	1	0	22.00	21.72	21.93		2			
	1	50	21.90	21.48	21.74	0-2	2			
	1	99	21.82	21.48	21.80]	2			
64QAM	50	0	20.90	20.55	20.72		3			
	50	25	20.90	20.47	20.75	0-3	3			
	50	50	20.84	20.41	20.72	0-3	3			
	100	0	20.84	20.48	20.77] [3			

Table 9-19 LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 45 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		1 age 45 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

	L	IE Danu og	o (Avvo) iviaxim	um Conducted	Powers - 15 MF	12 Danuwiuth	
				LTE Band 66 (AWS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	23.98	24.07	24.00		0
	1	36	24.09	23.78	23.89	0	0
	1	74	23.90	23.87	23.81		0
QPSK	36	0	22.95	22.77	22.84		1
	36	18	22.92	22.87	22.74	0-1	1
	36	37	22.90	22.75	22.75	0-1	1
	75	0	22.88	22.76	22.76	1	1
	1	0	22.99	22.65	22.93	0-1	1
	1	36	22.92	22.55	22.78		1
	1	74	22.84	22.46	22.77		1
16QAM	36	0	22.03	21.56	21.73		2
	36	18	21.98	21.51	21.74	0-2	2
	36	37	21.92	21.42	21.80	0-2	2
	75	0	21.87	21.66	21.71		2
	1	0	22.06	21.71	21.87		2
	1	36	21.82	21.51	21.79	0-2	2
	1	74	21.85	21.43	21.81	<u>] </u>	2
64QAM	36	0	20.87	20.57	20.65		3
	36	18	20.88	20.48	20.68	0-3	3
	36	37	20.84	20.47	20.58] 0-3	3
	75	0	20.88	20.42	20.76] [3

Table 9-20 nducted Powers - 15 MHz Bandwidth LTE Band 66 (AWS) Maximu

Table 9-21 LTE Band 66 (AWS) Maximum Conducted Powers - 10 MHz Bandwidth

				LTE Band 66 (AWS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	24.18	24.04	24.03		0
	1	25	24.01	23.90	23.90	0	0
	1	49	23.99	23.84	23.77		0
QPSK	25	0	22.85	22.81	22.83		1
	25	12	22.84	22.72	22.73	0-1	1
	25	25	22.87	22.71	22.81	0-1	1
	50	0	22.99	22.74	22.77		1
	1	0	22.94	22.83	22.92		1
	1	25	22.87	22.59	22.73	0-1	1
	1	49	22.76	22.47	22.83		1
16QAM	25	0	22.06	21.59	21.77		2
	25	12	21.94	21.47	21.84	0-2	2
	25	25	21.92	21.52	21.71	0-2	2
	50	0	21.89	21.57	21.80		2
	1	0	21.92	21.74	21.90		2
	1	25	21.90	21.49	21.67	0-2	2
	1	49	21.86	21.45	21.65		2
64QAM	25	0	20.81	20.48	20.71	0-3	3
	25	12	20.85	20.56	20.66		3
	25	25	20.85	20.30	20.67	0-3	3
	50	0	20.87	20.45	20.70]	3

F	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
C	Document S/N:	Test Dates:	DUT Type:		5 10 1111	
1	M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 46 of 144	
© 2018	PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

REV 20.11 M

	L	IE Dallu O	o (AWS) Maxim	um Conducted	Fowers - 5 Min		
				LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
		Conducted Power [dBm]					
	1	0	24.15	24.03	24.11		0
	1	12	24.06	23.78	23.91	0	0
	1	24	23.98	23.90	23.90		0
QPSK	12	0	22.87	22.72	22.71		1
	12	6	22.90	22.74	22.84	0-1	1
	12	13	22.89	22.79	22.71	0-1	1
	25	0	22.97	22.80	22.80	1 [1
	1	0	23.08	22.71	22.95	0-1	1
	1	12	22.98	22.43	22.77		1
	1	24	22.90	22.45	22.80		1
16QAM	12	0	22.00	21.65	21.69		2
	12	6	21.99	21.61	21.79	0-2	2
	12	13	21.69	21.55	21.79	0-2	2
	25	0	21.96	21.63	21.75		2
	1	0	21.94	21.65	21.83		2
	1	12	21.84	21.32	21.61	0-2	2
	1	24	21.88	21.42	21.82][2
64QAM	12	0	20.94	20.49	20.74		3
	12	6	20.83	20.41	20.77	1 1	3
	12	13	20.82	20.46	20.68	0-3	3
	25	0	20.77	20.38	20.72] [3

Table 9-22 I TE Band 66 (AWS) Maximum Conducted Powers - 5 MHz Bandwidth

Table 9-23 LTE Band 66 (AWS) Maximum Conducted Powers - 3 MHz Bandwidth

				LTE Band 66 (AWS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.09	24.06	24.13		0
	1	7	24.04	23.89	23.98	0	0
	1	14	23.99	23.84	23.84		0
QPSK	8	0	22.91	22.88	22.80		1
	8	4	22.97	22.77	22.74	0-1	1
	8	7	22.87	22.74	22.78	0-1	1
	15	0	22.93	22.85	22.83		1
	1	0	22.91	22.82	22.91		1
	1	7	22.96	22.58	22.85	0-1	1
	1	14	22.86	22.45	22.78		1
16QAM	8	0	21.92	21.58	21.68		2
	8	4	21.89	21.54	21.85	0-2	2
	8	7	21.77	21.48	21.81	0-2	2
	15	0	21.79	21.45	21.83		2
	1	0	21.92	21.72	21.85		2
	1	7	21.80	21.43	21.70	0-2	2
	1	14	21.83	21.35	21.80]	2
64QAM	8	0	20.89	20.54	20.71		3
	8	4	20.77	20.41	20.63	0-3	3
	8	7	20.81	20.50	20.78	0-3	3
	15	0	20.85	20.49	20.79]	3

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dogo 47 of 144		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 47 of 144		
20 ⁻	18 PCTEST Engineering Laboratory, Inc.						

				LTE Band 66 (AWS)			
		1	Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel	1	
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	24.04	24.08	24.04		0
	1	2	24.11	23.80	23.93] [0
	1	5	24.03	23.75	23.78	0	0
QPSK	3	0	24.03	24.07	23.96	0	0
	3	2	24.03	23.82	23.79] [0
	3	3	24.01	23.80	23.85		0
	6	0	23.01	22.79	22.89	0-1	1
	1	0	23.03	22.69	22.94		1
	1	2	22.86	22.39	22.76		1
	1	5	22.86	22.46	22.88	0-1	1
16QAM	3	0	23.01	22.83	22.82	0-1	1
	3	2	22.85	22.74	22.66	1 [1
	3	3	22.74	22.66	22.79	1 [1
	6	0	21.87	21.59	21.87	0-2	2
	1	0	22.06	21.70	21.85		2
	1	2	21.86	21.41	21.79	1	2
	1	5	21.78	21.44	21.69	1 <u>,</u> [2
64QAM	3	0	21.96	21.58	21.91	0-2	2
	3	2	21.84	21.48	21.74	┥ ┝──	2
	3	3	21.86	21.51	21.72	1 F	2
	6	0	20.88	20.41	20.65	0-3	3

Table 9-24 LTE Band 66 (AWS) Maximu nducted Powers -1 4 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 48 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 48 of 144
201	8 PCTEST Engineering Laboratory Inc				REV 20.11 M

	L	IE Danu o	o (AWS) Reduc	ed Conducted F	-owers - 20 Min	z bandwidth	
				LTE Band 66 (AWS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	22.61	22.59	22.56		0
	1	50	22.46	22.39	22.39	0	0
	1	99	22.47	22.40	22.37		0
QPSK	50	0	22.58	22.45	22.49		0
	50	25	22.46	22.40	22.40	0-1	0
	50	50	22.39	22.36	22.34	0-1	0
	100	0	22.47	22.41	22.42] Γ	0
	1	0	22.56	22.57	22.53	0-1	0
	1	50	22.47	22.38	22.38		0
	1	99	22.46	22.36	22.37		0
16QAM	50	0	21.51	21.47	21.41		1
	50	25	21.45	21.42	21.41	0-2	1
	50	50	21.41	21.36	21.34	0-2	1
	100	0	21.47	21.41	21.44		1
	1	0	21.50	21.54	21.50		1
	1	50	21.41	21.32	21.34	0-2	1
	1	99	21.41	21.33	21.32]	1
64QAM	50	0	20.45	20.38	20.33	1	2
	50	25	20.39	20.31	20.34	0-3	2
	50	50	20.36	20.26	20.29	0-3	2
	100	0	20.38	20.32	20.37] [2

Table 9-25 I TE Band 66 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth

Table 9-26 LTE Band 66 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth

				LTE Band 66 (AWS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	22.56	22.54	22.53		0
	1	36	22.40	22.28	22.30	0	0
	1	74	22.44	22.30	22.32		0
QPSK	36	0	22.49	22.39	22.42		0
	36	18	22.39	22.39	22.40	0-1	0
	36	37	22.37	22.33	22.28	0-1	0
	75	0	22.45	22.41	22.30		0
	1	0	22.55	22.54	22.41	0-1	0
	1	36	22.46	22.29	22.32		0
	1	74	22.40	22.24	22.28		0
16QAM	36	0	21.42	21.43	21.33		1
	36	18	21.34	21.37	21.41	0-2	1
	36	37	21.37	21.31	21.31	0-2	1
	75	0	21.37	21.30	21.41		1
	1	0	21.48	21.51	21.48		1
	1	36	21.31	21.31	21.28	0-2	1
	1	74	21.34	21.21	21.22]	1
64QAM	36	0	20.41	20.35	20.29	0-3	2
	36	18	20.31	20.24	20.31		2
	36	37	20.28	20.22	20.23	0-3	2
	75	0	20.31	20.29	20.32]	2

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 40 of 144		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 49 of 144		
) 20 [.]	18 PCTEST Engineering Laboratory, Inc.						

	L	IE Danu o	o (AWS) Reduc	ed Conducted F	-owers - TU MIN		
				LTE Band 66 (AWS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
		Conducted Power [dBm]					
	1	0	22.58	22.51	22.47		0
	1	25	22.44	22.31	22.36	0	0
	1	49	22.44	22.36	22.29		0
QPSK	25	0	22.51	22.43	22.43		0
	25	12	22.38	22.38	22.33	0-1	0
	25	25	22.30	22.29	22.23	0-1	0
	50	0	22.38	22.38	22.36	1 [0
	1	0	22.45	22.45	22.44	0-1	0
	1	25	22.43	22.35	22.30		0
	1	49	22.35	22.26	22.34		0
16QAM	25	0	21.39	21.45	21.39		1
	25	12	21.38	21.34	21.30		1
	25	25	21.29	21.33	21.32	0-2	1
	50	0	21.43	21.32	21.41	1 [1
	1	0	21.45	21.44	21.43		1
	1	25	21.38	21.26	21.34	0-2	1
	1	49	21.30	21.25	21.21] [1
64QAM	25	0	20.43	20.30	20.22		2
	25	12	20.29	20.29	20.28		2
	25	25	20.31	20.20	20.22	0-3	2
	50	0	20.33	20.31	20.28] [2

Table 9-27 I TE Band 66 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth

				LTE Band 66 (AWS)			
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	1	
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	n]		
	1	0	22.50	22.59	22.49		0
	1	12	22.43	22.39	22.34	0	0
	1	24	22.43	22.28	22.27		0
QPSK	12	0	22.53	22.44	22.46	- 0-1	0
	12	6	22.39	22.34	22.40		0
	12	13	22.38	22.32	22.24		0
	25	0	22.43	22.33	22.40		0
	1	0	22.49	22.55	22.43		0
	1	12	22.45	22.28	22.36	0-1	0
	1	24	22.39	22.27	22.33		0
16QAM	12	0	21.42	21.43	21.31		1
	12	6	21.44	21.31	21.31	0-2	1
	12	13	21.37	21.34	21.27	0-2	1
	25	0	21.45	21.40	21.36		1
	1	0	21.45	21.54	21.41		1
	1	12	21.33	21.31	21.26	0-2	1
	1	24	21.33	21.28	21.21		1
64QAM	12	0	20.38	20.29	20.29		2
	12	6	20.29	20.20	20.24	0-3	2
	12	13	20.29	20.25	20.20	0-3	2
	25	0	20.30	20.30	20.35		2

Table 9-28 LTE Band 66 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 50 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 50 01 144
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

	L		o (AWS) Reduc	LTE Band 66 (AWS)		Banuwiuth	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	22.54	22.52	22.44		0
	1	7	22.37	22.28	22.30	0	0
	1	14	22.47	22.40	22.35	1	0
QPSK	8	0	22.55	22.34	22.46		0
	8	4	22.41	22.30	22.33	- 0-1	0
	8	7	22.30	22.34	22.28		0
	15	0	22.36	22.38	22.39		0
	1	0	22.45	22.52	22.46		0
	1	7	22.35	22.33	22.30	0-1	0
	1	14	22.36	22.32	22.29	1	0
16QAM	8	0	21.50	21.36	21.35		1
	8	4	21.40	21.41	21.36	0-2	1
	8	7	21.38	21.28	21.23	0-2	1
	15	0	21.42	21.31	21.38		1
	1	0	21.44	21.45	21.44		1
	1	7	21.35	21.32	21.30	0-2	1
	1	14	21.29	21.27	21.31		1
64QAM	8	0	20.42	20.35	20.28		2
	8	4	20.28	20.24	20.30		2
	8	7	20.30	20.20	20.28	0-3	2
	15	0	20.26	20.29	20.34	1	2

Table 9-29 I TE Band 66 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

Table 9-30 LTE Band 66 (AWS) Reduced Conducted Powers – 1.4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.50	22.52	22.50		0
	1	2	22.38	22.32	22.27		0
	1	5	22.43	22.36	22.32	- 0	0
QPSK	3	0	22.50	22.39	22.40	Ŭ	0
	3	2	22.39	22.38	22.38		0
	3	3	22.36	22.25	22.29		0
	6	0	22.43	22.34	22.39	0-1	0
	1	0	22.47	22.51	22.53		0
	1	2	22.40	22.32	22.29		0
	1	5	22.39	22.34	22.34	0-1	0
16QAM	3	0	22.49	22.48	22.53	- 0-1	0
	3	2	22.39	22.34	22.39] [0
	3	3	22.44	22.35	22.28		0
	6	0	21.45	21.30	21.36	0-2	1
	1	0	21.46	21.53	21.40		1
	1	2	21.39	21.23	21.24		1
	1	5	21.35	21.29	21.23	0-2	1
64QAM	3	0	21.48	21.46	21.39	0-2	1
	3	2	21.33	21.41	21.38	1	1
	3	3	21.34	21.32	21.26] [1
	6	0	20.33	20.29	20.28	0-3	2

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 51 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 51 of 144
ک 20 (8 PCTEST Engineering Laboratory, Inc.		·		REV 20.11 M

9.3.3

LTE Band 25 (PCS)

	L	IE Band 2	25 (PCS) Maxim	um Conducted	Powers - 20 MF	1z Bandwidth	
				LTE Band 25 (PCS) 20 MHz Bandwidth			
			Low Channel Mid Channel High Channel				
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1		
	1	0	24.05	24.06	24.17		0
	1	50	23.66	23.79	23.99	0	0
	1	99	23.88	23.94	24.13	<u>] </u>	0
QPSK	50	0	22.89	22.89	23.12		1
	50	25	22.75	22.86	23.10	0-1	1
	50	50	22.74	22.82	23.05	- 0-1	1
	100	0	22.87	22.91	23.10		1
	1	0	23.16	23.15	23.29		1
	1	50	22.76	23.26	23.11	0-1	1
	1	99	23.01	23.05	23.20] [1
16QAM	50	0	21.88	21.88	22.13		2
	50	25	21.75	21.88	22.11		2
	50	50	21.76	21.78	22.05	0-2	2
	100	0	21.86	21.88	22.12	<u> </u>	2
	1	0	22.22	22.21	22.34		2
	1	50	21.83	21.92	22.18	0-2	2
	1	99	22.03	22.12	22.27] 「	2
64QAM	50	0	20.92	20.91	21.16		3
	50	25	20.79	20.89	21.14	0-3	3
	50	50	20.78	20.82	21.10	0-3	3
	100	0	20.88	20.91	21.12] [3

Table 9-31 LTE Band 25 (BCS) Maximum Conducted Bowers - 20 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 52 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 52 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

RE 06/19/2018

	L	IE Dallu		um Conducted	POwers - 15 Mir		
				LTE Band 25 (PCS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.03	23.95	24.08		0
	1	36	23.66	23.67	23.91	0	0
	1	74	23.80	23.93	24.10		0
QPSK	36	0	22.85	22.77	23.05		1
	36	18	22.73	22.77	23.02	0-1	1
	36	37	22.69	22.70	22.98		1
	75	0	22.87	22.81	23.05		1
	1	0	23.07	23.04	23.28		1
	1	36	22.72	23.15	23.08	0-1	1
	1	74	22.98	23.03	23.14		1
16QAM	36	0	21.80	21.84	22.02		2
	36	18	21.69	21.79	22.01	0-2	2
	36	37	21.71	21.73	21.93	0-2	2
	75	0	21.77	21.77	22.04		2
	1	0	22.14	22.16	22.34		2
	1	36	21.74	21.81	22.06	0-2	2
	1	74	21.97	22.10	22.22		2
64QAM	36	0	20.89	20.90	21.10		3
	36	18	20.71	20.83	21.06	0.2	3
	36	37	20.67	20.70	21.05	0-3	3
	75	0	20.82	20.86	21.04] [3

Table 9-32 LTE Band 25 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

Table 9-33 LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm]		
	1	0	23.94	23.96	24.07		0
	1	25	23.54	23.72	23.98	0	0
	1	49	23.81	23.89	24.13		0
QPSK	25	0	22.87	22.89	23.10		1
	25	12	22.69	22.84	23.05	0-1	1
	25	25	22.67	22.79	22.98	0-1	1
	50	0	22.80	22.85	23.10		1
	1	0	23.09	23.13	23.21		1
	1	25	22.66	23.23	23.05	0-1	1
	1	49	22.99	23.02	23.16		1
16QAM	25	0	21.79	21.82	22.11		2
	25	12	21.73	21.86	21.99	0-2	2
	25	25	21.76	21.72	22.05	0-2	2
	50	0	21.75	21.81	22.03		2
	1	0	22.18	22.13	22.23		2
	1	25	21.81	21.83	22.15	0-2	2
	1	49	21.98	22.07	22.15		2
64QAM	25	0	20.87	20.81	21.05		3
	25	12	20.78	20.80	21.13	0-3	3
	25	25	20.70	20.70	21.04	0-3	3
	50	0	20.86	20.85	21.11] [3

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 50 (4 4 4	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 53 of 144	
20 ⁻	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

				LTE Band 25 (PCS)	POwers - 5 Min		
				5 MHz Bandwidth			
			Low Channel 26065	Mid Channel 26365	High Channel 26665	MPR Allowed per	MPR [dB]
Modulation	RB Size	RB Offset	(1852.5 MHz)	(1882.5 MHz)		3GPP [dB]	
			l	Conducted Power [dBm]		
	1	0	24.01	23.97	24.05		0
	1	12	23.60	23.79	23.87	0	0
	1	24	23.78	23.92	24.01		0
QPSK	12	0	22.84	22.78	23.09		1
	12	6	22.64	22.86	23.07	0-1	1
	12	13	22.71	22.78	23.01		1
	25	0	22.81	22.80	23.03		1
	1	0	23.14	23.11	23.26		1
	1	12	22.65	23.17	23.01	0-1	1
	1	24	22.90	22.97	23.10		1
16QAM	12	0	21.77	21.77	22.09		2
	12	6	21.67	21.79	22.10	0-2	2
	12	13	21.64	21.66	22.02	0-2	2
	25	0	21.85	21.77	22.03		2
	1	0	22.13	22.19	22.32		2
	1	12	21.73	21.80	22.14	0-2	2
	1	24	21.92	22.09	22.18] [2
64QAM	12	0	20.85	20.83	21.11		3
	12	6	20.78	20.77	21.08		3
	12	13	20.76	20.81	21.06	0-3	3
	25	0	20.78	20.87	21.08] [3

Table 9-34 I TE Band 25 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

Table 9-35
LTE Band 25 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth
LTE Dand 25 (DCC)

Г

3 MHz Bandwidth Low Channel Mid Channel High Channel								
Modulation	RB Size	RB Offset	26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
	1	0	24.00	23.96	24.09		0	
	1	7	23.66	23.72	23.88	0	0	
	1	14	23.84	23.90	24.04		0	
QPSK	8	0	22.86	22.80	23.08		1	
	8	4	22.66	22.86	23.03		1	
	8	7	22.62	22.71	23.03	- 0-1	1	
	15	0	22.75	22.86	23.06		1	
	1	0	23.11	23.04	23.22		1	
	1	7	22.72	23.26	23.08	0-1	1	
	1	14	22.89	22.93	23.11		1	
16QAM	8	0	21.85	21.81	22.03		2	
	8	4	21.73	21.78	22.05	0-2	2	
	8	7	21.70	21.66	22.01	0-2	2	
	15	0	21.76	21.81	22.02		2	
	1	0	22.19	22.10	22.22		2	
	1	7	21.77	21.89	22.06	0-2	2	
	1	14	21.94	22.11	22.23		2	
64QAM	AM 8	0	20.90	20.84	21.08		3	
	8	4	20.76	20.86	21.07	0-3	3	
	8	7	20.66	20.74	21.07	0-3	3	
	15	0	20.85	20.79	21.01		3	

	FCC ID: ZNFQ910QM				Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 54 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 54 of 144
a 201	9 DOTEST Engineering Leberatory Inc.				DEV/ 20.11 M

	LTE Band 25 (PCS) Maximum Conducted Powers -1.4 MHz Bandwidth									
				LTE Band 25 (PCS) 1.4 MHz Bandwidth						
	Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	26047 (1850.7 MHz)	26365 (1882.5 MHz)	26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	23.97	24.03	24.14		0			
	1	2	23.54	23.69	23.99	1 Γ	0			
	1	5	23.87	23.89	24.11		0			
QPSK	3	0	24.04	23.94	24.16	0	0			
	3	2	23.54	23.71	23.97] [0			
	3	3	23.81	23.85	24.13		0			
	6	0	22.86	22.81	22.99	0-1	1			
	1	0	23.04	23.08	23.27		1			
	1	2	22.71	23.23	23.10	Τ Γ	1			
	1	5	22.91	22.97	23.08	0-1	1			
16QAM	3	0	22.86	22.86	23.00	0-1	1			
	3	2	22.65	22.83	23.08] [1			
	3	3	22.70	22.75	23.00		1			
	6	0	21.80	21.77	22.07	0-2	2			
	1	0	22.19	22.18	22.25		2			
	1	2	21.73	21.85	22.07	Τ Γ	2			
	1	5	21.97	22.05	22.17	0-2	2			
64QAM	3	0	21.81	21.87	22.03	0-2	2			
	3	2	21.66	21.79	22.08] [2			
	3	3	21.73	21.67	22.02		2			
	6	0	20.87	20.84	21.02	0-3	3			

Table 9-36 I TE Band 25 (PCS) Maximu ~ nducted Powers -1 4 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 55 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 55 of 144
201	8 PCTEST Engineering Laboratory Inc				REV 20.11 M

LTE Band 25 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth										
				LTE Band 25 (PCS) 20 MHz Bandwidth						
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	22.85	22.85	22.97		0			
	1	50	22.45	22.56	22.82	0	0			
	1	99	22.73	22.74	22.93		0			
QPSK	50	0	22.70	22.70	22.94		0			
	50	25	22.58	22.68	22.92	0-1	0			
	50	50	22.57	22.60	22.87	0-1	0			
	100	0	22.69	22.71	22.91		0			
	1	0	22.98	22.96	23.05		0			
	1	50	22.59	22.69	22.93	0-1	0			
	1	99	22.80	22.87	23.02		0			
16QAM	50	0	21.90	21.90	22.13		1			
	50	25	21.77	21.86	22.11	0-2	1			
	50	50	21.77	21.79	22.06	0-2	1			
	100	0	21.90	21.91	22.13		1			
	1	0	22.24	22.23	22.36		1			
	1	50	21.83	21.92	22.19	0-2	1			
	1	99	22.06	22.12	22.29		1			
64QAM	50	0	20.94	20.93	21.16		2			
	50	25	20.81	20.90	21.14	0-3	2			
	50	50	20.81	20.82	21.10	0-3	2			
	100	0	20.91	20.91	21.12		2			

Table 9-37 I TE Band 25 (PCS) Reduce Conducted Powers - 20 MHz Bandwidth

Table 9-38
LTE Band 25 (PCS) Reduced Conducted Powers - 15 MHz Bandwidth

			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.76	22.84	22.92		0
	1	36	22.44	22.53	22.81	0	0
	1	74	22.65	22.62	22.86		0
QPSK	36	0	22.68	22.63	22.93		0
	36	18	22.55	22.65	22.90	0-1	0
	36	37	22.49	22.50	22.80	0-1	0
	75	0	22.65	22.64	22.82		0
	1	0	22.93	22.88	22.94		0
	1	36	22.52	22.63	22.84	0-1	0
	1	74	22.73	22.79	22.97] [0
16QAM	36	0	21.85	21.86	22.01		1
	36	18	21.67	21.83	22.04	0-2	1
	36	37	21.68	21.79	21.95	0-2	1
	75	0	21.81	21.88	22.11	1	1
	1	0	22.16	22.22	22.30		1
	1	36	21.82	21.81	22.15	0-2	1
	1	74	21.97	22.05	22.21	1 [1
64QAM	36	0	20.89	20.90	21.05		2
	36	18	20.80	20.86	21.06		2
	36	37	20.79	20.74	21.04	0-3	2
	75	0	20.82	20.88	21.06	1	2

	FCC ID: ZNFQ910QM		SAK EVALUATION REPORT DI LG		Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 56 of 111
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 56 of 144
a 201	9 DOTEST Engineering Leberatory Inc.				DEV/ 20.11 M

LTE Band 25 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth LTE Band 25 (PCS)											
	10 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	22.84	22.85	22.90		0				
	1	25	22.43	22.54	22.72	0	0				
	1	49	22.63	22.71	22.88		0				
QPSK	25	0	22.68	22.63	22.90		0				
	25	12	22.53	22.68	22.91	0-1	0				
	25	25	22.53	22.55	22.78	0-1	0				
	50	0	22.65	22.68	22.85		0				
	1	0	22.97	22.95	23.03		0				
	1	25	22.52	22.69	22.82	0-1	0				
	1	49	22.75	22.75	22.96		0				
16QAM	25	0	21.78	21.79	22.05		1				
	25	12	21.68	21.85	22.03	0-2	1				
	25	25	21.68	21.79	22.00	0-2	1				
	50	0	21.83	21.84	22.01		1				
	1	0	22.14	22.21	22.28		1				
	1	25	21.74	21.81	22.13	0-2	1				
	1	49	21.97	22.04	22.23		1				
64QAM	25	0	20.83	20.81	21.12		2				
	25	12	20.79	20.80	21.08		2				
	25	25	20.78	20.79	21.01	0-3	2				
	50	0	20.85	20.81	21.03		2				

Table 9-39 I TE Band 25 (PCS) Reduced nducted Powers - 10 MHz Bandwidth

Table 9-40
LTE Band 25 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth
LTE Band 25 (BCS)

			Low Channel 26065	Mid Channel 26365	High Channel 26665	MPR Allowed per	
Modulation	RB Size	RB Offset	(1852.5 MHz)	(1882.5 MHz)	(1912.5 MHz)	3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm]		
	1	0	22.84	22.80	22.90		0
	1	12	22.41	22.44	22.78	0	0
	1	24	22.72	22.65	22.93		0
QPSK	12	0	22.68	22.65	22.92		0
	12	6	22.57	22.60	22.81	0-1	0
	12	13	22.50	22.48	22.86	0-1	0
	25	0	22.61	22.60	22.85		0
	1	0	22.89	22.91	22.99		0
	1	12	22.52	22.63	22.91	0-1	0
	1	24	22.69	22.78	22.95	1	0
16QAM	12	0	21.89	21.82	22.11		1
	12	6	21.70	21.74	21.99	0-2	1
	12	13	21.74	21.79	22.02	0-2	1
	25	0	21.84	21.85	22.09		1
	1	0	22.16	22.11	22.28		1
	1	12	21.82	21.83	22.14	0-2	1
	1	24	21.94	22.09	22.27		1
64QAM	12	0	20.91	20.89	21.10		2
	12	6	20.69	20.88	21.11	0-3	2
	12	13	20.80	20.80	20.80 21.00	0-3	2
	25	0	20.90	20.87	21.03] Γ	2

	FCC ID: ZNFQ910QM	SAR EVALUATION REPORT		🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 57 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 57 of 144
004	0 DOTECT Engineering Laboratory Inc.				DEV/ 20.44 M

	LTE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth LTE Band 25 (PCS)									
	3 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm						
	1	0	22.83	22.82	22.85		0			
	1	7	22.34	22.54	22.79	0	0			
	1	14	22.62	22.73	22.84		0			
QPSK	8	0	22.66	22.65	22.94		0			
	8	4	22.55	22.62	22.91	0-1	0			
	8	7	22.56	22.54	22.84		0			
	15	0	22.68	22.63	22.84		0			
	1	0	22.96	22.95	23.01		0			
	1	7	22.52	22.66	22.88	0-1	0			
	1	14	22.70	22.82	23.01		0			
16QAM	8	0	21.86	21.89	22.09		1			
	8	4	21.76	21.76	22.07	0-2	1			
	8	7	21.69	21.79	21.97	0-2	1			
	15	0	21.89	21.85	22.11		1			
	1	0	22.23	22.11	22.32		1			
	1	7	21.79	21.88	22.17	0-2	1			
	1	14	22.01	22.07	22.25		1			
64QAM	8	0	20.92	20.91	21.08		2			
	8	4	20.72	20.84	21.08	0-3	2			
	8	7	20.79	20.79	21.01	0-3	2			
	15	0	20.84	20.90	21.04	Γ	2			

Table 9-41 I TE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

	Table 9-42
LTE Band 25 (PCS) Reduced Conducted Powers – 1.4 MHz Bandwidth

	LTE Band 25 (PCS) 1.4 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	0	22.77	22.79	22.87		0			
	1	2	22.38	22.45	22.76		0			
	1	5	22.67	22.74	22.83	0	0			
QPSK	3	0	22.69	22.58	22.87		0			
	3	2	22.56	22.63	22.83	[0			
	3	3	22.47	22.52	22.82		0			
	6	0	22.64	22.67	22.90	0-1	0			
	1	0	22.97	22.87	22.98	- 0-1 -	0			
	1	2	22.54	22.57	22.89		0			
	1	5	22.76	22.77	22.95		0			
16QAM	3	0	22.77	22.81	22.88	0-1	0			
	3	2	22.33	22.54	22.71		0			
	3	3	22.63	22.63	22.91		0			
	6	0	21.85	21.90	22.05	0-2	1			
	1	0	22.14	22.12	22.33		1			
	1	2	21.71	21.92	22.18	Ī	1			
	1	5	22.02	22.02	22.19	0-2	1			
64QAM	3	0	21.84	21.83	22.02	0-2	1			
	3	2	21.69	21.77	22.03	Ī	1			
	3	3	21.65	21.79	21.98]	1			
	6	0	20.79	20.86	21.04	0-3	2			

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 50 of 111
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 58 of 144
a 204	0 DOTECT Engineering Laboratory Inc.				DEV 20 44 M

9.3.4 LTE Band 30

LTE Band 30 Conducted Powers - 10 MHz Bandwidth										
	10 MHz Bandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	27710 (2310.0 MHz) Conducted Power [dBm]	27710 (2310.0 MHz) Conducted Power						
	1	0	22.41		0					
	1	25	22.28	0	0					
	1	49	9 22.37	0						
QPSK	25	0	21.52		1					
	25	12	21.54	0-1	1					
	25	25	21.58		1					
	50	0	21.53		1					
	1	0	21.40		1					
	1	25	21.25	0-1	1					
	1	49	21.33		1					
16QAM	25	0	20.60		2					
	25	12	20.55	0-2	2					
	25	25	20.63	0-2	2					
	50	0	20.50		2					
	1	0	20.36		2					
	1	25	20.21	0-2	2					
	1	49	20.31		2					
64QAM	25	0	19.21		3					
	25	12	19.17	0-3	3					
	25	25	19.23	0-3	3					
	50	0	19.16		3					

Table 9-43 I TE Band 30 Conducted Powers - 10 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 59 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		1 age 35 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

RE 06/19/2018

	LTE Band 30 Conducted Powers - 5 MHz Bandwidth								
	5 MHz Band 30								
			Mid Channel						
Modulation	RB Size	RB Offset	27710 (2310.0 MHz) Conducted Power [dBm]	27710 MPR Allowed per (2310.0 MHz) 3GPP [dB]					
	1	0	22.44		0				
	1	12	22.38	0	0				
	1	24	22.39		0				
QPSK	12	0	21.55		1				
	12	6	21.45	0-1	1				
	12	13	21.75	0-1	1				
	25	0	21.54		1				
	1	0	21.59		1				
	1	12	21.52	0-1	1				
	1	24	21.67		1				
16QAM	12	0	20.68		2				
	12	6	20.80	0-2	2				
	12	13	20.78	0-2	2				
	25	0	20.78		2				
	1	0	20.98		2				
	1	12	20.68	0-2	2				
	1	24	20.80		2				
64QAM	12	0	19.73		3				
	12	6	19.59	0.2	3				
	12	13	19.54	0-3	3				
	25	0	19.82		3				

Table 9-44	
LTE Band 30 Conducted Powers - 5 MHz Bandwidth	

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage CO of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 60 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

LTE Band 7 9.3.5

LTE Band 7 Conducted Powers - 20 MHz Bandwidth										
				LTE Band 7 20 MHz Bandwidth						
Low Channel Mid Channel High Channel										
			20850	21100	21350	MPR Allowed per				
Modulation	RB Size	RB Offset	(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)	3GPP [dB]	MPR [dB]			
				Conducted Power [dBm	n]					
	1	0	23.67	23.70	23.64		0			
	1	50	23.54	23.55	23.65	0	0			
	1	99	23.52	23.51	23.66		0			
QPSK	50	0	22.67	22.68	22.65		1			
	50	25	22.66	22.62	22.65	0-1	1			
	50	50	22.57	22.59	22.67	0-1	1			
	100	0	22.60	22.66	22.58	1 Γ	1			
	1	0	22.69	22.66	22.54		1			
	1	50	22.46	22.67	22.67	0-1	1			
	1	99	22.63	22.68	22.70		1			
16QAM	50	0	21.67	21.63	21.69		2			
	50	25	21.62	21.60	21.68	0-2	2			
	50	50	21.55	21.64	21.70	0-2	2			
	100	0	21.62	21.57	21.67		2			
	1	0	21.70	21.70	21.69		2			
	1	50	21.68	21.69	21.67	0-2	2			
	1	99	21.65	21.69	21.70	1 [2			
64QAM	50	0	20.70	20.66	20.68		3			
	50	25	20.66	20.58	20.67	Ι	3			
	50	50	20.67	20.57	20.69	0-3	3			
	100	0	20.66	20.60	20.70	1 [3			

Table 9-45 I TE Band 7 Conducted Powers - 20 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 61 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 01 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

RE 06/19/2018

LTE Band 7 Conducted Powers - 15 MHz Bandwidth											
	LTE Band 7										
	15 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	20825 (2507.5 MHz)	21100 (2535.0 MHz)	21375 (2562.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted Power [dBm							
	1	0	23.62	23.69	23.50		0				
	1	36	23.54	23.40	23.49	0	0				
	1	74	23.37	23.44	23.58	1 F	0				
QPSK	36	0	22.56	22.67	22.55		1				
	36	18	22.60	22.54	22.62	1 [1				
	36	37	22.54	22.52	22.54	0-1	1				
	75	0	22.46	22.63	22.44	1 [1				
	1	0	22.68	22.51	22.49	0-1	1				
	1	36	22.37	22.66	22.59		1				
	1	74	22.47	22.57	22.66		1				
16QAM	36	0	21.59	21.57	21.55		2				
	36	18	21.46	21.51	21.63	0-2	2				
	36	37	21.51	21.61	21.57	0-2	2				
	75	0	21.52	21.44	21.59		2				
	1	0	21.70	21.53	21.68		2				
	1	36	21.55	21.55	21.56	0-2	2				
	1	74	21.50	21.68	21.60		2				
64QAM	36	0	20.58	20.55	20.62		3				
	36	18	20.66	20.50	20.59	0-3	3				
	36	37	20.64	20.45	20.58	0-3	3				
	75	0	20.61	20.54	20.66		3				

Table 9-46 I TE Band 7 Conduc ted Powers - 15 MHz Bandwidth

Table 9-47 LTE Band 7 Conducted Powers - 10 MHz Bandwidth

LTE Band 7									
				10 MHz Bandwidth					
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	20800	21100	21400	MPR Allowed per	MPR [dB]		
			(2505.0 MHz)	(2535.0 MHz)	(2565.0 MHz)	3GPP [dB]			
				Conducted Power [dBm	-				
	1	0	23.65	23.65	23.60		0		
	1	25	23.43	23.54	23.52	0	0		
	1	49	23.36	23.38	23.53		0		
QPSK	25	0	22.54	22.68	22.58		1		
	25	12	22.61	22.58	22.53	0-1	1		
	25	25	22.50	22.56	22.57	0-1	1		
	50	0	22.55	22.60	22.57		1		
	1	0	22.67	22.54	22.53		1		
	1	25	22.45	22.52	22.64	0-1	1		
	1	49	22.58	22.61	22.62		1		
16QAM	25	0	21.65	21.56	21.63		2		
	25	12	21.46	21.45	21.57	0-2	2		
	25	25	21.51	21.63	21.62	0-2	2		
	50	0	21.53	21.46	21.61		2		
	1	0	21.55	21.65	21.66		2		
	1	25	21.64	21.56	21.53	0-2	2		
	1	49	21.63	21.53	21.62		2		
64QAM	25	0	20.70	20.56	20.58		3		
	25	12	20.65	20.53	20.52	0.0	3		
	25	25	20.54	20.53	20.58	0-3	3		
	50	0	20.61	20.57	20.66		3		

FCC ID:	ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
Docume	ent S/N:	Test Dates:	DUT Type:		D	
1M1808	210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 62 of 144	
© 2018 PCTEST	Engineering Laboratory, Inc.		-		REV 20.11 M	

REV 20.11 M

	LTE Band 7 Conducted Powers - 5 MHz Bandwidth									
	LTE Band 7 5 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	20775 (2502.5 MHz)	21100 (2535.0 MHz)	21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]							
	1	0	23.64	23.63	23.52		0			
	1	12	23.39	23.44	23.50	0	0			
	1	24	23.46	23.46	23.62		0			
QPSK	12	0	22.57	22.61	22.63		1			
	12	6	22.51	22.58	22.61	0-1	1			
	12	13	22.46	22.47	22.59	0-1	1			
	25	0	22.59	22.59	22.46		1			
	1	0	22.64	22.50	22.52	0-1	1			
	1	12	22.31	22.59	22.66		1			
	1	24	22.50	22.67	22.65		1			
16QAM	12	0	21.52	21.57	21.68		2			
	12	6	21.50	21.53	21.55	0-2	2			
	12	13	21.39	21.48	21.65	0-2	2			
	25	0	21.53	21.49	21.62		2			
	1	0	21.64	21.57	21.56		2			
	1	12	21.55	21.68	21.60	0-2	2			
	1	24	21.62	21.64	21.65		2			
64QAM	12	0	20.58	20.60	20.56		3			
	12	6	20.52	20.56	20.52	0-3	3			
	12	13	20.58	20.46	20.57	0-3	3			
	25	0	20.58	20.48	20.70	Γ	3			

Table 9-48 I TE Band 7 Conducted Powers - 5 MHz Bandwidth

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 63 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 05 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

9.3.6 LTE Band 41

				20	LTE Band 41 MHz Bandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [d	Bm]			
	1	0	24.52	24.84	24.85	24.83	24.83		0
	1	50	24.53	24.57	24.55	24.64	24.71	0	0
	1	99	24.71	24.44	24.47	24.49	24.45		0
QPSK	50	0	23.76	23.80	23.82	23.79	23.68		1
-	50	25	23.69	23.66	23.70	23.63	23.70	0-1	1
	50	50	23.60	23.52	23.57	23.54	23.69	0-1	1
	100	0	23.59	23.63	23.71	23.69	23.68		1
	1	0	23.90	23.89	23.87	23.90	23.88	0-1	1
	1	50	23.78	23.79	23.80	23.81	23.90		1
	1	99	23.42	23.62	23.61	23.64	23.83		1
16QAM	50	0	22.74	22.77	22.83	22.79	22.79		2
	50	25	22.71	22.66	22.77	22.67	22.76	0-2	2
	50	50	22.61	22.55	22.67	22.60	22.73	0-2	2
	100	0	22.63	22.66	22.75	22.73	22.76		2
	1	0	22.53	22.57	22.57	22.21	22.49		2
	1	50	22.54	22.36	22.53	22.24	22.40	0-2	2
	1	99	22.24	22.13	22.13	22.17	22.26		2
64QAM	50	0	21.83	21.72	21.83	21.82	21.74		3
	50	25	21.65	21.66	21.74	21.69	21.79	0-3	3
	50	50	21.62	21.54	21.57	21.56	21.71		3
	100	0	21.68	21.68	21.81	21.68	21.73		3

Table 9-49 LTE Band 41 Conducted Powers - 20 MHz Bandwidth

Table 9-50 LTE Band 41 Conducted Powers - 15 MHz Bandwidth

			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	3m]			
	1	0	24.51	24.83	24.82	24.78	24.71		0
	1	36	24.46	24.45	24.51	24.56	24.70	0	0
	1	74	24.55	24.42	24.39	24.41	24.34		0
QPSK	36	0	23.75	23.65	23.66	23.65	23.64	0-1	1
	36	18	23.60	23.54	23.55	23.53	23.56		1
	36	37	23.56	23.52	23.56	23.53	23.68		1
	75	0	23.42	23.56	23.59	23.65	23.61		1
	1	0	23.78	23.76	23.85	23.75	23.73		1
	1	36	23.75	23.67	23.67	23.78	23.78	0-1	1
	1	74	23.37	23.52	23.46	23.62	23.75		1
16QAM	36	0	22.59	22.68	22.82	22.77	22.69		2
	36	18	22.59	22.63	22.69	22.57	22.63	0-2	2
	36	37	22.45	22.40	22.66	22.52	22.60	0-2	2
	75	0	22.58	22.54	22.69	22.73	22.73		2
	1	0	22.50	22.55	22.55	22.05	22.33		2
	1	36	22.43	22.30	22.45	22.16	22.25	0-2	2
	1	74	22.11	22.12	22.02	22.14	22.16		2
64QAM	36	0	21.77	21.58	21.81	21.76	21.69		3
	36	18	21.62	21.51	21.58	21.65	21.74	0-3	3
	36	37	21.52	21.44	21.42	21.51	21.66		3
	75	0	21.61	21.63	21.67	21.55	21.57		3

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 64 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 64 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M

		-	LIE Band	41 Conduct		- 10 MHZ Ba	nawiath		
	LTE Band 41 10 MHz Bandwidth								
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dB	Bm]			
	1	0	24.50	24.75	24.69	24.79	24.83		0
	1	25	24.42	24.57	24.42	24.48	24.55	0	0
	1	49	24.61	24.43	24.42	24.39	24.43		0
QPSK	25	0	23.67	23.76	23.78	23.68	23.57	0-1	1
	25	12	23.57	23.56	23.65	23.48	23.62		1
	25	25	23.49	23.47	23.54	23.46	23.59		1
	50	0	23.58	23.51	23.62	23.54	23.53		1
	1	0	23.89	23.87	23.80	23.79	23.78	0-1	1
	1	25	23.77	23.67	23.72	23.74	23.73		1
	1	49	23.27	23.48	23.51	23.56	23.77		1
16QAM	25	0	22.63	22.76	22.70	22.79	22.74		2
	25	12	22.64	22.64	22.68	22.52	22.65	0-2	2
	25	25	22.52	22.51	22.59	22.58	22.69	0-2	2
	50	0	22.54	22.55	22.69	22.68	22.61		2
	1	0	22.50	22.44	22.47	22.21	22.44		2
	1	25	22.53	22.34	22.50	22.23	22.28	0-2	2
	1	49	22.24	21.98	22.00	22.01	22.14] [2
64QAM	25	0	21.68	21.56	21.68	21.76	21.66		3
	25	12	21.65	21.59	21.69	21.63	21.79	0-3	3
	25	25	21.46	21.43	21.43	21.48	21.67		3
	50	0	21.57	21.67	21.74	21.59	21.70		3

Table 9-51 I TE Band 41 Conducted Powers - 10 MHz Bandwidth

Table 9-52 LTE Band 41 Conducted Powers - 5 MHz Bandwidth

	LTE Band 41 5 MHz Bandwidth									
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel			
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Co	nducted Power [dl	Bm]				
	1	0	24.37	24.68	24.75	24.76	24.82		0	
	1	12	24.47	24.50	24.48	24.50	24.56	0	0	
	1	24	24.64	24.32	24.46	24.46	24.29		0	
QPSK	12	0	23.75	23.76	23.73	23.71	23.54	0-1	1	
	12	6	23.57	23.60	23.63	23.60	23.69		1	
	12	13	23.58	23.48	23.53	23.51	23.63	0-1	1	
	25	0	23.54	23.57	23.69	23.54	23.58		1	
	1	0	23.77	23.77	23.85	23.77	23.74		1	
	1	12	23.64	23.76	23.75	23.78	23.89	0-1	1	
	1	24	23.40	23.52	23.46	23.62	23.70		1	
16QAM	12	0	22.60	22.64	22.72	22.76	22.72		2	
	12	6	22.59	22.52	22.65	22.66	22.70	0-2	2	
	12	13	22.60	22.39	22.57	22.60	22.67	0-2	2	
	25	0	22.49	22.58	22.75	22.70	22.62		2	
	1	0	22.44	22.50	22.47	22.18	22.47		2	
	1	12	22.42	22.30	22.50	22.14	22.34	0-2	2	
	1	24	22.18	22.02	22.04	22.08	22.15		2	
64QAM	12	0	21.70	21.64	21.68	21.78	21.62	0-3	3	
	12	6	21.59	21.64	21.62	21.56	21.75		3	
	12	13	21.49	21.37	21.42	21.40	21.63		3	
	25	0	21.63	21.53	21.64	21.66	21.62		3	

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 65 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M

9.4 **WLAN Conducted Powers**

2.4GHz Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11b	802.11g				
		Average	Average				
2412	1	20.42	17.93				
2422	3	N/A	19.35				
2437	6	20.47	19.48				
2452	9	N/A	19.46				
2462	11	20.48	16.95				

Table 9-53 2 / GHz WI AN Mavir ago PE Power - Ant 1 $m \wedge u = m$

2.4 GHz WLAN Maximum Average RF Power – Ant 2
2 AGHz Conducted Bower [dBm]

		IEEE Transm	ission Mode			
Freq [MHz]	Channel	802.11b	802.11g			
		Average	Average			
2412	1	20.43	17.90			
2422	3	N/A	19.46			
2437	6	20.49	19.39			
2452	9	N/A	19.36			
2462	11	20.47	16.83			

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by:
					Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 66 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		1 age 00 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

5 GHz WLAN Maximum Average RF Power – Ant 1 5GHz (20MHz) Conducted Power [dBm]					
	5GHz (20MHz				
		IEEE 1	Transmission	Mode	
Freq [MHz]	Channel	802.11a	802.11n	802.11ac	
		Average	Average	Average	
5180	36	16.95	16.94	16.93	
5200	40	17.99	17.98	17.96	
5220	44	16.95	16.92	16.86	
5240	48	16.97	16.94	16.95	
5260	52	16.97	16.91	16.93	
5280	56	17.98	17.97	17.94	
5300	60	16.97	16.93	16.95	
5320	64	16.99	16.97	16.97	
5500	100	16.93	16.90	16.88	
5600	120	16.99	16.96	16.97	
5620	124	16.97	16.91	16.92	
5720	144	16.99	16.96	16.94	
5745	149	16.99	16.98	16.96	
5785	157	17.99	17.98	17.96	
5805	161	17.92	17.93	17.86	
5825	165	16.98	16.94	16.96	

Table 9-55 age RF Power - Ant 1 5 GHz WI AN Maxi • • •

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 67 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 67 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 Μ

5 GHz WLAN Maximum Average RF Power – Ant 2 5GHz (20MHz) Conducted Power [dBm]					
		IEEE 1	Fransmission	Mode	
Freq [MHz]	Channel	802.11a	802.11n	802.11ac	
		Average	Average	Average	
5180	36	16.91	16.73	16.73	
5200	40	17.95	17.94	17.90	
5220	44	16.98	16.94	16.93	
5240	48	16.99	16.90	16.94	
5260	52	16.97	16.79	16.80	
5280	56	17.98	17.98	17.96	
5300	60	16.96	16.90	16.90	
5320	64	16.99	16.96	16.96	
5500	100	16.99	16.92	16.91	
5600	120	16.98	16.91	16.89	
5620	124	16.94	16.83	16.84	
5720	144	16.99	16.95	16.93	
5745	149	16.99	16.96	16.96	
5785	157	17.95	17.87	17.87	
5805	161	17.92	17.82	17.78	
5825	165	16.97	16.80	16.82	

Table 9-56 e RF Power – Ant 2 5 GHz WI AN Maxi . . .

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 68 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Tage to of 144
© 201	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.11 M

5 GHZ WLAN Maximum Average RF Power – MIMO							
	5GHz (20MHz) 802.11n Conducted Power [dBm]						
Freq [MHz]	Channel	ANT1	ANT2	MIMO			
5180	36	16.94	16.73	19.85			
5200	40	17.98	17.94	20.97			
5220	44	16.92	16.94	19.94			
5240	48	16.94	16.90	19.93			
5260	52	16.91	16.79	19.86			
5280	56	17.97	17.98	20.99			
5300	60	16.93	16.90	19.93			
5320	64	16.97	16.96	19.98			
5500	100	16.90	16.92	19.92			
5600	120	16.96	16.91	19.95			
5620	124	16.91	16.83	19.88			
5720	144	16.96	16.95	19.97			
5745	149	16.98	16.96	19.98			
5785	157	17.98	17.87	20.94			
5805	161	17.93	17.82	20.89			
5825	165	16.94	16.80	19.88			

Table 9-57 5 GHz WI AN Maximum Average RF Power – MIMO

Table 9-58

2.4 GHz WLAN Reduced Average RF Power – Ant 1 (Held-to-ear and During Conditions with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2)

2.4GHz Conducted Power [dBm]						
		IEEE Transmission Mode				
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ac	
			Average	Average	Average	
2412	1	17.96	17.96	16.83	16.85	
2422	3	N/A	17.90	17.73	17.71	
2437	6	17.98	17.96	17.86	17.88	
2452	9	N/A	17.94	17.74	17.76	
2462	11	17.97	16.98	15.76	15.75	

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 69 of 144	
2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

	2.4 GHZ WLAN Reduced Average RF Power – Ant 2 (Held-to-ear) 2.4GHz Conducted Power [dBm]						
			IEEE Transm	ission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ac		
		Average	Average	Average	Average		
2412	1	17.96	17.92	16.65	16.68		
2422	3	N/A	17.93	17.68	17.70		
2437	6	17.97	17.97	17.79	17.77		
2452	9	N/A	17.83	17.56	17.56		
2462	11	17.92	16.85	15.60	15.62		

Table 9-59 2.4 CH-WI AN Reduced Average RE Rewer Ant 2 (Hold to car)

Table 9-60 5GHz WLAN Reduced Output Powers During Conditions with 2.4 GHz Ant 1 and 5 GHz WLAN Ant 2 5GHz (40MHz) Conducted Power [dBm]

	IEEE Transmission Mo					
Freq [MHz]	Channel	802.11n	802.11ac			
		Average	Average			
5190	38	12.51	12.75			
5230	46	14.80	14.98			
5270	54	14.81	14.99			
5310	62	12.20	12.41			
5510	102	12.16	12.44			
5590	118	14.71	14.92			
5630	126	14.90	14.57			
5710	142	14.54	14.91			
5755	151	14.55	14.97			
5795	159	14.97	14.92			

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for • the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation ٠ and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; • and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

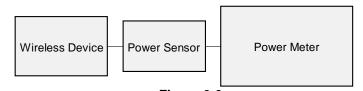


Figure 9-3 **Power Measurement Setup**

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Daga 70 of 114	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 70 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

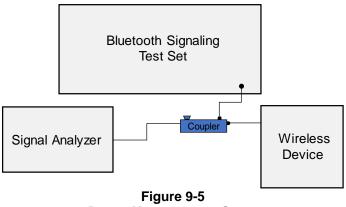
REV 20.11 M 06/19/2018

9.5 **Bluetooth Conducted Powers**

	Data	Average R	Avg Conducted Power		
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]	
2402	1.0	0	11.50	14.125	
2441	1.0	39	11.86	15.346	
2480	1.0	78	11.18	13.122	
2402	2.0	0	10.84	12.134	
2441	2.0	39	11.22	13.243	
2480	2.0	78	10.52	11.272	
2402	3.0	0	10.88	12.246	
2441	3.0	39	11.29	13.459	
2480	3.0	78	10.57	11.402	

Table 9-61

Note: The bolded data rates and channel above were tested for SAR.


	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 71 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset			
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

	RF	50 Ω A	AC CORREC	SENSE:IN		06:17:52 PM Jul 2	
			PNO: Fast IFGain:Low	→ Trig: Video Atten: 40 dB	#Avg Type: RM	S TRACE 1 TYPE W DET P	N N N N N
0 dB/di	iv Ref	30.00 dB	m			Mkr1 3.72 11.28	0 ms Auto Tui dBm
20.0				1	<u>2∆</u> 1 <	<mark>}3∆1</mark>	Center Fr 2.44100000 G
0.00							
10.0 20.0 30.0			Le spisterior		wordlastuday		Start Fr 2.441000000 G
10.0							Stop Fr 2.441000000 G
les BV	2.44100 N 8 MHz	00000 GH		W 50 MHz		p 10.00 ms (100	Auto M
			3.720 ms 2.890 ms (/ 3.750 ms (/	11.28 dBm -0.70 dB -0.01 dB			Freg Offs
1 Ν 2 Δ1 3 Δ1 4 5 6	1 t		0.730 1113 (2				
3 ∆1 4 5							0
3 <u>A</u> 1 4 5 6 7 8			0.100 ms 12				Scale Typ

Figure 9-4 **Bluetooth Transmission Plot**

Equation 9-1 Bluetooth Duty Cycle Calculation

 $Duty \ Cycle = \frac{Pulse \ Width}{Period} * 100\% = \frac{2.89ms}{3.75ms} * 100\% = 77.1\%$

Power Measurement Setup

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 72 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset			
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

10 SYSTEM VERIFICATION

10.1 **Tissue Verification**

			measur	ed Head II	ssue Propei	ties			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			700	0.872	42.010	0.889	42.201	-1.91%	-0.45%
			710	0.875	41.988	0.890	42.149	-1.69%	-0.38%
00/05/2010	750H	24.5	740	0.884	41.896	0.893	41.994	-1.01%	-0.23%
09/05/2018	7500	21.5	755	0.889	41.828	0.894	41.916	-0.56%	-0.21%
			770	0.895	41.781	0.895	41.838	0.00%	-0.14%
			785	0.900	41.749	0.896	41.760	0.45%	-0.03%
			820	0.935	42.531	0.899	41.578	4.00%	2.29%
08/22/2018	835H	21.5	835	0.941	42.471	0.900	41.500	4.56%	2.34%
			850	0.946	42.420	0.916	41.500	3.28%	2.22%
			1710	1.327	39.892	1.348	40.142	-1.56%	-0.62%
08/27/2018	1750H	21.0	1750	1.351	39.817	1.371	40.079	-1.46%	-0.65%
			1790	1.372	39.725	1.394	40.016	-1.58%	-0.73%
			1850	1.426	40.060	1.400	40.000	1.86%	0.15%
08/23/2018	1900H	21.5	1880	1.443	39.989	1.400	40.000	3.07%	-0.03%
			1910	1.460	39.939	1.400	40.000	4.29%	-0.15%
	1900H		1850	1.432	40.071	1.400	40.000	2.29%	0.18%
08/28/2018		21.9	1880	1.451	40.024	1.400	40.000	3.64%	0.06%
			1910	1.468	39.984	1.400	40.000	4.86%	-0.04%
			2300	1.733	39.108	1.670	39.500	3.77%	-0.99%
			2310	1.742	39.111	1.679	39.480	3.75%	-0.93%
		l i	2320	1.750	39.103	1.687	39.460	3.73%	-0.90%
00/07/00/0	0.45011		2400	1.808	38.935	1.756	39.289	2.96%	-0.90%
08/27/2018	2450H	21.5	2450	1.849	38.894	1.800	39.200	2.72%	-0.78%
			2500	1.882	38.795	1.855	39.136	1.46%	-0.87%
			2550	1.926	38.713	1.909	39.073	0.89%	-0.92%
			2600	1.961	38.638	1.964	39.009	-0.15%	-0.95%
			5240	4.548	35.119	4.696	35.940	-3.15%	-2.28%
		l i	5260	4.570	35.088	4.717	35.917	-3.12%	-2.31%
			5280	4.600	35.022	4.737	35.894	-2.89%	-2.43%
			5500	4.830	34.642	4.963	35.643	-2.68%	-2.81%
08/20/2018	5200H-5800H	20.5	5600	4.947	34.474	5.065	35.529	-2.33%	-2.97%
			5700	5.077	34.284	5.168	35.414	-1.76%	-3.19%
			5745	5.126	34.176	5.214	35.363	-1.69%	-3.36%
			5765	5.146	34.183	5.234	35.340	-1.68%	-3.27%
			5785	5.157	34.114	5.255	35.317	-1.86%	-3.41%

Table 10-1 Managurad Hand Ticque Broportion

Table 10-2 **Measured Body Tissue Properties**

					0000110000				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C) (MHz) σ (S/m)		Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	%devε	
			700	0.914	56.527	0.959	55.726	-4.69%	1.44%
			710	0.922	56.429	0.960	55.687	-3.96%	1.33%
08/21/2018	750B	24.6	740	0.948	56.203	0.963	55.570	-1.56%	1.14%
00/21/2010		24.0	755	0.962	56.085	0.964	55.512	-0.21%	1.03%
			770	0.975	55.946	0.965	55.453	1.04%	0.89%
			785	0.989	55.789	0.966	55.395	2.38%	0.71%
			820	0.999	53.686	0.969	55.258	3.10%	-2.84%
08/22/2018	835B	20.9	835	1.005	53.644	0.970	55.200	3.61%	-2.82%
			850	1.010	53.607	0.988	55.154	2.23%	-2.80%
			1710	1.446	51.982	1.463	53.537	-1.16%	-2.90%
08/20/2018	1750B	21.7	1750	1.489	51.829	1.488	53.432	0.07%	-3.00%
			1790	1.531	51.649	1.514	53.326	1.12%	-3.14%

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 72 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 73 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M

Table 10-3 Measured Body Tissue Properties (Cont.)

			leasarea	<u>bouy 11550</u>	e Properties				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	% dev ε
			1710	1.443	53.316	1.463	53.537	-1.37%	-0.41%
08/27/2018	1750B	21.8	1750	1.476	53.262	1.488	53.432	-0.81%	-0.32%
			1790	1.505	53.210	1.514	53.326	-0.59%	-0.22%
			1850	1.546	51.507	1.520	53.300	1.71%	-3.36%
08/20/2018	1900B	20.4	1880	1.568	51.496	1.520	53.300	3.16%	-3.38%
			1910	1.592	51.477	1.520	53.300	4.74%	-3.42%
			1850	1.490	52.313	1.520	53.300	-1.97%	-1.85%
08/23/2018	1900B	24.2	1880	1.523	52.217	1.520	53.300	0.20%	-2.03%
			1910	1.555	52.131	1.520	53.300	2.30%	-2.19%
			1850	1.547	53.115	1.520	53.300	1.78%	-0.35%
08/27/2018	1900B	21.8	1880	1.570	53.086	1.520	53.300	3.29%	-0.40%
00/21/2010		2110	1910	1.591	53.053	1.520	53.300	4.67%	-0.46%
			1850	1.532	52.457	1.520	53.300	0.79%	-1.58%
08/30/2018	1900B	22.3	1880	1.551	52.426	1.520	53.300	2.04%	-1.64%
00/00/2010	10000	22.0	1910	1.573	52.423	1.520	53.300	3.49%	-1.65%
			2400	1.942	50.962	1.902	52.767	2.10%	-3.42%
09/20/2019	2450B	22.7	2400				52.700		
08/20/2018	2450B	23.7		1.990	50.819	1.950		2.05%	-3.57%
			2500	2.061	50.657	2.021	52.636	1.98%	-3.76%
			2300	1.852	51.837	1.809	52.900	2.38%	-2.01%
			2310	1.864	51.822	1.816	52.887	2.64%	-2.01%
			2320	1.876	51.803	1.826	52.873	2.74%	-2.02%
			2450	2.024	51.431	1.950	52.700	3.79%	-2.41%
08/27/2018	2450B	23.2	2500	2.078	51.263	2.021	52.636	2.82%	-2.61%
			2550	2.141	51.109	2.092	52.573	2.34%	-2.78%
			2600	2.195	50.983	2.163	52.509	1.48%	-2.91%
			2650	2.258	50.827	2.234	52.445	1.07%	-3.09%
			2700	2.313	50.673	2.305	52.382	0.35%	-3.26%
			2450	2.033	50.862	1.950	52.700	4.26%	-3.49%
08/30/2018	2450B	22.3	2500	2.091	50.715	2.021	52.636	3.46%	-3.65%
00/30/2016	2450B	22.3	2550	2.158	50.574	2.092	52.573	3.15%	-3.80%
			2600	2.216	50.422	2.163	52.509	2.45%	-3.97%
			5180	5.400	47.659	5.276	49.041	2.35%	-2.82%
			5200	5.425	47.645	5.299	49.014	2.38%	-2.79%
			5220	5.445	47.552	5.323	48.987	2.29%	-2.93%
			5240	5.469	47.531	5.346	48.960	2.30%	-2.92%
			5260	5.489	47.481	5.369	48.933	2.24%	-2.97%
			5280	5.519	47.441	5.393	48.906	2.34%	-3.00%
			5300	5.553	47.472	5.416	48.879	2.53%	-2.88%
			5320	5.578	47.431	5.439	48.851	2.56%	-2.91%
08/20/2018	5200B-5800B	21.6	5600	5.951	46.951	5.766	48.471	3.21%	-3.14%
00/20/2010		21.0	5620	5.988	46.916	5.790	48.444	3.42%	-3.15%
			5640	6.011	46.871	5.813	48.417	3.41%	-3.19%
			5700	6.095	46.792	5.883	48.336	3.60%	-3.19%
					46.697	5.936	48.336		-3.19%
			5745	6.162				3.81%	
			5765	6.179	46.675	5.959	48.248	3.69%	-3.26%
			5785	6.210	46.639	5.982	48.220	3.81%	-3.28%
			5800	6.229	46.610	6.000	48.200	3.82%	-3.30%
			5805	6.238	46.594	6.006	48.193	3.86%	-3.32%
			5240	5.434	47.661	5.346	48.960	1.65%	-2.65%
			5260	5.457	47.618	5.369	48.933	1.64%	-2.69%
			5280	5.485	47.579	5.393	48.906	1.71%	-2.71%
08/27/2018	5200B-5800B	22.0	5320	5.539	47.502	5.439	48.851	1.84%	-2.76%
00/21/2010	5200D-0000D	22.0	5600	5.914	47.043	5.766	48.471	2.57%	-2.95%
			5700	6.050	46.871	5.883	48.336	2.84%	-3.03%
			5745	6.117	46.804	5.936	48.275	3.05%	-3.05%
	1	1	-	6.153	46.768	5.959	48.248	3.26%	-3.07%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 74 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 74 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

				Sy	stem Ve	rificati	on Re	suits -	– 1g			
						ystem Ve RGET & N		D				
SAR System #	Frequency Date: SABia										1 W Normalized SAR1g (W/kg)	Deviation _{1g} (%)
н	750	HEAD	09/05/2018	22.2	21.5	0.200	1003	7409	1.660	8.280	8.300	0.24%
G	835	HEAD	08/22/2018	23.5	21.5	0.200	4d047	7410	1.990	9.130	9.950	8.98%
н	1750	HEAD	08/27/2018	22.4	21.0	0.100	1148	7409	3.620	36.400	36.200	-0.55%
G	1900	HEAD	08/23/2018	22.7	21.5	0.100	5d148	7410	3.900	40.100	39.000	-2.74%
н	1900	HEAD	08/28/2018	22.6	21.7	0.100	5d148	7409	4.160	40.100	41.600	3.74%
G	2300	HEAD	08/27/2018	22.6	21.5	0.100	1064	7410	4.960	47.600	49.600	4.20%
G	2450	HEAD	08/27/2018	22.6	21.5	0.100	797	7410	5.510	52.700	55.100	4.55%
G	2600	HEAD	08/27/2018	22.6	21.5	0.100	1071	7410	5.760	56.300	57.600	2.31%
н	5250	HEAD	08/20/2018	21.1	20.5	0.050	1057	7409	3.740	79.200	74.800	-5.56%
н	5600	HEAD	08/20/2018	21.1	20.5	0.050	1057	7409	4.070	84.100	81.400	-3.21%
н	5750	HEAD	08/20/2018	21.1	20.5	0.050	1057	7409	3.800	80.500	76.000	-5.59%
G	750	BODY	08/21/2018	22.0	24.6	0.200	1161	7410	1.790	8.430	8.950	6.17%
I	835	BODY	08/22/2018	23.8	20.9	0.200	4d132	7406	2.050	9.710	10.250	5.56%
E	1750	BODY	08/20/2018	22.9	21.7	0.100	1148	3213	3.550	37.000	35.500	-4.05%
I	1750	BODY	08/27/2018	21.5	21.8	0.100	1150	7406	3.810	36.500	38.100	4.38%
I	1900	BODY	08/20/2018	21.5	20.6	0.100	5d080	7406	4.180	39.100	41.800	6.91%
I	1900	BODY	08/27/2018	21.5	21.8	0.100	5d148	7406	4.140	39.600	41.400	4.55%
J	1900	BODY	08/30/2018	21.5	22.3	0.100	5d149	3347	4.270	40.100	42.700	6.48%
к	2300	BODY	08/27/2018	22.8	21.9	0.100	1064	3319	4.980	46.500	49.800	7.10%
К	2450	BODY	08/20/2018	22.4	22.0	0.100	719	3319	5.180	50.100	51.800	3.39%
К	2450	BODY	08/27/2018	22.8	21.9	0.100	797	3319	5.280	51.100	52.800	3.33%
К	2600	BODY	08/27/2018	22.8	21.9	0.100	1071	3319	5.540	54.200	55.400	2.21%
D	5250	BODY	08/20/2018	22.5	21.4	0.050	1191	7357	3.720	77.000	74.400	-3.38%
D	5600	BODY	08/20/2018	22.5	21.4	0.050	1191	7357	4.020	79.200	80.400	1.52%
D	5750	BODY	08/20/2018	22.5	21.4	0.050	1191	7357	3.770	76.100	75.400	-0.92%

Table 10-4
System Verification Results – 1g

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 75 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

				Sys	tem ver	mcatic	n kes	uits –	iug				
	System Verification												
	TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR10g (W/kg)	1 W Target SAR10g (W/kg)	1 W Normalized SAR10g (W/kg)	Deviation _{10g} (%)	
E	1750	BODY	08/20/2018	22.9	21.7	0.100	1148	3213	1.900	19.800	19.000	-4.04%	
I	1750	BODY	08/27/2018	21.5	21.8	0.100	1150	7406	2.020	19.500	20.200	3.59%	
E	1900	BODY	08/23/2018	22.9	24.2	0.100	5d080	3213	2.180	20.700	21.800	5.31%	
J	1900	BODY	08/30/2018	21.5	22.3	0.100	5d149	3347	2.220	21.300	22.200	4.23%	
к	2450	BODY	08/30/2018	24.2	21.9	0.100	797	3319	2.490	24.200	24.900	2.89%	
к	2600	BODY	08/30/2018	24.2	21.9	0.100	1071	3319	2.500	24.500	25.000	2.04%	
D	5250	BODY	08/27/2018	21.8	21.3	0.050	1191	7357	1.020	21.600	20.400	-5.56%	
D	5600	BODY	08/27/2018	21.8	21.3	0.050	1191	7357	1.100	22.200	22.000	-0.90%	
D	5750	BODY	08/27/2018	21.8	21.3	0.050	1191	7357	1.040	21.200	20.800	-1.89%	

Table 10-5 System Verification Results – 10g

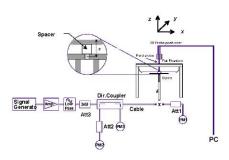


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 70 . (4 4 4
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 76 of 144
2018 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

•	Tabl	e 11-1	
GSM	850	Head	SAR

						MEAS	JREMEN	T RESUL	TS						
FREQU	ENCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)	J	(W/kg)	
836.60	190	GSM 850	GSM	33.7	32.80	0.16	Right	Cheek	19728	1	1:8.3	0.144	1.230	0.177	
836.60	190	GSM 850	GSM	33.7	32.80	0.05	Right	Tilt	19728	1	1:8.3	0.060	1.230	0.074	
836.60	190	GSM 850	GSM	33.7	32.80	-0.05	Left	Cheek	19728	1	1:8.3	0.104	1.230	0.128	
836.60	190	GSM 850	GSM	33.7	32.80	0.12	Left	Tilt	19728	1	1:8.3	0.064	1.230	0.079	
836.60	190	GSM 850	GPRS	30.7	29.06	0.16	Right	Cheek	19728	3	1:2.76	0.182	1.459	0.266	A1
836.60	190	GSM 850	GPRS	30.7	29.06	-0.09	Right	Tilt	19728	3	1:2.76	0.069	1.459	0.101	
836.60	190	GSM 850	GPRS	30.7	29.06	-0.11	Left	Cheek	19728	3	1:2.76	0.123	1.459	0.179	
836.60	190	GSM 850	GPRS	0.14	Left	Tilt	19728	3	1:2.76	0.073	1.459	0.107			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Hea 1.6 W/kg averaged ov	(mW/g)	-		

Table 11-2 GSM 1900 Head SAR

						MEAS	UREMEN	T RESUL	TS						
FREQUE	INCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)		(W/kg)	
1880.00	661	GSM 1900	GSM	30.7	29.98	0.01	Right	Cheek	19728	1	1:8.3	0.067	1.180	0.079	
1880.00	661	GSM 1900	GSM	30.7	29.98	0.10	Right	Tilt	19728	1	1:8.3	0.062	1.180	0.073	
1880.00	661	GSM 1900	GSM	30.7	29.98	0.08	Left	Cheek	19728	1	1:8.3	0.073	1.180	0.086	
1880.00	661	GSM 1900	GSM	30.7	29.98	0.02	Left	Tilt	19728	1	1:8.3	0.057	1.180	0.067	
1880.00	661	GSM 1900	GPRS	27.7	26.81	-0.20	Right	Cheek	19728	3	1:2.76	0.100	1.227	0.123	A2
1880.00	661	GSM 1900	GPRS	27.7	26.81	0.18	Right	Tilt	19728	3	1:2.76	0.083	1.227	0.102	
1880.00	661	GSM 1900	GPRS	27.7	26.81	-0.01	Left	Cheek	19728	3	1:2.76	0.098	1.227	0.120	
1880.00	661	GSM 1900	GPRS	27.7	26.81	-0.01	Left	Tilt	19728	3	1:2.76	0.071	1.227	0.087	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							Hea 1.6 W/kg averaged ov	(mW/g)			

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da an 77 of 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 77 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.	·			REV 20.11 M

06/19/2018

Table 11-3 UMTS 850 Head SAR

					М	EASURE	MENT RI	ESULTS						
FREQUE	INCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
836.60	4183	UMTS 850	RMC	25.5	25.37	0.06	Right	Cheek	19728	1:1	0.234	1.030	0.241	A3
836.60	4183	UMTS 850	RMC	25.5	25.37	0.08	Right	Tilt	19728	1:1	0.097	1.030	0.100	
836.60	4183	UMTS 850	RMC	25.5	25.37	0.01	Left	Cheek	19728	1:1	0.175	1.030	0.180	
836.60	4183	UMTS 850	RMC	25.5	25.37	-0.14	Left	Tilt	19728	1:1	0.095	1.030	0.098	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	ged over 1 gran	n		

Table 11-4 UMTS 1750 Head SAR

					M	EASURE	MENT RI	SULTS						
FREQUE	INCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, _, _,	(W/kg)	g	(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	-0.16	Right	Cheek	19728	1:1	0.120	1.050	0.126	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	0.03	Right	Tilt	19728	1:1	0.107	1.050	0.112	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	0.11	Left	Cheek	19728	1:1	0.195	1.050	0.205	A4
1732.40	1412	UMTS 1750	RMC	24.7	24.49	0.06	Left	Tilt	19728	1:1	0.128	1.050	0.134	
		ANSI / IEI	EE C95.1 1992 -		т						Head			
			Spatial Pea							1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	eneral Populat	tion					averaç	jed over 1 gran	n		

Table 11-5 UMTS 1900 Head SAR

					м	EASURE	MENT RI	ESULTS						
FREQUE	INCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.03	Right	Cheek	19728	1:1	0.115	1.239	0.142	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	-0.01	Right	Tilt	19728	1:1	0.109	1.239	0.135	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.07	Left	Cheek	19728	1:1	0.144	1.239	0.178	A5
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.02	Left	Tilt	19728	1:1	0.100	1.239	0.124	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	eneral Popula	tion					averaç	ged over 1 grar	n		

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 70 of 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 78 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.		-		REV 20.11 M

06/19/2018

Table 11-6 LTE Band 12 Head SAR

									SUREM	ENTRES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	n.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	-0.02	0	Right	Cheek	QPSK	1	0	19736	1:1	0.182	1.062	0.193	A6
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.19	1	Right	Cheek	QPSK	25	12	19736	1:1	0.134	1.040	0.139	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	0.16	0	Right	Tilt	QPSK	1	0	19736	1:1	0.072	1.062	0.076	
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.13	1	Right	Tilt	QPSK	25	12	19736	1:1	0.059	1.040	0.061	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	-0.06	0	Left	Cheek	QPSK	1	0	19736	1:1	0.120	1.062	0.127	
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.16	1	Left	Cheek	QPSK	25	12	19736	1:1	0.098	1.040	0.102	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	0.13	0	Left	Tilt	QPSK	1	0	19736	1:1	0.072	1.062	0.076	
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.14	1	Left	Tilt	QPSK	25	12	19736	1:1	0.056	1.040	0.058	
					SAFETY LIMI	т								Head					
			Uncontrolled E	Spatial Pea xposure/Ge		ion							i	1.6 W/kg (averaged over	•				

Table 11-7 LTE Band 13 Head SAR

								MEA	SUREM	ENT RES	ULTS								
FR	REQUENCY		Mode	Bandwidth [MHz]	Maxim um Allowed	Conducted Power[dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	ı.		[MHZ]	Power [dBm]	Power[dBm]	Drift (aB)			Position				Number	Cycle	(W/kg)	-	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.01	0	Right	Cheek	QPSK	1	25	19736	1:1	0.242	1.016	0.246	A7
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	-0.13	1	Right	Cheek	QPSK	25	12	19736	1:1	0.174	1.000	0.174	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	0.00	0	Right	Tilt	QPSK	1	25	19736	1:1	0.123	1.016	0.125	
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	0.10	1	Right	Tilt	QPSK	25	12	19736	1:1	0.084	1.000	0.084	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.07	0	Left	Cheek	QPSK	1	25	19736	1:1	0.210	1.016	0.213	
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	0.03	1	Left	Cheek	QPSK	25	12	19736	1:1	0.127	1.000	0.127	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.07	0	Left	Tilt	QPSK	1	25	19736	1:1	0.121	1.016	0.123	
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	0.12	1	Left	Tilt	QPSK	25	12	19736	1:1	0.089	1.000	0.089	
					SAFETY LIMI	т								Head					
			Uncontrolled E	Spatial Pea xposure/Ge		tion								 1.6 W/kg (n veraged over 					

Table 11-8 LTE Band 26 (Cell) Head SAR

								MEA		ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	-0.03	0	Right	Cheek	QPSK	1	0	19744	1:1	0.274	1.007	0.276	A8
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	0.04	1	Right	Cheek	QPSK	36	0	19744	1:1	0.171	1.000	0.171	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	0.09	0	Right	Tilt	QPSK	1	0	19744	1:1	0.119	1.007	0.120	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	0.06	1	Right	Tilt	QPSK	36	0	19744	1:1	0.074	1.000	0.074	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	0.08	0	Left	Cheek	QPSK	1	0	19744	1:1	0.167	1.007	0.168	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	0.10	1	Left	Cheek	QPSK	36	0	19744	1:1	0.118	1.000	0.118	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	0.18	0	Left	Tilt	QPSK	1	0	19744	1:1	0.103	1.007	0.104	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	0.08	1	Left	Tilt	QPSK	36	0	19744	1:1	0.072	1.000	0.072	
				Spatial Pea									e	Head 1.6 W/kg (r weraged over	nW/g)				

FCC	C ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Doc	cument S/N:	Test Dates:	DUT Type:		Da a 70 - 6444
1M1	1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 79 of 144
© 2018 PC	TEST Engineering Laboratory, Inc.				REV 20.11 M

REV REV 20.11 M 06/19/2018

Table 11-9 LTE Band 5 (Cell) Head SAR

								MEA		ENT RES									
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	0.04	0	Right	Cheek	QPSK	1	0	19744	1:1	0.235	1.021	0.240	A9
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.04	1	Right	Cheek	QPSK	25	0	19744	1:1	0.163	1.002	0.163	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	0.05	0	Right	Tilt	QPSK	1	0	19744	1:1	0.105	1.021	0.107	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.07	1	Right	Tilt	QPSK	25	0	19744	1:1	0.069	1.002	0.069	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	0.08	0	Left	Cheek	QPSK	1	0	19744	1:1	0.189	1.021	0.193	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	-0.03	1	Left	Cheek	QPSK	25	0	19744	1:1	0.132	1.002	0.132	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	0.04	0	Left	Tilt	QPSK	1	0	19744	1:1	0.110	1.021	0.112	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.13	1	Left	Tilt	QPSK	25	0	19744	1:1	0.074	1.002	0.074	
				Spatial Pea									a	Head 1.6 W/kg (r averaged ove	nW/g)				

Table 11-10 LTE Band 66 (AWS) Head SAR

								MEAS	SUREM	ENT RES	ULTS								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHZ]	Power [dBm]	Power [aBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	-	(W/kg)	I
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	0.11	0	Right	Cheek	QPSK	1	0	19736	1:1	0.166	1.016	0.169	
1720.00																			
1720.00	132072	Low																	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	0.09	1											
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	0.10	0	Left	Cheek	QPSK	1	0	19736	1:1	0.207	1.016	0.210	A10
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	0.09	1	Left	Cheek	QPSK	50	0	19736	1:1	0.130	1.047	0.136	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	0.13	0	Left	Tilt	QPSK	1	0	19736	1:1	0.193	1.016	0.196	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	0.11	1	Left	Tilt	QPSK	50	0	19736	1:1	0.123	1.047	0.129	
					SAFETY LIMI	т								Head					
			Uncontrolled E	Spatial Pea		tion								1.6 W/kg (I averaged ove					
			Uncontrolled E	xposure/Ge	neral Popula	uon								averaged ove	i i giam				

Table 11-11 LTE Band 25 (PCS) Head SAR

								MEA	SUREM	ENTRES	ULTS								
FR	REQUENCY		Mode	Bandwidth [MHz]	Maxim um Allowed	Conducted Power [dBm]	Power Drift[dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[WH2]	Power [dBm]	Fower [dbiii]	ын (авј			POSICION				Number	Cycle	(W/kg)		(W/kg)	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.18	0	Right	Cheek	QPSK	1	0	19827	1:1	0.120	1.054	0.126	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.13	1	Right	Cheek	QPSK	50	0	19827	1:1	0.098	1.067	0.105	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.13	0	Right	Tilt	QPSK	1	0	19827	1:1	0.072	1.054	0.076	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.10	1	Right	Tilt	QPSK	50	0	19827	1:1	0.060	1.067	0.064	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.06	0	Left	Cheek	QPSK	1	0	19827	1:1	0.130	1.054	0.137	A11
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.10	1	Left	Cheek	QPSK	50	0	19827	1:1	0.098	1.067	0.105	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.11	0	Left	Tilt	QPSK	1	0	19827	1:1	0.071	1.054	0.075	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.15	1	Left	Tilt	QPSK	50	0	19827	1:1	0.057	1.067	0.061	
					SAFETY LIMI	т								Head					
			Uncontrolled E	Spatial Pea xposure/Ge		tion								1.6 W/kg (r veraged over	•				

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 80 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.		-		REV 20.11 M

REV 20.11 M 06/19/2018 REV

Table 11-12 LTE Band 30 Head SAR

								ME	SURE	IENT RE	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	-0.03	0	Right	Cheek	QPSK	1	0	19751	1:1	0.021	1.146	0.024	A12
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	0.12	1	Right	Cheek	QPSK	25	25	19751	1:1	0.010	1.102	0.011	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	-0.05	0	Right	Tilt	QPSK	1	0	19751	1:1	0.021	1.146	0.024	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	-0.09	1	Right	Tilt	QPSK	25	25	19751	1:1	0.011	1.102	0.012	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	0.10	0	Left	Cheek	QPSK	1	0	19751	1:1	0.015	1.146	0.017	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	0.10	1	Left	Cheek	QPSK	25	25	19751	1:1	0.007	1.102	0.008	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	0.14	0	Left	Tilt	QPSK	1	0	19751	1:1	0.016	1.146	0.018	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	0.15	1	Left	Tilt	QPSK	25	25	19751	1:1	0.008	1.102	0.009	
			ANSI / IEEE	C95.1 1992 - S	SAFETY LIMIT									Head					
				Spatial Peak	k									1.6 W/kg (mV	//g)				
			Uncontrolled	Exposure/Gen	eral Populatio	on								averaged over 1	gram				

Table 11-13 LTE Band 7 Head SAR

								MEA	SURE	IENT RE	SULTS							· · · · · ·	
FF	REQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	g	(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	0.09	0	Right	Cheek	QPSK	1	0	19751	1:1	0.050	1.000	0.050	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.20	1	Right	Cheek	QPSK	50	0	19751	1:1	0.040	1.005	0.040	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	0.17	0	Right	Tilt	QPSK	1	0	19751	1:1	0.039	1.000	0.039	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.18	1	Right	Tilt	QPSK	50	0	19751	1:1	0.029	1.005	0.029	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	0.16	0	Left	Cheek	QPSK	1	0	19751	1:1	0.049	1.000	0.049	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.18	1	Left	Cheek	QPSK	50	0	19751	1:1	0.038	1.005	0.038	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	0.19	0	Left	Tilt	QPSK	1	0	19751	1:1	0.061	1.000	0.061	A13
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.19	1	Left	Tilt	QPSK	50	0	19751	1:1	0.043	1.005	0.043	
			ANSI / IEEE Uncontrolled	Spatial Peak										Head 1.6 W/kg (mW averaged over 1					

Table 11-14 LTE Band 41 Head SAR

								MEAS	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[minz]	Power [dBm]	rower [dbin]	Dinit [db]			Position				Number	Cycle	(W/kg)		(W/kg)	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	0.17	0	Right	Cheek	QPSK	1	0	19751	1:1.58	0.042	1.012	0.043	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.82	0.18	1	Right	Cheek	QPSK	50	0	19751	1:1.58	0.033	1.019	0.034	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	0.20	0	Right	Tilt	QPSK	1	0	19751	1:1.58	0.030	1.012	0.030	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.82	0.18	1	Right	Tilt	QPSK	50	0	19751	1:1.58	0.021	1.019	0.021	
2593.00	40620									Cheek	QPSK	1	0	19751	1:1.58	0.039	1.012	0.039	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.82	0.17	1	Left	Cheek	QPSK	50	0	19751	1:1.58	0.029	1.019	0.030	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	0.15	0	Left	Tilt	QPSK	1	0	19751	1:1.58	0.050	1.012	0.051	A14
2593.00	40620									Tilt	QPSK	50	0	19751	1:1.58	0.036	1.019	0.037	
			ANSI / IEEE							Head									
				Spatial Pea										1.6 W/kg (n					
			Uncontrolled E	xposure/Ge	neral Populati	on							a	veraged over	1 gram				

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 81 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

Table 11-15 DTS Head SAR

								MEA	SUREM	ENT RES	ULTS								
FREQUE	NCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.				Power [dBill]					_	Number			W/kg	(W/kg)			(W/kg)	
2437	6	802.11b	DSSS	22	18.0	17.98	0.09	Right	Cheek	1	19868	1	100.0	0.525		1.005	1.000	-	
2437	6	802.11b	DSSS	22	18.0	17.98	0.05	Right	Tilt	1	19868	1	100.0	0.556		1.005	1.000		
2437	6	802.11b	DSSS	22	18.0	17.98	-0.07	Left	Cheek	1	19868	1	100.0	0.481		1.005	1.000		
2437	6	802.11b	DSSS	22	18.0	17.98	0.07	Left	Tilt	1	19868	1	100.0	0.576	0.384	1.005	1.000	0.386	A15
2437	6	802.11b	DSSS	22	18.0	17.97	0.10	Right	Cheek	2	19868	1	100.0	0.122	0.079	1.007	1.000	0.080	
2437	6	802.11b	DSSS	22	18.0	17.97	0.17	Right	Tilt	2	19868	1	100.0	0.041		1.007	1.000		
2437	6	802.11b	DSSS	22	18.0	17.97	0.10	Left	Cheek	2	19868	1	100.0	0.033		1.007	1.000		
2437	6	802.11b	DSSS	22	18.0	17.97	0.10	Left	Tilt	2	19868	1	100.0	0.012		1.007	1.000		
			Spat	1992 - SAFE ial Peak ure/General										Head 1.6 W/kg (mW veraged over 1 g	•				

Table 11-16 **NII Head SAR**

								MEA	SUREME	NTRES	ULTS								
FREQUE	INCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Antenna Config.	Device Serial	Data Rate (Mbps)	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[Power [dBm]					g.	Number	(p)	(14)	W/kg	(W/kg)	()	(,	(W/kg)	
5280	56	802.11a	OFDM	20	18.0	17.98	0.02	Right	Cheek	1	19868	6	99.2	0.860	0.421	1.005	1.008	0.426	
5280	56	802.11a	OFDM	20	18.0	17.98	0.14	Right	Tilt	1	19868	6	99.2	0.662	0.330	1.005	1.008	0.334	
5280	56	802.11a	OFDM	20	18.0	17.98	-0.15	Left	Cheek	1	19868	6	99.2	0.251	-	1.005	1.008	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.00	Left	Tilt	1	19868	6	99.2	0.296	-	1.005	1.008	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.11	Right	Cheek	2	19868	6	98.8	0.108	-	1.005	1.012	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.13	Right	Tilt	2	19868	6	98.8	0.111	0.041	1.005	1.012	0.042	
5280	56	802.11a	OFDM	20	18.0	17.98	0.12	Left	Cheek	2	19868	6	98.8	0.073	-	1.005	1.012	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.19	Left	Tilt	2	19868	6	98.8	0.092	-	1.005	1.012	-	
5500	100	802.11a	OFDM	20	17.0	16.93	0.11	Right	Cheek	1	19868	6	99.2	1.422	0.576	1.016	1.008	0.590	
5600	120	802.11a	OFDM	20	17.0	16.99	0.17	Right	Cheek	1	19868	6	99.2	1.576	0.642	1.002	1.008	0.648	A16
5720	144	802.11a	OFDM	20	17.0	16.99	0.16	Right	Cheek	1	19868	6	99.2	1.113	0.520	1.002	1.008	0.525	
5600	120								Tilt	1	19868	6	99.2	1.407	0.548	1.002	1.008	0.553	
5600	120	120 802.11a OFDM 20 17.0 16.99							Cheek	1	19868	6	99.2	0.456	-	1.002	1.008	-	
5600	120	802.11a	OFDM	20	17.0	16.99	0.12	Left	Tilt	1	19868	6	99.2	0.568	-	1.002	1.008	-	
5720	144	802.11a	OFDM	20	17.0	16.99	0.17	Right	Cheek	2	19868	6	98.8	0.165	0.054	1.002	1.012	0.055	
5720	144	802.11a	OFDM	20	17.0	16.99	0.13	Right	Tilt	2	19868	6	98.8	0.046	-	1.002	1.012	-	
5720	144	802.11a	OFDM	20	17.0	16.99	-0.19	Left	Cheek	2	19868	6	98.8	0.145	-	1.002	1.012	-	
5720	144	802.11a	OFDM	20	17.0	16.99	0.15	Left	Tilt	2	19868	6	98.8	0.036	-	1.002	1.012		
5785	157	802.11a	OFDM	20	18.0	17.99	0.16	Right	Cheek	1	19868	6	99.2	1.334	0.606	1.002	1.008	0.612	
5785	157	802.11a	OFDM	20	18.0	17.99	0.12	Right	Tilt	1	19868	6	99.2	1.282	0.514	1.002	1.008	0.519	
5785	157	802.11a	OFDM	20	18.0	17.99	0.19	Left	Cheek	1	19868	6	99.2	0.472	-	1.002	1.008	-	
5785	157	802.11a	OFDM	20	18.0	17.99	0.17	Left	Tilt	1	19868	6	99.2	0.587		1.002	1.008	-	
5785	157								Cheek	2	19868	6	98.8	0.203		1.012	1.012		
5785	157	157 802.11a OFDM 20 18.0 17.95							Tilt	2	19868	6	98.8	0.040		1.012	1.012		
5785	157	157 802.11a OFDM 20 18.0 17.95 0							Cheek	2	19868	6	98.8	0.221	0.080	1.012	1.012	0.082	
5785	157								Tilt	2	19868	6	98.8	0.037		1.012	1.012		
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Head					
		Uncon		tial Peak ture/General I	Population									1.6 W/kg (mW) reraged over 1 g	•				

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 82 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Page 82 01 144
201	9 PCTEST Engineering Laboratory Inc.			PEV/20.11 M

Table 11-17 DSS Head SAR

MHz Ch. Power [dBm] Power [dBm] Drift [dB] Position Number (Mbps) (% (W/kg) (Cond Power) (Duty Cycle) (W/kg)								000	i icau								
Image: Precuence of the power (dBm) Maximum (dBm) power (dBm) Conducted power (dBm) Power power (dBm) Side Test position Device (Mpps) Saling pactor (%) Scaling Factor (%) Conducted (%) Power (%) Duty Cycle (%) Saling Factor (%) Scaling Factor (%) Scaling Factor (%) Conductor (%) Duty Cycle (%) Test (%) Device (%) Scaling Factor (%) Conductor (%) Duty Cycle (%) Test (%) Device (%) Scaling Factor (%) Scaling Factor (%) Conductor (%) Duty Cycle (%) Test (%) Device (%) Scaling Factor (%) Conductor (%) Duty Cycle (%) Test (%) Device (%) Duty Cycle (%) Test (%) Device (%) Device (%) Duty Cycle (%) Test (%) Device (%) Device (%) Duty Cycle (%) Test (%) Device (%) Device (%) Duty Cycle (%) Test (%) Device (%) Device (%) Duty Cycle (%) Test (%) Device (%) <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>N</th><th>IEASURI</th><th>EMENT R</th><th>ESULTS</th><th>6</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>							N	IEASURI	EMENT R	ESULTS	6						
MHz Ch. Power (dBm) Power (dBm) Drift (dB) Position Number (%pp) (%p) (Cond Power) (Duty Cycle) (w/kg) 2441.00 39 Bluetooth FHSS 12.0 11.86 0.18 Right Cheek 19868 1 77.1 0.081 1.033 1.297 0.109 A 2441.00 39 Bluetooth FHSS 12.0 11.86 0.12 Right Tilt 19868 1 77.1 0.081 1.033 1.297 0.095 1 2441.00 39 Bluetooth FHSS 12.0 11.86 0.12 Right Tilt 19868 1 77.1 0.051 1.033 1.297 0.068 1 2441.00 39 Bluetooth FHSS 12.0 11.86 0.09 Left Tilt 19868 1 77.1 0.051 1.033 1.297 0.068 1 2441.00 39 Bluetooth FHSS 12.	FREQUE	INCY	Mada	Sarvica		Conducted	Power	Sido	Test		Data Rate	Duty Cycle	SAR (1g)	Scaling Factor			Plot #
2441.00 39 Bluetooth FHSS 12.0 11.86 0.12 Right Tilt 19868 1 77.1 0.071 1.033 1.297 0.095 2441.00 39 Bluetooth FHSS 12.0 11.86 0.11 Left Cheek 19868 1 77.1 0.051 1.033 1.297 0.068 2441.00 39 Bluetooth FHSS 12.0 11.86 0.09 Left Tilt 19868 1 77.1 0.060 1.033 1.297 0.068 2441.00 39 Bluetooth FHSS 12.0 11.86 0.09 Left Tilt 19868 1 77.1 0.060 1.033 1.297 0.080 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	MHz	Ch.	Mode	Service		Power [dBm]	Drift [dB]	Side	Position		(Mbps)	(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	FIOT #
2441.00 39 Bluetooth FHSS 12.0 11.86 0.11 Left Cheek 19868 1 77.1 0.051 1.033 1.297 0.068 2441.00 39 Bluetooth FHSS 12.0 11.86 0.09 Left Tilt 19868 1 77.1 0.060 1.033 1.297 0.060 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	2441.00	39	Bluetooth	FHSS	12.0	11.86	0.18	Right	Cheek	19868	1	77.1	0.081	1.033	1.297	0.109	A17
2441.00 39 Bluetooth FHSS 12.0 11.86 0.09 Left Tilt 19868 1 77.1 0.060 1.033 1.297 0.080 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Head	2441.00	39	Bluetooth	FHSS	12.0	11.86	0.12	Right	Tilt	19868	1	77.1	0.071	1.033	1.297	0.095	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Head 1.6 W/kg (mW/g)	2441.00	39	Bluetooth	FHSS	12.0	11.86	0.11	Left	Cheek	19868	1	77.1	0.051	1.033	1.297	0.068	
Spatial Peak 1.6 W/kg (mW/g)	2441.00	39	Bluetooth	FHSS	12.0	11.86	0.09	Left	Tilt	19868	1	77.1	0.060	1.033	1.297	0.080	
			ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	т							Head				
Incontrolled Exposure/General Population																	
			Uncontrolle	d Exposure/Ge	eneral Popula	tion						aver	aged over 1 gr	am			

11.2 Standalone Body-Worn SAR Data

				G	SM/UM	TS Bo	dy-W	orn SA	R Da	ta					
					м	EASURE	MENT R	ESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Spacing	Device Serial Number		Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)		(W/kg)	
836.60	190	GSM 850	GSM	33.7	32.80	-0.02	10 mm	19728	1	1:8.3	back	0.312	1.230	0.384	
824.20	128	GSM 850	GPRS	30.7	28.96	-0.03	10 mm	19728	3	1:2.76	back	0.422	1.493	0.630	
836.60	190	GSM 850	GPRS	30.7	29.06	0.00	10 mm	19728	3	1:2.76	back	0.520	1.459	0.759	A18
848.80	251	GSM 850	GPRS	30.7	29.31	0.08	10 mm	19728	3	1:2.76	back	0.506	1.377	0.697	
1880.00	661	GSM 1900	GSM	-0.01	10 mm	19728	1	1:8.3	back	0.329	1.180	0.388			
1880.00	661	GSM 1900	GPRS	-0.05	10 mm	19728	3	1:2.76	back	0.433	1.227	0.531	A19		
836.60	4183	UMTS 850	RMC	25.5	25.37	0.02	10 mm	19728	N/A	1:1	back	0.488	1.030	0.503	A21
1712.40	1312	UMTS 1750	RMC	24.7	24.48	0.02	10 mm	19710	N/A	1:1	back	0.748	1.052	0.787	A22
1732.40	1412	UMTS 1750	RMC	24.7	24.49	0.00	10 mm	19710	N/A	1:1	back	0.744	1.050	0.781	
1752.60	1513	UMTS 1750	RMC	24.7	24.34	0.02	10 mm	19710	N/A	1:1	back	0.705	1.086	0.766	
1852.40	9262	UMTS 1900	RMC	24.4	23.63	0.04	10 mm	19728	N/A	1:1	back	0.629	1.194	0.751	A24
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.03	10 mm	19728	N/A	1:1	back	0.545	1.239	0.675	
1907.60	9538	UMTS 1900	RMC	0.04	10 mm	19728	N/A	1:1	back	0.511	1.208	0.617			
		ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT								ody			
			Spatial Peak									g (mW/g)			
		Uncontrolled	Exposure/Gener	al Population							averaged	over 1 gram			

Table 11-18 GSM/UMTS Body-Worn SAR Data

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 83 of 144
2018 PCTEST Engineering Laboratory, Inc		·		REV 20.11 M

							LT	E Bo	dy-Wo	orn SA	R								
								MEASUR		ESULTS									
F	REQUENCY	(Mode	Bandwidth	Maximum Allowed Power	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RBOffset	Spacing	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	(Ch.	mode	[MHz]	[dBm]	Power [dBm]	Drift [dB]	mr k (db)	Number	modulation	ND SIZE	KDOIISEL	opacing	Side	Cycle	(W/kg)	ocalling ractor	(W/kg)	100
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	-0.04	0	19736	QPSK	1	0	10 mm	back	1:1	0.407	1.062	0.432	A26
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	-0.02	1	19736	QPSK	25	12	10 mm	back	1:1	0.316	1.040	0.329	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.04	0	19736	QPSK	1	25	10 mm	back	1:1	0.512	1.016	0.520	A27
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	-0.01	1	19736	QPSK	25	12	10 mm	back	1:1	0.370	1.000	0.370	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	-0.03	0	19769	QPSK	1	0	10 mm	back	1:1	0.502	1.007	0.506	A28
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	-0.17	1	19769	QPSK	36	0	10 mm	back	1:1	0.309	1.000	0.309	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	-0.02	0	19751	QPSK	1	0	10 mm	back	1:1	0.534	1.021	0.545	A29
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.00	1	19751	QPSK	25	0	10 mm	back	1:1	0.374	1.002	0.375	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	-0.04	0	19769	QPSK	1	0	10 mm	back	1:1	0.760	1.016	0.772	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.06	-0.01	0	19769	QPSK	1	0	10 mm	back	1:1	0.784	1.033	0.810	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.04	-0.10	0	19769	QPSK	1	0	10 mm	back	1:1	0.812	1.038	0.843	A30
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	-0.03	1	19769	QPSK	50	0	10 mm	back	1:1	0.462	1.047	0.484	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.97	-0.02	1	19769	QPSK	100	0	10 mm	back	1:1	0.464	1.054	0.489	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.4	24.05	0.01	0	19744	QPSK	1	0	10 m m	back	1:1	0.906	1.084	0.982	A32
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.06	0.03	0	19744	QPSK	1	0	10 mm	back	1:1	0.845	1.081	0.913	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.00	0	19744	QPSK	1	0	10 mm	back	1:1	0.795	1.054	0.838	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	-0.08	1	19744	QPSK	50	0	10 mm	back	1:1	0.620	1.067	0.662	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.10	0.01	1	19744	QPSK	100	0	10 mm	back	1:1	0.592	1.072	0.635	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	-0.09	0	19744	QPSK	1	0	10 mm	back	1:1	0.616	1.146	0.706	A34
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	-0.13	1	19744	QPSK	25	25	10 mm	back	1:1	0.403	1.102	0.444	
2510.00	20850	Low	LTE Band 7	20	23.7	23.67	0.01	0	19751	QPSK	1	0	10 mm	back	1:1	1.140	1.007	1.148	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.03	0	19751	QPSK	1	0	10 mm	back	1:1	1.180	1.000	1.180	A36
2560.00	21350	High	LTE Band 7	20	23.7	23.66	-0.03	0	19751	QPSK	1	99	10 mm	back	1:1	1.060	1.009	1.070	
2510.00	20850	Low	LTE Band 7	20	22.7	22.67	-0.02	1	19751	QPSK	50	0	10 mm	back	1:1	1.010	1.007	1.017	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	-0.04	1	19751	QPSK	50	0	10 m m	back	1:1	1.010	1.005	1.015	
2560.00	21350	High	LTE Band 7	20	22.7	22.67	0.04	1	19751	QPSK	50	50	10 mm	back	1:1	1.000	1.007	1.007	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.66	-0.04	1	19751	QPSK	100	0	10 m m	back	1:1	1.060	1.009	1.070	
2506.00	39750	Low	LTE Band 41	20	24.9	24.71	0.09	0	19744	QPSK	1	99	10 mm	back	1:1.58	1.060	1.045	1.108	A38
2549.50	40185	Low-Mid	LTE Band 41	20	24.9	24.84	-0.04	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.725	1.014	0.735	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	-0.02	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.994	1.012	1.006	
2636.50	41055	Mid-High	LTE Band 41	20	24.9	24.83	-0.04	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.784	1.016	0.797	
2680.00	41490	High	LTE Band 41	20	24.9	24.83	-0.05	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.554	1.016	0.563	
2506.00	39750	Low	LTE Band 41	20	23.9	23.76	0.05	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.763	1.033	0.788	
2549.50	40185	Low-Mid	LTE Band 41	20	23.9	23.80	-0.02	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.653	1.023	0.668	
2593.00	40185	Mid	LTE Band 41	20	23.9	23.80	-0.02	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.849	1.023	0.865	
2636.50	40020	Mid-High	LTE Band 41	20	23.9	23.62	-0.03	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.566	1.019	0.581	
2636.50	41055	High	LTE Band 41	20	23.9	23.79	-0.03	1	19744	OPSK	50	25	10 mm	back	1:1.58	0.566	1.026	0.581	
2593.00	41490	Mid	LTE Band 41	20	23.9	23.70	-0.03		19744	OPSK	100		-	back	1:1.58	0.471	1.047	0.493	
2593.00	40620	MIG			23.9 SAFETY LIMIT	23./1	0.00	1	19/44	UPSK	100	0	10 mm	Body	1:1.56	0.817	1.045	0.854	
				Spatial Pea	k									i W/kg (m					
			Uncontrolled	Exposure/Ger	neral Populatio	n							avera	aged over	1 gram				

Table 11-19 I TE Body-Worn SAR

Table 11-20 **DTS Body-Worn SAR**

								MEAS	UREMEN	T RESU	LTS				· · · · · · · · · · · · · · · · · · ·				
FREQU	JENCY	Mode	Service	Bandwidth [MHz]	Maxim um Allowed Power	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate (Mbps)	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[WH2]	[dBm]	Fower [dBill]	[ub]		coning.	Number	(wops)		(%)	W/kg	(W/kg)	(Fower)	(Duty Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	20.5	20.48	0.06	10 mm	1	19868	1	back	100.0	0.409	0.339	1.005	1.000	0.341	A39
2437	6	802.11b	DSSS	22	20.5	20.49	0.08	10 mm	2	19868	1	back	100.0	0.296	0.243	1.002	1.000	0.243	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													Body 1.6 W/kg (m) averaged over 1	•				

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 94 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Page 84 of 144
004	A DOTE OT Ex size a size of the sector of the			

Table 11-21 **NII SISO Body-Worn SAR**

								N	MEASUREM	ENT RESUL	тs								
FREQU	ENCY	Mode	Service		Maximum Allowed		Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Config.	Number	(Mbps)			W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5280	56	802.11a	OFDM	20	18.0	17.98	0.14	10 mm	1	19850	6	back	99.2	0.354	0.155	1.005	1.008	0.157	
5260	52	802.11a	OFDM	20	17.0	16.97	0.04	10 mm	2	19850	6	back	98.8	1.803	0.808	1.007	1.012	0.823	
5280	56	802.11a	OFDM	20	18.0	17.98	0.10	10 mm	2	19850	6	back	98.8	2.332	1.110	1.005	1.012	1.129	
5320	64	802.11a	OFDM	20	17.0	16.99	0.06	10 mm	2	19850	6	back	98.8	2.380	1.080	1.002	1.012	1.095	
5600	120	802.11a	OFDM	20	17.0	16.99	0.10	10 mm	1	19850	6	back	99.2	0.148	0.058	1.002	1.008	0.059	
5720	144	802.11a	OFDM	20	17.0	16.99	0.13	10 mm	2	19850	6	back	98.8	1.330	0.632	1.002	1.012	0.641	
5785	157	802.11a	OFDM	20	18.0	17.99	0.12	10 mm	1	19850	6	back	99.2	0.135	0.052	1.002	1.008	0.053	
5785	157	802.11a	OFDM	20	18.0	17.95	0.16	10 mm	2	19850	6	back	98.8	1.483	0.706	1.012	1.012	0.723	
			ANSI / IEE	E C95.1 1992	2 - SAFETY LIMIT								Body						
		U	ncontrolled	Spatial P d Exposure/C	eak Seneral Populatio	n							1.6 W/kg (n averaged over						

Table 11-22 **NII MIMO Body-Worn SAR**

										MEASUR	REMENT	RESULTS										
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant 1)	Maximum Allowed Power	Conducted Power (Ant 2)	Power Drift [dB]	Spacing	Antenna Config.	Accessory	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			• •	(Ant 1) [dBm]	[dBm]	(Ant 2) [dBm]	[dBm]						(1)			W/kg	(W/kg)			(W/kg)	
5180	36	802.11n	OFDM	20	17.0	16.94	17.0	16.73	-0.07	10 mm	MMO	N/A	19850	13	back	98.4	1.271	0.626	1.064	1.016	0.677	
5200	40	802.11n	OFDM	20	18.0	17.98	18.0	17.94	0.08	10 mm	MMO	N/A	19850	13	back	98.4	1.660	0.829	1.014	1.016	0.854	
5220	44	802.11n	OFDM	20	17.0	16.92	17.0	16.94	0.11	10 mm	MIMO	N/A	19850	13	back	98.4	1.550	0.738	1.019	1.016	0.764	
5240	48	802.11n	OFDM	20	17.0	16.94	17.0	16.90	0.19	10 mm	MIMO	N/A	19850	13	back	98.4	1.773	0.820	1.023	1.016	0.852	
5260	52	802.11n	OFDM	20	17.0	16.91	17.0	16.79	0.16	10 mm	MMO	N/A	19850	13	back	98.4	2.101	0.955	1.050	1.016	1.019	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.09	10 mm	MMO	N/A	19850	13	back	98.4	3.073	1.240	1.007	1.016	1.269	A40
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.01	10 mm	MIMO	Headphones	19850	13	back	98.4	2.584	1.100	1.007	1.016	1.125	
5300	60	802.11n	OFDM	20	17.0	16.93	17.0	16.90	0.03	10 mm	MIMO	N/A	19850	13	back	98.4	2.174	1.060	1.023	1.016	1.102	
5320	64	802.11n	OFDM	20	17.0	16.97	17.0	16.96	0.01	10 mm	MMO	N/A	19850	13	back	98.4	2.982	1.190	1.009	1.016	1.220	
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.20	10 mm	MMO	N/A	19850	13	back	98.4	1.893	0.763	1.012	1.016	0.785	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.17	10 mm	MMO	N/A	19850	13	back	98.4	1.606	0.779	1.030	1.016	0.815	
5805	161	802.11n	OFDM	20	18.0	17.93	18.0	17.82	0.13	10 mm	MIMO	N/A	19850	13	back	98.4	1.577	0.738	1.042	1.016	0.781	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.11	10 mm	MMO	N/A	19850	13	back	98.4	3.047	1.240	1.007	1.016	1.269	
				ANSI / IEEI	E C95.1 1992 - S	SAFETY LIMIT										Body						
				Incontrolled	Spatial Peak Exposure/Gen	eral Populatio	1									1.6 W/kg (m) veraged over 1						

Note:

1. Blue entries represent variability measurements.

To achieve the 5GHz WLAN 20.0 dBm (Ch. 36, 44, 48, 52, 60, 64, 144) and 21 dBm (Ch. 40, 56, 157, 2. 161) maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 17.0 dBm (Ch. 36, 44, 48, 52, 60, 64, 144) and 18.0 dBm (Ch. 40, 56, 157, 161)

Table 11-23
NII Body-Worn SAR for Conditions with 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN
MEASUREMENT RESULTS

								IVI	EASUREN	ENT RESU									
FREQU	INCY	Mode	Service	Bandwidth [MHz]	Allowed Power	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[]	[dBm]	[]	[]				((14)	W/kg	(W/kg)	(******)	() =)==;	(W/kg)	
5270	54	802.11n	OFDM	40	15.0	14.81	0.17	10 mm	2	19850	13.5	back	98.2	1.172	0.537	1.045	1.018	0.571	
5630	126	802.11n	OFDM	40	15.0	14.90	0.18	10 mm	2	19850	13.5	back	98.2	1.147	0.536	1.023	1.018	0.558	
5795	159	802.11n	OFDM	40	15.0	14.97	0.13	10 mm	2	19850	13.5	back	98.2	0.843	0.388	1.007	1.018	0.398	
		A	NSI / IEEE	C95.1 1992 -	SAFETY LIMIT									Body					
		Unco		Spatial Pea xposure/Ge	k neral Populatio	n								kg (mW/g) I over 1 gram					

NII was additionally evaluated at the maximum allowed output power during operations with simultaneous 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN. 2.4 GHz Ant1 WIFI was not transmitting during the above evaluations.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 85 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M 06/19/2018

Table 11-24 **DSS Body-Worn SAR**

-								-	_							
						ME	ASURE	MENTRE	SULTS							
FREQ	UENCY	Mode	Service	Maximum Allowed Power	Conducted	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	12.0	11.86	0.12	10 mm	19868	1	back	77.1	0.023	1.033	1.297	0.031	A42
		ANSI / IEE	E C95.1 1992 -	SAFETY LIMIT								Body				
			Spatial Pe	ak								1.6 W/kg (mV	V/g)			
		Uncontrolled	Exposure/Ge	neral Population	on						a	veraged over 1	gram			

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 86 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.		•		REV 20.11 M

11.3 Standalone Hotspot SAR Data

					М	EASURE		RESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Spacing	Device Serial	# of GPRS	Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	wode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Spacing	Number	Slots	Cycle	Side	(W/kg)	Scaling Pactor	(W/kg)	FIOL #
824.20	128	GSM 850	GPRS	30.7	28.96	-0.03	10 mm	19728	3	1:2.76	back	0.422	1.493	0.630	
836.60	190	GSM 850	GPRS	30.7	29.06	0.00	10 mm	19728	3	1:2.76	back	0.520	1.459	0.759	A18
848.80	251	GSM 850	GPRS	30.7	29.31	0.08	10 mm	19728	3	1:2.76	back	0.506	1.377	0.697	
836.60	190	GSM 850	GPRS	30.7	29.06	0.01	10 mm	19728	3	1:2.76	front	0.401	1.459	0.585	
836.60	190	GSM 850	GPRS	30.7	29.06	-0.13	10 mm	19728	3	1:2.76	bottom	0.244	1.459	0.356	
836.60	190	GSM 850	GPRS	30.7	29.06	0.04	10 mm	19728	3	1:2.76	right	0.264	1.459	0.385	
836.60	190	GSM 850	GPRS	30.7	29.06	-0.02	10 mm	19728	3	1:2.76	left	0.086	1.459	0.125	
1880.00	661	GSM 1900	GPRS	27.7	26.81	-0.05	10 mm	19728	3	1:2.76	back	0.433	1.227	0.531	
1880.00	661	GSM 1900	GPRS	27.7	26.81	0.12	10 mm	19728	3	1:2.76	front	0.392	1.227	0.481	
1850.20	512	GSM 1900	GPRS	27.7	26.79	0.03	10 mm	19728	3	1:2.76	bottom	0.710	1.233	0.875	
1880.00	661	GSM 1900	GPRS	27.7	26.81	0.02	10 mm	19728	3	1:2.76	bottom	0.747	1.227	0.917	
1909.80	810	GSM 1900	GPRS	27.7	26.76	-0.01	10 mm	19728	3	1:2.76	bottom	0.812	1.242	1.009	A20
1880.00	661	GSM 1900	GPRS	27.7	26.81	-0.01	10 mm	19728	3	1:2.76	left	0.197	1.227	0.242	
836.60	4183	UMTS 850	RMC	25.5	25.37	0.02	10 mm	19728	N/A	1:1	back	0.488	1.030	0.503	A21
836.60	4183	UMTS 850	RMC	25.5	25.37	0.00	10 mm	19728	N/A	1:1	front	0.409	1.030	0.421	
836.60	4183	UMTS 850	RMC	25.5	25.37	-0.03	10 mm	19728	N/A	1:1	bottom	0.301	1.030	0.310	
836.60	4183	UMTS 850	RMC	25.5	25.37	0.03	10 mm	19728	N/A	1:1	right	0.373	1.030	0.384	
836.60	4183	UMTS 850	RMC	25.5	25.37	0.03	10 mm	19728	N/A	1:1	left	0.157	1.030	0.162	
1712.40	1312	UMTS 1750	RMC	24.7	24.48	0.02	10 mm	19710	N/A	1:1	back	0.748	1.052	0.787	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	0.00	10 mm	19710	N/A	1:1	back	0.744	1.050	0.781	
1752.60	1513	UMTS 1750	RMC	24.7	24.34	0.02	10 mm	19710	N/A	1:1	back	0.705	1.086	0.766	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	-0.01	10 mm	19710	N/A	1:1	front	0.597	1.050	0.627	
1712.40	1312	UMTS 1750	RMC	24.7	24.48	-0.06	10 mm	19710	N/A	1:1	bottom	0.977	1.052	1.028	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	-0.06	10 mm	19710	N/A	1:1	bottom	0.996	1.050	1.046	A23
1752.60	1513	UMTS 1750	RMC	24.7	24.34	-0.04	10 mm	19710	N/A	1:1	bottom	0.985	1.086	1.070	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	-0.05	10 mm	19710	N/A	1:1	left	0.443	1.050	0.465	
1852.40	9262	UMTS 1900	RMC	24.4	23.63	0.04	10 mm	19728	N/A	1:1	back	0.629	1.194	0.751	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.03	10 mm	19728	N/A	1:1	back	0.545	1.239	0.675	
1907.60	9538	UMTS 1900	RMC	24.4	23.58	0.04	10 mm	19728	N/A	1:1	back	0.511	1.208	0.617	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.02	10 mm	19728	N/A	1:1	front	0.434	1.239	0.538	
1852.40	9262	UMTS 1900	RMC	24.4	23.63	0.04	10 mm	19728	N/A	1:1	bottom	0.725	1.194	0.866	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	-0.02	10 mm	19728	N/A	1:1	bottom	0.755	1.239	0.935	
1907.60 9538 UMTS 1900 RMC 24.4 23.58 0.03 10 mm 19728 N/A 1:1 bottom 0.854												1.208	1.032	A25	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	-0.03	10 mm	19728	N/A	1:1	left	0.245	1.239	0.304	
		ANSI / IEEI	E C95.1 1992 - SA	FETY LIMIT						-		ody g (mW/g)	•		
		Uncontrolled	Spatial Peak	ral Population								g (mw/g) over 1 gram			

Table 11-25 **GPRS/UMTS Hotspot SAR Data**

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 97 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 87 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M

Table 11-26 LTE Band 12 Hotspot SAR

								MEAS	UREMEN	TRESULTS									
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	ı.		[minz]	Power [dBm]	rower [dbin]	Dint[db]		Number							(W/kg)		(W/kg)	ĺ
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	-0.04	0	19736	QPSK	1	0	10 mm	back	1:1	0.407	1.062	0.432	A26
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	-0.02	1	19736	QPSK	25	12	10 mm	back	1:1	0.316	1.040	0.329	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	0.09	0	19736	QPSK	1	0	10 mm	front	1:1	0.396	1.062	0.421	
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.07	1	19736	QPSK	25	12	10 mm	front	1:1	0.313	1.040	0.326	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	-0.08	0	19736	QPSK	1	0	10 mm	bottom	1:1	0.306	1.062	0.325	
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.01	1	19736	QPSK	25	12	10 mm	bottom	1:1	0.238	1.040	0.248	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	0.11	0	19736	QPSK	1	0	10 mm	right	1:1	0.308	1.062	0.327	
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.04	1	19736	QPSK	25	12	10 mm	right	1:1	0.228	1.040	0.237	
707.50	23095	Mid	LTE Band 12	10	25.5	25.24	0.05	0	19736	QPSK	1	0	10 mm	left	1:1	0.137	1.062	0.145	
707.50	23095	Mid	LTE Band 12	10	24.5	24.33	0.01	1	19736	QPSK	25	12	10 mm	left	1:1	0.102	1.040	0.106	
			ANSI / IEEE C95 Sp Uncontrolled Expo	atial Peak									1.6 W/	Body kg (mW/g lover 1 gr					

Table 11-27 LTE Band 13 Hotspot SAR

								MEAS	UREMEN	T RESULTS									
FR	EQUENCY		Mode	Bandwidth	Maxim um Allow ed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.04	0	19736	QPSK	1	25	10 mm	back	1:1	0.512	1.016	0.520	A27
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	-0.01	1	19736	QPSK	25	12	10 mm	back	1:1	0.370	1.000	0.370	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	0.05	0	19736	QPSK	1	25	10 mm	front	1:1	0.417	1.016	0.424	
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	0.05	1	19736	QPSK	25	12	10 mm	front	1:1	0.300	1.000	0.300	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.21	0	19736	QPSK	1	25	10 mm	bottom	1:1	0.351	1.016	0.357	
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	-0.06	1	19736	QPSK	25	12	10 mm	bottom	1:1	0.216	1.000	0.216	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.17	0	19736	QPSK	1	25	10 mm	right	1:1	0.359	1.016	0.365	
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	-0.15	1	19736	QPSK	25	12	10 mm	right	1:1	0.255	1.000	0.255	
782.00	23230	Mid	LTE Band 13	10	25.5	25.43	-0.07	0	19736	QPSK	1	25	10 mm	left	1:1	0.206	1.016	0.209	
782.00	23230	Mid	LTE Band 13	10	24.5	24.50	0.07	1	19736	QPSK	25	12	10 mm	left	1:1	0.146	1.000	0.146	
			ANSI / IEEE C95		TY LIMIT									ody					
				atial Peak									1.6 W/I	kg (mW/g)				
			Uncontrolled Expe	osure/General	Population								averaged	over 1 gra	am				

Table 11-28 LTE Band 26 (Cell) Hotspot SAR

								MEAS	UREMEN	TRESULTS	3								
FR	EQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RBOffset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	Í
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	-0.03	0	19769	QPSK	1	0	10 mm	back	1:1	0.502	1.007	0.506	A28
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	-0.17	1	19769	QPSK	36	0	10 mm	back	1:1	0.309	1.000	0.309	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	0.14	0	19769	QPSK	1	0	10 mm	front	1:1	0.489	1.007	0.492	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	0.02	1	19769	QPSK	36	0	10 mm	front	1:1	0.343	1.000	0.343	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	-0.05	0	19769	QPSK	1	0	10 mm	bottom	1:1	0.280	1.007	0.282	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	-0.03	1	19769	QPSK	36	0	10 mm	bottom	1:1	0.196	1.000	0.196	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	0.00	0	19769	QPSK	1	0	10 mm	right	1:1	0.376	1.007	0.379	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	0.01	1	19769	QPSK	36	0	10 mm	right	1:1	0.253	1.000	0.253	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.47	0.18	0	19769	QPSK	1	0	10 mm	left	1:1	0.140	1.007	0.141	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.50	0.16	1	19769	QPSK	36	0	10 mm	left	1:1	0.097	1.000	0.097	
			ANSI / IEEE C95.		ETY LIMIT									Body					
			Spa	atial Peak									1.6 W/	kg (mW/g	g)				
			Uncontrolled Expo	sure/Genera	I Population								averaged	l over 1 gr	am				

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 88 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 00 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M

Table 11-29 LTE Band 5 (Cell) Hotspot SAR

								MEAS	UREMENT	RESULTS									
FRI	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RBOffset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	-0.02	0	19751	QPSK	1	0	10 mm	back	1:1	0.534	1.021	0.545	A29
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.00	1	19751	QPSK	25	0	10 mm	back	1:1	0.374	1.002	0.375	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	0.08	0	19751	QPSK	1	0	10 mm	front	1:1	0.382	1.021	0.390	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.04	1	19751	QPSK	25	0	10 mm	front	1:1	0.269	1.002	0.270	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	-0.03	03 0 19751 QPSK 1 0 10 mm bottom 1:1 0.278 1.02											
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.02	1	19751	QPSK	25	0	10 mm	bottom	1:1	0.225	1.002	0.225	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	-0.02	0	19751	QPSK	1	0	10 mm	right	1:1	0.386	1.021	0.394	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.00	1	19751	QPSK	25	0	10 mm	right	1:1	0.263	1.002	0.264	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.41	0.17	0	19751	QPSK	1	0	10 mm	left	1:1	0.110	1.021	0.112	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.49	0.15	1	19751	QPSK	25	0	10 mm	left	1:1	0.086	1.002	0.086	
			ANSI / IEEE C95		TY LIMIT									lody					
				atial Peak	Development									kg (mW/g					
			Uncontrolled Expo	sure/General	Population								averaged	over 1 gra	am				

Table 11-30 LTE Band 66 (AWS) Hotspot SAR

								MEAS	UREMENT	RESULTS	-								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	-0.04	0	19769	QPSK	1	0	10 mm	back	1:1	0.760	1.016	0.772	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.06	-0.01	0	19769	QPSK	1	0	10 mm	back	1:1	0.784	1.033	0.810	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.04	-0.10	0	19769	QPSK	1	0	10 mm	back	1:1	0.812	1.038	0.843	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	-0.03	1	19769	QPSK	50	0	10 mm	back	1:1	0.462	1.047	0.484	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.97	-0.02	1	19769	QPSK	100	0	10 mm	back	1:1	0.464	1.054	0.489	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	-0.02	0	19769	QPSK	1	0	10 mm	front	1:1	0.744	1.016	0.756	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	-0.06	1	19769	QPSK	50	0	10 mm	front	1:1	0.452	1.047	0.473	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	-0.06	0	19769	QPSK	1	0	10 mm	bottom	1:1	1.030	1.016	1.046	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.06	-0.16	0	19769	QPSK	1	0	10 mm	bottom	1:1	1.140	1.033	1.178	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.04	-0.07	0	19769	QPSK	1	0	10 mm	bottom	1:1	1.150	1.038	1.194	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	-0.06	1	19769	QPSK	50	0	10 mm	bottom	1:1	0.636	1.047	0.666	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.97	-0.07	1	19769	QPSK	100	0	10 mm	bottom	1:1	0.639	1.054	0.674	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	0.01	0	19769	QPSK	1	0	10 mm	left	1:1	0.515	1.016	0.523	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	0.03	1	19769	QPSK	50	0	10 mm	left	1:1	0.308	1.047	0.322	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.04	0.00	0	19769	QPSK	1	0	10 mm	bottom	1:1	1.170	1.038	1.214	A31
			ANSI / IEEE C95.		TY LIMIT									Body					
				tial Peak										/kg (mW/					
			Uncontrolled Expo	sure/General	Population								average	d over 1 g	ram				

Note: Blue entries represent variability measurements.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Туре:		Dage 80 of 111
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 89 of 144
© 2018	PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

						L	E Da	ina z:		5) Hots	spot	SAR							
								MEAS	UREMENT	RESULTS									
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	с	h.		[MH2]	Power [dBm]	Fower [dbin]			Number							(W/kg)		(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.4	24.05	0.01	0	19744	QPSK	1	0	10 m m	back	1:1	0.906	1.084	0.982	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.06	0.03	0	19744	QPSK	1	0	10 mm	back	1:1	0.845	1.081	0.913	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.00	0	19744	QPSK	1	0	10 mm	back	1:1	0.795	1.054	0.838	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	-0.08	1	19744	QPSK	50	0	10 m m	back	1:1	0.620	1.067	0.662	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.10	0.01	1	19744	QPSK	100	0	10 m m	back	1:1	0.592	1.072	0.635	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.04	0	19744	QPSK	1	0	10 mm	front	1:1	0.586	1.054	0.618	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.03	1	19744	QPSK	50	0	10 m m	front	1:1	0.466	1.067	0.497	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.4	24.05	0.02	0	19744	QPSK	1	0	10 m m	bottom	1:1	1.010	1.084	1.095	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.06	-0.03	0	19744	QPSK	1	0	10 m m	bottom	1:1	1.080	1.081	1.167	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.07	0	19744	QPSK	1	0	10 mm	bottom	1:1	1.170	1.054	1.233	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.4	22.89	0.02	1	19744	QPSK	50	0	10 mm	bottom	1:1	0.879	1.125	0.989	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	22.89	0.00	1	19744	QPSK	50	0	10 mm	bottom	1:1	0.960	1.125	1.080	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	-0.03	1	19744	QPSK	50	0	10 mm	bottom	1:1	1.040	1.067	1.110	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.10	-0.03	1	19744	QPSK	100	0	10 m m	bottom	1:1	1.030	1.072	1.104	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.01	0	19744	QPSK	1	0	10 mm	left	1:1	0.361	1.054	0.380	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.02	1	19744	QPSK	50	0	10 mm	left	1:1	0.283	1.067	0.302	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.02	0	19744	QPSK	1	0	10 mm	bottom	1:1	1.230	1.054	1.296	A33
			ANSI / IEEE C95.		ETY LIMIT									Body					
			•	atial Peak										kg (mW/g					
			Uncontrolled Expo	sure/General	Population								averaged	over 1 gr	am				

Table 11-31 LTE Band 25 (PCS) Hotspot SAR

Note: Blue entries represent variability measurements.

Table 11-32	
LTE Band 30 Hotspot SA	R

								MEAS	UREMENT	RESULTS	;								
FRI	EQUENCY		Mode	Bandwidth	Maxim um Allow ed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.	inde	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number	modulation	100020	no onoci	optioning	oluc	bacy of the	(W/kg)	oballing rabitor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	-0.09	0	19744	QPSK	1	0	10 mm	back	1:1	0.616	1.146	0.706	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	-0.13	1	19744	QPSK	25	25	10 mm	back	1:1	0.403	1.102	0.444	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	-0.05	0	19744	QPSK	1	0	10 m m	front	1:1	0.251	1.146	0.288	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	-0.07	1	19744	QPSK	25	25	10 mm	front	1:1	0.168	1.102	0.185	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	-0.05	0	19744	QPSK	1	0	10 m m	bottom	1:1	0.677	1.146	0.776	A35
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	-0.06	1	19744	QPSK	25	25	10 mm	bottom	1:1	0.429	1.102	0.473	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	0.19	0	19744	QPSK	1	0	10 mm	right	1:1	0.016	1.146	0.018	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	0.21	1	19744	QPSK	25	25	10 mm	right	1:1	0.010	1.102	0.011	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.41	0.19	0	19744	QPSK	1	0	10 mm	left	1:1	0.055	1.146	0.063	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.58	-0.09	1	19744	QPSK	25	25	10 mm	left	1:1	0.037	1.102	0.041	
			ANSI / IEEE C95. Spi	.1 1992 - SAFI atial Peak	ETY LIMIT									lody kg (mW/g)				
			Uncontrolled Expo	sure/General	Population								averaged	over 1 gr	am				

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 00 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 90 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

								<u>- Ban</u>	d / H	otspot	SAF	<u>۲</u>							
								MEAS	UREMENT	RESULTS									
FR	EQUENCY		Mode	Bandwidth	Maximum	Conducted	Power		Device Serial	Modulation						SAR (1g)		Reported SAR (1g)	
MHz	с	h.	Mode	[MHz]	Allowed Power [dBm]	Power [dBm]	Drift [dB]	MPR [dB]	Number	Modulation	RB Size	RBOffset	Spacing	Side	Duty Cycle	(W/kg)	Scaling Factor	(W/kg)	. Plot #
2510.00	20850	Low	LTE Band 7	20	23.7	23.67	0.01	0	19751	QPSK	1	0	10 mm	back	1:1	1.140	1.007	1.148	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.03	0	19751	QPSK	1	0	10 mm	back	1:1	1.180	1.000	1.180	
2560.00	21350	High	LTE Band 7	20	23.7	23.66	-0.03	0	19751	QPSK	1	99	10 mm	back	1:1	1.060	1.009	1.070	
2510.00	20850	Low	LTE Band 7	20	22.7	22.67	-0.02	1	19751	QPSK	50	0	10 mm	back	1:1	1.010	1.007	1.017	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	-0.04	1	19751	QPSK	50	0	10 mm	back	1:1	1.010	1.005	1.015	
2560.00	21350	High	LTE Band 7	20	22.7	22.67	0.04	1	19751	QPSK	50	50	10 mm	back	1:1	1.000	1.007	1.007	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.66	-0.04	1	19751	QPSK	100	0	10 mm	back	1:1	1.060	1.009	1.070	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.02	0	19751	QPSK	1	0	10 mm	front	1:1	0.559	1.000	0.559	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	-0.07	1	19751	QPSK	50	0	10 mm	front	1:1	0.482	1.005	0.484	
2510.00	20850	Low	LTE Band 7	20	23.7	23.67	-0.13	0	19751	QPSK	1	0	10 mm	bottom	1:1	1.240	1.007	1.249	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.05	0	19751	QPSK	1	0	10 mm	bottom	1:1	1.300	1.000	1.300	A37
2560.00	21350	High	LTE Band 7	20	23.7	23.66	-0.08	0	19751	QPSK	1	99	10 mm	bottom	1:1	1.260	1.009	1.271	
2510.00	20850	Low	LTE Band 7	20	22.7	22.67	-0.07	1	19751	QPSK	50	0	10 mm	bottom	1:1	1.160	1.007	1.168	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.08	1	19751	QPSK	50	0	10 mm	bottom	1:1	1.170	1.005	1.176	
2560.00	21350	High	LTE Band 7	20	22.7	22.67	-0.03	1	19751	QPSK	50	50	10 mm	bottom	1:1	1.030	1.007	1.037	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.66	-0.03	1	19751	QPSK	100	0	10 mm	bottom	1:1	1.100	1.009	1.110	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.14	0	19751	QPSK	1	0	10 mm	right	1:1	0.048	1.000	0.048	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	-0.17	1	19751	QPSK	50	0	10 mm	right	1:1	0.048	1.005	0.048	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.17	0	19751	QPSK	1	0	10 mm	left	1:1	0.063	1.000	0.063	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	-0.06	1	19751	QPSK	50	0	10 mm	left	1:1	0.055	1.005	0.055	
2510.00	20850	Low	LTE Band 7	20	23.7	23.67	0.05	0	19751	QPSK	1	0	10 mm	bottom	1:1	1.230	1.007	1.239	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.02	0	19751	QPSK	1	0	10 mm	bottom	1:1	1.220	1.000	1.220	
			ANSI / IEEE C95 Sp Uncontrolled Expo	atial Peak									1.6 W/	lody k g (mW/g over 1 gr	.,				
			encona oneu Exp	courte, Seriera		Blue	ontrio		ocont	voriobi	lity o	0000					-		

Table 11-33 d 7 Hotspot SAR

Note: Blue entries represent variability measurements.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 91 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.		-		REV 20.11 M

	LTE Band 41 Hotspot SAR MEASUREMENT RESULTS																		
								MEAS	UREMEN	T RESULTS									
FRI	EQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	c	h.	inout	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	ini iti (doj	Number	modulation	1.0 0.20	no on our	opuoling	oluc	buty cycle	(W/kg)	oouning ruotor	(W/kg)	
2506.00	39750	Low	LTE Band 41	20	24.9	24.71	0.09	0	19744	QPSK	1	99	10 mm	back	1:1.58	1.060	1.045	1.108	A38
2549.50	40185	Low- Mid	LTE Band 41	20	24.9	24.84	-0.04	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.725	1.014	0.735	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	-0.02	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.994	1.012	1.006	
2636.50	41055	Mid- High	LTE Band 41	20	24.9	24.83	-0.04	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.784	1.016	0.797	
2680.00	41490	High	LTE Band 41	20	24.9	24.83	-0.05	0	19744	QPSK	1	0	10 mm	back	1:1.58	0.554	1.016	0.563	
2506.00	39750	Low	LTE Band 41	20	23.9	23.76	0.05	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.763	1.033	0.788	
2549.50	40185	Low- Mid	LTE Band 41	20	23.9	23.80	-0.02	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.653	1.023	0.668	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.82	-0.05	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.849	1.019	0.865	
2636.50	41055	Mid- High	LTE Band 41	20	23.9	23.79	-0.03	1	19744	QPSK	50	0	10 mm	back	1:1.58	0.566	1.026	0.581	
2680.00	41490	High	LTE Band 41	20	23.9	23.70	-0.03	1	19744	QPSK	50	25	10 mm	back	1:1.58	0.471	1.047	0.493	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.71	0.00	1	19744	QPSK	100	0	10 mm	back	1:1.58	0.817	1.045	0.854	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	0.03	0	19744	QPSK	1	0	10 mm	front	1:1.58	0.292	1.012	0.296	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.82	-0.12	1	19744	QPSK	50	0	10 mm	front	1:1.58	0.245	1.019	0.250	
2506.00	39750	Low	LTE Band 41	20	24.9	24.71	-0.02	0	19744	QPSK	1	99	10 mm	bottom	1:1.58	1.040	1.045	1.087	
2549.50	40185	Low- Mid	LTE Band 41	20	24.9	24.84	0.12	0	19744	QPSK	1	0	10 mm	bottom	1:1.58	0.705	1.014	0.715	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	-0.04	0	19744	QPSK	1	0	10 mm	bottom	1:1.58	0.786	1.012	0.795	
2636.50	41055	Mid- High	LTE Band 41	20	24.9	24.83	0.12	0	19744	QPSK	1	0	10 mm	bottom	1:1.58	0.840	1.016	0.853	
2680.00	41490	High	LTE Band 41	20	24.9	24.83	0.11	0	19744	QPSK	1	0	10 mm	bottom	1:1.58	0.661	1.016	0.672	
2506.00	39750	Low	LTE Band 41	20	23.9	23.76	0.12	1	19744	QPSK	50	0	10 mm	bottom	1:1.58	0.748	1.033	0.773	
2549.50	40185	Low- Mid	LTE Band 41	20	23.9	23.80	-0.12	1	19744	QPSK	50	0	10 mm	bottom	1:1.58	0.615	1.023	0.629	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.82	-0.08	1	19744	QPSK	50	0	10 mm	bottom	1:1.58	0.657	1.019	0.669	
2636.50	41055	Mid- High	LTE Band 41	20	23.9	23.79	-0.10	1	19744	QPSK	50	0	10 mm	bottom	1:1.58	0.605	1.026	0.621	
2680.00	41490	High	LTE Band 41	20	23.9	23.70	-0.07	1	19744	QPSK	50	25	10 mm	bottom	1:1.58	0.525	1.047	0.550	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.71	0.15	1	19744	QPSK	100	0	10 mm	bottom	1:1.58	0.625	1.045	0.653	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	0.19	0	19744	QPSK	1	0	10 m m	right	1:1.58	0.050	1.012	0.051	
2593.00	40620	Mid	LTE Band 41	20	23.9	23.82	-0.05	1	19744	QPSK	50	0	10 mm	right	1:1.58	0.046	1.019	0.047	
2593.00	40620	Mid	LTE Band 41	20	24.9	24.85	0.15	0	19744	QPSK	1	0	10 mm	left	1:1.58	0.060	1.012	0.061	
2593.00	3.00 40620 Mid LTE Band 41 20 23.9 23.82 0.06							1	19744	QPSK	50	0	10 m m	left	1:1.58	0.045	1.019	0.046	
			ANSI / IEEE C95	.1 1992 - SAFI										Body					
			Sp Uncontrolled Expo	atial Peak	Population									kg (mW/g					
			oncontrolled Expo	sure/General	Fopulation		averaged over 1 gram												

Table 11-34 LTE Band 41 Hotspot SAR

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 92 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		1 dgc 52 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

Table 11-35	
WLAN SISO Hotspot S	AR

FREQU	IENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted	Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor		Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	Power [dBm]	[dB]		Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	20.5	20.48	0.06	10 mm	1	19868	1	back	100.0	0.409	0.339	1.005	1.000	0.341	A39
2462	11	802.11b	DSSS	22	20.5	20.48	0.14	10 mm	1	19868	1	front	100.0	0.228	-	1.005	1.000	-	
2462	11	802.11b	DSSS	22	20.5	20.48	0.13	10 mm	1	19868	1	top	100.0	0.394	-	1.005	1.000		
2462	11	802.11b	DSSS	22	20.5	20.48	0.15	10 mm	1	19868	1	left	100.0	0.093	-	1.005	1.000		
2437	6	802.11b	DSSS	22	20.5	20.49	0.08	10 mm	2	19868	1	back	100.0	0.296	0.243	1.002	1.000	0.243	
2437	6	802.11b	DSSS	22	20.5	20.49	0.20	10 mm	2	19868	1	front	100.0	0.031	-	1.002	1.000		
2437	6	802.11b	DSSS	22	20.5	20.49	0.13	10 mm	2	19868	1	top	100.0	0.020	-	1.002	1.000		
2437	6	802.11b	DSSS	22	20.5	20.49	0.11	10 mm	2	19868	1	left	100.0	0.120	-	1.002	1.000		
5200	40	802.11a	OFDM	20	18.0	17.99	0.16	10 mm	1	19850	6	back	99.2	0.286	0.125	1.002	1.008	0.126	
5200	40	802.11a	OFDM	20	18.0	17.99	0.14	10 mm	1	19850	6	front	99.2	0.042	0.015	1.002	1.008	0.015	
5200	40	802.11a	OFDM	20	18.0	17.99	0.17	10 mm	1	19850	6	top	99.2	0.040	-	1.002	1.008		
5200	40	802.11a	OFDM	20	18.0	17.99	0.11	10 mm	1	19850	6	left	99.2	0.059	-	1.002	1.008		
5180	36	802.11a	OFDM	20	17.0	16.91	0.10	10 mm	2	19850	6	back	98.8	1.164	0.573	1.021	1.012	0.592	
5200	40	802.11a	OFDM	20	18.0	17.95	0.12	10 mm	2	19850	6	back	98.8	1.509	0.744	1.012	1.012	0.762	
5240	48	802.11a	OFDM	20	17.0	16.99	0.13	10 mm	2	19850	6	back	98.8	1.591	0.724	1.002	1.012	0.734	
5200	40	802.11a	OFDM	20	18.0	17.95	0.19	10 mm	2	19850	6	front	98.8	0.013	0.005	1.012	1.012	0.005	
5200	40	802.11a	OFDM	20	18.0	17.95	0.19	10 mm	2	19850	6	top	98.8	0.108	-	1.012	1.012		
5200	40	802.11a	OFDM	20	18.0	17.95	0.10	10 mm	2	19850	6	left	98.8	0.452	0.194	1.012	1.012	0.199	
5785	157	802.11a	OFDM	20	18.0	17.99	0.12	10 mm	1	19850	6	back	99.2	0.135	0.052	1.002	1.008	0.053	
5785	157	802.11a	OFDM	20	18.0	17.99	0.16	10 mm	1	19850	6	front	99.2	0.078	0.036	1.002	1.008	0.036	
5785	157	802.11a	OFDM	20	18.0	17.99	0.12	10 mm	1	19850	6	top	99.2	0.070		1.002	1.008		
5785	157	802.11a	OFDM	20	18.0	17.99	0.19	10 mm	1	19850	6	left	99.2	0.028	-	1.002	1.008		
5785	157	802.11a	OFDM	20	18.0	17.95	0.16	10 mm	2	19850	6	back	98.8	1.483	0.706	1.012	1.012	0.723	
5785	157	802.11a	OFDM	20	18.0	17.95	0.14	10 mm	2	19850	6	front	98.8	0.026	0.008	1.012	1.012	0.008	
5785	157	802.11a	OFDM	20	18.0	17.95	0.19	10 mm	2	19850	6	top	98.8	0.146	-	1.012	1.012	-	
5785	157	802.11a	OFDM	20	18.0	17.95	0.12	10 mm	2	19850	6	left	98.8	0.483	0.196	1.012	1.012	0.201	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Body					
	Spatial Peak													1.6 W/kg (m)					
		Unco	ntrolled Ex	posure/Gene		averaged over 1 gram													

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 02 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 93 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

Table 11-36 WLAN MIMO Hotspot SAR

								N	IEASURE	MENT R	ESULTS										
FREQU	IENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant 1)	Maximum Allowed Power	Conducted Power (Ant 2)	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate (Mbps)	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			• •	(Ant 1) [dBm]	[dBm]	(Ant 2) [dBm]	[dBm]				Number			(%)	W/kg	(W/kg)	,		(W/kg)	
5180	36	802.11n	OFDM	20	17.0	16.94	17.0	16.73	-0.07	10 mm	MIMO	19850	13	back	98.4	1.271	0.626	1.064	1.016	0.677	
5200	40	802.11n	OFDM	20	18.0	17.98	18.0	17.94	0.08	10 mm	MIMO	19850	13	back	98.4	1.660	0.829	1.014	1.016	0.854	A41
5220	44	802.11n	OFDM	20	17.0	16.92	17.0	16.94	0.11	10 mm	MIMO	19850	13	back	98.4	1.550	0.738	1.019	1.016	0.764	
5240	48	802.11n	OFDM	20	17.0	16.94	17.0	16.90	0.19	10 mm	MIMO	19850	13	back	98.4	1.773	0.820	1.023	1.016	0.852	
5200	40 802.11n OFDM 20 18.0 17.98 18.0 17.94									10 mm	MIMO	19850	13	front	98.4	0.028	0.010	1.014	1.016	0.010	
5200	40	802.11n	OFDM	20	18.0	17.98	18.0	17.94	-0.04	10 mm	MIMO	19850	13	top	98.4	0.135		1.014	1.016	-	
5200	40	802.11n	OFDM	20	18.0	17.98	18.0	17.94	0.13	10 mm	MIMO	19850	13	left	98.4	0.411	0.192	1.014	1.016	0.198	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.17	10 mm	MIMO	19850	13	back	98.4	1.606	0.779	1.030	1.016	0.815	
5805	161	802.11n	OFDM	20	18.0	17.93	18.0	17.82	0.13	10 mm	MIMO	19850	13	back	98.4	1.577	0.738	1.042	1.016	0.781	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.00	10 mm	MIMO	19850	13	front	98.4	0.097	0.032	1.030	1.016	0.033	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.16	10 mm	MIMO	19850	13	top	98.4	0.172		1.030	1.016	-	
5785	157	157 802.11n OFDM 20 18.0 17.98 18.0 17.87 0								10 mm	MIMO	19850	13	left	98.4	0.445	0.185	1.030	1.016	0.194	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									Body											
		Spatial Peak														1.6 W/kg (m	W/g)				
		Uncontrolled Exposure/General Population								averaged over 1 gram											

Note: To achieve the 5GHz WLAN 20.0 dBm (Ch. 36, 44, 48) and 21 dBm (Ch. 40, 157, 161) maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 17.0 dBm (Ch. 36, 44, 48) and 18.0 dBm (Ch. 40, 157, 161).

Table 11-37 WLAN Hotspot SAR for Conditions with 2.4 GHz Ant 1 and 5 GHz WLAN Ant 2

								MEA	SUREME	NT RESU	LTS								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power[dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	Power [dBm]	[ab]		Config.	Number	(Mbps)		Cycle (%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5230	46	802.11n	OFDM	40	15.0	14.80	0.14	10 m m	2	19850	13.5	back	98.2	0.920	0.460	1.047	1.018	0.490	
5230	46	802.11n	OFDM	40	15.0	14.80	0.19	10 m m	2	19850	13.5	front	98.2	0.005		1.047	1.018	-	
5230	46	802.11n	OFDM	40	15.0	14.80	0.10	10 m m	2	19850	13.5	top	98.2	0.070		1.047	1.018		
5230	5230 46 802.11n OFDM 40 15.0 14.80							10 m m	2	19850	13.5	left	98.2	0.409	0.109	1.047	1.018	0.116	
5795	159	802.11n	OFDM	40	15.0	14.97	0.13	10 m m	2	19850	13.5	back	98.2	0.843	0.388	1.007	1.018	0.398	
5795	159	802.11n	OFDM	40	15.0	14.97	0.10	10 m m	2	19850	13.5	front	98.2	0.014		1.007	1.018		
5795	159	802.11n	OFDM	40	15.0	14.97	0.18	10 m m	2	19850	13.5	top	98.2	0.075		1.007	1.018		
5795	159 802.11n OFDM 40 15.0 14.97 -							10 m m	2	19850	13.5	left	98.2	0.212		1.007	1.018		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak												1	.6 W/kg (mW/g	3)				
		Uncontrolled Exposure/General Population						averaged over 1 gram											

NII was additionally evaluated at the maximum allowed output power during operations with simultaneous 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN. 2.4 GHz Ant1 WIFI was not transmitting during the above evaluations.

Т	able 11-38
DSS	Hotspot SAR

								<i>ispoi</i>	<u></u>							
						ME	ASURE	MENTRE	SULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted Power [dBm]	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond Power)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[dBm]	Power [dbin]	[dB]		Number	(Mbps)		(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	12.0	11.86	0.12	10 mm	19868	1	back	77.1	0.023	1.033	1.297	0.031	
2441	39	Bluetooth	FHSS	12.0	11.86	0.04	10 mm	19868	1	front	77.1	0.017	1.033	1.297	0.023	
2441	39	Bluetooth	FHSS	12.0	11.86	-0.14	10 mm	19868	1	top	77.1	0.039	1.033	1.297	0.052	A43
2441	39 Bluetooth FHSS 12.0 11.86 0.0							19868	1	left	77.1	0.006	1.033	1.297	0.008	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body									
	Spatial Peak						1.6 W/kg (mW/g)									ļ
	Uncontrolled Exposure/General Population										aver	aged over 1 gr	am			

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 94 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 94 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.	•	•		REV 20.11 M

REV 20.11 M 06/19/2018

11.4 Standalone Phablet SAR Data

	MEASUREMENT RESULTS													
					MEAS	SUREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Spacing	Device Serial	Duty	Side	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Cycle		(W/kg)		(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	0.00	3 mm	19710	1:1	back	1.080	1.050	1.134	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	0.08	2 mm	19710	1:1	front	1.370	1.050	1.439	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	-0.03	5 mm	19710	1:1	bottom	1.240	1.050	1.302	
1732.40	1412	UMTS 1750	RMC	24.7	24.49	-0.18	0 mm	19710	1:1	left	1.130	1.050	1.187	
1732.40	1412	UMTS 1750	RMC	23.7	23.14	0.03	0 mm	19710	1:1	back	1.590	1.138	1.809	
1732.40	1412	UMTS 1750	RMC	23.7	23.14	-0.14	0 mm	19710	1:1	front	1.510	1.138	1.718	
1712.40	1312	UMTS 1750	RMC	23.7	23.18	-0.13	0 mm	19710	1:1	bottom	2.290	1.127	2.581	
1732.40	1412	UMTS 1750	RMC	23.7	23.14	-0.11	0 mm	19710	1:1	bottom	2.440	1.138	2.777	
1752.60	1513	UMTS 1750	RMC	23.7	23.19	-0.15	0 mm	19710	1:1	bottom	2.470	1.125	2.779	A44
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.00	3 mm	19710	1:1	back	0.605	1.239	0.750	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	0.09	2 mm	19710	1:1	front	0.819	1.239	1.015	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	-0.07	5 mm	19710	1:1	bottom	0.878	1.239	1.088	
1880.00	9400	UMTS 1900	RMC	24.4	23.47	-0.04	0 mm	19710	1:1	left	0.571	1.239	0.707	
1880.00	9400	UMTS 1900	RMC	23.4	22.76	-0.04	0 mm	19710	1:1	back	1.450	1.159	1.681	
1880.00	9400	UMTS 1900	RMC	23.4	22.76	-0.06	0 mm	19710	1:1	front	1.540	1.159	1.785	
1852.40	9262	UMTS 1900	-0.12	0 mm	19710	1:1	bottom	2.170	1.114	2.417	A45			
1880.00	9400	UMTS 1900	RMC	23.4	22.76	-0.13	0 mm	19710	1:1	bottom	2.040	1.159	2.364	
1907.60	9538	UMTS 1900	RMC	23.4	22.88	-0.13	0 mm	19710	1:1	bottom	2.160	1.127	2.434	
		ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT							Phablet			
			Spatial Peak						W/kg (mW/g					
		Uncontrolled	Exposure/Gener	al Population						averaç	ged over 10 gra	ams		

Table 11-39 **UMTS Phablet SAR Data**

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 95 of 144		
	1M1808210167-01-R1.ZNF	1808210167-01-R1.ZNF 08/20/18 - 09/05/18 Portable Handset					
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M		

06/19/2018

	LIE Band 66 (AWS)Phablet SAR																		
								MEASUR	REMENT R	ESULTS									
F	REQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	CI	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	WE K [UD]	Number	modulation	100 0120	KD OIISET	opacing	Side	Duty Cycle	(W/kg)	ocaling ractor	(W/kg)	1101#
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	-0.11	0	19769	QPSK	1	0	3 mm	back	1:1	1.200	1.016	1.219	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	-0.09	1	19769	QPSK	50	0	3 mm	back	1:1	0.749	1.047	0.784	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	0.12	0	19769	QPSK	1	0	2 mm	front	1:1	1.470	1.016	1.494	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	0.09	1	19769	QPSK	50	0	2 mm	front	1:1	0.910	1.047	0.953	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	-0.02	0	19769	QPSK	1	0	5 mm	bottom	1:1	1.330	1.016	1.351	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	-0.06	1	19769	QPSK	50	0	5 mm	bottom	1:1	0.827	1.047	0.866	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.13	-0.01	0	19769	QPSK	1	0	0 mm	left	1:1	1.230	1.016	1.250	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.00	0.00	1	19769	QPSK	50	0	0 mm	left	1:1	0.741	1.047	0.776	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.61	0.07	0	19736	QPSK	1	0	0 mm	back	1:1	1.620	1.146	1.857	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.58	0.08	0	19736	QPSK	50	0	0 mm	back	1:1	1.610	1.153	1.856	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.61	0.07	0	19736	QPSK	1	0	0 mm	front	1:1	1.710	1.146	1.960	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.58	0.07	0	19736	QPSK	50	0	0 mm	front	1:1	1.730	1.153	1.995	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.61	-0.05	0	19736	QPSK	1	0	0 mm	bottom	1:1	2.530	1.146	2.899	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.59	-0.05	0	19736	QPSK	1	0	0 mm	bottom	1:1	2.740	1.151	3.154	A46
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	22.56	-0.07	0	19736	QPSK	1	0	0 mm	bottom	1:1	2.710	1.159	3.141	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.58	-0.10	0	19736	QPSK	50	0	0 mm	bottom	1:1	2.600	1.153	2.998	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.45	-0.09	0	19736	QPSK	50	0	0 mm	bottom	1:1	2.690	1.189	3.198	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	22.49	-0.06	0	19736	QPSK	50	0	0 mm	bottom	1:1	2.700	1.178	3.181	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.47	-0.06	0	19736	QPSK	100	0	0 mm	bottom	1:1	2.590	1.183	3.064	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	0.03	0	19736	QPSK	1	0	0 mm	bottom	1:1	2.580	1.151	2.970			
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									•					hablet /kg (mW/ over 10 g					

Table 11-40 LTE Band 66 (AWS)Phablet SAR

Note: Blue entries represent variability measurements.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates: DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 96 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

LIE Band 25 (PCS) Phablet SAR																			
								MEASUR		ESULTS									
F	REQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	CI	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	ini re [ub]	Number	modulation	100020	no onoer	opuong	oluc	bacy of the	(W/kg)	obuing ractor	(W/kg)	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.01	0	19736	QPSK	1	0	3 mm	back	1:1	1.200	1.054	1.265	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.00	1	19736	QPSK	50	0	3 mm	back	1:1	0.943	1.067	1.006	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.08	0	19736	QPSK	1	0	2 mm	front	1:1	1.370	1.054	1.444	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.08	1	19736	QPSK	50	0	2 mm	front	1:1	1.080	1.067	1.152	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.01	0	19736	QPSK	1	0	5 mm	bottom	1:1	1.810	1.054	1.908	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.04	1	19736	QPSK	50	0	5 mm	bottom	1:1	1.430	1.067	1.526	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.17	0.03	0	19736	QPSK	1	0	0 mm	left	1:1	1.110	1.054	1.170	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.12	0.06	1	19736	QPSK	50	0	0 mm	left	1:1	0.871	1.067	0.929	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.97	0.09	0	19744	QPSK	1	0	0 mm	back	1:1	1.750	1.104	1.932	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.94	0.07	0	19744	QPSK	50	0	0 mm	back	1:1	1.760	1.112	1.957	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.4	22.85	0.05	0	19744	QPSK	1	0	0 mm	front	1:1	1.940	1.135	2.202	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	22.85	0.11	0	19744	QPSK	1	0	0 mm	front	1:1	1.920	1.135	2.179	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.97	0.03	0	19744	QPSK	1	0	0 mm	front	1:1	1.930	1.104	2.131	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.4	22.70	0.04	0	19744	QPSK	50	0	0 mm	front	1:1	1.940	1.175	2.280	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	22.70	0.06	0	19744	QPSK	50	0	0 mm	front	1:1	1.840	1.175	2.162	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.94	-0.03	0	19744	QPSK	50	0	0 mm	front	1:1	1.960	1.112	2.180	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.91	0.02	0	19744	QPSK	100	0	0 mm	front	1:1	1.940	1.119	2.171	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.4	22.85	-0.03	0	19744	QPSK	1	0	0 mm	bottom	1:1	2.530	1.135	2.872	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	22.85	-0.02	0	19744	QPSK	1	0	0 mm	bottom	1:1	2.690	1.135	3.053	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.97	-0.03	0	19744	QPSK	1	0	0 mm	bottom	1:1	2.750	1.104	3.036	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.4	22.70	-0.02	0	19744	QPSK	50	0	0 mm	bottom	1:1	2.530	1.175	2.973	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	22.70	-0.02	0	19744	QPSK	50	0	0 mm	bottom	1:1	2.660	1.175	3.126	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.94	-0.03	0	19744	QPSK	50	0	0 mm	bottom	1:1	2.790	1.112	3.102	A47
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.91	-0.03	0	19744	QPSK	100	0	0 mm	bottom	1:1	2.760	1.119	3.088	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	22.94	-0.04	0	19744	QPSK	50	0	0 mm	bottom	1:1	2.750	1.112	3.058	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												4.0 W	hablet /kg (mW/ over 10 g					

Table 11-41 I TE Band 25 (PCS) Phablet SAR

Note: Blue entries represent variability measurements.

Table 11-42 LTE Band 7 Phablet SAR

	MEASUREMENT RESULTS																		
1	FREQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number				-	-		(W/kg)		(W/kg)	
2510.00	20850	Low	LTE Band 7	20	23.7	23.67	0.01	0	19751	QPSK	1	0	0 mm	bottom	1:1	2.640	1.007	2.658	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.70	-0.16	0	19751	QPSK	1	0	0 mm	bottom	1:1	2.560	1.000	2.560	
2560.00	21350	High	LTE Band 7	20	23.7	23.66	-0.18	0	19751	QPSK	1	99	0 mm	bottom	1:1	2.240	1.009	2.260	
2510.00	2510.00 20850 Low LTE Band 7 20 22.7 22.67						0.17	1	19751	QPSK	50	0	0 mm	bottom	1:1	2.450	1.007	2.467	
2535.00	5.00 21100 Mid LTE Band 7 20 22.7 22.68							1	19751	QPSK	50	0	0 mm	bottom	1:1	2.290	1.005	2.301	
2560.00	21350	High	LTE Band 7	20	22.7	22.67	-0.09	1	19751	QPSK	50	50	0 mm	bottom	1:1	2.300	1.007	2.316	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.66	0.15	1	19751	QPSK	100	0	0 mm	bottom	1:1	2.250	1.009	2.270	
2510.00	20850	Low	LTE Band 7	20	23.7	23.67	-0.08	0	19751	QPSK	1	0	0 mm	bottom	1:1	2.810	1.007	2.830	A48
2535.00	21100 Mid LTE Band 7 20 23.7 23.70 4						-0.06	0	19751	QPSK	1	0	0 mm	bottom	1:1	2.630	1.000	2.630	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										. —		Р	hablet					
	Spatial Peak											4.0 W	/kg (mW/	g)					
		Uncontrolled Exposure/General Population						averaged over 10 grams											

Note: Blue entries represent variability measurements.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		Page 97 of 144			
	1M1808210167-01-R1.ZNF	Portable Handset		Fage 97 01 144				
© 2018 PCTEST Engineering Laboratory, Inc.								

REV 20.11 M

	WLAN SISO Phablet SAR MEASUREMENT RESULTS																		
								MEAS	UREMEN	T RESU	LTS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (10g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (10g)	Plot #
MHz	Ch.				[ubiii]					Number			(70)	W/kg	(W/kg)	ļ		(W/kg)	L
5280	56	802.11a	OFDM	20	18.0	17.98	0.03	0 mm	1	19850	6	back	99.2	4.558	0.378	1.005	1.008	0.383	
5280	56	802.11a	OFDM	20	18.0	17.98	0.10	0 m m	1	19850	6	front	99.2	3.618	-	1.005	1.008	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.14	0 m m	1	19850	6	top	99.2	0.466		1.005	1.008		
5280	56	802.11a	OFDM	20	18.0	17.98	0.07	0 m m	1	19850	6	left	99.2	0.416	-	1.005	1.008		
5260	52	802.11a	OFDM	20	17.0	16.97	-0.03	0 m m	2	19850	6	back	98.8	16.841	2.070	1.007	1.012	2.110	
5280	56	802.11a	OFDM	20	18.0	17.98	-0.17	0 m m	2	19850	6	back	98.8	33.315	2.570	1.005	1.012	2.614	
5320	64	802.11a	OFDM	20	17.0	16.99	0.02	0 m m	2	19850	6	back	98.8	30.655	2.440	1.002	1.012	2.474	
5280	56	802.11a	OFDM	20	18.0	17.98	-0.01	0 m m	2	19850	6	front	98.8	0.149	0.022	1.005	1.012	0.022	
5280	56	802.11a	OFDM	20	18.0	17.98	0.18	0 m m	2	19850	6	top	98.8	0.286		1.005	1.012		
5280	56	802.11a	OFDM	20	18.0	17.98	0.18	0 m m	2	19850	6	left	98.8	4.473	0.469	1.005	1.012	0.477	
5600	120	802.11a	OFDM	20	17.0	16.99	0.03	0 m m	1	19850	6	back	99.2	7.663	0.399	1.002	1.008	0.403	
5600	120	802.11a	OFDM	20	17.0	16.99	-0.15	0 m m	1	19850	6	front	99.2	5.027	-	1.002	1.008	-	
5600	120	802.11a	OFDM	20	17.0	16.99	0.13	0 m m	1	19850	6	top	99.2	0.840		1.002	1.008		
5600	120	802.11a	OFDM	20	17.0	16.99	0.19	0 m m	1	19850	6	left	99.2	0.413	-	1.002	1.008		
5720	144	802.11a	OFDM	20	17.0	16.99	-0.04	0 m m	2	19850	6	back	98.8	21.248	1.680	1.002	1.012	1.704	
5720	144	802.11a	OFDM	20	0.12	0 m m	2	19850	6	front	98.8	0.431	0.081	1.002	1.012	0.082			
5720	144	802.11a	OFDM	20	17.0	16.99	0.16	0 m m	2	19850	6	top	98.8	0.252	-	1.002	1.012	•	
5720	144	802.11a	OFDM	20	0.15	0 m m	2	19850	6	left	98.8	3.826	0.330	1.002	1.012	0.335			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												e	Phablet 4.0 W/kg (m averaged over 10	W/g)				

Table 11-43 WI AN SISO Phablet SAR

Table 11-44 WLAN MIMO Phablet SAR

					MEASURE	EMENT R	ESULTS														
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant 1)	Maximum Allowed Power	Conducted Power (Ant 2) [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (10g)	Plot #
MHz	Ch.				(Ant 1) [dBm]	[dBm]	(Ant 2) [dBm]	[dBm]			-	Number			(%)	W/kg	(W/kg)			(W/kg)	
5260	52	802.11n	OFDM	20	17.0	16.91	17.0	16.79	0.00	0 mm	MIMO	19850	13	back	98.4	26.135	2.160	1.050	1.016	2.304	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	-0.11	0 mm	MIMO	19850	13	back	98.4	47.856	2.680	1.007	1.016	2.742	A49
5320	64	802.11n	OFDM	20	17.0	16.97	17.0	16.96	-0.16	0 mm	MIMO	19850	13	back	98.4	14.917	2.480	1.009	1.016	2.542	
5280	56										MIMO	19850	13	front	98.4	2.956		1.007	1.016	-	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.17	0 mm	MIMO	19850	13	top	98.4	0.576		1.007	1.016		
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.11	0 mm	MIMO	19850	13	left	98.4	4.785	0.470	1.007	1.016	0.481	
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	-0.03	0 mm	MIMO	19850	13	back	98.4	13.505	1.750	1.012	1.016	1.799	
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.17	0 mm	MIMO	19850	13	front	98.4	4.214	0.325	1.012	1.016	0.334	
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.17	0 mm	MIMO	19850	13	top	98.4	0.858		1.012	1.016		
5720	144	144 802.11n OFDM 20 17.0 16.96 17.0 16.95								0 mm	MIMO	19850	13	left	98.4	3.337		1.012	1.016		
5280	56 802.11n OFDM 20 18.0 17.97 18.0 17.98								0.01	0 mm	MIMO	19850	13	back	98.4	32.132	2.620	1.007	1.016	2.681	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Phablet 4.0 W/kg (mW/g) averaged over 10 grams													

Note:

1. Blue entries indicate variability measurements.

To achieve the 5GHz WLAN 20.0 dBm (Ch. 52, 64, 144) and 21 dBm (Ch. 56) maximum allowed MIMO 2. power shown in the documentation, each antenna transmits at a maximum allowed power of 17.0 dBm (Ch. 52, 64, 144) and 18.0 dBm (Ch. 56).

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dago 09 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 98 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.		•		REV 20.11 M

RE 20.1 06/19/2018

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Body-worn SAR was additionally evaluated using a headset cable when the standalone report body-worn SAR was \geq 1.2 W/kg.
- Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the 9. actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 12. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).
- 13. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:		Daga 00 of 144				
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 99 of 144				
© 201	© 2018 PCTEST Engineering Laboratory, Inc.								

06/19/2018

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.6.6 for more information.
- 4. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Section 12 for complete analysis.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 400 af 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 100 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 M 06/19/2018

- 5. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 6. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 7. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Bluetooth Notes

 Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. See Section 9.5 for the time domain plot and calculation for the duty factor of the device.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager					
	Document S/N:	Test Dates:	DUT Type:		Page 101 of 144					
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 101 01 144					
© 2018 PCTEST Engineering Laboratory, Inc.										

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 12

Introduction 12.1

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

Simultaneous Transmission Procedures 12.2

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

For some simultaneous transmission scenarios with 2.4 GHz WLAN and 5 GHz WLAN, SAR values at the maximum output power level were used for summations since they were conservative.

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dama 400 of 444	
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 102 of 144	
© 2018 PCTEST Engineering Laboratory, Inc.		÷		REV 20.11 M	

06/19/2018

12.3 Head SAR Simultaneous Transmission Analysis

Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)										
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)					
		1	2	3	1+2	1+3	1+2+3			
	GSM/GPRS 850	0.266	0.386	0.080	0.652	0.346	0.732			
	GSM/GPRS 1900	0.123	0.386	0.080	0.509	0.203	0.589			
	UMTS 850	0.241	0.386	0.080	0.627	0.321	0.707			
	UMTS 1750	0.205	0.386	0.080	0.591	0.285	0.671			
	UMTS 1900	0.178	0.386	0.080	0.564	0.258	0.644			
	LTE Band 12	0.193	0.386	0.080	0.579	0.273	0.659			
Head SAR	LTE Band 13	0.246	0.386	0.080	0.632	0.326	0.712			
Head SAR	LTE Band 26 (Cell)	0.276	0.386	0.080	0.662	0.356	0.742			
	LTE Band 5 (Cell)	0.240	0.386	0.080	0.626	0.320	0.706			
	LTE Band 66 (AWS)	0.210	0.386	0.080	0.596	0.290	0.676			
	LTE Band 25 (PCS)	0.137	0.386	0.080	0.523	0.217	0.603			
	LTE Band 30	0.024	0.386	0.080	0.410	0.104	0.490			
	LTE Band 7	0.061	0.386	0.080	0.447	0.141	0.527			
	LTE Band 41	0.051	0.386	0.080	0.437	0.131	0.517			

Table 12-1

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 400 of 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 103 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.	·			REV 20.11 M

06/19/2018

	Simultaneous Transmission Scenario with 5 GHZ WLAN (Held to Ear)								
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg))		
		1	2	3	1+2	1+3	1+2+3		
	GSM/GPRS 850	0.266	0.648	0.082	0.914	0.348	0.996		
	GSM/GPRS 1900	0.123	0.648	0.082	0.771	0.205	0.853		
	UMTS 850	0.241	0.648	0.082	0.889	0.323	0.971		
	UMTS 1750	0.205	0.648	0.082	0.853	0.287	0.935		
	UMTS 1900	0.178	0.648	0.082	0.826	0.260	0.908		
	LTE Band 12	0.193	0.648	0.082	0.841	0.275	0.923		
Head SAR	LTE Band 13	0.246	0.648	0.082	0.894	0.328	0.976		
Head SAR	LTE Band 26 (Cell)	0.276	0.648	0.082	0.924	0.358	1.006		
	LTE Band 5 (Cell)	0.240	0.648	0.082	0.888	0.322	0.970		
	LTE Band 66 (AWS)	0.210	0.648	0.082	0.858	0.292	0.940		
	LTE Band 25 (PCS)	0.137	0.648	0.082	0.785	0.219	0.867		
	LTE Band 30	0.024	0.648	0.082	0.672	0.106	0.754		
	LTE Band 7	0.061	0.648	0.082	0.709	0.143	0.791		
	LTE Band 41	0.051	0.648	0.082	0.699	0.133	0.781		

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 104 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 104 01 144	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

RE 06/19/2018

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GSM/GPRS 850	0.266	0.386	0.082	0.734
	GSM/GPRS 1900	0.123	0.386	0.082	0.591
	UMTS 850	0.241	0.386	0.082	0.709
	UMTS 1750	0.205	0.386	0.082	0.673
	UMTS 1900	0.178	0.386	0.082	0.646
	LTE Band 12	0.193	0.386	0.082	0.661
Head SAR	LTE Band 13	0.246	0.386	0.082	0.714
Head SAIN	LTE Band 26 (Cell)	0.276	0.386	0.082	0.744
	LTE Band 5 (Cell)	0.240	0.386	0.082	0.708
	LTE Band 66 (AWS)	0.210	0.386	0.082	0.678
	LTE Band 25 (PCS)	0.137	0.386	0.082	0.605
	LTE Band 30	0.024	0.386	0.082	0.492
	LTE Band 7	0.061	0.386	0.082	0.529
	LTE Band 41	0.051	0.386	0.082	0.519

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2 (Held to Ear)

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 105 of 114
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 105 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.11 M

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.266	0.109	0.375
	GSM/GPRS 1900	0.123	0.109	0.232
	UMTS 850	0.241	0.109	0.350
	UMTS 1750	0.205	0.109	0.314
	UMTS 1900	0.178	0.109	0.287
	LTE Band 12	0.193	0.109	0.302
Head SAR	LTE Band 13	0.246	0.109	0.355
Head SAIN	LTE Band 26 (Cell)	0.276	0.109	0.385
	LTE Band 5 (Cell)	0.240	0.109	0.349
	LTE Band 66 (AWS)	0.210	0.109	0.319
	LTE Band 25 (PCS)	0.137	0.109	0.246
	LTE Band 30	0.024	0.109	0.133
	LTE Band 7	0.061	0.109	0.170
	LTE Band 41	0.051	0.109	0.160

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 400 of 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 106 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.	·	·		REV 20.11 M

REV 20.11 M 06/19/2018

12.4 **Body-Worn Simultaneous Transmission Analysis**

	Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)											
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)				SPLSR			
		1	2	3	1+2	1+3	1+2+3	1+2	1+3	2+3		
	GSM/GPRS 850	0.759	0.341	0.243	1.100	1.002	1.343	N/A	N/A	N/A		
	GSM/GPRS 1900	0.531	0.341	0.243	0.872	0.774	1.115	N/A	N/A	N/A		
	UMTS 850	0.503	0.341	0.243	0.844	0.746	1.087	N/A	N/A	N/A		
	UMTS 1750	0.787	0.341	0.243	1.128	1.030	1.371	N/A	N/A	N/A		
	UMTS 1900	0.751	0.341	0.243	1.092	0.994	1.335	N/A	N/A	N/A		
	LTE Band 12	0.432	0.341	0.243	0.773	0.675	1.016	N/A	N/A	N/A		
Destu	LTE Band 13	0.520	0.341	0.243	0.861	0.763	1.104	N/A	N/A	N/A		
Body-Worn	LTE Band 26 (Cell)	0.506	0.341	0.243	0.847	0.749	1.090	N/A	N/A	N/A		
	LTE Band 5 (Cell)	0.545	0.341	0.243	0.886	0.788	1.129	N/A	N/A	N/A		
	LTE Band 66 (AWS)	0.843	0.341	0.243	1.184	1.086	1.427	N/A	N/A	N/A		
	LTE Band 25 (PCS)	0.982	0.341	0.243	1.323	1.225	1.566	N/A	N/A	N/A		
	LTE Band 30	0.706	0.341	0.243	1.047	0.949	1.290	N/A	N/A	N/A		
	LTE Band 7	1.180	0.341	0.243	1.521	1.423	See Note 1	0.01	0.01	0.02		
	LTE Band 41	1.108	0.341	0.243	1.449	1.351	See Note 1	0.01	0.01	0.02		

Table 12-5 c: . 14 -. + 1 0

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 107 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 107 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

REV 20.11 06/19/2018

Expo Cond	IVIOOE		Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	ΣSAR	: (W/ł	<g)< td=""><td>SPL</td><td>SR</td></g)<>	SPL	SR
				1	2	3	1+2		1+3	1+	3
		GSN	//GPRS 850	0.759	0.157	1.129	0.916	See 7	Table Below	N/	A
		GSM/GPRS 1900		0.531	0.157	1.129	0.688	See 1	Table Below	N/	A
		U	IMTS 850	0.503	0.157	1.129	0.660	See	e Note 1	0.0)2
		U	MTS 1750	0.787	0.157	1.129	0.944	See	e Note 1	0.0)2
		U	MTS 1900	0.751	0.157	1.129	0.908	See	e Note 1	0.0)2
Body-Worn		LT	E Band 12	0.432	0.157	1.129	0.589		1.561	N/	A
	Worn	LT	E Band 13	0.520	0.157	1.129	0.677 Se		e Note 1	0.0)2
Bouy-	vvoin	LTE E	Band 26 (Cell)	0.506	0.157	1.129	0.663 Se		e Note 1	0.0)2
		LTE	Band 5 (Cell)	0.545	0.157	1.129	0.702	See	e Note 1	0.0)2
		LTE B	and 66 (AWS)	0.843	0.157	1.129	1.000	See	e Note 1	0.0)2
		LTE B	and 25 (PCS)	0.982	0.157	1.129	1.139	See	e Note 1	0.0)2
		LT	E Band 30	0.706	0.157	1.129	0.863 S		e Note 1	0.0)2
		L1	TE Band 7	1.180	0.157	1.129	1.337	1.337 See		0.0)3
		LT	E Band 41	1.108	0.157	1.129	1.265	See	e Note 1	0.0)3
	Configuration Mod		e	2G SAR (W/kg)	5 GHz WLA Ant2 SAR (W/kg)	1 2 SAR		SR			
					1	2	1+2		1+2	2	
[Bac	k Side	GSM 8	350	0.384	1.129	1.513	3	N/A	۱ ۱	
	Back Side GPRS			0.759	1.129	See Not		0.0			
ļ		k Side	GSM 1		0.388	1.129	1.517		N//		
l	Bac	k Side	GPRS ²	1900	0.531	1.129	See Not	te 1	0.0	2	

Table 12-6 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 400 of 444	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 108 of 144	
© 20′	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

Simulane	ous Transmission Scena			(Bouy-worn a	at 1.0 cm)
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	SAR //kg) SPLSR +2 1+2 ble Below N/A ble Below N/A Note 1 0.02 Note 1 0.03 Note 1 0.03
	GSM/GPRS 850	0.759	1.269	See Table Below	N/A
	GSM/GPRS 1900	0.531	1.269	See Table Below	N/A
	UMTS 850	0.503	1.269	See Note 1	0.02
	UMTS 1750	0.787	1.269	See Note 1	0.02
	UMTS 1900	0.751	1.269	See Note 1	0.02
	LTE Band 12	0.432	1.269	See Note 1	0.02
Dedu Mare	LTE Band 13	0.520	1.269	See Note 1	0.02
Body-Worn	LTE Band 26 (Cell)	0.506	1.269	See Note 1	we Note 1 0.02 we Note 1 0.03 we Note 1 0.02
	LTE Band 5 (Cell)	d 130.5201.269See Note 10.026 (Cell)0.5061.269See Note 10.025 (Cell)0.5451.269See Note 10.026 (AWS)0.8431.269See Note 10.025 (PCS)0.9821.269See Note 10.03			
	LTE Band 66 (AWS)	0.843	1.269	See Note 1	0.02
	LTE Band 25 (PCS)	0.982	1.269	See Note 1	0.03
	LTE Band 30	0.706	1.269	See Note 1	0.02
	LTE Band 7	1.180	1.269	See Note 1	0.03
	LTE Band 41	1.108	1.269	See Note 1	0.03
Configuration	Mode	2G SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
Back Side	GSM 850	0.384	1.269	See Note 1	0.02
Back Side	GPRS 850	0.759	1.269	See Note 1	0.02
Back Side	GSM 1900	0.388	1.269	See Note 1	0.02
Back Side	GPRS 1900	0.531	1.269	See Note 1	0.02

Table 12-7 Simultaneous Transmission Scenario with 5 GHz WLAN MIMO (Body-Worn at 1.0 cm)

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 109 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 109 01 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

RE 06/19/2018

 Table 12-8

 Simultaneous Transmission Scenario with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2 (Body-Worn at 1.0

			C	m)				
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 at 14 dBm SAR (W/kg)	Σ SAR (W/kg)			
		1	2	3	1+2+3	1+2	1+3	2+3
	GSM/GPRS 850	0.759	0.341	0.571	See Table Below	N/A	N/A	N/A
	GSM/GPRS 1900	0.531	0.341	0.571	1.443	N/A	N/A	N/A
	UMTS 850	0.503	0.341	0.571	1.415	N/A	N/A	N/A
	UMTS 1750	0.787	0.341	0.571	See Note 1	0.01	0.01	0.02
	UMTS 1900	0.751	0.341	0.571	See Note 1	0.01	0.01	0.02
	LTE Band 12	0.432	0.341	0.571	1.344	N/A	N/A	N/A
Rody Worn	LTE Band 13	0.520	0.341	0.571	1.432	N/A	N/A	N/A
Body-Worn	LTE Band 26 (Cell)	0.506	0.341	0.571	1.418	N/A	N/A	N/A
	LTE Band 5 (Cell)	0.545	0.341	0.571	1.457	N/A	N/A	N/A
	LTE Band 66 (AWS)	0.843	0.341	0.571	See Note 1	0.01	0.01	0.02
	LTE Band 25 (PCS)	0.982	0.341	0.571	See Note 1	0.01	0.02	0.02
	LTE Band 30	0.706	0.341	0.571	See Note 1	0.01	0.01	0.02
	LTE Band 7	1.180	0.341	0.571	See Note 1	0.01	0.02	0.02
	LTE Band 41	1.108	0.341	0.571	See Note 1	0.01	0.02	0.02
Configuration	Mode	2G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 at 14 dBm SAR (W/kg)	Σ SAR (W/kg)		SPLSR	
		1	2	3	1+2+3	1+2	1+3	2+3
Back Side	GSM 850	0.384	0.341	0.571	1.296	N/A	N/A	N/A
Back Side	GPRS 850	0.759	0.341	0.571	See Note 1	0.01	0.01	0.02

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 110 of 144
) 20'	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018 © 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

©

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.759	0.031	0.790
	GSM/GPRS 1900	0.531	0.031	0.562
	UMTS 850	0.503	0.031	0.534
	UMTS 1750	0.787	0.031	0.818
	UMTS 1900	0.751	0.031	0.782
	LTE Band 12	0.432	0.031	0.463
Body-Worn	LTE Band 13	0.520	0.031	0.551
Body-wom	LTE Band 26 (Cell)	0.506	0.031	0.537
	LTE Band 5 (Cell)	0.545	0.031	0.576
	LTE Band 66 (AWS)	0.843	0.031	0.874
	LTE Band 25 (PCS)	0.982	0.031	1.013
	LTE Band 30	0.706	0.031	0.737
	LTE Band 7	1.180	0.031	1.211
	LTE Band 41	1.108	0.031	1.139

 Table 12-9

 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Notes:

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	à	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 111 of 114
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 111 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

Hotspot SAR Simultaneous Transmission Analysis 12.5

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

	Sim	ultaneou	is Transr	nission S	ce	enario	with 2	2.4 (GHz WLA	N (Hotsp	ot	at 1.0	cm)		
Exposure Condition		Mode		2G/3G/40 SAR (W/k		2.4 (WLAN SAR (Ant 1	Wι	2.4 GHz _AN Ant 2 \R (W/kg)		2	Σ SAR (W/kg)			
				1		2			3	1+2		1+3		1+2+3	
		GPRS 85	0	0.759		0.3	41		0.243	1.100		1.	002		1.343
		GPRS 190	00	1.009		0.3	41		0.243	1.350		1.	252		1.593
		UMTS 850		0.503		0.3	41		0.243	0.844		0.	746		1.087
		UMTS 175	50	1.070		0.3	41		0.243	1.411		1.	313	See	Table Below
		UMTS 190	0	1.032		0.3	41		0.243	1.373		1.	275	See	Table Below
		LTE Band	12	0.432		0.3	41		0.243	0.773		0.	675		1.016
Hotspot SA	Ь	LTE Band	13	0.520		0.3	41		0.243	0.861		0.	763		1.104
	LTI	E Band 26	(Cell)	0.506		0.3	41		0.243	0.847		0.	749		1.090
	LT	E Band 5 (Cell)	0.545		0.3	41		0.243	0.886		0.	788		1.129
	LTE	Band 66 (AWS)	1.214		0.3	41		0.243	1.555		1.	457	See	Table Below
	LTE Band 25		PCS)	1.296		0.341			0.243	See Table Bel	low	1.	539	See	Table Below
		LTE Band	30	0.776		0.3	41		0.243	1.117		1.	019		1.360
		LTE Band	7	1.300		0.3	41		0.243	See Table Bel	low	1.	543	See	Table Below
		LTE Band	41	1.108		0.3	41		0.243	1.449		1.	351	See	Table Below
Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)		Σ SAR W/kg)	Simu	lt Tx	Configuration	UMTS 1900 SAR (W/kg)	WLA	4 GHz AN Ant 1 R (W/kg)	2.4 GHz WLAN Ant SAR (W/k	2	Σ SAR (W/kg)
		1	2	3	1	1+2+3				1		2	3		1+2+3
	Back Front	0.787 0.627	0.341 0.341*	0.243 0.243*		1.371 1.211	,		Back Front	0.751 0.538).341 .341*	0.243 0.243*		1.335 1.122
Hotspot SAR	Тор	-	0.341*	0.243*		0.584	Hotspo	t SAR	Тор	-		.341*	0.243*		0.584
	Bottom Right	1.070	-	-		1.070 0.000			Bottom Right	1.032		-	-		1.032 0.000
	Left	0.465	0.341*	0.243*		1.049			Left	0.304	0	.341*	0.243*		0.888
			Simult Tx	Configuration	(A)	E Band 66 WS) SAR (W/kg)	2.4 G WLAN A SAR (V	Ant 1	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)					
						1	2		3	1+2+3					
				Back Front		0.843	0.34		0.243 0.243*	1.427 1.340					
			Hotspot SAR	Тор		-	0.34		0.243*	0.584					
				Bottom Right		1.214	-		-	1.214 0.000					
				Left		0.523	0.34	1*	0.243*	1.107					

Table 12-10	
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)	

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 112 of 114
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 112 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.		÷		REV 20.11 M

RE 06/19/2018

			Simu	ult Tx	Config	uration	(PCS	and 25) SAR /kg)	WLAN	GHz I Ant 1 W/kg)	2.4 (WLAN SAR (Ant 2	2	ΣSAR	(W/kg)				
								1	:	2	3	3	1+	-2	1+2	2+3			
					Ba	ick	0.9	982	0.3	341	0.2	243	1.3	323	1.5	66			
					Fre	ont	0.6	618	0.3	41*	0.2	43*	0.9	959	1.2	02			
			Hoten	ot SAR	To	р		-	0.3	41*	0.2	43*	0.3	341	0.5	84			
			Tiotspt	JUGAN	Bot	tom	1.2	296		-		-	1.2	96	1.2	96			
						ght		-		-			0.0		0.0				
					Le	eft	0.3	380	0.3	41*	0.2	43*	0.7	21	0.9	64			
Simu	lt Tx	Config	uration	LTE E SAR (3and 7 W/kg)	WLAN	GHz I Ant 1 (W/kg)	WLAN	GHz I Ant 2 (W/kg)		ΣSAR	(W/kg)			SPL	.SR		
				1	1	2		3		1-	⊦2	1+2	2+3	1-			+3	2+	⊦3
		Ba	Back		180	0.3	341	0.2	243	1.5	521	See N	lote 1	0.0	01	0.0	01	0.0	02
		Fro		0.5	559	0.3	41*	0.2	43*	0.9	900	1.1	43	N		N/		N/	
Hotspo	t SAR	Тор			-	0.3	41*	0.2	43*		341		584	N/		N/		N/	
		Bot			300		-		-		300		300	N		N/		N/	
		Rig)48		-		-)48)48	N		N/		N	
		Le	eπ	0.0	063	0.3	41^	0.2	43^	0.4	104	0.6	647	N	A	N/	A	N/	A
	Simu	ılt Tx	Config	uration	LTE B SAR (WLAN	GHz I Ant 1 (W/kg)	WLAN	GHz I Ant 2 W/kg)	ΣS (W)	SAR /kg)			SPL	.SR			
						1	2	2	;	3	1+2	2+3	1+	-2	1+	3	2+	3	
ſ			Ba	ick		08		341		243	See N		0.0		0.0		0.0		l
				ont	0.2	296		41*	0.2		0.8		N/		N/		N/.		l
	Hotsp	ot SAR		pp		-	0.3	41*	0.2	43*	0.5		N/		N/		N/.		1
			Bot		1.0			-		-	1.0		N/		N/		N/.		1
			Rig	ght	0.0)51					0.0)51	N/	'A	N/	A	N/.	A	i i

0.341* 0.243* 0.645 N/A

Left

0.061

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 113 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

N/A

N/A

		Sin	nultar	neo	us Trans	mission	Scen	ario	with	5 G	HZ WLA	N (HOt	spot a	t 1.0 (<u>c</u> m)												
			Expos Condit		Mo	de	2G/30 SAR (V		5 GHz W Ant 1 S (W/kg	AR	5 GHz WLAN Ant 2 SAR (W/kg)	ΣS	ar (W/k	g)													
							1		2		3	1+2	ſ	1+3	1												
					GPR	S 850	0.75	59	0.126	;	0.762	0.885	1	.521	1												
					GPRS	1900	1.00)9	0.126	5	0.762	1.135	See Ta	able Below]												
					UMTS		0.50		0.126	-	0.762	0.629		.265	4												
					UMTS		1.07		0.126	_	0.762	1.196		able Below	4												
							1.03		0.126		0.762	1.158		able Below	4												
					LTE Ba		0.43		0.120		0.762	0.558 0.646		.194 .282	4												
			Hotspot	SAR	LTE Band		0.50		0.120		0.762	0.632		.268	1												
					LTE Ban		0.54		0.126		0.762	0.671		.307	1												
					LTE Band	66 (AWS)	1.21	14	0.126	5	0.762	1.340	See Ta	able Below]												
					LTE Band		1.29		0.126		0.762	1.422		able Below	4												
					LTE Ba		0.77		0.126		0.762	0.902		.538	4												
					LTE B		1.30 1.10		0.126		0.762	1.426 1.234		able Below able Below	4												
							1.10	0	0.120)	0.702	1.234	See 1a	able below	<u> </u>		I										
	Simult Tx Hotspot SAF		Configuration		Configuration		Configuration		Configuration		Configuration		Configuration		GPRS 1900 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	ΣSA (W/k		Simult	Тх	Configuration	UMTS 1 SAR (W/	(kg) Ant	z WLAN 2 SAR V/kg)	20	SAR //kg)	
			Bacl		1 0.531	2 0.762	1+2				Back	1 0.787		2		+2 549											
			Fron		0.531	0.762	0.48				Front	0.787		.762 .008		549 635											
	Hotspo	ot SAR	Top Botto		- 1.009	0.762*	0.76		Hotspot	SAR	Top Bottom	- 1.070		762*		762 070											
			Righ		-	-	0.00				Right	-		-		000											
			Left		0.242	0.201	0.44	43			Left	0.465	0	.201	0.	666											
Simu	ilt Tx		uration start	SAR (¹ 1 0.7	2	kg) (VV/ 2 1-	/kg) ⊦2 513	Sim	ult Tx (juration (W	6) SAR //kg) 1 843	Ant 2 SAR (W/kg) 2 0.762	1.	//kg) +2 Note 1	SPL 1+	-2										
			ont	0.5			546		-			756	0.008		764	N											
Hotspo	ot SAR		op tom	1.0	0.70 32 -	62* 0.7 1.0		Hotsp	ot SAR		op ttom 1.	- 214	0.762* -		762 214	N/											
			ght .	- 0.3	04 0.2	0.0			F		ight	- 523	- 0.201		000	N N											
		Le	eft	0.3	04 0.2	01 0.5	505		I	L	eft 0.	523	0.201	0.	724	N	A										
Simult Tx	Config	uration		SAR	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	SPL		Simul	Тх	Configuration	LTE Ban SAR (W	Ant	z WLAN 2 SAR V/kg)	(W	SAR //kg)	SPL										
			1		2	1+2	1+:					1		2		+2	1-										
		ack ont	0.98		0.762 0.008	See Note 1 0.626	0.0		ł		Back Front	1.180 0.559		.762		Note 1 567	0.0 N/										
spot SAR	To	qc	-		0.762*	0.762	N/A	4	Hotspot	SAR	Тор	-	0.	762*	0.	762	N										
		tom ght	1.29	б	-	1.296 0.000	N// N//				Bottom Right	1.300 0.048		-		300 048	N/										
		eft	0.38	0	0.201	0.581	N//				Left	0.063		.201		264	N										
					Simult Tx	Configuration		W/kg)	5 GHz W Ant 2 S (W/kg	AR	Σ SAR (W/kg)	SPLSF	2														
						Back	1		2	>	1+2 See Note 1	1+2 0.02															
						Front	0.2		0.00	3	0.304	N/A															
					Hotspot SAR	Top Bottom	- 1.0		0.762	*	0.762 1.087	N/A N/A															
						Right	0.0	51	-		0.051	N/A															
						Left	0.0	61	0.20		0.262	N/A															
FCC ID:	ZNFQ	910QN	И			TEST.		SAI	REVALU	JATI	ON REPORT		Ē	LG		opprove Quality N											
	Oocument S/N:				Test Dates			Туре							F	age 11	4 of 14										
1M18082	10167	-01-R1	.ZNF		08/20/18 - 0	9/05/18	Porta	able H	andset																		

 Table 12-11

 Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

© 2018 PCTEST Engineering Laboratory, Inc.

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electroic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 20.11 M

	mananeou	5 11411	311133101						1100	spor		<u>.</u> ,
	Exposure Condition		Мо	de			/3G/4G R (W/kg)	5 GHz W MIMO S (W/kg	SAR		∑ SAR W/kg)	
							1	2			1+2]
Ē			GPR	S 850		().759	0.854	1	See	Table Below	1
			GPRS	1900		1	.009	0.854	1	See	Table Below	1
			UMTS	\$ 850		().503	0.854	1		1.357	1
			UMTS	1750		1	.070	0.854	1	See	Table Below	1
			UMTS	1900		1	.032	0.854	1	See	Table Below	1
			LTE Ba	and 12		().432	0.854	1		1.286	1
	Listanat CAI		LTE Ba	and 13		().520	0.854	1		1.374	1
	Hotspot SAI		LTE Band	26 (Cell)		().506	0.854	1		1.360	1
			LTE Band	d 5 (Cell)		().545	0.854	1		1.399	1
		L	TE Band	66 (AWS)	1	1.214	0.854	1	See	Table Below	1
		L	LTE Band	25 (PCS))	1	.296	0.854	1	See	Table Below	1
			LTE Ba	and 30		().776	0.854	1	See	Table Below	1
			LTE B	and 7		1	.300	0.854	1	See	Table Below	1
			LTE Ba	and 41		1	1.108	0.854	1	See	Table Below]
t Tx	-	PRS 850 \R (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPI	_SR	Simult Tx	Configuration	GPRS SAR (\		5 GHz WLAN MIMO SAR (W/kg)	Σ (

Table 12-12 Simultaneous Transmission Scenario with 5 GHz WLAN MIMO (Hotspot at 1.0 cm)

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	GPRS 1900	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2	1+2			1	2	1+2
	Back	0.759	0.854	See Note 1	0.02		Back	0.531	0.854	1.385
	Front	0.585	0.033	0.618	N/A		Front	0.481	0.033	0.514
Hotspot SAR	Тор	-	0.854*	0.854	N/A	Hotspot SAR	Тор	-	0.854*	0.854
HUISPUI SAK	Bottom	0.356	-	0.356	N/A	HUISPUI SAR	Bottom	1.009	-	1.009
	Right	0.385	-	0.385	N/A		Right	-	-	0.000
	Left	0.125	0.198	0.323	N/A		Left	0.242	0.198	0.440

Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	0.787	0.854	See Note 1	0.02		Back	0.751	0.854	See Note 1	0.02
	Front	0.627	0.033	0.660	N/A		Front	0.538	0.033	0.571	N/A
Hotspot SAR	Тор	-	0.854*	0.854	N/A	Hotspot SAR	Тор	-	0.854*	0.854	N/A
HUISPUI SAR	Bottom	1.070	-	1.070	N/A	HUISPUI SAK	Bottom	1.032	-	1.032	N/A
	Right	-	-	0.000	N/A		Right	-	-	0.000	N/A
	Left	0.465	0.198	0.663	N/A		Left	0.304	0.198	0.502	N/A
Simult Tx	Configuration	(AWS) SAR	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	(PCS) SAR	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	0.843	0.854	See Note 1	0.02		Back	0.982	0.854	See Note 1	0.02
	Front	0.756	0.033	0.789	N/A		Front	0.618	0.033	0.651	N/A
Hotspot SAR	Тор	-	0.854*	0.854	N/A	Hotspot SAR	Тор	-	0.854*	0.854	N/A
TIOISPUL SAR	Bottom	1.214	-	1.214	N/A	TIOISPUL SAR	Bottom	1.296	-	1.296	N/A
	Right	-	-	0.000	N/A		Right	-	-	0.000	N/A
	Left	0.523	0.198	0.721	N/A		Left	0.380	0.198	0.578	N/A
			0.100			·		2.300		Approv	

	FCC ID: ZNFQ910QM	PCTEST	SAR EVALUATION REPORT	🔁 LG	Approved by:	ļ
	TOCID. ZIVI QƏTUQM	W SNGINEEDING LARONATION, INC.	SAK EVALOATION KEI OKT	La	Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 115 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 115 01 144	
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	•

© 2018 PCTEST Engineering Laboratory, Inc.

Simult Tx	Configuration	SAP (M/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 7 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2			1	2	1+2	1+2
	Back	0.706	0.854	1.560		Back	1.180	0.854	See Note 1	0.03
	Front	0.288	0.033	0.321		Front	0.559	0.033	0.592	N/A
Hotspot SAR	Тор	-	0.854*	0.854	Hotspot SAR	Тор	-	0.854*	0.854	N/A
TIOISPUL SAR	Bottom	0.776	-	0.776	TIOISPUL SAK	Bottom	1.300	-	1.300	N/A
	Right	0.018	-	0.018		Right	0.048	-	0.048	N/A
	Left	0.063	0.198	0.261		Left	0.063	0.198	0.261	N/A

Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.108	0.854	See Note 1	0.02
	Front	0.296	0.033	0.329	N/A
Hotspot SAR	Тор	-	0.854*	0.854	N/A
TIOISPOL SAIN	Bottom	1.087	-	1.087	N/A
	Right	0.051	-	0.051	N/A
	Left	0.061	0.198	0.259	N/A

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 116 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.11 M

		cm)			
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 at 14 dBm SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GPRS 850	0.759	0.341	0.490	1.590
	GPRS 1900	1.009	0.341	0.490	See Table Below
	UMTS 850	0.503	0.341	0.490	1.334
	UMTS 1750	1.070	0.341	0.490	See Table Below
	UMTS 1900	1.032	0.341	0.490	See Table Below
	LTE Band 12	0.432	0.341	0.490	1.263
Hotspot SAR	LTE Band 13	0.520	0.341	0.490	1.351
HUISPUI SAR	LTE Band 26 (Cell)	0.506	0.341	0.490	1.337
	LTE Band 5 (Cell)	0.545	0.341	0.490	1.376
	LTE Band 66 (AWS)	1.214	0.341	0.490	See Table Below
	LTE Band 25 (PCS)	1.296	0.341	0.490	See Table Below
	LTE Band 30	0.776	0.341	0.490	See Table Below
	LTE Band 7	1.300	0.341	0.490	See Table Below
	LTE Band 41	1.108	0.341	0.490	See Table Below

Table 12-13 Simultaneous Transmission Scenario with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2 (Hotspot at 1.0 cm)

Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 at 14 dBm SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	Back	0.531	0.341	0.490	1.362
	Front	0.481	0.341*	0.490*	1.312
Hotspot SAR	Тор	-	0.341*	0.490*	0.831
HUISPUI SAK	Bottom	1.009	-	-	1.009
	Right	-	-	-	0.000
	Left	0.242	0.341*	0.116	0.699

Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 at 14 dBm SAR (W/kg)	Σ SAR (W/kg)		SPLSR	
		1	2	3	1+2+3	1+2	1+3	2+3
	Back	0.787	0.341	0.490	See Note 1	0.01	0.01	0.02
	Front	0.627	0.341*	0.490*	1.458	N/A	N/A	N/A
Hotspot SAR	Тор	-	0.341*	0.490*	0.831	N/A	N/A	N/A
TIOISPOL SAR	Bottom	1.070	-	-	1.070	N/A	N/A	N/A
	Right	-	-	-	0.000	N/A	N/A	N/A
	Left	0.465	0.341*	0.116	0.922	N/A	N/A	N/A

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 117 of 144
© 2018 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018

		Simu	ult Tx	Config	uration	SAR (5 1900 (W/kg) 1	WLAN SAR (GHz I Ant 1 W/kg)	Ant 2 dBm (W/		(W)	SAR /kg)		
				Ва	ick		r 751		<u>2</u> 341	3 0.4			2+3 5 82		
				Fro To	ont	0.5	538	0.3	41* 41*	0.4		1.3 0.8	369		
		Hotspo	ot SAR	Bot		1.0	-)32	0.5	41 -	0.4)32		
				Rig Le	ght ht	0.3	- 304	0.3	- 41*	0.1		0.0	000 761		
						0.0				0.1	10	0.1	01		
Simult Tx	Config	uration	(AWS	and 66) SAR ′kg)	WLAN	GHz I Ant 1 W/kg)	Ant 2	WLAN at 14 SAR /kg)		SAR /kg)			SPL	.SR	I
				1		2		3		2+3	1+		1+		2+3
		ack ont		343 756	0.3		0.4		See N		0.0 N/		0.0 N/		0.02 N/A
Hotspot SAR	To	op		-	0.3		0.4		0.8	331	N/	Ά	N/	Ά	N/A
notopot of at		tom ght	1.2	214		-		-		214	N/		N/		N/A N/A
		eft	0.5	523	0.3	41*	0.1	16		980	N/		N/		N/A
Simult Tx	Config	uration	(PCS	and 25) SAR /kg)	WLAN	GHz I Ant 1 W/kg)	Ant 2	WLAN at 14 SAR ′kg)	at 14 SAR (g) Σ SAR (W/kg) SPLS 1+2+3 1+2 1+3 90 See Note 1 0.01 0.01		SR				
				1	2	2	3	3	1+2	2+3	1+2		1+	-3	2+3
		ack		982		341	0.4								0.02
		ont op	0.6	618	0.3		0.4		1.4 0.8		N/		N/		N/A N/A
Hotspot SAR		tom	1.2	296	0.5	-		-	1.2		N/A N/A		N/		N/A
		Right Left		- 380	0.3	- /1*		- 16	0.0 8.0	000	N/		N/		N/A N/A
		Simu	ult Tx	Config	uration	SAR (and 30	WLAN	I Ant 1		at 14		SAR		
		Hotspo	ot SAR	Ba Fro Bot Rio	ick ont op tom	0.7 0.2 0.7 0.7	1 706 288 - 776 018 063	0.3 0.3 0.3	W/kg) 2 341	dBm (W/ 0.4 0.4 0.4	'kg) 3 90 90* 90* -	1.5 1.1 0.8 0.7 0.0	/kg) 2+3 5 37 119 331 776 018 520		
Simult Tx	Config	Hotspo	LTE E SAR (Erc Bot Rig Le Band 7 (W/kg)	ck opt tom ght 2.4 WLAN	0.7 0.2 0.7 0.0 0.0 GHz	1 706 288 - 776 018 063 5 GHz Ant 2 dBm	0.3 0.3 0.3	W/kg) 2 341 41* 41* Σ S	(W/ 3 0.4 0.4	'kg) 3 90 90* 90* -	1+2 1.5 1.1 0.8 0.7 0.0	2+3 537 119 331 776 018	.SR	
Simult Tx	Config		LTE E SAR (Fro To Bot Le Band 7	ont op tom ght £ft 2.4 WLAN SAR (0.7 0.2 0.7 0.0 0.0 0.0 GHz I Ant 1	1 706 288 - 776 018 063 5 GHz 4 Mrt 2 dBm (W/	0.3 0.3 0.3 0.3 0.3 0.3 0.3 WLAN at 14 SAR	W/kg) 2 41* 41* 41* - - - - - - - - - - - - - - - - - - -	(W/ 3 0.4 0.4 0.4 0.1	'kg) 3 90 90* 90* -	1+2 1.5 1.1 0.7 0.7 0.0 0.5	2+3 537 119 331 776 018 520		2+3
Simult Tx	Ba	uration	LTE E SAR (Fro To Bot Rio Le Sand 7 W/kg)	ck ont op tom ght 2.4 WLAN SAR (2 0.3	0.7 0.2 0.7 0.0 0.0 GHz I Ant 1 W/kg) 2 341	1 706 288 - 776 218 263 5 GHz 4Bm (W/ (W/ (W/	0.3 0.3 0.3 0.3 0.3 0.3 WLAN at 14 SAR 'kg) 3	W/kg) 2 341 41* 41* 41* 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(W/ 0.4 0.4 0.4 0.1 6AR /kg) 2+3 Jote 1	(kg) 3 90* 90* 16 16 1+	1+2 <u>1.5</u> <u>1.1</u> <u>0.8</u> <u>0.7</u> <u>0.0</u> <u>0.5</u> -2	2+3 537 119 331 776 018 520 SPL 1+	-3	0.02
	Ba	uration ack ont	LTE E SAR (Fro To Bot Rio Le Band 7 W/kg)	ck ont op tom aht 2.4 WLAN SAR (2 0.3 0.3	0.7 0.2 0.7 0.0 0.0 GHz I Ant 1 W/kg) 2 341 41*	1 706 288 - 776 018 063 5 GHz Ant 2 dBm (W/ (W/ (2 0.4	0.3 0.3 0.3 0.3 0.3 0.3 0.3 WLAN at 14 SAR (kg) 3 8 90*	W/kg) 2 341 41* 41* 41* (W, 1+2 See N 1.3	(W/ 0.4 0.4 0.4 0.4 0.1 6AR /kg) 2+3 Note 1 890	(kg) 3 90 90* 90* 16 16	1+2 <u>1.5</u> <u>1.1</u> <u>0.6</u> <u>0.7</u> <u>0.6</u> <u>0.5</u> -2 <u>01</u> <u>(A</u>	2+3 537 119 331 776 018 520 SPL	-3 02 /A	
Simult Tx Hotspot SAR	Ba Fro To Bot	uration ack ont op tom	LTE E SAR (1.1 0.5	Fro To Bot Rio Le Band 7 (W/kg) 1 1 800 559	ck ont op tom ght 2.4 WLAN SAR (2 0.3	0.7 0.2 0.7 0.0 0.0 GHz I Ant 1 W/kg) 2 341 41*	1 706 288 - 776 218 263 5 GHz 4Bm (W/ (W/ (W/	0.3 0.3 0.3 0.3 0.3 0.3 0.3 WLAN at 14 SAR (kg) 3 8 90*	W/kg) 2 341 41* 41* 41* 5 5 (W, 1+2 5 6 1.3 0.6 1.3	(W/ 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(kg) 3 90* 90* 16 1+ 0.0 N/ N/ N/	1+2 <u>1.5</u> <u>0.6</u> 0.7 0.0 0.5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2+3 337 119 331 776 018 520 SPL 14 0.0 N/ N/ N/	-3 02 (A (A (A	0.02 N/A N/A N/A
	Ba Fri To Bot	uration ack ont	LTE E SAR (1.1 0.5 1.2 0.0	Front To	ck pp tom ght ft WLAN SAR (0.3 0.3 0.3	0.7 0.2 0.7 0.0 0.0 GHz I Ant 1 W/kg) 2 341 41*	1 706 288 776 018 063 5 GHz Ant 2 dBm (W/ 0.4 0.4	0.3 0.3 0.3 0.3 0.3 0.3 0.3 WLAN at 14 SAR (kg) 3 8 90*	W/kg) 2 341 41* 41* 41* 5 See N 1.3 0.8 0.0	(W/ 0.4 0.4 0.4 0.4 0.1 6AR /kg) 2+3 Note 1 890 331	(kg) 190 90* 90* 16 1+ 0.0 N/ N/	1+2 <u>1.5</u> <u>1.1</u> 0.7 0.0 0.5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2+3 337 119 331 776 018 520 SPL 1+ 0.6 N/	-3 02 (A (A (A) (A) (A)	0.02 N/A N/A
	Ba Fri Bot Rij	uration ack ont op tom	LTE E SAR (1.1 0.5 1.5 0.0 0.0	Fra To Bot Ric Le Sand 7 W/kg) 1 1 800 559 	Ick pp tom there gamma 0.1 0.3 0.4 0.5	0.7 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	1 706 288 7776 063 5 GHz dBm (W/ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 5 GHz Ant 2 dBm (W/ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	2 0.3 0.3 0.3 0.3 WLAN at 14 SAR kg) 3 190 90*	W/kg) 2 341 41* 41* 41* 41* 41* 5 \$ \$ (W. 1+2 See N 1.3 0.8 1.3 0.8 (W. 0.5 5 \$ (W.	(W/ 0.4 0.4 0.4 0.1 0.1 6 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	(kg) 3 90* 90* 90* 16 14 0.0 N/ N/ N/ N/	1+2 1.5 1.1 0.8 0.7 0.0 0.5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2+3 37 119 331 776 018 520 SPL 1+ 0.0 N/ N/ N/	-3 -3 -3 -3 -3 -3 -3 -3 -3 -3	0.02 N/A N/A N/A N/A
Hotspot SAR	Ba Fri Bot Riu Le	uration ack ont op tom ght eft	LTE E SAR (1.1 0.0 0.0 LTE B SAR (From Total State S	Ick pp tom there gamma 0.1 0.3 0.4 0.5	0.72 0.2.2 0.7.7 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 706 288 - 776 363 5 GHz 40Bm (WW 2004 0.4 0.4 0.4 0.4 0.4 5 GHz Ant 2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	W/kg) 2 341 41* 41* 41* 41* 41* 5ε S (W, 1+2 See N 1.3 0.8 0.0 0.5 Σ S (W, 1+2	(W/ 3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	kg) 3 90° 90° 16 14 0.0 N/N N/N N/N N/N	1+2 1.5 1.1 0.8 0.7 0.0 0.5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2+3 337 119 331 776 520 SPL 1-1 0.0 NN NN NN SPL	-3)2 (A (A (A (A (A (A (A (A (A (A	0.02 N/A N/A N/A N/A N/A
Hotspot SAR	Bate Fri Bott Rid Lo Config	uration ont tom tom uration uration	LTE E SAR (1.1.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Fr(r, T) Bott Rike Sand 7 WV/kg) 1 1 1880 559 	ck ont op tom aht 2.4 WLAN SAR (0.3 0.3 0.3 0.3 2.4 WLAN SAR (0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.77 0.20 0.00 0.00 GHz Ant 1 W/kg) 2 341 41* 	1 706 288 5 GHz 5 GHz 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.3 0.3 0.3 WLAN at 14 SAR kg) 90° 90° 116 WLAN sAR kg) 3 90° 3 90°	W/kg) 2 341 41* 41* 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(W// (W/ 0.44 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	kg) 3 90° 90° 16 14 0.0 N/N N/N N/N N/N N/N N/N N/N N/	1+2 1.1 0.8 0.7 0.0 0.5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2+3 337 119 331 776 138 320 SPL 1+1 0.0 N/N N/N N/N N/N N/N N/N N/N N/	-3 02 (A (A (A (A -3 02 (A (A) (A) (A) (A) (A) (A) (A)	0.02 N/A N/A N/A N/A N/A 2+3 0.02 N/A
Hotspot SAR	Baa Fro Boto Rio Le Config Baa Fro	uration ont ont uration uration	LTE E SAR (1.1. 0.0. 0.0 LTE B SAR (1.1. 1.1. 0.2	Frc Tr Bott Rice Sand 7 W/kg) 1 880 800 800 800 800 800 800 800 800 8	ck ont op tom aht 2.4 WLAN SAR (0.3 0.3 0.3 0.3 2.4 WLAN SAR (0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.77 0.2.2 0.7.3 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 706 288 776 363 5 GHz 4Bm (W/ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.3 0.3 0.3 WLAN at 14 SAR kg) 90° 90° 116 WLAN sAR kg) 3 90° 3 90°	W/kg) 2 341 41* 41*	(W// 3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	kg) 3 90° 90° 16 14 0.0 N/N N/N N/N N/N N/N N/N N/N N/	1+2 1.5 1.1 0.8 0.7 0.0 0.5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2+3 337 119 331 776 118 520 SPL 141 0.0 NM NM NM NM NM NM NM NM NM NM	-3 -3 -3 -3 -3 -3 -3 -3 -3 -3	0.02 N/A N/A N/A N/A N/A 2+3 0.02 N/A N/A
Hotspot SAR Simult Tx	Ba Fri Bot Riu Le Config Ba Fri To Bot	uration ont tom tom uration uration	LTE E SAR (1.1.1 0.8: 1.3 0.0 0.0 0.0 LTE B SAR (1.1.1 0.2 0.0 0.0	Fr(r, T) Bott Rike Sand 7 WV/kg) 1 1 1880 559 	ick pp pp idm ght ght <t< td=""><td>0.77 0.2.2 0.7.7 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td><td>1 776 288 7776 308 3063 5 GHz 4 Mt 2 4 Mm (W/ 0.4 4 0.4 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>0.3 0.3 0.3 WLAN at 14 SAR kg) 90° 90° 116 WLAN sAR kg) 3 90° 3 90°</td><td>W/kg) 2 341 41* 41* 41* 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>(W// 3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4</td><td>kg) 3 90° 90° 16 14 0.0 N/N N/N N/N N/N N/N N/N N/N N/</td><td>1+2 1.5 1.1 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td><td>2+3 337 119 331 776 138 320 SPL 1+1 0.0 N/N N/N N/N N/N N/N N/N N/N N/</td><td>-3 22 24 24 24 24 25 26 27 26 27 27 27 27 27 27 27 27 27 27</td><td>0.02 N/A N/A N/A N/A N/A 2+3 0.02 N/A</td></t<>	0.77 0.2.2 0.7.7 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 776 288 7776 308 3063 5 GHz 4 Mt 2 4 Mm (W/ 0.4 4 0.4 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0.3 0.3 0.3 WLAN at 14 SAR kg) 90° 90° 116 WLAN sAR kg) 3 90° 3 90°	W/kg) 2 341 41* 41* 41* 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(W// 3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	kg) 3 90° 90° 16 14 0.0 N/N N/N N/N N/N N/N N/N N/N N/	1+2 1.5 1.1 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2+3 337 119 331 776 138 320 SPL 1+1 0.0 N/N N/N N/N N/N N/N N/N N/N N/	-3 22 24 24 24 24 25 26 27 26 27 27 27 27 27 27 27 27 27 27	0.02 N/A N/A N/A N/A N/A 2+3 0.02 N/A

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo 119 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Page 118 of 144
204	A DOTE OT Ex size a size of the sector of the			DEV/00 44 M

Omanana	ous mansinission scenar	lo mai Biaote		
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.759	0.052	0.811
	GPRS 1900	1.009	0.052	1.061
	UMTS 850	0.503	0.052	0.555
	UMTS 1750	1.070	0.052	1.122
	UMTS 1900	1.032	0.052	1.084
	LTE Band 12	0.432	0.052	0.484
Hotspot SAR	LTE Band 13	0.520	0.052	0.572
HUISPUI SAR	LTE Band 26 (Cell)	0.506	0.052	0.558
	LTE Band 5 (Cell)	0.545	0.052	0.597
	LTE Band 66 (AWS)	1.214	0.052	1.266
	LTE Band 25 (PCS)	1.296	0.052	1.348
	LTE Band 30	0.776	0.052	0.828
	LTE Band 7	1.300	0.052	1.352
	LTE Band 41	1.108	0.052	1.160

 Table 12-14

 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Notes:

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 110 of 111
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Page 119 of 144
© 20'	8 PCTEST Engineering Laboratory, Inc.			REV 20.11 M

06/19/2018

12.6 **Phablet Simultaneous Transmission Analysis**

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

Per FCC KDB Publication 648474 D04, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	UMTS 1750	2.779	0.403	3.182
	UMTS 1900	2.434	0.403	2.837
Phablet SAR	LTE Band 66 (AWS)	3.198	0.403	3.601
	LTE Band 25 (PCS)	3.126	0.403	3.529
	LTE Band 7	2.830	0.403	3.233

Table 12-15 Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	1.809	2.614	See Note 1	0.08		Back	1.681	2.614	See Note 1	0.07
	Front	1.718	0.082	1.800	N/A		Front	1.785	0.082	1.867	N/A
Phablet SAR	Тор	-	2.614*	2.614	N/A	Phablet SAR	Тор	-	2.614*	2.614	N/A
	Bottom	2.779	-	2.779	N/A		Bottom	2.434	-	2.434	N/A
	Left	1.187	0.477	1.664	N/A		Left	0.707	0.477	1.184	N/A
Simult Tx	Configuration	(AWS) SAR	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	(PCS) SAR	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	1.857	2.614	See Note 1	0.07		Back	1.957	2.614	See Note 1	0.08
	Front	1.995	0.082	2.077	N/A		Front	2.280	0.082	2.362	N/A
Phablet SAR	Тор	-	2.614*	2.614	N/A	Phablet SAR	Тор	-	2.614*	2.614	N/A
	Bottom	3.198	-	3.198	N/A		Bottom	3.126	-	3.126	N/A
	Left	1.250	0.477	1.727	N/A		Left	1.170	0.477	1.647	N/A

Simult Tx	Configuration	LTE Band 7 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	-	2.614	2.614
	Front	-	0.082	0.082
Phablet SAR	Тор	-	2.614*	2.614
	Bottom	2.830	-	2.830
	Left	-	0.477	0.477

	FCC ID: ZNFQ910QM	PCTEST	SAR EVALUATION REPORT		Approved by:	ļ
	FCC ID. ZINFQ910QM	SHOINEESING LABORATORY, INC.	SAR EVALUATION REPORT	U La	Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 120 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 120 01 144	ĺ
201	18 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

© 2018 PCTEST Engineering Laboratory, Inc.

	Simulateous Transmission Scenario with 5 GHZ WEAN MIMO (Filablet)										
Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	1.809	2.742	See Note 1	0.08		Back	1.681	2.742	See Note 1	0.07
Phablet SAR	Front	1.718	0.334	2.052	N/A		Front	1.785	0.334	2.119	N/A
	Тор	-	2.742*	2.742	N/A	Phablet SAR	Тор	-	2.742*	2.742	N/A
	Bottom	2.779	-	2.779	N/A		Bottom	2.434	-	2.434	N/A
	Left	1.187	0.481	1.668	N/A		Left	0.707	0.481	1.188	N/A
Simult Tx	Configuration	(AWS) SAR	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	(PCS) SAR	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	1.857	2.742	See Note 1	0.07		Back	1.957	2.742	See Note 1	0.08
	Front	1.995	0.334	2.329	N/A		Front	2.280	0.334	2.614	N/A
Phablet SAR	Тор	-	2.742*	2.742	N/A	Phablet SAR	Тор	-	2.742*	2.742	N/A
	Bottom	3.198	-	3.198	N/A		Bottom	3.126	-	3.126	N/A
	Left	1.250	0.481	1.731	N/A		Left	1.170	0.481	1.651	N/A
TE Bond 7 5 GHz WLAN 5 SAR											

 Table 12-16

 Simultaneous Transmission Scenario with 5 GHz WLAN MIMO (Phablet)

Simult Tx	Configuration	LTE Band 7 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Back	-	2.742	2.742
	Front	-	0.334	0.334
Phablet SAR	Тор	-	2.742*	2.742
	Bottom	2.830	-	2.830
	Left	-	0.481	0.481

Notes:

- 1. No evaluation was performed to determine the aggregate 10g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.10 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.
- 2. LTE Band 7 bottom edge hotspot 1g SAR was > 1.2 W/kg, therefore phablet SAR was tested for LTE Band 7 bottom edge per FCC KDB 648474 D04.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 121 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Fage 121 01 144
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

12.7 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g and 4 W/kg for 10g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is ≤ 0.04 for 1g and ≤ 0.10 for 10g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

SPLS Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$

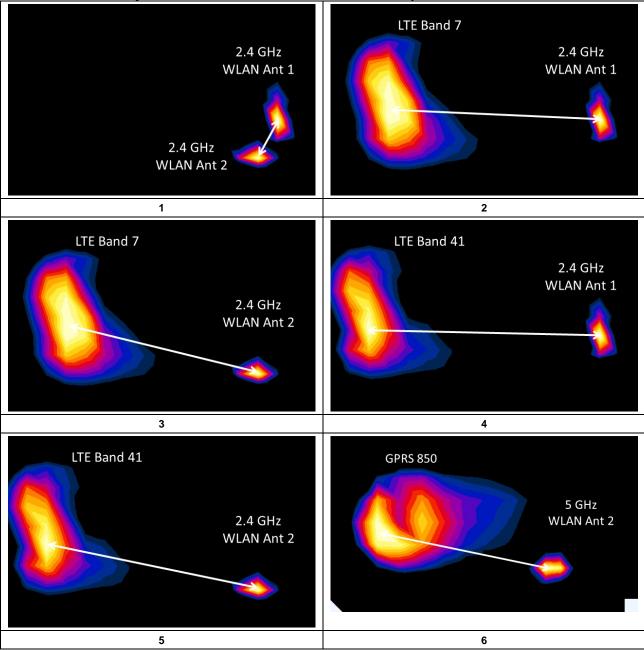
12.7.1 Body-Worn Back Side SPLSR Evaluation and Analysis

Peak SAR Locations for Body-Worn Back Side							
Mode/Band	x (mm)	y (mm)					
2.4 GHz WLAN Ant 1	-8.00	72.00					
2.4 GHz WLAN Ant 2	8.60	58.80					
5 GHz WLAN Ant 2	13.00	44.00					
5 GHz WLAN Ant 2 at 14 dBm	13.00	44.00					
5 GHz WLAN MIMO	13.00	45.00					
GSM 850	-21.00	-81.50					
GPRS 850	-14.50	-72.00					
GSM 1900	-14.00	-83.00					
GPRS 1900	-14.00	-81.50					
UMTS 850	-22.50	-81.50					
UMTS 1750	-9.00	-80.00					
UMTS 1900	-26.50	-73.50					
LTE Band 12	-13.00	-80.00					
LTE Band 13	-6.50	-72.00					
LTE Band 26 (Cell)	-13.00	-73.50					
LTE Band 5 (Cell)	-11.50	-81.50					
LTE Band 66 (AWS)	-7.50	-80.00					
LTE Band 25 (PCS)	-14.00	-81.50					
LTE Band 30	-20.00	-67.20					
LTE Band 7	-17.80	-65.40					
LTE Band 41	-21.70	-64.80					

Table 12-17 Peak SAR Locations for Body-Worn Back Side

F	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
D	ocument S/N:	Test Dates:	DUT Type:		D. 100 (111
11	M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 122 of 144
© 2018 F	PCTEST Engineering Laboratory, Inc.				REV 20.11 M

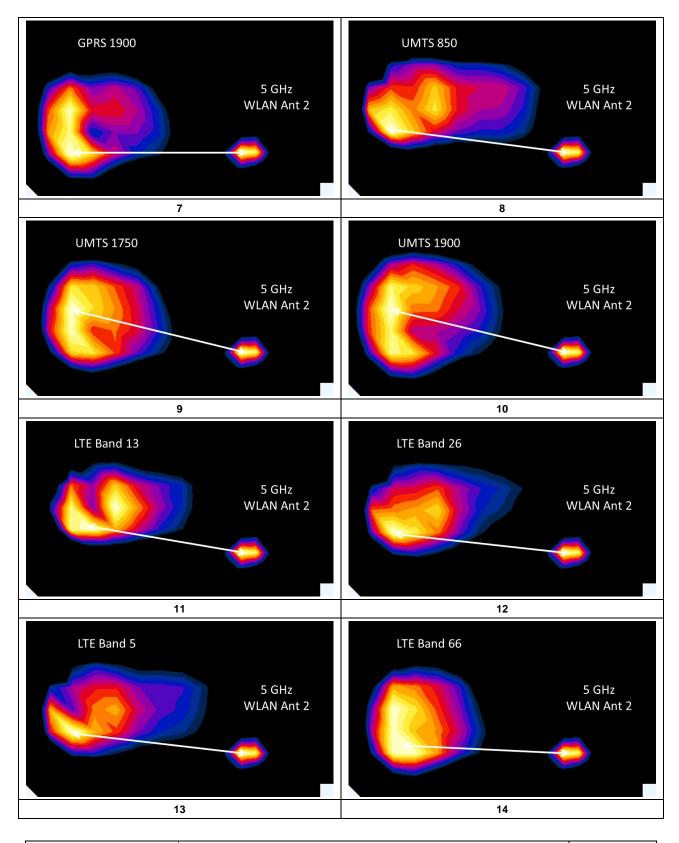
Body-Worn Back Side SAR f			SAR (W/kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Numbe
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	-
2.4 GHz WLAN Ant 1	2.4 GHz WLAN Ant 2	0.341	0.243	0.584	21.21	0.02	1
LTE Band 7	2.4 GHz WLAN Ant 1	1.180	0.341	1.521	137.75	0.01	2
LTE Band 7	2.4 GHz WLAN Ant 2	1.180	0.243	1.423	126.97	0.01	3
LTE Band 41	2.4 GHz WLAN Ant 1	1.108	0.341	1.449	137.48	0.01	4
LTE Band 41	2.4 GHz WLAN Ant 2	1.108	0.243	1.351	127.26	0.01	5
GPRS 850	5 GHz WLAN Ant 2	0.759	1.129	1.888	119.22	0.02	6
GPRS 1900	5 GHz WLAN Ant 2	0.531	1.129	1.660	128.37	0.02	7
UMTS 850	5 GHz WLAN Ant 2	0.503	1.129	1.632	130.42	0.02	8
UMTS 1750	5 GHz WLAN Ant 2	0.787	1.129	1.916	125.94	0.02	9
UMTS 1900	5 GHz WLAN Ant 2	0.751	1.129	1.880	123.96	0.02	10
LTE Band 13	5 GHz WLAN Ant 2	0.520	1.129	1.649	117.63	0.02	11
LTE Band 26 (Cell)	5 GHz WLAN Ant 2	0.506	1.129	1.635	120.34	0.02	12
LTE Band 5 (Cell)	5 GHz WLAN Ant 2	0.545	1.129	1.674	127.87	0.02	13
LTE Band 66 (AWS)	5 GHz WLAN Ant 2	0.843	1.129	1.972	125.68	0.02	14
LTE Band 25 (PCS)	5 GHz WLAN Ant 2	0.982	1.129	2.111	128.37	0.02	15
LTE Band 30	5 GHz WLAN Ant 2	0.706	1.129	1.835	115.99	0.02	16
LTE Band 7	5 GHz WLAN Ant 2	1.180	1.129	2.309	113.65	0.03	17
LTE Band 41	5 GHz WLAN Ant 2	1.108	1.129	2.237	114.20	0.03	18
GSM 850	5 GHz WLAN MIMO	0.384	1.269	1.653	130.99	0.02	10
GPRS 850	5 GHz WLAN MIMO	0.759	1.269	2.028	120.19	0.02	20
GSM 1900	5 GHz WLAN MIMO	0.388	1.269	1.657	130.82	0.02	21
GPRS 1900	5 GHz WLAN MIMO	0.531	1.269	1.800	129.35	0.02	22
UMTS 850	5 GHz WLAN MIMO	0.503	1.269	1.772	131.39	0.02	23
UMTS 1750	5 GHz WLAN MIMO	0.787	1.269	2.056	126.92	0.02	24
UMTS 1900	5 GHz WLAN MIMO	0.751	1.269	2.020	124.91	0.02	25
LTE Band 12	5 GHz WLAN MIMO	0.432	1.269	1.701	127.68	0.02	26
LTE Band 13	5 GHz WLAN MIMO	0.520	1.269	1.789	118.61	0.02	27
LTE Band 26 (Cell)	5 GHz WLAN MIMO	0.506	1.269	1.775	121.32	0.02	28
LTE Band 5 (Cell)	5 GHz WLAN MIMO	0.545	1.269	1.814	128.85	0.02	29
LTE Band 66 (AWS)	5 GHz WLAN MIMO	0.843	1.269	2.112	126.67	0.02	30
LTE Band 25 (PCS)	5 GHz WLAN MIMO	0.982	1.269	2.251	129.35	0.03	31
LTE Band 30	5 GHz WLAN MIMO	0.706	1.269	1.975	116.95	0.02	32
LTE Band 7	5 GHz WLAN MIMO	1.180	1.269	2.449	114.62	0.03	33
LTE Band 41	5 GHz WLAN MIMO	1.108	1.269	2.377	115.15	0.03	34
2.4 GHz WLAN Ant 1	5 GHz WLAN Ant 2 at 14 dBm	0.341	0.571	0.912	35.00	0.02	35
GPRS 850	2.4 GHz WLAN Ant 1	0.759	0.341	1.100	144.15	0.01	36
GPRS 850	5 GHz WLAN Ant 2 at 14 dBm	0.759	0.571	1.330	119.22	0.01	37
UMTS 1750	2.4 GHz WLAN Ant 1	0.787	0.341	1.128	152.00	0.01	38
UMTS 1750	5 GHz WLAN Ant 2 at 14 dBm	0.787	0.571	1.358	125.94	0.01	39
UMTS 1900	2.4 GHz WLAN Ant 1	0.751	0.341	1.092	146.67	0.01	40
UMTS 1900	5 GHz WLAN Ant 2 at 14 dBm	0.751	0.571	1.322	123.96	0.01	41
LTE Band 66 (AWS)	2.4 GHz WLAN Ant 1	0.843	0.341	1.184	152.00	0.01	42
LTE Band 66 (AWS)	5 GHz WLAN Ant 2 at 14 dBm	0.843	0.571	1.414	125.68	0.01	43
LTE Band 25 (PCS)	2.4 GHz WLAN Ant 1	0.982	0.341	1.323	153.62	0.01	44
LTE Band 25 (PCS)	5 GHz WLAN Ant 2 at 14 dBm	0.982	0.571	1.553	128.37	0.02	45
LTE Band 30	2.4 GHz WLAN Ant 1	0.706	0.341	1.047	139.72	0.01	46
LTE Band 30	5 GHz WLAN Ant 2 at 14 dBm	0.706	0.571	1.277	115.99	0.01	47
LTE Band 7	5 GHz WLAN Ant 2 at 14 dBm	1.180	0.571	1.751	113.65	0.02	48
LTE Band 41	5 GHz WLAN Ant 2 at 14 dBm	1.108	0.571	1.679	114.20	0.02	49


Table 12-18 Body-Worn Back Side SAR to Peak Location Separation Ratio Calculations

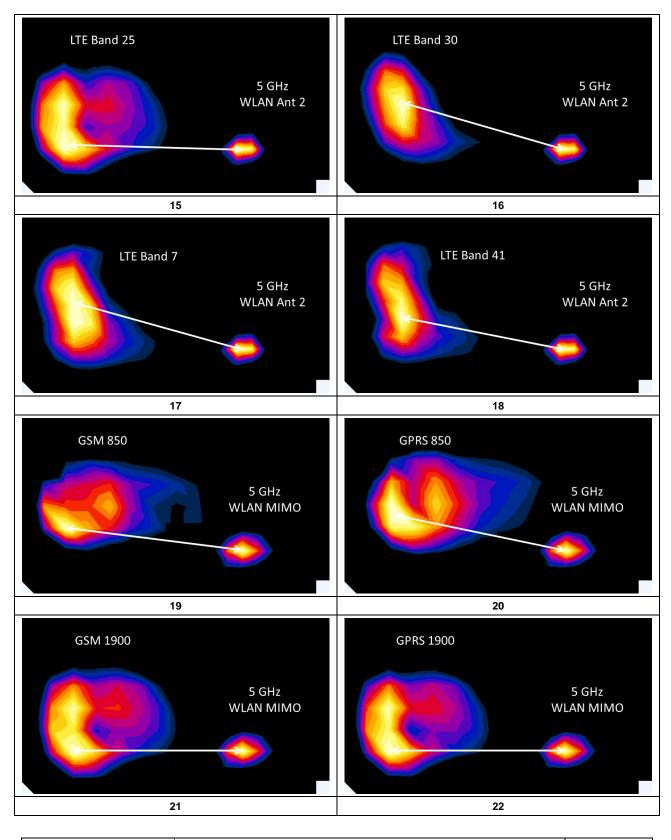
	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Daga 102 of 114		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 123 of 144		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.11 M

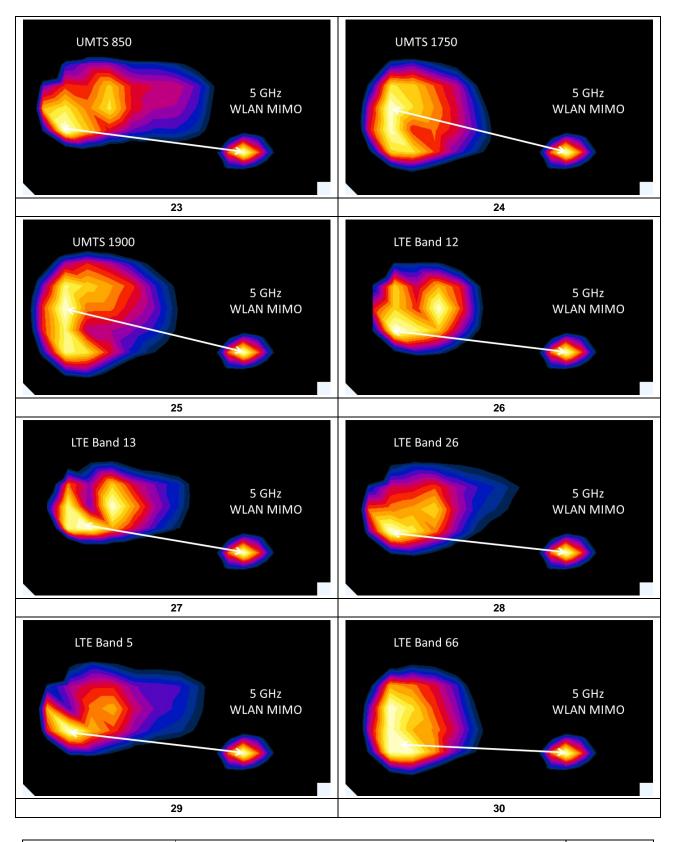
 Table 12-19


 Body-Worn Back Side SAR to Peak Location Separation Ratio Plots

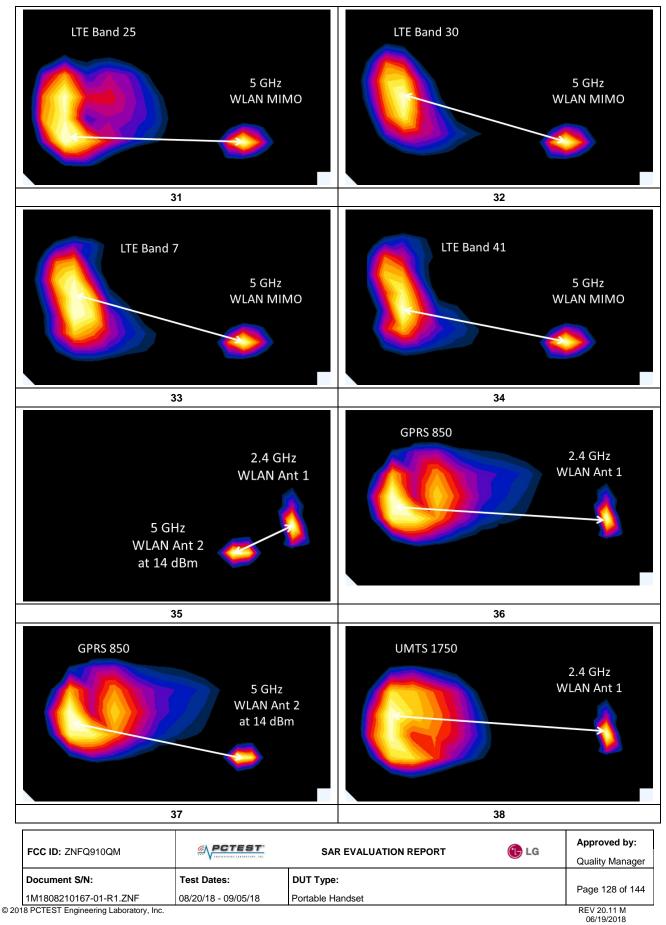
	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	Dates: DUT Type:		Dama 404 of 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18 Portable Handset			Page 124 of 144
201 (8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

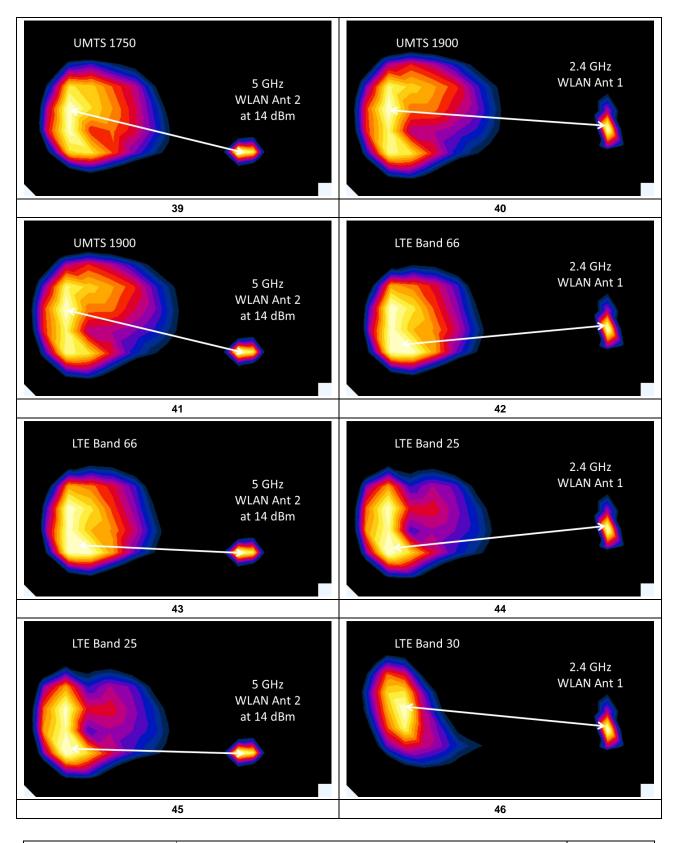

06/19/2018 © 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

©

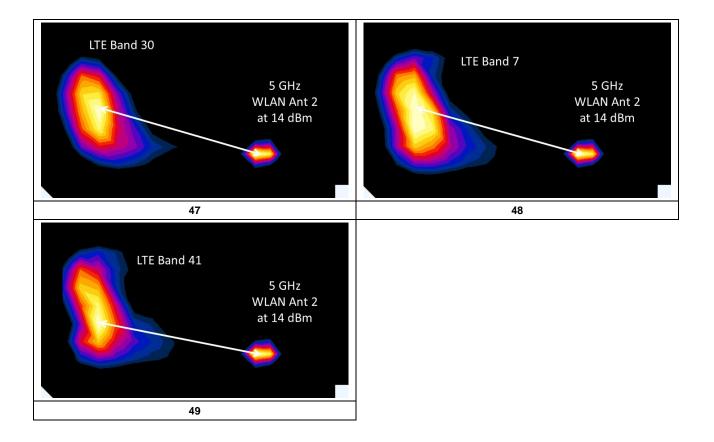

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 125 of 144		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset				
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.11 M


	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 126 of 144	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	


RE 20.1

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 127 of 144	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	


RE 20.1 06/19/2018

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 129 of 144	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

RE 20.1 06/19/2018

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 120 of 144
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 130 of 144
) 20 ا	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

06/19/2018 © 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

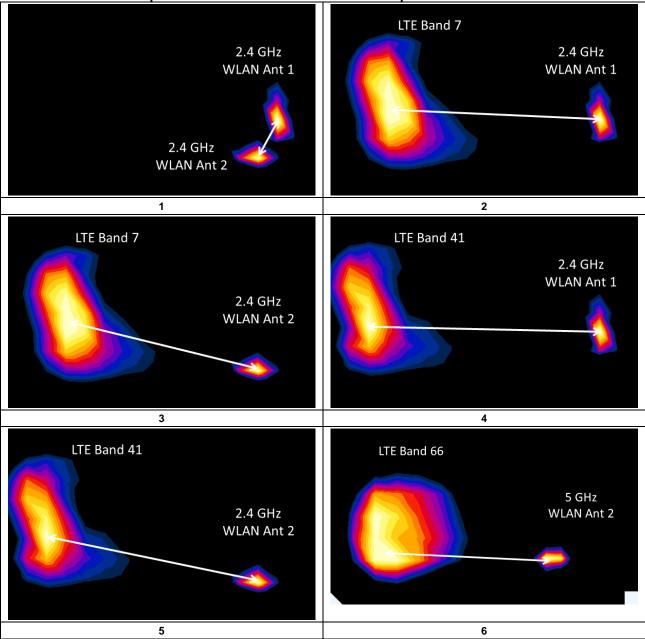
©

12.7.2 Hotspot Back Side SPLSR Evaluation and Analysis

Mode/Band	x (mm)	y (mm)
2.4 GHz WLAN Ant 1	-8.00	72.00
2.4 GHz WLAN Ant 2	8.60	58.80
5 GHz WLAN Ant 2	13.00	44.00
5 GHz WLAN Ant 2 at 14 dBm	12.00	46.00
5 GHz WLAN MIMO	12.00	45.00
GPRS 850	-14.50	-72.00
UMTS 1750	-9.00	-80.00
UMTS 1900	-26.50	-73.50
LTE Band 66 (AWS)	-7.50	-80.00
LTE Band 25 (PCS)	-14.00	-81.50
LTE Band 7	-17.80	-65.40
LTE Band 41	-21.70	-64.80

Table 12-20 Peak SAR Locations for Hotspot Back Side

Table 12-21
Hotspot Back Side SAR to Peak Location Separation Ratio Calculations


	Antenna Pair		Standalone SAR (W/kg) Standalone SAR (W/kg)		Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN Ant 1	2.4 GHz WLAN Ant 2	0.341	0.243	0.584	21.21	0.02	1
LTE Band 7	2.4 GHz WLAN Ant 1	1.180	0.341	1.521	137.75	0.01	2
LTE Band 7	2.4 GHz WLAN Ant 2	1.180	0.243	1.423	126.97	0.01	3
LTE Band 41	2.4 GHz WLAN Ant 1	1.108	0.341	1.449	137.48	0.01	4
LTE Band 41	2.4 GHz WLAN Ant 2	1.108	0.243	1.351	127.26	0.01	5
LTE Band 66 (AWS)	5 GHz WLAN Ant 2	0.843	0.762	1.605	125.68	0.02	6
LTE Band 25 (PCS)	5 GHz WLAN Ant 2	0.982	0.762	1.744	128.37	0.02	7
LTE Band 7	5 GHz WLAN Ant 2	1.180	0.762	1.942	113.65	0.02	8
LTE Band 41	5 GHz WLAN Ant 2	1.108	0.762	1.870	114.20	0.02	9
GPRS 850	5 GHz WLAN MIMO	0.759	0.854	1.613	119.96	0.02	10
UMTS 1750	5 GHz WLAN MIMO	0.787	0.854	1.641	126.75	0.02	11
UMTS 1900	5 GHz WLAN MIMO	0.751	0.854	1.605	124.60	0.02	12
LTE Band 66 (AWS)	5 GHz WLAN MIMO	0.843	0.854	1.697	126.51	0.02	13
LTE Band 25 (PCS)	5 GHz WLAN MIMO	0.982	0.854	1.836	129.14	0.02	14
LTE Band 7	5 GHz WLAN MIMO	1.180	0.854	2.034	114.35	0.03	15
LTE Band 41	5 GHz WLAN MIMO	1.108	0.854	1.962	114.86	0.02	16
2.4 GHz WLAN Ant 1	5 GHz WLAN Ant 2 at 14 dBm	0.341	0.490	0.831	32.80	0.02	17
UMTS 1750	2.4 GHz WLAN Ant 1	0.787	0.341	1.128	152.00	0.01	18
UMTS 1750	5 GHz WLAN Ant 2 at 14 dBm	0.787	0.490	1.277	127.74	0.01	19
LTE Band 66 (AWS)	2.4 GHz WLAN Ant 1	0.843	0.341	1.184	152.00	0.01	20
LTE Band 66 (AWS)	5 GHz WLAN Ant 2 at 14 dBm	0.843	0.490	1.333	127.50	0.01	21
LTE Band 25 (PCS)	2.4 GHz WLAN Ant 1	0.982	0.341	1.323	153.62	0.01	22
LTE Band 25 (PCS)	5 GHz WLAN Ant 2 at 14 dBm	0.982	0.490	1.472	130.12	0.01	23
LTE Band 7	5 GHz WLAN Ant 2 at 14 dBm	1.180	0.490	1.670	115.32	0.02	24
LTE Band 41	5 GHz WLAN Ant 2 at 14 dBm	1.108	0.490	1.598	115.81	0.02	25

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 131 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset			
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

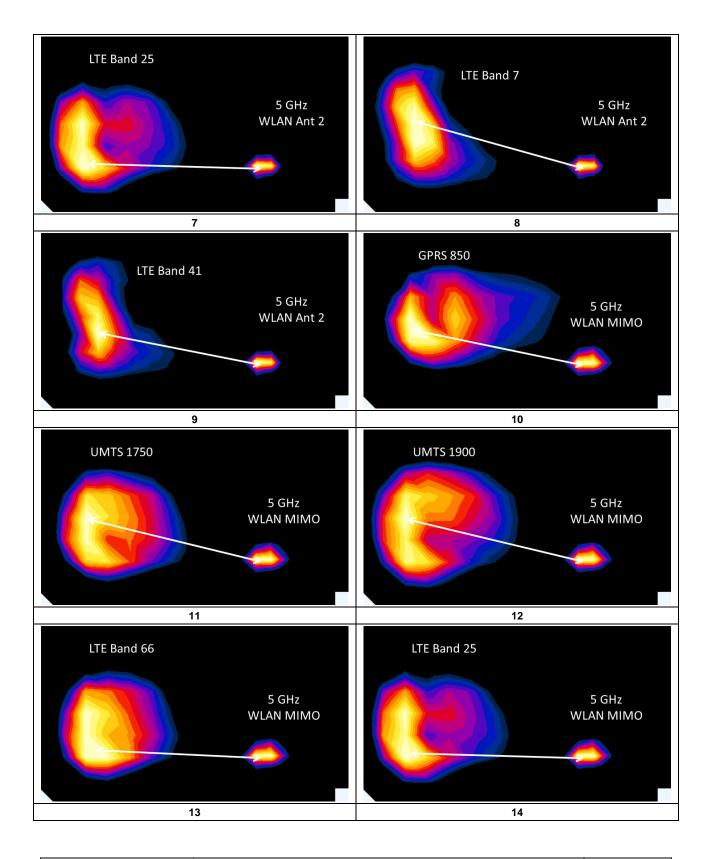
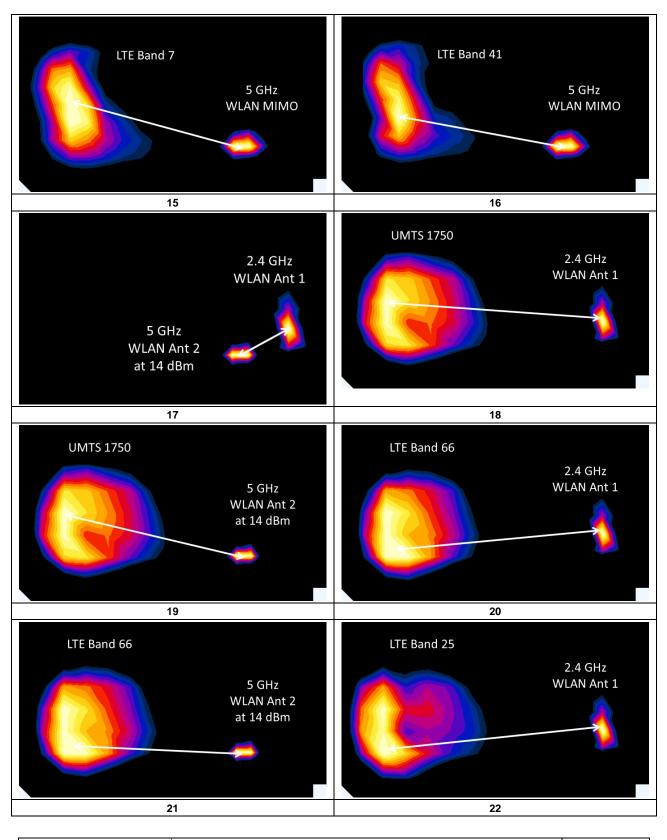
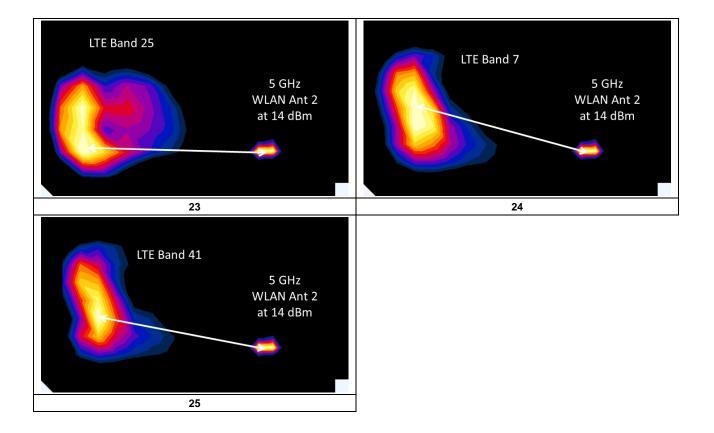

REV 20.11 M

 Table 12-22

 Hotspot Back Side SAR to Peak Location Separation Ratio Plots



	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		Dage 122 of 114			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 132 of 144			
© 201	© 2018 PCTEST Engineering Laboratory, Inc.							


	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 400 at 444
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 133 of 144
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M

RE 20.1

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:					
	1M1808210167-01-R1.ZNF	-01-R1.ZNF 08/20/18 - 09/05/18 Portable Handset			Page 134 of 144			
© 201	© 2018 PCTEST Engineering Laboratory, Inc.							

REV 20.11 M

FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D	
1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 135 of 144	
2018 PCTEST Engineering Laboratory, Inc.	- ·	•		REV 20.11 M	

12.7.3 Phablet Back Side SPLSR Evaluation and Analysis

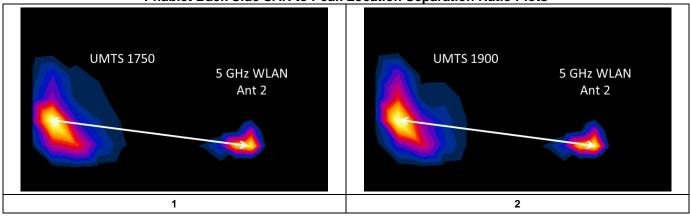

Phablet Peak SAR Locations for Body Back Side										
Mode/Band	x (mm)	y (mm)								
5 GHz WLAN Ant 2	10.00	47.00								
5 GHz WLAN MIMO	11.00	52.00								
UMTS 1750	-0.50	-73.50								
UMTS 1900	-2.00	-80.00								
LTE Band 66 (AWS)	-1.00	-80.00								
LTE Band 25 (PCS)	-2.00	-72.00								

Table 12-23

Table 12-24 Phablet Back Side SAR to Peak Location Separation Ratio Calculations

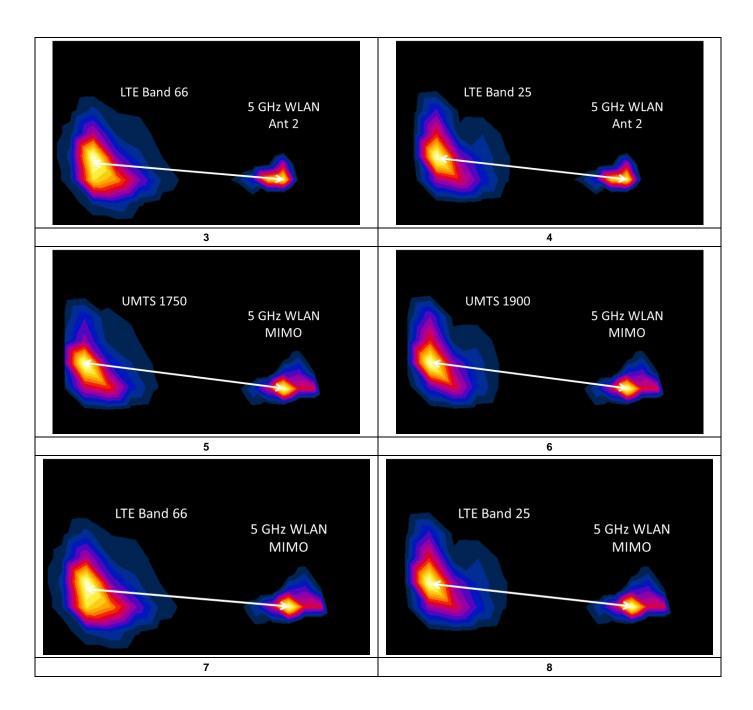

Ante	Standalone	SAR (W/kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation SPLS Ratio Distance (mm)		Plot Number	
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
UMTS 1750	5 GHz WLAN Ant 2	1.809	2.614	4.423	120.96	0.08	1
UMTS 1900	5 GHz WLAN Ant 2	1.681	2.614	4.295	127.57	0.07	2
LTE Band 66 (AWS)	5 GHz WLAN Ant 2	1.857	2.614	4.471	127.48	0.07	3
LTE Band 25 (PCS)	5 GHz WLAN Ant 2	1.957	2.614	4.571	119.60	0.08	4
UMTS 1750	5 GHz WLAN MIMO	1.809	2.742	4.551	126.03	0.08	5
UMTS 1900	5 GHz WLAN MIMO	1.681	2.742	4.423	132.64	0.07	6
LTE Band 66 (AWS)	5 GHz WLAN MIMO	1.857	2.742	4.599	132.54	0.07	7
LTE Band 25 (PCS)	5 GHz WLAN MIMO	1.957	2.742	4.699	124.68	0.08	8

Table 12-25 Phablet Back Side SAR to Peak Location Separation Ratio Plots

F	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
D	Ocument S/N:	Test Dates:	est Dates: DUT Type:		Dama 400 at 444			
11	M1808210167-01-R1.ZNF	08/20/18 - 09/05/18 Portable Handset			Page 136 of 144			
© 2018 F	2018 PCTEST Engineering Laboratory, Inc.							

RE 20.1 06/19/2018

12.8 Simultaneous Transmission Conclusion

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		Dage 127 of 114			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 137 of 144			
© 201	© 2018 PCTEST Engineering Laboratory, Inc.							

KEV 20.11 M 06/19/2018

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Band	FREQUENCY		Mode	Service	Data Rate (Mbps)	Data Rate (Mbps) Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.			((W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1770.00	132572	LTE Band 66 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	10 mm	1.150	1.170	1.02	N/A	N/A	N/A	N/A
1900	1905.00	26590	LTE Band 25 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	10 mm	1.170	1.230	1.05	N/A	N/A	N/A	N/A
2450	2510.00	20850	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	10 mm	1.240	1.230	1.01	N/A	N/A	N/A	N/A
2600	2535.00	21100	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	10 mm	1.300	1.220	1.07	N/A	N/A	N/A	N/A
5250	5280.00	56	802.11n, 20 MHz Bandwidth	OFDM, MIMO	13	back	10 mm	1.240	1.240	1.00	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body							
	Spatial Peak						1.6 W/kg (mW/g)							
		Jncontro	olled Exposure/Gene	ral Population					a	veraged or	ver 1 gram			

Table 13-1 Body SAR Measurement Variability Results

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates: DUT Type:		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset	Page 138 of 144
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.11 M

	Phablet SAR Measurement Variability Results													
	PHABLET VARIABILITY RESULTS													
Band	FREQUENCY		Mode	Service	Data Rate (Mbps) S	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
	MHz	Ch.			() P /			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1745.00	132322	LTE Band 66 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	0 m m	2.740	2.580	1.06	N/A	N/A	N/A	N/A
1900	1905.00	26590	LTE Band 25 (PCS), 20 MHz Bandwidth	QPSK, 50 RB, 0 RB Offset	N/A	bottom	0 m m	2.790	2.750	1.01	N/A	N/A	N/A	N/A
2450	2510.00	20850	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	0 m m	2.640	2.810	1.06	N/A	N/A	N/A	N/A
2600	2535.00	21100	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	0 m m	2.560	2.630	1.03	N/A	N/A	N/A	N/A
5250	5280.00	56	802.11n, 20 MHz Bandwidth	OFDM, MIMO	13	back	0 m m	2.680	2.620	1.02	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Phablet							
	Spatial Peak Uncontrolled Exposure/General Population						4.0 W/kg (mW/g) averaged over 10 grams							
		Uncontr	ollea Exposure/Gen	eral Population					ave	eraged over	er to grams			

Table 13-2 Phablet SAP Me t Variability Results

13.2 **Measurement Uncertainty**

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 139 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		1 age 105 of 144	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

06/19/2018

14 EQUIPMENT LIST

AppliertBMABIMA <t< th=""><th>Manufacturer</th><th>Model</th><th>Description</th><th>Cal Date</th><th>Cal Interval</th><th>Cal Due</th><th>Serial Number</th></t<>	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Applert54.020EVC Storks Sign Generator4/10/2014Anoma54.0700	Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Aglent Less: Diversion Submetics Communitations Test 541 (1):19:2007 Bennall UN20203 Modelization Subscriptions Test 541 (1):19:2007 Aglent LESIS.C Wireless Communitations Test 541 (1):19:2007 Monall NA NA MA	Agilent				Annual		
Applert [15]SC Biol Strets Biol Strets [15]SZ/D203 Biernal Bizzzzzzz Biernal Bizzzzz Biernal Bizzzz Biernal Bizzzz Biernal Bizzzz Bizzzz Bizzzz Bizzzz Bizzzz Bizzz	Agilent		ESG-D Series Signal Generator	4/19/2018	Annual	4/19/2019	
Aglert US2:202 Wirels: Communication Frei Set V/A N/A N/A N/A	Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agelett NA NA NA Constraints Agelett NSDA MOVDA MAR Ngra Avayer 1/1/2021 Annual 1/1/2021 MARUSA Applinfer Rescard 113163 Amplinfer Call N/A Call 41397 Applinfer Rescard 113163 Amplinfer Call N/A Call 413921 Applinfer Rescard NAXUSA USA NOVA GALANDA 413972 133313 Antrau MAXUSA USA NOVA 132354 133331 133331 Antrau MAXUSA Poser Meter 1272021 Annual 12722031 132331 132032 Antrau MAXUSA Poser Meter 12720231 Annual 12722031 132331 132032 Antrau MAXUSA Poser Meter 1272031 Annual 12722031 132031 132032 Antrau MAXUSA Poser Meter 1272031 Annual 12722031 1320302 Antrau MAXUSA MAXUSA MAXUSA							
Agelert NSIDA MeX Vects regal Generator 111/2011 Annual F 11/2012 Monual F 11/2012 Monual F 11/2012 Monual F Monual F <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
AgelierNAMCA Signal AdvagenceU/2/C028AnnualU/2/C028U/2/C028AGENTSSI.Angliffe Resenth15516.AngliffeGTN/AGT43372Angliffe Resenth15516.AngliffeGTN/AGT43372AnrituMAXAIMU/Drover InstructGTN/AGT43372AnrituMAXAIMPair Power Struct2/2/C038Annual12/2/C038139036AnrituMAXAIMPower Meter11/2/2/207Annual12/2/C03830050AnrituMB2052Power Meter11/2/2/C03Annual12/2/C03830050AnrituMB2052Balia Comunication Analyser12/2/C038Annual7/2/2/20830050AnrituMB2052Balia Comunication Analyser12/2/C038Annual7/2/2/20830050Control Company4400Them-Cody Imaridy Moviner12/1/2/C03Annual7/2/2/20830050Control Company4400Them-Cody Imaridy Moviner12/1/2/C03Annual12/1/2/20830050Control							
Amplifie Research 153.06 Amplifie CPT M/A CPT 43972 Antitus MA2400A UBP over Sensor 64/2031 Antitus 64/2031 213153 Antitus MA2100A UBP over Sensor 64/2031 Antitus 64/2031 213153 Antitus MA210A UBP over Sensor 64/2031 Antitus 61/2031 213153 Antitus MA2118 Printer Neter 31/20207 Antitus 31/20218 51/2031 Antitus MA280A Prover Meter 11/24/2017 Antitus 11/24/2018 51/2031 Antitus MT880C Ball ocommunication Analyter 71/2018 Antitus 11/22/2018 50/2018 Antitus MT880C Ball disk onplifier GR Antitus 11/22/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018 50/2018							
Implife Reserb. S1526 Anglifer CRT N/A CTT 43374 Antisu MA2102A USB Power Sensor 67/2018 Anrual 67/2018 Anrual 67/2018 Anrual 67/2018 Anrual 10/2018 123353 Antisu MA2103 Puice Forcer 32/2018 Anrual 32/2018 Anrual 32/2018 123353 Antisu MA3118 Puice Forcer 32/2018 Anrual 32/2018 130038 Antisu MM380X Pueror Forcer 32/2018 Annual 32/2018 130038 Antisu MM380X Readio Communication Analyser 7/2/2018 Annual 7/2/2018 C01144418 Antisu MM380X Wireless Contectivity Feit Set 7/2/2018 Annual 7/2/2018 C01144418 Antisu MM380X Use Section 32/2017 Beenal 32/2018 T0155534 Control Company 450 Use Section 32/2018 Beenal 32/2018 D0155534 Control Company<							
Anrtisu MAX100A UBB Power Sensor 65/70.01 Anrusu 65/70.01 Anrusu 65/70.01 Anrusu 65/70.01 Anrusu 30/70.01 Anrusu Anrusu Anrusu							
Antisu MAXIB3 UBF Power Sensor Si/2018 Antisu U/2018 Antisu U/2018 Antisu J/2018 Antisu J/J2018 Antisis J/J2018 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Anstisu MA24118 Pulse Power Sensor JV/2018 Annual JV/2019 JJJ2019 Anstisu MA295A Power Meter JJ2/2017 Annual JJV2/2018 54002 Anstisu ML395A Power Meter JJV2/2018 Annual JJV2/2018 54002 Anstisu ML395A Power Meter JJV2/2018 Annual JJV2/2018 6501444 Anstisu ML392A Reado Communication Analyser JJV2/2018 Annual JJV2/2018 6501444 Anstisu ML392A Reado Communication Analyser JV2/2017 Bernikal JJV2/2019 1050244 COMBrith AMS079F3 Winal Gester Angulifer VI VI Bernikal JJV2/2019 JV2/2019 JV2/20							
Anrisu MA2418 Pure News Sensor 3//2/108 Annall 3//2/108 3//2/108 Anrisu MU285A Power Meter 11/2/2/017 Annall 11/2/2/018 94001 Anrisu MIRS0C Radio Communication Analyzer 3/2/0218 Annall 11/2/2/018							
Anttsu M.2495A Power Meter 10/22/2017 Annall 10/22/2018 94001 Anttsu MK880C Riedi Communication Analyer 3/20/2018 Annall							
Antisu M.286A Power Meter 11/28/2017 Annall 11/28/2018 203008 Antisu M18821C Redio Communication Asalyzer 77/8/2018 Annall 77/8/2019 603144419 Antisu M18820A Wireless Connectivity Fest str. 71/20218 Annall 77/8/2019 603144419 Antisu M18820A Wireless Connectivity Fest str. 71/20218 Annall 77/20219 623122959 COMrech A88729-5 Solid State Angliffer CGT N/A CGT M15500 00155059 Comreci Company 450 Utra Long State Monified Montor 31//2011 Biennall 31/20210 13/10500 Comreci Company 4551 State and Calcin Montor IC (tro R01, 3, 3mn) Cell N/A Cell N/A Cell 13/22018 13/1202018 13/1202018 13/1202018 13/1202018 13/1202018 13/1202018 13/12/2018 13/12/2018 13/12/2018 13/12/2018 13/12/2018 13/12/2018 13/12/2018 13/12/2018 13/12/2018 13/12/2018 13/12/2018							
Anritsu MT832C Radic Communication Analyzer JZ/J2013 Annall JZ/J2013 Annall JZ/J2013 A013 Anritsu MT802A Wireles Connectivity Tett Sett 7/J2013 Annall 7/J2013 A013 COMFech ARR5755 Scale State Angelfifer CRT N/A CRT M/S200 D015554 Control Company 450 Untra long Stam Memometer J/J/Z013 Biennal J/J/Z013 M/S2019 T0055554 Explicit Hennologies 80303 Stander Mechanical Caluation Ito ICs 05641, 35mm 6/4/2018 Annall 6/4/2019 M/S2018 M/A CRT N/A CRT N/A M/S2019 T005054 Mini Circuit Stavider Mechanical Caluation ICs 05641, 35mm 6/4/2018 Annall 6/4/2019 M/S2018 T0050031 M/A CRT N/A CRT							
Anrtisu MTB22C Badio Communication Analyzer 7/2/2013 Annual 7/2/2013 60517432 Anrtu MTB82A Wireles Connectivity Test Set 7/1/2013 Annual 7/1/2013 60517425 COMTech AMB72A Solid State Amplifier CBT N/A CBT MA MB MA MB MA							
Antriu MT880A Wireless Connectivity Test Std. 7/1/2018 Annul. 7/1/2019 665/12285 COMTech AM80 Therm / Clock/ Humidity Mentor 3/1/2017 Blennial 3/1/2019 1/105/3009 Control Company 4832 Uttra Long Stem Therm / Clock / Humidity Mentor 3/1/2017 Blennial 3/1/2019 1/105/3009 Kerspitch 7720 Dua Dua Directional Coupler GBT N/A GBT M/A M/A M/A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
COMTech AMSS729-5 Solid State Amplifier C.GT N/A Control Company 4482 MMISS00000 Control Company 452 Uttra Long Stem Thermometer 21/2017 Biennal 21/2019 17013509 Keryight Totholges 85038 Standard Mchanical Coupler CBT N/A CBT MMS 64/2018 Annual 64/2019 MMSS10181 Keryight Technologies 85038 Standard Mchanical Coupler CBT N/A CBT N/A CBT MMS Gata MMSS10181 MMSS10181 MMSS10181 Gata MMSS10181 MMSS1080 MMSS10181 MMSS10181 MMSS10181 MMSS1081 MMSS10181 MMSS1080 MMSS1080 MMSS1080 MMSS1080 MMSS1080 MMSS1080 MMSS1080 MMSS10800 MMSS10800 MMSS10800				1 1 1			
Control Company 400 Therm, Clock/Humidly Mostar 3/1/2017 Biennal 3/1/2019 170135309 Kerylight T7D Dual Duetional Coupler CBT N/A CBT M/S120125 Kerylight Standard Mochanica Clainbanco Clainbanco RU (DC 9964; 3.5m) 6/4/2019 MmS3401125 MCL BW-N6W5- GBT AMAR GBT N/A GBT MMS340125 Mmi Circuits PWR-46H5 LSB Power Smoor 1/22/2018 Annual 1/22/2019 1/12/200305 Mmi Circuits SV-2400- Low Pass Filter CBT N/A CBT							
Control Company 432 Uttra Long Stem Thermometer 3/2/017 Bennial 3/2/029 1/201553 Kryight Technologies 85038 Standard Mechanical Calibration K1 (Cb to S94; 3.5mn) 6/4/2018 Annual 6/4/2019 MrS30118 Min. Circuits PWR-6015 USB Power Sensor 1/22/2018 Annual 1/12/2019 117/1030063 Mini. Circuits PWR-6015 USB Power Sensor 1/22/2018 Annual 1/22/2019 117/1030063 Mini. Circuits PWR-6015 USB Power Sensor 1/27/2018 Annual 1/22/2019 117/1030063 Mini.Circuits WF 2000- Low Pass Filter CEF N/A CBT N/A Mini.Circuits BW 42005- DC to 120 RP serioin fined 2018 Attenuator CEF N/A CBT N/A Mini.Circuits NIP-1200- Low Pass Filter CET N/A CBT N/A Mini.Circuits NIP-1200- Low Pass Filter CET N/A CBT N/A Mini.Circuits NIP-1200- Low Pass Filter CET </td <td></td> <td></td> <td></td> <td>-</td> <td>,</td> <td></td> <td></td>				-	,		
Keyspit Chronol Coupler CRT N/A CRT MP321021 Veryspit Technologies BS38 Stadard Mechanical Calibration R1 (DC 198/t), 330m) G/47031 Annual G/47031 MC T133 MGL BWN-H90/5 USB Power Sensor 1/27/2018 Annual 1/27/2030 1/17/2030000 Mmi Crcuits SPK-460/5 USB Power Sensor 1/27/2018 Annual 1/27/2030 1/17/2030000 Mmi Crcuits SPK-460/5 USB Power Sensor 1/27/2018 Annual CRT N/A							
Keyugh Technologies 85038 Standard Mechanizal Calibration K1 (DC to S9k); 35mm) 6/4/2018 Annual 6/4/2019 MM7540113 MM. BW-M9695 USB Power Sensor 1/2/2/018 Annual 1/2/2/2019 11/10030063 MMIC Circuits PW4-4695 USB Power Sensor 1/2/2/2018 Annual 1/2/2/2019 11/10030063 MMIC Circuits PW4-4695 USP Power Sensor 1/2/2/2018 Annual 1/2/2/2019 11/10030063 MMIC Circuits BW +2000+ Lov Pass Filter CEF N/A CBT N/A MMIC-Circuits BW +2000+ Low Pass Filter CIto 1000 Me CBT N/A CBT N/A MMI-Circuits NP-1200+ Low Pass Filter CIto 1200 Me CBT N/A CBT N/A MMI-Circuits NP-1200+ Low Pass Filter CIto 1200 Me CBT N/A CBT N/A MMI-Circuits NP-1200+ Low Pass Filter CIto 1200 Me CBT N/A CBT N/A MMI-Circuits NP-230 Diglite Caliper 4/18/2018							
MCL BW.NEWS- GEB Attenutor CBT N/A CBT 1139 MIII Crouits PWR-4Gris USB Power Sensor 1/20/2018 Annual 1/20/2019 1110030062 MIII Crouits SUP-200- Low Pass Filter CBT N/A CBT RNPPS00093 Mini-Crouits BW-N20N5 Deve Pass Filter CBT N/A CBT N/A Mini-Crouits BW-N20N5 Deve Pass Filter CBT N/A CBT N/A Mini-Crouits NV-200- Low Pass Filter C0: 1000 Met CBT N/A CBT N/A Mini-Crouits NV-200- Low Pass Filter C0: 1000 Met CBT N/A CBT N/A Mini-Crouits NV-250- Low Pass Filter C0: 1000 Met CBT N/A CBT N/A Mada 4072-3 Attenuator (38) CBT N/A CBT N/A Narda BW-52W2 Attenuator (38) CBT N/A CBT N/A Rateradk NCLOB Torgue Wrench				-			
Mmi Crouits PWR-4GHS USB Power Sensor 1/22/2018 Annual 1/22/2019 11/2030063 Mmi Crouits PWR-4GHS USB Power Sensor 1/20/2018 Annual 1/2/2019 11/2030063 Mmi Crouits SV-400+ Low Pass Filter CBT N/A CBT N/A Mmi Crouits BW-N2005 Dever Attenuator CBT N/A CBT N/A Mmi Crouits BW-N2005 Dever Sentierro CD 1000 MHz CBT N/A CBT N/A Mmi Crouits NP-5200+ Low Pass Filter C0 1000 MHz CBT N/A CBT N/A Mmi Crouits NP-5200+ Low Pass Filter C0 1200 MHz CBT N/A CBT N/A Mindropot CD-67SX Digital Galger CBT N/A CBT N/A Marda 4012-6 A 8 detX MA 6 BD forcelon al Coupler CBT N/A CBT N/A Marda 4012-723 Attenuator (380) CBT N/A CBT N/A Marda 40120							
Mini Circuits PWR-4GHS USB Power Senior J/20/2018 Annual J/20/2018 11/2003063 Mini Circuits SV-240b- Low Pass Filter CBT N/A CBT N/A Mini Circuits SW-N2005 Deve Pass Filter CBT N/A CBT N/A Mini-Circuits SW-N2005 Deve Pass Filter Cbt 10200 Meter CBT N/A CBT N/A Mini-Circuits NIP-2809- Low Pass Filter Cbt 10200 Meter CBT N/A CBT N/A Mini-Circuits NIP-2809- Low Pass Filter Cbt 10200 Meter CBT N/A CBT N/A Mini-Circuits NIP-2809- Low Pass Filter Cbt 10200 Meter CBT N/A CBT N/A Mini-Circuits NIP-2809- Low Pass Filter Cbt 10200 Meter CBT N/A CBT N/A Narda 4012-23 Attenuator J088 CBT N/A CBT N/A Narda 4712-3 Attenuator J088 CBT N/A CBT N/A Rat							
MmiCircuits SUP-2400- Low Pass Filter CBT N/A CBT 8897950033 MmiCircuits BW-M20W5 Power Attenuator CBT N/A CBT N/A Mmi-Circuits BW-M20W5 Dc to 18 GHz Precision Fixed 20 d8 Attenuator CBT N/A CBT N/A Mmi-Circuits NLP-2050 Low Pass Filter DC to 100 MHz CBT N/A CBT N/A Mmi-Circuits NLP-2050 Low Pass Filter DC to 200 MHz CBT N/A CBT N/A Mutryop CD-CCSX Digital Caliger 4/18/2018 Biennial 4/18/2018 Narda 4014-C 4-8/04/54 d60 Directional Coxpler CBT N/A CBT N/A Pastermack NC-100 Torque Wrench 4/18/2018 Annual 4/18/2018 Annual 1/12/2018 Annual 1/12/2018 1000 Rohde & Schwarz CMM500 Radio Communication Tester 1/13/2017 Annual 1/13/2018 1000 103 39946 0750/3 7/13/2019 1161							
Mmic Grudis VLF-6000- Low Pass Filter CRT N/A CRT N/A Mmic-Grudits BW-N20W5+ DC to 16 dis Precision Fixed 2018 Attenuator CRT N/A CRT N/A Mmic-Grudits NP-N2005- Low Pass Filter Cto 1000 MHz CRT N/A CRT N/A Mmic-Grudits NP-2300- Low Pass Filter Cto 1000 MHz CRT N/A CRT N/A Mit-Grudits NP-2300- Low Pass Filter Cto 2200 MHz CRT N/A CRT N/A Mittoryo CD-CFCX Dot Pasternack CRT N/A CRT N/A Narda 4014C-5 4-8 GHt SMA 6 dB Directional Coupler CRT N/A CRT N/A Narda 804 S3/Q Attenuator (36b) CRT N/A CRT N/A Pasternack PR229-10 Bidrectorial Coupler CRT N/A CRT N/A Rohde & Schwarz CMV500 Radio Communication Tester 11/3/2013 Annual 11/3/2013 100376							
Mini-Graults BW-H20W5 Dever Attenuator CBT N/A CBT 1226 Mini-Graults BW-H2005+ DC to 16 tile thermator CBT N/A CBT N/A Mini-Graults NIP-2305+ Low Pass Filter DC to 3000 MHz CBT N/A CBT N/A Mini-Graults NIP-2305+ Low Pass Filter DC to 3000 MHz CBT N/A CBT N/A Minutoryo CO-67CSX Digital Caliper 4/14/2018 Biennial 4/12/2018 Biennial 4/12/2018 Biennial 4/12/2018 Attenuator (308) CBT N/A CBT N/A CBT N/A CBT N/A CBT 100 Pastermack NC 100 Torque Wrench 4/18/2018 Annual 4/18/2018 Annual 1/13/2018 100076 N/A CBT N/A CBT <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Mmi-Circuits BV+A200/5- DC to 150 GHz free/sion Tixed 20/db Attenuator GT N/A CGT N/A Mmi-Circuits NI-200- Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mmi-Circuits NI-2550+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mutorop CD 6 CSX Digital Caliper 4/12/2018 Biennial 4/14/2020 13264155 Narda 4014-6- 4-8 dits XMA GB Directional Coupler CBT N/A CBT N/A Narda 4072-3 Attenuator (3dB) CBT N/A CBT 9405 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 10/12/2017 Annual 4/18/2019 1445 Pasternack PK209-10 Bifterictional Coupler CBT N/A CBT N/A CBT N/A D327018 1003200 10515 302050 302050 302050 302050 302050 302050 302050 302050 302050 302050							
Mil-Circuits N/A CBT N/A CBT N/A Min-Circuits NLP-3290+ Low Pass Filter DC to 1200 MHz CBT N/A CBT N/A Mitutoyo CD-6'CSX Digital Caliger CBT N/A CBT N/A Mattoyo CD-6'CSX Digital Caliger CBT N/A CBT N/A Narda 4014C-6 4-8 GHz SMA 6dB Directional Coupler CBT N/A CBT N/A Narda BW-53W2 Attenuator (30B) CBT N/A CBT N/A Pasternack NC-100 Torque Wrench 413/2018 Annual 418/2018 400075 Rohde & Schwarz CMWS00 Bidirectional Coupler CBT N/A CBT N/A SPEAG D'59V3 750 MHz SAR Dipole 111/2/2017 Annual 10/13/2018 1002060 SPEAG D'59V3 750 MHz SAR Dipole 713/2/2016 Triennial 713/2/2019 10161 SPEAG D159V3 750 MHz SAR Dipole <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Mmi-Grouits NP-2950- Mittoryo Low Pas Filter DC to 200 MHz CBT N/A CBT N/A Mitutoyo CD 6° CSX Digital Caliper 4/18/2018 Blemial 4/18/200 13284185 Narda 4014C-6 4 - 8 GHz SMA & db Directional Coupler CBT N/A CBT N/A Narda 4772-3 Attenuator (3dB) CBT N/A CBT 3/40 Narda BW/S302 Attenuator (3dB) CBT N/A CBT 3/40 Pastemack NC-100 Torque Wrench 4/18/2018 Annual 4/18/2019 1445 Rolde & Schwarz CAMV500 Radio Communication Tester 11/3/2017 Annual 10/13/2018 100076 SPEAG D750V3 720 MHz SAB Dipole 1/13/2016 Tremnial 1/13/2019 1003 SPEAG D750V3 720 MHz SAB Dipole 1/13/2016 Tremnial 1/13/2019 1161 SPEAG D1750V2 1250 MHz SAB Dipole 1/13/2016 Tremnial 5/9/2019 1403 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>42 .</td><td></td></t<>						42 .	
Mitutoyo CD-6°CSX Digital Calliper 4/18/2018 Blennial 4/18/2020 13224155 Narda 4014C-6 4-8 GHz SMA 6dB Directional Coupler CBT N/A CBT N/A Narda 4077-3 Attenuator (3dB) CBT N/A CBT N/A Narda BW-53W2 Attenuator (3dB) CBT N/A CBT 120 Pastemack NC-100 Torque Wrench 4/18/2018 Annual 4/18/2019 1445 Rohde & Schwarz CMW500 Radio Communication Tester 11/3/2017 Annual 10/13/2018 100076 Rohde & Schwarz CMW500 Radio Communication Tester 11/3/2018 10033 12/15/2018 10133 SPEAG D750/3 750 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 1061 SPEAG D750/2 12/50 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 1033 SPEAG D12/50/2 12/50 MHz SAR Dipole 7/14/2016 Triennial 7/13/2019 1130				-			
Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A Narda 4772-3 Attenuator (360) CBT N/A CBT N/A Narda BW-S3V2 Attenuator (360) CBT N/A CBT 3466 Narda BW-S3V2 Attenuator (360) CBT N/A CBT 3466 Pastemack NC-100 Torque Wrench 4/18/2018 Annual 4/18/2019 1445 Rohde & Schwarz CMW500 Radio Communication Tester 11/3/2017 Annual 10/13/2018 100266 SPEAG D750V3 750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 1003 SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 40407 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 5/1/2019 1148 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 5/1/2019 1443 SPEAG					,		
Narda 4772-3 Attenuator (348) CBT N/A CBT 946 Narda BW-S3W2 Attenuator (348) CBT N/A CBT 120 Pastemack NC-100 Torque Wrench 4/18/2018 Annual 4/18/2019 1445 Pastemack PE209-10 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMWS00 Radio Communication Tester 113/2017 Annual 113/2018 100976 Rohde & Schwarz CMMS00 Radio Communication Tester 113/2016 Triennial 1/15/2019 1003 SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 44047 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2018 Annual 1/15/2019 44047 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2017 Biennial 7/14/2019 1148 SPEAG D1900V2 1900 MHz SAR Dipole 7/14/2017 Biennial 7/14/2019 1148							
Narda BW 53W2 Attenuator (3dB) CBT N/A CBT 120 Pastemack NC100 Torque Wrench 4/18/2018 Annual 4/18/2019 1445 Pastemack PR2209-10 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMWS00 Radio Communication Tester 11/3/2017 Annual 11/3/2018 100976 Rohde & Schwarz CMWS00 Radio Communication Tester 11/3/2018 Annual 11/3/2018 100976 Rohde & Schwarz OXMS00 Radio Communication Tester 11/3/2018 Annual 11/3/2019 1003 SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 40047 SPEAG D85V2 835 MHz SAR Dipole 5/15/2017 Biennial 5/15/2019 41182 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 1150 SPEAG D1900V2 1900 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019	Narda			CBT	N/A	CBT	9406
Pastemack NC-100 Torque Wrench 4/18/2013 Annual 4/18/2013 1445 Pastemack PE2209-10 Bildrectonal Coupler CBT N/A CBT N/A Rohde & Schwarz CMW500 Radic Communication Tester 11/3/2017 Annual 11/3/2018 100376 Rohde & Schwarz CMW500 Radic Communication Tester 10/13/2018 Annual 10/13/2019 10030 SPEAG D750V3 750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 40132 SPEAG D835V2 835 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 40132 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 1150 SPEAG D190V2 1900 MHz SAR Dipole 7/18/2016 Triennial 7/14/2019 5d149 SPEAG D190V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5d149 SPEAG D190V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019	Narda	BW-S3W2		CBT	N/A	CBT	
Pastemack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Rohde & Schwarz CMWS00 Radio Communication Tester 11/3/2017 Annual 11/3/2018 100976 Rohde & Schwarz CMWS00 Radio Communication Tester 10/13/2017 Annual 11/3/2018 100976 Rohde & Schwarz CMWS00 Radio Communication Tester 10/13/2018 Annual 11/15/2019 1003 SPEAG D750/3 750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 40407 SPEAG D835V2 835 MHz SAR Dipole 1/13/2016 Triennial 7/13/2019 40407 SPEAG D135V2 1750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 40407 SPEAG D1300V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 5048 SPEAG D1900V2 1900 MHz SAR Dipole 7/12/2016 Triennial 7/14/2019 50448 SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial					Annual		
Rohde & Schwarz CKMV500 Radio Communication Tester 11/3/2017 Annual 11/3/2018 100976 Rohde & Schwarz CKMV500 Radio Communication Tester 10/13/2017 Annual 10/13/2018 102060 SFEAG D750V3 750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 1003 SFEAG D750V3 750 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 44047 SFEAG D835V2 883 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 44132 SFEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 1150 SFEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 1150 SFEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5d488 SFEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Annual 11/8/2018 1064 SFEAG D2360V2 2300 MHz SAR Dipole 1/11/2017 Annual	Pasternack				N/A		N/A
Rohde & Schwarz CMW300 Radio Communication Tester 10/13/2017 Annual 10/13/2018 102060 SPEAG D750v3 750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 1030 SPEAG D750v3 750 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 1161 SPEAG D833v2 835 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 4d047 SPEAG D1750v2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 1150 SPEAG D1750v2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 56080 SPEAG D1900v2 1900 MHz SAR Dipole 7/14/2017 Biennial 7/14/2019 56188 SPEAG D1900v2 1900 MHz SAR Dipole 7/11/2017 Annual 1/11/2019 56188 SPEAG D2300v2 2200 MHz SAR Dipole 1/11/2017 Annual 1/11/2018 1071 SPEAG D2450v2 2450 MHz SAR Dipole 9/11/2017 Annual 1/11/2018		CMW500		11/3/2017	Annual	11/3/2018	100976
SPEAG D750V3 750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 1003 SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Tritennial 7/13/2019 1161 SPEAG D833V2 835 MHz SAR Dipole 7/13/2016 Tritennial 7/13/2019 4d047 SPEAG D1750V2 1750 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 4d132 SPEAG D1750V2 1750 MHz SAR Dipole 5//2/2017 Blennial 5//2/2019 1148 SPEAG D1300V2 1900 MHz SAR Dipole 7//4/2016 Tritennial 7/12/2019 50480 SPEAG D1300V2 1900 MHz SAR Dipole 7/12/2018 Annual 2/7/2019 50480 SPEAG D1300V2 1900 MHz SAR Dipole 7/11/2017 Blennial 7/11/2019 56148 SPEAG D2300V2 2450 MHz SAR Dipole 1/18/2017 Annual 1/18/2018 17/12 SPEAG D2300V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2019 5012		CMW500			Annual		
SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 1161 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 4d/047 SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 4d/132 SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2017 Biennial 5/9/2019 1148 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 5/0600 SPEAG D1900V2 1900 MHz SAR Dipole 7/1/2018 Annual 2/7/2019 5/6148 SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5/148 SPEAG D2300V2 2300 MHz SAR Dipole 8/17/2017 Biennial 8/17/2019 5/148 SPEAG D2300V2 2450 MHz SAR Dipole 8/17/2017 Annual 11/8/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2018 Annual 9/11/2018 1071 </td <td></td> <td>D750V3</td> <td>750 MHz SAR Dipole</td> <td></td> <td>Annual</td> <td></td> <td>1003</td>		D750V3	750 MHz SAR Dipole		Annual		1003
SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Triennial 7/13/2019 4d047 SPEAG D835V2 835 MHz SAR Dipole 1/15/2018 Annual 1/15/2019 4d132 SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2017 Biennial 5/9/2019 1148 SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Triennial 7/14/2019 50480 SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Triennial 7/14/2019 50480 SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5d148 SPEAG D2450V2 2450 MHz SAR Dipole 1/18/2017 Annual 11/8/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 7/13 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 1071 SPEAG D2650V2 2600 MHz SAR Dipole 9/13/2016 Biennial 9/21/2018 1075	SPEAG	D750V3	750 MHz SAR Dipole	7/13/2016	Triennial		1161
SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2017 Biennial 5/9/2019 1148 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 56080 SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Triennial 7/14/2019 56080 SPEAG D1900V2 1900 MHz SAR Dipole 2/7/2018 Annual 2/7/2019 5d148 SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5d149 SPEAG D2300V2 2450 MHz SAR Dipole 11/8/2017 Annual 11/8/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 1071 SPEAG D2450V2 2450 MHz SAR Dipole 9/13/2016 Biennial 9/13/2018 1071 SPEAG D260V2 2600 MHz SAR Dipole 1/16/2018 Annual 1/16/2019 1057 SPEAG D5GHzV2 S GHz SAR Dipole 9/13/2016 Biennial 9/21/2018 1191 <	SPEAG						4d047
SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2017 Biennial 5/9/2019 1148 SPEAG D1750V2 1750 MHz SAR Dipole 7/14/2016 Triennial 7/14/2019 1500 SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Triennial 7/8/2019 5d080 SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5d148 SPEAG D1900V2 2300 MHz SAR Dipole 1/11/2017 Annual 1/18/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 1/12/017 Annual 9/11/2018 1071 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 1071 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 1071 SPEAG D2450V2 2600 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 1071 SPEAG D250V2 2600 MHz SAR Dipole 9/11/2018 Annual 1/16/2019 1057 <td>SPEAG</td> <td>D835V2</td> <td>835 MHz SAR Dipole</td> <td>1/15/2018</td> <td>Annual</td> <td>1/15/2019</td> <td>4d132</td>	SPEAG	D835V2	835 MHz SAR Dipole	1/15/2018	Annual	1/15/2019	4d132
SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Triennial 7/8/2019 5d080 SPEAG D1900V2 1900 MHz SAR Dipole 2/7/2018 Annual 2/7/2019 5d148 SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5d149 SPEAG D2300V2 2300 MHz SAR Dipole 11/8/2017 Annual 11/8/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 8/17/2017 Biennial 8/17/2019 719 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2016 Biennial 9/11/2018 797 SPEAG D260V2 2600 MHz SAR Dipole 9/13/2016 Biennial 9/13/2018 1071 SPEAG D260V2 2600 MHz SAR Dipole 9/13/2016 Biennial 9/12/2018 1071 SPEAG D26HzV2 5GHz SAR Dipole 9/13/2016 Biennial 9/12/2018 1071 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 655 <td>SPEAG</td> <td>D1750V2</td> <td></td> <td></td> <td>Biennial</td> <td></td> <td>1148</td>	SPEAG	D1750V2			Biennial		1148
SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Triennial 7/8/2019 5d080 SPEAG D1900V2 1900 MHz SAR Dipole 2/7/2018 Annual 2/7/2019 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 5d149 SPEAG D2300V2 2300 MHz SAR Dipole 11/8/2017 Annual 11/8/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 797 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2016 Biennial 9/11/2018 1071 SPEAG D2600V2 2600 MHz SAR Dipole 9/11/2016 Biennial 9/11/2018 1071 SPEAG D260V2 2601 MHz SAR Dipole 9/12/2016 Biennial 9/11/2018 1071 SPEAG D5GHzV2 5GHz SAR Dipole 9/12/2016 Biennial 9/21/2018 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 1272 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG D1900V2 1900 MHz SAR Dipole 7/11/2017 Biennial 7/11/2019 Sd149 SPEAG D2300V2 2300 MHz SAR Dipole 11/8/2017 Annual 11/8/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 8/17/2017 Biennial 8/17/2019 719 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 797 SPEAG D2600V2 2600 MHz SAR Dipole 9/11/2016 Biennial 9/13/2018 1071 SPEAG D56HzV2 S 6Hz SAR Dipole 9/13/2016 Biennial 9/13/2018 1071 SPEAG D56HzV2 S 6Hz SAR Dipole 9/12/2018 Annual 1/16/2019 1067 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 2/2/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 2/11/2019	SPEAG	D1900V2	1900 MHz SAR Dipole	7/8/2016	Triennial	7/8/2019	5d080
SPEAG D2300V2 2300 MHz SAR Dipole 11/8/2017 Annual 11/8/2018 1064 SPEAG D2450V2 2450 MHz SAR Dipole 8/17/2017 Biennial 8/17/2019 719 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 797 SPEAG D2600V2 2600 MHz SAR Dipole 9/13/2016 Biennial 9/13/2018 1071 SPEAG D5GHzV2 SGHz SAR Dipole 1/16/2018 Annual 1/16/2019 1057 SPEAG D5GHzV2 SGHz SAR Dipole 9/12/2016 Biennial 9/21/2018 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1222 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 2/9/2019 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 6/18/2019	SPEAG	D1900V2	1900 MHz SAR Dipole	2/7/2018	Annual	2/7/2019	5d148
SPEAG D2450V2 2450 MHz SAR Dipole 8/17/2017 Biennial 8/17/2019 719 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 797 SPEAG D2600V2 2800 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 797 SPEAG D2600V2 2800 MHz SAR Dipole 9/11/2018 Annual 9/11/2019 1071 SPEAG DSGHzV2 5 GHz SAR Dipole 9/11/2018 Annual 1/16/2019 1067 SPEAG DSGHzV2 5 GHz SAR Dipole 9/21/2016 Biennial 9/21/2018 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1324 SPEAG DAE4 Dasy Data Acquisition Electronics 3/12/2018 Annual 3/12/2019	SPEAG	D1900V2	1900 MHz SAR Dipole	7/11/2017	Biennial	7/11/2019	5d149
SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Annual 9/11/2018 797 SPEAG D2500V2 2600 MHz SAR Dipole 9/13/2016 Biennial 9/13/2018 1071 SPEAG D5GHzV2 S GHz SAR Dipole 9/13/2016 Biennial 9/13/2018 1071 SPEAG D5GHzV2 S GHz SAR Dipole 9/12/2016 Biennial 9/12/2018 1067 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 5/22/2019 859 SPEAG DAE4 Dasy Data Acquisition Electronics 5/92/2018 Annual 2/15/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 2/11/2019 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/17/2018 Annual 4/11/2019 1407	SPEAG	D2300V2	2300 MHz SAR Dipole	11/8/2017	Annual	11/8/2018	1064
SPEAG D2600V2 2600 MHz SAR Dipole 9/13/2016 Biennial 9/13/2018 1071 SPEAG D5GHtv2 SGHz SAR Dipole 1/16/2018 Annual 1/16/2019 1057 SPEAG D5GHtv2 SGHz SAR Dipole 9/21/2016 Biennial 9/21/2018 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 2/15/2019 859 SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 2/9/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/1/2019 1304 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2019 1407 1407	SPEAG	D2450V2	2450 MHz SAR Dipole	8/17/2017	Biennial	8/17/2019	719
SPEAG DSGHzV2 S GHz SAR Dipole 1/16/2018 Annual 1/16/2019 1057 SPEAG DSGHzV2 S GHz SAR Dipole 9/21/2016 Blennial 9/21/2018 1191 SPEAG DAF4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAF4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAF4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/15/2019 655 SPEAG DAF4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1272 SPEAG DAF4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1322 SPEAG DAF4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/7/2019 1334 SPEAG DAF4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1091 SPEAG DAF4 Dasy Data Acquisition Electronics 4/11/2018 <td< td=""><td>SPEAG</td><td>D2450V2</td><td></td><td>9/11/2017</td><td>Annual</td><td>9/11/2018</td><td>797</td></td<>	SPEAG	D2450V2		9/11/2017	Annual	9/11/2018	797
SPEAG DSGHzV2 5 GHz SAR Dipole 9/21/2016 Biennial 9/21/2018 1191 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 2/2/2019 859 SPEAG DAE4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 2/9/2019 1332 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2018 Annual 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 4/11/2019 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 <td>SPEAG</td> <td>D2600V2</td> <td>2600 MHz SAR Dipole</td> <td>9/13/2016</td> <td>Biennial</td> <td>9/13/2018</td> <td>1071</td>	SPEAG	D2600V2	2600 MHz SAR Dipole	9/13/2016	Biennial	9/13/2018	1071
SPEAG DAE4 Dasy Data Acquisition Electronics 2/15/2018 Annual 2/15/2019 665 SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 5/22/2019 859 SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 5/22/2019 859 SPEAG DAE4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1332 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2018 Annual 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/1/2019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1301 SPEAG DAK-3.5 Dielectric Assessment Kit 9/12		D5GHzV2		1/16/2018	Annual	1 1 2 2	
SPEAG DAE4 Dasy Data Acquisition Electronics 5/22/2018 Annual 5/22/2019 859 SPEAG DAE4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2018 Annual 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/7/2019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 3/12/017 Annual 3/12/019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 9/12/2018 1091 SPEAG DAK-3.5 Dielectric Assessment Kit 9/12/2017 Annual 2/13/2018 1091 SPEAG ES30V3 SAR Probe 3/13/2018 A	SPEAG	D5GHzV2	5 GHz SAR Dipole	9/21/2016	Biennial	9/21/2018	1191
SPEAG DAE4 Dasy Data Acquisition Electronics 2/9/2018 Annual 2/9/2019 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2018 Annual 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/7/2019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 9/12/2018 1091 SPEAG DAK-3.5 Dielectric Assessment Kit 9/12/2017 Annual 2/13/2018 1091 SPEAG ES30V3 SAR Probe 3/13/2018 Annual 3/13/2019 3213 SPEAG ES30V3 SAR Probe 3/27/2018 Annual				1 4 5 5	Annual	1 .1	
SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2018 Annual 7/11/2019 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2018 Annual 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2018 Annual 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/7/2019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAK-3.5 Dielectric Assessment Kit 9/12/2017 Annual 9/12/2019 3213 SPEAG ES30V3 SAR Probe 2/13/2018 Annual 3/13/2019 3213 SPEAG ES30V3 SAR Probe 3/27/2018 Annual 3/27/2019 3319 SPEAG ES30V3 SAR Probe 3/27/2018 Annual 3/27/2019 3347 SPEAG EX30V4 SAR Probe 5/22/2018 Annual 5/22/2019 7357							
SPEAG DAE4 Dasy Data Acquisition Electronics 6/18/2018 Annual 6/18/2019 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/7/2019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/7/2019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAK-3.5 Dielectric Assessment Kit 9/12/2017 Annual 9/12/2018 1091 SPEAG ES30V3 SAR Probe 2/13/2018 Annual 2/13/2019 3213 SPEAG ES30V3 SAR Probe 3/13/2018 Annual 3/13/2019 3319 SPEAG ES30V3 SAR Probe 3/27/2018 Annual 3/13/2019 3347 SPEAG EX30V4 SAR Probe 4/18/2018 Annual 3/13/2019 7357 SPEAG EX30V4 SAR Probe 5/22/2018 Annual 5/22/2019 7406				1.1			
SPEAG DAE4 Dasy Data Acquisition Electronics 3/7/2018 Annual 3/7/2019 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAK-3.5 Dielectric Assessment Kit 9/12/2017 Annual 9/12/2018 1091 SPEAG ES30V3 SAR Probe 2/13/2018 Annual 2/13/2019 3213 SPEAG ES30V3 SAR Probe 3/12/2018 Annual 3/13/2019 3319 SPEAG ES30V3 SAR Probe 3/27/2018 Annual 3/27/2019 3347 SPEAG EX30V4 SAR Probe 4/18/2018 Annual 4/18/2019 7357 SPEAG EX30V4 SAR Probe 5/22/2018 Annual 5/22/2019 7405 SPEAG EX30V4 SAR Probe 6/25/2018 Annual 6/25/2019 7409							-
SPEAG DAE4 Dasy Data Acquisition Electronics 4/11/2018 Annual 4/11/2019 1407 SPEAG DAK-3.5 Dielectric Assessment Kit 9/12/2017 Annual 9/12/2018 1091 SPEAG ES30V3 SAR Probe 2/13/2018 Annual 2/13/2019 3213 SPEAG ES30V3 SAR Probe 3/13/2018 Annual 3/13/2019 3213 SPEAG ES30V3 SAR Probe 3/12/2018 Annual 3/13/2019 3319 SPEAG ES30V3 SAR Probe 3/27/2018 Annual 3/27/2019 3347 SPEAG EX30V4 SAR Probe 4/18/2018 Annual 4/18/2019 7357 SPEAG EX30V4 SAR Probe 5/22/2018 Annual 5/22/2019 7406 SPEAG EX30V4 SAR Probe 6/25/2018 Annual 6/25/2019 7409		SPEAG DAE4 Dasy Data Acquisition Electronics					
SPEAG DAK-3.5 Dielectric Assessment Kit 9/12/2017 Annual 9/12/2018 1091 SPEAG ES30V3 SAR Probe 2/13/2018 Annual 2/13/2019 3213 SPEAG ES30V3 SAR Probe 3/13/2018 Annual 3/13/2019 3319 SPEAG ES30V3 SAR Probe 3/12/2018 Annual 3/12/2019 3347 SPEAG ES30V4 SAR Probe 4/18/2018 Annual 3/27/2019 3347 SPEAG EX30V4 SAR Probe 4/18/2018 Annual 4/18/2019 7357 SPEAG EX30V4 SAR Probe 5/22/2018 Annual 5/22/2019 7406 SPEAG EX30V4 SAR Probe 6/25/2018 Annual 6/25/2019 7409							
SPEAG ES3DV3 SAR Probe 2/13/2018 Annual 2/13/2019 3213 SPEAG ES3DV3 SAR Probe 3/13/2018 Annual 3/13/2019 3319 SPEAG ES3DV3 SAR Probe 3/27/2018 Annual 3/27/2019 3319 SPEAG ES3DV3 SAR Probe 3/27/2018 Annual 3/27/2019 3347 SPEAG EX3DV4 SAR Probe 4/18/2018 Annual 4/18/2019 7357 SPEAG EX3DV4 SAR Probe 5/22/2018 Annual 5/22/2019 7406 SPEAG EX3DV4 SAR Probe 6/25/2018 Annual 6/25/2019 7409							
SPEAG ES3DV3 SAR Probe 3/13/2018 Annual 3/13/2019 3319 SPEAG ES3DV3 SAR Probe 3/27/2018 Annual 3/27/2019 3347 SPEAG EX3DV4 SAR Probe 3/27/2018 Annual 3/27/2019 3347 SPEAG EX3DV4 SAR Probe 4/18/2018 Annual 4/18/2019 7357 SPEAG EX3DV4 SAR Probe 5/22/2018 Annual 5/22/2019 7405 SPEAG EX3DV4 SAR Probe 6/25/2018 Annual 6/25/2019 7409							
SPEAG ES3DV3 SAR Probe 3/27/2018 Annual 3/27/2019 3347 SPEAG EX3DV4 SAR Probe 4/18/2018 Annual 4/18/2019 7357 SPEAG EX3DV4 SAR Probe 5/22/2018 Annual 5/22/2019 7406 SPEAG EX3DV4 SAR Probe 6/25/2018 Annual 6/25/2019 7409							
SPEAG EX3DV4 SAR Probe 4/18/2018 Annual 4/18/2019 7357 SPEAG EX3DV4 SAR Probe 5/22/2018 Annual 5/22/2019 7406 SPEAG EX3DV4 SAR Probe 6/25/2018 Annual 5/22/2019 7406							
SPEAG EX3DV4 SAR Probe 5/22/2018 Annual 5/22/2019 7406 SPEAG EX3DV4 SAR Probe 6/25/2018 Annual 6/25/2019 7409							
SPEAG EX3DV4 SAR Probe 6/25/2018 Annual 6/25/2019 7409							
					Annual		
SPEAG EX3DV4 SAR Probe 7/20/2018 Annual 7/20/2019 7410							
	SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410

Note:

1. Each equipment was used solely within each calibration period.

2. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

	FCC ID: ZNFQ910QM	CA PCTEST	SAR EVALUATION REPORT	🕞 LG	Approved by:	
	FCC ID. ZNFQ910QM	SHOINDEDING LABORATORY, INC.		Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Page 140 of		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset			
© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.11 M 06/19/2018

15 **MEASUREMENT UNCERTAINTIES**

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		сi	с _і	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	x
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	8
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	8
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	8
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	x
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	8
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	8
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	8
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	8
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	x
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	8
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 141 of 144	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dava		
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 142 of 144	
© 20′	© 2018 PCTEST Engineering Laboratory, Inc.					

06/19/2018

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Dama (40 af 4			
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset		Page 143 of 144		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

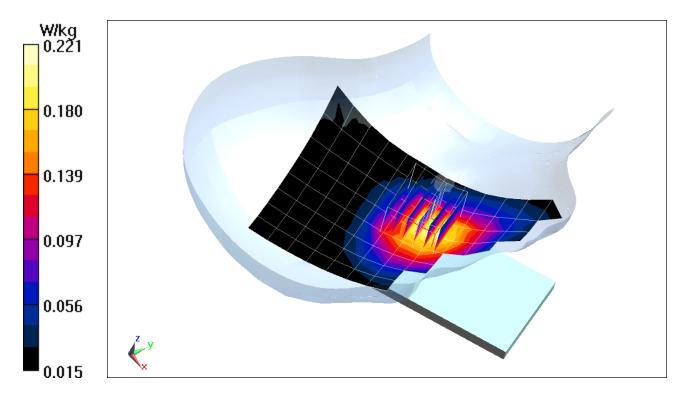
REV 20.11 M 06/19/2018

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: ZNFQ910QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 144 of 144	
	1M1808210167-01-R1.ZNF	08/20/18 - 09/05/18	Portable Handset			
20 [.]	018 PCTEST Engineering Laboratory, Inc.					

APPENDIX A: SAR TEST DATA

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 0.942 \mbox{ S/m; } \epsilon_r = 42.466; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

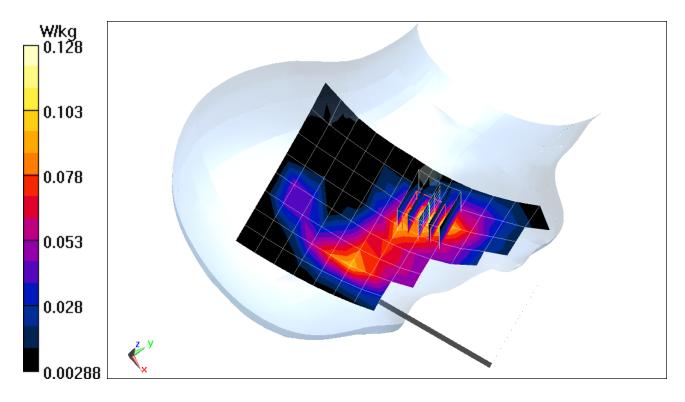
Test Date: 08-22-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(9.81, 9.81, 9.81); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 3 Tx slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.81 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.243 W/kg SAR(1 g) = 0.182 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.443$ S/m; $\epsilon_r = 39.989$; $\rho = 1000$ kg/m³ Phantom section: Right Section

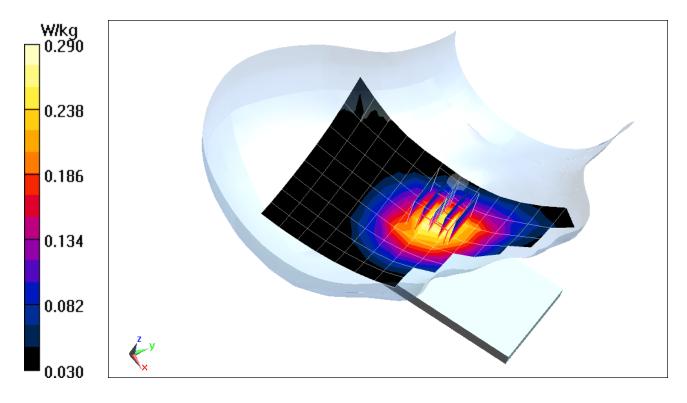
Test Date: 08-23-2018; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(8.16, 8.16, 8.16); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 1900, Right Head, Cheek, Mid.ch, 3 Tx slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.873 V/m; Power Drift = -0.20 dB Peak SAR (extrapolated) = 0.154 W/kg SAR(1 g) = 0.100 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.942$ S/m; $\epsilon_r = 42.466$; $\rho = 1000$ kg/m³ Phantom section: Right Section

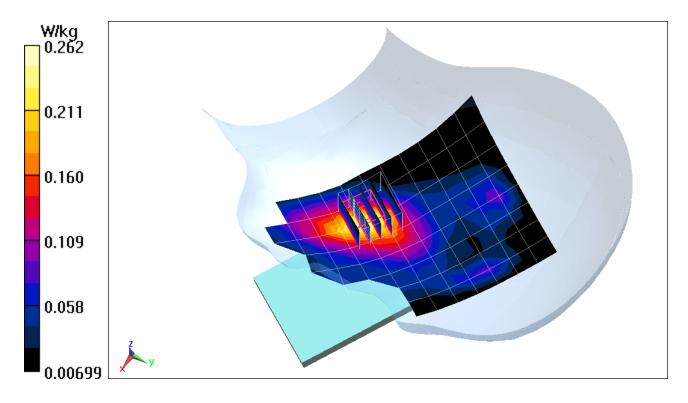
Test Date: 08-22-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(9.81, 9.81, 9.81); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.17 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.324 W/kg SAR(1 g) = 0.234 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 1750 Head Medium parameters used (interpolated):} \\ \mbox{f} = 1732.4 \mbox{ MHz; } \sigma = 1.34 \mbox{ S/m; } \epsilon_r = 39.85; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

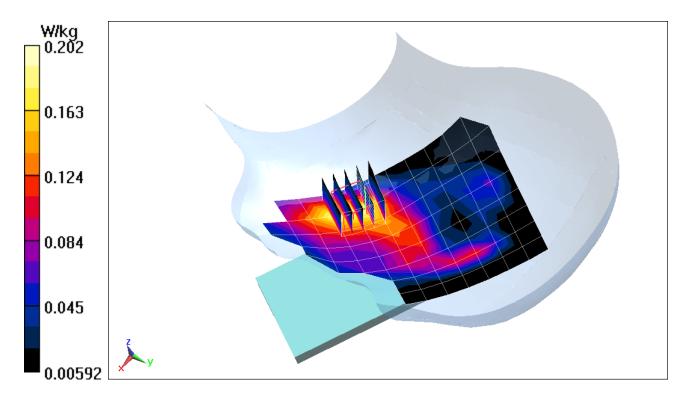
Test Date: 08-27-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7409; ConvF(8.43, 8.43, 8.43); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1750, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.16 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.323 W/kg SAR(1 g) = 0.195 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.443 \mbox{ S/m; } \epsilon_r = 39.989; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

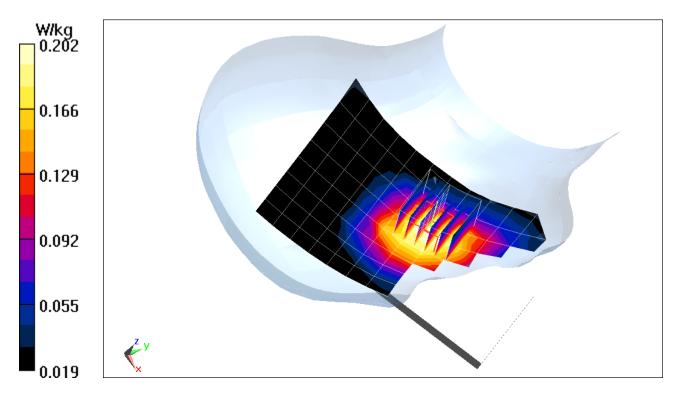
Test Date: 08-23-2018; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(8.16, 8.16, 8.16); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.41 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.230 W/kg SAR(1 g) = 0.144 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19736


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 MHz Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.874$ S/m; $\varepsilon_r = 41.993$; $\rho = 1000$ kg/m³ Phantom section: Right Section

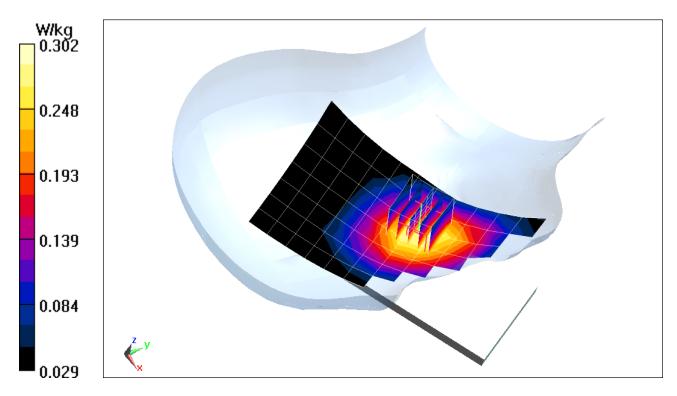
Test Date: 09-05-2018; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(9.91, 9.91, 9.91); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (1);SEMCAD X Version 14.6.11 (7439)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.93 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.230 W/kg SAR(1 g) = 0.182 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19736


Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 MHz Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.899$ S/m; $\varepsilon_r = 41.755$; $\rho = 1000$ kg/m³ Phantom section: Right Section

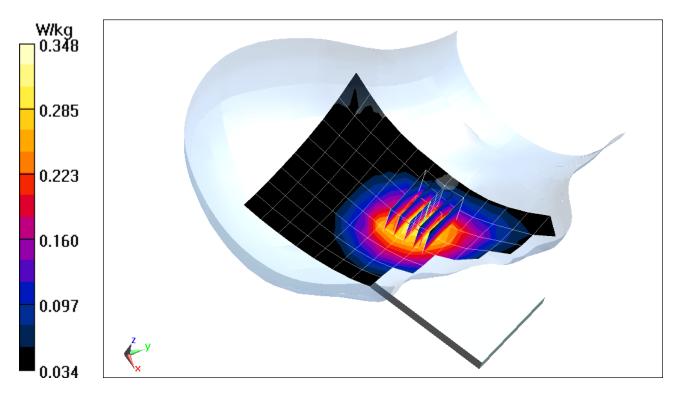
Test Date: 09-05-2018; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(9.91, 9.91, 9.91); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10 (1);SEMCAD X Version 14.6.11 (7439)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.17 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.315 W/kg SAR(1 g) = 0.242 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19744


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ \mbox{f} = 831.5 \mbox{ MHz; } \sigma = 0.94 \mbox{ S/m; } \epsilon_r = 42.485; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

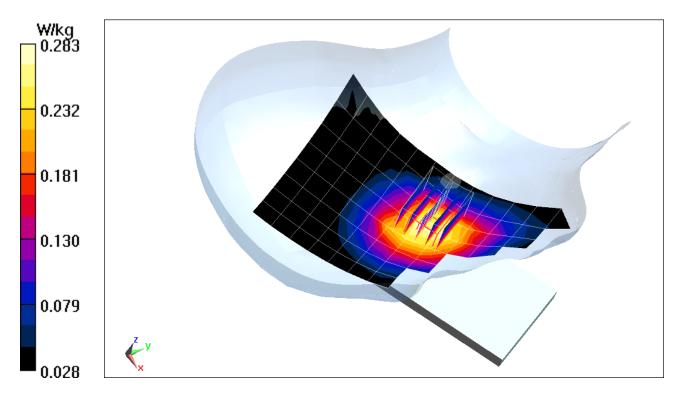
Test Date: 08-22-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(9.81, 9.81, 9.81); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 26 (Cell.), Right Head, Cheek, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 18.02 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.382 W/kg SAR(1 g) = 0.274 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19744


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.5 \mbox{ MHz; } \sigma = 0.942 \mbox{ S/m; } \epsilon_r = 42.466; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

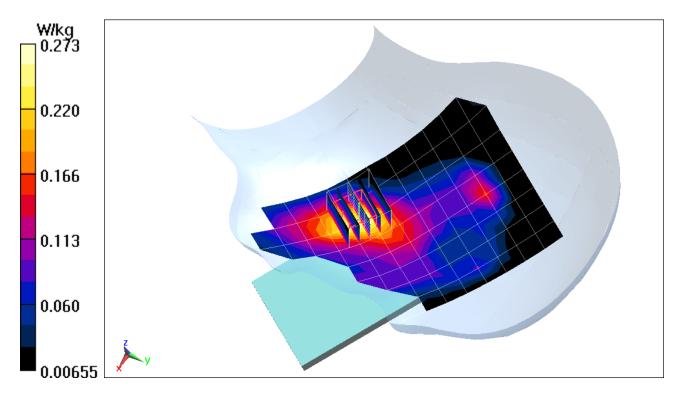
Test Date: 08-22-2018; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(9.81, 9.81, 9.81); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.52 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.329 W/kg SAR(1 g) = 0.235 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19736


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Head Medium parameters used (interpolated):} \\ f = 1720 \mbox{ MHz; } \sigma = 1.333 \mbox{ S/m; } \epsilon_r = 39.873; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

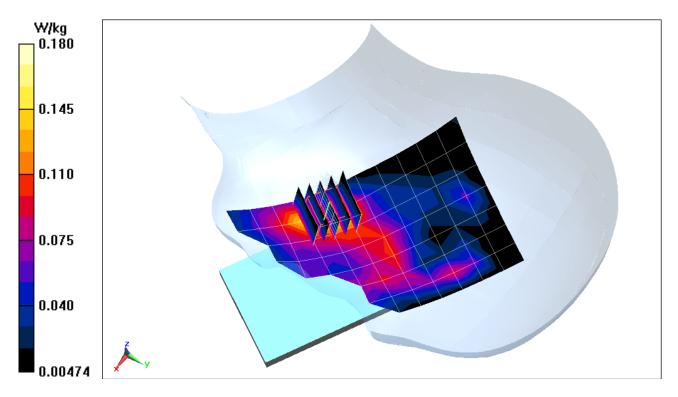
Test Date: 08-27-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7409; ConvF(8.43, 8.43, 8.43); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 66 (AWS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.27 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.330 W/kg SAR(1 g) = 0.207 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19827


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used (interpolated):} \\ f = 1905 \mbox{MHz; } \sigma = 1.465 \mbox{ S/m; } \epsilon_r = 39.991; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

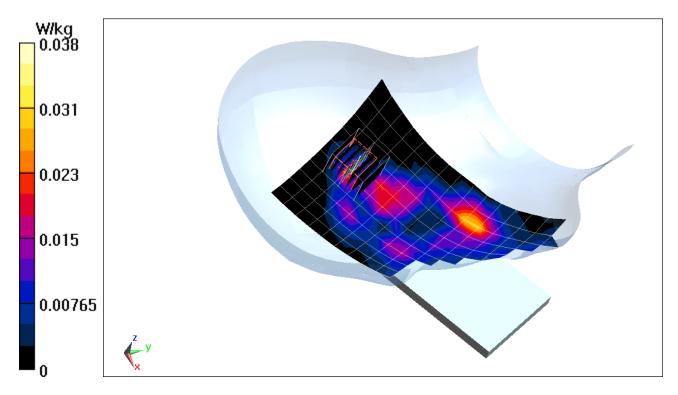
Test Date: 08-28-2018; Ambient Temp: 22.6°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN7409; ConvF(8.05, 8.05, 8.05); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 25 (PCS), Left Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.24 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.215 W/kg SAR(1 g) = 0.130 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19751


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used:} \\ f = 2310 \mbox{ MHz; } \sigma = 1.742 \mbox{ S/m; } \epsilon_r = 39.111; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

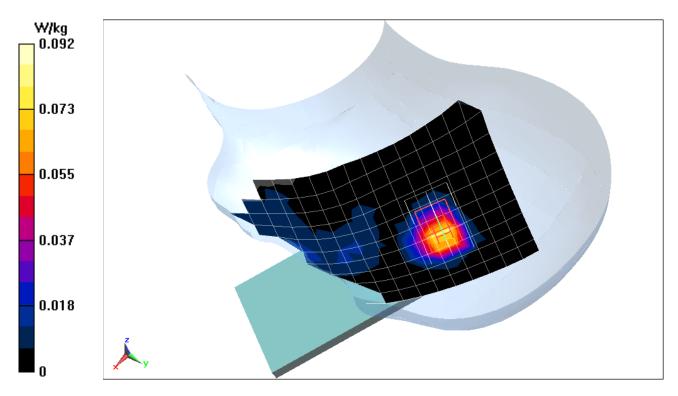
Test Date: 08-27-2018; Ambient Temp: 22.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(7.78, 7.78, 7.78); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 30, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.292 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.0520 W/kg SAR(1 g) = 0.021 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19751


 $\begin{array}{l} \mbox{Communication System: UID 0, _LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ \mbox{f} = 2535 \mbox{ MHz; } \sigma = 1.913 \mbox{ S/m; } \epsilon_r = 38.738; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

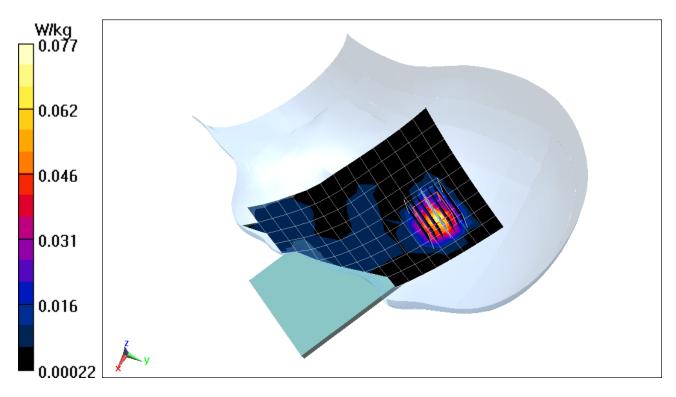
Test Date: 08-27-2018; Ambient Temp: 22.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(7.24, 7.24, 7.24); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 7, Left Head, Tilt, Mid.ch, QPSK, 20 MHz Bandwidth, 1 RB, 0 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.365 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.112 W/kg SAR(1 g) = 0.061 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19751


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 41; Frequency: 2593 MHz; Duty Cycle: 1:1.58} \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ f = 2593 \mbox{MHz; } \sigma = 1.956 \mbox{ S/m; } \epsilon_r = 38.648; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

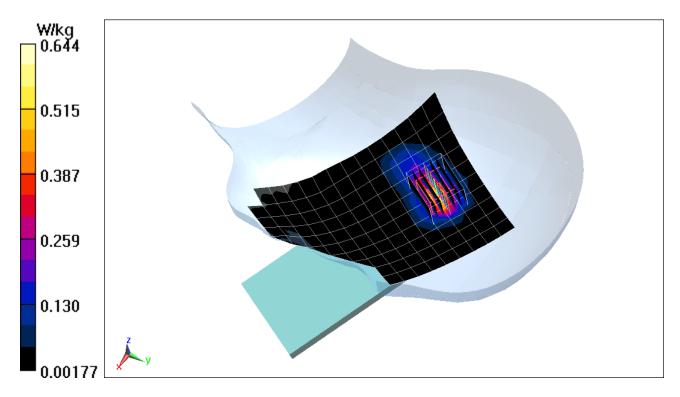
Test Date: 08-27-2018; Ambient Temp: 22.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(7.24, 7.24, 7.24); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 41, Left Head, Tilt, Mid.ch, QPSK, 20 MHz Bandwidth, 1 RB, 0 RB Offset

Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.687 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.0930 W/kg SAR(1 g) = 0.050 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19868


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ \mbox{f = 2437 MHz; } \sigma = 1.838 \mbox{ S/m; } \epsilon_r = 38.905; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

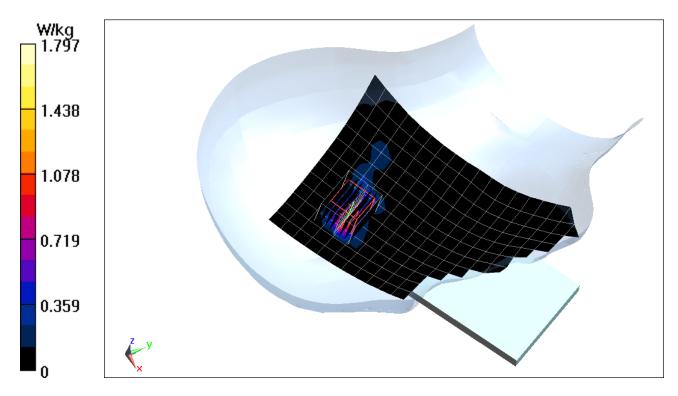
Test Date: 08-27-2018; Ambient Temp: 22.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(7.5, 7.5, 7.5); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Tilt, Ch 6, 1 Mbps, Antenna 1

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.22 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.795 W/kg SAR(1 g) = 0.384 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19868


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5600 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5GHz Head Medium parameters used:} \\ f = 5600 \mbox{ MHz; } \sigma = 4.947 \mbox{ S/m; } \epsilon_r = 34.474; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

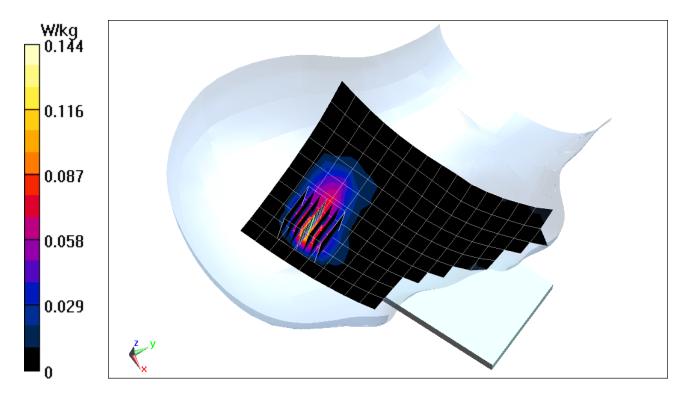
Test Date: 08-20-2018; Ambient Temp: 21.1°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7409; ConvF(4.77, 4.77, 4.77); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Right Head, Cheek, Ch 120, 6 Mbps, Antenna 1

Area Scan (13x12x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 3.452 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 0.642 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19868


 $\begin{array}{l} \mbox{Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.297} \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ f = 2441 \mbox{ MHz; } \sigma = 1.842 \mbox{ S/m; } \epsilon_r = 38.901; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

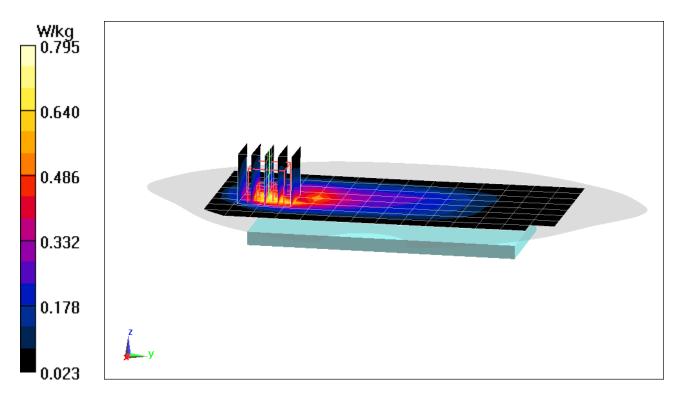
Test Date: 08-27-2018; Ambient Temp: 22.6°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7410; ConvF(7.5, 7.5, 7.5); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Bluetooth, Right Head, Cheek, Ch 39, 1Mbps

Area Scan (11x19x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.963 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.195 W/kg SAR(1 g) = 0.081 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


 $\begin{array}{l} \mbox{Communication System: UID 0, _GSM GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ \mbox{f} = 836.6 \mbox{ MHz; } \sigma = 1.006 \mbox{ S/m; } \epsilon_r = 53.64; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

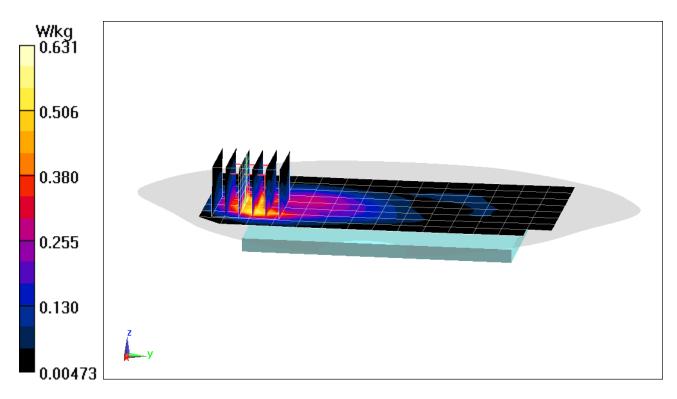
Test Date: 08-22-2018; Ambient Temp: 23.8°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7406; ConvF(9.61, 9.61, 9.61); Calibrated: 5/22/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/22/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 850, Body SAR, Back Side, Mid.ch, 3 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.76 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.958 W/kg SAR(1 g) = 0.520 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


 $\begin{array}{l} \mbox{Communication System: UID 0, _GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1880 \mbox{MHz; } \sigma = 1.568 \mbox{ S/m; } \epsilon_r = 51.496; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

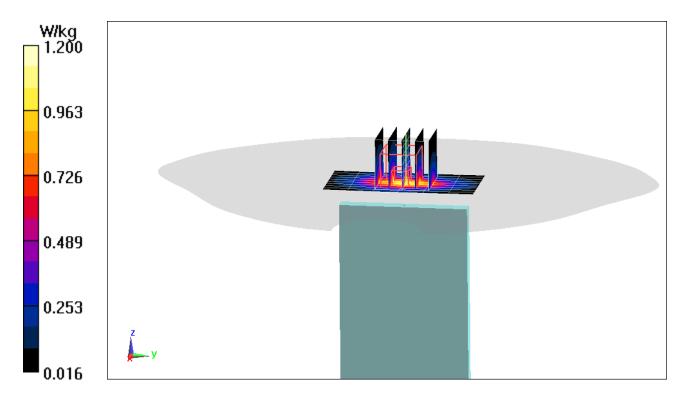
Test Date: 08-20-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7406; ConvF(7.74, 7.74, 7.74); Calibrated: 5/22/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/22/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 1900, Body SAR, Back Side, Mid.ch, 3 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.40 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.734 W/kg SAR(1 g) = 0.433 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1909.8 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.592$ S/m; $\epsilon_r = 51.477$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

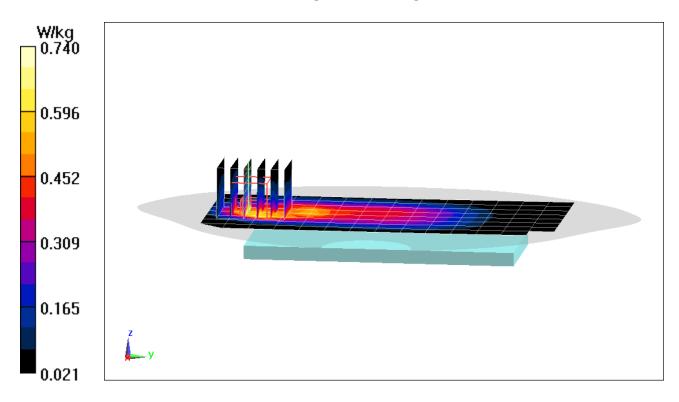
Test Date: 08-20-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7406; ConvF(7.74, 7.74, 7.74); Calibrated: 5/22/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/22/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 1900, Body SAR, Bottom Edge, High.ch, 3 Tx Slots

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.81 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.812 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.6 \mbox{ MHz; } \sigma = 1.006 \mbox{ S/m; } \epsilon_r = 53.64; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

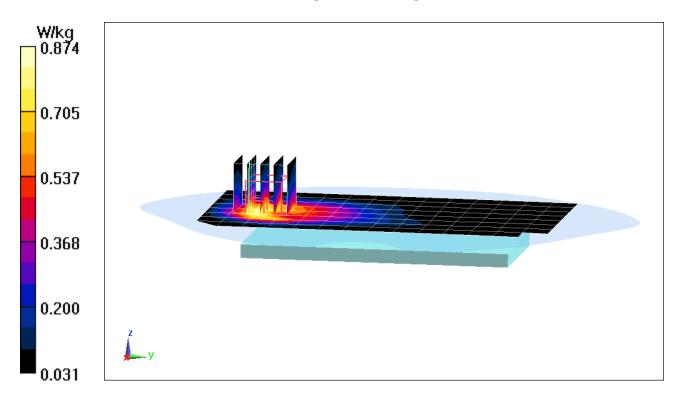
Test Date: 08-22-2018; Ambient Temp: 23.8°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7406; ConvF(9.61, 9.61, 9.61); Calibrated: 5/22/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/22/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 850, Body SAR, Back Side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.51 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.894 W/kg SAR(1 g) = 0.488 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19710


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1712.4 \mbox{ MHz; } \sigma = 1.449 \mbox{ S/m; } \epsilon_r = 51.973; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

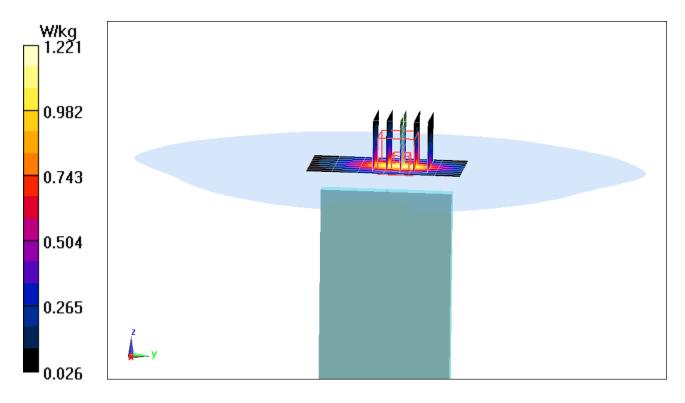
Test Date: 08-20-2018; Ambient Temp: 22.9°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3213; ConvF(5.1, 5.1, 5.1); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1750, Body SAR, Back Side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.87 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.748 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19710


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1732.4 \mbox{ MHz; } \sigma = 1.47 \mbox{ S/m; } \epsilon_r = 51.896; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

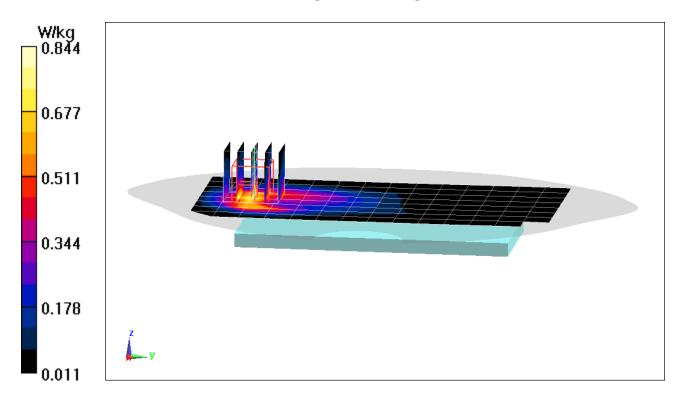
Test Date: 08-20-2018; Ambient Temp: 22.9°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3213; ConvF(5.1, 5.1, 5.1); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1750, Body SAR, Bottom Edge, Mid.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.96 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.65 W/kg SAR(1 g) = 0.996 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1852.4 \mbox{ MHz; } \sigma = 1.548 \mbox{ S/m; } \epsilon_r = 51.506; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

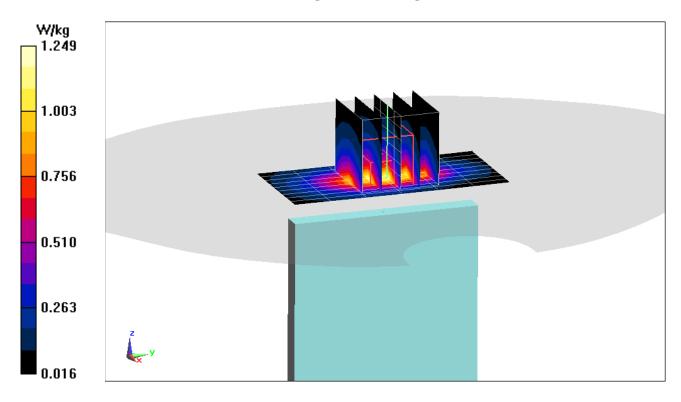
Test Date: 08-20-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7406; ConvF(7.74, 7.74, 7.74); Calibrated: 5/22/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/22/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1900, Body SAR, Back Side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.81 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.629 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19728


Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): $f = 1907.6 \text{ MHz}; \sigma = 1.59 \text{ S/m}; \epsilon_r = 51.479; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

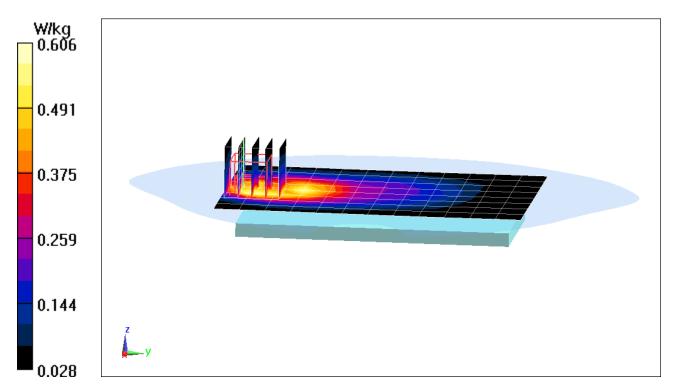
Test Date: 08-20-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7406; ConvF(7.74, 7.74, 7.74); Calibrated: 5/22/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/22/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1900, Body SAR, Bottom Edge, High.ch

Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.22 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 0.854 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19736


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ f = 707.5 \mbox{ MHz; } \sigma = 0.92 \mbox{ S/m; } \epsilon_r = 56.454; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

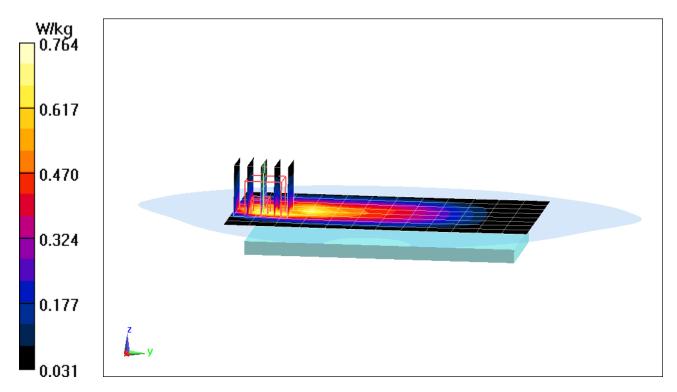
Test Date: 08-21-2018; Ambient Temp: 22.0°C; Tissue Temp: 24.6°C

Probe: EX3DV4 - SN7410; ConvF(9.87, 9.87, 9.87); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 12, Body SAR, Back Side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.64 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.733 W/kg SAR(1 g) = 0.407 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19736


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ \mbox{f = 782 MHz; } \sigma = 0.986 \ \mbox{S/m; } \epsilon_r = 55.82; \ \mbox{\rho} = 1000 \ \mbox{kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

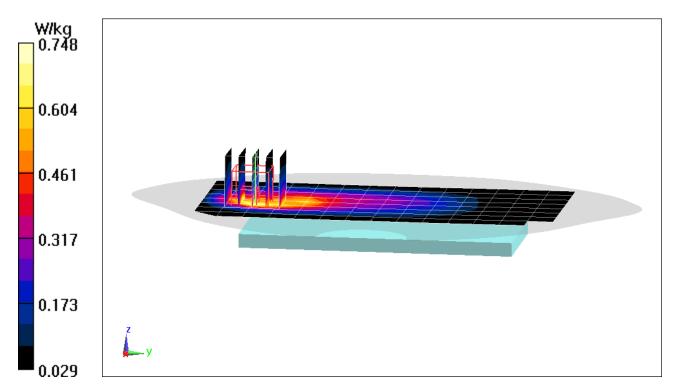
Test Date: 08-21-2018; Ambient Temp: 22.0°C; Tissue Temp: 24.6°C

Probe: EX3DV4 - SN7410; ConvF(9.87, 9.87, 9.87); Calibrated: 7/20/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2018 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 13, Body SAR, Back Side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.86 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.907 W/kg SAR(1 g) = 0.512 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 19769


Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 1.004$ S/m; $\epsilon_r = 53.654$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-22-2018; Ambient Temp: 23.8°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7406; ConvF(9.61, 9.61, 9.61); Calibrated: 5/22/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/22/2018 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 26 (Cell.), Body SAR, Back Side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.15 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.911 W/kg SAR(1 g) = 0.502 W/kg

