

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

FCC ID:

LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 02/11/20 - 03/17/20 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 1M2002110017-12-R1.ZNF

ZNFQ630UM

LG ELECTRONICS U.S.A., INC.

DUT Type: Application Type: FCC Rule Part(s): Model: Additional Model(s):

APPLICANT:

Portable Handset Certification CFR §2.1093 LM-Q630UM LMQ630UM, Q630UM

Equipment	Band & Mode	Tx Frequency	SAR				
Class			1g Head (W/kg)	1g Body-Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)	
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.24	0.34	0.34	N/A	
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.22	0.37	0.37	N/A	
PCE	UMTS 850	826.40 - 846.60 MHz	0.22	0.30	0.30	N/A	
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.33	0.56	0.56	2.61	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.28	0.63	0.63	2.02	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.11	0.25	0.25	N/A	
PCE	LTE Band 17	706.5 - 713.5 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 13	779.5 - 784.5 MHz	0.16	0.29	0.29	N/A	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.24	0.31	0.31	N/A	
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.37	0.56	0.61	3.05	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.30	0.68	0.68	2.08	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 30	2307.5 - 2312.5 MHz	< 0.1	0.63	0.86	N/A	
PCE	LTE Band 7	2502.5 - 2567.5 MHz	0.23	0.59	1.02	N/A	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.68	< 0.1	0.12	N/A	
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	0.11	N/A	
NII	U-NII-2A	5260 - 5320 MHz	0.44	< 0.1	N/A	0.42	
NII	U-NII-2C	5500 - 5720 MHz	0.56	0.14	N/A	0.45	
NII	U-NII-3	5745 - 5825 MHz	0.28	0.16	0.16	N/A	
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.15	< 0.1	< 0.1	N/A	
Simultaneous	SAR per KDB 690783 D01v()1r03:	1.08	0.86	1.20	3.50	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

Note: This revised Test Report (S/N: 1M2002110017-12-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info. details can be obtained by emailing: sartick@mwfai.info

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dana 4 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 1 of 82
202	20 PCTEST			REV 21.4 M

© 2020 PCTEST

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	. 10
3	INTROD	JCTION	. 11
4	DOSIME	TRIC ASSESSMENT	. 12
5	DEFINITI	ON OF REFERENCE POINTS	. 13
6	TEST CC	NFIGURATION POSITIONS	. 14
7	RF EXPC	SURE LIMITS	. 18
8	FCC ME	ASUREMENT PROCEDURES	. 19
9	RF CONI	DUCTED POWERS	. 24
10	SYSTEM	VERIFICATION	. 50
11	SAR DAT	A SUMMARY	. 54
12	FCC MUI	_TI-TX AND ANTENNA SAR CONSIDERATIONS	. 70
13		ASUREMENT VARIABILITY	
14		ENT LIST	
15		EMENT UNCERTAINTIES	
16		SION	
17		NCES	
APPEN APPEN	DIX A:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS	. 01
APPEN	DIX C:	SAR TISSUE SPECIFICATIONS	
APPEN	DIX D:	SAR SYSTEM VALIDATION	
APPEN	DIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	DIX F:	DOWNLINK LTE CA RF CONDUCTED POWERS	
APPEN	DIX G:	POWER REDUCTION VERIFICATION	
APPEN	DIX H:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	

			SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dana 0 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 2 of 82
202	0 PCTEST				REV 21.4 M

© 20

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates: DUT Type:		
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 3 of 82
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

1.3.1 2G/3G/4G Maximum Output Power

GSM/GPRS/EDGE 850										
Power Level		Voice (in dBm)	Da	Data - Burst Average GMSK (in dBm)			Da	ta - Burst Avera	ige 8-PSK (in dB	im)
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
Max	Max allowed power	34.0	34.0	32.5	30.7	29.5	28.0	26.5	24.7	23.5
IVIdX	Nominal	33.5	33.5	32.0	30.2	29.0	27.5	26.0	24.2	23.0
				GSM/GPRS/EI	DGE 1900					
Power Level		Voice (in dBm)	Da	ta - Burst Avera	ige GMSK (in dE	3m)	Da	ta - Burst Avera	ige 8-PSK (in dB	im)
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
Max	Max allowed power	31.0	31.0	29.5	27.7	26.5	27.0	25.5	23.7	22.5
ividX	Nominal	30.5	30.5	29.0	27.2	26.0	26.5	25.0	23.2	22.0

	UMTS Ba	nd 5 (850 MH	lz)			
		Modulated Average Output Power (in dBm)				
Power Level		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8	
Max	Max allowed power	25.0	25.0	25.0	25.0	
IVIAA	Nominal	24.5	24.5	24.5	24.5	
	UMTS Ban	nd 4 (1750 MH	Hz)			
		Μ	odulated Avera (in d	ge Output Pow IBm)	er	
Power Level		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8	
Max	Max allowed power	24.5	24.5	24.5	24.5	
IVIdX	Nominal	24.0	24.0	24.0	24.0	
Proximity Sensor Active	Max allowed power	23.3	23.3	23.3	23.3	
FIOXIMILY SENSOLACTIVE	Nominal	22.8	22.8	22.8	22.8	
	UMTS Ban	nd 2 (1900 MH	Hz)			
		М	odulated Avera (in d	ge Output Pow IBm)	er	
Power Level		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6	3GPP DC-HSDPA Rel 8	
Max	Max allowed power	24.5	24.5	23.5	24.5	
IVIDX	Nominal	24.0	24.0	23.0	24.0	
Proximity Sensor Active	Max allowed power	23.8	23.8	23.8	23.8	
TOATTILY SETSOLACTIVE	Nominal	23.3	23.3	23.3	23.3	

Mode / Band			ge Output Power dBm)
Wode y Band		Max	Proximity Sensor Active
LTE FDD Band 12	Max allowed power	25.0	25.0
	Nominal	24.5	24.5
LTE FDD Band 17	Max allowed power	25.0	25.0
	Nominal	24.5	24.5
LTE FDD Band 13	Max allowed power	25.0	25.0
	Nominal	24.5	24.5
LTE FDD Band 5	Max allowed power	25.0	25.0
LIL FDD Ballu 5	Nominal	24.5	24.5
LTE FDD Band 4	Max allowed power	24.5	23.3
	Nominal	24.0	22.8
LTE FDD Band 66	Max allowed power	24.5	23.3
	Nominal	24.0	22.8
LTE FDD Band 2	Max allowed power	24.5	23.8
	Nominal	24.0	23.3
LTE FDD Band 25	Max allowed power	24.5	23.8
	Nominal	24.0	23.3
LTE FDD Band 30	Max allowed power	24.5	24.5
	Nominal	24.0	24.0
LTE FDD Band 7	Max allowed power	23.0	23.0
	Nominal	22.5	22.5

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 4 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 4 of 82

Maximum WLAN and Bluetooth Output Power

		IEEE 802.11 (in dBm)							
Mode	Band	b		g		n			
-	mum / al Power	Max	Nom.	Max	Nom.	Max	Nom.		
2.4 GHz WIFI	2.45 GHz	17.0	16.0	16.0 ch. 1: 14.5 ch. 11: 12.5		16.0 ch. 1: 14.5 ch. 11: 12.5			

Bond	IEEE 802.11 (in dBm)							
Dallu	а		n		ac			
/ Nominal wer	Max	Nom.	Max	Nom.	Max	Nom.		
5200 MHz	13.5 ch. 36: 13.0	12.5 12.0	13.0 ch. 36: 12.5	12.0 11.5	13.0 ch. 36: 12.5	12.0 11.5		
5300 MHz	14.0 ch. 52: 13.5	13.0 12.5	13.5 ch. 52: 13.0	12.5 12.0	13.5 ch. 52: 13.0	12.5 12.0		
5500 MHz	15.0	14.0	14.5	13.5	14.5	13.5		
5800 MHz	14.0	13.0	13.5	12.5	13.5	12.5		
5200 MHz			11.5	10.5	11.5	10.5		
5300 MHz			11.5	10.5	11.5	10.5		
5500 MHz			13.0 ch. 102: 11.0 ch. 134: 12.5 ch. 142: 12.0	12.0 10.0 11.5 11.0	13.0 ch. 102: 11.0 ch. 134: 12.5 ch. 142: 12.0	12.0 10.0 11.5 11.0		
5800 MHz			12.0	11.0	12.0	11.0		
5200 MHz 5300 MHz 5500 MHz					11.5 11.5 ch. 106: 11.0 ch. 122: 13.0 ch. 138: 12.5	10.5 10.5 10.0 12.0 11.5 11.0		
	wer 5200 MHz 5300 MHz 5500 MHz 5200 MHz 5300 MHz 5500 MHz 5200 MHz 5200 MHz 5300 MHz	Image: Nominal wer Max 5200 MHz 13.5 ch. 36: 13.0 5300 MHz 14.0 ch. 52: 13.5 5500 MHz 15.0 5800 MHz 14.0 5300 MHz 15.0 5800 MHz 14.0 5200 MHz 15.0 5800 MHz 14.0 5200 MHz 14.0 5300 MHz 14.0 5300 MHz 14.0 5500 MHz 15.0 5500 MHz 14.0 5500 MHz 14.0 5500 MHz 14.0	Band a / Nominal wer Max Nom. 5200 MHz 13.5 ch. 36: 13.0 12.5 ch. 36: 13.0 5300 MHz 14.0 13.0 ch. 52: 13.5 5500 MHz 15.0 14.0 5800 MHz 14.0 13.0 5200 MHz 15.0 14.0 5800 MHz 14.0 13.0 5200 MHz 500 MHz 14.0 5500 MHz 14.0 13.0 5200 MHz 5500 MHz 5500 MHz 5800 MHz 5500 MHz 5500 MHz	Band n A A Nom. Max 5200 MHz 13.5 12.5 13.0 5200 MHz 13.5 12.5 13.0 5200 MHz 13.5 12.5 13.0 5300 MHz 14.0 13.0 13.5 5300 MHz 15.0 14.0 14.5 5800 MHz 15.0 14.0 13.5 5200 MHz 14.0 13.0 13.5 5500 MHz 14.0 13.0 13.5 5500 MHz 14.0 13.0 14.5 5500 MHz 11.5 13.0 ch.102: 11.0 5800 MHz 12.0 12.0 12.0 5800 MHz 12.0 12.0 12.0 5500 MHz 5500 MHz 12.0 12.0	Band a n / Nominal wer Max Nom. Max Nom. 5200 MHz 13.5 12.5 13.0 12.0 5200 MHz 13.5 12.0 ch.36: 12.5 11.5 5300 MHz 14.0 13.0 13.5 12.5 5500 MHz 15.0 14.0 13.0 13.5 12.5 5500 MHz 15.0 14.0 13.0 13.5 12.5 5800 MHz 14.0 13.0 13.5 12.5 13.5 5800 MHz 14.0 13.0 13.5 12.5 13.5 5200 MHz 14.0 13.0 13.5 12.5 5200 MHz 14.0 13.0 13.5 12.5 5300 MHz 14.0 13.0 13.0 12.0 5500 MHz 14.0 13.0 12.0 10.0 5800 MHz 11.5 10.5 11.5 11.5 5800 MHz 12.0 11.0 11.0 11.0 <	Band a n ac / Nominal wer Max Nom. Max Nom. Max 5200 MHz 13.5 12.5 13.0 12.0 13.0 5200 MHz 13.5 12.5 13.0 12.0 13.0 5300 MHz 14.0 13.0 13.5 12.5 13.5 5300 MHz 15.0 14.0 13.0 13.5 12.5 13.5 5500 MHz 15.0 14.0 13.0 13.5 12.5 13.5 5800 MHz 14.0 13.0 13.5 12.5 13.5 14.5 5800 MHz 14.0 13.0 13.5 12.5 13.5 5200 MHz 14.0 13.0 13.5 11.5 13.5 5300 MHz 14.0 13.0 13.5 11.5 13.0 5500 MHz 14.0 13.0 12.0 13.0 ch.102: 11.0 5500 MHz 12.0 13.0 12.0 13.0 ch.102: 11.0 <td< td=""></td<>		

Mode / Band	Modulated Average (dBm)	
Bluetooth 1Mbps (GFSK)	Maximum	9.5
	Nominal	8.5
Diverte ette 2046 ere (DDCK)	Maximum	9.5
Bluetooth 2Mbps (DPSK)	Nominal	8.5
Division of the 21 Abres (2005K)	Maximum	9.5
Bluetooth 3Mbps (8DPSK)	Nominal	8.5
Bluetooth LE	Maximum	6.0
	Nominal	5.0

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 5 of 82
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 5 01 62
202	0 PCTEST				REV 21.4 M

© 20

1.4 **DUT Antenna Locations**

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix E. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Device Edges/Sides for SAR resting								
Mode	Back	Front	Тор	Bottom	Right	Left		
GPRS 850	Yes	Yes	No	Yes	Yes	Yes		
GPRS 1900	Yes	Yes	No	Yes	No	Yes		
UMTS 850	Yes	Yes	No	Yes	Yes	Yes		
UMTS 1750	Yes	Yes	No	Yes	No	Yes		
UMTS 1900	Yes	Yes	No	Yes	No	Yes		
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes		
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes		
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes		
LTE Band 66 (AWS)	Yes	Yes	No	Yes	No	Yes		
LTE Band 25 (PCS)	Yes	Yes	No	Yes	No	Yes		
LTE Band 30	Yes	Yes	No	Yes	Yes	Yes		
LTE Band 7	Yes	Yes	No	Yes	Yes	Yes		
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes		
5 GHz WLAN	Yes	Yes	Yes	No	No	No		
Bluetooth	Yes	Yes	Yes	No	No	Yes		

Table 1-1
Device Edges/Sides for SAR Testing

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A and U-NII-2C operations are disabled.

1.5 **Near Field Communications (NFC) Antenna**

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix E.

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 6 of 82
20 PCTEST				REV 21.4 M

© 20

1.6 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

	Simultaneous Transmission Scenarios						
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes	
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes		
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes		
3	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered	
4	GSM voice + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered	
5	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes		
6	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	Yes		
7	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered	
8	UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered	
9	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes		
10	LTE + 5 GHz WI-FI	Yes	Yes	Yes	Yes		
11	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered	
12	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered	
13	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered	
14	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered	
15	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered	
16	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered	

Table 1-2 Simulta

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for the U-NII-1 and U-NII-3 by S/W, therefore U-NII-2A and U-NII-2C were not evaluated for wireless router conditions.
- This device supports VOLTE.
- 7. This device supports VOWIFI.
- 8. This device supports Bluetooth Tethering.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dana 7 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 7 of 82
202	20 PCTEST		•		REV 21.4 M

© 20

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz, U-NII-1, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz U-NII-1, U-NII-3 WLAN, and BT operations since wireless router 1g SAR was < 1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix F.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 9 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 8 of 82
020 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

1.8 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 0 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 9 of 82
20 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

LTE INFORMATION 2

	LTE Information					
Form Factor		Portable Handset				
Frequency Range of each LTE transmission band	LTE Band 12 (699.7 - 715.3 MHz)					
	LTE Band 17 (706.5 - 713.5 MHz)					
		LTE Band 13 (779.5 - 784.5 MHz)				
		E Band 5 (Cell) (824.7 - 848.3 MH	1			
	LTE Band 66 (AWS) (1710.7 - 1779.3 MHz)					
		LTE Band 4 (AWS) (1710.7 - 1754.3 MHz) LTE Band 25 (PCS) (1850.7 - 1914.3 MHz)				
	LTE Band 2 (PCS) (1850.7 - 1909.3 MHz) LTE Band 30 (2307.5 - 2312.5 MHz)					
		TE Band 7 (2502.5 - 2567.5 MHz)				
Channel Bandwidths		nd 12: 1.4 MHz, 3 MHz, 5 MHz, 1				
		LTE Band 17: 5 MHz, 10 MHz	0 11112			
		LTE Band 13: 5 MHz, 10 MHz				
		5 (Cell): 1.4 MHz, 3 MHz, 5 MHz				
		: 1.4 MHz, 3 MHz, 5 MHz, 10 MH				
		1.4 MHz, 3 MHz, 5 MHz, 10 MHz				
	LTE Band 25 (PCS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 2 (PCS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz					
	LTE Band 30: 5 MHz, 10 MHz					
	LTE Ba	nd 7: 5 MHz, 10 MHz, 15 MHz, 2	0 MHz			
Channel Numbers and Frequencies (MHz)	Low	Mid	High			
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)			
TE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)			
TE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)			
TE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)			
TE Band 17: 5 MHz	706.5 (23755)	710 (23790)	713.5 (23825)			
_TE Band 17: 10 MHz _TE Band 13: 5 MHz	709 (23780)	710 (23790)	711 (23800)			
	779.5 (23205)	782 (23230)	784.5 (23255)			
TE Band 13: 10 MHz	N/A	782 (23230)	N/A			
TE Band 5 (Cell): 1.4 MHz TE Band 5 (Cell): 3 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)			
TE Band 5 (Cell): 5 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)			
TE Band 5 (Cell): 10 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625) 844 (20600)			
TE Band 66 (AWS): 1.4 MHz	829 (20450) 1710.7 (131979)	836.5 (20525) 1745 (132322)	1779.3 (132665)			
TE Band 66 (AWS): 3 MHz	1711.5 (131979)	1745 (132322)	1778.5 (132657)			
TE Band 66 (AWS): 5 MHz	1711.5 (131987)	1745 (132322)	1778.5 (132657)			
TE Band 66 (AWS): 10 MHz	1712.5 (131997)	1745 (132322)	1775 (132622)			
TE Band 66 (AWS): 15 MHz	1717.5 (132047)	1745 (132322)	1772.5 (132597)			
TE Band 66 (AWS): 20 MHz	1720 (132072)	1745 (132322)	1770 (132572)			
TE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)			
TE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)			
TE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)			
TE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)			
TE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)			
TE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)			
TE Band 25 (PCS): 1.4 MHz	1850.7 (26047)	1882.5 (26365)	1914.3 (26683)			
TE Band 25 (PCS): 3 MHz	1851.5 (26055)	1882.5 (26365)	1913.5 (26675)			
TE Band 25 (PCS): 5 MHz	1852.5 (26065)	1882.5 (26365)	1912.5 (26665)			
TE Band 25 (PCS): 10 MHz	1855 (26090)	1882.5 (26365)	1910 (26640)			
TE Band 25 (PCS): 15 MHz TE Band 25 (PCS): 20 MHz	1857.5 (26115)	1882.5 (26365)	1907.5 (26615)			
TE Band 25 (PCS): 20 MHZ TE Band 2 (PCS): 1.4 MHz	1860 (26140)	1882.5 (26365)	1905 (26590)			
TE Band 2 (PCS): 1.4 MHz TE Band 2 (PCS): 3 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)			
TE Band 2 (PCS): 5 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185) 1907.5 (19175)			
TE Band 2 (PCS): 10 MHz	1852.5 (18625) 1855 (18650)	1880 (18900) 1880 (18900)	1907.5 (19175) 1905 (19150)			
TE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)			
TE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)			
TE Band 30: 5 MHz	2307.5 (27685)	2310 (27710)	2312.5 (27735)			
TE Band 30: 10 MHz	N/A	2310 (27710)	N/A			
TE Band 7: 5 MHz	2502.5 (20775)	2535 (21100)	2567.5 (21425)			
TE Band 7: 10 MHz	2505 (20800)	2535 (21100)	2565 (21400)			
TE Band 7: 15 MHz	2507.5 (20825)	2535 (21100)	2562.5 (21375)			
TE Band 7: 20 MHz	2510 (20850)	2535 (21100)	2560 (21350)			
E Category		DL UE Cat 6, UL UE Cat 6				
Iodulations Supported in UL TE MPR Permanently implemented per 3GPP TS 36.101 ection 6.2.3~6.2.5? (manufacturer attestation to be		QPSK, 16QAM YES				
rovided)						
-MPR (Additional MPR) disabled for SAR Testing?		YES				
TE Carrier Aggregation Possible Combinations		includes all the possible carrier a				
TE Additional Information	are identical to the Release 8 S following LTE Release 11 Feat	III CA features on 3GPP Release pecifications. Uplink communicat ures are not supported: Relay, He BMS, Cross-Carrier Scheduling, E	ons are done on the PCC. Th tNet, Enhanced MIMO, eICIC			

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 10 of 82
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 10 of 82
202	A DOTEOT			

© 2020 PCTEST

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

SAR =	d	$\left(\underline{dU} \right)$	\underline{d}	dU
SAR =	dt	dm	$\frac{1}{dt}$	$\left(\frac{dU}{\rho dv}\right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

- σ = conductivity of the tissue-simulating material (S/m)
- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 44 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 11 of 82
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

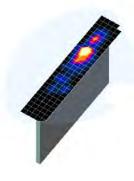


Figure 4-1 Sample SAR Area Scan

09/11/2019

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

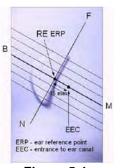
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	Frequency (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
3-4 GHz	≤ 12	≤5	≤ 4	≤3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤ 2.5	≤ 1.5*∆z _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤ 1.5*Δz _{zoom} (n-1)	≥ 22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 12 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 12 of 82
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

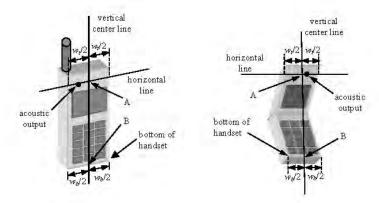


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 40 af 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 13 of 82
ට 202	0 PCTEST				REV 21 4 M

© 2020 PCTEST

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02.

6.2 **Positioning for Cheek**

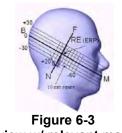
1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":


- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

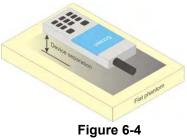
	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dana 44 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 14 of 82
202	0 PCTEST			REV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Side view w/ relevant markings

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

09/11/2019

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dago 15 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 15 of 82
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dana 40 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 16 of 82
202	0 DOTEST			DEV/21.4 M

© 2020 PCTEST

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

6.9 Proximity Sensor Considerations

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body. When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G. The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 17 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 17 of 82
020 PCTEST				REV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUMAN EXPOSURE LIMITS			
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)	
Peak Spatial Average SAR _{Head}	1.6	8.0	
Whole Body SAR	0.08	0.4	
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20	

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 19 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 18 of 82
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	es: DUT Type:		Daga 40 af 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 19 of 82
202	0 DOTEST				DEV/21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.6 SAR Measurement Conditions for DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dara 00 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 20 of 82
202	0 DOTEST				DEV/21/4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5.5 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 21 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 21 of 82
20 PCTEST				REV 21.4 M

© 2020 PCTEST

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands. SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled. SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dama 00 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 22 of 82
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dana 02 of 02
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 23 of 82
202	0 PCTEST			REV 21 4 M

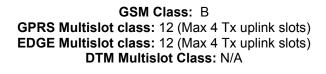
© 2020 PCTEST

9 **RF CONDUCTED POWERS**

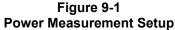
9.1 **GSM Conducted Powers**

		_M;	Maxin aximum E	num Con Burst-Aver			r _				
		Voice		GPRS/EL	DGE Data //SK)		EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	33.66	33.63	32.15	30.61	29.13	27.30	25.87	24.26	23.13	
GSM 850	190	33.72	33.70	32.22	30.70	29.12	27.35	25.97	24.35	23.22	
	251	33.72	33.69	32.19	30.64	29.10	27.34	25.96	24.31	23.15	
	512	30.37	30.95	29.50	27.53	26.30	26.44	24.80	23.24	22.23	
GSM 1900	661	30.49	30.92	29.41	27.62	26.20	26.34	24.75	23.32	22.31	
	810	30.59	30.98	29.48	27.70	26.24	26.37	24.72	23.22	22.28	

		٦	Table 9	-1	
	Maxin	num	Condu	cted	Power
-		_			


	Calculated Maximum Frame-Averaged Output Power											
		Voice		GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot		
	128	24.46	24.43	25.96	26.18	25.95	18.10	19.68	19.83	19.95		
GSM 850	190	24.52	24.50	26.03	26.27	25.94	18.15	19.78	19.92	20.04		
	251	24.52	24.49	26.00	26.21	25.92	18.14	19.77	19.88	19.97		
	512	21.17	21.75	23.31	23.10	23.12	17.24	18.61	18.81	19.05		
GSM 1900	661	21.29	21.72	23.22	23.19	23.02	17.14	18.56	18.89	19.13		
	810	21.39	21.78	23.29	23.27	23.06	17.17	18.53	18.79	19.10		

GSM 850	Frame	24.30	24.30	25.81	25.77	25.82	18.30	19.81	19.77	19.82
GSM 1900	Avg.Targets:	21.30	21.30	22.81	22.77	22.82	17.30	18.81	18.77	18.82


	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dego 24 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 24 of 82
202	A DOTEOT			

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 25 of 82
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 25 of 82
20 PCTEST		•		REV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.2 **UMTS Conducted Powers**

3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]			AWS Band [dBm]			PCS Band [dBm]			MPR [dB]	
Version		oublest	4132	4183	4233	1312	1412	1513	9262	9400	9538		
99	WCDMA	12.2 kbps RMC	24.77	24.80	24.85	24.38	24.36	24.41	24.49	24.48	24.42	-	
99	WCDIVIA	12.2 kbps AMR	24.76	24.80	24.83	24.39	24.32	24.40	24.49	24.45	24.44	-	
6		Subtest 1	24.58	24.57	24.60	24.24	24.26	24.13	24.44	24.41	24.40	0	
6	HSDPA	Subtest 2	24.66	24.62	24.59	24.16	24.21	24.18	24.43	24.35	24.35	0	
6	HODI A	Subtest 3	24.11	24.13	24.07	23.65	23.74	23.64	23.89	23.75	23.92	0.5	
6		Subtest 4	24.09	24.07	24.06	23.63	23.69	23.59	23.87	23.81	23.82	0.5	
6		Subtest 1	22.61	22.58	22.56	22.15	22.24	22.12	22.41	22.33	22.32	2	
6		Subtest 2	22.58	22.54	22.54	22.13	22.24	22.11	22.37	22.35	22.36	2	
6	HSUPA	Subtest 3	23.56	23.49	23.39	23.13	23.18	23.07	23.38	23.31	23.32	1	
6		Subtest 4	22.03	22.06	22.05	21.68	21.77	21.83	21.85	21.86	21.85	2.5	
6		Subtest 5	23.51	23.58	23.61	23.13	23.14	23.15	23.33	23.36	23.39	1	
8		Subtest 1	24.52	24.58	24.40	24.09	24.11	23.98	24.38	24.30	24.34	0	
8	DC-HSDPA	Subtest 2	24.35	24.52	24.41	24.07	24.04	23.99	24.25	24.30	24.31	0	
8		Subtest 3	24.01	24.05	24.02	23.53	23.54	23.45	23.85	23.82	23.84	0.5	
8		Subtest 4	24.00	24.04	24.02	23.55	23.63	23.47	23.85	23.79	23.83	0.5	

Table 9-2 **Maximum Conducted Power**

	Reduced Conducted Power										
3GPP Release	Mode	3GPP 34.121 Subtest	AW	S Band [d	IBm]	PC	6 Band [d	Bm]	MPR [dB]		
Version		oublest	1312	1412	1513	9262	9400	9538			
99	WCDMA	12.2 kbps RMC	22.93	23.00	22.89	23.60	23.57	23.54	-		
99	WCDIVIA	12.2 kbps AMR	22.92	22.95	22.86	23.59	23.50	23.50	-		
6		Subtest 1	22.92	22.91	22.87	23.63	23.65	23.63	0		
6	HSDPA	Subtest 2	22.86	22.96	22.86	23.64	23.53	23.57	0		
6	HODFA	Subtest 3	22.40	22.41	22.38	23.11	23.08	23.08	0.5		
6		Subtest 4	22.32	22.42	22.31	23.17	23.08	23.07	0.5		
6		Subtest 1	21.18	21.20	21.13	21.43	21.37	21.38	2		
6		Subtest 2	20.88	20.95	20.87	21.65	21.60	21.60	2		
6	HSUPA	Subtest 3	21.91	21.97	21.89	22.60	22.54	22.56	1		
6		Subtest 4	20.44	20.44	20.35	21.09	21.09	21.08	2.5		
6		Subtest 5	21.90	21.92	21.91	22.56	22.55	22.52	1		
8		Subtest 1	22.55	22.66	22.60	23.33	22.40	23.46	0		
8	DC-HSDPA	Subtest 2	22.56	22.57	22.44	23.30	23.15	23.37	0		
8		Subtest 3	22.12	22.15	22.02	23.00	22.95	23.02	0.5		
8		Subtest 4	21.94	22.25	22.17	23.00	22.96	22.97	0.5		

Table 9-3

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance •
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements •
- The DUT supports UE category 24 for HSDPA •

Power Measurement Setup

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dana 00 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 26 of 82
202	0 PCTEST				REV 21.4 M

©

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.3 LTE Conducted Powers

9.3.1 LTE Band 12

L1	Table 9-4 LTE Band 12 Conducted Powers - 10 MHz Bandwidth									
	LTE Band 12 10 MHz Bandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	24.38		0					
	1	25	24.55	0	0					
	1	49	24.37		0					
QPSK	25	0	23.44		1					
	25	12	23.46	0-1	1					
	25	25	23.43		1					
	50	0	23.45		1					
	1	0	23.90		1					
	1	25	23.98	0-1	1					
	1	49	23.89		1					
16QAM	25	0	22.50		2					
	25	12	22.55	0-2	2					
	25	25	22.50	0-2	2					
	50	0	22.54		2					

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-5
LTE Band 12 Conducted Powers - 5 MHz Bandwidth

				LTE Band 12 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.32	24.40	24.21		0
	1	12	24.57	24.62	24.47	0	0
	1	24	24.32	24.37	24.73		0
QPSK	12	0	23.51	23.42	23.47		1
	12	6	23.48	23.51	23.51		1
	12	13	23.44	23.47	23.53		1
	25	0	23.45	23.49	23.55		1
	1	0	23.46	23.95	23.43		1
	1	12	23.58	23.40	23.65	0-1	1
	1	24	23.74	23.93	23.88		1
16QAM	12	0	22.58	22.60	22.54		2
	12	6	22.59	22.64	22.55	0.2	2
	12	13	22.53	22.61	22.62	0-2	2
	25	0	22.50	22.68	22.56	1	2

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20		Page 27 of 82	
020 PCTEST				REV 21 4 M

© 20

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

				LTE Band 12 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	24.33	24.38	24.44		0
	1	7	24.45	24.48	24.48	0	0
	1	14	24.35	24.35	24.99		0
QPSK	8	0	23.44	23.40	23.46		1
	8	4	23.46	23.45	23.60	0-1	1
	8	7	23.41	23.45	23.75	0-1	1
	15	0	23.44	23.45	23.60		1
	1	0	23.24	23.75	23.37		1
	1	7	23.33	23.88	23.45	0-1	1
	1	14	23.61	23.79	23.86	1 1	1
16QAM	8	0	22.64	22.60	22.53		2
	8	4	22.51	22.64	22.62	0-2	2
	8	7	22.53	22.56	22.74	0-2	2
	15	0	22.57	22.52	22.68	1 1	2

Table 9-6 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

Table 9-7 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel 23173	MPR Allowed per	
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	(715.3 MHz)	3GPP [dB]	MPR [dB]
		[Conducted Power [dBm	1]		
	1	0	24.27	24.30	24.50		0
	1	2	24.36	24.39	24.82	1	0
	1	5	24.29	24.33	24.61	- 0 -	0
QPSK	3	0	24.48	24.44	24.63		0
	3	2	24.52	24.47	24.83		0
	3	3	24.49	24.50	24.90		0
	6	0	23.44	23.45	23.72	0-1	1
	1	0	23.66	23.73	23.23		1
	1	2	23.44	23.80	23.48	1 [1
	1	5	23.51	23.71	23.71	0-1	1
16QAM	3	0	23.56	23.72	23.73		1
	3	2	23.58	23.72	23.90	1 1	1
	3	3	23.59	23.78	23.96	1 1	1
	6	0	22.66	22.55	22.91	0-2	2

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 20 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 28 of 82
20 PCTEST				REV 21.4 M

© 20

L	LIE Band 13 Conducted Powers - 10 MHZ Bandwidth										
	LTE Band 13 10 MHz Bandwidth										
	10 MHZ Bandwidth Mid Channel										
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]						
			Conducted Power								
			[dBm]								
	1	0	24.35		0						
	1	25	24.53	0	0						
	1	49	24.29		0						
QPSK	25	0	23.32		1						
	25	12	23.35	0-1	1						
	25	25	23.29	0-1	1						
	50	0	23.31		1						
	1	0	23.81		1						
	1	25	23.89	0-1	1						
	1	49	23.74		1						
16QAM	25	0	22.35		2						
	25	12	22.40	0-2	2						
	25	25	22.33	V-2	2						
	50	0	22.35		2						

 Table 9-8

 LTE Band 13 Conducted Powers - 10 MHz Bandwidth

 Table 9-9

 LTE Band 13 Conducted Powers - 5 MHz Bandwidth

	LTE Band 13 5 MHz Bandwidth									
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]					
	1	0	24.19		0					
	1	12	24.43	0	0					
	1	24	24.16		0					
QPSK	12	0	23.40		1					
	12	6	23.42	0-1	1					
	12	13	23.30	0-1	1					
	25	0	23.36		1					
	1	0	23.31		1					
	1	12	23.55	0-1	1					
	1	24	23.28		1					
16QAM	12	0	22.42		2					
	12	6	22.45	0-2	2					
	12	13	22.40	0=2	2					
	25	0	22.36		2					

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	S/N: Test Dates: DUT Type:			
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 29 of 82
© 202	0 PCTEST				REV 21.4 M

9.3.3

Table 9-10 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth										
LTE Band 5 (Cell) 10 MHz Bandwidth										
			Mid Channel							
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	24.24		0					
	1	25	24.36	0	0					
	1	49	24.19		0					
QPSK	25	0	23.33		1					
	25	12	23.32	0-1	1					
	25	25	23.32	0-1	1					
	50	0	23.31		1					
	1	0	23.80		1					
	1	25	23.97	0-1	1					
	1	49	23.81		1					
16QAM	25	0	22.38		2					
	25	12	22.34	0-2	2					
	25	25	22.31	0-2	2					
	50	0	22.31		2					

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-11 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

	LTE Band 5 (Cell) 5 MHz Bandwidth											
			Low Channel	Mid Channel	High Channel							
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			(Conducted Power [dBm	1]							
	1	0	24.57	24.25	24.25		0					
	1	12	24.44	24.53	24.30	0	0					
	1	24	24.11	24.21	24.23		0					
QPSK	12	0	23.43	23.28	23.34		1					
	12	6	23.38	23.37	23.36	0-1	1					
	12	13	23.30	23.36	23.26	0-1	1					
	25	0	23.33	23.29	23.33		1					
	1	0	23.58	23.80	23.47		1					
	1	12	23.44	23.68	23.49	0-1	1					
	1	24	23.18	23.75	23.44		1					
16QAM	12	0	22.50	22.40	22.46		2					
	12	6	22.44	22.47	22.44	0-2	2					
	12	13	22.36	22.35	22.33	0-2	2					
	25	0	22.35	22.46	22.31	1	2					

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 30 of 82
02	0 PCTEST				RFV 21 4 M

© 20

				LTE Band 5 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			I	Conducted Power [dBm]		
	1	0	24.65	24.20	24.29	0	0
Ī	1	7	24.42	24.38	24.32		0
	1	14	24.37	24.42	24.32		0
QPSK	8	0	23.59	23.29	23.32		1
	8	4	23.44	23.34	23.41	0-1	1
	8	7	23.31	23.32	23.33	0-1	1
	15	0	23.46	23.31	23.31		1
	1	0	23.56	23.67	23.21		1
	1	7	23.65	23.85	23.38	0-1	1
	1	14	22.98	23.66	23.30	1	1
16QAM	8	0	22.57	22.51	22.38		2
	8	4	22.46	22.52	22.43	0-2	2
	8	7	22.31	22.43	22.34	0-2	2
	15	0	22.45	22.37	22.41	1 1	2

Table 9-12 I TE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

Table 9-13 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
		[Conducted Power [dBm]		
	1	0	24.61	24.24	24.35		0
QPSK	1	2	24.59	24.33	24.47	1 [0
	1	5	24.35	24.27	24.38	0	0
	3	0	24.74	24.43	24.40		0
	3	2	24.75	24.45	24.46	1 [0
	3	3	24.62	24.44	24.43	1	0
	6	0	23.69	23.36	23.42	0-1	1
	1	0	23.50	23.70	23.11		1
	1	2	23.43	23.80	23.21	1 1	1
	1	5	23.27	23.72	23.20	0-1	1
16QAM	3	0	23.86	23.74	23.56		1
	3	2	23.85	23.72	23.58	1 1	1
	3	3	23.72	23.77	23.59	1 1	1
	6	0	22.84	22.32	22.61	0-2	2

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 21 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 31 of 82
020 PCTEST				REV 21.4 M

© 20

9.3.4

LTE Band 66 (AWS)

				LTE Band 66 (AWS) 20 MHz Bandwidth			
			Low Channel RB Offset 132072 (1720.0 MHz)	Mid Channel	High Channel		MPR [dB]
Modulation	RB Size	RB Offset		132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	
				Conducted Power [dBm	n]		
	1	0	23.75	23.92	23.83		0
Ī	1	50	23.96	24.00	24.00	0 - 0-1 -	0
	1	99	23.74	23.82	24.01		0
QPSK	50	0	22.89	22.98	23.01		1
	50	25	22.98	23.03	23.03		1
	50	50	22.92	23.00	23.05		1
	100	0	22.89	23.01	23.04	1 – – – – – – – – – – – – – – – – – – –	1
	1	0	23.13	23.17	23.02		1
	1	50	23.34	23.41	23.33	0-1	1
	1	99	23.09	23.10	23.03	1 [1
16QAM	50	0	21.91	22.07	22.04		2
	50	25	22.01	22.05	22.03	0-2	2
	50	50	21.94	22.08	22.08	0-2	2
	100	0	21.92	22.09	22.10	1 1	2

Table 9-14 LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth

	Table 9-15	
LTE Band 66 (AWS)) Maximum Conducted Powers - 15 MHz Bandwidt	h

				ill colladotoa		III E Ballamat				
				LTE Band 66 (AWS)						
	15 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel		MPR [dB]			
Modulation	RB Size	RB Offset	132047	132322 132597 (1745.0 MHz) (1772.5 MHz)	132597	MPR Allowed per 3GPP [dB]				
			(1717.5 MHz)							
			0	Conducted Power [dBm	ו]					
	1	0	24.10	23.89	23.82		0			
	1	36	24.20	23.99	24.00	0	0			
	1	74	24.01	23.84	23.84		0			
QPSK	36	0	23.12	23.07	23.03		1			
	36	18	23.20	23.13	23.13	0-1	1			
	36	37	23.18	23.16	23.22		1			
	75	0	23.16	23.12	23.13	1	1			
	1	0	22.92	23.27	22.78		1			
	1	36	23.01	23.40	22.93	0-1	1			
	1	74	22.85	23.18	22.74	1 1	1			
16QAM	36	0	22.03	22.07	22.05		2			
	36	18	22.13	22.14	22.10	0.2	2			
-	36	37	22.13	22.15	22.14	0-2	2			
	75	0	22.09	22.09	22.07	1 1	2			

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dama 20 of 00	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 32 of 82	
02	20 PCTEST			REV 21.4 M	

© 20

LIE Band 66 (AWS) Maximum Conducted Powers - 10 MHZ Bandwidth										
	LTE Band 66 (AWS) 10 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm	ı]					
	1	0	23.94	23.97	23.92	0	0			
	1	25	24.12	24.14	24.13		0			
	1	49	23.87	23.93	23.92		0			
QPSK	25	0	23.03	23.04	22.97		1			
	25	12	23.11	23.05	23.04	0-1	1			
	25	25	23.09	23.09	23.04	0-1	1			
	50	0	23.11	23.05	23.01		1			
	1	0	22.86	23.32	22.90		1			
	1	25	22.93	23.50	23.06	0-1	1			
	1	49	22.70	23.33	22.93		1			
16QAM	25	0	22.16	22.14	22.10		2			
	25	12	22.23	22.13	22.19	0-2	2			
	25	25	22.24	22.18	22.13	0-2	2			
	50	0	22.15	22.14	22.06		2			

 Table 9-16

 LTE Band 66 (AWS) Maximum Conducted Powers - 10 MHz Bandwidth

Table 9-17

LTE Band 66 (AWS) Maximum Conducted Powers - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	23.97	23.91	23.79	0	0
	1	12	24.20	24.22	24.08		0
	1	24	23.90	23.98	23.82		0
QPSK	12	0	23.02	22.98	23.00		1
	12	6	23.11	23.03	23.05		1
	12	13	23.09	23.07	22.97		1
	25	0	23.00	22.99	22.95		1
	1	0	22.90	23.25	22.87		1
	1	12	23.13	23.47	23.18	0-1	1
	1	24	22.88	23.50	22.90		1
16QAM	12	0	22.10	22.10	22.02		2
	12	6	22.15	22.17	22.12	0-2	2
	12	13	22.08	22.15	21.99	0-2	2
	25	0	22.05	22.16	21.99		2

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 22 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 33 of 82
© 202	0 PCTEST				REV 21.4 M

	LIE Band 66 (AWS) Maximum Conducted Powers - 3 MHZ Bandwidth									
	LTE Band 66 (AWS) 3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Size RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm	i]					
	1	0	24.01	23.92	23.97		0			
	1	7	24.10	24.05	24.07	0-1	0			
	1	14	23.95	23.95	23.93		0			
QPSK	8	0	23.09	22.95	23.03		1			
	8	4	23.09	22.99	23.06		1			
	8	7	23.05	23.01	23.00		1			
	15	0	23.04	23.01	23.00		1			
	1	0	22.80	23.31	22.88		1			
	1	7	22.93	23.43	22.99	0-1	1			
	1	14	22.70	23.31	22.82		1			
16QAM	8	0	22.05	22.09	22.07		2			
	8	4	22.07	22.17	22.08	0-2	2			
	8	7	21.98	22.16	21.98	0-2	2			
	15	0	22.01	22.06	22.05		2			

Table 9-18 LTE Band 66 (AWS) Maximum (onducted Powers - 3 MHz Bandwidth

Table 9-19

LTE Band 66 (AWS) Maximum Conducted Powers -1.4 MHz Bandwidth 1.4 MHz Bandwidth High Channel Low Channel Mid Channel 131979 132322 132665 MPR Allowed per RB Offset MPR [dB] Modulation **RB** Size (1779.3 MHz) (1710.7 MHz) (1745.0 MHz) 3GPP [dB] Conducted Power [dBm]

				-	conducted i ower labit			
		1	0	23.95	23.87	24.05		0
		1	2	24.03	23.98	24.14	0	0
		1	5	23.94	23.91	24.08		0
C	PSK	3	0	24.11	24.05	24.05	0	0
		3	2	24.24	24.09	24.08		0
		3	3	24.13	24.06	24.05		0
		6	0	23.13	22.97	23.04	0-1	1
		1	0	22.74	23.28	22.89		1
		1	2	22.80	23.41	22.81		1
		1	5	22.74	23.26	22.76	0-1	1
16	6QAM	3	0	23.15	23.34	23.11	0-1	1
		3	2	23.23	23.40	23.15		1
		3	3	23.21	23.29	23.12		1
		6	0	22.23	21.92	22.20	0-2	2

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dege 24 of 92	
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 34 of 82	
20 PCTEST				REV 21.4 M	

© 20

LIE Band 66 (AWS) Reduced Conducted Powers - 20 MHZ Bandwidth									
LTE Band 66 (AWS)									
20 MHz Bandwidth Low Channel Mid Channel High Channel									
					v				
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm	1]				
	1	0	22.66	22.76	22.65		0		
	1	50	22.83	23.00	22.94	0	0		
	1	99	22.51	22.62	22.66		0		
QPSK	50	0	22.79	22.86	22.85	0-1	0		
	50	25	22.85	22.87	22.83		0		
	50	50	22.76	22.92	22.91		0		
	100	0	22.78	22.85	22.88		0		
	1	0	23.04	23.05	22.89		0		
	1	50	23.26	23.30	23.19	0-1	0		
	1	99	22.91	22.89	22.87		0		
16QAM	50	0	22.05	22.14	22.13		0.8		
	50	25	22.08	22.17	22.12	0-2	0.8		
	50	50	22.02	22.16	22.15	0-2	0.8		
	100	0	22.03	22.15	22.17	1	0.8		

Table 9-20 LTE Band 66 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth

Table 9-21

LTE Band 66 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth LTE Band 66 (AWS) 15 MHz Bandwidth Low Channel Mid Channel High Channel MPR Allowed per 132047 132322 132597 Modulation RB Size RB Offset MPR [dB] (1717.5 MHz) (1772.5 MHz) 3GPP [dB] (1745.0 MHz) Conducted Power [dBm] 23.06 22.74 0 22.88 0 1 1 36 23.16 22.96 22.94 0 0 74 22.98 22.74 22.77 0 1 OPSK 36 23.10 23.05 23.02 0 0 36 18 23.13 23.12 23.11 0 0-1 36 37 23.14 23.16 0 23.12 75 0 23.15 23.11 23.08 0 0 22.91 23.25 22.77 0 1 22.97 36 23.05 23.10 0-1 0 1

23.17

22.31

22.34

22.34

22.39

22.89

22.24

22.34

22.39

22.31

0-2

0

0.8

0.8

0.8

0.8

09/11/2019

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Daga 25 of 00	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 35 of 82	
© 202	20 PCTEST				REV 21.4 M	

1

36

36

36

75

16QAM

74

0

18

37

0

22.85

22.30

22.36

22.33

22.32

LIE Band 66 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth								
LTE Band 66 (AWS) 10 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			(Conducted Power [dBm	ı]			
	1	0	22.92	22.86	22.81		0	
	1	25	23.07	23.08	23.07	0	0	
	1	49	22.88	22.89	22.84		0	
QPSK	25	0	23.00	23.00	22.92	0-1	0	
	25	12	23.09	22.99	23.05		0	
	25	25	23.08	23.06	23.02		0	
	50	0	23.10	23.11	23.01		0	
	1	0	22.85	23.09	22.89		0	
	1	25	22.90	23.15	23.09	0-1	0	
	1	49	22.87	23.20	22.84		0	
16QAM	25	0	22.37	22.34	22.34		0.8	
	25	12	22.45	22.40	22.38	0-2	0.8	
	25	25	22.48	22.41	22.40	0-2	0.8	
	50	0	22.35	22.36	22.23		0.8	

 Table 9-22

 LTE Band 66 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth

 Table 9-23

 LTE Band 66 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth

LTE Band 66 (AWS)									
5 MHz Bandwidth Low Channel Mid Channel High Channel									
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			C	Conducted Power [dBm	ı]				
	1	0	22.89	22.90	22.75		0		
	1	12	23.14	23.12	23.02	0	0		
	1	24	22.88	22.92	22.72		0		
QPSK	12	0	23.04	22.99	22.97	0-1	0		
	12	6	23.06	22.99	23.04		0		
	12	13	23.03	23.03	22.93		0		
	25	0	22.96	22.98	22.94		0		
	1	0	22.91	23.19	22.93		0		
	1	12	23.08	23.25	23.14	0-1	0		
	1	24	22.83	23.29	22.88		0		
16QAM	12	12 0 22.29 22.31	22.31	22.29		0.8			
	12	6	22.39	22.39	22.31	0-2	0.8		
	12	13	22.35	22.36	22.25	0-2	0.8		
	25	0	22.26	22.39	22.21		0.8		

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 26 of 92	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 36 of 82	
© 202	0 PCTEST				REV 21.4 M	

	- 1 -	Balla 00		LTE Band 66 (AWS)		Inz Bundwidth	
		<u>г г</u>	Law Channel	3 MHz Bandwidth	Link Channel	1	
Modulation	RB Size	RB Offset	Low Channel 131987 (1711.5 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	i]		
	1	0	22.91	22.91	22.95		0
	1	7	23.07	23.00	23.01	0	0
	1	14	22.89	22.91	22.89		0
QPSK	8	0	23.04	22.96	23.00		0
	8	4	23.08	22.98	23.05	0-1	0
	8	7	22.97	22.98	22.98	0-1	0
	15	0	22.97	23.01	22.98		0
	1	0	22.80	23.30	22.87		0
	1	7	22.92	23.21	22.98	0-1	0
	1	14	22.72	23.24	22.81		0
16QAM	8	0	22.24	22.34	22.29		0.8
	8	4	22.30	22.37	22.31	0-2	0.8
	8	7	22.23	22.35	22.23	0-2	0.8
	15	0	22.24	22.28	22.28		0.8

Table 9-24 LTE Band 66 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

Table 9-25 LTE Band 66 (AWS) Reduced Conducted Powers -1.4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth					
	RB Size		Low Channel	Mid Channel	High Channel	_			
Modulation		RB Size	RB Offset	131979 (1710.7 MHz)		132322 (1745.0 MHz)	132665 (1779.3 MHz)		MPR Allowed per 3GPP [dB]
			(Conducted Power [dBm]				
	1	0	22.90	22.98	23.01		0		
	1	2	22.97	22.91	23.08	1	0		
	1	5	22.91	22.86	23.00	0	0		
QPSK	3	0	23.11	23.06	23.05		0		
	3	2	23.17	23.06	23.08		0		
	3	3	23.12	23.08	23.04		0		
	6	0	23.08	22.96	23.02	0-1	0		
	1	0	22.76	23.28	22.71		0		
	1	2	22.77	23.26	22.80		0		
	1	5	22.88	23.26	22.76	0-1	0		
16QAM	3	0	23.17	23.20	23.13		0		
	3	2	23.20	23.13	23.15	1 1	0		
	3	3	23.17	23.28	23.12		0		
	6	0	22.25	22.11	22.41	0-2	0.8		

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 37 of 82
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Tage 57 0102
020 PCTEST				REV 21.4 M

© 20

9.3.5

LTE Band 25 (PCS)

				LTE Band 25 (PCS) 20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26140 (1860.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.65	24.02	23.43		0
	1	50	23.96	23.95	23.71	0	0
	1	99	23.70	23.63	23.50		0
QPSK	50	0	22.75	22.78	22.74		1
	50	25	22.75	22.80	22.77	0-1	1
	50	50	22.74	22.75	22.66	- 0-1	1
	100	0	22.79	22.77	22.70		1
	1	0	22.93	22.81	22.82		1
	1	50	23.18	23.20	23.12	0-1	1
	1	99	22.94	22.82	22.71		1
16QAM	50	0	21.77	21.82	21.76		2
	50	25	21.82	21.82	21.79		2
	50	50	21.84	21.89	21.65	0-2	2
	100	0	21.81	21.87	21.71	1 F	2

Table 9-26 LTE Band 25 (PCS) Maximum Conducted Powers - 20 MHz Bandwidth

Table 9-27 LTE Band 25 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

	LTE Band 25 (PCS)										
	15 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			, í	Conducted Power [dBm	1]	1					
	1	0	24.02	23.98	23.92		0				
	1	36	24.17	24.17	24.12	0	0				
	1	74	24.09	23.96	24.07	1	0				
QPSK	36	0	23.15	23.21	23.28		1				
	36	18	23.24	23.25	23.31	0-1	1				
	36	37	23.29	23.27	23.30	0-1	1				
	75	0	23.26	23.25	23.25		1				
	1	0	22.85	23.33	22.90		1				
	1	36	22.97	23.26	23.05	0-1	1				
	1	74	22.87	23.35	22.85		1				
16QAM	36	0	22.11	22.20	22.22		2				
	36	18	22.16	22.25	22.25	0-2	2				
	36	37	22.21	22.24	22.19	1 0-2	2				
	75	0	22.15	22.20	22.18	1	2				

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 20 of 00
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 38 of 82
020 PCTEST				REV 21.4 M

© 20

	LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHZ Bandwidth										
	LTE Band 25 (PCS)										
10 MHz Bandwidth											
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm	1]						
	1	0	23.88	23.99	23.92		0				
	1	25	24.11	24.21	24.20	0	0				
	1	49	23.91	24.01	24.02		0				
QPSK	25	0	23.05	23.10	23.07		1				
	25	12	23.10	23.17	23.07	0-1	1				
	25	25	23.09	23.09	22.99	0-1	1				
	50	0	23.08	23.09	23.04		1				
	1	0	22.68	23.38	22.87		1				
	1	25	22.92	23.24	23.08	0-1	1				
	1	49	22.69	23.45	22.83		1				
16QAM	25	0	22.17	22.20	22.18		2				
	25	12	22.19	22.23	22.17	0-2	2				
	25	25	22.17	22.20	22.11	0-2	2				
	50	0	22.11	22.11	22.08		2				

Table 9-28 LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

Table 9-29

LTE Band 25 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

	LTE Band 25 (PCS) 5 MHz Bandwidth										
			Low Channel 26065	Mid Channel 26365	High Channel 26665	MPR Allowed per					
Modulation	RB Size	RB Offset	(1852.5 MHz)	(1882.5 MHz)	(1912.5 MHz)	3GPP [dB]	MPR [dB]				
				Conducted Power [dBm	1]						
	1	0	23.92	24.01	23.87		0				
	1	12	24.20	24.25	24.11	0	0				
	1	24	23.96	24.03	23.96		0				
QPSK	12	0	22.98	23.06	23.07		1				
	12	6	23.06	23.12	23.07	0-1	1				
	12	13	23.07	23.08	22.99	0-1	1				
	25	0	22.99	23.03	23.00		1				
	1	0	22.87	23.31	22.97		1				
	1	12	23.12	23.28	23.19	0-1	1				
	1	24	22.91	23.34	22.96		1				
16QAM	12	0	22.09	22.16	22.10		2				
	12	6	22.14	22.26	22.05	0-2	2				
	12	13	22.10	22.17	21.98	0-2	2				
	25	0	22.02	22.17	21.98		2				

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 20 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 39 of 82
02	20 PCTEST				REV 21.4 M

© 20

				LTE Band 25 (PCS) 3 MHz Bandwidth			
		-	Low Channel 26055	Mid Channel 26365	High Channel 26675	MPR Allowed per	MPR [dB]
Modulation	RB Size	RB Offset	Offset (1851.5 MHz)	(1882.5 MHz)	(1913.5 MHz)	3GPP [dB]	
				Conducted Power [dBm	1]		
	1	0	23.95	24.01	24.05		0
	1	7	24.10	24.18	24.11	0	0
	1	14	23.97	24.02	24.06	1	0
QPSK	8	0	23.04	23.06	23.10	0-1	1
	8	4	23.09	23.12	23.18		1
	8	7	23.07	23.06	23.10		1
	15	0	23.04	23.06	23.03	1	1
	1	0	22.77	23.43	22.92		1
	1	7	22.89	23.20	22.92	0-1	1
	1	14	22.74	23.43	22.85	1	1
16QAM	8	0	22.01	22.22	22.10		2
	8	4	22.12	22.23	22.08	0-2	2
	8	7	22.00	22.15	22.01	0-2	2
	15	0	22.03	22.08	22.01	1 [2

 Table 9-30

 LTE Band 25 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth

Table 9-31 LTE Band 25 (PCS) Maximum Conducted Powers -1.4 MHz Bandwidth

				LTE Band 25 (PCS) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.83	23.94	24.05		0
	1	2	23.91	24.02	24.20		0
	1	5	23.84	23.94	24.12	0	0
QPSK	3	0	24.04	24.07	24.02		0
	3	2	24.09	24.11	24.05		0
	3	3	24.04	24.13	24.06		0
	6	0	23.03	23.06	23.17	0-1	1
	1	0	22.68	23.34	22.75		1
	1	2	22.72	23.42	22.86		1
	1	5	22.69	23.35	22.78	0-1	1
16QAM	3	0	23.09	23.38	22.96		1
	3	2	23.13	23.39	23.02		1
	3	3	23.11	23.41	23.01		1
	6	0	22.18	21.95	22.20	0-2	2

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 40 of 82
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 40 of 82
© 202	0 PCTEST				REV 21.4 M

		Danu 23	(FOD) Reduc		F0wers - 20 P	ини ванижици	
				LTE Band 25 (PCS)			
		1 1		20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	I	
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	23.20	23.22	22.99		0
	1	50	23.45	23.50	23.30	0	0
	1	99	23.15	23.10	22.94	1 1	0
QPSK	50	0	23.01	23.09	23.04		0.3
	50	25	23.11	23.12	23.03	0-1	0.3
	50	50	23.09	23.02	22.89	0-1	0.3
	100	0	23.07	23.10	22.98		0.3
	1	0	23.31	23.15	23.14		0.3
	1	50	23.49	23.48	23.37	0-1	0.3
	1	99	23.21	23.08	22.97		0.3
16QAM	50	0	22.11	22.08	22.05		1.3
	50	25	22.10	22.10	22.04	0.2	1.3
	50	50	22.09	22.03	21.88	0-2	1.3
	100	0	22.08	22.07	21.94	1	1.3

	Table 9-32
LTE Band 25 (PCS	Reduced Conducted Powers - 20 MHz Bandwidth

Table 9-33 LTE Band 25 (PCS) Reduced Conducted Powers - 15 MHz Bandwidth

				LTE Band 25 (PCS) 15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	22.98	23.13	22.98		0
	1	36	23.11	23.35	23.13	0	0
	1	74	23.00	23.14	23.01	1	0
QPSK	36	0	22.97	22.97	23.09	0-1	0.3
	36	18	23.02	23.04	23.08		0.3
	36	37	23.04	23.03	23.10	0-1	0.3
	75	0	23.00	23.03	23.04		0.3
	1	0	23.09	22.74	22.74		0.3
	1	36	23.21	23.01	22.90	0-1	0.3
	1	74	23.10	22.79	22.65		0.3
16QAM	36	0	21.90	21.97	22.02	0-2	1.3
	36	18	21.98	22.01	22.04		1.3
	36	37	21.99	22.05	22.01		1.3
	75	0	21.93	21.95	22.02		1.3

FCC II	D ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Docun	ocument S/N: Test Dates:		DUT Type:		Dage 41 of 92
1M200	2110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 41 of 82
020 PCTES	ST				REV 21.4 M

© 20

		Danu 25	(FCS) Reduc		Fowers - 101	инг Банижийн	
				LTE Band 25 (PCS)			
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26090	26365	26640	MPR Allowed per	MPR [dB]
			(1855.0 MHz)	(1882.5 MHz)	(1910.0 MHz)	3GPP [dB]	
			•	Conducted Power [dBm	1]		
	1	0	23.09	23.05	22.98		0
	1	25	23.29	23.30	23.27	0	0
	1	49	23.01	23.03	23.09		0
QPSK	25	0	22.95	22.98	22.97		0.3
	25	12	22.98	23.02	22.90	0-1	0.3
	25	25	22.95	23.02	22.85	0-1	0.3
	50	0	22.95	23.00	22.92		0.3
	1	0	23.19	22.65	22.72		0.3
	1	25	23.39	22.91	22.99	0-1	0.3
	1	49	23.16	22.65	22.71		0.3
16QAM	25	0	22.05	22.15	22.08		1.3
	25	12	22.07	22.13	22.07	0-2	1.3
	25	25	22.02	22.13	22.00		1.3
	50	0	21.98	22.06	21.95	7	1.3

Table 9-34 LTE Band 25 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

Table 9-35 LTE Band 25 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth

				LTE Band 25 (PCS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.12	23.11	22.99		0
	1	12	23.41	23.37	23.29	0	0
	1	24	23.16	23.15	23.08		0
QPSK	12	0	22.95	23.02	23.01	0-1	0.3
	12	6	23.03	23.08	22.99		0.3
	12	13	23.01	22.98	22.90	0-1	0.3
	25	0	22.96	23.01	22.92		0.3
	1	0	23.42	22.90	22.88		0.3
	1	12	23.50	23.13	23.14	0-1	0.3
	1	24	23.45	22.89	22.85		0.3
16QAM	12	0	22.06	22.09	21.98	0-2	1.3
	12	6	22.12	22.16	22.00		1.3
	12	13	22.10	22.06	21.93		1.3
	25	0	22.07	22.01	21.92	1	1.3

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 af 00
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 42 of 82
020 PCTEST				REV 21.4 M

© 20

						Inz Banuwiuth	
				LTE Band 25 (PCS)			
		1		3 MHz Bandwidth		T T	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26055	26365	26675	MPR Allowed per	MPR [dB]
			(1851.5 MHz)	(1882.5 MHz)	(1913.5 MHz)	3GPP [dB]	
			(Conducted Power [dBm	1]		
	1	0	23.24	23.16	23.20		0
	1	7	23.31	23.31	23.30	0	0
	1	14	23.20	23.15	23.23		0
QPSK	8	0	23.00	23.00	23.08		0.3
	8	4	23.01	23.09	23.12	0-1	0.3
	8	7	23.01	23.02	23.06	0-1	0.3
	15	0	22.97	23.02	23.01		0.3
	1	0	23.30	22.84	22.88		0.3
	1	7	23.44	22.95	22.91	0-1	0.3
	1	14	23.36	22.79	22.80		0.3
16QAM	8	0	22.10	21.98	22.05		1.3
	8	4	22.12	22.08	22.06	0-2	1.3
	8	7	22.10	22.00	22.00	0-2	1.3
	15	0	22.00	21.96	21.97	1 [1.3

Table 9-36 LTE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

Table 9-37

LTE Band 25 (PCS) Reduced Conducted Powers -1.4 MHz Bandwidth

				LTE Band 25 (PCS) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.06	23.11	23.29		0
	1	2	23.20	23.18	23.39	1	0
	1	5	23.18	23.14	23.31	0	0
QPSK	3	0	23.28	23.36	23.25		0
	3	2	23.30	23.32	23.31] [0
	3	3	23.29	23.34	23.26] [0
	6	0	22.98	23.02	23.13	0-1	0.3
	1	0	23.25	22.69	22.71		0.3
	1	2	23.34	22.74	22.78	1	0.3
	1	5	23.26	22.68	22.73	0-1	0.3
16QAM	3	0	23.28	23.13	22.96		0.3
	3	2	23.28	23.17	22.98		0.3
	3	3	23.29	23.17	22.94		0.3
	6	0	21.89	22.19	22.15	0-2	1.3

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 43 of 82
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Fage 45 01 62
020 PCTEST				REV 21.4 M

© 20

9.3.6

			LTE Band 30		
		1	10 MHz Bandwidth		
			Mid Channel		
			27710	MPR Allowed per	
Modulation	RB Size	RB Offset	RB Offset (2310.0 MHz)	3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	23.50		0
	1	25	23.70	0	0
	1	49	23.43		0
QPSK	25	0	22.60		1
	25	12	22.64	0-1	1
	25	25	22.65	0-1	1
	50	0	22.59		1
	1	0	22.64		1
	1	25	22.63	0-1	1
	1	49	22.56		1
16QAM	25	0	21.59		2
	25	12	21.63	0-2	2
	25	25	21.62	0-2	2
	50	0	21.63		2

Table 9-38 LTE Band 30 Conducted Powers - 10 MHz Bandwidth

Table 9-39
LTE Band 30 Conducted Powers - 5 MHz Bandwidth

LTE Band 30 5 MHz Bandwidth						
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	1	0	23.53		0	
	1	12	23.83	0	0	
	1	24	23.62		0	
QPSK	12	0	22.81		1	
	12	6	22.93	0-1	1	
	12	13	22.82	0-1	1	
	25	0	22.78		1	
	1	0	22.77		1	
	1	12	22.98	0-1	1	
	1	24	22.71		1	
16QAM	12	0	21.86		2	
	12	6	21.88	0-2	2	
	12	13	21.84	0-2	2	
	25	0	21.80		2	

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dana 44 af 00	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 44 of 82	
202	0 PCTEST				REV 21.4 M	

© 20

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

9.3.7 LTE Band 7

				LTE Band 7 20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20850 (2510.0 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21350 (2560.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	21.91	21.89	21.91		0
	1	50	22.17	22.30	22.19	0	0
	1	99	21.84	21.83	21.94	1	0
QPSK	50	0	21.04	20.96	21.09	0-1	1
	50	25	21.05	21.12	21.10		1
	50	50	21.06	20.95	20.97	0-1	1
	100	0	21.03	20.99	21.06		1
	1	0	21.22	21.28	21.16		1
	1	50	21.18	21.50	21.44	0-1	1
	1	99	21.25	21.12	21.01	1 – – – – –	1
16QAM	50	0	20.02	20.01	20.15		2
	50	25	20.10	20.03	20.13	1 [2
	50	50	20.00	20.00	19.97	0-2	2
	100	0	20.03	20.00	20.15		2

 Table 9-40

 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

Table 9-41
LTE Band 7 Conducted Powers - 15 MHz Bandwidth

	LTE Band 7 15 MHz Bandwidth								
Modulation	RB Size	RB Offset	Low Channel 20825 (2507.5 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21375 (2562.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm	-				
	1	0	22.77	22.54	22.47		0		
	1	36	22.30	22.71	22.67	0	0		
	1	74	22.76	22.53	22.51		0		
QPSK	36	0	21.81	21.77	21.77	0-1	1		
	36	18	21.87	21.81	21.80		1		
	36	37	21.85	21.77	21.79		1		
	75	0	21.84	21.82	21.76		1		
	1	0	21.78	21.95	21.56		1		
	1	36	21.91	22.00	21.74	0-1	1		
	1	74	21.76	21.96	21.57	1	1		
16QAM	36	0	20.33	20.28	20.33		2		
	36	18	20.34	20.30	20.32	0-2	2		
	36	37	20.32	20.28	20.20	0-2	2		
	75	0	20.31	20.18	20.30		2		

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 45 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 45 of 82
© 202	0 PCTEST				REV 21.4 M

	LTE Band 7 10 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	20800 (2505.0 MHz)	21100 (2535.0 MHz)	21400 (2565.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
				Conducted Power [dBm	1]				
	1	0	22.04	22.03	22.00		0		
	1	25	22.23	22.23	22.21	0	0		
	1	49	22.07	22.03	22.00		0		
QPSK	25	0	21.26	21.14	21.27		1		
	25	12	21.24	21.19	21.23	0-1	1		
	25	25	21.24	21.17	21.19	0-1	1		
	50	0	21.25	21.19	21.18		1		
	1	0	20.96	21.47	21.12		1		
	1	25	21.13	21.62	21.26	0-1	1		
	1	49	20.96	21.47	21.06		1		
16QAM	25	0	20.33	20.26	20.39		2		
	25	12	20.35	20.23	20.32	0-2	2		
	25	25	20.39	20.26	20.30	0-2	2		
	50	0	20.33	20.25	20.23	1 1	2		

Table 9-42 LTE Band 7 Conducted Powers - 10 MHz Bandwidth

Table 9-43 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

	LTE Band 7								
	5 MHz Bandwidth Low Channel Mid Channel High Channel								
Modulation	RB Size	RB Offset	20775 (2502.5 MHz)	21100 (2535.0 MHz)	21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm	1]				
	1	0	22.06	22.08	21.87		0		
	1	12	22.34	22.31	22.17	0	0		
	1	24	22.01	22.05	21.89		0		
QPSK	12	0	21.22	21.13	21.15	0-1	1		
	12	6	21.29	21.21	21.18		1		
	12	13	21.25	21.09	21.14	0-1	1		
	25	0	21.22	21.15	21.17		1		
	1	0	21.13	21.64	21.11		1		
	1	12	21.36	21.89	21.37	0-1	1		
	1	24	21.11	21.60	21.10		1		
16QAM	12	0	20.31	20.20	20.23		2		
	12	6	20.38	20.29	20.26	0-2	2		
	12	13	20.31	20.23	20.22	0-2	2		
	25	0	20.26	20.27	20.18	1	2		

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 46 of 82	
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 46 of 82	
20 PCTEST				REV 21.4 M	

© 20

WLAN Conducted Powers 9.4

	2.4GHz Conducted Power [dBm]							
IEEE Transmission Mode								
Freq [MHz]	Channel	802.11b	802.11g	802.11n				
		Average	Average	Average				
2412	1	16.47	14.01	13.94				
2417	2		15.37	15.35				
2437	6	16.58	15.30	15.25				
2457	10		15.49	15.44				
2462	11	16.65	11.91	11.98				

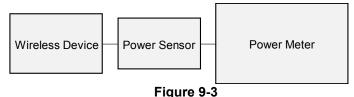

Table 9-44 2.4 GHz WLAN Maximum Average RF Power

Table 9-45
5 GHz WLAN Maximum Average RF Power

5GHz (20MHz) Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11a	802.11n	802.11ac			
		Average	Average	Average			
5180	36	12.28	12.00	11.87			
5200	40	12.69	12.01	12.11			
5220	44	13.07	12.99	12.34			
5240	48	13.41	12.72	12.58			
5260	52	13.06	12.36	12.53			
5280	56	13.17	12.61	12.76			
5300	60	13.32	12.86	12.91			
5320	64	13.43	13.01	13.15			
5500	100	14.29	13.53	13.64			
5600	120	14.57	14.30	14.09			
5620	124	14.66	14.23	14.20			
5720	144	14.18	13.79	13.76			
5745	149	13.28	12.70	12.80			
5785	157	13.22	13.13	12.69			
5825	165	13.07	12.84	12.65			

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for • the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; ٠ and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Power Measurement Setup

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	💽 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 47 of 90
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 47 of 82
202	0 PCTEST	·	•		REV 21.4 M

© 2020 PCTEST

Bluetooth Conducted Powers 9.5

Bluetooth Average RF Power											
	Data		Ohannah	Avg Conducted Power							
Frequency [MHz]	Rate [Mbps]	Mod.	Channel No.	[dBm]	[mW]						
2402	1.0	GFSK	0	6.80	4.782						
2441	1.0	GFSK	39	8.85	7.672						
2480	1.0	GFSK	78	7.77	5.987						
2402	2.0	π/4-DQPSK	0	6.92	4.924						
2441	2.0	π/4-DQPSK	39	8.68	7.371						
2480	2.0	π/4-DQPSK	78	7.79	6.015						
2402	3.0	8DPSK	0	6.93	4.934						
2441	3.0	8DPSK	39	8.76	7.523						
2480	3.0	8DPSK	78	7.85	6.090						

Table 9-46 _. .

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Days 40 (00	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 48 of 82	
02	20 PCTEST				REV 21.4 M	

© 20

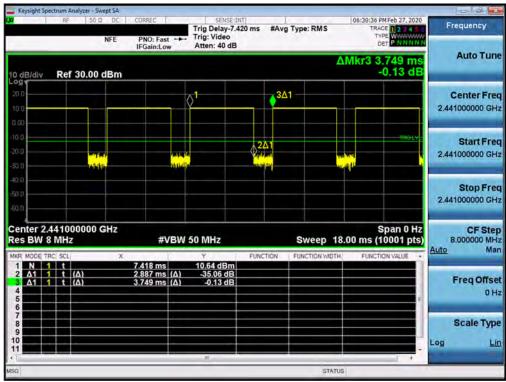
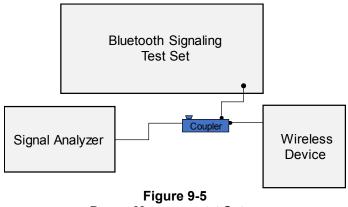



Figure 9-4 **Bluetooth Transmission Plot**

Equation 9-1 **Bluetooth Duty Cycle Calculation**

 $Duty \ Cycle = \frac{Pulse \ Width}{Period} * 100\% = \frac{2.887ms}{3.749ms} * 100\% = 77.0\%$

Power Measurement Setup

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dana 40 of 00	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 49 of 82	
0 202	0 PCTEST				REV 21 4 M	

© 2020 PCTEST

10 SYSTEM VERIFICATION

Tissue Verification 10.1

			Measure	ed Head Tiss	sue Properti	ies			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			700	0.863	42.508	0.889	42.201	-2.92%	0.73%
			710	0.867	42.484	0.890	42.149	-2.58%	0.79%
02/18/2020	700 Head	20.5	750	0.881	42.379	0.894	41.942	-1.45%	1.04%
			770	0.889	42.316	0.895	41.838	-0.67%	1.14%
			785	0.895	42.271	0.896	41.760	-0.11%	1.22%
			820	0.902	40.395	0.899	41.578	0.33%	-2.85%
02/12/2020	835 Head	20.1	835	0.908	40.342	0.900	41.500	0.89%	-2.79%
			850	0.913	40.292	0.916	41.500	-0.33%	-2.91%
			1710	1.336	39.964	1.348	40.142	-0.89%	-0.44%
			1720	1.342	39.947	1.354	40.126	-0.89%	-0.45%
02/17/2020	1750 Head	20.1	1745	1.358	39.898	1.368	40.087	-0.73%	-0.47%
02/11/2020	1750 Heau	20.1	1750	1.361	39.889	1.371	40.079	-0.73%	-0.47%
			1770	1.374	39.854	1.383	40.047	-0.65%	-0.48%
			1790	1.386	39.827	1.394	40.016	-0.57%	-0.47%
			1850	1.430	39.447	1.400	40.000	2.14%	-1.38%
			1860	1.437	39.427	1.400	40.000	2.64%	-1.43%
02/10/2020	1000 Llaad	20.1	1880	1.449	39.394	1.400	40.000	3.50%	-1.52%
02/19/2020	1900 Head	20.1	1900	1.461	39.364	1.400	40.000	4.36%	-1.59%
			1905	1.464	39.357	1.400	40.000	4.57%	-1.61%
			1910	1.467	39.350	1.400	40.000	4.79%	-1.63%
			2400	1.804	38.052	1.756	39.289	2.73%	-3.15%
			2450	1.843	37.968	1.800	39.200	2.39%	-3.14%
			2500	1.884	37.875	1.855	39.136	1.56%	-3.22%
02/40/2020	2400 Llaad	20.0	2510	1.891	37.860	1.866	39.123	1.34%	-3.23%
02/19/2020	2400 Head	20.9	2535	1.911	37.820	1.893	39.092	0.95%	-3.25%
			2550	1.923	37.790	1.909	39.073	0.73%	-3.28%
			2560	1.931	37.768	1.920	39.060	0.57%	-3.31%
			2600	1.963	37.699	1.964	39.009	-0.05%	-3.36%
			2400	1.817	38.826	1.756	39.289	3.47%	-1.18%
02/24/2020	2400 Head	20.0	2450	1.857	38.723	1.800	39.200	3.17%	-1.22%
			2500	1.900	38.618	1.855	39.136	2.43%	-1.32%
			2300	1.746	38.717	1.670	39.500	4.55%	-1.98%
02/27/2020	2400 Head	21.2	2310	1.754	38.701	1.679	39.480	4.47%	-1.97%
			2320	1.762	38.687	1.687	39.460	4.45%	-1.96%
			5250	4.713	36.795	4.706	35.929	0.15%	2.41%
			5320	4.789	36.672	4.778	35.849	0.23%	2.30%
00/44/00000	5200-5800	01.0	5600	5.123	36.159	5.065	35.529	1.15%	1.77%
02/14/2020	Head	21.6	5620	5.152	36.132	5.086	35.506	1.30%	1.76%
			5745	5.305	35.917	5.214	35.363	1.75%	1.57%
			5750	5.310	35.910	5.219	35.357	1.74%	1.56%

Table 10-1

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager				
	Document S/N:	Test Dates: DUT Type:			Page 50 of 82				
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	landset					
202	20 PCTEST								

© 2020 PCTEST

Calibrated for Tests Performed	Tissue	Tissue Temp	Measured	Measured	Manager and	TARGET	TARGET		
			measurea	weasured	Measured	TARGET	TARGET		
	Туре	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε
on:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε		
			700	0.940	54.275	0.959	55.726	-1.98%	-2.60%
02/11/2020	700 Body	20.7	710	0.943	54.264	0.960	55.687	-1.77%	-2.56%
			750	0.959	54.188	0.964	55.531	-0.52%	-2.42%
			750	0.959	53.459	0.964	55.531	-0.52%	-3.73%
02/24/2020	700 Body	19.7	770	0.966	53.396	0.965	55.453	0.10%	-3.71%
	-		785	0.972	53.358	0.966	55.395	0.62%	-3.68%
			820	0.947	53.535	0.969	55.258	-2.27%	-3.12%
02/24/2020	835 Body	20.0	835	0.963	53.374	0.970	55.200	-0.72%	-3.31%
	,		850	0.979	53.212	0.988	55.154	-0.91%	-3.52%
			1710	1.454	56.197	1.463	53.537	-0.62%	4.97%
			1720	1.466	56.161	1.469	53.511	-0.20%	4.95%
			1745	1.495	56.078	1.485	53.445	0.67%	4.93%
02/17/2020	1750 Body	21.5	1745	1.500	56.062	1.485	53.445	0.81%	4.93%
			1750	1.500		1.501	53.432		4.92%
			1770	1.521	55.995			1.33%	
					55.929	1.514	53.326	1.85%	4.88%
			1850	1.529	52.553	1.520	53.300	0.59%	-1.40%
			1860	1.536	52.539	1.520	53.300	1.05%	-1.43%
02/17/2020	1900 Body	19.8	1880	1.551	52.519	1.520	53.300	2.04%	-1.47%
			1900	1.566	52.494	1.520	53.300	3.03%	-1.51%
			1905	1.570	52.487	1.520	53.300	3.29%	-1.53%
			1910	1.573	52.478	1.520	53.300	3.49%	-1.54%
			1850	1.501	52.406	1.520	53.300	-1.25%	-1.68%
			1860	1.512	52.370	1.520	53.300	-0.53%	-1.74%
02/19/2020	1000 Dadu	22.1	1880	1.534	52.297	1.520	53.300	0.92%	-1.88%
02/19/2020	1900 Body	22.1	1900	1.554	52.227	1.520	53.300	2.24%	-2.01%
			1905	1.560	52.211	1.520	53.300	2.63%	-2.04%
			1910	1.565	52.192	1.520	53.300	2.96%	-2.08%
			1850	1.494	51.621	1.520	53.300	-1.71%	-3.15%
			1860	1.505	51.588	1.520	53.300	-0.99%	-3.21%
			1880	1.528	51.523	1.520	53.300	0.53%	-3.33%
02/22/2020	1900 Body	22.8	1900	1.550	51.456	1.520	53.300	1.97%	-3.46%
			1905	1.555	51.440	1.520	53.300	2.30%	-3.49%
			1910	1.561	51.423	1.520	53.300	2.70%	-3.52%
			2300	1.842	52.675	1.809	52.900	1.82%	-0.43%
			2300	1.854	52.648	1.816	52.887	2.09%	-0.45%
			2400	1.959	52.384	1.902	52.767	3.00%	-0.73%
			2450	2.018	52.236	1.950	52.700	3.49%	-0.88%
02/25/2020	2400 Body	22.7	2500	2.074	52.077	2.021	52.636	2.62%	-1.06%
	,		2510	2.086	52.044	2.035	52.623	2.51%	-1.10%
			2535	2.116	51.961	2.071	52.592	2.17%	-1.20%
			2550	2.134	51.921	2.092	52.573	2.01%	-1.24%
			2560	2.146	51.894	2.106	52.560	1.90%	-1.27%
			2600	2.191	51.774	2.163	52.509	1.29%	-1.40%
			2400	1.972	51.871	1.902	52.767	3.68%	-1.70%
02/28/2020	2400 Body	23.2	2450	2.032	51.738	1.950	52.700	4.21%	-1.83%
			2500	2.090	51.596	2.021	52.636	3.41%	-1.98%
			5240	5.414	49.595	5.346	48.960	1.27%	1.30%
			5250	5.428	49.590	5.358	48.947	1.31%	1.31%
			5320	5.517	49.480	5.439	48.851	1.43%	1.29%
02/17/2020	5200-5800	23.7	5600	5.899	49.019	5.766	48.471	2.31%	1.13%
	Body		5620	5.928	48.987	5.790	48.444	2.38%	1.12%
			5745	6.105	48.808	5.936	48.275	2.85%	1.10%
			5750	6.111	48.804	5.942	48.268	2.84%	1.11%
				5.522	47.383	5.358	48.947	3.06%	-3.20%
	5200-5800		5250	5.614	47.383	5.338	48.947	3.00%	-3.20%
03/17/2020	5200-5800 Body	23.0	5320	5.014	47.230	5.439		3.22%	-3.32%
	Douy		5600				48.471		
			5620	6.026	46.692	5.790	48.444	4.08%	-3.62%

Table 10-2 **Measured Body Tissue Properties**

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 51 of 82
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	/20 - 03/17/20 Portable Handset		
020 PCTEST	· ·			REV 21.4 M

© 2020 PCTEST

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in APPENDIX D:

	System Verification											
						RGET & N						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
L	750	HEAD	02/18/2020	22.5	20.5	0.200	1003	7410	1.660	8.280	8.300	0.24%
L	835	HEAD	02/12/2020	22.6	20.1	0.200	4d133	7410	2.000	9.430	10.000	6.04%
L	1750	HEAD	02/17/2020	22.7	20.1	0.100	1008	7410	3.810	36.200	38.100	5.25%
L	1900	HEAD	02/19/2020	24.2	20.1	0.100	5d148	7410	4.290	39.100	42.900	9.72%
М	2300	HEAD	02/27/2020	20.8	22.2	0.100	1073	7570	5.060	49.200	50.600	2.85%
М	2450	HEAD	02/19/2020	22.4	21.3	0.100	797	7570	5.400	52.700	54.000	2.47%
М	2450	HEAD	02/24/2020	21.0	20.0	0.100	797	7570	5.310	52.700	53.100	0.76%
м	2600	HEAD	02/19/2020	22.4	21.3	0.100	1004	7570	5.940	55.900	59.400	6.26%
Н	5250	HEAD	02/14/2020	21.4	21.3	0.050	1057	7406	3.640	79.200	72.800	-8.08%
Н	5600	HEAD	02/14/2020	21.4	21.3	0.050	1057	7406	4.140	84.100	82.800	-1.55%
Н	5750	HEAD	02/14/2020	21.4	21.3	0.050	1057	7406	3.710	80.500	74.200	-7.83%
Р	750	BODY	02/11/2020	22.0	20.7	0.200	1054	7551	1.770	8.550	8.850	3.51%
E	750	BODY	02/24/2020	21.4	19.7	0.200	1003	3589	1.810	8.580	9.050	5.48%
D	835	BODY	02/24/2020	21.2	20.0	0.200	4d047	7488	1.810	9.470	9.050	-4.44%
I	1750	BODY	02/17/2020	21.9	21.5	0.100	1148	7357	3.990	37.700	39.900	5.84%
Р	1900	BODY	02/19/2020	23.5	22.1	0.100	5d148	7551	4.060	39.100	40.600	3.84%
J	1900	BODY	02/22/2020	22.3	24.7	0.100	5d080	7571	4.140	39.200	41.400	5.61%
к	2300	BODY	02/25/2020	23.1	22.7	0.100	1073	7547	4.840	47.700	48.400	1.47%
К	2450	BODY	02/25/2020	23.1	22.7	0.100	797	7547	5.270	51.100	52.700	3.13%
К	2600	BODY	02/25/2020	23.1	22.7	0.100	1004	7547	5.110	54.800	51.100	-6.75%
К	2450	BODY	02/28/2020	23.0	23.2	0.100	797	7547	5.070	51.100	50.700	-0.78%
G	5250	BODY	02/17/2020	22.3	22.7	0.050	1191	7409	3.690	77.000	73.800	-4.16%
G	5600	BODY	02/17/2020	22.3	22.7	0.050	1191	7409	3.990	78.600	79.800	1.53%
G	5750	BODY	02/17/2020	22.3	22.7	0.050	1191	7409	3.770	76.900	75.400	-1.95%

Table 10-3 System Verification Results – 1g

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dara 50 af 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 52 of 82
202	0 PCTEST			REV 21 4 M

© 2020 PCTEST

	System Verification Results – 10g											
System Verification TARGET & MEASURED												
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{10 g} (W/kg)	1 W Target SAR _{10 g} (W/kg)	1 W Normalized SAR _{10 g} (W/kg)	Deviation _{10g} (%)
I	1750	BODY	02/17/2020	21.9	21.5	0.100	1148	7357	2.120	19.800	21.200	7.07%
Р	1900	BODY	02/17/2020	23.9	19.4	0.100	5d080	7551	2.080	20.600	20.800	0.97%
Р	1900	BODY	02/19/2020	23.5	22.1	0.100	5d148	7551	2.080	20.500	20.800	1.46%
G	5250	BODY	03/17/2020	22.8	22.3	0.050	1237	7409	1.030	21.200	20.600	-2.83%
G	5600	BODY	03/17/2020	22.8	22.3	0.050	1237	7409	1.090	22.000	21.800	-0.91%

Table 10-4 System Vo rification Posulte _ 10a

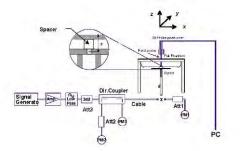


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dara 52 of 92	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 53 of 82	
202	0 PCTEST			REV 21.4 M	

© 2020 PCTEST

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

-	Tabl	e 11-1	
GSM	850	Head	SAR

						MEAS	JREMEN	T RESUL	TS						
FREQUE	INCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)		(W/kg)	
836.60	190	GSM 850	GSM	34.0	33.72	-0.06	Right	Cheek	04014	1	1:8.3	0.154	1.067	0.164	
836.60	190	GSM 850	GSM	34.0	33.72	0.00	Right	Tilt	04014	1	1:8.3	0.073	1.067	0.078	
836.60	190	GSM 850	GSM	34.0	33.72	0.08	Left	Cheek	04014	1	1:8.3	0.119	1.067	0.127	
836.60	190	GSM 850	GSM	34.0	33.72	0.14	Left	Tilt	04014	1	1:8.3	0.066	1.067	0.070	
836.60	190	GSM 850	GPRS	29.5	29.12	-0.14	Right	Cheek	04014	4	1:2.076	0.219	1.091	0.239	A1
836.60	190	GSM 850	GPRS	29.5	29.12	0.01	Right	Tilt	04014	4	1:2.076	0.097	1.091	0.106	
836.60	190	GSM 850	GPRS	29.5	29.12	-0.02	Left	Cheek	04014	4	1:2.076	0.165	1.091	0.180	
836.60	190	GSM 850	GPRS	29.5	29.12	0.11	Left	Tilt	04014	4	1:2.076	0.090	1.091	0.098	
		ANSI / IEE	E C95.1 1992 -		т						Hea				
		Uncontrolle	Spatial Pea d Exposure/Ge		tion						1.6 W/kg averaged ov				

Table 11-2 GSM 1900 Head SAR

							UREMEN								
FREQUE	INCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	inouo	0011100	Power [dBm]	Power [dBm]	Drift [dB]	elue	Position	Number	Slots	Sury Syolo	(W/kg)	ocumig ractor	(W/kg)	
1880.00	661	GSM 1900	GSM	31.0	30.49	0.12	Right	Cheek	04014	1	1:8.3	0.108	1.125	0.122	
1880.00	661	GSM 1900	GSM	31.0	30.49	0.11	Right	Tilt	04014	1	1:8.3	0.094	1.125	0.106	
1880.00	661	GSM 1900	GSM	31.0	30.49	0.08	Left	Cheek	04014	1	1:8.3	0.158	1.125	0.178	
1880.00	661	GSM 1900	GSM	31.0	30.49	0.13	Left	Tilt	04014	1	1:8.3	0.103	1.125	0.116	
1880.00	661	GSM 1900	GPRS	26.5	26.20	0.03	Right	Cheek	04014	4	1:2.076	0.142	1.072	0.152	
1880.00	661	GSM 1900	GPRS	26.5	26.20	0.11	Right	Tilt	04014	4	1:2.076	0.121	1.072	0.130	
1880.00	661	GSM 1900	GPRS	26.5	26.20	0.04	Left	Cheek	04014	4	1:2.076	0.209	1.072	0.224	A2
1880.00	661	GSM 1900	GPRS	26.5	26.20	0.15	Left	Tilt	04014	4	1:2.076	0.137	1.072	0.147	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							He a 1.6 W/kg averaged ov	(mW/g)			

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dana 54 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 54 of 82
202	0 PCTEST				REV 21.4 M

© 20

Table 11-3 UMTS 850 Head SAR

					-									
					М	EASURE	MENT RI	ESULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)	J. J	(W/kg)	
836.60	4183	UMTS 850	RMC	25.0	24.80	-0.06	Right	Cheek	04014	1:1	0.206	1.047	0.216	A3
836.60	4183	UMTS 850	RMC	25.0	24.80	0.11	Right	Tilt	04014	1:1	0.106	1.047	0.111	
836.60	4183	UMTS 850	RMC	25.0	24.80	0.17	Left	Cheek	04014	1:1	0.176	1.047	0.184	
836.60	4183	UMTS 850	RMC	25.0	24.80	0.12	Left	Tilt	04014	1:1	0.097	1.047	0.102	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	eneral Popula	tion					averaç	ged over 1 grar	n		

Table 11-4 UMTS 1750 Head SAR

					М	EASURE	MENT RE	SULTS							
FREQU	INCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)		
1732.40	1412	412 UMTS 1750 RMC 24.5 24.36 0.06 Right Cheek 04014 1:1 0.208 1.033 0.215													
1732.40	1412	UMTS 1750	RMC	24.5	24.36	0.15	Right	Tilt	04014	1:1	0.167	1.033	0.173		
1732.40	1412	UMTS 1750	RMC	24.5	24.36	0.07	Left	Cheek	04014	1:1	0.315	1.033	0.325	A4	
1732.40	1412	UMTS 1750	RMC	24.5	24.36	0.07	Left	Tilt	04014	1:1	0.210	1.033	0.217		
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	т						Head				
			Spatial Pea							1.6	W/kg (mW/g)				
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averag	ged over 1 gran	n			

Table 11-5 UMTS 1900 Head SAR

					м	EASURE	MENT RI	ESULTS						
FREQUE	INCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
1880.00	9400 UMTS 1900 RMC 24.5 24.48 0.09 Right Cheek 04014 1:1 0.190 1.005 0.191													
1880.00	9400	UMTS 1900	RMC	24.5	24.48	0.16	Right	Tilt	04014	1:1	0.124	1.005	0.125	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	0.17	Left	Cheek	04014	1:1	0.280	1.005	0.281	A5
1880.00	9400	UMTS 1900	RMC	24.5	24.48	-0.01	Left	Tilt	04014	1:1	0.153	1.005	0.154	
		ANSI / IEI	- EE C95.1 1992 Spatial Pea		т					161	Head W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge		tion						jed over 1 gran			

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 55 of 82
202	0 PCTEST	•	•		REV 21.4 M

© 20

Table 11-6 LTE Band 12 Head SAR

								MEAS	SUREM	INT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	0.05	0	Right	Cheek	QPSK	1	25	04014	1:1	0.096	1.109	0.106	
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	0.12	1	Right	Cheek	QPSK	25	12	04014	1:1	0.080	1.132	0.091	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	0.11	0	Right	Tilt	QPSK	1	25	04014	1:1	0.047	1.109	0.052	
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	0.18	1	Right	Tilt	QPSK	25	12	04014	1:1	0.037	1.132	0.042	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	0.13	0	Left	Cheek	QPSK	1	25	04014	1:1	0.102	1.109	0.113	A6
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	0.11	1	Left	Cheek	QPSK	25	12	04014	1:1	0.085	1.132	0.096	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	0.05	0	Left	Tilt	QPSK	1	25	04014	1:1	0.057	1.109	0.063	
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	0.12	1	Left	Tilt	QPSK	25	12	04014	1:1	0.044	1.132	0.050	
					- SAFETY LIM	т								Head					
				Spatial Pe										1.6 W/kg (m	•				
			Uncontrolled E	xposure/Ge	eneral Popula	tion							a	eraged over	1 gram				

Table 11-7 LTE Band 13 Head SAR

								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	_	(W/kg)	ĺ
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	0.20	0	Right	Cheek	QPSK	1	25	41532	1:1	0.143	1.114	0.159	A7
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	0.08	1	Right	Cheek	QPSK	25	12	41532	1:1	0.115	1.161	0.134	
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	-0.02	0	Right	Tilt	QPSK	1	25	41532	1:1	0.069	1.114	0.077	
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	-0.09	1	Right	Tilt	QPSK	25	12	41532	1:1	0.060	1.161	0.070	
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	0.20	0	Left	Cheek	QPSK	1	25	41532	1:1	0.138	1.114	0.154	
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	0.11	1	Left	Cheek	QPSK	25	12	41532	1:1	0.113	1.161	0.131	
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	0.04	0	Left	Tilt	QPSK	1	25	41532	1:1	0.061	1.114	0.068	
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	0.13	1	Left	Tilt	QPSK	25	12	41532	1:1	0.050	1.161	0.058	
				Spatial Pea									Head 1.6 W/kg (m	nW/g)					
			Uncontrolled E	xposure/Ge	neral Popula	tion							a	eraged over	1 gram				

Table 11-8 LTE Band 5 (Cell) Head SAR

								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	с	h.		[WH2]	Power [dBm]	Power[dbiii]	ын (авј			Position				Number	Cycle	(W/kg)		(W/kg)	ĺ
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	0.09	0	Right	Cheek	QPSK	1	25	04014	1:1	0.208	1.159	0.241	A8
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	-0.04	1	Right	Cheek	QPSK	25	0	04014	1:1	0.154	1.167	0.180	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	-0.19	0	Right	Tilt	QPSK	1	25	04014	1:1	0.105	1.159	0.122	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	0.04	1	Right	Tilt	QPSK	25	0	04014	1:1	0.081	1.167	0.095	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	0.01	0	Left	Cheek	QPSK	1	25	04014	1:1	0.172	1.159	0.199	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	-0.02	1	Left	Cheek	QPSK	25	0	04014	1:1	0.139	1.167	0.162	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	-0.18	0	Left	Tilt	QPSK	1	25	04014	1:1	0.092	1.159	0.107	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	0.12	1	Left	Tilt	QPSK	25	0	04014	1:1	0.077	1.167	0.090	
				Spatial Pea										Head 1.6 W/kg (m veraged over					

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 56 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 56 of 82
202	0 PCTEST		•		REV 21.4 M

© 20

Table 11-9 LTE Band 66 (AWS) Head SAR

								MEA	SUREM	ENT RES	ULTS								
FR	EQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	-0.12	0	Right	Cheek	QPSK	1	99	04014	1:1	0.241	1.119	0.270	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	0.14	1	Right	Cheek	QPSK	50	50	04014	1:1	0.204	1.109	0.226	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	-0.07	0	Right	Tilt	QPSK	1	99	04014	1:1	0.156	1.119	0.175	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.16	1	Right	Tilt	QPSK	50	50	04014	1:1	0.131	1.109	0.145	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	0.14	0	Left	Cheek	QPSK	1	99	04014	1:1	0.328	1.119	0.367	A9
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	0.10	1	Left	Cheek	QPSK	50	50	04014	1:1	0.256	1.109	0.284	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	-0.07	0	Left	Tilt	QPSK	1	99	04014	1:1	0.188	1.119	0.210	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	0.11	1	Left	Tilt	QPSK	50	50	04014	1:1	0.157	1.109	0.174	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak													Head					
			Uncontrolled Ex								1.6 W/kg (m reraged over	•							

Table 11-10 LTE Band 25 (PCS) Head SAR

								MEA	SUREM	ENT RES	ULTS								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maxim um Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHZ]	Power [dBm]	Power[abm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	-	(W/kg)	1
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.01	0	Right	Cheek	QPSK	1	0	03289	1:1	0.184	1.117	0.206	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.17	1	Right	Cheek	QPSK	50	25	03289	1:1	0.159	1.175	0.187	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.01	0	Right	Tilt	QPSK	1	0	03289	1:1	0.131	1.117	0.146	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.06	1	Right	Tilt	QPSK	50	25	03289	1:1	0.113	1.175	0.133	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.03	0	Left	Cheek	QPSK	1	0	03289	1:1	0.264	1.117	0.295	A10
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.16	1	Left	Cheek	QPSK	50	25	03289	1:1	0.231	1.175	0.271	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.07	0	Left	Tilt	QPSK	1	0	03289	1:1	0.146	1.117	0.163	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.13	1	Left	Tilt	QPSK	50	25	03289	1:1	0.115	1.175	0.135	
					SAFETY LIMI							Head							
			Uncontrolled E	Spatial Pea xposure/Ge		tion								1.6 W/kg (m /eraged over	•				

Table 11-11 LTE Band 30 Head SAR

								MEA	SUREMI	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	ĺ
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	0.15	0	Right	Cheek	QPSK	1	25	02737	1:1	0.077	1.202	0.093	A11
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	0.17	1	Right	Cheek	QPSK	25	25	02737	1:1	0.070	1.216	0.085	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	0.13	0	Right	Tilt	QPSK	1	25	02737	1:1	0.044	1.202	0.053	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	0.14	1	Right	Tilt	QPSK	25	25	02737	1:1	0.035	1.216	0.043	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	0.01	0	Left	Cheek	QPSK	1	25	02737	1:1	0.076	1.202	0.091	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	0.00	1	Left	Cheek	QPSK	25	25	02737	1:1	0.061	1.216	0.074	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	0.12	0	Left	Tilt	QPSK	1	25	02737	1:1	0.066	1.202	0.079	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	0.14	1	Left	Tilt	QPSK	25	25	02737	1:1	0.055	1.216	0.067	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													Head 1.6 W/kg (m veraged over					

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 57 of 82
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

Table 11-12 LTE Band 7 Head SAR

									SUREM	ENTRES									
FR	EQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	с	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	-0.19	0	Right	Cheek	QPSK	1	50	03289	1:1	0.121	1.175	0.142	
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	0.06	1	Right	Cheek	QPSK	50	25	03289	1:1	0.097	1.225	0.119	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.10	0	Right	Tilt	QPSK	1	50	03289	1:1	0.093	1.175	0.109	
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	0.17	1	Right	Tilt	QPSK	50	25	03289	1:1	0.068	1.225	0.083	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.12	0	Left	Cheek	QPSK	1	50	03289	1:1	0.199	1.175	0.234	A12
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	-0.01	1	Left	Cheek	QPSK	50	25	03289	1:1	0.159	1.225	0.195	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.08	0	Left	Tilt	QPSK	1	50	03289	1:1	0.185	1.175	0.217	
2535.00	2535.00 21100 Mid LTE Band 7 20 22.0 21.12 0.11									Tilt	QPSK	50	25	03289	1:1	0.145	1.225	0.178	
			ANSI / IEEE C							Head 1.6 W/kg (m veraged over									

Table 11-13 DTS Head SAR

							I	MEASUR	REMENT	RESULT	s							
FREQUE	NCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	17.0	16.47	0.12	Right	Cheek	03552	1	99.0	0.843	0.595	1.130	1.010	0.679	
2437	6	802.11b	DSSS	22	17.0	16.58	0.12	Right	Cheek	03552	1	99.0	0.855	0.598	1.102	1.010	0.666	
2462	11	802.11b	DSSS	22	17.0	16.65	0.15	Right	Cheek	03552	1	99.0	0.824	0.600	1.084	1.010	0.657	A13
2462	11	802.11b	DSSS	22	17.0	16.65	0.15	Right	Tilt	03552	1	99.0	0.927	0.570	1.084	1.010	0.624	
2462	11	802.11b	DSSS	22	17.0	16.65	-0.11	Left	Cheek	03552	1	99.0	0.229	-	1.084	1.010	-	
2462	11 802.11b DSSS 22 17.0 16.65							Left	Tilt	03552	1	99.0	0.242	-	1.084	1.010		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Hea					
		Spatial Peak Uncontrolled Exposure/General Population											1.6 W/kg averaged ov					

Table 11-14 **NII Head SAR**

							I	MEASU	REMENT	RESULT	s							
FREQUE	INCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	mode	001100	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	oluc	Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5320	64	802.11a	OFDM	20	14.0	13.43	-0.16	Right	Cheek	03552	6	96.6	0.879	0.333	1.140	1.035	0.393	
5320	64	802.11a	OFDM	20	14.0	13.43	0.03	Right	Tilt	03552	6	96.6	0.913	0.375	1.140	1.035	0.442	
5320	64	802.11a	OFDM	20	14.0	13.43	-0.17	Left	Cheek	03552	6	96.6	0.515	-	1.140	1.035	-	
5320	64	802.11a	OFDM	20	14.0	13.43	0.18	Left	Tilt	03552	6	96.6	0.610	-	1.140	1.035	-	
5620	124	802.11a	OFDM	20	15.0	14.66	-0.15	Right	Cheek	03552	6	96.6	0.826	0.438	1.081	1.035	0.490	
5620	124	802.11a	OFDM	20	15.0	14.66	-0.05	Right	Tilt	03552	6	96.6	1.123	0.500	1.081	1.035	0.559	A14
5620	124	802.11a	OFDM	20	15.0	14.66	0.07	Left	Cheek	03552	6	96.6	0.478	-	1.081	1.035	-	
5620	124	802.11a	OFDM	20	15.0	14.66	0.03	Left	Tilt	03552	6	96.6	0.659	-	1.081	1.035	-	
5745	149	802.11a	OFDM	20	14.0	13.28	0.16	Right	Cheek	03552	6	96.6	0.654	-	1.180	1.035	-	
5745	149	802.11a	OFDM	20	14.0	13.28	0.21	Right	Tilt	03552	6	96.6	0.810	0.229	1.180	1.035	0.280	
5745	149	802.11a	OFDM	20	14.0	13.28	0.19	Left	Cheek	03552	6	96.6	0.391	-	1.180	1.035	-	
5745	149	802.11a	OFDM	20	14.0	13.28	0.18	Left	Tilt	03552	6	96.6	0.541	-	1.180	1.035	-	
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population											Hea 1.6 W/kg averaged ov	(mW/g)				

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 59 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 58 of 82
202	O DOTEST			DEV/21.4 M

© 2020 PCTEST

Table 11-15 **DSS Head SAR**

							000									
						r	MEASUR	EMENT R	ESULTS	3						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	Mode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	PIOL #
2441.00	39	Bluetooth	FHSS	9.5	8.85	0.14	Right	Cheek	02240	1	77.0	0.097	1.161	1.299	0.146	
2441.00	39	Bluetooth	FHSS	9.5	8.85	0.19	Right	Tilt	02240	1	77.0	0.099	1.161	1.299	0.149	A15
2441.00	39	Bluetooth	FHSS	9.5	8.85	0.17	Left	Cheek	02240	1	77.0	0.031	1.161	1.299	0.047	
2441.00	39	Bluetooth	FHSS	9.5	8.85	0.16	Left	Tilt	02240	1	77.0	0.027	1.161	1.299	0.041	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т							Head				
			Spatial Pea	ak							1.0	6 W/kg (mW/	g)			
		Uncontrolle	d Exposure/Ge	eneral Popula	tion						aver	aged over 1 gr	am			

11.2 Standalone Body-Worn SAR Data

				G	SM/UM	<u>TS Bo</u>	dy-W	orn SA	R Da	ta					
					м	EASURE		ESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Spacing	Device Serial		Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)		(W/kg)	
836.60	190	GSM 850	GSM	34.0	33.72	0.02	10 mm	04014	1	1:8.3	back	0.189	1.067	0.202	
836.60	190	GSM 850	GPRS	29.5	29.12	0.08	10 mm	04014	4	1:2.076	back	0.309	1.091	0.337	A16
1880.00	661	GSM 1900	GSM	31.0	30.49	-0.17	10 mm	03289	1	1:8.3	back	0.329	1.125	0.370	
1880.00	661	GSM 1900	GPRS	26.5	26.20	-0.13	10 mm	03289	4	1:2.076	back	0.348	1.072	0.373	A17
836.60	4183	UMTS 850	RMC	25.0	24.80	0.02	10 mm	04014	N/A	1:1	back	0.290	1.047	0.304	A18
1732.40	1412	UMTS 1750	RMC	24.5	24.36	-0.03	10 mm	03289	N/A	1:1	back	0.546	1.033	0.564	A19
1852.40	9262	UMTS 1900	RMC	24.5	24.49	-0.02	10 mm	02737	N/A	1:1	back	0.632	1.002	0.633	A20
1880.00	9400	UMTS 1900	RMC	24.5	24.48	0.02	10 mm	02737	N/A	1:1	back	0.608	1.005	0.611	
1907.60	9538	UMTS 1900	RMC	24.5	24.42	-0.02	10 mm	02737	N/A	1:1	back	0.577	1.019	0.588	
		ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT								ody			
			Spatial Peak								1.6 W/k	g (mW/g)			
		Uncontrolled	Exposure/Gener	al Population						;	averaged	over 1 gram			

Table 11-16 ------

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 59 of 82
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		. ago co c. c_
12	20 PCTEST				REV 21.4 M

© 202

									bay-w	orn S	АК								
								MEASU	JREMENT	RESULTS	;								
FR	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power (dBm)	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	c	h.		[WITZ]	Power [dBm]	FOWEI [UBIII]	Drift [UB]		Number						Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	0.02	0	02737	QPSK	1	25	10 mm	back	1:1	0.221	1.109	0.245	A21
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	-0.04	1	02737	QPSK	25	12	10 mm	back	1:1	0.177	1.132	0.200	
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	-0.15	0	02737	QPSK	1	25	10 m m	back	1:1	0.256	1.114	0.285	A22
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	-0.16	1	02737	QPSK	25	12	10 mm	back	1:1	0.203	1.161	0.236	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	0.06	0	04014	QPSK	1	25	10 mm	back	1:1	0.268	1.159	0.311	A23
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	-0.14	1	04014	QPSK	25	0	10 m m	back	1:1	0.193	1.167	0.225	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	-0.14	0	03289	QPSK	1	99	10 mm	back	1:1	0.498	1.119	0.557	A24
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.14	1	03289	QPSK	50	50	10 mm	back	1:1	0.417	1.109	0.462	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.5	23.96	-0.14	0	02737	QPSK	1	50	10 mm	back	1:1	0.598	1.132	0.677	A26
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.09	0	02737	QPSK	1	0	10 mm	back	1:1	0.568	1.117	0.634	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.5	23.71	-0.13	0	02737	QPSK	1	50	10 mm	back	1:1	0.534	1.199	0.640	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.02	1	02737	QPSK	50	25	10 mm	back	1:1	0.467	1.175	0.549	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	-0.05	0	03289	QPSK	1	25	10 mm	back	1:1	0.527	1.202	0.633	A27
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	-0.09	1	03289	QPSK	25	25	10 mm	back	1:1	0.409	1.216	0.497	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.05	0	03289	QPSK	1	50	10 mm	back	1:1	0.504	1.175	0.592	A29
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	-0.09	1	03289	QPSK	50	25	10 mm	back	1:1	0.396	1.225	0.485	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Во					
				Spatial Pea										1.6 W/kg					
			Uncontrolled E	xposure/Ge	neral Populat	ion							а	veraged o	ver 1 gram	1			

Table 11-17 I TE Body-Worn SAR

Table 11-18 DTS Body-Worn SAR

							MEA	SUREME	ENT RE	SULTS								
FREQU	JENCY	Mode	Service		Maximum Allowed			Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2462	11	802.11b	17.0	0.17	10 mm	03552	1	back	99.0	0.118	0.078	1.084	1.010	0.085	A31			
		A	NSI / IEEE	C95.1 1992	- SAFETY LIMIT								B	lody				
				Spatial Pe										(mW/g)				
		Unc	ontrolled E	Exposure/G	eneral Population	1							averaged	over 1 gram				

Table 11-19 **NII Body-Worn SAR**

								MEAS	BUREMENT	RESULTS								
FREQ	JENCY	Mode	Service		Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Number	(Mbps)			W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5320	64								02240	6	back	96.6	0.131	0.060	1.140	1.035	0.071	
5620	124	802.11a	20	15.0	14.66	-0.02	10 mm	02240	6	back	96.6	0.273	0.127	1.081	1.035	0.142		
5745	149	802.11a	OFDM	20	14.0	13.28	0.16	10 mm	02240	6	back	96.6	0.306	0.128	1.180	1.035	0.156	A33
			ANSI / IEE	E C95.1 1992	2 - SAFETY LIMIT								Body					
		Ui	ncontrolled	Spatial P I Exposure/O	eak General Populatic	in							6 W/kg (mW/g aged over 1 gra					

Table 11-20 DSS Body-Worn SAR

								1y-vvC								
						N	IEASURE	MENT F	RESULT	s						
FREQU	JENCY	Mode	Service	Maxim um Allow ed		Power Drif	t Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	9.5	8.85	0.19	10 mm	03552	1	back	77.0	0.015	1.161	1.299	0.023	A35
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body Spatial Peak 1.6 W/kg (mW/g) Uncontrolled Exposure/General Population averaged over 1 gram															
F	CC ID	ZNFQ630UM	I		PCTES Prove to Derpiet of (SAR	EVALU	ATION	REPOR	۲	C	LG		proved by: ality Manage	er
		ent S/N: 110017-12-R1	.ZNF	Test Da	ates: 0 - 03/17/20) F						Pag	ge 60 of 82			
0000						I									V 04 4 M	

11.3 Standalone Hotspot SAR Data

					M			RESULTS	<u>· butt</u>	<u></u>					
FREQUE	NCY	Mode	Service	Maxim um Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Tower [abili]	Drift [db]		Number	01013	Oycie		(W/kg)		(W/kg)	
836.60	190	GSM 850	GPRS	29.5	29.12	0.08	10 mm	04014	4	1:2.076	back	0.309	1.091	0.337	A16
836.60	190	GSM 850	GPRS	29.5	29.12	-0.01	10 mm	04014	4	1:2.076	front	0.224	1.091	0.244	
836.60	190	GSM 850	GPRS	29.5	29.12	0.14	10 mm	04014	4	1:2.076	bottom	0.210	1.091	0.229	
836.60	190	GSM 850	GPRS	29.5	29.12	0.04	10 mm	04014	4	1:2.076	right	0.232	1.091	0.253	
836.60	190	GSM 850	GPRS	29.5	29.12	0.00	10 mm	04014	4	1:2.076	left	0.159	1.091	0.173	
1880.00	661	GSM 1900	GPRS	26.5	26.20	-0.13	10 mm	03289	4	1:2.076	back	0.348	1.072	0.373	A17
1880.00	661	GSM 1900	GPRS	26.5	26.20	0.13	10 mm	03289	4	1:2.076	front	0.315	1.072	0.338	
1880.00	661	GSM 1900	GPRS	26.5	26.20	0.03	10 mm	03289	4	1:2.076	bottom	0.237	1.072	0.254	
1880.00	661	GSM 1900	GPRS	26.5	26.20	-0.05	10 mm	03289	4	1:2.076	left	0.285	1.072	0.306	
836.60	4183	UMTS 850	RMC	25.0	24.80	0.02	10 mm	04014	N/A	1:1	back	0.290	1.047	0.304	A18
836.60	4183	UMTS 850	RMC	25.0	24.80	-0.13	10 mm	04014	N/A	1:1	front	0.222	1.047	0.232	
836.60	4183	UMTS 850	RMC	25.0	24.80	-0.07	10 mm	04014	N/A	1:1	bottom	0.205	1.047	0.215	
836.60	4183	UMTS 850	RMC	25.0	24.80	0.01	10 mm	04014	N/A	1:1	right	0.231	1.047	0.242	
836.60	4183	UMTS 850	RMC	25.0	24.80	-0.04	10 mm	04014	N/A	1:1	left	0.158	1.047	0.165	
1732.40	1412	UMTS 1750	RMC	24.5	24.36	-0.03	10 mm	03289	N/A	1:1	back	0.546	1.033	0.564	A19
1732.40	1412	UMTS 1750	RMC	24.5	24.36	0.00	10 mm	03289	N/A	1:1	front	0.475	1.033	0.491	
1732.40	1412	UMTS 1750	RMC	24.5	24.36	0.02	10 mm	03289	N/A	1:1	bottom	0.380	1.033	0.393	
1732.40	1412	UMTS 1750	RMC	24.5	24.36	0.01	10 mm	03289	N/A	1:1	left	0.510	1.033	0.527	
1852.40	9262	UMTS 1900	RMC	24.5	24.49	-0.02	10 mm	02737	N/A	1:1	back	0.632	1.002	0.633	A20
1880.00	9400	UMTS 1900	RMC	24.5	24.48	0.02	10 mm	02737	N/A	1:1	back	0.608	1.005	0.611	
1907.60	9538	UMTS 1900	RMC	24.5	24.42	-0.02	10 mm	02737	N/A	1:1	back	0.577	1.019	0.588	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	0.00	10 mm	02737	N/A	1:1	front	0.429	1.005	0.431	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	0.01	10 mm	02737	N/A	1:1	bottom	0.342	1.005	0.344	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	-0.06	10 mm	02737	N/A	1:1	left	0.414	1.005	0.416	
		ANSI / IEEI	E C95.1 1992 - SA	FETY LIMIT								ody			
			Spatial Peak									g (mW/g)			
		Uncontrolled	Exposure/Gener	ral Population							averaged	over 1 gram			

Table 11-21 **GPRS/UMTS Hotspot SAR Data**

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 64 of 82
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 61 of 82
202	20 PCTEST		•		REV 21.4 M

© 2020 PCTEST

Table 11-22 LTE Band 12 Hotspot SAR

								MEAS	UREMEN	TRESULT	s								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maxim um Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RBOffset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[101122]	Power [dBm]	Fower [ubiii]	Dint[ub]		Number							(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	0.02	0	02737	QPSK	1	25	10 mm	back	1:1	0.221	1.109	0.245	A21
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	-0.04	1	02737	QPSK	25	12	10 mm	back	1:1	0.177	1.132	0.200	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	-0.12	0	02737	QPSK	1	25	10 mm	front	1:1	0.160	1.109	0.177	
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	0.10	1	02737	QPSK	25	12	10 mm	front	1:1	0.133	1.132	0.151	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	-0.01	0	02737	QPSK	1	25	10 mm	bottom	1:1	0.012	1.109	0.013	
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	-0.17	1	02737	QPSK	25	12	10 mm	bottom	1:1	0.009	1.132	0.010	
707.50	23095	Mid	LTE Band 12	10	25.0	24.55	-0.19	0	02737	QPSK	1	25	10 mm	right	1:1	0.206	1.109	0.228	
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	0.02	1	02737	QPSK	25	12	10 mm	right	1:1	0.161	1.132	0.182	
707.50	23095	Mid	LTE Band 12	10	-0.19	0	02737	QPSK	1	25	10 mm	left	1:1	0.120	1.109	0.133			
707.50	23095	Mid	LTE Band 12	10	24.0	23.46	0.18	1	02737	QPSK	25	12	10 mm	left	1:1	0.100	1.132	0.113	
			ANSI / IEEE C95.		ETY LIMIT									Body					
			•	atial Peak										/kg (mW					
		ι	Jncontrolled Expo	sure/Genera	I Population								average	d over 1 g	Iram				

Table 11-23 LTE Band 13 Hotspot SAR

								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[]	Power [dBm]		[]									(W/kg)		(W/kg)	1
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	-0.15	0	02737	QPSK	1	25	10 mm	back	1:1	0.256	1.114	0.285	A22
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	-0.16	1	02737	QPSK	25	12	10 mm	back	1:1	0.203	1.161	0.236	
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	0.19	0	02737	QPSK	1	25	10 mm	front	1:1	0.182	1.114	0.203	
782.00	23230	Mid	LTE Band 13	10	0.02	1	02737	QPSK	25	12	10 mm	front	1:1	0.139	1.161	0.161			
782.00								0	02737	QPSK	1	25	10 mm	bottom	1:1	0.148	1.114	0.165	
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	0.17	1	02737	QPSK	25	12	10 mm	bottom	1:1	0.117	1.161	0.136	
782.00	23230	Mid	LTE Band 13	10	25.0	24.53	0.03	0	02737	QPSK	1	25	10 mm	right	1:1	0.204	1.114	0.227	
782.00	23230	Mid	LTE Band 13	10	24.0	23.35	0.01	1	02737	QPSK	25	12	10 mm	right	1:1	0.159	1.161	0.185	
782.00	23230 Mid LTE Band 13 10 25.0 24.53 0							0	02737	QPSK	1	25	10 mm	left	1:1	0.141	1.114	0.157	
782.00	23230 Mid LTE Band 13 10 24.0 23.35 0.0							1	02737	QPSK	25	12	10 mm	left	1:1	0.109	1.161	0.127	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT									Body					
			Spa	tial Peak								1.6 V	//kg (mW	/g)					
		ι	Incontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Table 11-24 LTE Band 5 (Cell) Hotspot SAR

								MEAS	UREMENT	RESULTS	5								
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RBOffset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	ı.		[WIN2]	Power [dBm]	Fower [ubiii]	Drint [UB]		Number							(W/kg)		(W/kg)	L
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	0.06	0	04014	QPSK	1	25	10 mm	back	1:1	0.268	1.159	0.311	A23
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	-0.14	1	04014	QPSK	25	0	10 mm	back	1:1	0.193	1.167	0.225	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	0.02	0	04014	QPSK	1	25	10 mm	front	1:1	0.219	1.159	0.254	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	0.00	1	04014	QPSK	25	0	10 mm	front	1:1	0.167	1.167	0.195	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	0.01	0	04014	QPSK	1	25	10 mm	bottom	1:1	0.187	1.159	0.217	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	-0.08	1	04014	QPSK	25	0	10 mm	bottom	1:1	0.150	1.167	0.175	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	0.04	0	04014	QPSK	1	25	10 mm	right	1:1	0.146	1.159	0.169	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	-0.07	1	04014	QPSK	25	0	10 mm	right	1:1	0.111	1.167	0.130	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.0	24.36	-0.08	0	04014	QPSK	1	25	10 mm	left	1:1	0.204	1.159	0.236	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.0	23.33	-0.01	1	04014	QPSK	25	0	10 mm	left	1:1	0.156	1.167	0.182	
			ANSI / IEEE C95. Spa	1 1992 - SAF Itial Peak	ETY LIMIT								1.6 V	Body V/kg (mW	//g)				
		l	Jncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				
															-				

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 62 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 62 of 82
02	0 PCTEST	·	·	REV 21.4 M

© 2020 PCTEST

Table 11-25 LTE Band 66 (AWS) Hotspot SAR

								MEAS	UREMENT	RESULTS	3								
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHZ]	Power [dBm]	Power [dBm]	Drift (aBj		Number							(W/kg)		(W/kg)	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	-0.14	0	03289	QPSK	1	99	10 mm	back	1:1	0.498	1.119	0.557	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.14	1	03289	QPSK	50	50	10 mm	back	1:1	0.417	1.109	0.462	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	0.01	0	03289	QPSK	1	99	10 mm	front	1:1	0.477	1.119	0.534	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.12	1	03289	QPSK	50	50	10 mm	front	1:1	0.381	1.109	0.423	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	0.06	0	03289	QPSK	1	99	10 mm	bottom	1:1	0.337	1.119	0.377	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.14	1	03289	QPSK	50	50	10 mm	bottom	1:1	0.284	1.109	0.315	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.96	0.02	0	03289	QPSK	1	50	10 mm	left	1:1	0.507	1.132	0.574	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.5	24.00	-0.03	0	03289	QPSK	1	50	10 mm	left	1:1	0.508	1.122	0.570	
1770.00	00 132572 High LTE Band 66 (AWS) 20 24.5 24.01							0	03289	QPSK	1	99	10 mm	left	1:1	0.548	1.119	0.613	A25
1770.00	132572	High	LTE Band 66 (AWS)	20	-0.02	1	03289	QPSK	50	50	10 mm	left	1:1	0.449	1.109	0.498			
			ANSI / IEEE C95.		ETY LIMIT									Body					
			Spa	tial Peak									1.6 V	//kg (mW	/g)				
			Uncontrolled Expo	sure/Genera	I Population								average	ed over 1 g	gram				

Table 11-26 LTE Band 25 (PCS) Hotspot SAR

								MEAS	UREMENT	RESULTS	6								
FR	EQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.5	23.96	-0.14	0	02737	QPSK	1	50	10 mm	back	1:1	0.598	1.132	0.677	A26
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.09	0	02737	QPSK	1	0	10 mm	back	1:1	0.568	1.117	0.634	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.5	23.71	-0.13	0	02737	QPSK	1	50	10 mm	back	1:1	0.534	1.199	0.640	
1882.50								1	02737	QPSK	50	25	10 mm	back	1:1	0.467	1.175	0.549	
1882.50							-0.06	0	02737	QPSK	1	0	10 mm	front	1:1	0.478	1.117	0.534	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.08	1	02737	QPSK	50	25	10 mm	front	1:1	0.397	1.175	0.466	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	-0.21	0	02737	QPSK	1	0	10 mm	bottom	1:1	0.279	1.117	0.312	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.07	1	02737	QPSK	50	25	10 mm	bottom	1:1	0.262	1.175	0.308	
1882.50	26365 Mid LTE Band 25 (PCS) 20 24.5 24.02 (0	02737	QPSK	1	0	10 mm	left	1:1	0.448	1.117	0.500	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.00	1	02737	QPSK	50	25	10 mm	left	1:1	0.366	1.175	0.430	
			ANSI / IEEE C95.		ETY LIMIT									Body					
				tial Peak									//kg (mW	•					
			Uncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Table 11-27 LTE Band 30 Hotspot SAR

								MEAS	UREMENT	RESULT	3								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number						, -,	(W/kg)		(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	-0.05	0	03289	QPSK	1	25	10 mm	back	1:1	0.527	1.202	0.633	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	-0.09	1	03289	QPSK	25	25	10 mm	back	1:1	0.409	1.216	0.497	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	0.02	0	03289	QPSK	1	25	10 m m	front	1:1	0.381	1.202	0.458	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	-0.06	1	03289	QPSK	25	25	10 m m	front	1:1	0.293	1.216	0.356	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	-0.07	0	03289	QPSK	1	25	10 m m	bottom	1:1	0.715	1.202	0.859	A28
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	-0.11	1	03289	QPSK	25	25	10 mm	bottom	1:1	0.531	1.216	0.646	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.59	-0.04	1	03289	QPSK	50	0	10 m m	bottom	1:1	0.531	1.233	0.655	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	0.11	0	03289	QPSK	1	25	10 m m	right	1:1	0.105	1.202	0.126	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	-0.05	1	03289	QPSK	25	25	10 m m	right	1:1	0.080	1.216	0.097	
2310.00	27710	Mid	LTE Band 30	10	24.5	23.70	0.06	0	03289	QPSK	1	25	10 m m	left	1:1	0.066	1.202	0.079	
2310.00	27710	Mid	LTE Band 30	10	23.5	22.65	0.14	1	03289	QPSK	25	25	10 mm	left	1:1	0.047	1.216	0.057	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT									Body					
			Spa	atial Peak									1.6 V	V/kg (mW	//g)				
			Uncontrolled Expo	sure/Genera	I Population								averag	ed over 1	gram				

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Daga 62 of 82	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 63 of 82	
202	20 PCTEST			REV 21.4 M	

© 2020 PCTEST

									UREMENT	•									
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation		RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHZ]	Power [dBm]	Power [abm]	υτιπ (αΒ)		Number							(W/kg)	-	(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.05	0	03289	QPSK	1	50	10 mm	back	1:1	0.504	1.175	0.592	
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	-0.09	1	03289	QPSK	50	25	10 mm	back	1:1	0.396	1.225	0.485	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.10	0	03289	QPSK	1	50	10 mm	front	1:1	0.510	1.175	0.599	
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	0.01	1	03289	QPSK	50	25	10 mm	front	1:1	0.441	1.225	0.540	
2510.00	20850	Low	LTE Band 7	20	23.0	22.17	0.00	0	03289	QPSK	1	50	10 mm	bottom	1:1	0.759	1.211	0.919	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	-0.06	0	03289	QPSK	1	50	10 m m	bottom	1:1	0.803	1.175	0.944	
2560.00	21350	High	LTE Band 7	20	23.0	22.19	-0.18	0	03289	QPSK	1	50	10 mm	bottom	1:1	0.846	1.205	1.019	A30
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	-0.03	1	03289	QPSK	50	25	10 mm	bottom	1:1	0.632	1.225	0.774	
2560.00	21350	High	LTE Band 7	20	22.0	21.06	0.11	1	03289	QPSK	100	0	10 mm	bottom	1:1	0.694	1.242	0.862	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.17	0	03289	QPSK	1	50	10 m m	right	1:1	0.113	1.175	0.133	
2535.00	21100	Mid	LTE Band 7	20	22.0	21.12	0.19	1	03289	QPSK	50	25	10 mm	right	1:1	0.090	1.225	0.110	
2535.00	21100	Mid	LTE Band 7	20	23.0	22.30	0.02	0	03289	QPSK	1	50	10 mm	left	1:1	0.141	1.175	0.166	
2535.00	21100	Mid	LTE Band 7	20	22.0	0.10	1	03289	QPSK	50	25	10 mm	left	1:1	0.096	1.225	0.118		
2560.00	21350	High	LTE Band 7	20	23.0	22.19	-0.19	0	03289	QPSK	1	50	10 m m	bottom	1:1	0.841	1.205	1.013	
			ANSI / IEEE C95.		ETY LIMIT									Body					
			•	atial Peak										//kg (mW	•				l
		l	Incontrolled Expo	sure/Genera	I Population				raaant				ů	ed over 1	gram				

Table 11-28 LTE Band 7 Hotspot SAR

Blue entry represents variability data.

Table 11-29 WLAN Hotspot SAR

							MEAS	UREME	NT RES	ULTS								
FREQU	IENCY	Mode	Service		Maximum Allowed Power (dBm)			Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	Ī.
2462	11	802.11b	DSSS	22	17.0	16.65	0.17	10 mm	03552	1	back	99.0	0.118	-	1.084	1.010	-	
2462	11	802.11b	DSSS	22	17.0	16.65	0.13	10 mm	03552	1	front	99.0	0.093	-	1.084	1.010	-	
2462	11	802.11b	DSSS	22	17.0	16.65	0.11	10 mm	03552	1	top	99.0	0.142	0.106	1.084	1.010	0.116	A32
2462	11	802.11b	DSSS	22	17.0	16.65	0.02	10 mm	03552	1	left	99.0	0.120	-	1.084	1.010	-	
5240	48	802.11a	OFDM	20	13.5	13.41	0.16	10 mm	02240	6	back	96.6	0.146	-	1.021	1.035		
5240	48	802.11a	0.14	10 mm	02240	6	front	96.6	0.138	-	1.021	1.035	-					
5240	48	802.11a	OFDM	20	13.5	13.41	0.18	10 mm	02240	6	top	96.6	0.227	0.101	1.021	1.035	0.107	
5745	149	802.11a	OFDM	20	14.0	13.28	0.16	10 mm	02240	6	back	96.6	0.306	0.128	1.180	1.035	0.156	A33
5745	149	149 802.11a OFDM 20 14.0 13.28							02240	6	front	96.6	0.122	-	1.180	1.035	-	
5745	149	802.11a	OFDM	20	0.17	10 mm	02240	6	top	96.6	0.187	-	1.180	1.035	-			
			ANSI / IEEE	E C95.1 1992 -	SAFETY LIMIT							В	ody					
				Spatial Pea	ık								1.6 W/k	g (mW/g)				
		Un	controlled	Exposure/Ge	neral Population								averaged	over 1 gram				

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dana 64 of 82
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 64 of 82
© 202	0 PCTEST				REV 21.4 M

Table 11-30 DSS Hotspot SAR

							0011			•						
						ME	ASURE	MENTR	ESULT	s						
FREQU	ENCY	Mode	Service	Maxim um Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	9.5	8.85	0.19	10 mm	03552	1	back	77.0	0.015	1.161	1.299	0.023	
2441	39 Bluetooth FHSS 9.5 8.85 0.						10 mm	03552	1	front	77.0	0.012	1.161	1.299	0.018	
2441	39	Bluetooth	FHSS	9.5	8.85	0.03	10 mm	03552	1	top	77.0	0.016	1.161	1.299	0.024	A35
2441	39	Bluetooth	FHSS	9.5	8.85	0.15	10 mm	03552	1	left	77.0	0.014	1.161	1.299	0.021	
		ANSI / IEEE	C95.1 199	2 - SAFETY LI	МІТ							Body				
			Spatial I	Peak								1.6 W/kg (mV	//g)			
		Uncontrolled	Exposure/	General Popu	lation						a	veraged over 1	gram			

11.4 Standalone Phablet SAR Data

Table 11-31 **UMTS Phablet SAR Data**

					MEAS	UREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power Drift [dB]	Spacing	Device Serial Number	Duty Cycle	Side	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	υτιπ [αΒ]		Number	Cycle		(W/kg)		(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.5	24.36	-0.09	3 m m	03289	1:1	back	1.380	1.033	1.426	
1712.40	1312	UMTS 1750	RMC	24.5	24.38	0.07	0 m m	03289	1:1	front	2.540	1.028	2.611	A36
1732.40	1412	UMTS 1750	RMC	24.5	24.36	0.07	0 m m	03289	1:1	front	2.520	1.033	2.603	
1752.60	1513	UMTS 1750	RMC	24.5	24.41	0.07	0 m m	03289	1:1	front	2.380	1.021	2.430	
1732.40	1412	UMTS 1750	RMC	24.5	24.36	-0.01	3 m m	03289	1:1	bottom	0.585	1.033	0.604	
1732.40	1412	UMTS 1750	RMC	24.5	24.36	-0.10	0 mm	03289	1:1	left	1.810	1.033	1.870	
1712.40	1312	UMTS 1750	RMC	23.3	22.93	-0.15	0 mm	03289	1:1	back	2.120	1.089	2.309	
1732.40	1412	UMTS 1750	RMC	23.3	23.00	-0.16	0 mm	03289	1:1	back	2.130	1.072	2.283	
1752.60	1513	UMTS 1750	RMC	23.3	22.89	-0.15	0 mm	03289	1:1	back	2.030	1.099	2.231	
1732.40	1412	UMTS 1750	RMC	23.3	23.00	-0.08	0 mm	03289	1:1	bottom	0.694	1.072	0.744	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	-0.08	3 mm	02737	1:1	back	1.180	1.005	1.186	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	0.05	0 mm	02737	1:1	front	1.840	1.005	1.849	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	-0.01	3 mm	02737	1:1	bottom	0.510	1.005	0.513	
1880.00	9400	UMTS 1900	RMC	24.5	24.48	-0.03	0 mm	02737	1:1	left	1.550	1.005	1.558	
1852.40	9262	UMTS 1900	RMC	23.8	23.60	-0.10	0 mm	02737	1:1	back	1.930	1.047	2.021	A37
1880.00	9400	UMTS 1900	RMC	23.8	23.57	-0.11	0 mm	02737	1:1	back	1.910	1.054	2.013	
1907.60	9538	UMTS 1900	RMC	23.8	23.54	-0.11	0 mm	02737	1:1	back	1.880	1.062	1.997	
1880.00	9400	UMTS 1900	RMC	23.8	23.57	-0.11	0 mm	02737	1:1	bottom	0.615	1.054	0.648	
		ANSI / IEE	E C95.1 1992 - SA Spatial Peak	AFETY LIMIT						4.0	Phablet W/kg (mW/g))		
		Uncontrolled	Exposure/Gene	ral Population	1					averag	ed over 10 gra	ims		

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 65 of 82
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 65 of 82
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

						LIC	Dan	u 00	AVVS) Pha	pier	SAR	<u> </u>						
								MEASUR	REMENT	RESULTS									
	FREQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	-0.11	0	03289	QPSK	1	99	3 mm	back	1:1	1.310	1.119	1.466	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.10	1	03289	QPSK	50	50	3 mm	back	1:1	1.110	1.109	1.231	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.96	0.12	0	03289	QPSK	1	50	0 mm	front	1:1	2.690	1.132	3.045	A38
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.5	24.00	0.06	0	03289	QPSK	1	50	0 mm	front	1:1	2.560	1.122	2.872	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	0.02	0	03289	QPSK	1	99	0 mm	front	1:1	2.260	1.119	2.529	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.5	22.98	0.06	1	03289	QPSK	50	25	0 mm	front	1:1	2.090	1.127	2.355	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.5	23.03	0.10	1	03289	QPSK	50	25	0 mm	front	1:1	2.030	1.114	2.261	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	0.04	1	03289	QPSK	50	50	0 mm	front	1:1	1.970	1.109	2.185	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.04	0.08	1	03289	QPSK	100	0	0 mm	front	1:1	1.980	1.112	2.202	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	0.10	0	03289	QPSK	1	99	3 mm	bottom	1:1	0.480	1.119	0.537	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.14	1	03289	QPSK	50	50	3 mm	bottom	1:1	0.403	1.109	0.447	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.5	24.01	-0.03	0	03289	QPSK	1	99	0 mm	left	1:1	1.700	1.119	1.902	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.5	23.05	-0.04	1	03289	QPSK	50	50	0 mm	left	1:1	1.460	1.109	1.619	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.3	22.83	-0.09	0	03289	QPSK	1	50	0 mm	back	1:1	2.120	1.114	2.362	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.3	23.00	-0.08	0	03289	QPSK	1	50	0 mm	back	1:1	2.050	1.072	2.198	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.3	22.94	-0.10	0	03289	QPSK	1	50	0 mm	back	1:1	2.030	1.086	2.205	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.3	22.85	-0.05	0	03289	QPSK	50	25	0 mm	back	1:1	2.090	1.109	2.318	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.3	22.92	0.14	0	03289	QPSK	50	50	0 mm	back	1:1	2.050	1.091	2.237	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.3	22.91	-0.06	0	03289	QPSK	50	50	0 mm	back	1:1	2.020	1.094	2.210	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.3	22.88	-0.08	0	03289	QPSK	100	0	0 mm	back	1:1	2.010	1.102	2.215	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.3	23.00	-0.06	0	03289	QPSK	1	50	0 m m	bottom	1:1	0.680	1.072	0.729	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.3	22.92	0.02	0	03289	QPSK	50	50	0 mm	bottom	1:1	0.665	1.091	0.726	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.5	23.96	0.12	0	03289	QPSK	1	50	0 mm	front	1:1	2.680	1.132	3.034	
			ANSI / IEEE C95.1 1 Spatia ncontrolled Exposu	al Peak									4.0 V	Phablet //kg (mW d over 10					
						Blue	entrv	repre	sents	s varia	bilit∖	/ data	a						

Table 11-32 I TE Band 66 (AWS) Phablet SAR

Blue entry represents variability data.

Table 11-33 LTE Band 25 (PCS) Phablet SAR

								MEASU	REMENT	RESULTS									
F	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RBOffset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g) (W/kg)	Plot #
																(W/kg)			
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.01	0	02737	QPSK	1	0	3 mm	back	1:1	1.100	1.117	1.229	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	-0.14	1	02737	QPSK	50	25	3 mm	back	1:1	0.901	1.175	1.059	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.02	0	02737	QPSK	1	0	0 mm	front	1:1	1.560	1.117	1.743	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	0.04	1	02737	QPSK	50	25	0 mm	front	1:1	1.300	1.175	1.528	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.06	0	02737	QPSK	1	0	3 mm	bottom	1:1	0.625	1.117	0.698	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	-0.03	1	02737	QPSK	50	25	3 mm	bottom	1:1	0.489	1.175	0.575	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.02	0.05	0	02737	QPSK	1	0	0 mm	left	1:1	1.620	1.117	1.810	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	22.80	-0.04	1	02737	QPSK	50	25	0 mm	left	1:1	1.330	1.175	1.563	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.8	23.45	-0.11	0	02737	QPSK	1	50	0 mm	back	1:1	1.870	1.084	2.027	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.8	23.50	-0.12	0	02737	QPSK	1	50	0 mm	back	1:1	1.940	1.072	2.080	A39
1905.00	26590	High	LTE Band 25 (PCS)	20	23.8	23.30	-0.13	0	02737	QPSK	1	50	0 mm	back	1:1	1.850	1.122	2.076	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.5	23.11	-0.10	0.3	02737	QPSK	50	25	0 mm	back	1:1	1.770	1.094	1.936	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	23.12	-0.14	0.3	02737	QPSK	50	25	0 mm	back	1:1	1.770	1.091	1.931	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.5	23.04	-0.09	0.3	02737	QPSK	50	0	0 mm	back	1:1	1.740	1.112	1.935	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	23.10	-0.11	0.3	02737	QPSK	100	0	0 mm	back	1:1	1.750	1.096	1.918	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.8	23.50	0.09	0	02737	QPSK	1	50	0 mm	bottom	1:1	0.719	1.072	0.771	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.5	23.12	0.02	0.3	02737	QPSK	50	25	0 mm	bottom	1:1	0.661	1.091	0.721	
			ANSI / IEEE C95.1 1	1992 - SAFET	TY LIMIT					•		•		Phablet			•		
				al Peak								//kg (mW							
		Un	controlled Exposu	re/General I	Population								averaged	d over 10	grams				

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 66 of 82
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Fage 00 01 02
020 PCTEST				REV 21.4 M

© 2020 PCTEST

Table 11-34 WLAN Phablet SAR

							MEAS	UREME	NT RES	ULTS								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed			Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor		Reported SAR (10g)	t Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	Ī
5320	64	802.11a	OFDM	20	14.0	13.43	-0.09	0 mm	02240	6	back	96.6	1.233	-	1.140	1.035	-	
5320	64	802.11a	OFDM	20	14.0	13.43	-0.04	0 mm	02240	6	front	96.6	1.661	-	1.140	1.035	-	
5320	64	802.11a	OFDM	20	14.0	13.43	0.12	0 mm	02240	6	top	96.6	3.880	0.357	1.140	1.035	0.421	
5620	124	B02.11a OFDM 20 15.0 14.66 0.1						0 mm	02240	6	back	96.6	2.110	-	1.081	1.035	-	
5620	124	802.11a	OFDM	20	15.0	14.66	0.15	0 mm	02240	6	front	96.6	2.372	-	1.081	1.035	-	
5620	124	802.11a	OFDM	20	15.0	14.66	0.16	0 mm	02240	6	top	96.6	5.146	0.404	1.081	1.035	0.452	A40
			ANSI / IEEE	C95.1 1992 -	SAFETY LIMIT								Ph	ablet				
				Spatial Pea										g (mW/g)				
		Un	controlled	Exposure/Ge	neral Population								averaged o	ver 10 grams				

11.5 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).
- 11. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 12. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Daga 67 of 82	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 67 of 82	
202	0 PCTEST			REV 21.4 M	

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.

- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

UMTS Notes:

- 1. UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- 1. For held-to-ear, hotspot, and phablet operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.6.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was \leq 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	.G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 68 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 68 of 82
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

Bluetooth Notes

- Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. See Section 9.5 for the time domain plot and calculation for the duty factor of the device.
- 2. Head and Hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 69 of 82
© 202	0 PCTEST				REV 21.4 M

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 12

Introduction 12.1

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Head SAR Simultaneous Transmission Analysis 12.3

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.239	0.679	0.918
	GSM/GPRS 1900	0.224	0.679	(W/kg) 1+2
	UMTS 850	0.216	0.679	0.895
	UMTS 1750	0.325	0.679	1.004
	UMTS 1900	0.281	0.679	0.960
Head SAR	LTE Band 12	0.113	0.679	0.792
Head OAR	LTE Band 13	0.159	0.679	0.838
	LTE Band 5 (Cell)	0.241	0.679	0.920
	LTE Band 66 (AWS)	0.367	0.679	1.046
	LTE Band 25 (PCS)	0.295	0.679	0.974
	LTE Band 30	0.093	0.679	0.772
	LTE Band 7	0.234	0.679	0.913

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 70 of 92
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 70 of 82
าว	20 PCTEST				REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.239	0.559	0.798
	GSM/GPRS 1900	0.224	0.559	0.783
	UMTS 850	0.216	0.559	0.775
	UMTS 1750	0.325	0.559	0.884
	UMTS 1900	0.281	0.559	0.840
Head SAR	LTE Band 12	0.113	0.559	0.672
Head SAR	LTE Band 13	0.159	0.559	0.718
	LTE Band 5 (Cell)	0.241	0.559	0.800
	LTE Band 66 (AWS)	0.367	0.559	0.926
	LTE Band 25 (PCS)	0.295	0.559	0.854
	LTE Band 30	0.093	0.559	0.652
	LTE Band 7	0.234	0.559	0.793

 Table 12-3

 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.239	0.149	0.388
	GSM/GPRS 1900	0.224	0.149	0.373 0.365 0.474 0.430
	UMTS 850	0.216	0.149	0.365
	UMTS 1750	0.325	0.149	0.474
	UMTS 1900	0.281	0.149	0.430
Head SAR	LTE Band 12	0.113	0.149	0.262
Head SAR	LTE Band 13	0.159	0.149	0.308
	LTE Band 5 (Cell)	0.241	0.149	0.390
	LTE Band 66 (AWS)	0.367	0.149	0.516
	LTE Band 25 (PCS)	0.295	0.149	0.444
	LTE Band 30	0.093	0.149	0.242
	LTE Band 7	0.234	0.149	0.383

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 71 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 71 of 82
020 PCTEST				REV 21.4 M

© 20

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	(W/kg) 1+2+3 0.947 0.932 0.924 1.033 0.989 0.821 0.867 0.949 1.075 1.003
	GSM/GPRS 850	0.239	0.559	0.149	0.947
	GSM/GPRS 1900	0.224	0.559	0.149	0.932
	UMTS 850	0.216	0.559	0.149	1.033
	UMTS 1750	0.325	0.559	0.149	
	UMTS 1900	0.281	0.559	0.149	0.989
Head SAR	LTE Band 12	0.113	0.559	0.149	0.821
Heau SAR	LTE Band 13	0.159	0.559	0.149	0.867
	LTE Band 5 (Cell)	0.241	0.559	0.149	(W/kg) 1+2+3 0.947 0.932 0.924 1.033 0.989 0.821 0.867 0.949 1.075
	LTE Band 66 (AWS)	0.367	0.559	0.149	
	LTE Band 25 (PCS)	0.295	0.559	0.149	1.003
	LTE Band 30	0.093	0.559	0.149	0.801
	LTE Band 7	0.234	0.559	0.149	0.942

 Table 12-4

 Simultaneous Transmission Scenario with 5 GHz and Bluetooth (Held to Ear)

12.4 Body-Worn Simultaneous Transmission Analysis

 Table 12-5

 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.337	0.085	0.422
	GSM/GPRS 1900	0.373	0.085	0.422 0.458 0.389 0.649 0.718
	UMTS 850	0.304	0.085	0.389
	UMTS 1750	0.564	0.085	0.649
	UMTS 1900	0.633	0.085	0.718
Body-Worn	LTE Band 12	0.245	0.085	0.330
Body-wonn	LTE Band 13	0.285	0.085	0.370
	LTE Band 5 (Cell)	0.311	0.085	0.396
	LTE Band 66 (AWS)	0.557	0.085	0.642
	LTE Band 25 (PCS)	0.677	0.085	0.762
	LTE Band 30	0.633	0.085	0.718
	LTE Band 7	0.592	0.085	0.677

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 70 of 90
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 72 of 82
© 202	20 PCTEST				REV 21.4 M

Table 12-6 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.337	0.156	0.493
	GSM/GPRS 1900	0.373	0.156	0.529
	UMTS 850	0.304	0.156	0.460
	UMTS 1750	0.564	0.156	0.720
	UMTS 1900	0.633	0.156	0.789
Body-Worn	LTE Band 12	0.245	0.156	0.401
Body-wom	LTE Band 13	0.285	0.156	0.441
	LTE Band 5 (Cell)	0.311	0.156	0.467
	LTE Band 66 (AWS)	0.557	0.156	0.713
	LTE Band 25 (PCS)	0.677	0.156	0.833
	LTE Band 30	0.633	0.156	0.789
	LTE Band 7	0.592	0.156	0.748

 Table 12-7

 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	· Mode		Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.337	0.023	0.360
	GSM/GPRS 1900	0.373	0.023	0.396
	UMTS 850	0.304	0.023	0.327
	UMTS 1750	0.564	0.023	0.587
	UMTS 1900	0.633	0.023	0.656
Body-Worn	LTE Band 12	0.245	0.023	0.268
Body-wonn	LTE Band 13	0.285	0.023	0.308
	LTE Band 5 (Cell)	0.311	0.023	0.334
	LTE Band 66 (AWS)	0.557	0.023	0.580
	LTE Band 25 (PCS)	0.677	0.023	0.700
	LTE Band 30	0.633	0.023	0.656
	LTE Band 7	0.592	0.023	0.615

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 72 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 73 of 82
020 PCTEST				REV 21.4 M

© 20

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including hotocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Table 12-8 Simultaneous Transmission Scenario with 5 GHz and Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GSM/GPRS 850	0.337	0.156	0.023	0.516
	GSM/GPRS 1900	0.373	0.156	0.023	0.552
	UMTS 850	0.304	0.156	0.023	0.483
	UMTS 1750	0.564	0.156	0.023	0.743
	UMTS 1900	0.633	0.156	0.023	0.812
Body-Worn	LTE Band 12	0.245	0.156	0.023	0.424
Body-wom	LTE Band 13	0.285	0.156	0.023	0.464
	LTE Band 5 (Cell)	0.311	0.156	0.023	0.490
	LTE Band 66 (AWS)	0.557	0.156	0.023	0.736
	LTE Band 25 (PCS)	0.677	0.156	0.023	0.856
	LTE Band 30	0.633	0.156	0.023	0.812
	LTE Band 7	0.592	0.156	0.023	0.771

12.5 Hotspot SAR Simultaneous Transmission Analysis

Table 12-9 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.337	0.116	0.453
	GPRS 1900	0.373	0.116	0.489
	UMTS 850	0.304	0.116	0.420
	UMTS 1750	0.564	0.116	0.680
	UMTS 1900	0.633	0.116	0.749
Hotspot SAR	LTE Band 12	0.245	0.116	0.361
TIOISPOI SAR	LTE Band 13	0.285	0.116	0.401
	LTE Band 5 (Cell)	0.311	0.116	0.427
	LTE Band 66 (AWS)	0.613	0.116	0.729
	LTE Band 25 (PCS)	0.677	0.116	0.793
	LTE Band 30	0.859	0.116	0.975
	LTE Band 7	1.019	0.116	1.135

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 74 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 74 of 82
02	20 PCTEST				REV 21.4 M

© 20

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Table 12-10 Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.337	0.156	0.493
	GPRS 1900	0.373	0.156	0.529
	UMTS 850	0.304	0.156	0.460
	UMTS 1750	0.564	0.156	0.720
	UMTS 1900	0.633	0.156	0.789
Hotspot SAR	LTE Band 12	0.245	0.156	0.401
TIOLOPOL OAIX	LTE Band 13	0.285	0.156	0.441
	LTE Band 5 (Cell)	0.311	0.156	0.467
	LTE Band 66 (AWS)	0.613	0.156	0.769
	LTE Band 25 (PCS)	0.677	0.156	0.833
	LTE Band 30	0.859	0.156	1.015
	LTE Band 7	1.019	0.156	1.175

 Table 12-11

 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Exposure Condition Mode		2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.337	0.024	0.361
	GPRS 1900	0.373	0.024	0.397
	UMTS 850	0.304	0.024	0.328
	UMTS 1750	0.564	0.024	0.588
	UMTS 1900	0.633	0.024	0.657
Hotspot SAR	LTE Band 12	0.245	0.024	0.269
TIOLSPOL OAIX	LTE Band 13	0.285	0.024	0.309
	LTE Band 5 (Cell)	0.311	0.024	0.335
	LTE Band 66 (AWS)	0.613	0.024	0.637
	LTE Band 25 (PCS)	0.677	0.024	0.701
	LTE Band 30	0.859	0.024	0.883
	LTE Band 7	1.019	0.024	1.043

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 75 of 92
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 75 of 82
20 PCTEST				REV 21.4 M

© 20

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GPRS 850	0.337	0.156	0.024	0.517
	GPRS 1900	0.373	0.156	0.024	0.553
	UMTS 850	0.304	0.156	0.024	0.484
	UMTS 1750	0.564	0.156	0.024	0.744
	UMTS 1900	0.633	0.156	0.024	0.813
Hotspot SAR	LTE Band 12	0.245	0.156	0.024	0.425
TIOISPOI SAR	LTE Band 13	0.285	0.156	0.024	0.465
	LTE Band 5 (Cell)	0.311	0.156	0.024	0.491
	LTE Band 66 (AWS)	0.613	0.156	0.024	0.793
	LTE Band 25 (PCS)	0.677	0.156	0.024	0.857
	LTE Band 30	0.859	0.156	0.024	1.039
	LTE Band 7	1.019	0.156	0.024	1.199

 Table 12-12

 Simultaneous Transmission Scenario with 5 GHz and Bluetooth (Hotspot at 1.0 cm)

12.6 Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	UMTS 1750	2.611	0.452	3.063
Phablet SAR	UMTS 1900	2.021	0.452	2.473
	LTE Band 66 (AWS)	3.045	0.452	3.497
	LTE Band 25 (PCS)	2.080	0.452	2.532

 Table 12-13

 Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

12.7 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dana 70 af 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 76 of 82
202	0 PCTEST			REV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

				BILITY	RESULT	s								
Band	FREQUENCY Mode		Service Side		Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)		3rd Repeated SAR (1g)	Ratio			
	MHz Ch.				(W/kg)	(W/kg)		(W/kg)		(W/kg)				
2600	2600 2560.00 21350 LTE Band 7, 20 MHz Bandwidth		QPSK, 1 RB, 50 RB Offset bottom		10 mm	0.846	0.841	1.01	N/A	N/A	N/A	N/A		
		1	ANSI / IEEE C95.1 1992 - SAFETY LI	MIT		Body								
	Spatial Peak						1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population							averaged over 1 gram						

Table 13-1 Body SAR Measurement Variability Results

Table 13-2
Phablet SAR Measurement Variability Results

PHABLET VARIABILITY RESULTS												
FREQUENC	Υ	Mode	Service	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750 1720.00 132072 LTE Band 66 (AWS), 20 MHz Bandwidth		QPSK, 1 RB, 50 RB Offset	front	0 m m	2.690	2.680	1.00	N/A	N/A	N/A	N/A	
		ANSI / IEEE C95.1 1992 - SAFETY LIN	ЛІТ		Phablet							
Spatial Peak					4.0 W/kg (mW/g)							
Uncontrolled Exposure/General Population						averaged over 10 grams						
м	Hz	0.00 132072	Hz Ch. 0.00 132072 LTE Band 66 (AWS), 20 MHz Bandwidth ANSI / IEEE C95.1 1992 - SAFETY LIM Spatial Peak	Mode Service Hz Ch. 0.00 132072 LTE Band 66 (AWS), 20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	Mode Service Side Hz Ch. <td>Mode Service Side Spacing Hz Ch. Spacing</td> <td>HEQUENCY Mode Service Side Spacing SAR (109) Hz Ch. (W/kg) (W/kg) 0.00 132072 LTE Band 66 (AWS).20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset front 0 mm 2.690</td> <td>REQUENCY Mode Service Side Spacing Measured SAR (10g) Repeated SAR (10g) Hz Ch. </td> <td>REQUENCY Mode Service Side Spacing Respected SAR (10g) Repeated SAR (10g)</td> <td>REQUENCY Mode Service Side Spacing Measured SAR (100) Repeated SAR (100) Repeated SAR (100)</td> <td>REQUENCY Mode Service Side Spacing Measured SAR (10g) Repeated SAR (10g)</td> <td>REQUENCY Mode Service Side Spacing Measured SAR (10g) Repeated SAR (10g)</td>	Mode Service Side Spacing Hz Ch. Spacing	HEQUENCY Mode Service Side Spacing SAR (109) Hz Ch. (W/kg) (W/kg) 0.00 132072 LTE Band 66 (AWS).20 MHz Bandwidth QPSK, 1 RB, 50 RB Offset front 0 mm 2.690	REQUENCY Mode Service Side Spacing Measured SAR (10g) Repeated SAR (10g) Hz Ch.	REQUENCY Mode Service Side Spacing Respected SAR (10g) Repeated SAR (10g)	REQUENCY Mode Service Side Spacing Measured SAR (100) Repeated SAR (100) Repeated SAR (100)	REQUENCY Mode Service Side Spacing Measured SAR (10g) Repeated SAR (10g)	REQUENCY Mode Service Side Spacing Measured SAR (10g) Repeated SAR (10g)

13.2 **Measurement Uncertainty**

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Dage 77 of 90	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 77 of 82	
202	0 PCTEST			REV 21.4 M	

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Numbe
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/19/2019	Annual	9/19/2020	MY40003841
Agilent	E4438C	ESG Vector Signal Generator	9/13/2019	Annual	9/13/2020	MY42081752
Agilent	E5515C	Wireless Communications Test Set	9/25/2019	Annual	9/25/2020	GB43304278
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB44450273
Agilent	N5182A	MXG Vector Signal Generator	7/10/2019	Annual	7/10/2020	MY47420800
Agilent	N9020A	MXA Signal Analyzer	4/20/2019	Annual	4/20/2020	US46470561
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343971
Anritsu	MA24106A	USB Power Sensor	8/5/2019	Annual	8/5/2020	1827527
Anritsu	MA24106A	USB Power Sensor	5/22/2019	Annual	5/22/2020	1231535
Anritsu	MA24106A	USB Power Sensor	5/6/2019	Annual	5/6/2020	1231538
Anritsu	MA24106A	USB Power Sensor	7/12/2019	Annual	7/12/2020	1244512
Anritsu	MA2411B	Pulse Power Sensor	12/4/2019	Annual	12/4/2020	1126066
Anritsu	MA2411B	Pulse Power Sensor	6/11/2019	Annual	6/11/2020	1207364
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Anritsu	ML2496A	Power Meter	12/17/2019	Annual	12/17/2020	1138001
Anritsu	MT8820C	Radio Communication Analyzer	7/25/2019	Annual	7/25/2020	6201240328
Anritsu	MT8821C	Radio Communication Analyzer	8/16/2019	Annual	8/16/2020	6201144418
Anritsu	MT8862A	Wireless Connectivity Test Set	8/8/2019	Annual	8/8/2020	6261782395
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647802
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181292000
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282739
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
eysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight Technologies	AT/N6705B	DC Power Supply	N/A	N/A	N/A	MY53001315
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutovo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMW500	Badio Communication Tester	8/26/2019	Annual	8/26/2020	100976
Seekonk	NC-100	Torque Wrench (8" lb)	5/10/2018	Biennial	5/10/2020	21053
Seekonk	NC-100	Torque Wrench (8" lb)	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	D1750V2	1750 MHz SAR Dipole	5/15/2019	Annual	5/15/2020	1148
SPEAG	D1765V2	1765 MHz SAR Dipole	5/23/2018	Biennial	5/23/2020	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Biennial	10/23/2020	5d080
SPEAG	D1900V2	1900 MHz SAR Dipole	2/21/2019	Biennial	2/21/2021	5d148
SPEAG	D2300V2	2300 MHz SAR Dipole	8/13/2018	Biennial	8/13/2020	1073
SPEAG	D2450V2	2450 MHz SAR Dipole	9/11/2017	Triennial	9/11/2020	797
SPEAG	D2600V2	2600 MHz SAR Dipole	4/11/2018	Biennial	4/11/2020	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/16/2018	Triennial	1/16/2021	1057
SPEAG	D5GHzV2	5 GHz SAR Dipole	9/17/2019	Annual	9/17/2020	1191
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/10/2018	Biennial	8/10/2020	1237
SPEAG	D750V3	750 MHz SAR Dipole	1/15/2018	Triennial	1/15/2021	1003
SPEAG	D750V3	750 MHz SAR Dipole	3/18/2019	Annual	3/18/2020	1054
SPEAG	D835V2	835 MHz SAR Dipole	3/13/2019	Annual	3/13/2020	4d047
SPEAG	D835V2	835 MHz SAR Dipole	10/19/2018	Biennial	10/19/2020	4d133
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	728
SPEAG	DAE4	Dasy Data Acquisition Electronics	12/18/2019	Annual	12/18/2020	859
SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	6/20/2019	Annual	6/20/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1334
SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2020	1407
SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	12/5/2019	Annual	12/5/2020	1530
SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558
SPEAG	DAL4 DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/22/2019	Annual	10/22/2020	10/0
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	3589
SPEAG	EX3DV4 EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	EX3DV4 EX3DV4	SAR Probe	4/24/2019 5/16/2019	Annual	4/24/2020	7357
			0/ 20/ 2020		0/ 20/ 2020	7406
SPEAG	EX3DV4	SAR Probe	6/19/2019	Annual	6/19/2020	
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	EX3DV4	SAR Probe	1/21/2020	Annual	1/21/2021	7488
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	12/11/2019	Annual Annual	12/11/2020	7570
SPEAG	EX3DV4	SAR Probe	12/11/2019		12/11/2020	7571

Note:

Equipment was solely used during its calibration period 1.

CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter 2. were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 79 of 90
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 78 of 82
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

15 **MEASUREMENT UNCERTAINTIES**

a	с	d	e=	f	g	h =	i =	k
			f(d,k)		Ŭ	c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u _i	ui	v _i
	(± /8)		DIV.	' giii	TO gills	u; (± %)	(± %)	
Measurement System						(1 /0)	(1 /0/	L
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	x
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	x
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	x
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	x
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	x
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	x
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	x
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	x
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	x
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	x
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	x
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	×
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	x
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	x
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)	I	RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Daga 70 of 92	
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 79 of 82	
202	0 PCTEST			REV 21.4 M	

© 2020 PCTEST

REV 21.4 M 09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 80 of 82
1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 80 of 82	
120 PCTEST				REV 21 4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 04 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset	Page 81 of 82
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

09/11/2019

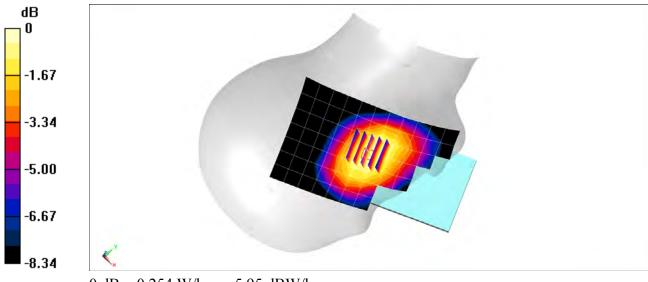
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). Mar. 2010.

	FCC ID ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 00 of 00
	1M2002110017-12-R1.ZNF	02/11/20 - 03/17/20	Portable Handset		Page 82 of 82
.0	20 PCTEST				REV 21.4 M

© 2

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r = 40.337$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 02/12/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.1°C

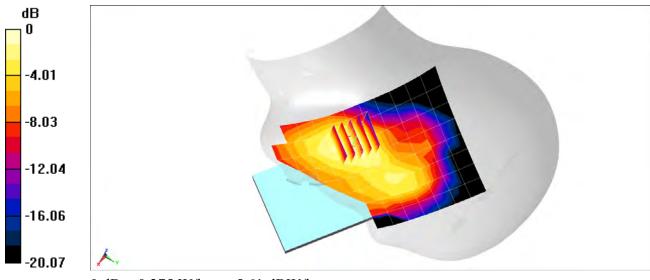
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.6 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 4 Tx slots

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.78 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.271 W/kg SAR(1 g) = 0.219 W/kg

0 dB = 0.254 W/kg = -5.95 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 39.394$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 02/19/2020; Ambient Temp:24.2°C; Tissue Temp: 20.1°C

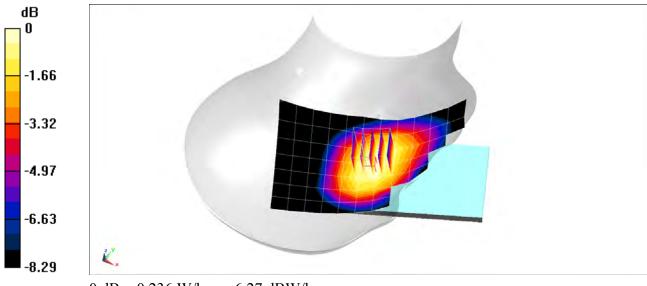
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 4 Tx slots

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.39 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.316 W/kg SAR(1 g) = 0.209 W/kg

0 dB = 0.275 W/kg = -5.61 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r = 40.337$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 02/12/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.1°C

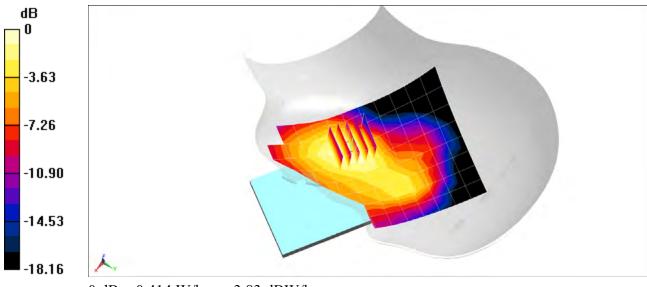
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.6 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.32 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.257 W/kg SAR(1 g) = 0.206 W/kg

0 dB = 0.236 W/kg = -6.27 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 39.923$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 02/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 20.1°C

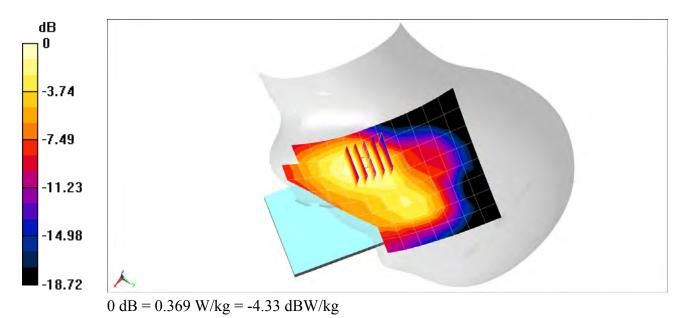
Probe: EX3DV4 - SN7410; ConvF(8.46, 8.46, 8.46) @ 1732.4 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Left Head, Cheek, Mid.ch

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.88 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.471 W/kg SAR(1 g) = 0.315 W/kg

0 dB = 0.414 W/kg = -3.83 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


 $\begin{array}{l} \mbox{Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Head Medium parameters used:} \\ \mbox{f = 1880 MHz; } \sigma = 1.449 \mbox{ S/m; } \epsilon_r = 39.394; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

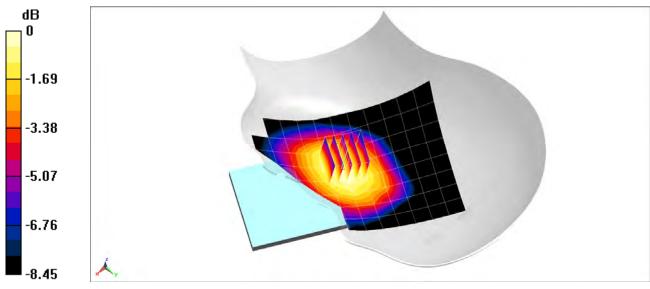
Test Date: 02/19/2020; Ambient Temp:24.2°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.31 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.433 W/kg SAR(1 g) = 0.280 W/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 700 Head Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.866$ S/m; $\epsilon_r = 42.49$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 02/18/2020; Ambient Temp: 22.5°C; Tissue Temp: 20.5°C

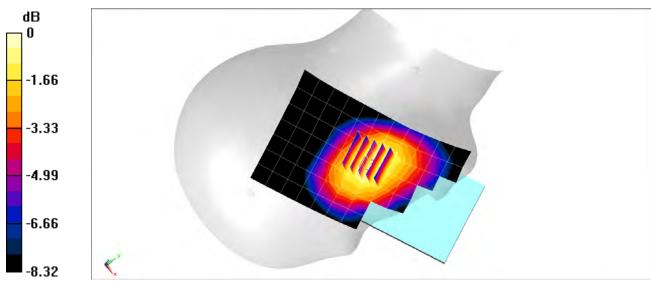
Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 707.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Left Head, Cheek, Mid.ch, QPSK 10 MHz Bandwidth, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.46 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.120 W/kg SAR(1 g) = 0.102 W/kg

0 dB = 0.115 W/kg = -9.39 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 41532


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 700 Head Medium parameters used (interpolated):} \\ \mbox{f = 782 MHz; } \sigma = 0.894 \ \mbox{S/m; } \epsilon_r = 42.28; \ \mbox{\rho} = 1000 \ \mbox{kg/m}^3 \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 02/18/2020; Ambient Temp: 22.5°C; Tissue Temp: 20.5°C

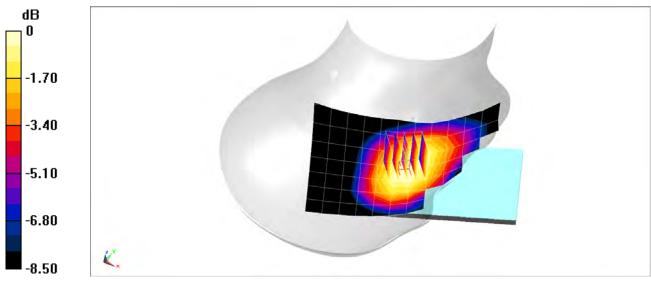
Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 782 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.10 V/m; Power Drift = 0.20 dB Peak SAR (extrapolated) = 0.169 W/kg SAR(1 g) = 0.143 W/kg

0 dB = 0.162 W/kg = -7.90 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r = 40.337$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 02/12/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.1°C

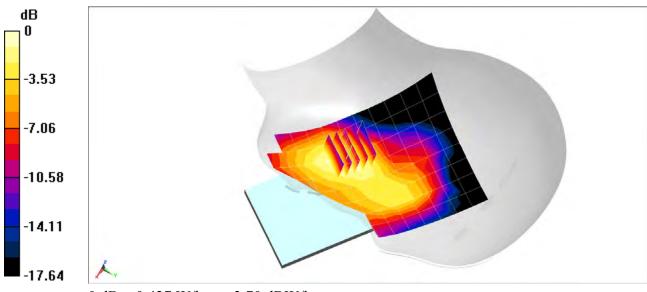
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.87 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.255 W/kg SAR(1 g) = 0.208 W/kg

0 dB = 0.240 W/kg = -6.20 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1770 MHz; $\sigma = 1.374$ S/m; $\epsilon_r = 39.854$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 02/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 20.1°C

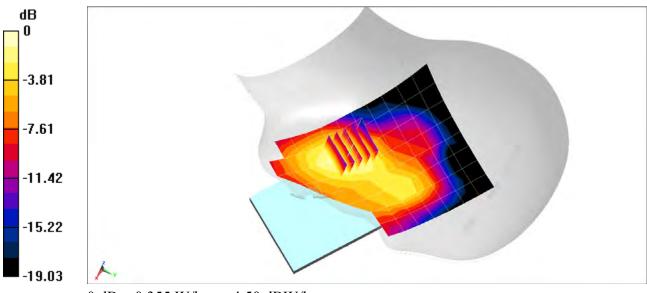
Probe: EX3DV4 - SN7410; ConvF(8.46, 8.46, 8.46) @ 1770 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Left Head, Cheek, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.38 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.493 W/kg SAR(1 g) = 0.328 W/kg

0 dB = 0.427 W/kg = -3.70 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.45$ S/m; $\epsilon_r = 39.39$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 02/19/2020; Ambient Temp:24.2°C; Tissue Temp: 20.1°C

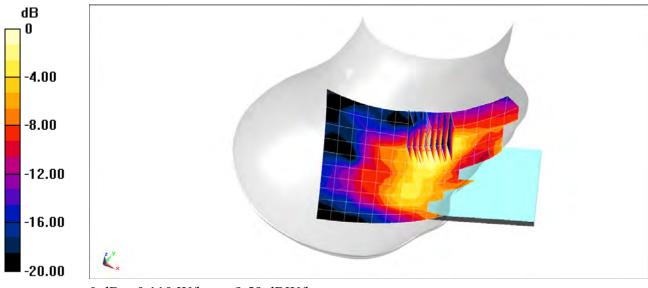
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1882.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.68 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.409 W/kg SAR(1 g) = 0.264 W/kg

0 dB = 0.355 W/kg = -4.50 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02737


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2310 MHz; $\sigma = 1.754$ S/m; $\epsilon_r = 38.701$; $\rho = 1000$ kg/m³ Phantom section: Right Section

Test Date: 02/27/2020; Ambient Temp: 20.8°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7570; ConvF(7.98, 7.98, 7.98) @ 2310 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Right Head, Cheek, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.279 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.135 W/kg SAR(1 g) = 0.077 W/kg

0 dB = 0.110 W/kg = -9.59 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


Communication System: UID 0, LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2535 MHz; $\sigma = 1.911$ S/m; $\epsilon_r = 37.82$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 02/19/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.3°C

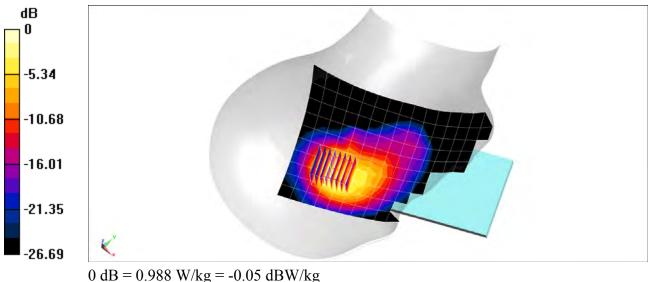
Probe: EX3DV4 - SN7570; ConvF(7.28, 7.28, 7.28) @ 2535 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 7, Left Head, Cheek, Mid.ch, QPSK 20 MHz Bandwidth, 1 RB, 50 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.50 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.371 W/kg SAR(1 g) = 0.199 W/kg

0 dB = 0.304 W/kg = -5.17 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03552


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ \mbox{f = 2462 MHz; } \sigma = 1.853 \mbox{ S/m; } \epsilon_r = 37.946; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

Test Date: 02/19/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.3°C

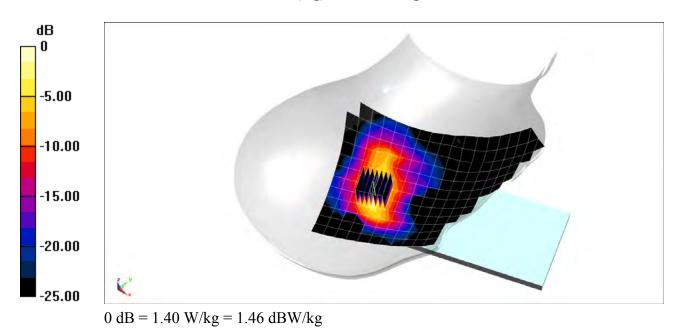
Probe: EX3DV4 - SN7570; ConvF(7.52, 7.52, 7.52) @ 2462 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 11, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.353 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.600 W/kg

dB = 0.988 W/kg = -0.05 dB W/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03552


Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5620 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5620 MHz; $\sigma = 5.152$ S/m; $\epsilon_r = 36.132$; $\rho = 1000$ kg/m³ Phantom section: Right Section

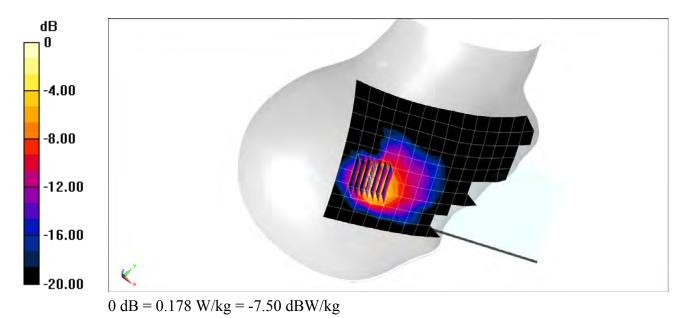
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(4.94, 4.94, 4.94) @ 5620 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Right Head, Tilt, Ch 124, 6 Mbps

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 9.057 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.73 W/kg SAR(1 g) = 0.500 W/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02240


Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.299 Medium: 2450 Head Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 38.742$; $\rho = 1000$ kg/m³ Phantom section: Right Section

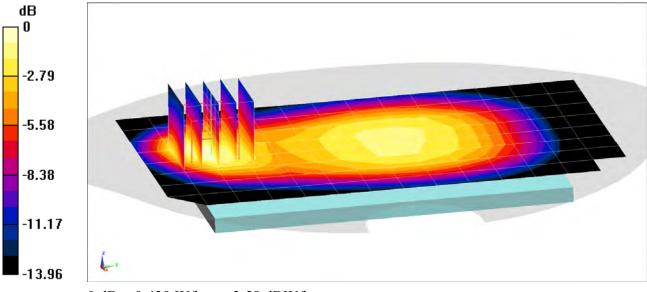
Test Date: 02/24/2020; Ambient Temp: 21.0°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7570; ConvF(7.52, 7.52, 7.52) @ 2441 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Right Head, Tilt, Ch 39, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.907 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.249 W/kg SAR(1 g) = 0.099 W/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.965$ S/m; $\varepsilon_r = 53.357$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/24/2020; Ambient Temp: 21.2°C; Tissue Temp: 20.0°C

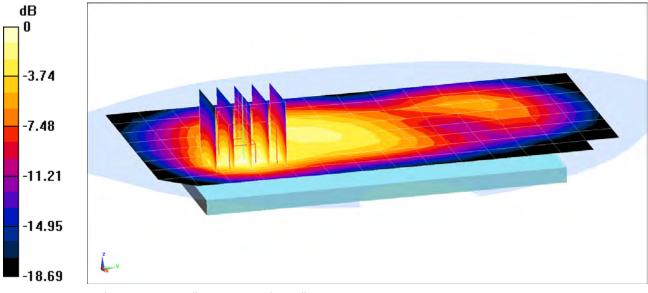
Probe: EX3DV4 - SN7488; ConvF(11.04, 11.04, 11.04) @ 836.6 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 Left 30; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.36 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.552 W/kg SAR(1 g) = 0.309 W/kg Smallest distance from peaks to all points 3 dB below = 12.2 mm Ratio of SAR at M2 to SAR at M1 = 58.7%

0 dB = 0.439 W/kg = -3.58 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


 $\begin{array}{l} \mbox{Communication System: UID 0, GSM GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076 \\ \mbox{Medium: 1900 Body Medium parameters used:} \\ f = 1880 \mbox{ MHz; } \sigma = 1.528 \mbox{ S/m; } \epsilon_r = 51.523; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 02/22/2020; Ambient Temp: 22.3°C; Tissue Temp: 24.7°C

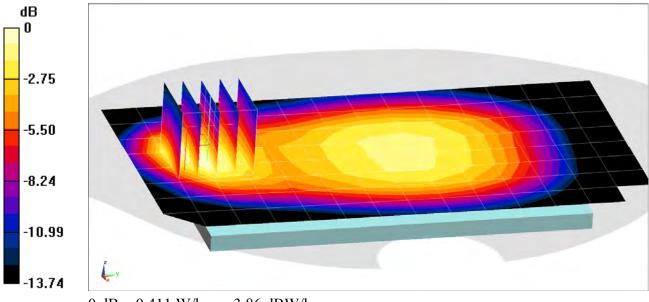
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1880 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.89 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.616 W/kg SAR(1 g) = 0.348 W/kg Smallest distance from peaks to all points 3 dB below = 12.8 mm Ratio of SAR at M2 to SAR at M1 = 57.5%

0 dB = 0.512 W/kg = -2.91 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 0.965 \text{ S/m}; \epsilon_r = 53.357; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/24/2020; Ambient Temp: 21.2°C; Tissue Temp: 20.0°C

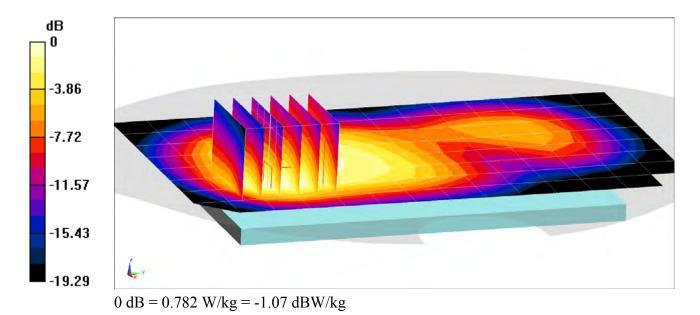
Probe: EX3DV4 - SN7488; ConvF(11.04, 11.04, 11.04) @ 836.6 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 Left 30; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 850, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.81 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.513 W/kg SAR(1 g) = 0.290 W/kg Smallest distance from peaks to all points 3 dB below = 12.9 mm Ratio of SAR at M2 to SAR at M1 = 58.8%

0 dB = 0.411 W/kg = -3.86 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 56.12$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

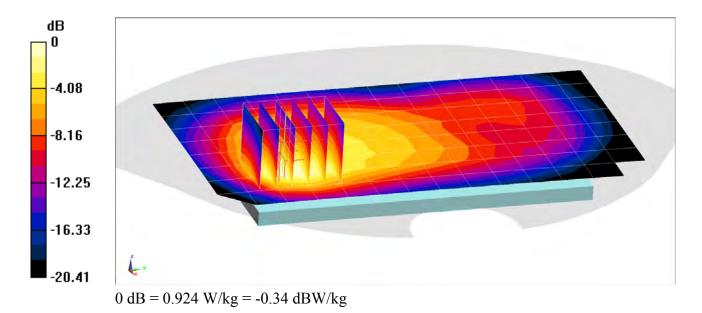
Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1732.4 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1750, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.69 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.939 W/kg SAR(1 g) = 0.546 W/kg Smallest distance from peaks to all points 3 dB below = 14.3 mm Ratio of SAR at M2 to SAR at M1 = 56.8%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02737


Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.504$ S/m; $\epsilon_r = 52.398$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

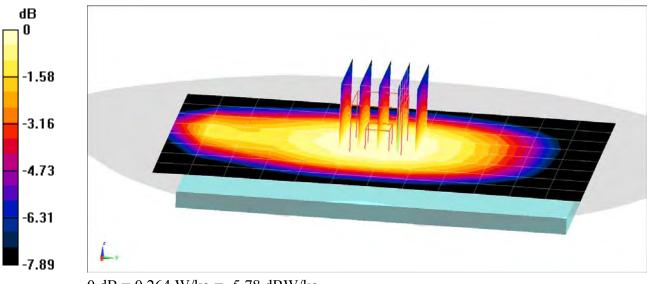
Test Date: 02/19/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1852.4 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: UMTS 1900, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.27 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.12 W/kg SAR(1 g) = 0.632 W/kg Smallest distance from peaks to all points 3 dB below = 13.2 mm Ratio of SAR at M2 to SAR at M1 = 55.8%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02737


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 700 Body Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.942$ S/m; $\varepsilon_r = 54.266$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/11/2020; Ambient Temp: 22.0°C; Tissue Temp: 20.7°C

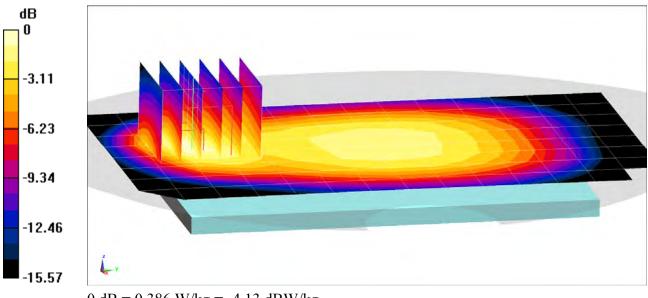
Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 707.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.289 W/kg SAR(1 g) = 0.221 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 75.5%

0 dB = 0.264 W/kg = -5.78 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02737


Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 700 Body Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.971$ S/m; $\epsilon_r = 53.366$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/24/2020; Ambient Temp: 21.4°C; Tissue Temp: 19.7°C

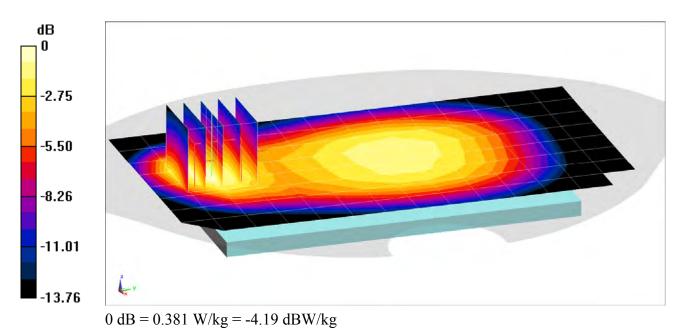
Probe: EX3DV4 - SN3589; ConvF(8.49, 8.49, 8.49) @ 782 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.81 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.482 W/kg SAR(1 g) = 0.256 W/kg Smallest distance from peaks to all points 3 dB below = 12.5 mm Ratio of SAR at M2 to SAR at M1 = 53.5%

0 dB = 0.386 W/kg = -4.13 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 04014


Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.965$ S/m; $\varepsilon_r = 53.358$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

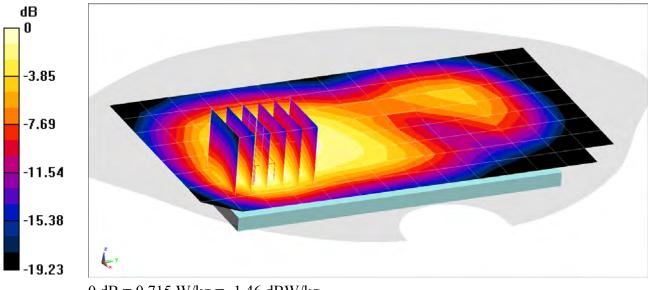
Test Date: 02/24/2020; Ambient Temp: 21.2°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7488; ConvF(11.04, 11.04, 11.04) @ 836.5 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 Left 30; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.19 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.475 W/kg SAR(1 g) = 0.268 W/kg Smallest distance from peaks to all points 3 dB below = 12.2 mm Ratio of SAR at M2 to SAR at M1 = 59.1%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used:} \\ f = 1770 \mbox{ MHz; } \sigma = 1.521 \mbox{ S/m; } \epsilon_r = 55.995; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

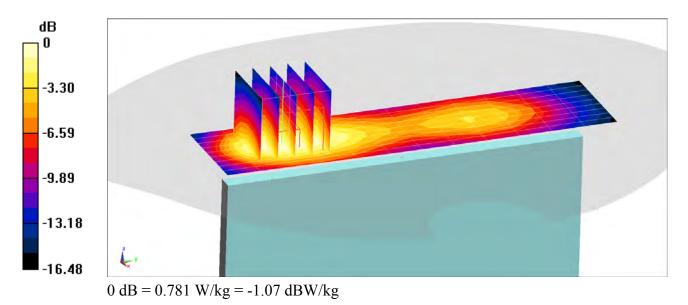
Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1770 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Body SAR, Back side, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.92 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.852 W/kg SAR(1 g) = 0.498 W/kg Smallest distance from peaks to all points 3 dB below = 14.8 mm Ratio of SAR at M2 to SAR at M1 = 57.8%

0 dB = 0.715 W/kg = -1.46 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1770 MHz; $\sigma = 1.521$ S/m; $\epsilon_r = 55.995$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

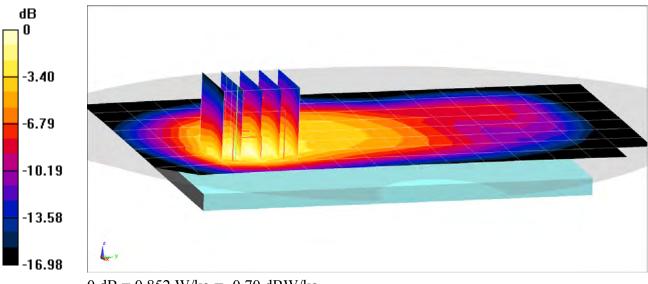
Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1770 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Body SAR, Left Edge, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.77 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.912 W/kg SAR(1 g) = 0.548 W/kg Smallest distance from peaks to all points 3 dB below = 14.4 mm Ratio of SAR at M2 to SAR at M1 = 60.1%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02737


Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1860 MHz; $\sigma = 1.512 \text{ S/m}$; $\epsilon_r = 52.37$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/19/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.1°C

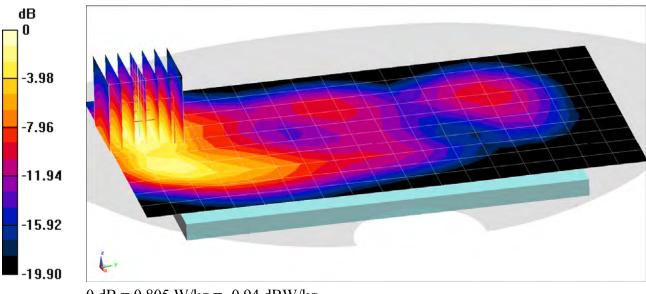
Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1860 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Low.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.51 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 1.09 W/kg SAR(1 g) = 0.598 W/kg Smallest distance from peaks to all points 3 dB below = 12.5 mm Ratio of SAR at M2 to SAR at M1 = 54.1%

0 dB = 0.852 W/kg = -0.70 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2310 MHz; $\sigma = 1.854$ S/m; $\epsilon_r = 52.648$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

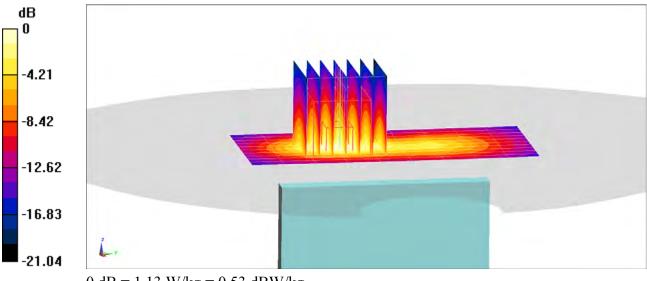
Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2310 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.10 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.980 W/kg SAR(1 g) = 0.527 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55.9%

0 dB = 0.805 W/kg = -0.94 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2310 MHz; $\sigma = 1.854$ S/m; $\epsilon_r = 52.648$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

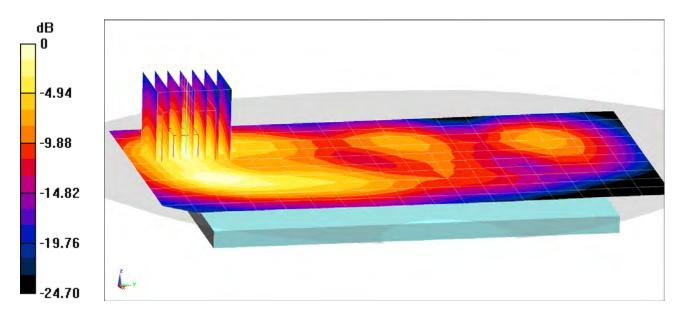
Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2310 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 30, Body SAR, Bottom Edge, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.18 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.715 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.2%

0 dB = 1.13 W/kg = 0.53 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 \\ Medium: 2450 Body Medium parameters used: \\ f = 2535 MHz; \ \sigma = 2.116 \ S/m; \ \epsilon_r = 51.961; \ \rho = 1000 \ kg/m^3 \\ \ Phantom section: Flat Section; Space: 1.0 \ cm \end{array}$

Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

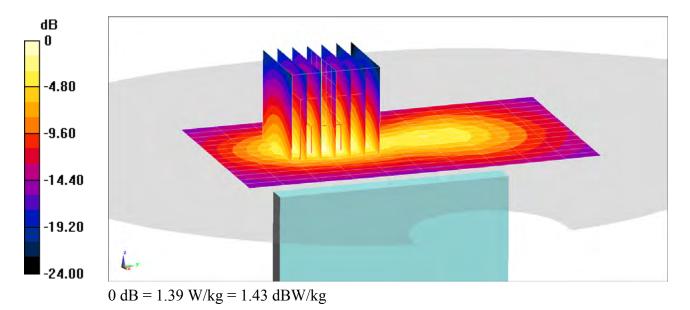
Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2535 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 7, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.47 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.504 W/kg Smallest distance from peaks to all points 3 dB below = 10.2 mm Ratio of SAR at M2 to SAR at M1 = 51.1%

0 dB = 0.817 W/kg = -0.88 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used:} \\ f = 2560 \mbox{ MHz; } \sigma = 2.146 \mbox{ S/m; } \epsilon_r = 51.894; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

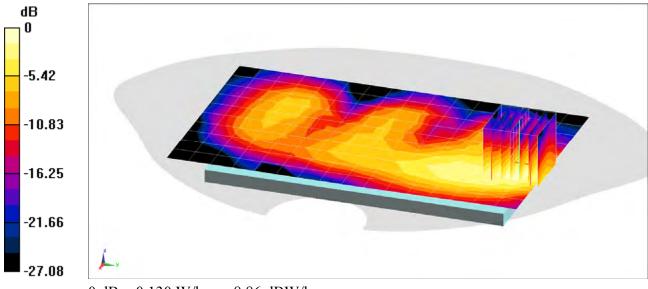
Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2560 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 7, Body SAR, Bottom Edge, High.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (15x11x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.97 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 0.846 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 51%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03552


Communication System: UID 0, 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.031$ S/m; $\epsilon_r = 52.198$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

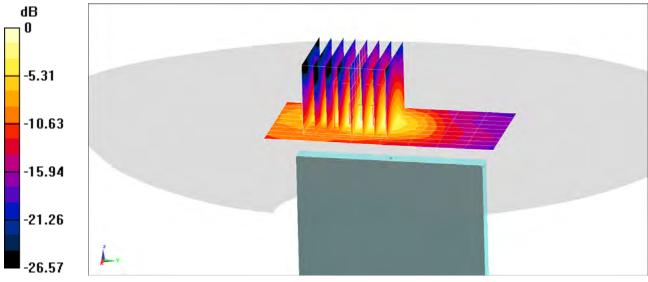
Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2462 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Back Side

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.222 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.171 W/kg SAR(1 g) = 0.078 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 45.3%

0 dB = 0.130 W/kg = -8.86 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03552


Communication System: UID 0, 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.031$ S/m; $\epsilon_r = 52.198$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2462 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

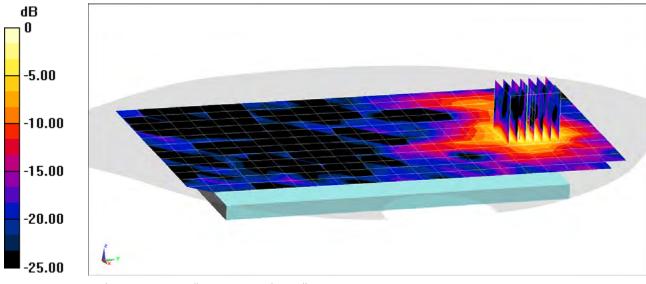
Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Top Edge

Area Scan (10x9x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.436 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.233 W/kg SAR(1 g) = 0.106 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 47.7%

0 dB = 0.184 W/kg = -7.35 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02240

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5745 MHz; $\sigma = 6.105$ S/m; $\epsilon_r = 48.808$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(4.23, 4.23, 4.23) @ 5745 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: IEEE 802.11a, U-NII-3, 20 MHz Bandwidth, Body SAR, Ch 149, 6 Mbps, Back Side

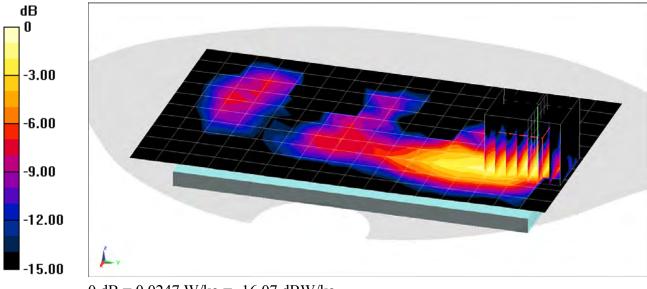
Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 0.7440 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.561 W/kg SAR(1 g) = 0.128 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 59%

0 dB = 0.326 W/kg = -4.87 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03552

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.299 Medium: 2450 Body Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 2.021$ S/m; $\epsilon_r = 51.762$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 02/28/2020; Ambient Temp: 23.0°C; Tissue Temp: 23.2°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2441 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Back Side

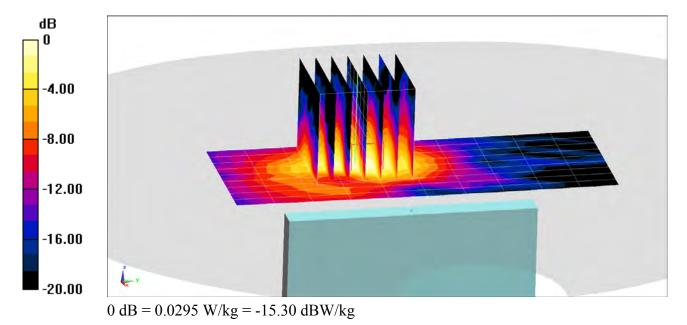
Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.774 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.0330 W/kg SAR(1 g) = 0.015 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 44.3%

0 dB = 0.0247 W/kg = -16.07 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03552

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.299 Medium: 2450 Body Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 2.021$ S/m; $\epsilon_r = 51.762$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 02/28/2020; Ambient Temp: 23.0°C; Tissue Temp: 23.2°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2441 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

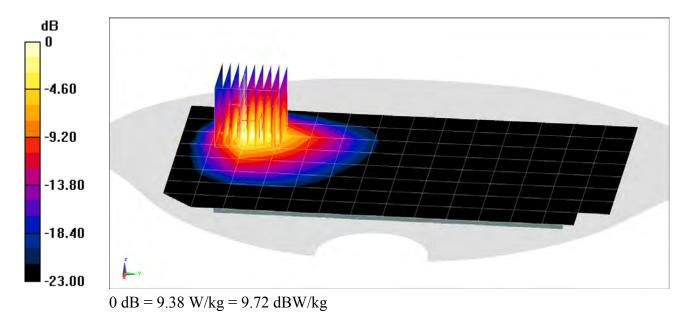
Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Top Edge

Area Scan (10x11x1): Measurement grid: dx=5mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.075 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.0380 W/kg SAR(1 g) = 0.016 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 42.4%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289

Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.457$ S/m; $\epsilon_r = 56.189$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm


Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1712.4 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

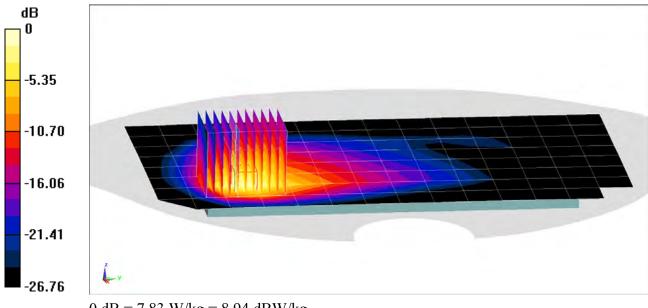
Mode: UMTS 1750, Phablet SAR, Front side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 64.26 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 15.1 W/kg SAR(10 g) = 2.54 W/kg Smallest distance from peaks to all points 3 dB below = 7.8 mm

Ratio of SAR at M2 to SAR at M1 = 77.6%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02737

Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.504$ S/m; $\epsilon_r = 52.398$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm


Test Date: 02/19/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1852.4 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

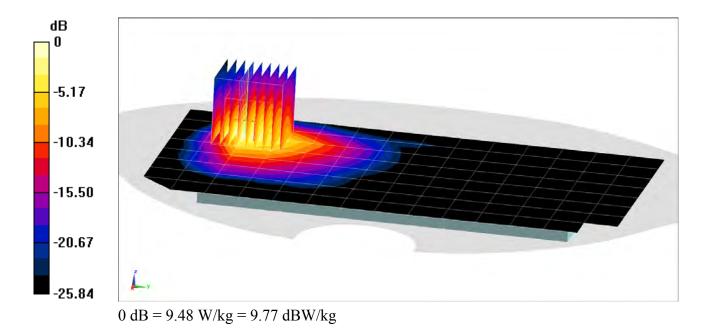
Mode: UMTS 1900, Phablet SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (10x11x8)/Cube 0: Measurement grid: dx=3.5mm, dy=3.5mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 52.59 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 11.6 W/kg SAR(10 g) = 1.93 W/kg Smallest distance from peaks to all points 3 dB below = 5.8 mm

Ratio of SAR at M2 to SAR at M1 = 72.6%

0 dB = 7.83 W/kg = 8.94 dBW/kg

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 03289


Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1720 MHz; $\sigma = 1.466$ S/m; $\epsilon_r = 56.161$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm

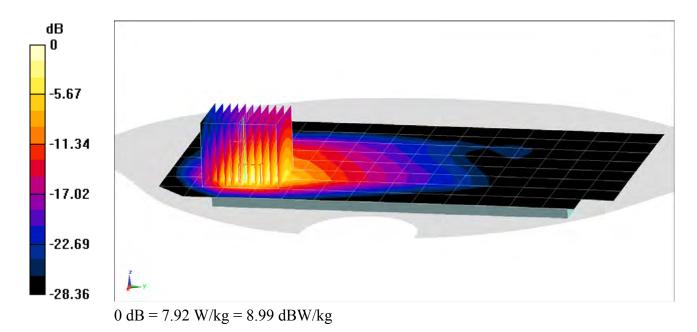
Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1720 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 66 (AWS), Phablet SAR, Front side, Low.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 63.62 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 15.1 W/kg SAR(10 g) = 2.69 W/kg Smallest distance from peaks to all points 3 dB below = 7 mm Ratio of SAR at M2 to SAR at M1 = 80.3%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02737


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1900 Body Medium parameters used (interpolated):} \\ f = 1882.5 \mbox{ MHz; } \sigma = 1.553 \mbox{ S/m; } \epsilon_r = 52.515; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 0.0 cm} \end{array}$

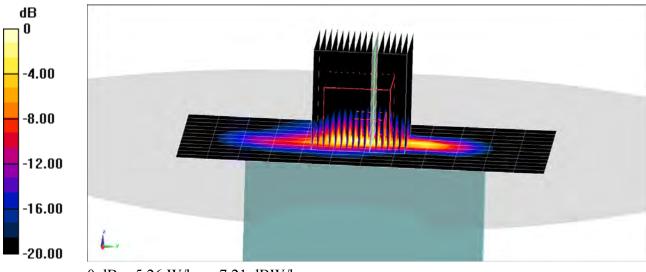
Test Date: 02/17/2020; Ambient Temp: 23.9°C; Tissue Temp: 19.4°C

Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1882.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Mode: LTE Band 25 (PCS), Phablet SAR, Back side, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (10x11x8)/Cube 0: Measurement grid: dx=3.5mm, dy=3.5mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 52.84 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(10 g) = 1.94 W/kg Smallest distance from peaks to all points 3 dB below = 6 mm Ratio of SAR at M2 to SAR at M1 = 73.7%

DUT: ZNFQ630UM; Type: Portable Handset; Serial: 02240


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5620 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 5200-5800 Body Medium parameters used:} \\ f = 5620 \mbox{ MHz; } \sigma = 6.026 \mbox{ S/m; } \epsilon_r = 46.692; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 03-17-2020; Ambient Temp: 22.8°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5620 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

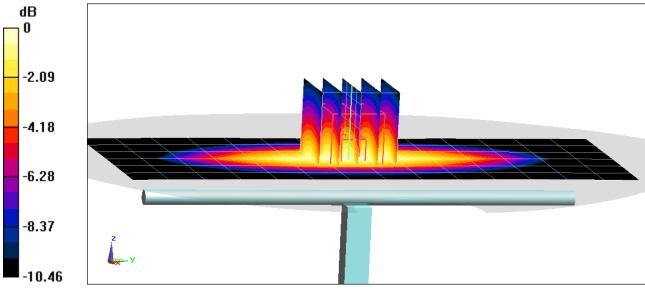
Mode: IEEE 802.11a, U-NII-2C, 20 MHz Bandwidth, Phablet SAR, Ch 124, 6 Mbps, Top Edge

Area Scan (13x13x1): Measurement grid: dx=5mm, dy=10mm Zoom Scan (17x17x8)/Cube 0: Measurement grid: dx=1.9mm, dy=1.9mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 0.7620 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 9.30 W/kg SAR(10 g) = 0.404 W/kg Smallest distance from peaks to all points 3 dB below = 3.4 mm Ratio of SAR at M2 to SAR at M1 = 59.6%

0 dB = 5.26 W/kg = 7.21 dBW/kg

APPENDIX B: SAR DIPOLE VERIFICATION PLOTS

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 700 Head Medium parameters used: f = 750 MHz; $\sigma = 0.881$ S/m; $\epsilon_r = 42.379$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/18/2020; Ambient Temp: 22.5°C; Tissue Temp: 20.5°C

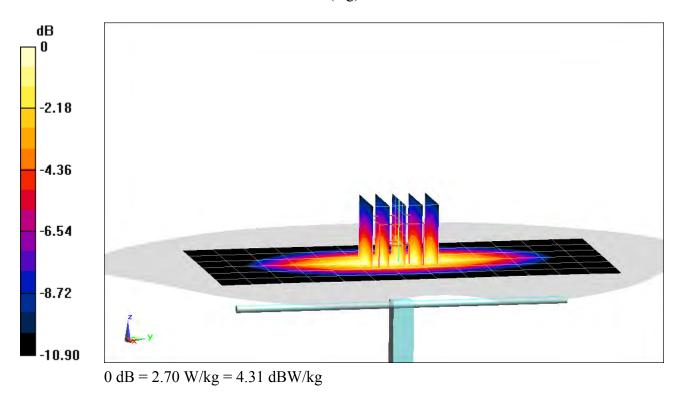
Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.41 W/kg SAR(1 g) = 1.66 W/kg Deviation(1 g) = 0.24%

0 dB = 2.18 W/kg = 3.38 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.908$ S/m; $\epsilon_r = 40.342$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

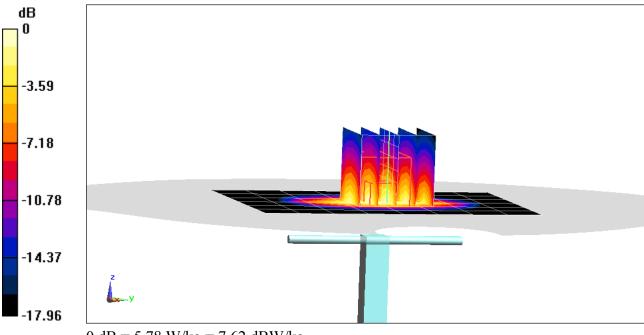
Test Date: 02/12/2020; Ambient Temp: 22.6°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2 W/kg Deviation(1 g) = 6.04%

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.361$ S/m; $\epsilon_r = 39.889$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

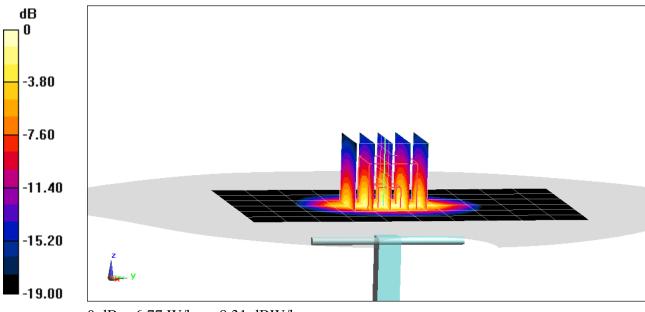
Test Date: 02/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7410; ConvF(8.46, 8.46, 8.46) @ 1750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.02 W/kg SAR(1 g) = 3.81 W/kg Deviation(1 g) = 5.25%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1900 MHz; $\sigma = 1.461$ S/m; $\epsilon_r = 39.364$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/19/2020; Ambient Temp:24.2°C; Tissue Temp: 20.1°C

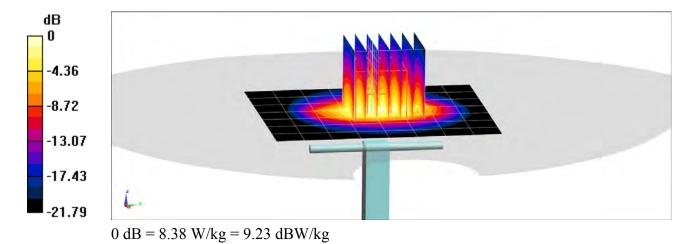
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1900 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 8.16 W/kgSAR(1 g) = 4.29 W/kgDeviation(1 g) = 9.72%

0 dB = 6.77 W/kg = 8.31 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2400 Head; Medium parameters used: f = 2300 MHz; $\sigma = 1.746$ S/m; $\epsilon_r = 38.717$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

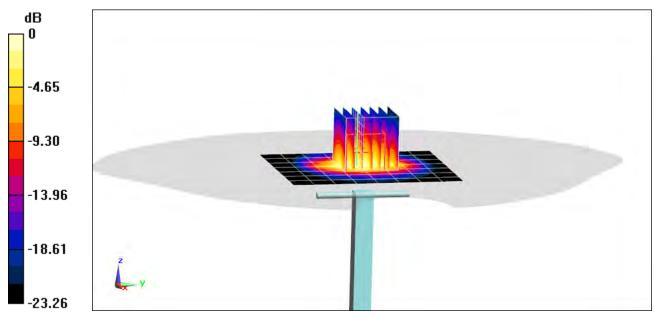
Test Date: 02/27/2020; Ambient Temp: 20.8°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7570; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.6 W/kg SAR(1 g) = 5.06 W/kg Deviation(1 g) = 2.85%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2400 Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.843$ S/m; $\epsilon_r = 37.968$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/19/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.3°C

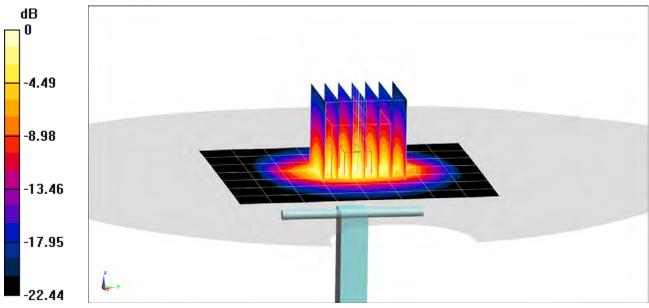
Probe: EX3DV4 - SN7570; ConvF(7.52, 7.52, 7.52) @ 2450 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.4 W/kg Deviation(1 g) = 2.47%

0 dB = 9.10 W/kg = 9.59 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2400 Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.857$ S/m; $\epsilon_r = 38.723$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/24/2020; Ambient Temp: 21.0°C; Tissue Temp: 20.0°C

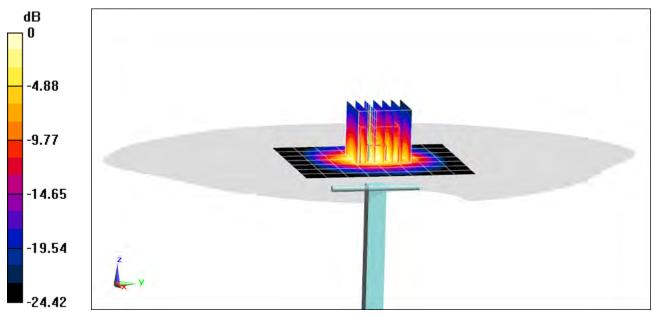
Probe: EX3DV4 - SN7570; ConvF(7.52, 7.52, 7.52) @ 2450 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.31 W/kgDeviation(1 g) = 0.76%

0 dB = 8.99 W/kg = 9.54 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2400 Head; Medium parameters used: f = 2600 MHz; $\sigma = 1.963$ S/m; $\epsilon_r = 37.699$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/19/2020; Ambient Temp: 22.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7570; ConvF(7.28, 7.28, 7.28) @ 2600 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 13.1 W/kg SAR(1 g) = 5.94 W/kg Deviation(1 g) = 6.26%

0 dB = 10.2 W/kg = 10.09 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5250 MHz; $\sigma = 4.713$ S/m; $\epsilon_r = 36.795$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

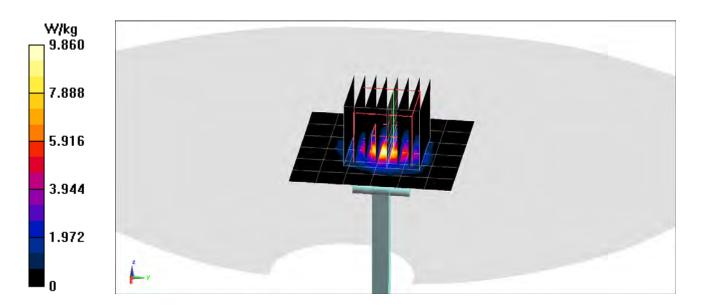
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(5.54, 5.54, 5.54) @ 5250 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.8 W/kg SAR(1 g) = 3.64 W/kg Deviation(1 g) = -8.08%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5600 MHz; $\sigma = 5.123$ S/m; $\varepsilon_r = 36.159$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

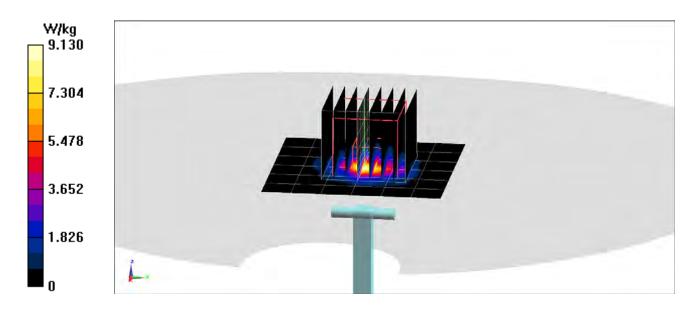
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(4.94, 4.94, 4.94) @ 5600 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 4.14 W/kg Deviation(1 g) = -1.55%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5750 MHz; $\sigma = 5.31$ S/m; $\epsilon_r = 35.91$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

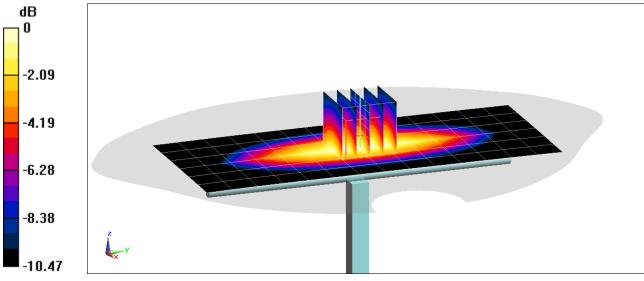
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(5.23, 5.23, 5.23) @ 5750 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 3.71 W/kg Deviation(1 g) = -7.83%

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 700 Body; Medium parameters used: f = 750 MHz; $\sigma = 0.959$ S/m; $\epsilon_r = 54.188$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/11/2020; Ambient Temp: 22.0°C; Tissue Temp: 20.7°C

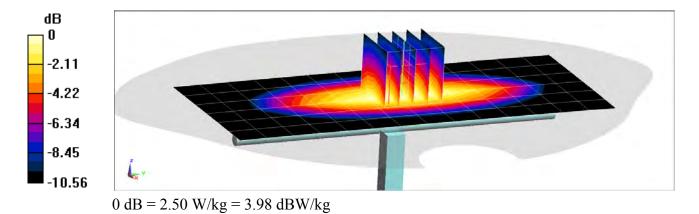
Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 750 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.76 W/kg SAR(1 g) = 1.77 W/kg Deviation(1 g) = 3.51%

0 dB = 2.40 W/kg = 3.80 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 700 Body Medium parameters used: f = 750 MHz; $\sigma = 0.959$ S/m; $\epsilon_r = 53.459$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

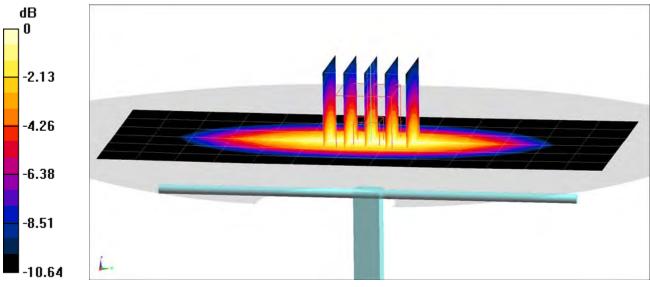
Test Date: 02/24/2020; Ambient Temp: 21.4°C; Tissue Temp: 19.7°C

Probe: EX3DV4 - SN3589; ConvF(8.49, 8.49, 8.49) @ 750 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.91 W/kg SAR(1 g) = 1.81 W/kg Deviation(1 g) = 5.48%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: f = 835 MHz; $\sigma = 0.963$ S/m; $\epsilon_r = 53.374$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-24-2020; Ambient Temp: 21.2°C; Tissue Temp: 20.0°C

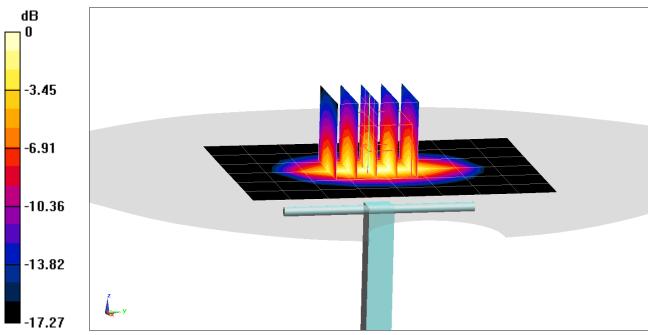
Probe: EX3DV4 - SN7488; ConvF(11.04, 11.04, 11.04) @ 835 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 Left 30; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.77 W/kgSAR(1 g) = 1.81 W/kgDeviation(1 g) = -4.44 %

0 dB = 2.44 W/kg = 3.87 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: f = 1750 MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 56.062$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

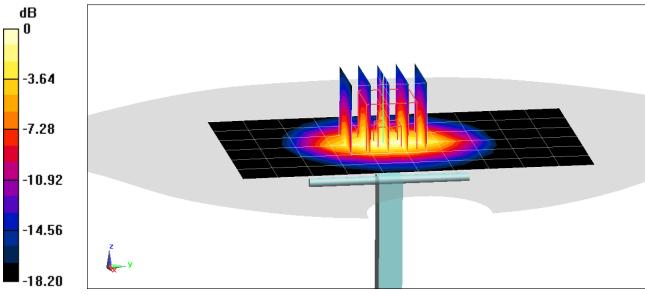
Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.24 W/kg SAR(1 g) = 3.99 W/kg; SAR(10 g) = 2.12 W/kg Deviation(1 g) = 5.84%; Deviation(10 g) = 7.07%

0 dB = 6.00 W/kg = 7.78 dBW/kg

DUT: Dipole 1900 MHz; Type: D1950V3; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: f = 1900 MHz; $\sigma = 1.566$ S/m; $\epsilon_r = 52.494$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/17/2020; Ambient Temp: 23.9°C; Tissue Temp: 19.4°C

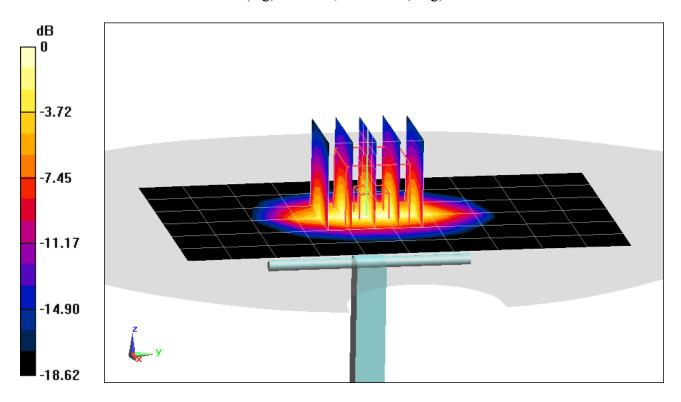
Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1900 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.66 W/kg SAR(10 g) = 2.08 W/kg Deviation(10 g) = 0.97%

0 dB = 6.37 W/kg = 8.04 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: f = 1900 MHz; $\sigma = 1.554$ S/m; $\epsilon_r = 52.227$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/19/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.1°C

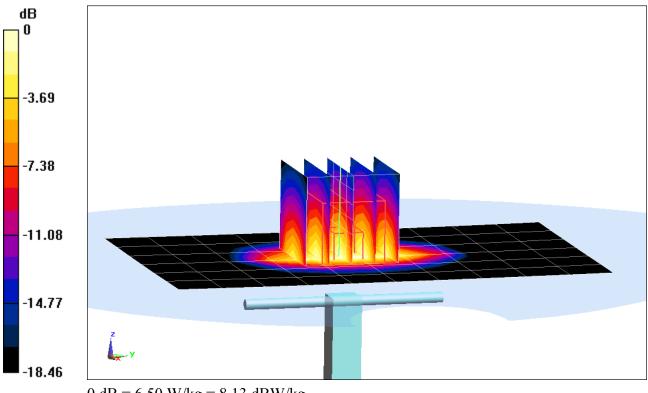
Probe: EX3DV4 - SN7551; ConvF(7.69, 7.69, 7.69) @ 1900 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.59 W/kg SAR(1 g) = 4.06 W/kg; SAR(10 g) = 2.08 W/kg Deviation(1 g) = 3.84%; Deviation(10 g) = 1.46%

0 dB = 6.37 W/kg = 8.04 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.55$ S/m; $\epsilon_r = 51.456$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/22/2020; Ambient Temp: 22.3°C; Tissue Temp: 24.7°C

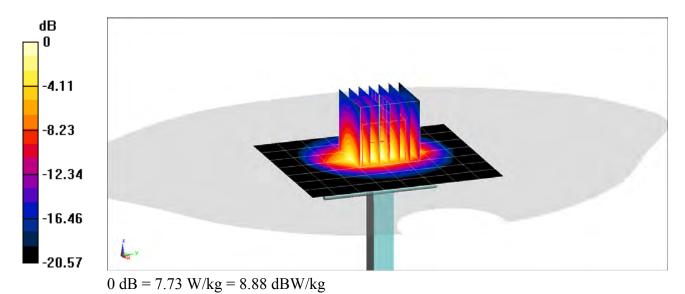
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.82 W/kg SAR(1 g) = 4.14 W/kg Deviation(1 g) = 5.61%

0 dB = 6.50 W/kg = 8.13 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2400 Body; Medium parameters used: f = 2300 MHz; $\sigma = 1.842$ S/m; $\epsilon_r = 52.675$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

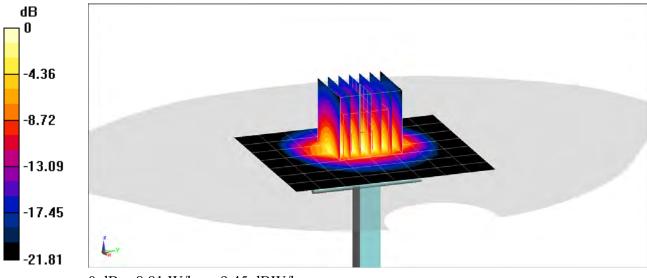
Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2300 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 9.45 W/kg SAR(1 g) = 4.84 W/kg Deviation(1 g) = 1.47%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2400 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.018$ S/m; $\epsilon_r = 52.236$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

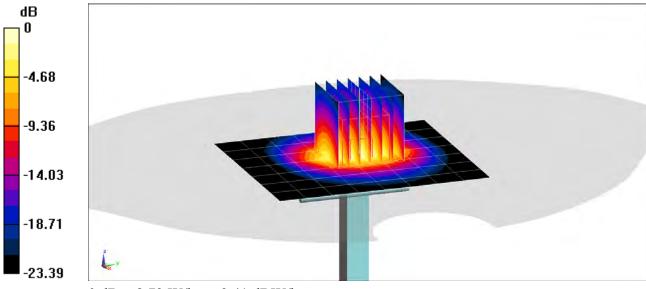
Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.27 W/kg Deviation(1 g) = 3.13%

0 dB = 8.81 W/kg = 9.45 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2400 Body; Medium parameters used: f = 2600 MHz; $\sigma = 2.191$ S/m; $\epsilon_r = 51.774$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/25/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.7°C

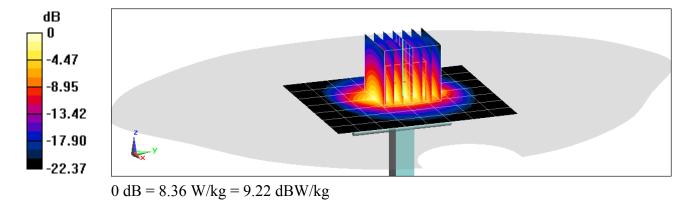
Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5.11 W/kgDeviation(1 g) = -6.75%

0 dB = 8.73 W/kg = 9.41 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2400 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.032$ S/m; $\varepsilon_r = 51.738$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

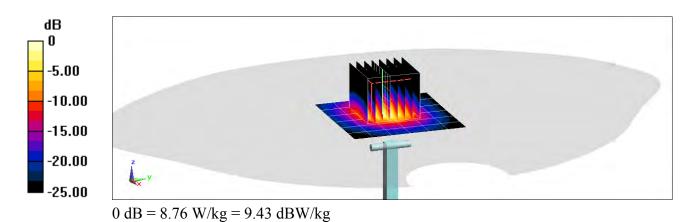
Test Date: 02/28/2020; Ambient Temp: 23.0°C; Tissue Temp: 23.2°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 5.07 W/kg Deviation(1 g) = -0.78%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5250 MHz; $\sigma = 5.428$ S/m; $\epsilon_r = 49.59$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

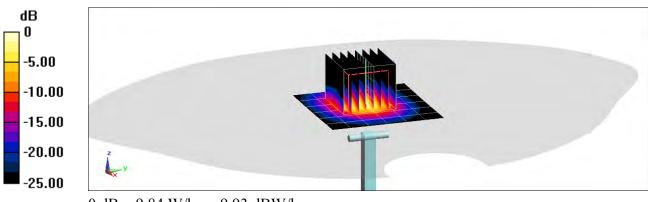
Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.3 W/kg SAR(1 g) = 3.69 W/kg Deviation(1 g) = -4.16%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5600 MHz; $\sigma = 5.899$ S/m; $\epsilon_r = 49.019$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

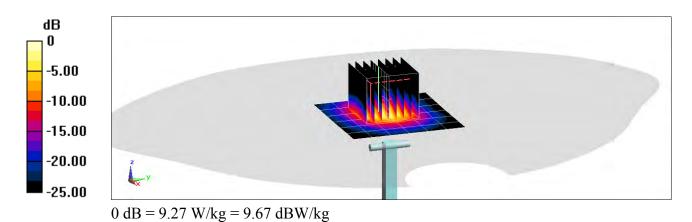
Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5600 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 3.99 W/kg Deviation(1 g) = 1.53%

0 dB = 9.84 W/kg = 9.93 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5750 MHz; $\sigma = 6.111$ S/m; $\epsilon_r = 48.804$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

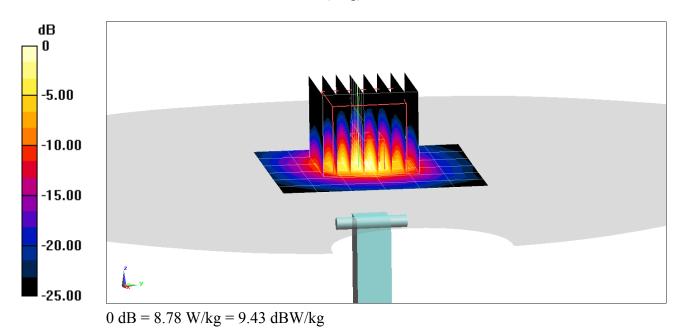
Probe: EX3DV4 - SN7409; ConvF(4.23, 4.23, 4.23) @ 5750 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 3.77 W/kg Deviation(1 g) = -1.95%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5250 MHz; $\sigma = 5.522$ S/m; $\varepsilon_r = 47.383$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 03/17/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.3°C

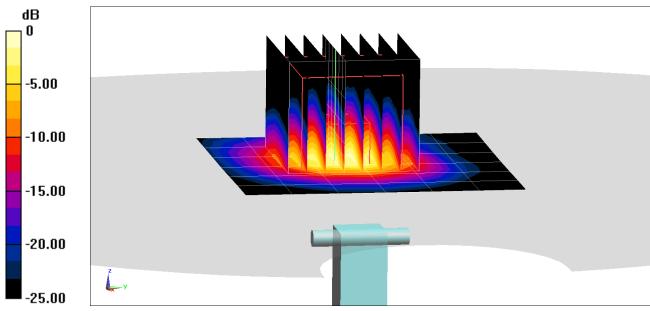
Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.4 W/kg SAR(10 g) = 1.03 W/kg

Deviation(10 g) = -2.83%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 46.757$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 03/17/2020; Ambient Temp: 22.8°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5600 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.1 W/kg SAR(10 g) = 1.09 W/kg Deviation(10 g) = -0.91%

0 dB = 9.57 W/kg = 9.81 dBW/kg

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container.
- Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity c can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{0}^{a} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C16	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

For the wording of the listed risk phrases refer to section 16. Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

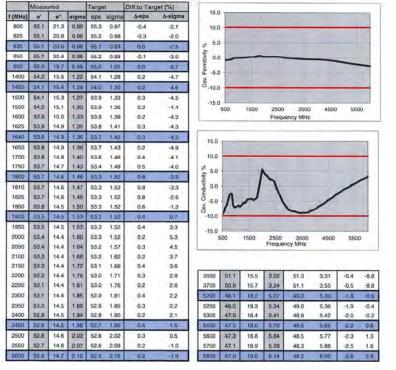
FCC ID:	ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Test Dates:		DUT Type:			APPENDIX C:
02/11/20 - 03	3/17/20	Portable Handset			Page 1 of 3
© 2020 PCTEST	Ī			-	REV 21.4 M 09/11/2019

info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SL AAM U16 BC (Batch: 181029-1)
Manufacturer	SPEAG

Measurement Method


TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the KDB 865664 compliance standard.

Test Conditio		
TSL Temperat	ition 22°C ; 30% humidity	
Test Date	30-Oct-18	
Operator	CL	
Additional Inf	ormation	
TSL Density		
TSL Heat-capa	acity	

Results

TSL Dielectric Parameters

FCC ID:	ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Test Dates:		DUT Type:			APPENDIX C:
02/11/20 - 03	8/17/20	Portable Handset			Page 2 of 3
© 2020 PCTEST					REV 21.4 M 09/11/2019

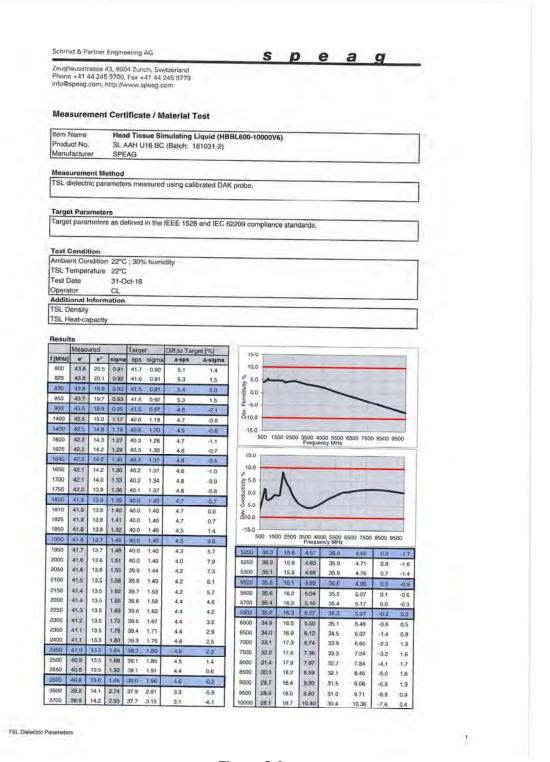


Figure C-3 600 – 5800 MHz Head Tissue Equivalent Matter

FCC ID:	ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Test Dates:		DUT Type:			APPENDIX C:
02/11/20 - 0	3/17/20	Portable Handset			Page 3 of 3
© 2020 PCTES	ſ	*			REV 21.4 M
					09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR	Freq.		Probe			Cond.	Perm.	C	W VALIDAT	ON	MOD. VALIDATION						
System	(MHz)	Date	SN	Probe C	al Point	(σ)	(εr)	SENSITI VITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR				
L	750	9/24/2019	7410	750	Head	0.878	42.471	PASS	PASS	PASS	N/A	N/A	N/A				
L	835	9/24/2019	7410	835	Head	0.911	42.199	PASS	PASS	PASS	GMSK	PASS	N/A				
L	1750	9/24/2019	7410	1750	Head	1.351	40.190	PASS	PASS	PASS	N/A	N/A	N/A				
L	1900	9/24/2019	7410	1900	Head	1.442	39.947	PASS	PASS	PASS	GMSK	PASS	N/A				
М	2300	2/27/2020	7570	2300	Head	1.746	38.717	PASS	PASS	PASS	N/A	N/A	N/A				
М	2450	2/17/2020	7570	2450	Head	1.837	38.340	PASS	PASS	PASS	OFDM/TDD	PASS	PASS				
М	2600	2/17/2020	7570	2600	Head	1.957	38.064	PASS	PASS	PASS	TDD	PASS	N/A				
Н	5250	12/7/2019	7406	5250	Head	4.709	35.885	PASS	PASS	PASS	OFDM	N/A	PASS				
Н	5600	12/7/2019	7406	5600	Head	5.120	35.211	PASS	PASS	PASS	OFDM	N/A	PASS				
Н	5750	12/7/2019	7406	5750	Head	5.309	34.961	PASS	PASS	PASS	OFDM	N/A	PASS				
Р	750	9/26/2019	7551	750	Body	0.959	54.287	PASS	PASS	PASS	N/A	N/A	N/A				
E	750	2/21/2020	3589	750	Body	0.965	53.650	PASS	PASS	PASS	N/A	N/A	N/A				
D	835	2/20/2020	7488	835	Body	1.001	53.450	PASS	PASS	PASS	GMSK	PASS	N/A				
I	1750	5/21/2019	7357	1750	Body	1.442	55.384	PASS	PASS	PASS	N/A	N/A	N/A				
Р	1900	10/8/2019	7551	1900	Body	1.542	51.760	PASS	PASS	PASS	GMSK	PASS	N/A				
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A				
К	2300	9/5/2019	7547	2300	Body	1.893	52.450	PASS	PASS	PASS	N/A	N/A	N/A				
K	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS				
К	2600	9/5/2019	7547	2600	Body	2.716	52.040	PASS	PASS	PASS	TDD	PASS	N/A				
G	5250	10/4/2019	7409	5250	Body	5.223	47.070	PASS	PASS	PASS	OFDM	N/A	PASS				
G	5600	10/7/2019	7409	5600	Body	5.884	47.080	PASS	PASS	PASS	OFDM	N/A	PASS				
G	5750	10/7/2019	7409	5750	Body	6.111	46.780	PASS	PASS	PASS	OFDM	N/A	PASS				

Table D-1 SAR System Validation Summary – 1g

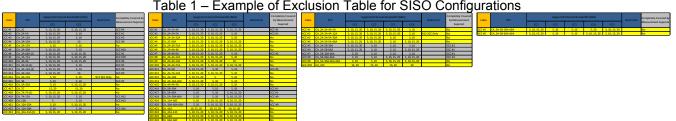
Table D-2 SAR System Validation Summary – 10g

					yotom	Vulla		/unin	any no	9							
SAR	Frea.		Probe	Probe Cal Point		Cond.	Perm.	С	W VALIDAT	ION	MO). Validat	ION				
System	(MHz)	Date	SN			Probe Cal Point		Probe Cal Point		Probe Cal Point		(σ)	(Er)	SENSITI	PROBE	PROBE	MOD.
Cystem	(11112)		011				(01)	VITY	LINEARITY	ISOTROPY	TYPE	FACTOR	FAN				
- 1	1750	5/21/2019	7357	1750	Body	1.442	55.384	PASS	PASS	PASS	N/A	N/A	N/A				
Р	1900	10/8/2019	7551	1900	Body	1.542	51.760	PASS	PASS	PASS	GMSK	PASS	N/A				
G	5250	10/4/2019	7409	5250	Body	5.223	47.070	PASS	PASS	PASS	OFDM	N/A	PASS				
G	5600	10/7/2019	7409	5600	Body	5.884	47.080	PASS	PASS	PASS	OFDM	N/A	PASS				

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID: ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	02/11/20 - 03/17/20	Portable Handset			Page 1 of 1
C	2020 PCTEST	·			REV 21.4 M
					09/11/2019

APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS


1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

C

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA 2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components . carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.

Table 1 – Example of Exclusion Table for SISO Configurations

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

	FCC ID: ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F:
	02/11/20 - 03/17/20	Portable Handset			Page 1 of 3
202	0 PCTEST	•			REV 21.3 M
					02/15/2019

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Figure 1 **DL CA Power Measurement Setup**

1.3 **Downlink Carrier Aggregation RF Conducted Powers**

1.3.1 LTE Band 12 as PCC

Table 1 Maximum Output Powers

					DCC							204		Der	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	PCC Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC 1 SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA	wer LTE Single Carrier Tx Power (dBm)
CA_2A-12A (1)	LTE B12	3	23165	714.5	QPSK	1	14	5165	744.5	LTE B2	20	900	1960	24.94	24,99
CA_4A-12A (1)	LTE B12	5	23155	713.5	QPSK	1	24	5155	743.5	LTE B4	20	2175	2132.5	24.76	24.73
CA_4A-12A (2)	LTE B12	3	23165	714.5	QPSK	1	14	5165	744.5	LTE B4	20	2175	2132.5	25.00	24.99
CA_7A-12A	LTE B12	5	23155	713.5	QPSK	1	24	5155	743.5	LTE B7	20	3100	2655	24.74	24.73
CA_12A-30A	LTE B12	5	23155	713.5	QPSK	1	24	5155	743.5	LTE B30	10	9820	2355	24.88	24.73
CA_12A-66A (1)	LTE B12	5	23155	713.5	QPSK	1	24	5155	743.5	LTE B66	20	66786	2145	24.77	24.73
CA_12A-66A (2)	LTE B12	3	23165	714.5	QPSK	1	14	5165	744.5	LTE B66	20	66786	2145	24.99	24.99
CA_12B	LTE B12	5	23155	713.5	QPSK	1	24	5155	743.5	LTE B12	5	5107	738.7	24.74	24.73

LTE Band 5 as PCC 1.3.2

Table 2 **Maximum Output Powers**

				PCC		S	CC 1		Power						
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-5A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B2	20	900	1960	24.50	24.57
CA_4A-5A (1)	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B4	20	2175	2132.5	24.58	24.57
CA_5A-30A	LTE B5	5	20425	826.5	QPSK	1	0	2425	871.5	LTE B30	10	9820	2355	24.55	24.57

	FCC ID: ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F:
	02/11/20 - 03/17/20	Portable Handset			Page 2 of 3
202	0 PCTEST	•			REV 21.3 M

1.3.3 LTE Band 66 as PCC

	Maximum Output Powers														
		PCC						SCC 1				Pov	ver		
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-66A	LTE B66	5	132322	1745	QPSK	1	12	66786	2145	LTE B2	20	900	1960	24.16	24.22
CA_12A-66A (1)	LTE B66	1.4	131979	1710.7	QPSK	3	2	66443	2110.7	LTE B12	10	5095	737.5	24.20	24.24
CA_12A-66A (2)	LTE B66	5	132322	1745	QPSK	1	12	66786	2145	LTE B12	10	5095	737.5	24.15	24.22
CA_66A-66A	LTE B66	5	132322	1745	QPSK	1	12	66786	2145	LTE B66	20	67236	2190	24.16	24.22
CA_66B	LTE B66	5	132322	1745	QPSK	1	12	66786	2145	LTE B66	15	66693	2135.7	24.18	24.22
CA_66C	LTE B66	5	132322	1745	QPSK	1	12	66786	2145	LTE B66	20	66669	2133.3	24.17	24.22

Table 3 Maximum Output Powers

1.3.4 LTE Band 30 as PCC

Table 4Maximum Output Powers

		PCC									so	CC 1		Por	wer
Combination	PCC Band	PCC BW [MHz]		PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-30A	LTE B30	5	27710	2310	QPSK	1	12	9820	2355	LTE B2	20	900	1960	23.56	23.83
CA_4A-30A	LTE B30	5	27710	2310	QPSK	1	12	9820	2355	LTE B4	20	2175	2132.5	23.62	23.83
CA_5A-30A	LTE B30	5	27710	2310	QPSK	1	12	9820	2355	LTE B5	10	2525	881.5	23.72	23.83
CA_12A-30A	LTE B30	5	27710	2310	QPSK	1	12	9820	2355	LTE B12	10	5095	737.5	23.73	23.83
CA_29A-30A	LTE B30	5	27710	2310	QPSK	1	12	9820	2355	LTE B29	10	9715	722.5	23.74	23.83

1.3.5 LTE Band 7 as PCC

Table 5Maximum Output Powers

		PCC								SCC 1				Pov	wer
Combination	PCC Band	PCC BW [MHz]		PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-7A	LTE B7	15	20825	2507.5	QPSK	1	0	2825	2627.5	LTE B2	20	900	1960	22.48	22.77
CA_4A-7A (1)	LTE B7	15	20825	2507.5	QPSK	1	0	2825	2627.5	LTE B4	20	2175	2132.5	22.43	22.77
CA_7A-7A (1)	LTE B7	15	20825	2507.5	QPSK	1	0	2825	2627.5	LTE B7	20	3350	2680	22.47	22.77
CA_7A-12A	LTE B7	15	20825	2507.5	QPSK	1	0	2825	2627.5	LTE B12	10	5095	737.5	22.57	22.77
CA_7B	LTE B7	15	20825	2507.5	QPSK	1	0	2825	2627.5	LTE B7	5	2918	2636.8	22.43	22.77
CA_7C (1)	LTE B7	15	20825	2507.5	QPSK	1	0	2825	2627.5	LTE B7	20	2996	2644.6	22.24	22.77

	FCC ID: ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates: 02/11/20 - 03/17/20	DUT Type: Portable Handset			APPENDIX F: Page 3 of 3
© 202	0 PCTEST				REV 21.3 M 02/15/2019

APPENDIX G POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

G.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: ZNFQ630UM	POTEST	SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
02/11/20 - 03/17/20	Portable Handset			Page 1 of 2
© 2020 PCTEST				REV 20.05 M 11/15/2017

Main Antenna Verification Summary G.3

FOWEI IN			Antenna		
Mechanism(s)		Conducted Power (dBm)			
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)		
Grip	UMTS 1750	24.31	23.05		
Grip	UMTS 1900	24.38	23.62		
Grip	LTE FDD Band 66	24.16	22.90		
Grip	LTE FDD Band 25	24.10	23.36		
Grip	LTE FDD Band 4	24.14	22.87		
Grip	LTE FDD Band 2	23.94	23.17		

Table G-1 **Power Measurement Verification for Main Antenna**

Table G-2 **Distance Measurement Verification for Main Antenna**

Mashaniana (a)	Test Condition	Band	Distance Measu	Minimum Distance per	
Mechanism(s)			Moving Toward	Moving Away	Manufacturer (mm)
Grip	Phablet - Back Side	Mid	6	8	4
Grip	Phablet - Front Side	Mid	2	3	1
Grip	Phablet - Bottom Edge	Mid	4	6	4

*Note: Mid band refers to: UMTS B2/4, LTE B2/4/25/66.

FCC ID: ZNFQ630UM		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
02/11/20 - 03/17/20	Portable Handset			Page 2 of 2
© 2020 PCTEST				REV 20.05 M

APPENDIX H: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Pariner Engineering AG ...Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura "Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1003_Jan18

Accreditation No.: SCS 0108

S

С

S

CALIBRATION CERTIFICATE

Object	D750V3 - SN:10	03	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	January 15, 201		
	, , <u>,</u>		BN 01-25-2018
the measurements and the unce	artainties with confidence p	ional standards, which realize the physical ur probability are given on the following pages an ry facility: environment temperature (22 ± 3)°	alts of measurements (Si).
Calibration Equipment used (M&		, , , , , , , , , , , , , , , , , , ,	nd are part of the certificate. BN 02/06/20/02 C and humidity < 70%. D1/17/20
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
ower sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2/06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-16)	in house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
_	Name	Function	Signalure
Calibrated by:	Leif Klysner	Laboratory Technician	Seaf The
	Katja Pokovic	Technical Manager	pan
Approved by:	reda i orbito		6-t 15-

Certificate No: D750V3-1003_Jan18

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero dl taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured
not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

_

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.71 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω - 2.1 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 6.2 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

_ ._ _ . _

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.94 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters		

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg

SAR result with SAM Head (Ear)

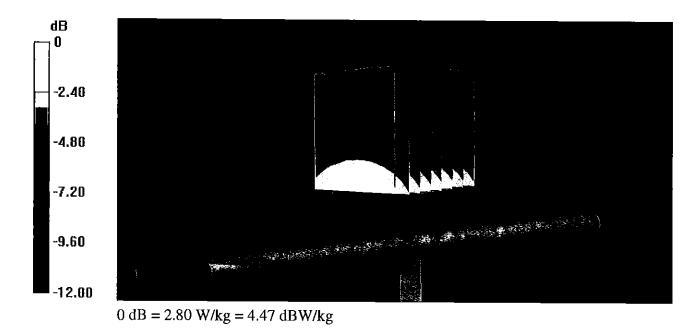
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.70 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.15 W/kg

DASY5 Validation Report for Head TSL

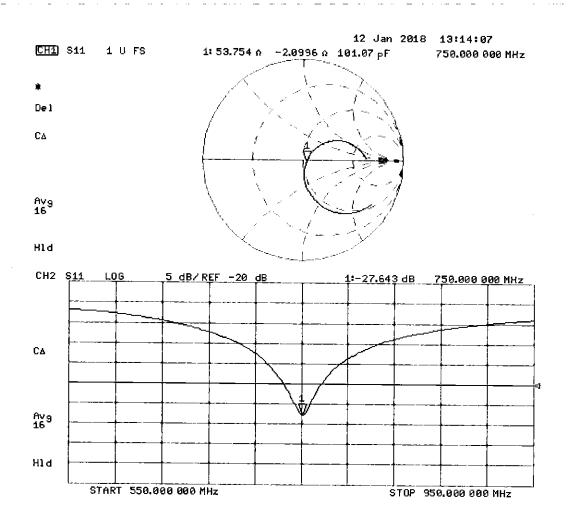
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.11 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg

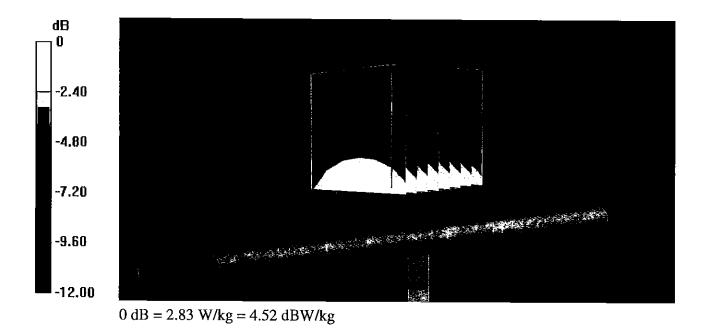
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

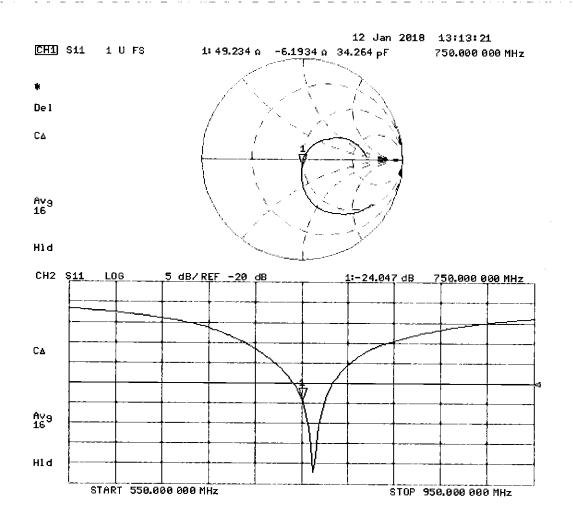
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.83 W/kg

Impedance Measurement Plot for Body TSL

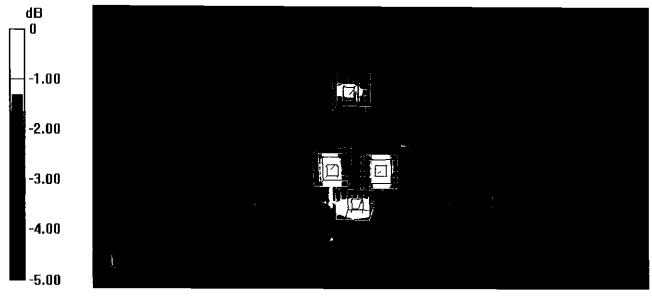
Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.58 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.85 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.62 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.01 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg Maximum value of SAR (measured) = 2.11 W/kg

0 dB = 2.58 W/kg = 4.12 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D750V3 - SN: 1003

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/15/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

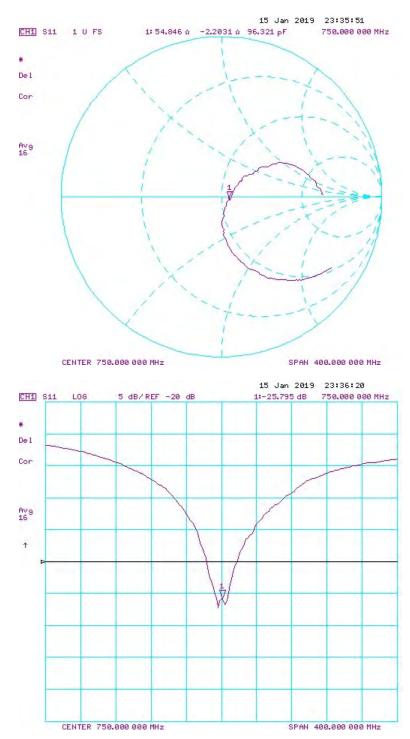
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	8/23/2018	Annual	8/23/2019	7308
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

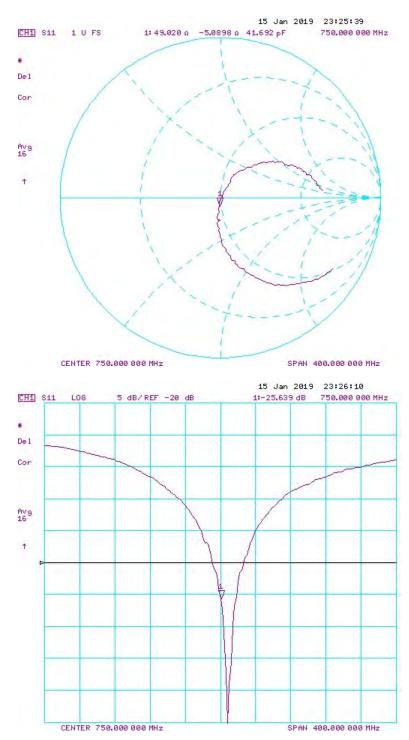
Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1003	01/15/2019	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm			(40-) 10/0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.656	1.75	5.68%	1.08	1.15	6.09%	53.8	54.8	1	-2.1	-2.2	0.1	-27.6	-25.8	6.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	(96)		(10a) W/ka	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.716	1.84	7.23%	1.14	1.23	7.71%	49.2	49	0.2	-6.2	-5.1	1.1	-24	-25.6	-6.80%	PASS

Object:	Date Issued:	
D750V3 – SN: 1003	01/15/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dage 2 of 4
D750V3 – SN: 1003	01/15/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:			
D750V3 – SN: 1003	01/15/2019	Page 4 of 4		

Certification of Calibration

Object

D750V3 - SN: 1003

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/15/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

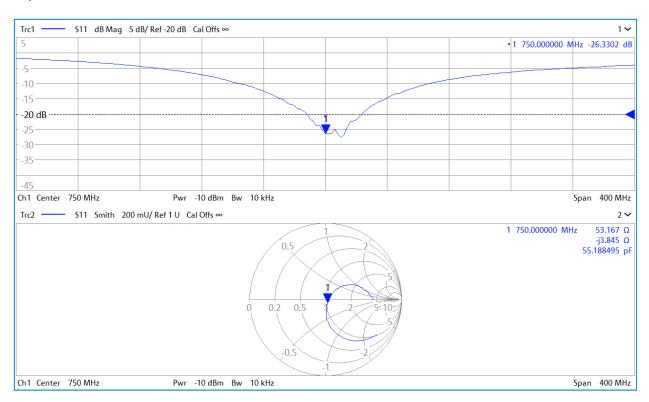
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	1/15/2020	Annual	1/15/2021	1328004
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	728

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

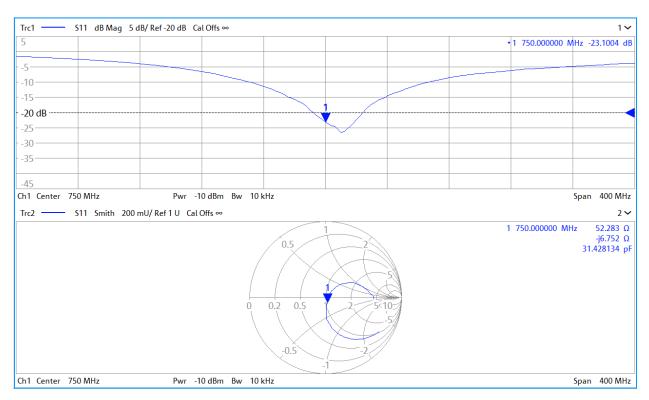
Object:	Date Issued:	Page 1 of 4	
D750V3 – SN: 1003	01/15/2020	Faye 1014	

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2020	1.043	1.656	1.53	-7.61%	1.08	1.01	-6.83%	53.8	53.2	0.6	-2.1	-3.8	1.7	-27.6	-26.3	4.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(96)		(10a) W/ka	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2020	1.043	1.716	1.69	-1.52%	1.14	1.12	-1.93%	49.2	52.3	3.1	-6.2	-6.8	0.6	-24	-23.1	3.70%	PASS

Object:	Date Issued:	Page 2 of 4	
D750V3 – SN: 1003	01/15/2020	Fage 2 014	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4	
D750V3 – SN: 1003	01/15/2020	Page 3 of 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D750V3 – SN: 1003	01/15/2020	Page 4 of 4	

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D750V3-1054 Mar19/2

CALIBRATION C	ERTIEICATI	E (Replacement of No:D	0750V3-1154_Mar19)
Object	D750V3 - SN:10		
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Source	es between 0.7-3 GHz کار کار کار کار کار کار کار کار کار کار کار
Calibration date:	March 18, 2019		
This calibration certificate documer The measurements and the uncert	nts the traceability to nat ainties with confidence p	ional standards, which realize the physical (probability are given on the following pages a	units of measurements (SI). and are part of the certificate.
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3))°C and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	I⊓ house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
		Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	<u>A</u>
Approved by:	Katja Pokovic	Technical Manager	Ally
This calibration certificate shall not	be reproduced except in	full without written approval of the laborato	Issued: April 12, 2019
		1 1	1

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664. "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	······································
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.29 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.37 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		₩ ₩ ₩

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.55 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.67 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω - 0.3 jΩ
Return Loss	- 27.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω - 3.0 jΩ
Return Loss	- 30.3 dB

General Antenna Parameters and Design

Electrical Delevis (and allow at as)	1 005
Electrical Delay (one direction)	1.035 ns
, ,	11000 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	1.93 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	7.72 W/kg ± 17.5 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.31 W/kg	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.20 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.39 W/kg

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.00 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.51 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

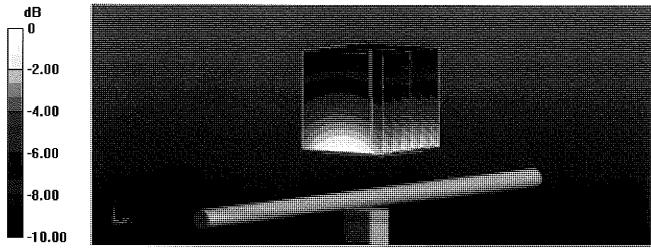
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	1.66 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	6.64 W/kg ± 17.5 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.14 W/kg	

DASY5 Validation Report for Head TSL

Date: 13.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.32, 10.32, 10.32) @ 750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.96 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.73 W/kg

0 dB = 2.73 W/kg = 4.36 dBW/kg

Impedance Measurement Plot for Head TSL

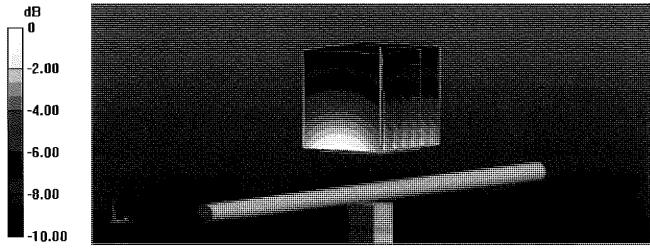
Elle View	Channel S	weep Callbration	<u>Trace S</u> cale	M <u>a</u> rker S <u>v</u> s	stem <u>Wi</u> ndow	Help	
					$\Delta =$).000000 MHz 834.50 pF).000000 MHz	-254.29 mΩ
Ch1: 9	Ch 1 Avg = 20 Start 550,000 MH			~~_ _			Stop 950,000 MHz
10.00 5.00 -5.00 -10.00 -15.00 -25.00 -25.00 -30.00 -35.00 -40.00 Ch1: 5	Ch 1 Avg = 20				> 1: 750		-27.245 dB
Status	CH 1: 51	1	C* 1-Port	Av	g=20 Delay		LCL

DASY5 Validation Report for Body TSL

Date: 13.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.98 S/m; ϵ_r = 54.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.29, 10.29, 10.29) @ 750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.37 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iew	Channel	Sw <u>e</u> ep Ca	libration	<u>T</u> race <u>S</u> cale	M <u>a</u> rker	System	<u>W</u> indow <u>H</u>	elp		
				A				000000 № 69.776 000000 №	рF	50.211 Ω -3.0413 Ω 30.407 mU -84.301 °
Ch1: St	Ch 1 Avg = art 550.000 ł									Stop 950.000 MHz
5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00	Ch 1 Avg = art 550,000 b	20 MHz				> 1	; 750,1			-30.340 dB
Status	CH 1:	311] (≥*1-Port		Avg=20 D	elay			LCL

DASY5 Validation Report for SAM Head

Date: 18.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

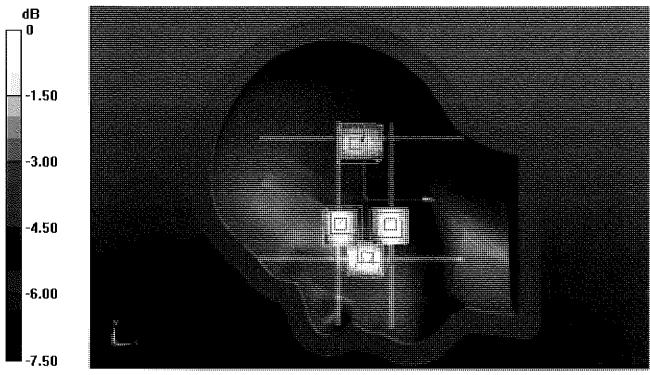
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.904 S/m; ε_r = 44.22; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.32, 10.32, 10.32) @ 750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

SAM Right/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.66 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 2.80 W/kgSAR(1 g) = 1.93 W/kg; SAR(10 g) = 1.31 W/kgMaximum value of SAR (measured) = 2.52 W/kg

SAM Right/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 57.68 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.98 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.68 W/kg

SAM Right/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.23 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.82 W/kg SAR(1 g) = 2 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg

SAM Right/Head/Ear/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.76 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.32 W/kg SAR(1 g) = 1.66 W/kg; SAR(10 g) = 1.14 W/kg Maximum value of SAR (measured) = 2.11 W/kg

0 dB = 2.11 W/kg = 3.24 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test Certificate No: D835V2-4d047 Mar19

CALIBRATION CERTIFICATE

Object	Ject D835V2 - SN:4d047							
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Source	s between 0.7-3 GHz					
			gN ~					
Calibration date:	March 13, 2019		BN~ 04-12-2019					
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical ur robability are given on the following pages a ry facility: environment temperature (22 \pm 3)°	nd are part of the certificate.					
Calibration Equipment used (M&TE	critical for calibration)							
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration					
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19					
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19					
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19					
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19					
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19					
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19					
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19					
Secondary Standards	ID #	Check Date (in house)	Scheduled Check					
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check: Oct-20					
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20					
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20					
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20					
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19					
	Name	Function	Signature					
Calibrated by:	Manu Seitz	Laboratory Technician	- Ale					
Approved by:	Katja Pokovic	Technical Manager	- Cliff					
This calibration cortificate shall not	he reproduced except in	full without written approval of the Jahoraton	Issued: March 13, 2019					

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

· · · · · · · · · · · · · · · · · · ·		
DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	····
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.0 % (k=2)
		· · · ·
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 2.6 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.1 jΩ
Return Loss	- 22.9 dB

General Antenna Parameters and Design

/ (one direction)	1.387 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

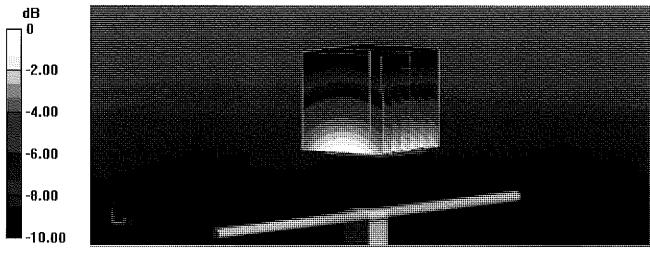
nufactured by	SPEAG
---------------	-------

DASY5 Validation Report for Head TSL

Date: 13.03.2019

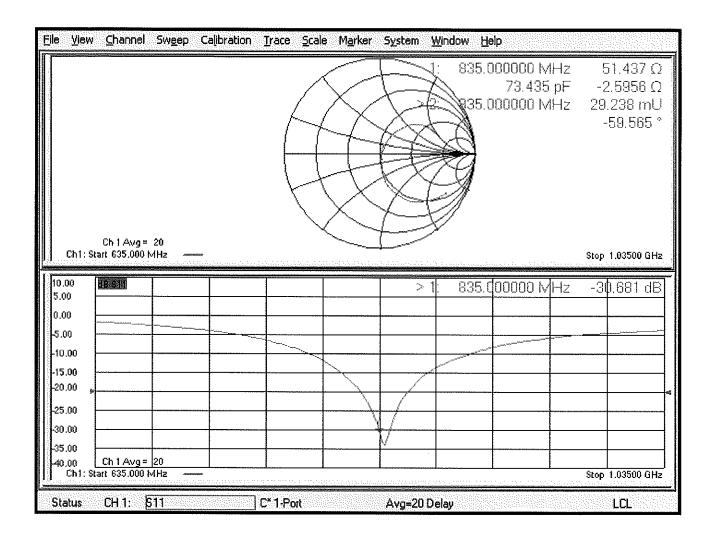
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.91 S/m; ϵ_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

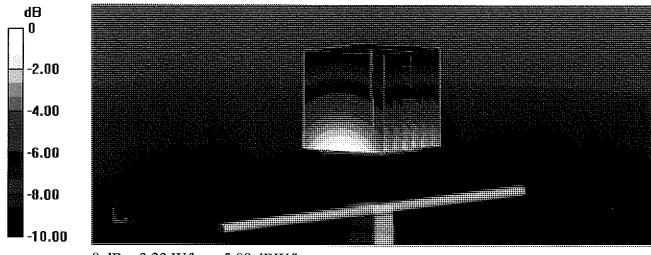
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.03.2019

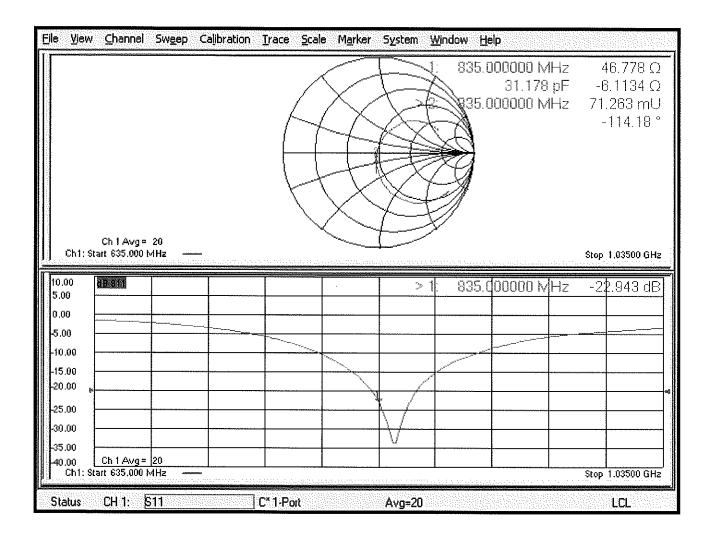
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d133_Oct18

Accreditation No.: SCS 0108

Client PC Test

CALIBRATION C	HINE CANE		
Object	D835V2 - SN:4d	133	
Callbration procedure(s)	QA CAL-05 v10 Calibration proce	dure for dipole validation kits abo	ove 700 MHz BN
			10 30 204
Callbration date:	October 19, 2011	3	000 700 MHz JU 30 204 PAI 10-20-201
		ional standards, which realize the physical ur robability are given on the following pages ar	its of measurements (SI).
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)%	C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		_
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	Cat,
Approved by:	Katja Pokovic	Technical Manager	- EEU
	h a	n full without written approval of the laborator	Issued: October 22, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.43 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
	condition	
SAR measured	250 mW input power	1.54 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.75 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.40 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ
Return Loss	- 32.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 6.7 jΩ
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.397 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

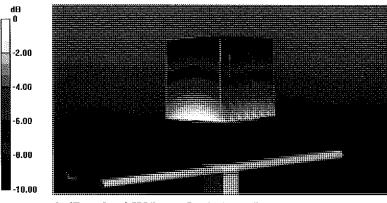
Manufactured by	SPEAG
Manufactured on	July 22, 2011

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: The name of your organization

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.02 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Head TSL

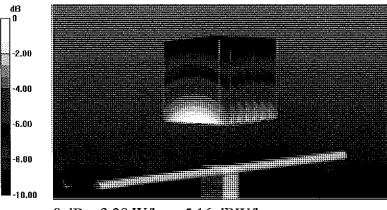
		5.000000 MHz 79.672 pF 5.000000 MHz	50.571 Ω -2.3924 Ω 24.448 mU -75.225 °
Ch 1 Avg = 20 Ch 1: Start 635,000 MHz		an hinin najnin nina ina an	Stop 1.03500 GHz
50.00 40.00 30.00 20.00 10.00 0.00 -10.00 -20.00 -20.00 -40.00 -40.00 -50.00 Ch 1 Avg = 20 Ch1: Start 635.000 MHz	> 1; 83	5.00000 MHz	-32.235 dB

DASY5 Validation Report for Body TSL

Date: 19.10.2018

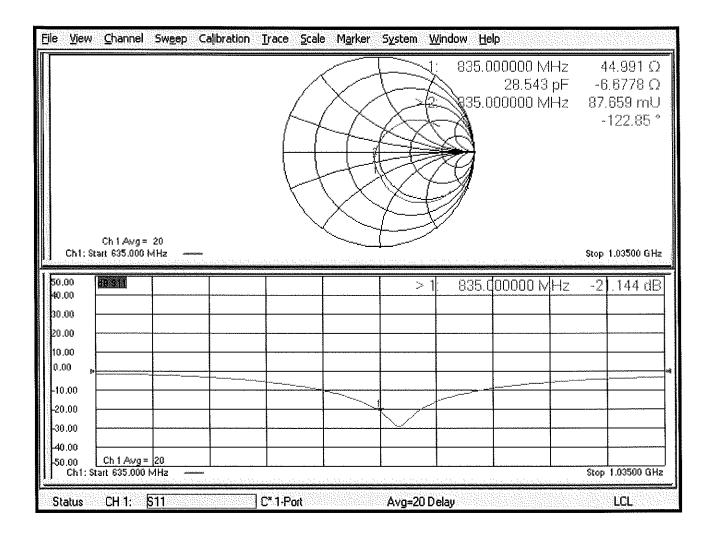
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 61.61 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D835V2 – SN:4d133

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

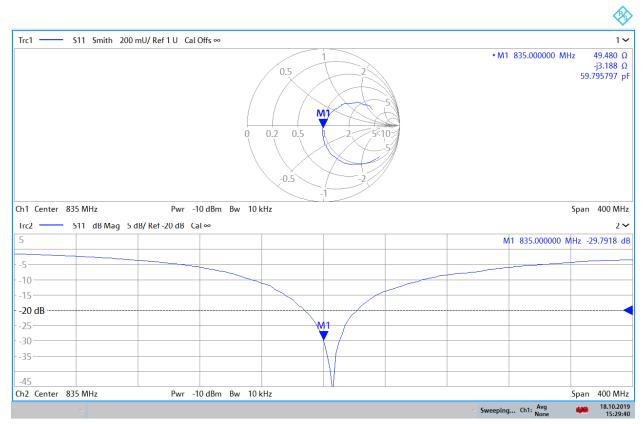
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Dogo 1 of 4
D835V2 – SN:4d133	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

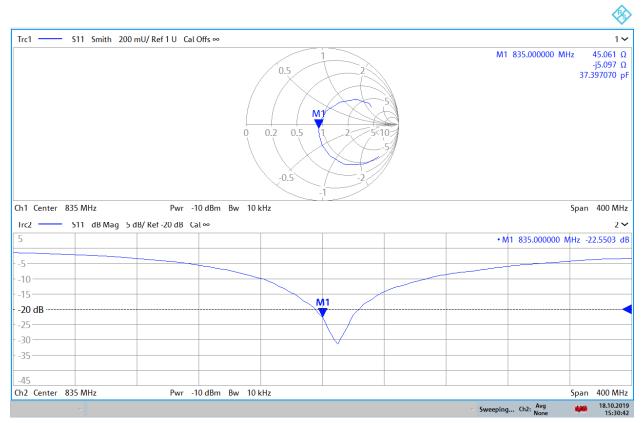
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/19/2018	10/18/2019	1.397	1.886	2.03	7.64%	1.22	1.32	8.20%	50.6	49.5	1.1	-2.4	-3.2	0.8	-32.2	-29.8	7.50%	PASS
			Certificate	Measured		Certificate	Measured		0.00									
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	SAR Target Body (1g) W/kg @ 23.0 dBm	Body SAR (1g)	(0/)	SAR Target Body (10g) W/kg @ 23.0 dBm		Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL

Object:	Date Issued:	Page 2 of 4
D835V2 – SN:4d133	10/18/2019	Page 2 of 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:29:41 18.10.2019

Object:	Date Issued:	Page 3 of 4
D835V2 – SN:4d133	10/18/2019	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:30:43 18.10.2019

Object:	Date Issued:	Page 4 of 4
D835V2 – SN:4d133	10/18/2019	Fage 4 01 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Certificate No: D1750V2-1148_May19

PC Test Client

CALIBRATION CERTIFICATE

Object	D1750V2 - SN:1*	148	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz BN ^V 05 ⁻²³⁻²⁰ 0
Calibration date:	May 15, 2019		05-23-20
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seef Align
Approved by:	Katja Pokovic	Technical Manager	fll
This calibration certificate shall not	he reproduced except in	full without written approval of the laboratory	lssued: May 15, 2019

Calibration Laboratory of

Cleaser

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

¥	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 0.2 jΩ
Return Loss	- 37.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 0.5 jΩ
Return Loss	- 31.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.9 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.8 W/kg ± 17.5 % (k=2)
	· · · · · · · · · · · · · · · · · · ·	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.04 W/kg

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.6 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.9 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)

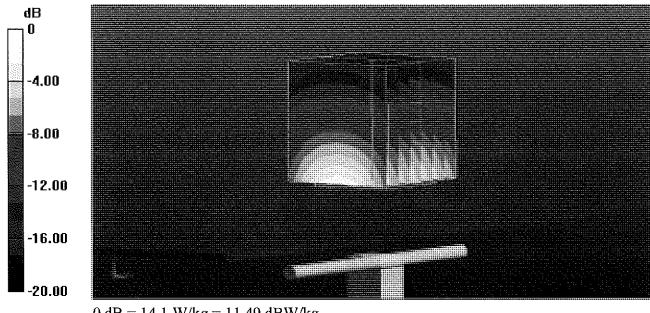
SAR averaged over 10 cm 3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	3.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	16.0 W/kg ± 16.9 % (k=2)

DASY5 Validation Report for Head TSL

Date: 08.05.2019

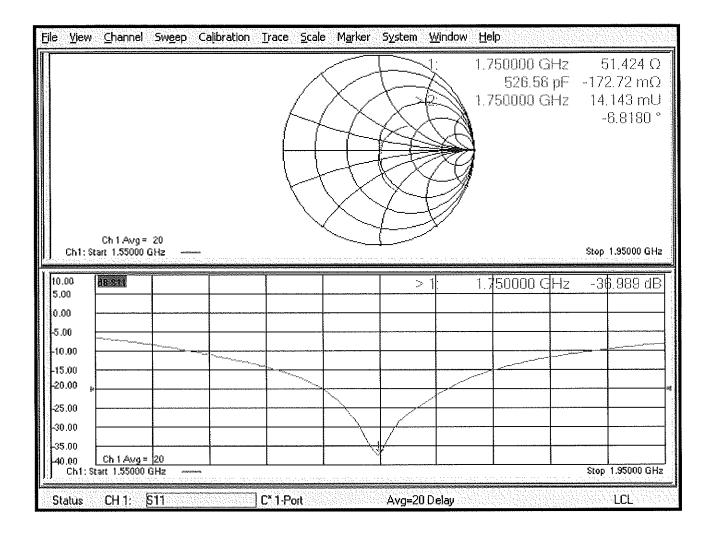
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

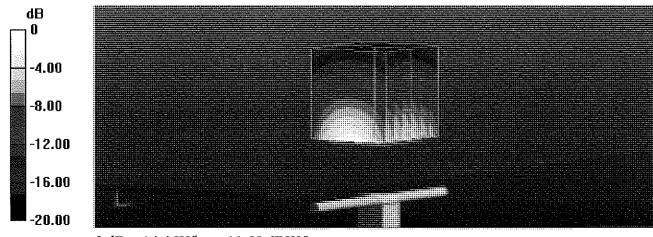
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

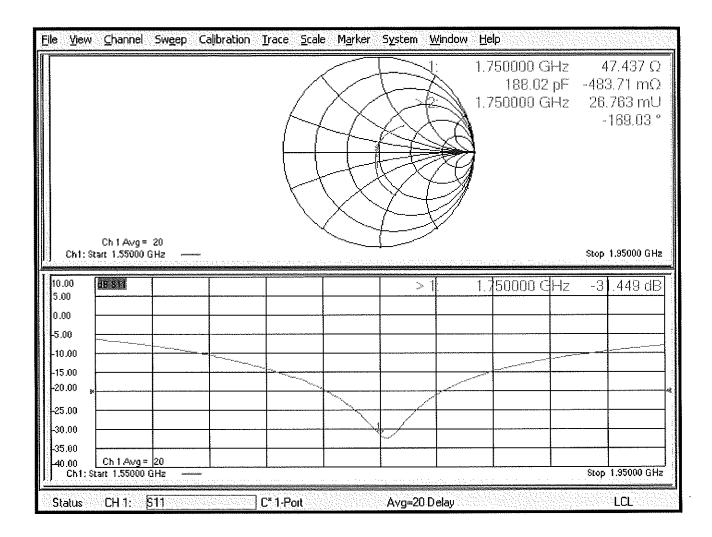
Date: 08.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.47 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.1 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.35 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

DASY5 Validation Report for SAM Head

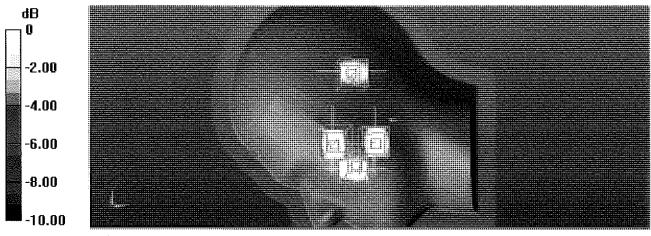
Date: 15.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.37 S/m; ϵ_r = 42.1; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.2 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.38 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 14.2 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.34 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 13.9 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 15.5 W/kg SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.1 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.82 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 7.11 W/kg; SAR(10 g) = 3.98 W/kg Maximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2 W/kg = 10.09 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Client PC Test			No: D1765V2-1008_May18
SALEIDINAMUON	DERITICAT	2	
Object	D1765V2-SN:1	008	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure for dipole validation kits at	BN 20Ve 700 MHz 7/16/2018 BN 05/2012
Calibration date:	May 23, 2018		BN 9 05 (2012
This calibration certificate docum The measurements and the unce	ents the traceability to nat rtainties with confidence p	tional standards, which realize the physical u probability are given on the following pages a	inits of measurements (SI).
		bry facility: environment temperature (22 \pm 3)	
Calibration Equipment used (M&	TE critical for calibration)		
rimary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
eference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
eference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
AE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Ocl-16)	In house check: Oct-18
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
etwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
. n		Function	Signature
alibrated by:	Manu:Seitz	Laboratory Technician	Fef-
pproved by:	Katja Pokovic	Technical Manager	2 min
			L'AG

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	······
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.71 W/kg
o/a mouodicu		in r tonig

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 6.5 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.3 Ω - 6.0 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom SAM Head Phantom For usage with cSAR3DV	2-R/L
---	-------

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.95 W/kg

SAR result with SAM Head (Mouth)

Condition	
250 mW input power	9.47 W/kg
normalized to 1W	38.2 W/kg ± 17.5 % (k=2)
	250 mW input power

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

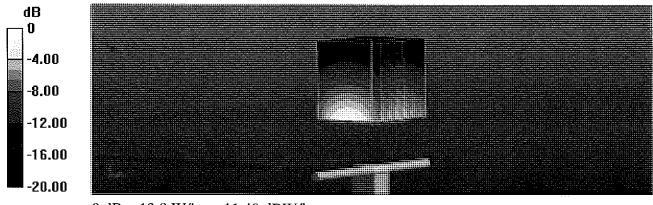
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.01 W/kg

DASY5 Validation Report for Head TSL

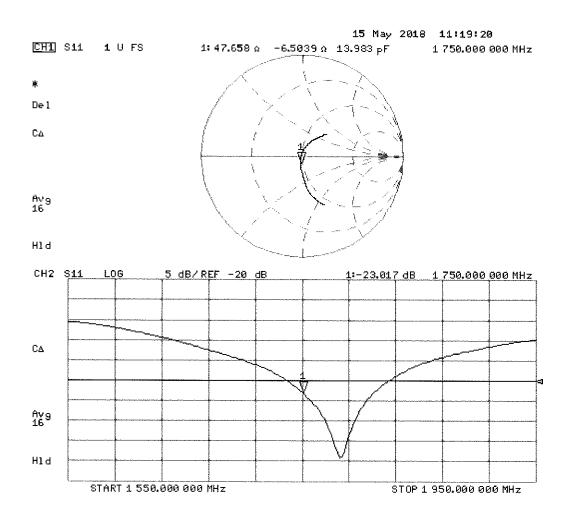
Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ϵ _r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

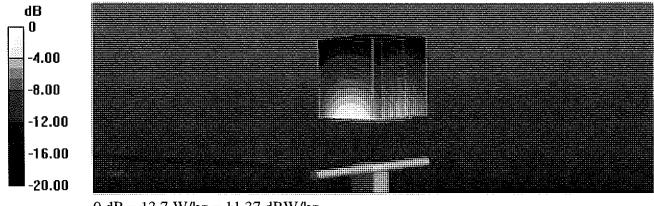
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.71 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

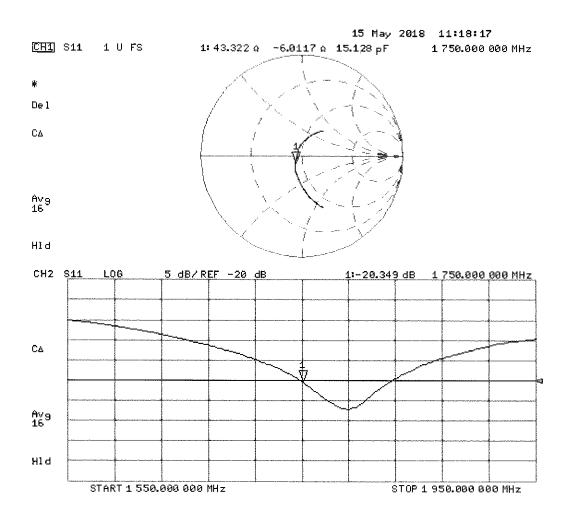
DASY5 Validation Report for Body TSL

Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.7 W/kg = 11.37 dBW/kg

DASY5 Validation Report for SAM Head

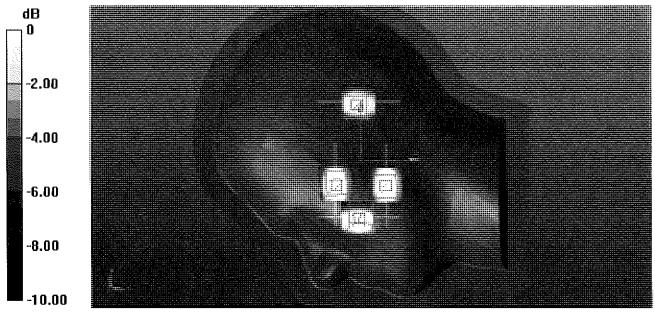
Date: 23.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.9 W/kg

SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 104.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.47 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 13.7 W/kg

SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 13.8 W/kg

SAM/Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.46 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.12 W/kg; SAR(10 g) = 4.01 W/kg Maximum value of SAR (measured) = 10.3 W/kg

0 dB = 10.3 W/kg = 10.13 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1765V2 - SN: 1008

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 5/17/2019

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

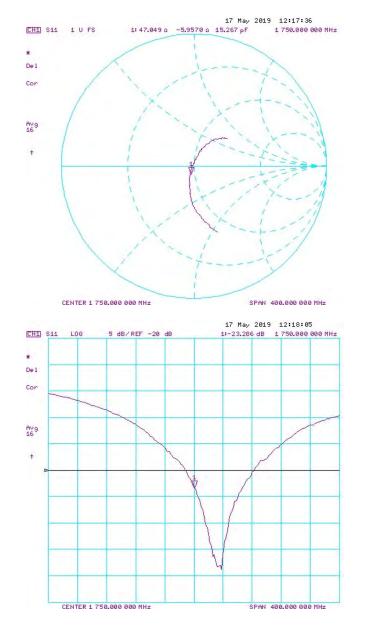
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	3/11/2019	Annual	3/11/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	11/28/2018	Annual	11/28/2019	MY47420603
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1126066
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	6/6/2018	Biennial	6/6/2020	181334678
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

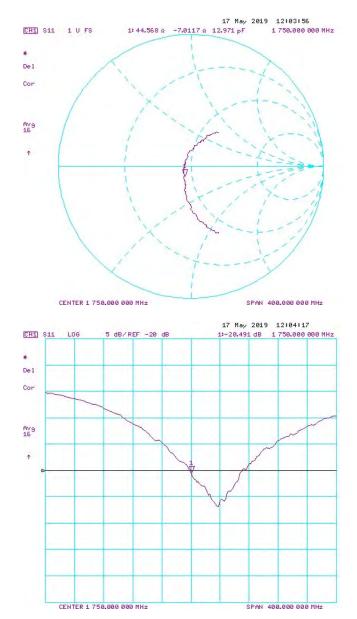
Object:	Date Issued:	Page 1 of 4
D1765V2 – SN: 1008	05/17/2019	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 20.0 dBm	(9()	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) M/Ika @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/23/2019	5/17/2019	1.21	3.62	3.63	0.28%	1.9	1.92	1.05%	47.7	47	0.7	-6.5	-6	0.5	-23	-23.3	-1.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(9()	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) M/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/23/2019	5/17/2019	1.21	3.74	3.95	5.61%	1.99	2.08	4.52%	43.3	44.6	1.3	-6	-7	1	-20.3	-20.5	-0.90%	PASS

Object:	Date Issued:	Page 2 of 4
D1765V2 – SN: 1008	05/17/2019	Fage 2 014

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dago 2 of 4
D1765V2 – SN: 1008	05/17/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1765V2 – SN: 1008	05/17/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: S	SCS 01	08
----------------------	--------	-----------

Certificate No: D1900V2-5d080_Oct18

Client PC Test

	D1900V2 - SN:50	1080	
alibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	
			$BN^{1/2}$ 10-30-2018 $BN^{1/2}$ ts of measurements (SI). $10-20-2$
alibration date:	October 23, 2018		10-30-2018
he measurements and the uncerta	aintles with confidence p ed in the closed laborato	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
leference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
eterence Probe EX3DV4		,	
	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 601	04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Oct-19 Scheduled Check
AE4 secondary Standards	1		
AE4 econdary Standards /ower meter EPM-442A	1D #	Check Date (in house)	Scheduled Check
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A	ID # SN: GB37480704	Check Date (in house) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # SN: GB37480704 SN: US37292783	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TO	Atomical advantation of Hanviel
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	VJZ.10.2
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

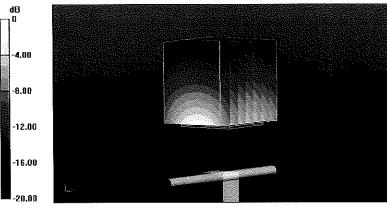
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 23.10.2018

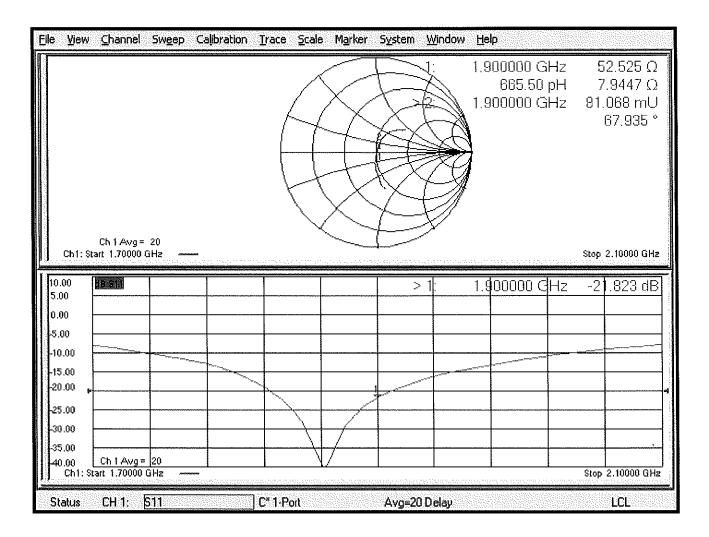
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

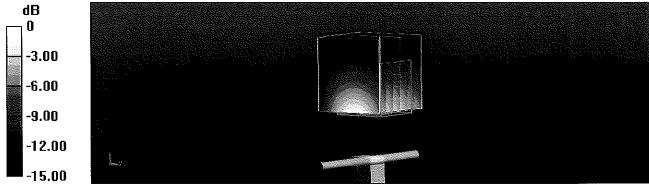
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

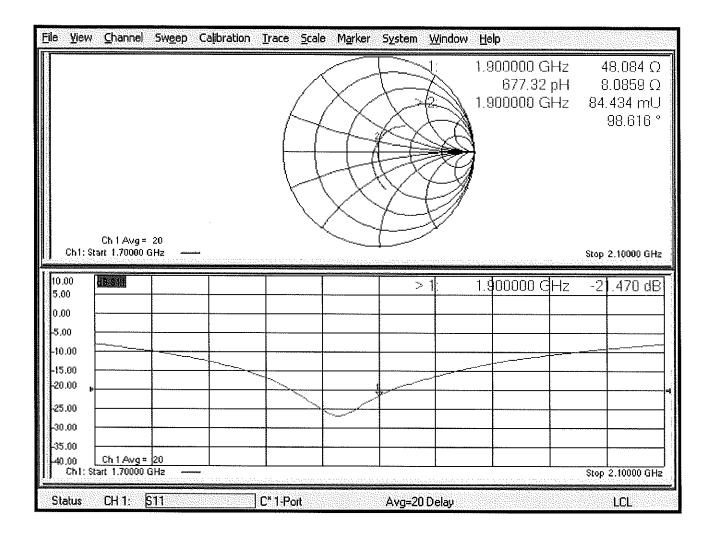
Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1900V2 - SN:5d080

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

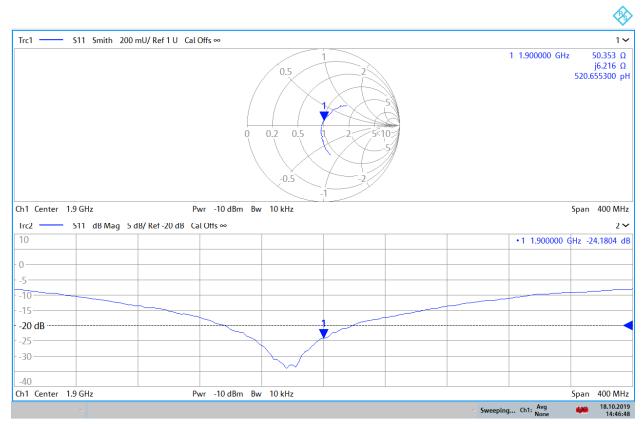
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

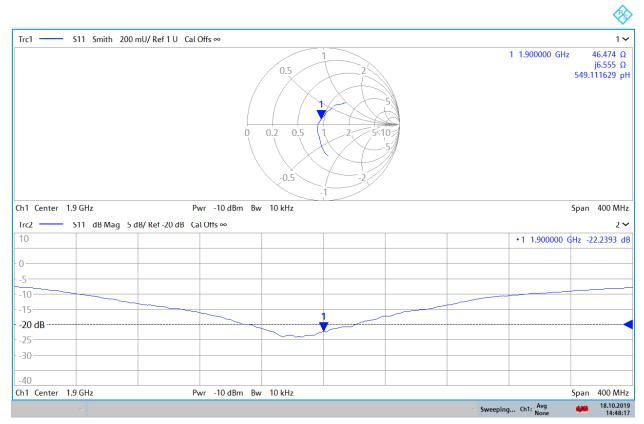
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.98	4.16	4.52%	2.07	2.13	2.90%	52.5	50.4	2.1	7.9	6.2	1.7	-21.8	-24.2	-10.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.92	4.21	7.40%	2.06	2.16	4.85%	48.1	46.5	1.6	8.1	6.6	1.5	-21.5	-22.2	-3.40%	PASS

Object:	Date Issued:	Dogo 2 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 2 of 4


Impedance & Return-Loss Measurement Plot for Head TSL

14:46:49 18.10.2019

Object:	Date Issued:	Dege 2 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

14:48:18 18.10.2019

Object:	Date Issued:	Page 4 of 4
D1900V2 – SN: 5d080	10/18/2019	Fage 4 01 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d148_Feb19

Accreditation No.: SCS 0108

CALIBRATIONEC	ERIFICAT		
Object	D1900V2 - SN:5	d148	
Calibration procedure(s)	QA CAL-05 v11 Calibration Proc	edure for SAR Validation Source	
Calibration date:	February 21, 20	9	inits of measurements (SI). $02-26^{-23}$
This calibration certificate docume	ots the traceability to pat	ional standarda which makes the short start	m2-26/2
The measurements and the uncert	tainties with confidence r	ional standards, which realize the physical u probability are given on the following pages a	Inits of measurements (SI).
		ry facility: environment temperature (22 ± 3)	
Calibration Equipment used (M&T		,	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr~19
Type-N mlsmatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349 Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check; Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (In house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Simeture
Calibrated by:	Manu Seltz	สพิทธิสิทธิสติสติสติสติสติสติสติสติสติสติสติสติสติ	Signature
		Laboratory Technician	ALL
Approved by:	Kalja Pokovic	Technical Manager	
			to to the
			Issued: February 21, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
IOL	U
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.05 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω + 6.8 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.4 Ω + 7.8 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.170 ns
	1370115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

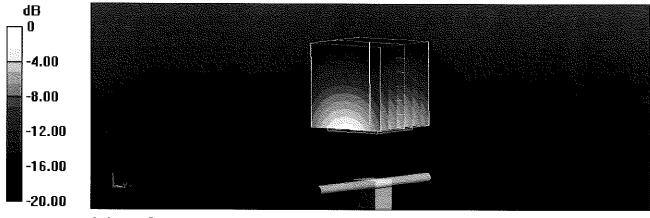
Manufactured by	SPEAG
	JEAG

DASY5 Validation Report for Head TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg **SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg** Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

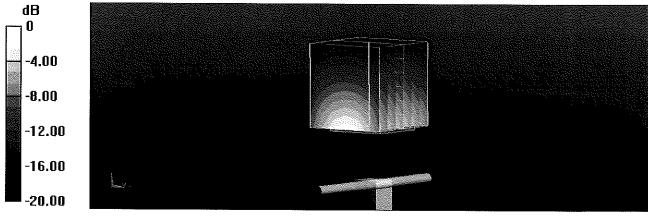
<u>File Viev</u>	v <u>C</u> hannel Sw <u>e</u> e	ep Calibration <u>T</u> r	ace <u>S</u> cale M <u>a</u> r	'ker S <u>y</u> stem <u>Wi</u> ni	dow Help	
Ch1::	Ch 1 Awg = 20 Start 1.70000 GHz				1.900000 GHz 573.82 pH 1.900000 GHz	51.822 Ω 6.8503 Ω 69.458 mU 71.260 °
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1: 5	Ch 1 Avg = 20 3tart 1.70000 GHz				1.900000 GHz	-23.166 dB
Status	CH 1: <u>811</u>	C*-	1-Port	Avg=20 Delay		Stop 2.10000 GHz

DASY5 Validation Report for Body TSL

Date: 21.02.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

File	View	<u>C</u> hannel	Sweep	Calibration	<u>Trace</u> <u>S</u> c.	ale M <u>a</u> rker	System	Window	Help			
		Ch1Avg=				XXX			1.900000 G 652.32 1.900000 G	pН	48.446 Ω 7.7874 Ω 80.412 mU 96.762 °	
		rt 1.70000 (-4			S	top 2,10000 GHz	
10.0	no 16	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	7			Contraction of the second s		The second se	The second s			
5.0 0.0 -5.0 -10. -15. -20. -25. -30. -35. -40. (Ch 1 Awg = rt 1.70000 c	20 3Hz								-21.894 dB	

Certification of Calibration

Object

D1900V2 - SN: 5d148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

2/21/2020

Extension Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable DAK	9/10/2019	Annual	9/10/2020	1045
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	9/19/2019	Annual	9/19/2020	7551
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2019	Annual	9/17/2020	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date Issued:	Page 1 of 4	
D1900V2 – SN: 5d148	02/21/2020	Fage 1014	

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.15	6.14%	2.04	2.13	4.41%	51.8	53.7	1.9	6.8	2.7	4.1	-23.2	-27.1	-16.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) 10/0	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
2/21/2019	2/21/2020	1.17	3.91	4.06	3.84%	2.05	2.08	1.46%	48.4	50.9	2.5	7.8	5.4	2.4	-21.9	-25.3	-15.60%	PASS

Object:	Date Issued:	Page 2 of 4	
D1900V2 – SN: 5d148	02/21/2020	raye 2 01 4	