

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT

FCC PART 15.407 UNII

Applicant Name:

LG Electronics USA, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 01/14/20 - 02/13/20 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M2001130006-06.ZNF

FCC ID:

ZNFQ730TM

APPLICANT:

LG Electronics USA, Inc.

Application Type: Model: Additional Model(s): EUT Type: Frequency Range: Modulation Type: FCC Classification: FCC Rule Part(s): Test Procedure(s):

Certification LM-Q730TM LM-Q730MM, LMQ730TM, LMQ730MM, Q730TM, Q730MM Portable Handset 5180 – 5825MHz OFDM Unlicensed National Information Infrastructure (UNII) Part 15 Subpart E (15.407) ANSI C63.10-2013, KDB 789033 D02 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 1 of 85
© 2020 PCTEST		•	V 9.0 02/01/2019

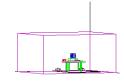


TABLE OF CONTENTS

1.0	0 INTRODUCTION					
	1.1	Scope		4		
	1.2	PCTE	ST Test Location	4		
	1.3	Test F	acility / Accreditations	4		
2.0	PROD	UCT INF	FORMATION	5		
	2.1	Equip	ment Description	5		
	2.2	Devic	e Capabilities	5		
	2.3	Test C	Configuration	6		
	2.4	EMI S	uppression Device(s)/Modifications	6		
3.0	DESC	RIPTION	I OF TESTS	7		
	3.1	Evalu	ation Procedure	7		
	3.2	AC Li	ne Conducted Emissions	7		
	3.3	Radia	ted Emissions	8		
	3.4	Enviro	nmental Conditions	8		
4.0	ANTE	NNA RE	QUIREMENTS	9		
5.0	MEAS	UREME	NT UNCERTAINTY	10		
6.0	TEST	EQUIPM	IENT CALIBRATION DATA	11		
7.0	TEST	RESULT	⁻ S	12		
	7.1	Summ	nary	12		
	7.2	26dB	Bandwidth Measurement – 802.11a/n/ac	13		
	7.3	6dB B	andwidth Measurement – 802.11a/n/ac	30		
	7.4	UNII	Dutput Power Measurement – 802.11a/n/ac	36		
	7.5	Maxin	num Power Spectral Density – 802.11a/n/ac	39		
	7.6	Radia	ted Spurious Emission Measurements – Above 1GHz	61		
		7.6.1	Radiated Spurious Emission Measurements	64		
		7.6.2	Radiated Band Edge Measurements (20MHz BW)	73		
		7.6.3	Radiated Band Edge Measurements (40MHz BW)	75		
		7.6.4	Radiated Band Edge Measurements (80MHz BW)	77		
	7.7	Line-C	Conducted Test Data	79		
8.0	CONC	LUSION		85		

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Dega 2 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 2 of 85
© 2020 PCTEST		·		V 9.0 02/01/2019

MEASUREMENT REPORT

	Channel		Conducted Power		
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)	
1		5180 - 5240	73.282	18.65	
2A	20	5260 - 5320	71.779	18.56	
2C		5500 - 5720	74.989	18.75	
3		5745 - 5825	69.024	18.39	
1		5190 - 5230	60.395	17.81	
2A	40	5270 - 5310	57.943	17.63	
2C	40	5510 - 5710	60.534	17.82	
3		5755 - 5795	59.156	17.72	
1		5210	28.184	14.50	
2A	80	5290	27.669	14.42	
2C		5530 - 5690	31.769	15.02	
3		5775	30.690	14.87	

EUT Overview

FCC ID: ZNFQ730TM	<u>CTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 3 of 85
© 2020 PCTEST	•	•		V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 4 of 85
© 2020 PCTEST			V 9.0 02/01/2019

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG Portable Handset FCC ID: ZNFQ730TM. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 03395, 03379, 03387, 03361

2.2 **Device Capabilities**

This device contains the following capabilities:

800/850/1900 CDMA/EvDO Rev0/A, 1x Advanced (BC0), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
36	5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	:	:
42	5210	56	5280	120	5600	157	5785
:	:	:	:	:	:	:	:
48	5240	64	5320	144	5720	165	5825

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

	Band 1
Ch.	Frequency (MHz)
38	5190
:	
46	5230

	Band 2A
Ch.	Frequency (MHz)
54	5270
:	
62	5310

	Band 2C
Ch.	Frequency (MHz)
102	5510
:	•
118	5590
:	
142	5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	
159	5795

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

	Band 1		Band 2A		Band 2C	_	Band 3
Ch.	Frequency (MHz)						
42	5210	58	5290	106	5530	155	5775
				:	:		
				138	5690		

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 5 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 5 of 85
© 2020 PCTEST			V 9.0 02/01/2019

Notes:

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

802.11 M	Duty Cycle [%]	
	а	96.8
	n (HT20)	96.6
5GHz	ac (HT20)	96.6
50112	n (HT40)	87.9
	ac (HT40)	88.0
	ac (HT80)	78.5

Table 2-4. Measured Duty Cycles

2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage C of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 6 of 85
© 2020 PCTEST		·		V 9.0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.7. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga Z of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 7 of 85
© 2020 PCTEST	-	·		V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 8 of 85
© 2020 PCTEST		·		V 9.0 02/01/2019

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: ZNFQ730TM	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 85	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Fage 9 01 85	
© 2020 PCTEST			V 9.0 02/01/2019	

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 10 of 85
© 2020 PCTEST		·	V 9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL40-1	Conducted Cable Set (40GHz)	10/30/2019	Annual	10/30/2020	WL40-1
-	WL25-1	Conducted Cable Set (25GHz)	10/30/2019	Annual	10/30/2020	WL25-1
Agilent	N9038A	MXE EMI Receiver	7/17/2019	Annual	7/17/2020	MY51210133
Agilent	N9030A	PXA Signal Analyzer (44GHz)	6/12/2019	Annual	6/12/2020	MY52350166
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	ML2496A	Power Meter	11/6/2019	Annual	11/6/2020	1405003
Anritsu	MA2411B	Pulse Power Sensor	10/15/2019	Annual	10/15/2020	1339026
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Com-Power	AL-130R	Active Loop Antenna	8/22/2019	Annual	8/22/2020	121085
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	5/10/2019	Annual	5/10/2020	441112
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	6/7/2018	Triennial	6/7/2021	9203-2178
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	6/18/2018	Biennial	6/18/2020	114451
Huber + Suhner	Sucoflex 102A	40GHz Radiated Cable Set	1/31/2019	Annual	1/31/2020	251425001
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	6/3/2019	Annual	6/3/2020	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	6/5/2019	Annual	6/5/2020	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/23/2019	Annual	9/23/2020	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	5/6/2019	Annual	5/6/2020	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/11/2019	Annual	7/11/2020	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/8/2019	Annual	7/8/2020	102133
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	1/31/2019	Annual	1/31/2020	100040
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

 Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFQ730TM	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 11 of 85
© 2020 PCTEST		•	V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics USA, Inc.
FCC ID:	<u>ZNFQ730TM</u>
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Power Spectral DensityMaximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])Dynamic Frequency SelectionSee DFS Test Report			PASS	Section 7.5
15.407(h)	RSS-247 [6.3]				PASS	See DFS Test Report
15.407(b.1), (2), (3), (4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b.1), (4), (5), (6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.7.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.1.

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 12 of 85	
© 2020 PCTEST				V 9.0 02/01/2019	

7.2 26dB Bandwidth Measurement – 802.11a/n/ac RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 13 of 85
© 2020 PCTEST				V 9.0 02/01/2019

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	24.81
	5200	40	а	6	23.72
	5240	48	а	6	25.20
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	23.66
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	22.20
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	21.32
	5190	38	n (40MHz)	13.5/15 (MCS0)	40.09
	5230	46	n (40MHz)	13.5/15 (MCS0)	54.84
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	80.44
	5260	52	а	6	24.14
	5280	56	а	6	22.93
	5320	64	а	6	23.27
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	21.61
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	24.27
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	21.25
	5270	54	n (40MHz)	13.5/15 (MCS0)	40.23
	5310	62	n (40MHz)	13.5/15 (MCS0)	40.10
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	80.78
	5500	100	а	6	24.27
	5600	120	а	6	21.48
	5720	144	а	6	26.19
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	21.59
U	5600	120	n (20MHz)	6.5/7.2 (MCS0)	21.02
q 2	5720	144	n (20MHz)	6.5/7.2 (MCS0)	24.53
Band 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	41.51
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	44.93
	5710	142	n (40MHz)	13.5/15 (MCS0)	60.78
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	80.04
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	80.47
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	80.43

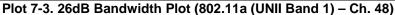
PCTEST

Table 7-2. Conducted Bandwidth Measurements

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 14 of 85
© 2020 PCTEST		·	V 9.0 02/01/2019

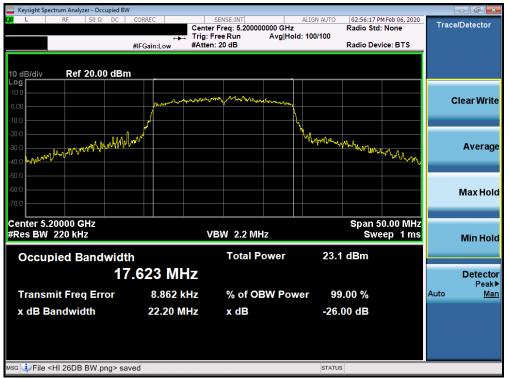
	ectrum Analyz														
X/RL	RF	50 Ω	DC	CORRE	C	Cer		ISE:INT ea: 5.1800	00000 GHz			11:13:55 adio Sto	AM Feb 12, 2020	Tra	ce/Detector
		1	NFE			🗕 Trig	g: Free tten: 20	Run		ld: 100/10		adia Da	vice: BTS		
,				#IFGai	n:Low	#AL	iten. zu	7 a B				auto De	VICE. B13		
40.101.1	Def			_											
10 dB/div Log	Rei	20.00) dBn									1			
10.0			m. M	here and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	-	Manha	mmanna	mortyles	March as				Clear Writ
0.00		and the second s						·			****	1			
10.0	- AND TO AND	N										P South and	Whater		
-20.0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r														_
-30.0															Averag
-40.0															
-50.0															
-60.0															Max Hold
-70.0														_	
Center 5.	.18 GHz											Spa	an 25 MHz		
Res BW	240 kHz						VBV	V 2.4 M	Hz				eep 1ms		Min Hol
000	pied B	and	widt	h				Total	Power	-	24.5 d	Bm			
Occu		anu			~ • •			Total			24.0 0				_
			16	0.64	2 M	ΗZ									Detecto Peak
Transr	nit Fred	Err	or		8.306	kHz		% of C	BW Pov	ver	99.0	0 %		Auto	Ma
x dB B	andwid	lth		2	4.81	MHz		x dB			-26.00	dB			
ISG										s	TATUS				

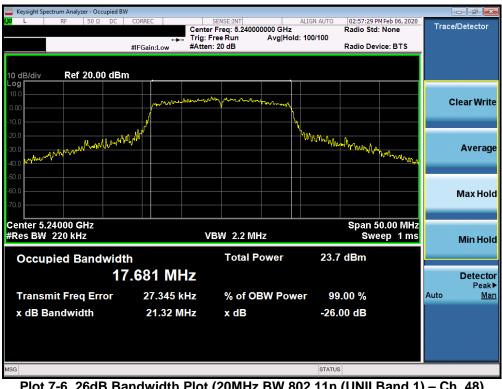
Plot 7-1. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 36)



Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFQ730TM	<u>PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 15 of 05	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 15 of 85	
© 2020 PCTEST		·	V 9.0 02/01/2019	




Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

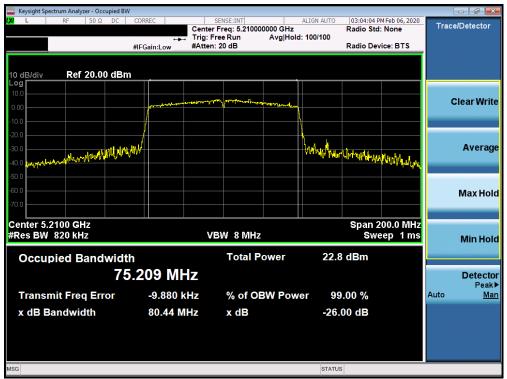
FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 16 of 85	
© 2020 PCTEST		•		V 9.0 02/01/2019	

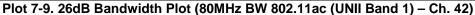
Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)



Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 17 of 85
© 2020 PCTEST	•		V 9.0 02/01/2019





Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 19 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 18 of 85	
© 2020 PCTEST		·	V 9.0 02/01/2019	

Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

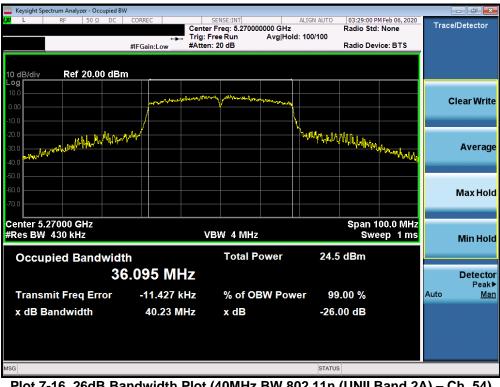
FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	landset	
© 2020 PCTEST	•			V 9.0 02/01/2019

Plot 7-11. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 64)

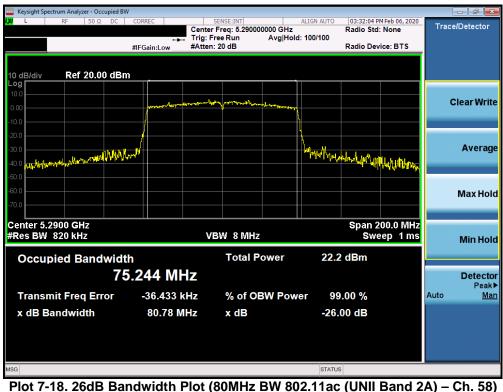
FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 20 of 85
© 2020 PCTEST	•	•	V 9.0 02/01/2019

Plot 7-13. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

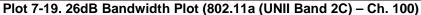

Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 21 of 85	
© 2020 PCTEST		·		V 9.0 02/01/2019	

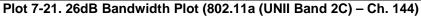
Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)


Plot 7-16. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 22 of 85
© 2020 PCTEST	•	•	V 9.0 02/01/2019


Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 23 of 85
© 2020 PCTEST			V 9.0 02/01/2019



Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) – Ch. 120)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 24 of 85
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

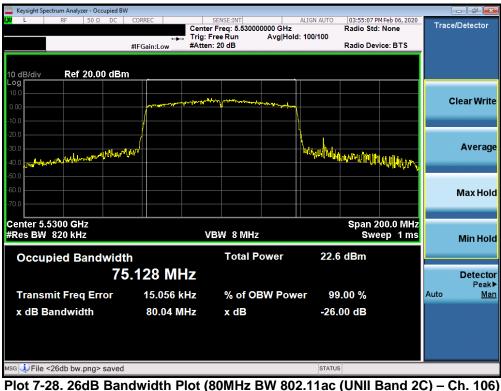
FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 25 of 25
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 25 of 85
© 2020 PCTEST		·		V 9.0 02/01/2019


Plot 7-23. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

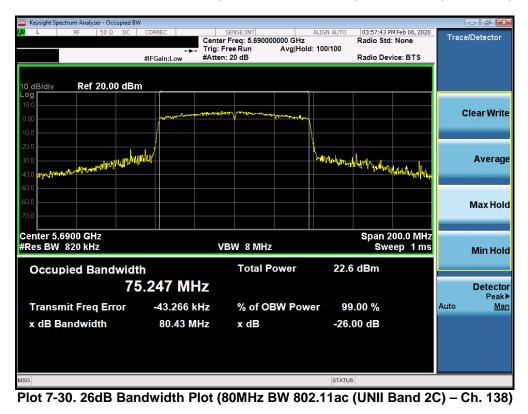
FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 26 of 85
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-25. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)


Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕞 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 27 of 85
© 2020 PCTEST		•		V 9.0 02/01/2019

Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)


FIOU 7-20. 2008 Balluwidth FIOU (0000172 BW 002.11ac (01011 Ballu 2C) - Ch. 100)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 28 of 85
© 2020 PCTEST	•			V 9.0 02/01/2019

Keysight Spectrum Analyzer - Occupied BW					
			Radio St d: 100/100	PM Feb 06, 2020 d: None wice: BTS	Trace/Detector
10 dB/div Ref 20.00 dB m					
0.00		my more and an address of the			Clear Write
-10.0					Average
-30.0 -40.0 paret and a block of the formation of the physical states of the physical state			WAMAN MANTALANA AND AND AND AND AND AND AND AND AND	hull have	Average
-60.0					Max Hold
Center 5.6100 GHz #Res BW 820 kHz	VE	SW 8 MHz		200.0 MHz eep 1 ms	Min Hold
Occupied Bandwidth		Total Power	22.5 dBm		
75. Transmit Freg Error	282 MHz -17.887 kHz	% of OBW Pow	ver 99.00 %		Detector Peak▶ Auto <u>Man</u>
x dB Bandwidth	80.47 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-29. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

FCC ID: ZNFQ730TM	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 29 of 85
© 2020 PCTEST		·		V 9.0 02/01/2019

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e); RSS-Gen [6.2]

<u>915.407 (e); RSS-Gen [6.2]</u>

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

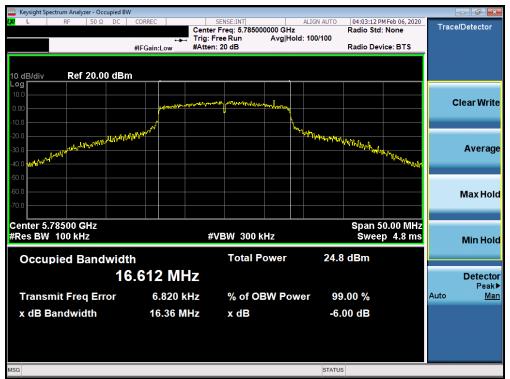
Figure 7-2. Test Instrument & Measurement Setup

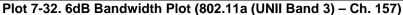
Test Notes

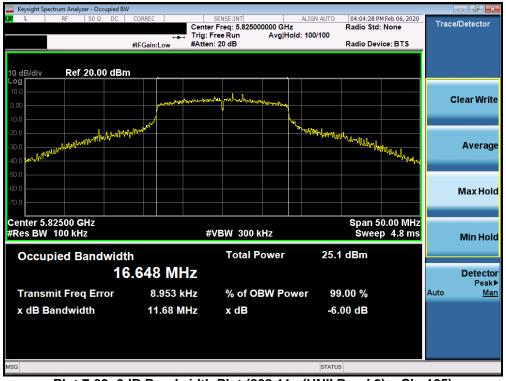

None.

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 30 of 85
© 2020 PCTEST				V 9.0 02/01/2019

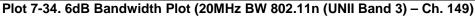
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	15.15
	5785	157	а	6	16.36
	5825	165	а	6	11.68
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	15.13
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	15.00
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	13.84
	5755	151	n (40MHz)	13.5/15 (MCS0)	35.20
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.10
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.44

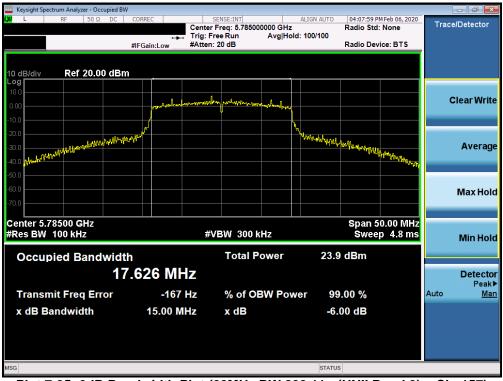

Table 7-3. Conducted Bandwidth Measurements



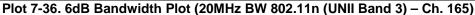

Plot 7-31. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 31 of 85
© 2020 PCTEST		•		V 9.0 02/01/2019



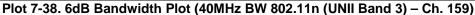

Plot 7-33. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 32 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 32 of 85
© 2020 PCTEST		·	V 9.0 02/01/2019



Plot 7-35. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	
© 2020 PCTEST			V 9.0 02/01/2019



Plot 7-37. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		
© 2020 PCTEST				V 9.0 02/01/2019

Plot 7-39. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	
© 2020 PCTEST		•	V 9.0 02/01/2019

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.25) = 24.27dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.02) = 24.23dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

Per RSS-247 Section 6.2.3, transmission on channels which overlap the 5600-5650 MHz is prohibited. This device operates under these frequencies only under the control of a certified master device and does not support active scanning on these channels. This device does not transmit any beacons or initiate any transmissions in UNII Bands 2A or 2C.

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 26 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 36 of 85
© 2020 PCTEST			V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector	IEEE Transmission Mode			Conducted Power Limit	Conducted Power
Ē				802.11a	802.11n	802.11ac	[dBm]	Margin [dB]
ЦТ.	5180	36	AVG	18.65	17.64	17.72	23.98	-5.33
vic	5200	40	AVG	17.99	16.86	17.06	23.98	-5.99
5	5220	44	AVG	18.15	17.11	17.62	23.98	-5.83
andwidth)	5240	48	AVG	18.27	17.25	17.72	23.98	-5.71
Ba	5260	52	AVG	18.39	17.32	17.85	23.98	-5.59
N	5280	56	AVG	18.54	17.49	17.90	23.98	-5.44
T	5300	60	AVG	18.50	17.50	17.93	23.98	-5.48
(20M	5320	64	AVG	18.56	17.52	18.06	23.98	-5.42
20	5500	100	AVG	18.75	17.58	18.46	23.98	-5.23
) z	5600	120	AVG	18.42	17.35	17.96	23.98	-5.56
Ï	5620	124	AVG	18.14	17.12	17.85	23.98	-5.84
U	5720	144	AVG	18.27	17.31	17.80	23.98	-5.71
2 2	5745	149	AVG	18.39	17.46	18.29	30.00	-11.61
	5785	157	AVG	17.79	16.91	17.88	30.00	-12.12
	5825	165	AVG	18.12	17.07	17.78	30.00	-11.88

Table 7-4. 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Channel Detector		nission Mode	Conducted Power Limit	Conducted Power
				802.11n	802.11ac	[dBm]	Margin [dB]
N C	5190	38	AVG	16.20	16.20	23.98	-7.78
0MH3 idth)	5230	46	AVG	17.81	17.55	23.98	-6.17
(40M widtl	5270	54	AVG	17.47	17.63	23.98	-6.35
	5310	62	AVG	16.41	16.37	23.98	-7.57
Po Lo Lo	5510	102	AVG	16.42	16.41	23.98	-7.56
Ba Ba	5590	118	AVG	17.54	17.73	23.98	-6.25
50	5630	126	AVG	17.52	17.53	23.98	-6.45
	5710	142	AVG	17.09	17.82	23.98	-6.16
	5755	151	AVG	17.54	17.42	30.00	-12.46
	5795	159	AVG	17.72	17.69	30.00	-12.28

Table 7-5. 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 37 of 85
© 2020 PCTEST				V 9.0 02/01/2019

Hz (u	Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
(80MH: lwidth)	5210	42	AVG	14.5	23.98	-9.48
: (8 dwi	5290	58	AVG	14.42	23.98	-9.56
5GHz Band	5530	106	AVG	14.69	23.98	-9.29
5GH Ba	5610	122	AVG	14.62	23.98	-9.36
	5690	138	AVG	15.02	23.98	-8.96
	5775	155	AVG	14.87	30.00	-15.13

Table 7-6. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFQ730TM	<u>CTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 85
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	raye so ui os
© 2020 PCTEST			V 9.0 02/01/2019

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

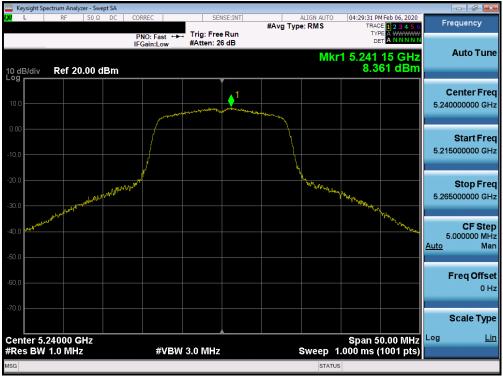
FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 39 of 85
© 2020 PCTEST	•	·		V 9.0 02/01/2019

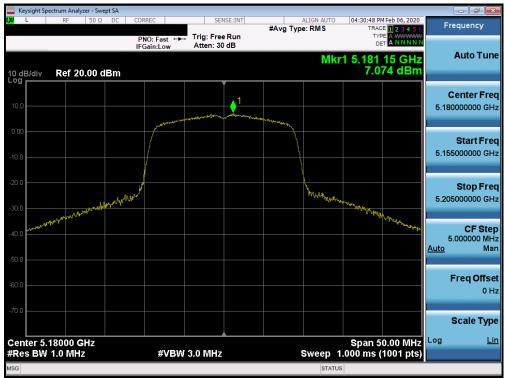
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	8.31	11.0	-2.69
	5200	40	а	6	7.58	11.0	-3.42
	5240	48	а	6	8.36	11.0	-2.64
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	7.07	11.0	-3.93
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	6.39	11.0	-4.61
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	7.02	11.0	-3.98
	5190	38	n (40MHz)	13.5/15 (MCS0)	3.24	11.0	-7.76
	5230	46	n (40MHz)	13.5/15 (MCS0)	5.12	11.0	-5.88
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.03	11.0	-12.03
	5260	52	а	6	8.62	11.0	-2.38
	5280	56	а	6	8.58	11.0	-2.42
	5320	64	а	6	9.05	11.0	-1.95
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	7.34	11.0	-3.66
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	7.59	11.0	-3.41
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	7.94	11.0	-3.06
	5270	54	n (40MHz)	13.5/15 (MCS0)	4.49	11.0	-6.51
	5310	62	n (40MHz)	13.5/15 (MCS0)	3.39	11.0	-7.61
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-1.75	11.0	-12.75
	5500	100	а	6	8.86	11.0	-2.14
	5600	120	а	6	8.04	11.0	-2.96
	5720	144	а	6	7.96	11.0	-3.04
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	7.61	11.0	-3.39
с	5600	120	n (20MHz)	6.5/7.2 (MCS0)	6.82	11.0	-4.18
q 2	5720	144	n (20MHz)	6.5/7.2 (MCS0)	6.81	11.0	-4.19
Band 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	3.35	11.0	-7.66
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	4.60	11.0	-6.40
	5710	142	n (40MHz)	13.5/15 (MCS0)	4.39	11.0	-6.61
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-1.55	11.0	-12.55
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-1.96	11.0	-12.96
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-4.58	11.0	-15.58

Table 7-7. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

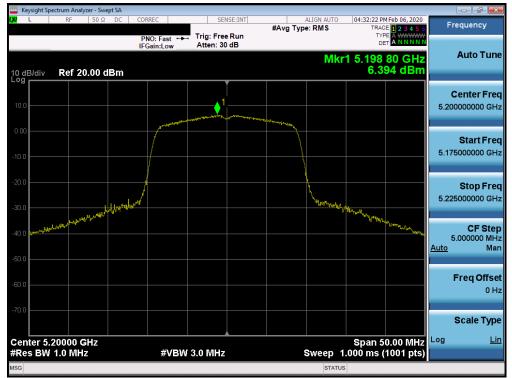
FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 40 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 40 of 85
© 2020 PCTEST		•		V 9.0 02/01/2019

Keysight Sp	pectrum Analy:	zer - Swept	t SA										
XI RL	RF	50 Ω N	DC FE	CORREC	de 🕟	Trig: Free		#Avg Typ	e:RMS	TRAC	M Feb 12, 2020 E 1 2 3 4 5 6 E A WWWW A N N N N N	F	requency
10 dB/div Log	Ref 15			IFGain:L	ow	Atten: 26	dB		Mkr	1 5.178 9	,		Auto Tune
5.00			ه.ور.ور _{اسم الس}	ومهرمته والمعدوم		● ¹	and the second se	in rate of solid for	Programme (start	-			Center Fred
-5.00	www.work	/									Why way and a second	5.16	Start Free 7500000 GH:
35.0												5.19	Stop Free 2500000 GH
45.0												Auto	CF Stej 2.500000 MH Ma
65.0													Freq Offse 0 H
-75.0	40000-0											Log	Scale Type Lir
	.18000 G / 1.0 MHz			#	VBW 3	3.0 MHz			Sweep	Span 2 1.000 ms (5.00 MHz 1001 pts)	Log	<u></u>
MSG									STATU	IS			


Plot 7-40. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)


Plot 7-41. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

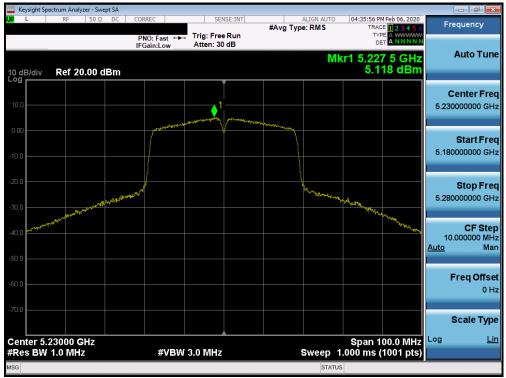
FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 41 of 85
© 2020 PCTEST	-	•		V 9.0 02/01/2019


Plot 7-42. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)

Plot 7-43. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

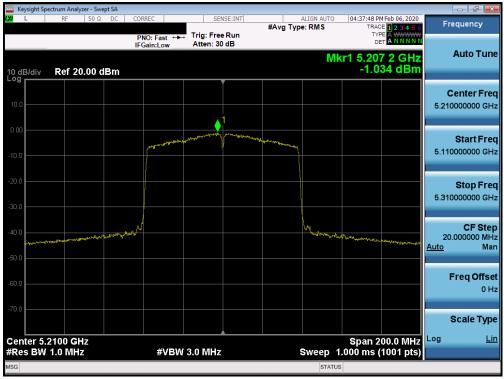
FCC ID: ZNFQ730TM	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 42 of 85
© 2020 PCTEST	•	·		V 9.0 02/01/2019

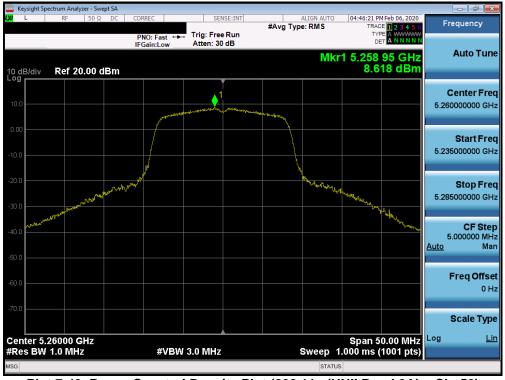
Plot 7-44. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)


Plot 7-45. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFQ730TM	<u>«</u> <i>PCTEST</i>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 43 of 85
© 2020 PCTEST	•	·	V 9.0 02/01/2019

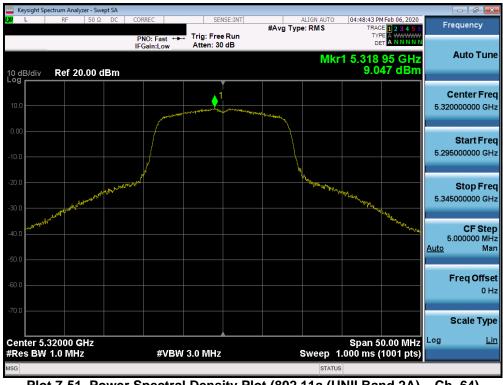
L	ectrum Analyzer - Sw RF 50 Ω		CORREC	SEN	SE:INT		ALIGN AUTO		M Feb 06, 2020	Frequency
			PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 30		#Avg Typ	e: RMS	TYP	E 1 2 3 4 5 6 E A WWWW A NNNNN	
) dB/div	Ref 20.00 (dBm					Mk	r1 5.19 3.2	2 2 GHz 40 dBm	Auto Tu
					1					Center Fr 5.190000000 G
00						and a start of the				Start Fr 5.140000000 G
).0).0			<u> </u>				nd marked when	h.		Stop Fr 5.240000000 G
).0 	and the second s	d y ll y and the date					""U'ModerA	hall how and person	Maliken of the Without	CF Ste 10.000000 M <u>Auto</u> M
).0										Freq Offs 0
0.0										Scale Ty
	19000 GHz 1.0 MHz		#VBW	/ 3.0 MHz			Sweep 1	Span 1 .000 ms (00.0 MHz 1001 pts)	Log <u>l</u>
G							STATUS			


Plot 7-46. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)


Plot 7-47. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 44 of 85	
© 2020 PCTEST	-			V 9.0 02/01/2019	

Plot 7-48. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)


Plot 7-49. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 45 of 85
© 2020 PCTEST			V 9.0 02/01/2019

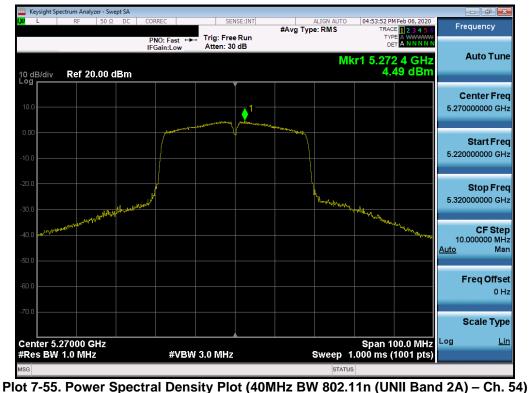
Keysight Sp	ectrum Analyz				_								
L	RF	50 Ω	DC	CORREC			ISE:INT	#Avg Typ	ALIGN AUTO	TRAC	M Feb 06, 2020 CE 1 2 3 4 5 6	F	equency
				PNO: F IFGain:l	ast ↔ .ow	Trig: Free Atten: 30				Di			
) dB/div	Ref 20	.00 dE	3m						Mkr	1 5.281 8.5	30 GHz 81 dBm		Auto Tun
0.0						and any second second	1	an provinse					Center Fre
0.0												5.25	Start Fre 5000000 GF
0.0	سرمل ال	مىر سىرىسى	horderspecture	*				4	A northern the	a styring work water		5.30	Stop Fre 5000000 GF
0.0 anner	adminin New York										and the second second	Auto	CF Ste 5.000000 MI Mi
).0).0													Freq Offs 0
0.0													Scale Typ
	28000 GI 1.0 MHz				≠vbw:	3.0 MHz			Sweep_1	Span 5 .000 ms	0.00 MHz (1001 pts)	Log	L
G									STATUS				


Plot 7-50. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 56)

Plot 7-51. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 46 of 85
© 2020 PCTEST		•		V 9.0 02/01/2019


Plot 7-52. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

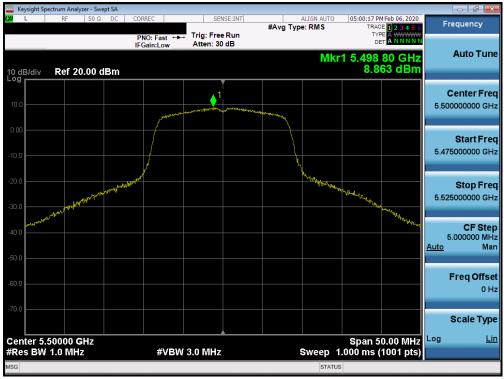

Plot 7-53. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

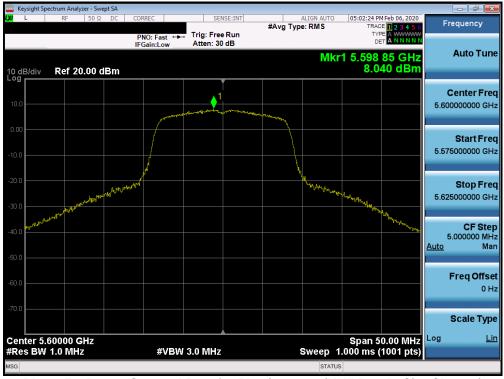
FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 47 of 85	
© 2020 PCTEST				V 9.0 02/01/2019	

Plot 7-54. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

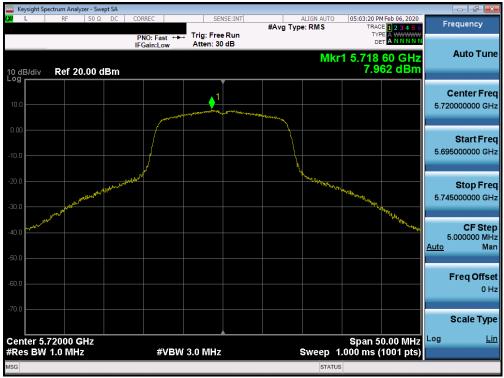
FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 49 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 48 of 85	
© 2020 PCTEST	-			V 9.0 02/01/2019	

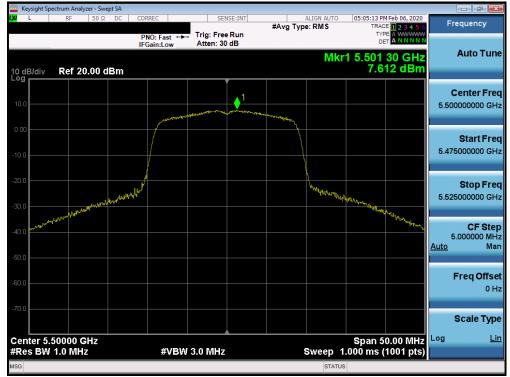
Keysight Sp	pectrum Analyz											d 💌
L	RF	50 Ω D(C CORF	REC	SE	NSE:INT	#Avg Typ	ALIGN AUTO		M Feb 06, 2020	Freque	ency
			PN IFG	O: Fast ↔ ain:Low	, Trig: Fre Atten: 30				TYI Di			
0 dB/div .og	Ref 20	.00 dBn	n					Mł	(r1 5.31) 3.3	3 0 GHz 86 dBm	Au	o Tun
						Ĭ					Cent	er Fre
10.0					- Automorphysics	1 minune					5.310000	000 GH
0.00				for the second second		V .	A MANAGER AND A MANAGER				Sta	art Fre
io.o											5.260000	000 GH
0.0								1			Ste	op Fre
.0.0			/					<u>\</u>			5.360000	000 GH
0.0	money allahing	May 14 مار	www					margel the la	whether			CF Ste
0.0										W HILderman	10.000 <u>Auto</u>	000 MI Ma
											Free	offs
0.0												01
0.0											Sca	le Typ
	.31000 G								Span 1	00.0 10112	Log	L
Res BW	1.0 MHz			#VBV	/ 3.0 MHz			Sweep 1		(1001 pts)		


Plot 7-56. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

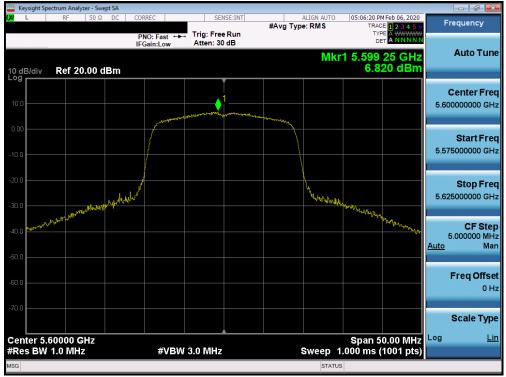

Plot 7-57. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

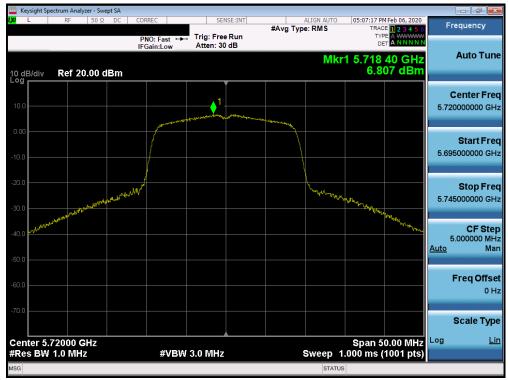
FCC ID: ZNFQ730TM	<u>«</u> <i>PCTEST</i>	MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 49 of 85
© 2020 PCTEST		•		V 9.0 02/01/2019


Plot 7-58. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 100)

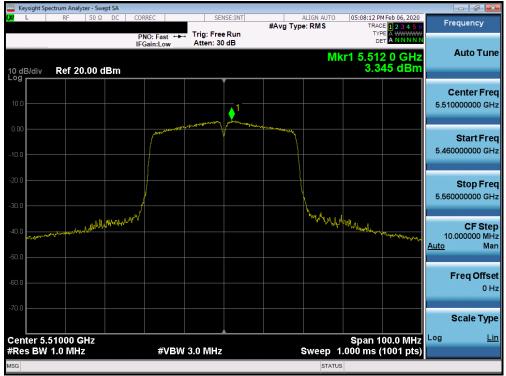

Plot 7-59. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 120)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 50 of 85	
© 2020 PCTEST		·		V 9.0 02/01/2019	


Plot 7-60. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 144)

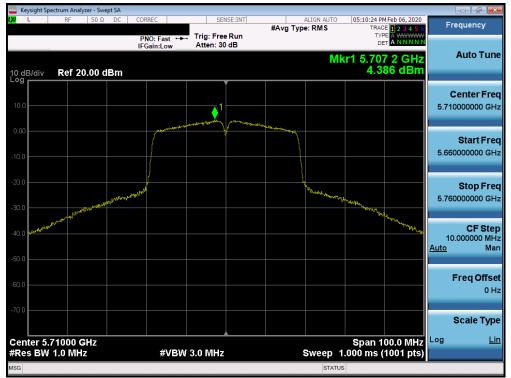

Plot 7-61. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFQ730TM	<u>«</u> PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 51 of 85	
© 2020 PCTEST	-			V 9.0 02/01/2019	


Plot 7-62. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)


Plot 7-63. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 52 of 85	
© 2020 PCTEST			V 9.0 02/01/2019	


Plot 7-64. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)


Plot 7-65. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 53 of 85
© 2020 PCTEST	•		V 9.0 02/01/2019

Plot 7-66. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-67. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 54 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 54 of 85
© 2020 PCTEST		·		V 9.0 02/01/2019

🔤 Keysight Spe	ectrum Analyzer - S										
XI L	RF 50	Ω DC	CORREC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO		M Feb 06, 2020	Freque	ency
			PNO: Fast ++ IFGain:Low	Trig: Free Atten: 30		0 71		TY D		Aut	o Tune
10 dB/div Log	Ref 20.00	dBm						-1.9	56 dBm		
										Cent	er Freq
10.0										5.610000	000 GHz
0.00					1						
			por monopoler	and the second s	file fail the production	monoringun					art Freq
-10.0										5.510000	000 GHz
-20.0										0.5	
										5.710000	o p Freq 000 GHz
-30.0											
-40.0		and the second these	4.V				Min Minter				CF Step
-	AL-PARTING DISPART							minatroman	**************************************	Auto	Man
-50.0											
-60.0										Free	Offset 0 Hz
											0 112
-70.0										Sca	le Type
Contor 5 d								On on 1			Lin
#Res BW	6100 GHz 1.0 MHz		#VBW	3.0 MHz			Sweep	span 2 1.000 ms (200.0 MHz (1001 pts)		
MSG							STATU	IS			

Plot 7-68. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

Plot 7-69. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

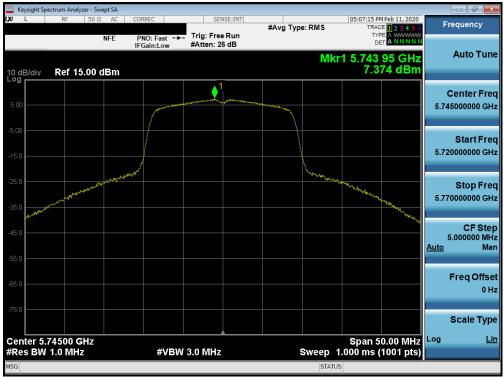
FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 55 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 55 of 85	
© 2020 PCTEST		·	V 9.0 02/01/2019	

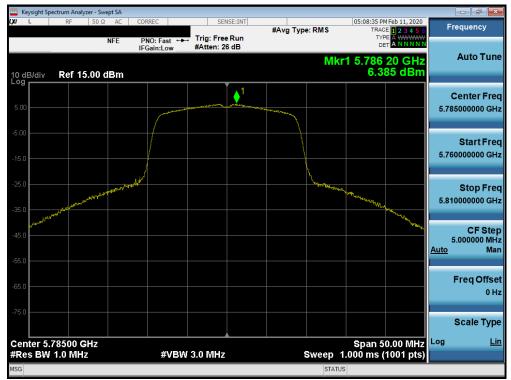
-	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	8.63	30.0	-21.37
	5785	157	а	6	7.59	30.0	-22.41
	5825	165	а	6	8.21	30.0	-21.79
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	7.37	30.0	-22.63
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	6.39	30.0	-23.62
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	6.80	30.0	-23.20
	5755	151	n (40MHz)	13.5/15 (MCS0)	4.22	30.0	-25.78
	5795	159	n (40MHz)	13.5/15 (MCS0)	4.18	30.0	-25.82
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-1.19	30.0	-31.19

Table 7-8. Band 3 Conducted Power Spectral Density Measurements

Plot 7-70. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo EC of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 56 of 85	
© 2020 PCTEST	•		V 9.0 02/01/2019	




Plot 7-72. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 57 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 57 of 85	
© 2020 PCTEST	•	·		V 9.0 02/01/2019	

Plot 7-73. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)

Plot 7-74. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 05	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 58 of 85	
© 2020 PCTEST				V 9.0 02/01/2019	


Plot 7-75. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

Plot 7-76. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 59 of 85
© 2020 PCTEST	•			V 9.0 02/01/2019

Plot 7-77. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-78. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 60 of 85
© 2020 PCTEST	-	·		V 9.0 02/01/2019

7.6 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-9 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-9. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 61 of 85
© 2020 PCTEST	•			V 9 0 02/01/2019

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

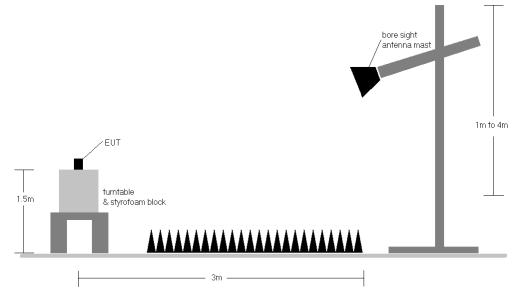


Figure 7-5. Test Instrument & Measurement Setup

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 62 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 62 of 85
© 2020 PCTEST	•	•	V 9.0 02/01/2019

Test Notes

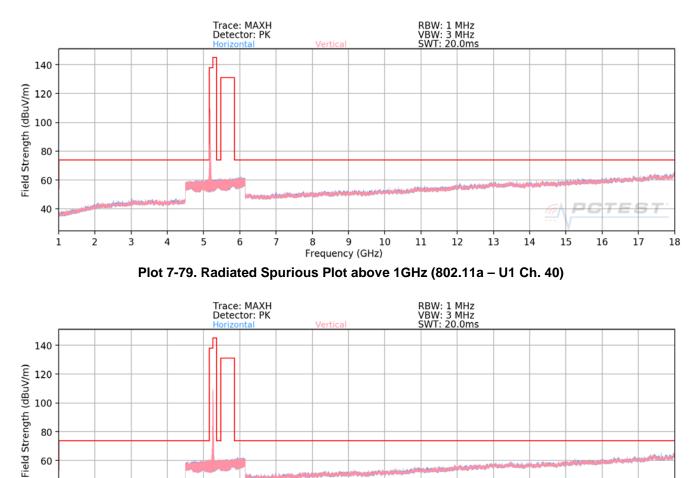
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

Determining Spurious Emissions Levels

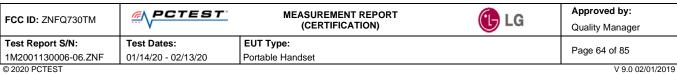
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

Radiated Band Edge Measurement Offset

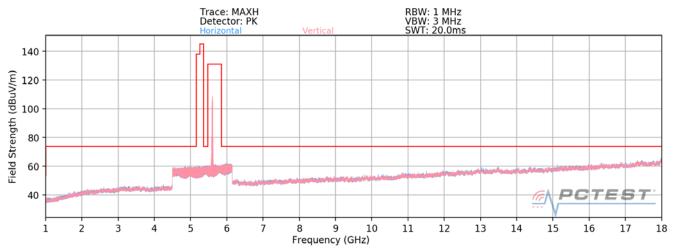

• The amplitude offset shown in the radiated restricted band edge plots was calculated using the formula:

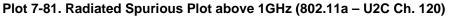
Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

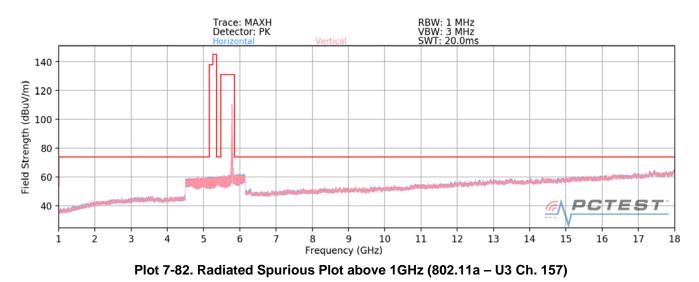
FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 85	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Fage 63 01 65	
© 2020 PCTEST			V 9.0 02/01/2019	

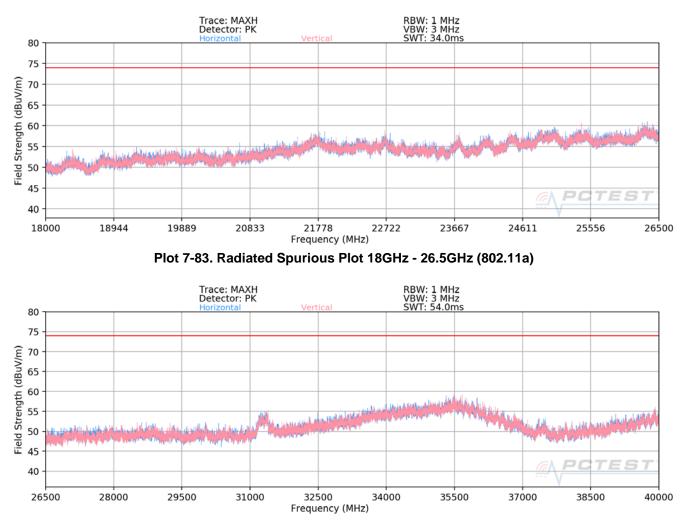


Frequency (GHz) Plot 7-80. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56)




PCTEST


7.6.1 Radiated Spurious Emission Measurements



FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage CE of 05
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset	Page 65 of 85
© 2020 PCTEST		•	V 9.0 02/01/2019

Radiated Spurious Emissions Measurements (Above 18GHz)

Plot 7-84. Radiated Spurious Plot 26.5GHz - 40GHz (802.11a)

FCC ID: ZNFQ730TM	PCTEST	EST MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 66 of 85
© 2020 PCTEST		•		V 9.0 02/01/2019

Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	V	-	-	-67.40	11.41	0.00	51.01	68.20	-17.19
*	15540.00	Average	V	-	-	-79.44	13.23	0.00	40.79	53.98	-13.19
*	15540.00	Peak	V	-	-	-68.69	13.23	0.00	51.54	73.98	-22.44
*	20720.00	Average	V	-	-	-78.96	17.51	-9.54	36.01	53.98	-17.97
*	20720.00	Peak	V	-	-	-67.41	17.51	-9.54	47.56	73.98	-26.42
	25900.00	Peak	V	-	-	-66.14	19.88	-9.54	51.20	68.20	-17.00

Table 7-10. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	V	-	-	-67.72	11.17	0.00	50.45	68.20	-17.75
*	15600.00	Average	V	-	-	-79.48	12.81	0.00	40.33	53.98	-13.65
*	15600.00	Peak	V	-	-	-68.60	12.81	0.00	51.21	73.98	-22.77
*	20800.00	Average	V	-	-	-78.84	17.87	-9.54	36.48	53.98	-17.50
*	20800.00	Peak	V	-	-	-67.27	17.87	-9.54	48.05	73.98	-25.93
	26000.00	Peak	V	-	-	-66.05	20.15	-9.54	51.55	68.20	-16.65

Table 7-11. Radiated Measurements

FCC ID: ZNFQ730TM	<u>«</u> <i>PCTEST</i>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 67 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 67 of 85
© 2020 PCTEST				V 9.0 02/01/2019

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	V	-	-	-67.94	11.37	0.00	50.43	68.20	-17.77
*	15720.00	Average	V	-	-	-79.69	15.18	0.00	42.49	53.98	-11.49
*	15720.00	Peak	V	-	-	-68.96	15.18	0.00	53.22	73.98	-20.76
*	20960.00	Average	V	-	-	-79.35	18.06	-9.54	36.16	53.98	-17.81
*	20960.00	Peak	V	-	-	-67.73	18.06	-9.54	47.78	73.98	-26.19
	26200.00	Peak	V	-	-	-66.11	20.23	-9.54	51.58	68.20	-16.62

Table 7-12. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	V	-	-	-68.53	11.86	0.00	50.33	68.20	-17.87
*	15780.00	Average	V	-	-	-79.74	13.75	0.00	41.01	53.98	-12.97
*	15780.00	Peak	V	-	-	-68.52	13.75	0.00	52.23	73.98	-21.75
*	21040.00	Average	V	-	-	-78.73	18.36	-9.54	37.08	53.98	-16.90
*	21040.00	Peak	V	-	-	-66.84	18.36	-9.54	48.97	73.98	-25.01
	26300.00	Peak	V	-	-	-65.94	20.96	-9.54	52.47	68.20	-15.73

Table 7-13. Radiated Measurements

FCC ID: ZNFQ730TM	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 69 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 68 of 85
© 2020 PCTEST				V 9.0 02/01/2019

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5280MHz
Channel:	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	V	-	-	-68.28	12.47	0.00	51.19	68.20	-17.01
*	15840.00	Average	V	-	-	-79.61	15.16	0.00	42.55	53.98	-11.43
*	15840.00	Peak	V	-	-	-68.65	15.16	0.00	53.51	73.98	-20.47
*	21120.00	Average	V	-	-	-78.70	18.17	-9.54	36.92	53.98	-17.05
*	21120.00	Peak	V	-	-	-67.27	18.17	-9.54	48.35	73.98	-25.62
	26400.00	Peak	V	-	-	-65.33	20.65	-9.54	52.78	68.20	-15.42

Table 7-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a
6Mbps
1 & 3 Meters
5320MHz
64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	V	-	-	-79.61	13.08	0.00	40.47	53.98	-13.51
*	10640.00	Peak	V	-	-	-68.83	13.08	0.00	51.25	73.98	-22.73
*	15960.00	Average	V	-	-	-79.59	13.43	0.00	40.84	53.98	-13.14
*	15960.00	Peak	V	-	-	-68.17	13.43	0.00	52.26	73.98	-21.72
*	21280.00	Average	V	-	-	-77.86	18.57	-9.54	38.17	53.98	-15.81
*	21280.00	Peak	V	-	-	-66.83	18.57	-9.54	49.20	73.98	-24.78
	26600.00	Peak	V	-	-	-53.26	5.16	-9.54	49.36	68.20	-18.84

Table 7-15. Radiated Measurements

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 95	
1M2001130006-06.ZNF	01/14/20 - 02/13/20	2/13/20 Portable Handset		Page 69 of 85	
© 2020 PCTEST	•	•		\/ 9 0 02/01/2019	

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	V	201	23	-78.29	12.53	0.00	41.24	53.98	-12.74
*	11000.00	Peak	V	201	23	-67.21	12.53	0.00	52.32	73.98	-21.66
	16500.00	Peak	V	-	-	-68.47	15.04	0.00	53.57	68.20	-14.63
	22000.00	Peak	V	-	-	-66.33	19.12	-9.54	50.24	68.20	-17.96
	27500.00	Peak	V	-	-	-62.77	3.98	-9.54	38.67	68.20	-29.53

Table 7-16. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5600MHz 120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	V	204	32	-78.88	12.67	0.00	40.79	53.98	-13.19
*	11200.00	Peak	V	204	32	-67.72	12.67	0.00	51.95	73.98	-22.03
	16800.00	Peak	V	-	-	-68.71	16.04	0.00	54.33	68.20	-13.87
*	22400.00	Average	V	-	-	-79.00	20.03	-9.54	38.49	53.98	-15.49
*	22400.00	Peak	V	-	-	-66.99	20.03	-9.54	50.50	73.98	-23.48
	28000.00	Peak	V	-	-	-51.38	4.70	-9.54	50.78	68.20	-17.42

Table 7-17. Radiated Measurements

FCC ID: ZNFQ730TM	<u> PCTEST</u>	MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 95
1M2001130006-06.ZNF	01/14/20 - 02/13/20	Portable Handset		Page 70 of 85
© 2020 PCTEST		·		V 9.0 02/01/2019