

Radiated Spurious Emissions Measurements (Above 18GHz)

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:				
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 66 of 91		
© 2018 PCTEST Engineering Laboratory, Inc. V 8.0 03/13/2018						

Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	н	213	135	-67.82	12.54	0.00	51.72	68.20	-16.48
*	15540.00	Average	н	-	-	-81.52	16.51	0.00	41.99	53.98	-11.99
*	15540.00	Peak	н	-	-	-69.34	16.51	0.00	54.17	73.98	-19.81
*	20720.00	Average	н	-	-	-71.18	7.94	-9.54	34.22	53.98	-19.76
*	20720.00	Peak	н	-	-	-60.38	7.94	-9.54	45.02	73.98	-28.96
	25900.00	Peak	н	-	-	-57.42	8.46	-9.54	48.50	68.20	-19.70

Table 7-10. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

_	802.11a
	6Mbps
-	1 & 3 Meters
-	5200MHz
-	40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	177	185	-68.43	13.50	0.00	52.07	68.20	-16.13
*	15600.00	Average	Н	-	-	-80.66	16.85	0.00	43.19	53.98	-10.79
*	15600.00	Peak	Н	-	-	-68.57	16.85	0.00	55.28	73.98	-18.70
*	20800.00	Average	н	-	-	-71.39	7.95	-9.54	34.02	53.98	-19.96
*	20800.00	Peak	н	-	-	-60.39	7.95	-9.54	45.02	73.98	-28.96
	26000.00	Peak	н	-	-	-58.56	8.60	-9.54	47.50	68.20	-20.70

Table 7-11. Radiated Measurements

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 67 of 01
1M1803280057-06.ZNF 3/27 - 5/2/2018		Portable Handset	Page 67 of 91	
© 2018 PCTEST Engineering La	horatory Inc	•		V 8 0 03/13/2018

802.11a
6Mbps
1 & 3 Meters
5240MHz
48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	н	191	186	-67.99	11.95	0.00	50.96	68.20	-17.24
*	15720.00	Average	Н	-	-	-80.89	18.62	0.00	44.73	53.98	-9.25
*	15720.00	Peak	н	-	-	-68.30	18.62	0.00	57.32	73.98	-16.66
*	20960.00	Average	Н	-	-	-71.76	7.91	-9.54	33.61	53.98	-20.37
*	20960.00	Peak	Н	-	-	-60.87	7.91	-9.54	44.50	73.98	-29.48
	26200.00	Peak	Н	-	-	-57.87	8.62	-9.54	48.21	68.20	-19.99

Table 7-12. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	182	183	-67.53	13.57	0.00	53.04	68.20	-15.16
*	15780.00	Average	н	-	-	-81.61	18.14	0.00	43.53	53.98	-10.45
*	15780.00	Peak	н	-	-	-69.92	18.14	0.00	55.22	73.98	-18.76
*	21040.00	Average	н	-	-	-71.32	7.92	-9.54	34.06	53.98	-19.92
*	21040.00	Peak	н	-	-	-60.61	7.92	-9.54	44.77	73.98	-29.21
	26300.00	Peak	н	-	-	-57.09	8.73	-9.54	49.10	68.20	-19.10

Table 7-13. Radiated Measurements

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 69 of 01	
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 68 of 91	
© 2018 PCTEST Engineering La		V 8.0 03/13/2018			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5280MHz
Channel:	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	н	184	186	-67.31	13.31	0.00	53.00	68.20	-15.20
*	15840.00	Average	Н	-	-	-81.97	18.90	0.00	43.93	53.98	-10.04
*	15840.00	Peak	Н	-	-	-70.06	18.90	0.00	55.84	73.98	-18.13
*	21120.00	Average	н	-	-	-70.88	7.96	-9.54	34.54	53.98	-19.44
*	21120.00	Peak	н	-	-	-59.67	7.96	-9.54	45.75	73.98	-28.23
	26400.00	Peak	н	-	-	-58.04	8.94	-9.54	48.36	68.20	-19.84

Table 7-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	н	182	184	-77.37	12.85	0.00	42.48	53.98	-11.50
*	10640.00	Peak	н	182	184	-68.87	12.85	0.00	50.98	73.98	-23.00
*	15960.00	Average	н	-	-	-81.61	18.11	0.00	43.50	53.98	-10.48
*	15960.00	Peak	н	-	-	-70.11	18.11	0.00	55.00	73.98	-18.98
*	21280.00	Average	н	-	-	-70.45	8.04	-9.54	35.05	53.98	-18.93
*	21280.00	Peak	н	-	-	-60.42	8.04	-9.54	45.08	73.98	-28.90
	26600.00	Peak	Н	-	-	-48.89	-8.30	-9.54	40.26	68.20	-27.94

Table 7-15. Radiated Measurements

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 69 of 91
© 2018 PCTEST Engineering La	boratory Inc			V 8 0 03/13/2018

802.11a		
6Mbps		
1 & 3 Meters		
5500MHz		
100		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	н	161	169	-76.86	12.88	0.00	43.02	53.98	-10.96
*	11000.00	Peak	Н	161	169	-67.64	12.88	0.00	52.24	73.98	-21.74
	16500.00	Peak	Н	-	-	-69.43	18.56	0.00	56.13	68.20	-12.07
	22000.00	Peak	Н	-	-	-59.09	8.43	-9.54	46.79	68.20	-21.41
	27500.00	Peak	н	-	-	-46.70	-8.80	-9.54	41.96	68.20	-26.24

Table 7-16. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 600MHz 120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	н	204	192	-75.75	13.77	0.00	45.02	53.98	-8.96
*	11200.00	Peak	н	204	192	-67.28	13.77	0.00	53.49	73.98	-20.49
	16800.00	Peak	н	-	-	-69.95	18.53	0.00	55.58	68.20	-12.62
*	22400.00	Average	н	-	-	-69.90	8.11	-9.54	35.67	53.98	-18.31
*	22400.00	Peak	н	-	-	-59.94	8.11	-9.54	45.63	73.98	-28.35
	28000.00	Peak	н	-	-	-47.41	-9.26	-9.54	40.79	68.20	-27.41

Table 7-17. Radiated Measurements

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Dage 70 of 01	
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 70 of 91	
© 2018 PCTEST Engineering La	V 8 0 03/13/2018				

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5700MHz
Channel:	140

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11400.00	Average	Н	186	176	-76.52	14.78	0.00	45.26	53.98	-8.72
*	11400.00	Peak	Н	186	176	-68.07	14.78	0.00	53.71	73.98	-20.27
	17100.00	Peak	Н	-	-	-81.93	19.06	0.00	44.13	68.20	-24.07
*	22800.00	Average	Н	-	-	-70.98	8.28	-9.54	34.76	53.98	-19.22
*	22800.00	Peak	Н	-	-	-60.13	8.28	-9.54	45.61	73.98	-28.37
	28500.00	Peak	н	-	-	-47.00	-9.08	-9.54	41.38	68.20	-26.82

Table 7-18. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	н	186	175	-76.76	13.91	0.00	44.15	53.98	-9.82
*	11490.00	Peak	н	186	175	-68.38	13.91	0.00	52.53	73.98	-21.44
	17235.00	Peak	н	-	-	-69.92	20.29	0.00	57.37	68.20	-10.83
*	22980.00	Average	н	-	-	-71.45	8.16	-9.54	34.17	53.98	-19.81
*	22980.00	Peak	н	-	-	-60.75	8.16	-9.54	44.87	73.98	-29.11
	28725.00	Peak	н	-	-	-45.81	-9.24	-9.54	42.41	68.20	-25.79

Table 7-19. Radiated Measurements

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Daga 71 of 01	
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 71 of 91	
© 2018 PCTEST Engineering La	horatory Inc		V 8 0 03/13/2018		

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5785MHz
Channel:	157

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	н	214	196	-74.94	13.99	0.00	46.05	53.98	-7.93
*	11570.00	Peak	н	214	196	-66.03	13.99	0.00	54.96	73.98	-19.02
	17355.00	Peak	н	-	-	-70.36	21.74	0.00	58.38	68.20	-9.82
	23140.00	Peak	Н	-	-	-60.39	8.37	-9.54	45.44	68.20	-22.76
	28925.00	Peak	н	-	-	-46.75	-9.65	-9.54	41.06	68.20	-27.14

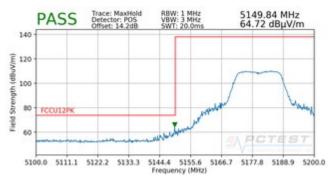
 Table 7-20. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5825MHz 165

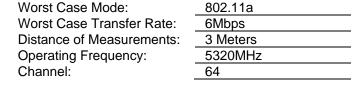
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	н	189	192	-75.36	15.14	0.00	46.78	53.98	-7.20
*	11650.00	Peak	н	189	192	-66.04	15.14	0.00	56.10	73.98	-17.88
	17475.00	Peak	н	-	-	-69.04	20.25	0.00	58.21	68.20	-9.99
	23300.00	Peak	н	-	-	-60.24	8.50	-9.54	45.72	68.20	-22.48
	29125.00	Peak	н	-	-	-45.30	-9.87	-9.54	42.29	68.20	-25.91

Table 7-21. Radiated Measurements

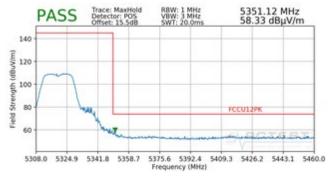
FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 70 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 72 of 91
© 2018 PCTEST Engineering La	aboratory. Inc.		V 8.0 03/13/2018	



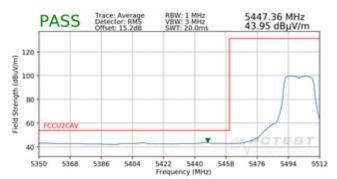
7.7.2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]

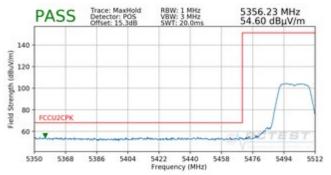

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

Plot 7-83. Radiated Lower Band Edge Plot (Average – UNII Band 1)

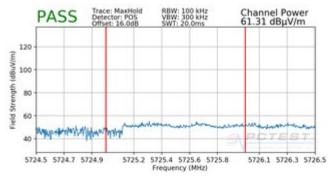


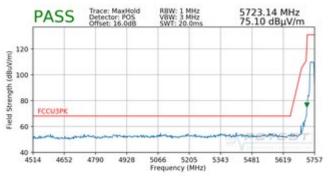
Plot 7-84. Radiated Lower Band Edge Plot (Peak – UNII Band 1)




FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 72 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 73 of 91
© 2018 PCTEST Engineering La		V 8.0 03/13/2018		

Worst Case Mode:802.11aWorst Case Transfer Rate:6MbpsDistance of Measurements:3 MetersOperating Frequency:5500MHzChannel:100

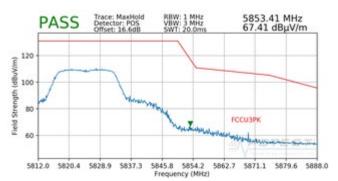

Plot 7-87. Radiated Lower Band Edge Plot (Average – UNII Band 2C)


Plot 7-88. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5700MHz
Channel:	140

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5745MHz
Channel:	149

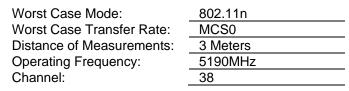
Plot 7-89. Radiated Upper Band Edge Plot (Average – UNII Band 2C)



Plot 7-90. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

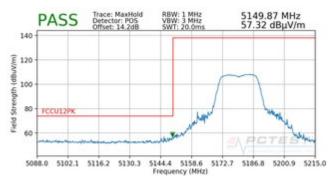
FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 74 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 74 of 91
© 2018 PCTEST Engineering La		V 8.0 03/13/2018		

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

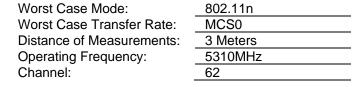


Plot 7-91. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

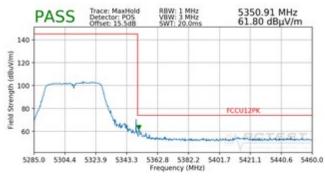
FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 75 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 75 of 91
© 2018 PCTEST Engineering La		V 8.0 03/13/2018		



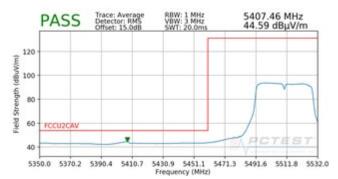
7.7.3 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]



Plot 7-92. Radiated Lower Band Edge Plot (Average – UNII Band 1)

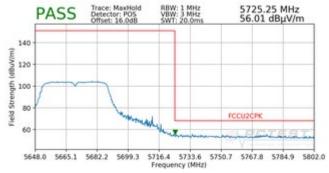


Plot 7-93. Radiated Lower Band Edge Plot (Peak – UNII Band 1)



FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 76 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 76 of 91
© 2018 PCTEST Engineering La		V 8.0 03/13/2018		

Worst Case Mode:802.11nWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5510MHzChannel:102

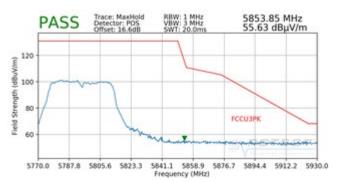


Plot 7-96. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5670MHz
Channel:	134

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5755MHz
Channel:	151

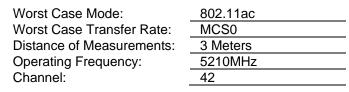
Plot 7-98. Radiated Upper Band Edge Plot (Average – UNII Band 2C)

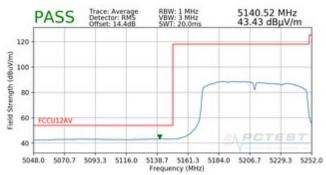


Plot 7-99. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

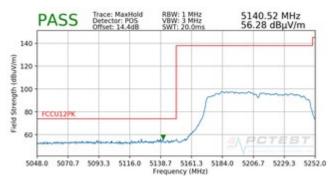
FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 77 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 77 of 91
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.0 03/13/2018

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5795MHz
Channel:	159

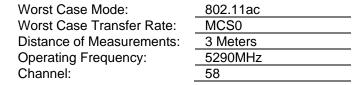


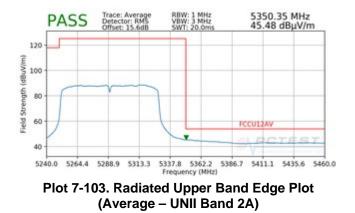

Plot 7-100. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

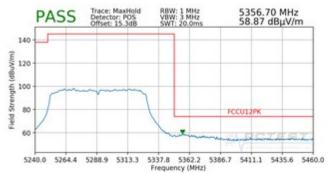
FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 78 of 91
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 03/13/2018

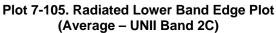


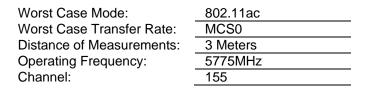
7.7.4 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

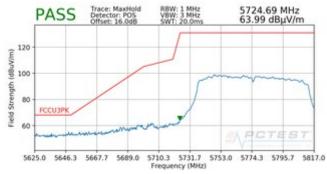





Plot 7-101. Radiated Lower Band Edge Plot (Average – UNII Band 1)

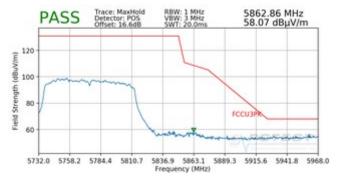



FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 70 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 79 of 91
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 03/13/2018



Worst Case Mode:802.11acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5530MHzChannel:106





Plot 7-107. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

Plot 7-108. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 80 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 80 of 91
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 03/13/2018

7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-22 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-22. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 81 of 91
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 03/13/2018

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

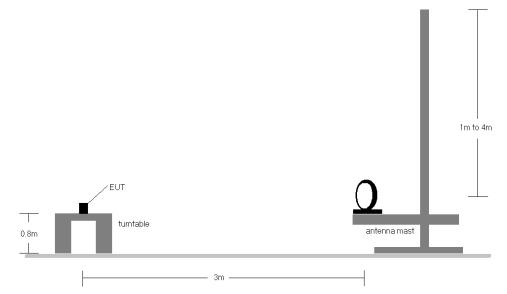
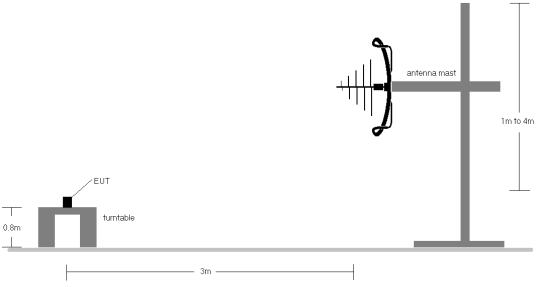
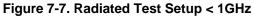
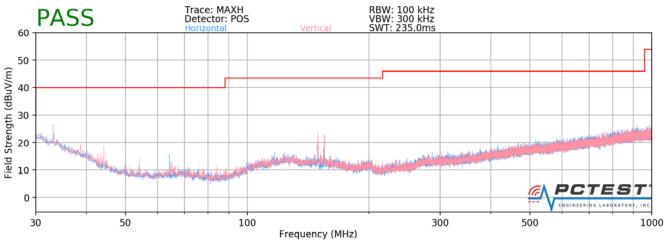




Figure 7-6. Radiated Test Setup < 30MHz

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset	Page 82 of 91
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 03/13/2018



- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-22.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 82 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 83 of 91
© 2018 PCTEST Engineering Laboratory Inc.				V 8 0 03/13/2018

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-109. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157)

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 84 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 84 of 91
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 03/13/2018

7.8 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	n Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 – 5	56	46	
5 – 30	60	50	

Table 7-23. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

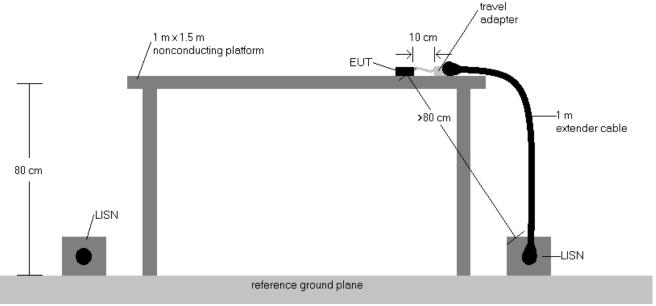
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

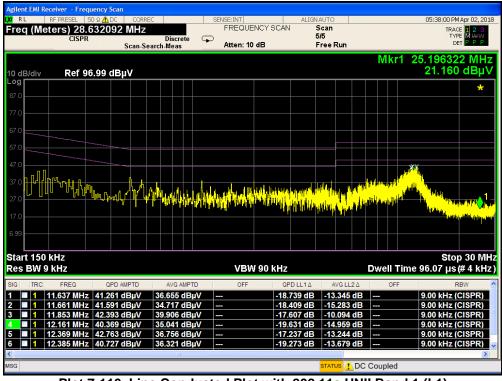
Average Field Strength Measurements


- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

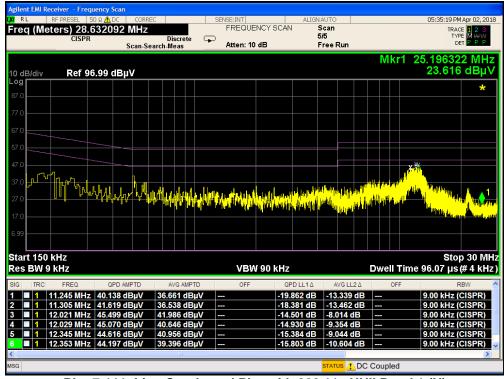
FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 05 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 85 of 91
© 2018 PCTEST Engineering La	aboratory Inc			V 8 0 03/13/2018

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

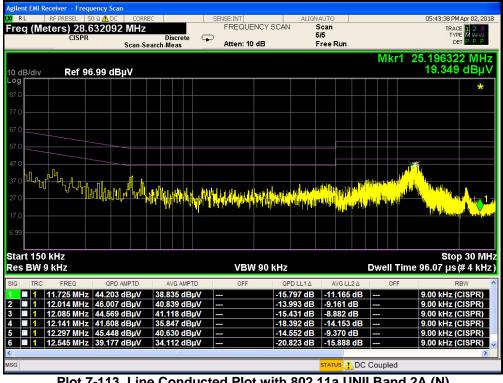


Test Notes


- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 86 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 86 of 91
© 2018 PCTEST Engineering La	boratory, Inc.			V 8.0 03/13/2018

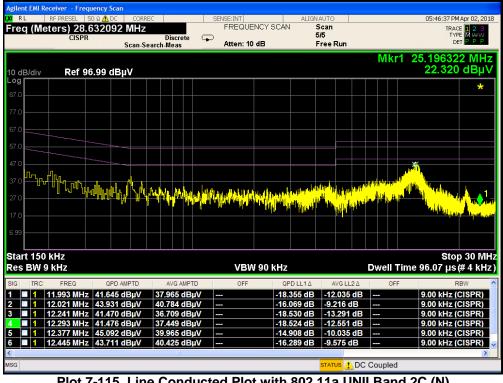
Plot 7-110. Line Conducted Plot with 802.11a UNII Band 1 (L1)


Plot 7-111. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 97 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 87 of 91
© 2018 PCTEST Engineering La	boratory Inc			V 8 0 03/13/2018

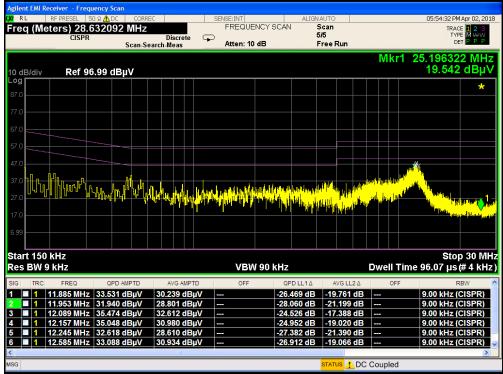
		50 Ω 🤼		CORR	EC.				SENSE				ALIC	GNAUTO						05		PM Apr 02,
req (Met	ters) 28. CISPE			VIHZ can-So	earch		rete	Ģ	5	REQUE		SCAN		Scan 5/5 Free								ACE 1 2 YPE M 44 DET P P
				can-st	earch	-14162	13										Ν	/kı	r 1 2			22 M
) dB/div og	Ref 9	96.99	dBµ\	V		_														2	2.18	6 dB
7.0																						
7.0																	T					
7.0																						
7.0																						
7.0																			XX	(
	սլէ,, ,,,			<i>.</i>														1.	. P ^{hill}	Ч. Ц,		
7.0 74444	الالكريد و	1.	A .	1	li ti		A 1.		d	ь., h	h nar.	i Tu	i kita	. In the	1.1	أرارها	NUT I	and the	at in the	ы ¹ Ц.		
7.0												1			10 a. a. a.				1. A. 1	- I - I -		
		- all los	վ՝ կյլ՝	ĮΨ (μų.	WI	H, Y		w.	Mayan	WW			n i Ur Shilida		, 144	ilain de	in Ma	^{تر} الرو _ر		interpretation interpretation	<mark>(Rolatin Mark</mark>
			-√'¦µ"	TH (44	W	l h	.		M				- hull pole			lui _{u (} k	in Miri	, <mark>Aller</mark>		nn den der seinen der seinen	inin yyk <mark>og palso s</mark>
7.0			-(' _Ш е	jų (MAN	"HIT		₩ ¹	in the	MAN (n in die Aufligder			atalo _{n (} k	PA (7),7			interfer Alterferen	(Inter Train
99		 			, and a	"Hill		. ₩	Ne ye	Μ. M				n se			, tak _{u (} k				interior Interior A th erio _r	ing and the second
7.0 99 tart 150					<u>1</u> 44				in the second													op 30 ľ
7.0 99 tart 150					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y AYY				VBV	V 90	kHz					Dw	ell ⁻	Time	2 96.		op 30 ľ
7.0 99 cart 150 es BW 9	KHZ FREQ						AMP			VBV	N 90	QPI	D LL1 A		AVG LI		Dw	ell ⁻		[.07 µ:	s (# 4 k RBW
7.0 99 cart 150 es BW 9 G IRC	FREQ 11.285 MHz	z 42.3	04 dE	BμV		.681	l dB	μV			V 90	QPI	696 dE	3 -1	2.319	dB	Dw			9.0	.07 μ: 0 kHz	RBW CISPR
art 150 es BW 9	KHZ FREQ	z 42.3 z 43.0	04 dE 18 dE	3μV 3μV	36		l dB) dB	μV μV			N 90	QPI -17.6 -16.9		3 -1: 3 -1:		dB dB				9.0 9.0	.07 μ: 0 kHz 0 kHz	s (# 4 k RBW (CISPR
7.0 99 tart 150 es BW 9 G TRC 1 1 1 1 1 1	FREQ 11.285 MHz 11.757 MHz 11.785 MHz 11.941 MHz	z 42.3 z 43.0 z 42.7 z 43.0	04 dE 18 dE 79 dE 34 dE	3μV 3μV 3μV 3μV	36 37 39	.681 .520 .463	dB dB dB dB dB	μV μV μV			N 90	QPI -17.6 -16.9 -17.2 -16.9	696 dE 82 dE 221 dE 66 dE	3 -1; 3 -1; 3 -1; 3 -1; 3 -1;	2.319 3.480 2.537 0.922	dB dB dB dB dB				9.0 9.0 9.0 9.0	07 µ 0 kHz 0 kHz 0 kHz 0 kHz	RBW (CISPR (CISPR (CISPR (CISPR (CISPR
39 1 3 TRC 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FREQ 11.285 MHz 11.757 MHz 11.785 MHz 11.941 MHz 12.085 MHz	z 42.3 z 43.0 z 42.7 z 43.0 z 41.8	04 dE 18 dE 79 dE 34 dE 44 dE	3µV 3µV 3µV 3µV 3µV	36 37 39 37	.681 .520 .463 .078	I dB) dB 3 dB 3 dB 3 dB 9 dB	iμV iμV iμV iμV iμV			V 90	QP -17.6 -16.9 -17.2 -16.9 -18.1	596 dE 982 dE 221 dE 966 dE 156 dE	3 -1: 3 -1: 3 -1: 3 -1: 3 -1: 3 -1:	2.319 3.480 2.537 0.922 2.091	dB dB dB dB dB dB				9.0 9.0 9.0 9.0 9.0	07 µ 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz	s (# 4 k RBW (CISPR (CISPR (CISPR (CISPR (CISPR
39 tart 150 es BW 9 G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FREQ 11.285 MHz 11.757 MHz 11.785 MHz 11.941 MHz	z 42.3 z 43.0 z 42.7 z 43.0 z 41.8	04 dE 18 dE 79 dE 34 dE 44 dE	3µV 3µV 3µV 3µV 3µV	36 37 39 37	.681 .520 .463	I dB) dB 3 dB 3 dB 3 dB 9 dB	iμV iμV iμV iμV iμV			N 90	QP -17.6 -16.9 -17.2 -16.9 -18.1	696 dE 82 dE 221 dE 66 dE	3 -1: 3 -1: 3 -1: 3 -1: 3 -1: 3 -1:	2.319 3.480 2.537 0.922	dB dB dB dB dB dB				9.0 9.0 9.0 9.0 9.0	07 µ 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz	RBW (CISPR (CISPR (CISPR (CISPR (CISPR

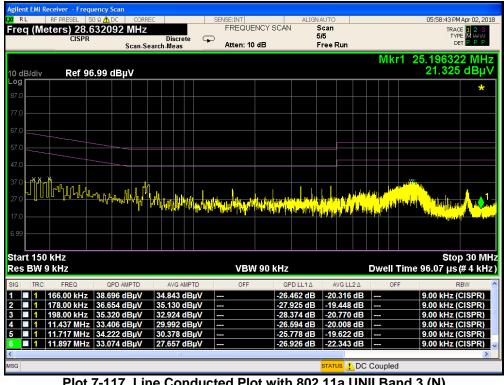
Plot 7-112. Line Conducted Plot with 802.11a UNII Band 2A (L1)


Plot 7-113. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 89 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 88 of 91
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 8.0 03/13/2018

ea (Me	ters) 28.	50 Ω <u>1</u> D 63209						SENSE:I		CY SCAN		IAUTO Scan						14 PM Apr 02, TRACE 12
	CISPR				Di arch-M	iscret eas	e G	Atte	en: 10 d	в		5/5 Free Ri	ın					
														Ν	1kr	1 28		322 M
dB/div g	Ref 9	6.99 d	Βμν														18.0	09 dBj
7.0																		3
.0						Ħ												
.0					_	\vdash	_					F				XXXX		
ا م الح الم	Ռ. լ.		h											1 1.1		1 C C		
.0 11 7 .0		ad . 0	,lly	М.	1.1			d .	و الم	ر أر وار أراكة	الملمو إيبار لارا	u (till ju j		pap ^t ic	to to the	ll. Martan	n.L.	
.0		ՠԼ.ա	Land In the second s	vŅ,	1MM	ŀΑ	444	l., M	i an			ult Vile j	u je dela Najvenski je dela	non des <mark>Lines</mark> des	tourd <mark>boolit</mark> Noof	un and and and and and and and and and an	and and	
.0		r4/ Juli	L _{Van} r ^{ill} u	IN,	1ª44	M	p da ha	h .,, ,,,, ,	h <mark>ul</mark> hul			n Mile Majiri		anan ¹ ar <mark>1</mark> 822 - Je	kond <mark>Il I</mark> l			
.0 .0		ՠֈՠ		v"	land hay	. 44	a da da	≬,,,,,,, ≬	ka <mark>k</mark> a k			1111 14 14		anay Net <mark>Luga pe</mark>	itandi <mark>Ili di</mark>	n an		a a praga by for
		r V_pJ		UN,	₩ ₩	₩Ą	14 44/1	4 4 7944	ing i h iji <mark>h</mark> iji na h			11111 		1979) ¹ 17 <mark>(</mark> 1172) ₁ 18	esodi Ny fi	ap ^{arta} b		in population permit
.0 .0 .99		rvl_pl		ν¶,		<mark>,</mark> ₩/ł	14 44/1	h, pyd	ky i k ind			1997 1997 - Jacobier Jacobier 1997 - Jacobier Ja			ional Ional Ional			
.0 .0 .9 art 150	kHz			UN p	1444	n ^l ¶∕¶	p un t	∮.₁,γγ Λ				11 ¹⁴ /10 11 1 10						itop 30 ľ
.0	kHz			\/`\ ,	1-41	<mark>,</mark> ₩/ң	<u>, 441, 1</u>	₩ ₩₩	VBW 9	90 kHz				Dw	ell T	'ime (top 30 ľ
.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kHz kHz FREQ	QP	PD AMPT			VG AM		 .,µµ⁴	VBW 9	QF	D LL1 A	_			ell T		96.07	µs (# 4 k _{RBW}
art 150 es BW 9	KHZ KHZ FREQ 11.557 MHZ	QP	20 AMPT 11 dBµ	μV	37.7	92 d	BμV	₩		QF -19.	689 dB	-12.2	08 dB				96.07 9.00 kH	µs (# 4 k _{RBW} Iz (CISPR
art 150 es BW 9	KHz KHz FREQ 11.557 MHz 11.693 MHz	QP 2 40.31 2 42.44	² D AMPT 11 dBµ 19 dBµ	μV μV	37.7 37.2	92 d 20 d	BµV BµV	₩		QF -19.1 -17.1	689 dB 551 dB	-12.2	08 dB 80 dB			:	96.07 9.00 kH 9.00 kH	RBW RBW IZ (CISPR IZ (CISPR
art 150 es BW 9	KHz KHz FREQ 11.557 MHz 11.693 MHz 11.945 MHz	QP 2 40.31 2 42.44 2 41.61	PD AMPT 11 dBµ 19 dBµ 12 dBµ	μV μV μV	37.7 37.2 38.0	92 d 20 d 37 d	BµV BµV BµV	4 + p + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +		QF -19.0 -17.4 -18.0	689 dB 551 dB 388 dB	-12.2 -12.7 -11.9	08 dB 80 dB 63 dB				96.07 9.00 kH 9.00 kH 9.00 kH	µs (# 4 k _{RBW} Iz (CISPR Iz (CISPR Iz (CISPR
art 150 s BW 9	KHz KHz FREQ 11.557 MHz 11.693 MHz	QP 2 40.31 2 42.44 2 41.61 2 42.26	² D AMPT 11 dBµ 19 dBµ 12 dBµ 55 dBµ	μV μV μV μV	37.7 37.2	92 d 20 d 37 d 76 d	ΒμV ΒμV ΒμV ΒμV			QF -19. -17. -18. -18.	689 dB 551 dB	-12.2 -12.7 -11.9 -12.5	08 dB 80 dB				9.00 kH 9.00 kH 9.00 kH 9.00 kH 9.00 kH 9.00 kH	us (# 4 k _{RBW} Iz (CISPR Iz (CISPR Iz (CISPR Iz (CISPR Iz (CISPR
art 150 s BW 9	KHz FREQ 11.557 MHz 11.693 MHz 11.945 MHz 11.945 MHz	QP 2 40.31 2 42.44 2 41.61 2 42.26 2 42.54	² D AMPT 11 dBµ 19 dBµ 12 dBµ 55 dBµ 13 dBµ	μV μV μV μV μV	37.7 37.2 38.0 37.4	92 d 20 d 37 d 76 d 69 d	ΒμV ΒμV ΒμV ΒμV ΒμV			QF -19.0 -17.3 -18.3 -18.3 -17.3 -17.3	689 dB 551 dB 388 dB 735 dB	-12.2 -12.7 -11.9 -12.5 -13.0	08 dB 80 dB 63 dB 24 dB				9.00 kH 9.00 kH 9.00 kH 9.00 kH 9.00 kH 9.00 kH	µs (# 4 k _{RBW} Iz (CISPR Iz (CISPR Iz (CISPR Iz (CISPR


Plot 7-114. Line Conducted Plot with 802.11a UNII Band 2C (L1)


Plot 7-115. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 80 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 89 of 91
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 8.0 03/13/2018

Plot 7-116. Line Conducted Plot with 802.11a UNII Band 3 (L1)

Plot 7-117. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 00 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 90 of 91
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 8.0 03/13/2018

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the LG Portable Handset FCC ID: ZNFQ710US is in compliance with Part 15 Subpart E (15.407) of the FCC Rules.

FCC ID: ZNFQ710US		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 01
1M1803280057-06.ZNF	3/27 - 5/2/2018	Portable Handset		Page 91 of 91
© 2018 PCTEST Engineering La	boratory, Inc.			V 8.0 03/13/2018