

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.407 UNII 802.11a/n/ac

Applicant Name:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 4/20/2018-6/6/2018 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1805210108-05.ZNF

FCC ID:

ZNFQ610TA

APPLICANT:

LG Electronics MobileComm U.S.A

Application Type: Model: Additional Models: EUT Type: Frequency Range: FCC Classification: FCC Rule Part(s): Test Procedure(s):

Certification LM-Q610TA LMQ610TA, Q610TA, LM-Q610MA, LMQ610MA, Q610MA Portable Handset 5180 – 5825MHz Unlicensed National Information Infrastructure (UNII) Part 15 Subpart E (15.407) ANSI C63.10-2013, KDB 789033 D02 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 1 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 1 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DESC	CRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANTE	ENNA REQUIREMENTS	9
5.0	MEAS	SUREMENT UNCERTAINTY	10
6.0	TEST	FEQUIPMENT CALIBRATION DATA	11
7.0	TEST	results	12
	7.1	Summary	12
	7.2	26dB Bandwidth Measurement – 802.11a/n/ac	13
	7.3	6dB Bandwidth Measurement – 802.11a/n/ac	
	7.4	UNII Output Power Measurement – 802.11a/n/ac	
	7.5	Maximum Power Spectral Density – 802.11a/n/ac	
	7.6	Radiated Spurious Emission Measurements – Above 1GHz	60
		7.7.1 Radiated Spurious Emission Measurements	63
		7.7.2 Radiated Band Edge Measurements (20MHz BW)	72
		7.7.3 Radiated Band Edge Measurements (40MHz BW)	75
		7.7.4 Radiated Band Edge Measurements (80MHz BW)	78
	7.7	Radiated Spurious Emissions Measurements – Below 1GHz	80
	7.8	Line-Conducted Test Data	84
8.0	CON	CLUSION	90

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 2 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

MEASUREMENT REPORT

	Ohannal		Conducted Power						
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)					
1		5180 - 5240	115.080	20.61					
2A	20	5260 - 5320	116.413	20.66					
2C	20	5500 - 5700	91.201	19.60					
3		5745 - 5825	90.157	19.55					
1		5190 - 5230	22.961	13.61					
2A	40	5270 - 5310	22.646	13.55					
2C		5510 - 5670	22.803	13.58					
3		5755 - 5795		13.53					
1		5210	22.439	13.51					
2A	80	5290	22.491	13.52					
2C	00	5530 - 5610	22.542	13.53					
3		5775	22.439	13.51					
	EUT Overview								

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 3 of 90
© 2018 PCTEST Engineering L	aboratory Inc			V 8 1 05/10/2018

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 4 of 90
© 2018 PCTEST Engineering La	boratory. Inc.			V 8.1 05/10/2018

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of the part o

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the LG Portable Handset FCC ID: ZNFQ610TA. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 00972, 05262, 05260

2.2 **Device Capabilities**

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
36	5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	:	:
42	5210	56	5280	120	5600	157	5785
:	:	:	:	:	• •	:	:
48	5240	64	5320	140	5700	165	5825

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

Band	1
Frequency	(MHz)

5190

5230

Ch.

54

•

62

Ch.

38

1

46

Band 2A

Frequency (MHz)

5270

5310

	Band 20
Ch.	Frequency (MHz)
102	5510
:	:
118	5590
:	:
134	5670

Danal 90

	Band 3
Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

Band 1 Band 2A			Band 2C		Band 3		
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
42	5210	58	5290	106	5530	155	5775
				122	5610		

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 5 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 5 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Notes:

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles				
802.11 Mode/Band Duty Cycle				
	а	99.3%		
	n (HT20)	99.1%		
	ac (HT20)	98.6%		
5GHz	n (HT40)	98.7%		
	ac (HT40)	98.4%		
	ac (HT80)	97.8%		
T 1 1 0 4				

Table 2-4. Measured Duty Cycles

Data Rate(s) Tested:

6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n – 20MHz)

13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n – 40MHz BW) 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac – 80MHz BW)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 6 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega Z of 00
1M1805210108-05.ZNF	210108-05.ZNF 4/20/2018-6/6/2018 Portable Handset		Page 7 of 90	
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.1 05/10/2018

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 9 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 8 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 90	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 9 01 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 90
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset	Fage 10 01 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018		

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	6/21/2017	Annual	6/21/2018	RE1
-	WL25-1	Conducted Cable Set (25GHz)	6/14/2017	Annual	6/14/2018	WL25-1
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9038A	MXE EMI Receiver	5/26/2017	Annual	5/26/2018	MY51210133
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001
Anritsu	MA2411B	Pulse Power Sensor	10/22/2017	Annual	10/22/2018	846215
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	6/21/2017	Annual	6/21/2018	441119
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
EMCO	3160-10	Small Horn (26.5 - 40GHz)	8/23/2016	Biennial	8/23/2018	130993
Espec	ESX-2CA	Environmental Chamber	3/28/2018	Annual	3/28/2019	17620
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	12/27/2016	Biennial	12/27/2018	114451
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	5/19/2017	Annual	5/19/2018	251425001
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	5/31/2017	Annual	5/31/2018	NMLC-1
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/19/2017	Annual	5/19/2018	100342
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100037
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102135
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102133
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 11 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	ZNFQ610TA
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b.1), (2), (3), (4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b.1), (4), (5), (6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	nissions in restricted bands must eet the radiated limits detailed in 5.209 (RSS-Gen [8.9])		PASS	Section 7.6, 7.7
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.6.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 0.2.8.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dage 12 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018			Page 12 of 90
© 2018 PCTEST Engineering La	boratory. Inc.	-		V 8.1 05/10/2018

7.2 26dB Bandwidth Measurement – 802.11a/n/ac RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

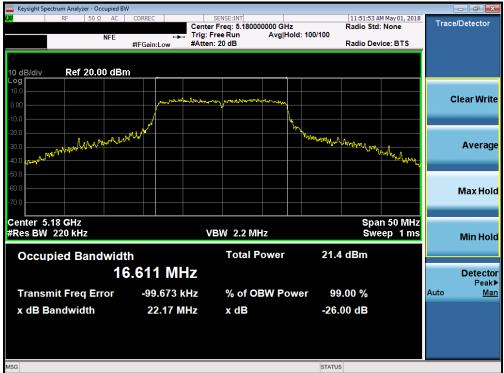
EUT .	Coax Cable	Agilent Signal Analyzer
	CUAX CADIE	

Figure 7-1. Test Instrument & Measurement Setup

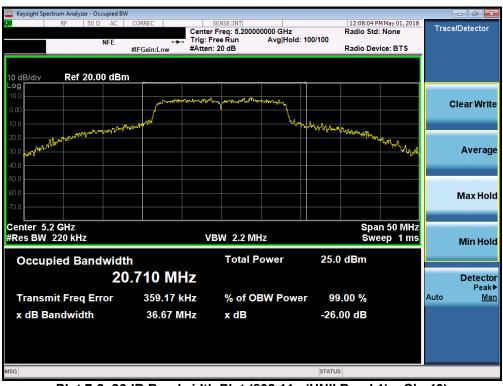
Test Notes

None.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 13 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				

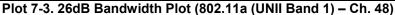


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	22.17
	5200	40	а	6	36.67
	5240	48	а	6	39.27
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.13
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	36.72
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	37.48
	5190	38	n (40MHz)	13.5/15 (MCS0)	42.54
	5230	46	n (40MHz)	13.5/15 (MCS0)	42.65
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	82.62
	5260	52	а	6	37.19
	5280	56	а	6	38.26
	5320	64	а	6	20.11
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	35.11
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	32.67
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	20.32
	5270	54	n (40MHz)	13.5/15 (MCS0)	42.99
	5310	62	n (40MHz)	13.5/15 (MCS0)	42.66
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	83.51
	5500	100	а	6	20.44
	5600	120	а	6	30.63
	5700	140	а	6	33.85
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	20.71
2C	5600	120	n (20MHz)	6.5/7.2 (MCS0)	25.29
Band 2C	5700	140	n (20MHz)	6.5/7.2 (MCS0)	25.64
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	42.20
	5590	118	n (40MHz)	13.5/15 (MCS0)	42.11
	5670	134	n (40MHz)	13.5/15 (MCS0)	41.70
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	82.98
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	83.42


Table 7-2. Conducted Bandwidth Measurements

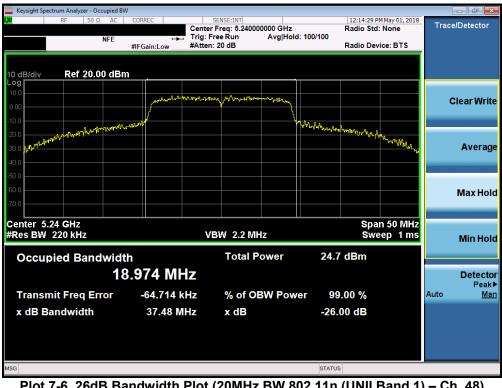
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 14 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Plot 7-1. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 36)



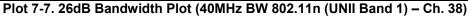
Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 15 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				


Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 16 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				

Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

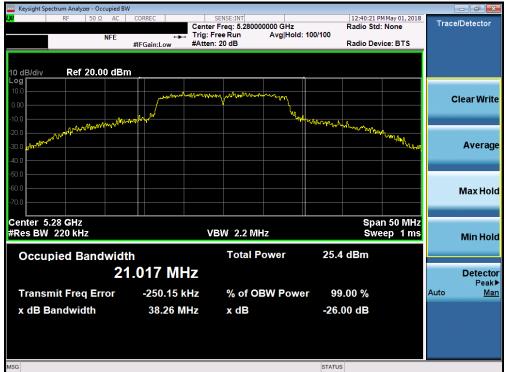


Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 17 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 18 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				



Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

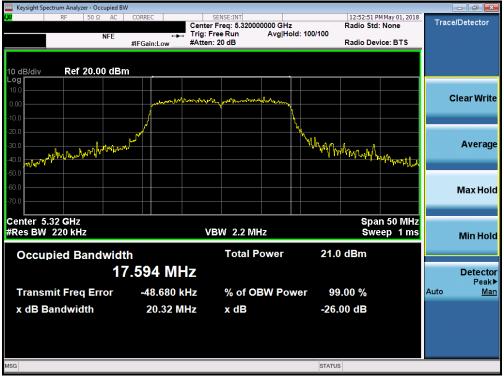
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 19 of 90
© 2018 PCTEST Engineering L	V 8.1 05/10/2018			

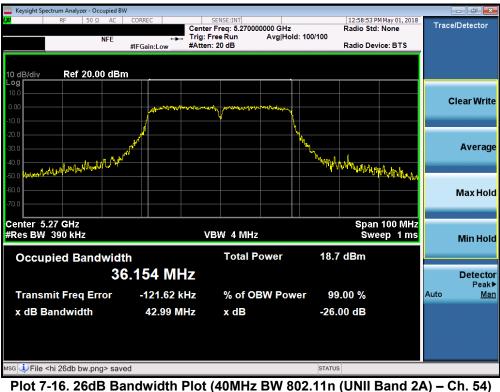
Plot 7-11. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 20 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

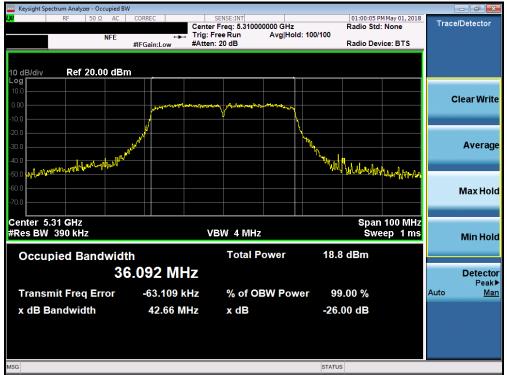
Keysight Spectrum Analyzer - Occupied B	W						
ΙΧΙ RF 50 Ω AC	CORREC	SENSE:INT nter Freg: 5.260000000 (GHz	12:51:09 P Radio Std	M May 01, 2018	Trace	e/Detector
NFE		g:FreeRun Avg tten:20 dB	Hold: 100/100	Radio Dev	ice: BTS		
	#IFGain:Low #A	tten. 20 db		Radio Dev	ICE. DT3		
10 dB/div Ref 20.00 dB	~						
10.0	and and a Min	washing ware hard washed the	N				lear Write
0.00							JICAI WIIIC
-10.0	Muner		Muse mallowed	10			
-10.0				Uhrow also and	Mayllyn .		
-30.0 Martin					"Ruth Angle		Average
-40.0							
-50.0							
-60.0							Max Hold
-70.0							
Center 5.26 GHz				Spa	n 50 MHz		
#Res BW 220 kHz		VBW 2.2 MHz			ep 1ms		Min Hold
	41-	Total Powe	- 24.9	dBm			
Occupied Bandwid		TOTALLOWE	24.0	o ubili			
1	8.689 MHz						Detector Peak▶
Transmit Freq Error	-84.114 kHz	% of OBW F	ower 99	.00 %		Auto	Peak <u>Man</u>
x dB Bandwidth	35.11 MHz	x dB	-26.	00 dB			
MSG			STATUS	3			


Plot 7-13. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

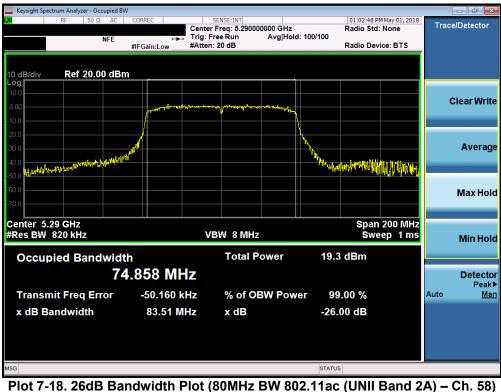

Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 21 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 21 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				

Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

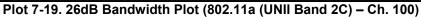


Flot 7-10. 200B Balluwidth Flot (4000H2 BW 802.1111 (010H Ballu 2A) = Ch. 54)


FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 22 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

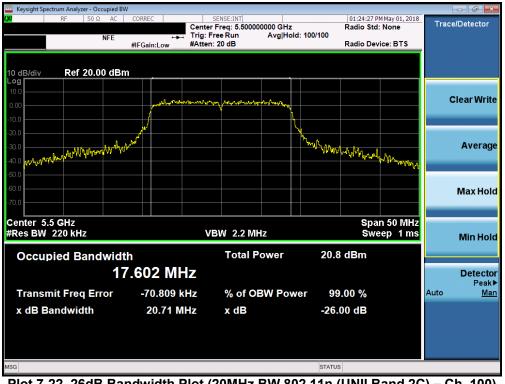
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of the part

Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) – Ch. 62)



Plot 7-18. 260B Bandwidth Plot (80MHZ BW 802.11ac (UNII Band 2A) – Ch. 58)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 23 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

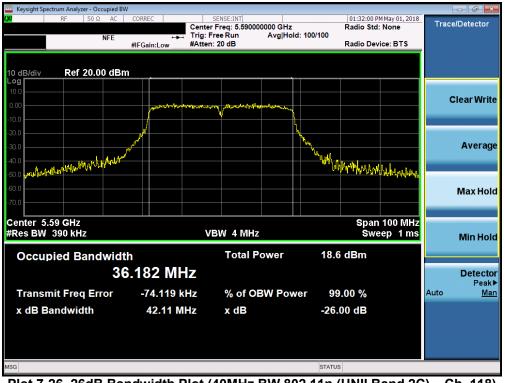

Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 120)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 24 af 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 24 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

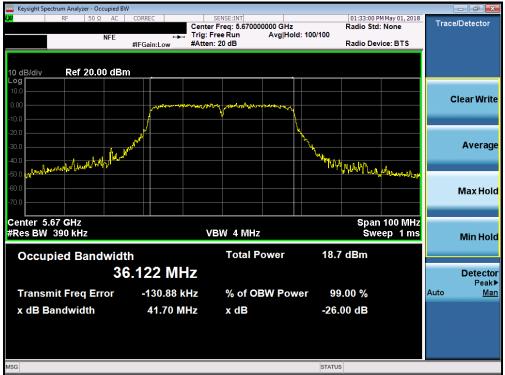
Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

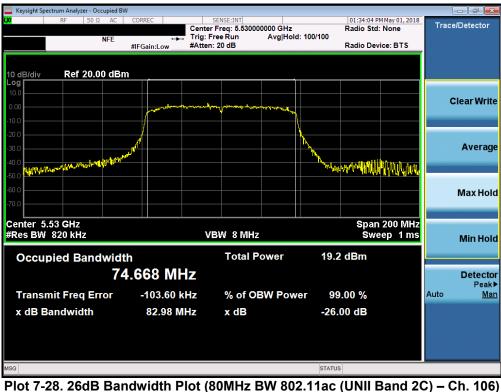
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 25 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

Plot 7-23. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)


Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 140)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 26 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018


Plot 7-25. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)


Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 27 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 134)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 28 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 28 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

wy Keysight Spectrum Analyzer - Occupied E						
RF 50 Ω AC		SENSE:INT nter Freq: 5.610000000		01:35:32 PM May 01 Radio Std: None	., 2018 Trac	e/Detector
NFE		g:FreeRun Av tten:20dB	g Hold: 100/100	Radio Device: BT	s	
	#IFGain:Low #/A	ten: 20 db		Radio Device. B 1		
10 dB/div Ref 20.00 dB	m					
Log						
10.0						Clear Write
0.00		and the second s	m h h			
-10.0						
-20.0						Average
-30.0	11 M 1		- Thomas -			Average
-40.0			"Www	Ŧ₩ŔĊ ĿŔŴŴŴŶŮŴ ŢĹſŊ	UALA	
-50.0						
-70.0						Max Hold
Center 5.61 GHz #Res BW 820 kHz		VBW 8 MHz		Span 200 Sweep 1		
#RES DW 620 KHZ				Sweep		Min Hold
Occupied Bandwid	th	Total Powe	er 19.2	dBm		
7	4.718 MHz					Detector
						Peak▶
Transmit Freq Error	-64.382 kHz	% of OBW		.00 %	Auto	Mar
x dB Bandwidth	83.42 MHz	x dB	-26.	00 dB		
ISG			STATUS	8		

Plot 7-29. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 29 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e); RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

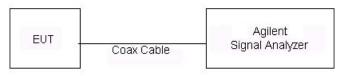


Figure 7-2. Test Instrument & Measurement Setup

Test Notes

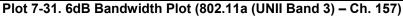
None.

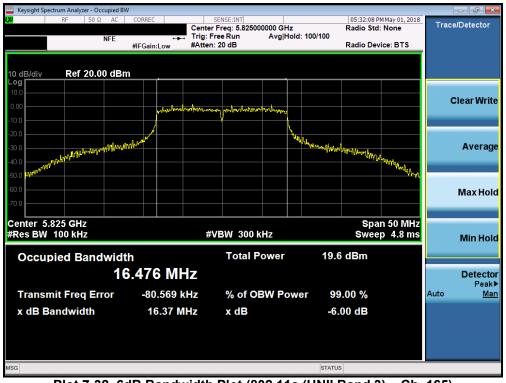
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 30 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Antenna-1 6 dB Bandwidth Measurements

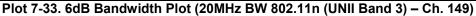
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.26
	5785	157	а	6	16.03
	5825	165	а	6	16.37
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	15.68
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	16.90
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	16.11
	5755	151	n (40MHz)	13.5/15 (MCS0)	34.90
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.12
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.16

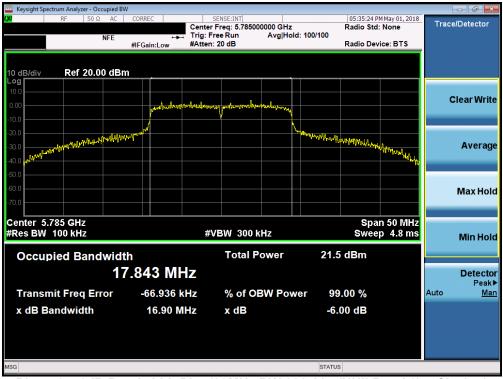
Table 7-3. Conducted Bandwidth Measurements



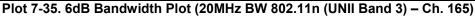

Plot 7-30. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

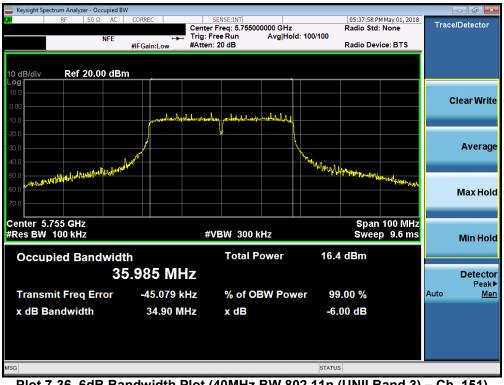
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 31 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			



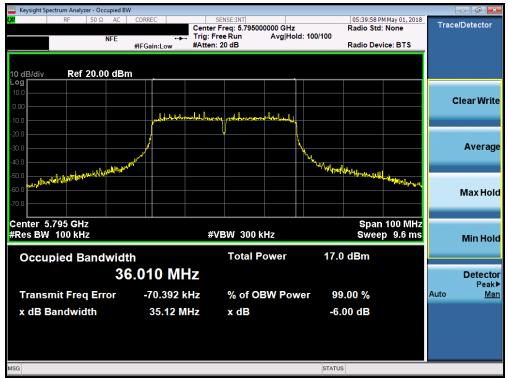

Plot 7-32. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

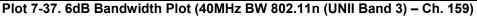
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 90
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.1 05/10/2018

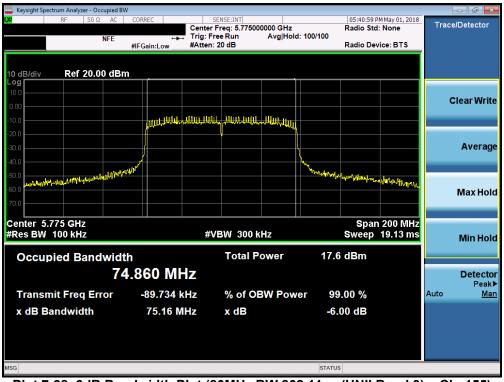



Plot 7-34. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 90
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018






Plot 7-36. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 90
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

Plot 7-38. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 90
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(N/A) = N/AdBm$.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(N/A) = N/AdBm$.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

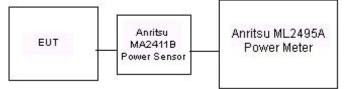


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 36 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	

	Freq [MHz]	Channel	Detector	IEEE	Transmission	Mode	Conducted Power Limit	Conducted Power
				802.11a	802.11n	802.11ac	[dBm]	Margin [dB]
dtl	5180	36	AVG	16.72	15.70	15.73	23.98	-7.26
Vic	5200	40	AVG	20.15	19.48	19.46	23.98	-3.83
ndwidth	5220	44	AVG	20.16	19.35	19.44	23.98	-3.82
Ľ	5240	48	AVG	20.61	19.42	19.45	23.98	-3.37
Ba	5260	52	AVG	20.59	19.63	19.48	23.98	-3.39
z	5280	56	AVG	20.66	19.58	19.49	23.98	-3.32
Ĥ	5300	60	AVG	20.61	19.64	19.49	23.98	-3.37
Σ	5320	64	AVG	16.91	15.92	15.96	23.98	-7.07
0	5500	100	AVG	16.85	15.84	15.86	23.98	-7.13
(2	5520	104	AVG	19.59	18.48	18.52	23.98	-4.39
Hz	5600	120	AVG	19.43	18.76	18.79	23.98	-4.55
ц С	5700	140	AVG	19.60	18.56	18.51	23.98	-4.38
50	5745	149	AVG	19.55	18.49	18.42	30.00	-10.45
	5785	157	AVG	19.52	18.52	18.42	30.00	-10.48
	5825	165	AVG	16.86	15.91	15.75	30.00	-13.14

Table 7-4. 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	IEEE Transm	iission Mode	Conducted Power Limit	
N				802.11n	802.11ac	[dBm]	Margin [dB]
0MH dth)	5190	38	AVG	13.61	13.53	23.98	-10.37
₹ J	5230	46	AVG	13.54	13.52	23.98	-10.44
(40) wid	5270	54	AVG	13.52	13.55	23.98	-10.43
) z (5310	62	AVG	13.51	13.52	23.98	-10.46
iH _z an	5510	102	AVG	13.58	13.51	23.98	-10.40
С Ш	5550	110	AVG	13.56	13.55	23.98	-10.42
ເ <u>ດ</u> –	5670	134	AVG	13.51	13.54	23.98	-10.44
	5755	151	AVG	13.51	13.52	30.00	-16.48
	5795	159	AVG	13.53	13.51	30.00	-16.47

Table 7-5. 40MHz BW (UNII) Maximum Conducted Output Power

(80MHz Iwidth)	Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
801 vic	5210	42	AVG	13.51	23.98	-10.47
	5290	58	AVG	13.52	23.98	-10.46
GHz Banc	5530	106	AVG	13.53	23.98	-10.45
2	5610	122	AVG	13.47	23.98	-10.51
	5775	155	AVG	13.51	30.00	-16.49

Table 7-6. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 00		
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 37 of 90		
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory, Inc.					

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

EUT	Agilent Cable Signal Analyzer
-----	----------------------------------

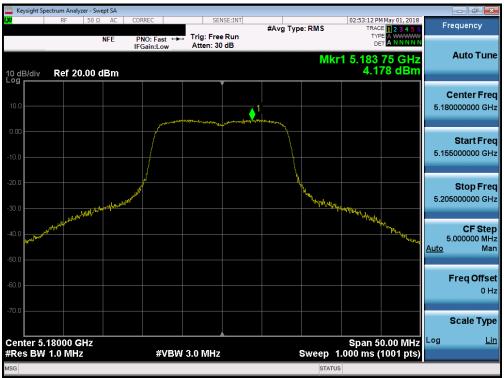
Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

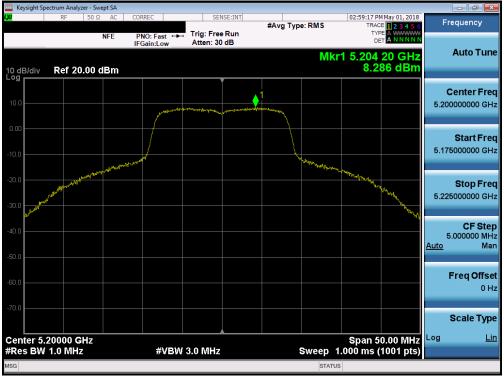
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 28 of 00		
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 38 of 90		
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory, Inc.					

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	4.18	11.0	-6.82
	5200	40	а	6	8.29	11.0	-2.71
	5240	48	а	6	8.63	11.0	-2.37
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	3.80	11.0	-7.20
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	7.72	11.0	-3.28
ñ	5240	48	n (20MHz)	6.5/7.2 (MCS0)	7.68	11.0	-3.32
	5190	38	n (40MHz)	13.5/15 (MCS0)	-1.36	11.0	-12.36
	5230	46	n (40MHz)	13.5/15 (MCS0)	-1.83	11.0	-12.83
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-5.01	11.0	-16.01
	5260	52	а	6	8.76	11.0	-2.24
	5280	56	а	6	8.60	11.0	-2.40
	5320	64	а	6	4.90	11.0	-6.10
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	7.37	11.0	-3.63
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	7.69	11.0	-3.31
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	3.88	11.0	-7.12
	5270	54	n (40MHz)	13.5/15 (MCS0)	-1.35	11.0	-12.35
	5310	62	n (40MHz)	13.5/15 (MCS0)	-2.44	11.0	-13.44
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-5.14	11.0	-16.14
	5500	100	а	6	4.90	11.0	-6.10
	5600	120	а	6	7.36	11.0	-3.64
	5700	140	а	6	6.22	11.0	-4.78
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	2.28	11.0	-8.72
SC	5600	120	n (20MHz)	6.5/7.2 (MCS0)	5.67	11.0	-5.33
Band 2C	5700	140	n (20MHz)	6.5/7.2 (MCS0)	3.93	11.0	-7.07
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	-4.06	11.0	-15.06
	5590	118	n (40MHz)	13.5/15 (MCS0)	-4.72	11.0	-15.72
	5670	134	n (40MHz)	13.5/15 (MCS0)	-3.83	11.0	-14.83
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-5.72	11.0	-16.72
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-5.31	11.0	-16.31


Table 7-7. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 39 of 90	
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory. Inc.				

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density	Margin [dB]
	5180	36	а	6	4.18	4.18	10.0	-5.82
	5200	40	а	6	8.29	8.29	10.0	-1.71
	5240	48	а	6	8.63	8.63	10.0	-1.37
.	5180	36	n (20MHz)	6.5/7.2 (MCS0)	3.80	3.80	10.0	-6.20
Band	5200	40	n (20MHz)	6.5/7.2 (MCS0)	7.72	7.72	10.0	-2.28
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	7.68	7.68	10.0	-2.32
	5190	38	n (40MHz)	13.5/15 (MCS0)	-1.36	-1.36	10.0	-11.36
	5230	46	n (40MHz)	13.5/15 (MCS0)	-1.83	-1.83	10.0	-11.83
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-5.01	-5.01	10.0	-15.01


Table 7-8. Band 1 e.i.r.p. Conducted Power Spectral Density Measurements (ISED)

Plot 7-39. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 40 of 90	
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory, Inc.				

Plot 7-40. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

Plot 7-41. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 00		
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 41 of 90		
© 2018 PCTEST Engineering La	2018 PCTEST Engineering Laboratory, Inc.					

🔤 Keysight Sp	ectrum Analyze						
LXI	RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	03:22:01 PM May 01, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast +++ IFGain:Low	Trig: Free Run Atten: 30 dB		DET A WWWWW	
10 dB/div Log	Ref 20.	.00 dBm			Mk	r1 5.174 85 GHz 3.80 dBm	Auto Tune
10.0				1	n sterentersteredererererererererererererererererere		Center Freq 5.180000000 GHz
-10.0							Start Freq 5.155000000 GHz
-20.0			AND		h _h		Stop Freq 5.20500000 GHz
-40.0	white the state of the second	unaphiloprophilopro				e March Mar Mar Conner	CF Step 5.000000 MHz <u>Auto</u> Man
-60.0							Freq Offset 0 Hz
-70.0							Scale Type
Center 5. #Res BW			#VBW	3.0 MHz	Sweep	Span 50.00 MHz 1.000 ms (1001 pts)	Log <u>Lin</u>
MSG					STAT		

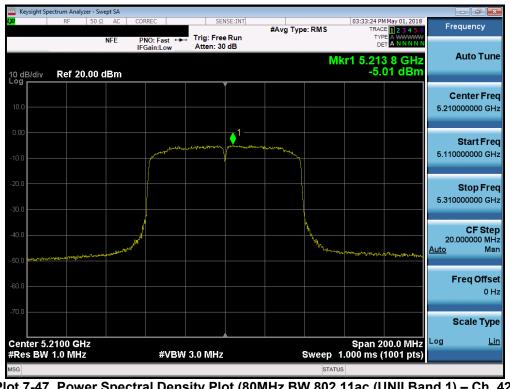
Plot 7-42. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

Plot 7-43. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 42 of 90
© 2018 PCTEST Engineering La	boratory. Inc.	÷		V 8.1 05/10/2018

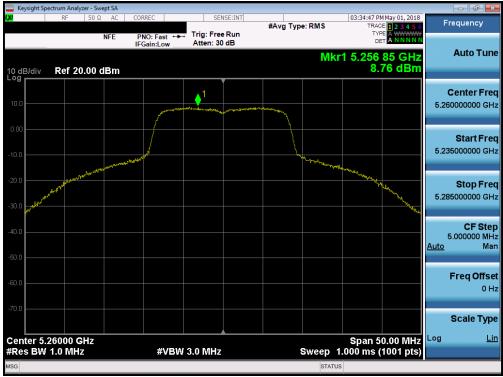
🔤 Keysight Sp		zer - Swept SA								_	
L)XI	RF	50 Ω AC	CORREC		ISE:INT	#Avg Typ	e: RMS	TRAC	1 May 01, 2018 E 1 2 3 4 5 6	Freq	luency
		NFE	PNO: Fast 🔸	Trig: Free Atten: 30				TYP DE			
10 dB/div	Ref 20	.00 dBm					Mk	r1 5.234 7.0	85 GHz 68 dBm	A	uto Tune
10.0				1	and the second second	and there are the same					nter Freq 00000 GHz
-10.0			mark				harring a second				Start Fred 00000 GHz
-20.0	of fair farmer W	pullation of the second second						and a stand of the	Roader Walks		Stop Freq 00000 GHz
-40.0										5.0 <u>Auto</u>	CF Step 00000 MH Mar
60.0										Fr	e q Offse 0 H
-70.0											cale Type
Center 5. #Res BW			#VBW	3.0 MHz			Sweep	Span 5 1.000 ms (0.00 MHz 1001 pts)	Log	Lin
MSG							STATU	IS			

Plot 7-44. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)



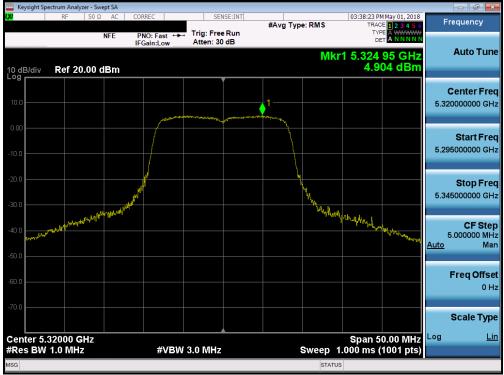
PCTEST Approved by: MEASUREMENT REPORT 🕞 LG FCC ID: ZNFQ610TA (CERTIFICATION) **Quality Manager** Test Report S/N: EUT Type: Test Dates: Page 43 of 90 1M1805210108-05.ZNF 4/20/2018-6/6/2018 Portable Handset © 2018 PCTEST Engineering Laboratory, Inc. V 8.1 05/10/2018

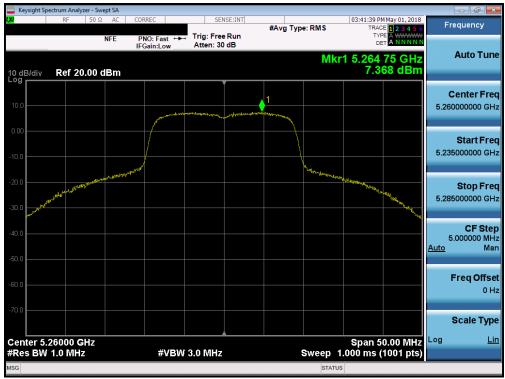
🔤 Keysight Sp	ectrum Analyze						
L <mark>XI</mark>	RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	03:30:43 PM May 01, 2018 TRACE 1 2 3 4 5 6	Frequency
		NFE	PNO: Fast ↔→ IFGain:Low	Trig: Free Run Atten: 30 dB		DET A WWWW	
10 dB/div Log	Ref 20.0	00 dBm				Mkr1 5.217 3 GHz -1.828 dBm	Auto Tune
10.0			1				Center Freq 5.230000000 GHz
-10.0				and the second sec	Landon wanter and a farter		Start Freq 5.180000000 GHz
-20.0							Stop Freq 5.280000000 GHz
-40.0	and the state of t	grown whether a what	,			lleyby for the for the stand of	CF Step 10.000000 MHz <u>Auto</u> Man
-60.0							Freq Offset 0 Hz
-70.0							Scale Type
Center 5. #Res BW		IZ	#VBW	3.0 MHz	Swee	Span 100.0 MHz p 1.000 ms (1001 pts)	Log <u>Lin</u>
MSG						TATUS	


Plot 7-46. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

Plot 7-47. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

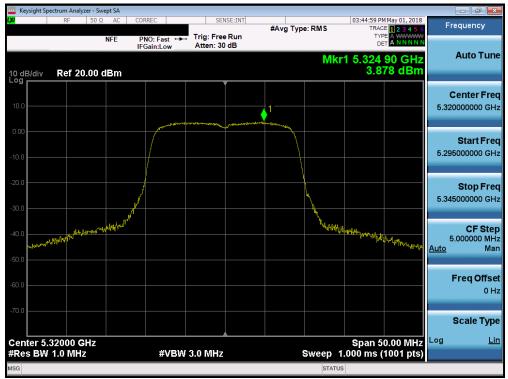
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 44 of 90
© 2018 PCTEST Engineering L	aboratory Inc			V 8 1 05/10/2018


Plot 7-48. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 52)

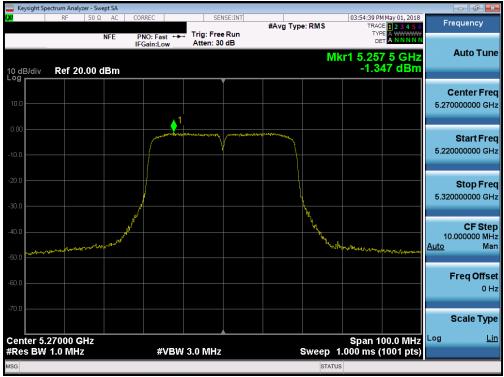

Plot 7-49. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

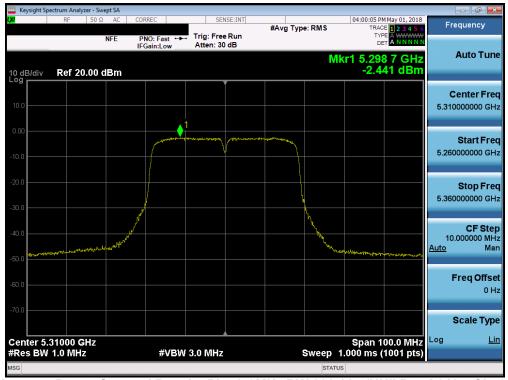
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 45 af 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 45 of 90
© 2018 PCTEST Engineering La	boratory Inc	•		V 8 1 05/10/2018

Plot 7-50. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 64)

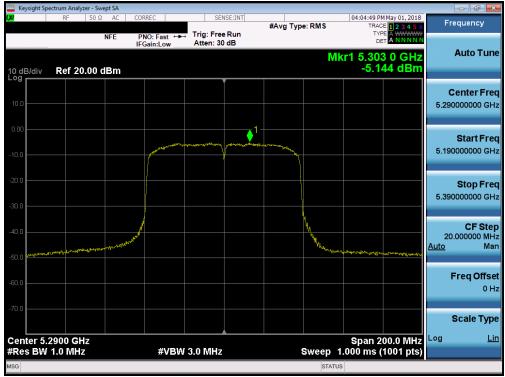

Plot 7-51. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

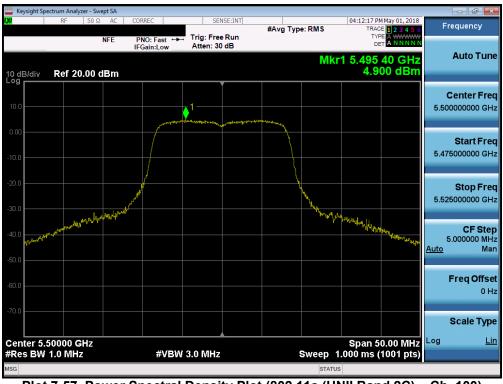
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 46 of 90
© 2018 PCTEST Engineering La	aboratory Inc			V 8 1 05/10/2018


Plot 7-52. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

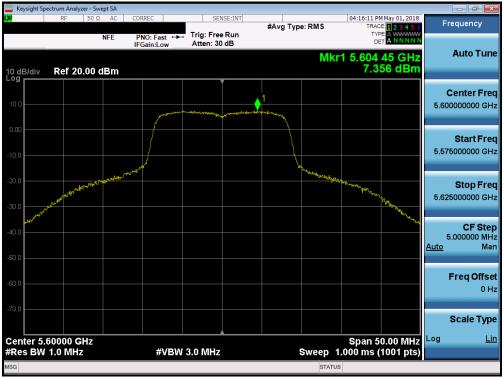

Plot 7-53. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

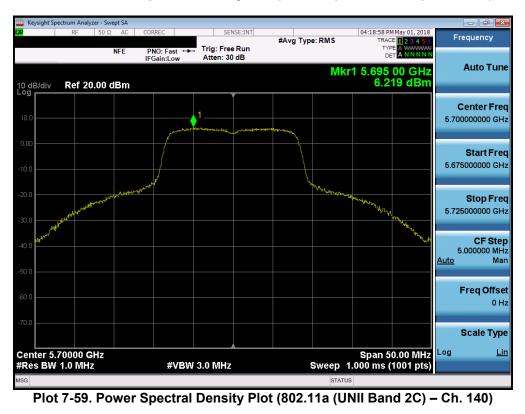
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 47 of 90
© 2018 PCTEST Engineering La	boratory Inc			V 8 1 05/10/2018


Plot 7-54. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) – Ch. 54)

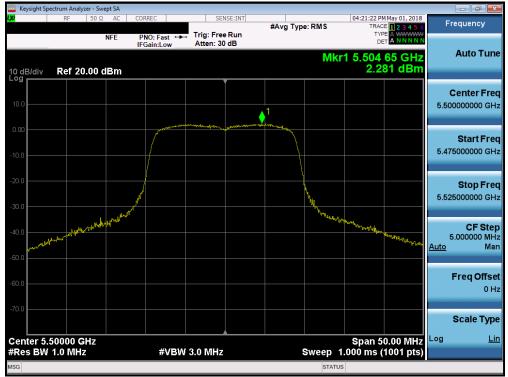

Plot 7-55. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 48 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 48 of 90
© 2018 PCTEST Engineering La	boratory Inc			V 8 1 05/10/2018


Plot 7-56. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) – Ch. 58)


Plot 7-57. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 100)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 49 of 90
© 2018 PCTEST Engineering La	aboratory. Inc.	•		V 8.1 05/10/2018



Plot 7-58. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 120)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Baga 50 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 50 of 90
© 2018 PCTEST Engineering La	boratory, Inc.	•		V 8.1 05/10/2018

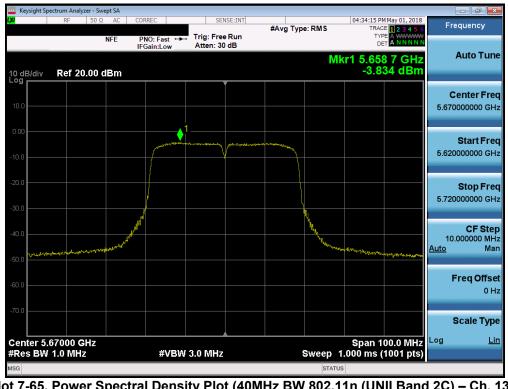
Plot 7-60. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

Plot 7-61. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 54 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 51 of 90
© 2018 PCTEST Engineering La	boratory. Inc.	-		V 8.1 05/10/2018

🔤 Keysight Spectrum Analyzer - Swe										
LXI RF 50 Ω	AC COR	REC	SEN	ISE:INT	#Avg Typ	e: RMS		May 01, 2018	Frequ	Jency
	NFE PN IFG	O: Fast ↔→ ain:Low	Trig: Free Atten: 30		•		TYF De		_	
10 dB/div Ref 20.00 d	lBm					Mk	r1 5.695 3.9	65 GHz 28 dBm	Al	uto Tune
										nter Freq
10.0		مىرىيىتى بىرىمى مىرىيىتى بىرىمى بىرىمى	1 	and the second	man flicker while the				5.70000	0000 GHz
0.00		1								tart Freq
-10.0					+	\			5.67500	0000 GHz
-20.0	and work and the					matronerry	Bull.			top Freq
-30.0							monentaria	Miles .	5.72500	0000 GHz
-40.0 Alternation								"ay How we want		CF Step
-50.0									5.00 <u>Auto</u>	0000 MHz Mar
									Fre	eq Offset
-60.0										0 Hz
-70.0									Sc	ale Type
Center 5.70000 GHz		#\/D\\/	2.0.0411-			0	Span 5	0.00 10112	Log	Lin
#Res BW 1.0 MHz		#VBW	3.0 MHz			Sweep	1.000 ms (1001 pts)		

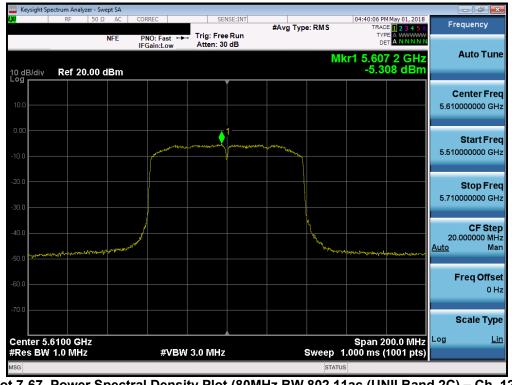
Plot 7-62. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 140)


Plot 7-63. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 52 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 52 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

🔤 Keysight Spectrum Ana						
RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	04:31:55 PM May 01, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWW	Frequency
10 dB/div Ref 2	20.00 dBm	IFGain:Low	Atten: 30 dB	N	Ikr1 5.577 6 GHz -4.721 dBm	Auto Tune
10.0						Center Fred 5.590000000 GH2
.00			wienerson provident			Start Fre 5.540000000 GH
-20.0						Stop Free 5.640000000 GH
-40.0	الترجيمة المالي المعالمية المعالم	р ^д		Hunnan	ang	CF Stej 10.000000 MH <u>Auto</u> Ma
60.0						Freq Offse 0 H
-70.0	0.11-					Scale Type
Center 5.59000 #Res BW 1.0 MI		#VBW	3.0 MHz	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	
MSG				STAT	US	

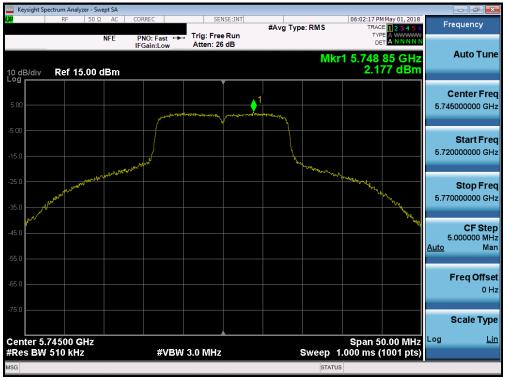
Plot 7-64. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)


Plot 7-65. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 134)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 53 of 90
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset	ole Handset	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

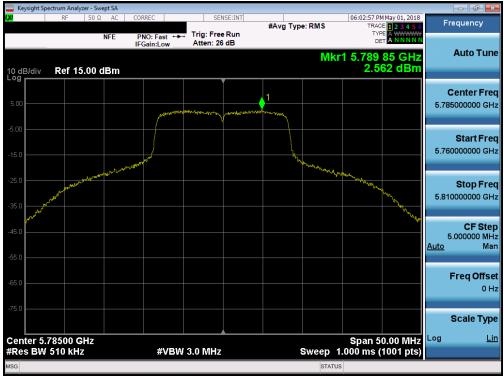
Keysight Spectrum						
XI RF	50 Ω AC	CORREC	SENSE:INT	#Avg Type: RMS	04:36:48 PM May 01, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div Re	f 20.00 dBm	IFGain:Low	Atten: 30 dB	N	lkr1 5.522 4 GHz -5.720 dBm	Auto Tune
10.0						Center Fre 5.530000000 GH
10.0		and the second s	1 particular			Start Fre 5.430000000 GH
30.0						Stop Fre 5.630000000 G⊦
40.0 50.0	www.www.woownert	2.200 A		he have been a second	international states and and	CF Ste 20.000000 M⊦ <u>Auto</u> Ma
60.0						Freq Offs 0 F
70.0 Center 5.5300	GH7				Span 200.0 MHz	Scale Typ
Res BW 1.0 I		#VBW	3.0 MHz	Sweep	1.000 ms (1001 pts)	
ISG				STAT	US	

Plot 7-66. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)


Plot 7-67. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

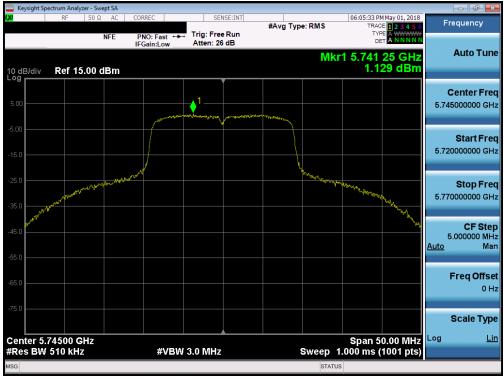
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 54 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 54 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]		Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	2.18	30.0	-27.82
	5785	157	а	6	2.56	30.0	-27.44
	5825	165	а	6	-0.27	30.0	-30.27
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	1.13	30.0	-28.87
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	1.03	30.0	-28.97
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	-1.49	30.0	-31.49
	5755	151	n (40MHz)	13.5/15 (MCS0)	-7.66	30.0	-37.66
	5795	159	n (40MHz)	13.5/15 (MCS0)	-6.60	30.0	-36.60
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-9.67	30.0	-39.67


Table 7-9. Band 3 Conducted Power Spectral Density Measurements

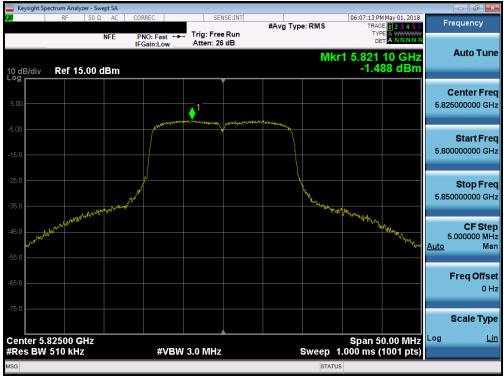
Plot 7-68. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

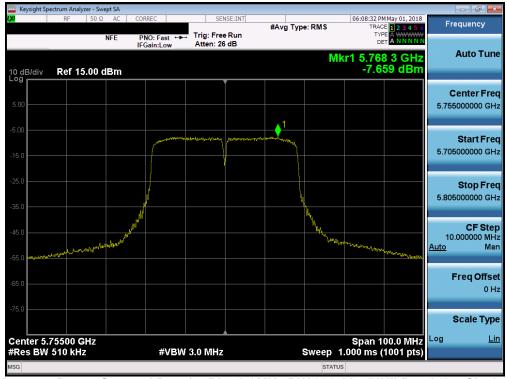
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage FE of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 55 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			


Plot 7-69. Power Spectral Density Plot (802.11a (UNII Band 3) – Ch. 157)


Plot 7-70. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

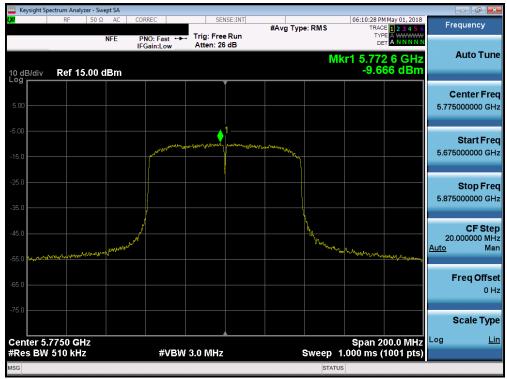
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage FC of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 56 of 90	
© 2018 PCTEST Engineering La	V 8 1 05/10/2018				


Plot 7-71. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-72. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 57 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 57 of 90
© 2018 PCTEST Engineering La	V 8 1 05/10/2018			

Plot 7-73. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-74. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 58 of 90
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		
© 2018 PCTEST Engineering La	V 8 1 05/10/2018			

Keysight Spectrum Analyz		000050				
RF	50 Ω AC NFE	PNO: Fast	SENSE:INT	#Avg Type: RMS	06:09:36 PM May 01, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
OdB/div Ref 15	.00 dBm	IFGain:Low	Atten: 26 dB	М	kr1 5.783 3 GHz -6.601 dBm	Auto Tur
5.00		1				Center Fre 5.795000000 GH
5.0			***/\$**\$#\$#\$#\$***}\$\$\$*	Lawrend end grown		Start Fr 5.745000000 GI
5.0		, K				Stop Fr 5.845000000 G
5.0	wely how want	<u>/^</u>		Je J	V Robert K	CF Ste 10.000000 MI <u>Auto</u> M
5.0						Freq Offs 0
5.0						Scale Ty
enter 5.79500 G Res BW 510 kHz		#VBW	3.0 MHz	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	Log <u>L</u>
G				STATU	JS	

Plot 7-75. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) – Ch. 159)

Plot 7-76. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 59 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

7.6 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-10 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]	
Above 960.0 MHz	500	3	

Table 7-10. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type: Portable Handset		Dage 60 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018			Page 60 of 90
© 2018 PCTEST Engineering La	V 8 1 05/10/2018			

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

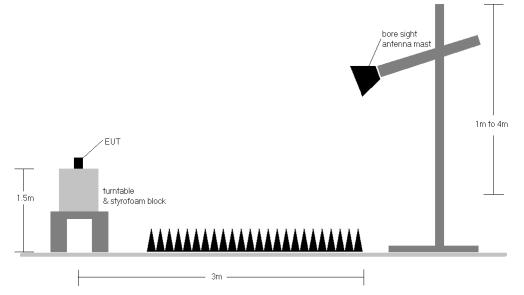


Figure 7-5. Test Instrument & Measurement Setup

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 61 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Test Notes

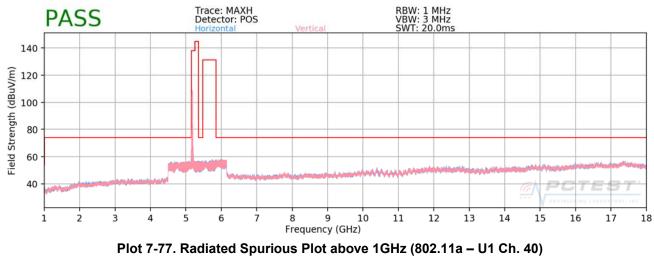
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-10.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-10. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

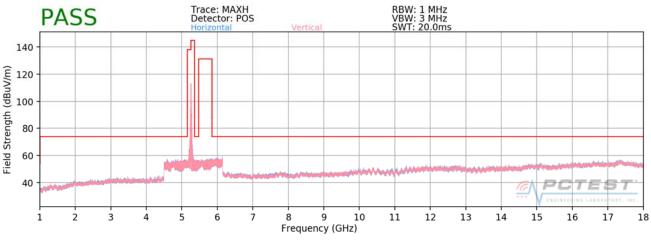
Sample Calculations

Determining Spurious Emissions Levels

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

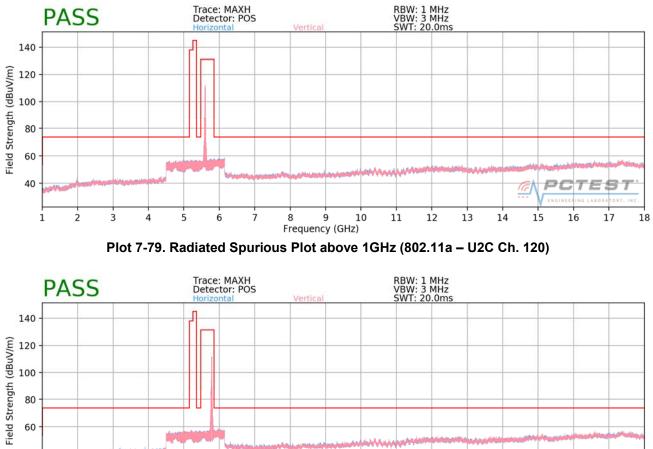
Radiated Band Edge Measurement Offset

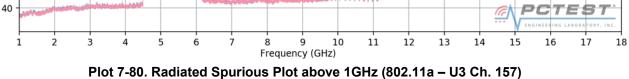

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.6 was calculated using the formula:


Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 62 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				

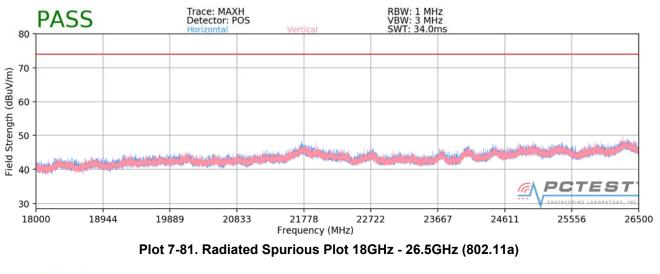
7.7.1 Radiated Spurious Emission Measurements

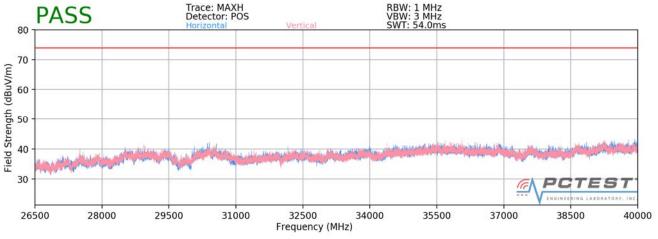




Plot 7-78. Radiated Spurious Plot above 1GHz (802.11a - U2A Ch. 56)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama (2) of (0)	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 63 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				





FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 04 -600	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 64 of 90	
© 2018 PCTEST Engineering La	V 8.1 05/10/2018				

Radiated Spurious Emissions Measurements (Above 18GHz)

Plot 7-82. Radiated Spurious Plot 26.5GHz - 40GHz (802.11a)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 65 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	Н	-	-	-69.60	13.17	0.00	50.57	68.20	-17.63
*	15540.00	Average	Н	-	-	-81.73	14.08	0.00	39.35	53.98	-14.63
*	15540.00	Peak	Н	-	-	-70.29	14.08	0.00	50.79	73.98	-23.19
*	20720.00	Average	н	100	0	-68.78	7.94	-9.54	36.62	53.98	-17.36
*	20720.00	Peak	Н	100	0	-58.14	7.94	-9.54	47.26	73.98	-26.72
	25900.00	Peak	Н	-	-	-56.75	8.46	0.00	58.71	68.20	-9.49

Table 7-11. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6Mbps	
1 & 3 Meters	
5200MHz	
40	

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	391	107	-69.45	14.09	0.00	51.64	68.20	-16.56
*	15600.00	Average	Н	-	-	-82.05	14.89	0.00	39.84	53.98	-14.14
*	15600.00	Peak	Н	-	-	-70.87	14.89	0.00	51.02	73.98	-22.96
*	20800.00	Average	Н	100	21	-58.04	7.95	-9.54	47.37	53.98	-6.61
*	20800.00	Peak	Н	100	21	-53.71	7.95	-9.54	51.70	73.98	-22.28
	26000.00	Peak	Н	-	-	-56.95	8.60	0.00	58.65	68.20	-9.55

Table 7-12. Radiated Measurements

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 66 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	397	117	-69.19	12.01	0.00	49.82	68.20	-18.38
*	15720.00	Average	Н	-	-	-83.53	15.79	0.00	39.26	53.98	-14.72
*	15720.00	Peak	н	-	-	-71.12	15.79	0.00	51.67	73.98	-22.31
*	20960.00	Average	н	100	20	-61.83	7.91	-9.54	43.54	53.98	-10.44
*	20960.00	Peak	Н	100	20	-55.97	7.91	-9.54	49.40	73.98	-24.58
	26200.00	Peak	Н	-	-	-56.99	8.62	0.00	58.63	68.20	-9.57

 Table 7-13. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps : 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	100	168	-69.42	13.94	0.00	51.52	68.20	-16.68
*	15780.00	Average	Н	-	-	-83.80	15.62	0.00	38.82	53.98	-15.16
*	15780.00	Peak	н	-	-	-71.89	15.62	0.00	50.73	73.98	-23.25
*	21040.00	Average	н	100	18	-62.79	7.92	-9.54	42.59	53.98	-11.39
*	21040.00	Peak	Н	100	18	-56.66	7.92	-9.54	48.72	73.98	-25.26
	26300.00	Peak	Н	-	-	-55.79	8.73	0.00	59.94	68.20	-8.26

Table 7-14. Radiated Measurements

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 67 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 67 of 90
© 2018 PCTEST Engineering L	aboratory Inc			V 8 1 05/10/2018

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5280MHz
Channel:	56

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	337	308	-70.35	13.83	0.00	50.48	68.20	-17.72
*	15840.00	Average	Н	-	-	-83.29	15.34	0.00	39.05	53.98	-14.93
*	15840.00	Peak	н	-	-	-71.90	15.34	0.00	50.44	73.98	-23.54
*	21120.00	Average	Н	100	63	-62.12	7.96	-9.54	43.30	53.98	-10.68
*	21120.00	Peak	Н	100	63	-55.54	7.96	-9.54	49.88	73.98	-24.10
	26400.00	Peak	Н	-	-	-56.09	8.94	0.00	59.85	68.20	-8.35

Table 7-15. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	381	39	-81.99	13.53	0.00	38.54	53.98	-15.44
*	10640.00	Peak	Н	381	39	-70.68	13.53	0.00	49.85	73.98	-24.13
*	15960.00	Average	н	-	-	-83.25	15.18	0.00	38.93	53.98	-15.05
*	15960.00	Peak	н	-	-	-71.56	15.18	0.00	50.62	73.98	-23.36
*	21280.00	Average	н	100	86	-69.56	8.04	-9.54	35.94	53.98	-18.04
*	21280.00	Peak	Н	100	86	-59.27	8.04	-9.54	46.23	73.98	-27.75
	26600.00	Peak	Н	-	-	-49.40	-8.30	0.00	49.30	68.20	-18.90

Table 7-16. Radiated Measurements

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 69 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 68 of 90
© 2010 DOTECT Engineering La	havatan ()na	•		V 0 1 0E/10/2010

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	Н	112	221	-80.45	13.49	0.00	40.04	53.98	-13.94
*	11000.00	Peak	Н	112	221	-70.73	13.49	0.00	49.76	73.98	-24.22
	16500.00	Peak	н	-	-	-72.13	16.06	0.00	50.93	68.20	-17.27
	22000.00	Peak	н	100	39	-69.55	8.43	-9.54	36.33	68.20	-31.87
	27500.00	Peak	Н	-	-	-46.85	-8.80	0.00	51.35	68.20	-16.85

Table 7-17. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5580MHz 116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	Н	116	93	-81.89	14.20	0.00	39.31	53.98	-14.66
*	11160.00	Peak	Н	116	93	-70.65	14.20	0.00	50.55	73.98	-23.42
	16740.00	Peak	Н	-	-	-71.90	17.63	0.00	52.73	68.20	-15.47
*	22320.00	Average	Н	100	356	-66.00	8.08	-9.54	39.54	53.98	-14.44
*	22320.00	Peak	Н	100	356	-56.77	8.08	-9.54	48.77	73.98	-25.21
	27900.00	Peak	Н	-	-	-47.22	-9.08	0.00	50.70	68.20	-17.50

Table 7-18. Radiated Measurements

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 69 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5700MHz		
Channel:	140		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11400.00	Average	Н	112	341	-80.72	14.88	0.00	41.16	53.98	-12.82
*	11400.00	Peak	Н	112	341	-70.64	14.88	0.00	51.24	73.98	-22.74
	17100.00	Peak	н	-	-	-71.41	18.87	0.00	54.46	68.20	-13.74
*	22800.00	Average	н	100	19	-68.30	8.37	-9.54	37.53	53.98	-16.45
*	22800.00	Peak	н	100	19	-58.30	8.37	-9.54	47.53	73.98	-26.45
	28500.00	Peak	Н	-	-	-45.60	-8.95	0.00	52.45	68.20	-15.75

Table 7-19. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	112	253	-80.78	14.01	0.00	40.23	53.98	-13.75
*	11490.00	Peak	Н	112	253	-70.95	14.01	0.00	50.06	73.98	-23.92
	17235.00	Peak	н	-	-	-71.78	20.31	0.00	55.53	68.20	-12.67
*	22980.00	Average	н	100	20	-68.60	8.16	-9.54	37.02	53.98	-16.96
*	22980.00	Peak	н	100	20	-58.70	8.16	-9.54	46.92	73.98	-27.06
	28725.00	Peak	Н	-	-	-44.73	-9.24	0.00	53.03	68.20	-15.17

Table 7-20. Radiated Measurements

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 00	
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 70 of 90	
© 2018 PCTEST Engineering La	V 8 1 05/10/2018				

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5785MHz		
Channel:	157		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	Н	343	182	-80.89	14.64	0.00	40.75	53.98	-13.23
*	11570.00	Peak	Н	343	182	-70.08	14.64	0.00	51.56	73.98	-22.42
	17355.00	Peak	н	-	-	-73.42	23.38	0.00	56.96	68.20	-11.24
	23140.00	Peak	Н	100	35	-58.73	8.37	-9.54	47.10	68.20	-21.10
	28925.00	Peak	Н	-	-	-45.87	-9.65	0.00	51.48	68.20	-16.72

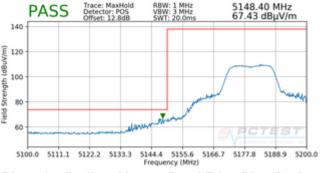
Table 7-21. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5825MHz 165

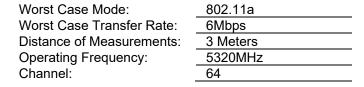
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	н	347	69	-80.53	16.13	0.00	42.60	53.98	-11.38
*	11650.00	Peak	н	347	69	-70.65	16.13	0.00	52.48	73.98	-21.50
	17475.00	Peak	н	-	-	-72.23	22.25	0.00	57.02	68.20	-11.18
	23300.00	Peak	н	100	360	-56.56	8.50	-9.54	49.39	68.20	-18.81
	29125.00	Peak	Н	-	-	-45.01	-9.87	0.00	52.12	68.20	-16.08

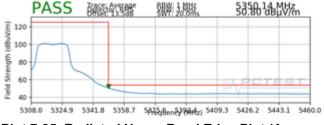
Table 7-22. Radiated Measurements

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 71 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 71 of 90
© 2018 PCTEST Engineering La	V 8 1 05/10/2018			

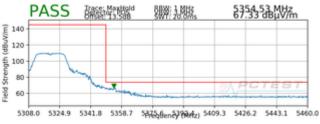


7.7.2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]

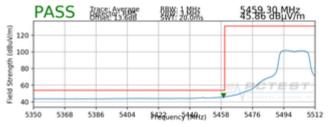

802.11a
6Mbps
3 Meters
5180MHz
36



Plot 7-83. Radiated Lower Band Edge Plot (Average – UNII Band 1)



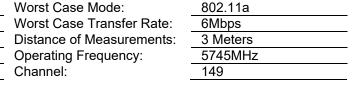
Plot 7-85. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

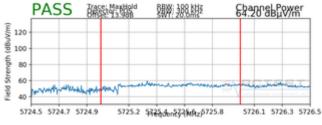


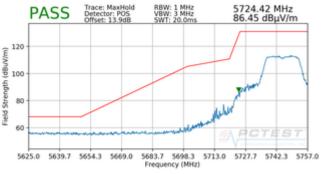
Plot 7-86. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 72 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 72 of 90
© 2018 PCTEST Engineering La	V 8.1 05/10/2018			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100

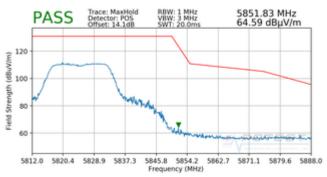



Plot 7-87. Radiated Lower Band Edge Plot (Average – UNII Band 2C)


Plot 7-88. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5700MHz
Channel:	140

Plot 7-89. Radiated Upper Band Edge Plot (Peak – UNII Band 2C)



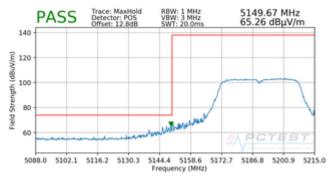
Plot 7-90. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 72 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 73 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

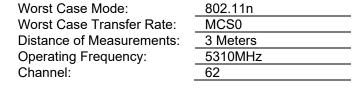
Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

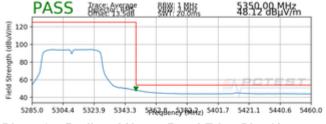
Plot 7-91. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 74 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 74 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	

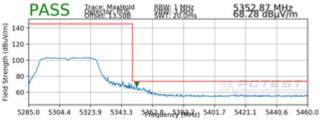


7.7.3 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]


Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38

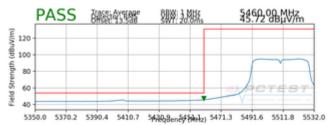


Plot 7-92. Radiated Lower Band Edge Plot (Average – UNII Band 1)



Plot 7-93. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

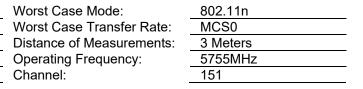
Plot 7-94. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

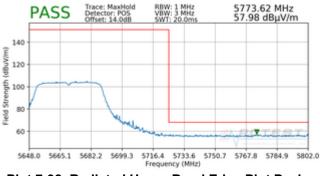

Plot 7-95. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

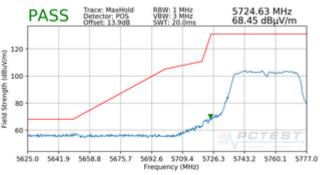
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 75 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 75 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

1

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102

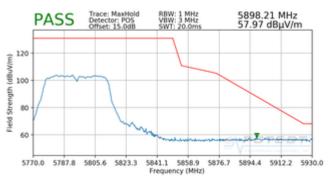





Plot 7-97. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

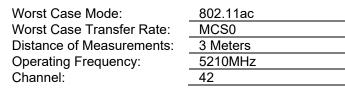
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5670MHz
Channel:	134

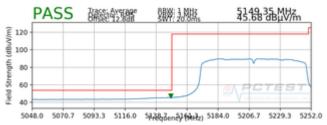
Plot 7-98. Radiated Upper Band Edge Plot Peak – UNII Band 2C)



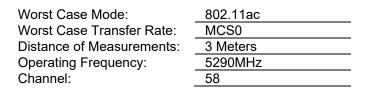
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 76 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 76 of 90
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.1 05/10/2018

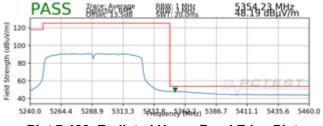
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5795MHz
Channel:	159

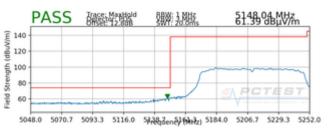



Plot 7-100. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

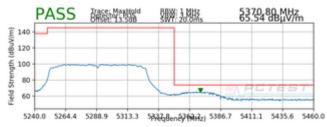
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 77 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 77 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	




7.7.4 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

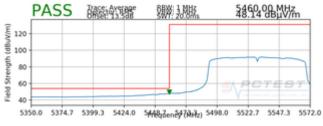


Plot 7-101. Radiated Lower Band Edge Plot (Average – UNII Band 1)



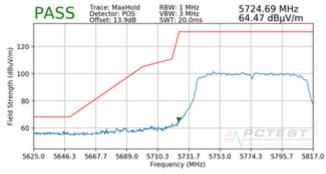
Plot 7-103. Radiated Upper Band Edge Plot (Average – UNII Band 2A)

Plot 7-102. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

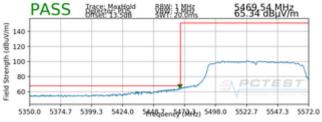


Plot 7-104. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

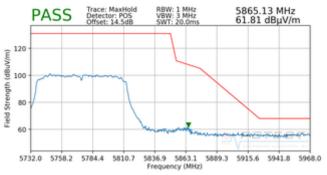
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 78 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	



Worst Case Mode:802.11acWorst Case Transfer Rate:MCS0Distance of Measurements:3 MetersOperating Frequency:5530MHzChannel:106



Plot 7-105. Radiated Lower Band Edge Plot (Average – UNII Band 2C)


Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5775MHz
Channel:	155

Plot 7-107. Radiated Lower Band Edge Plot (Peak – UNII Band 3)

Plot 7-108. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 79 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	

7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-23 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-23. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 80 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 80 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

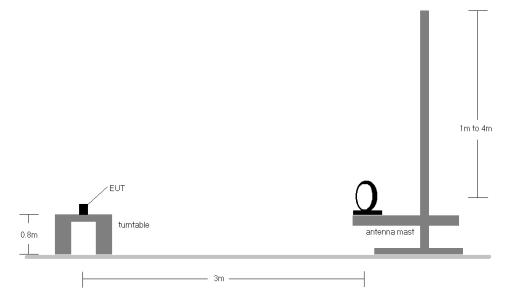
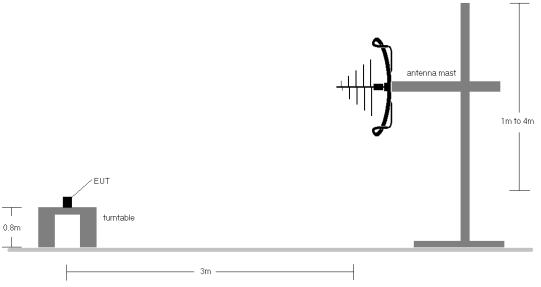
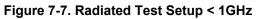
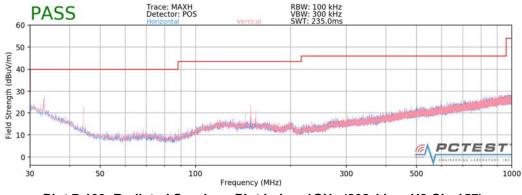




Figure 7-6. Radiated Test Setup < 30MHz

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 91 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 81 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	



- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-23.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 82 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 82 of 90
			V 8 1 05/10/2018	

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-109. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 82 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 83 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	

7.8 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-24. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

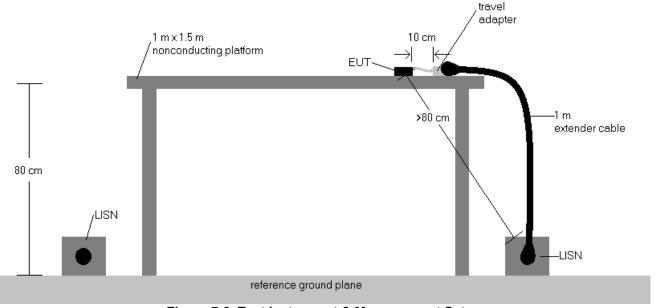
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

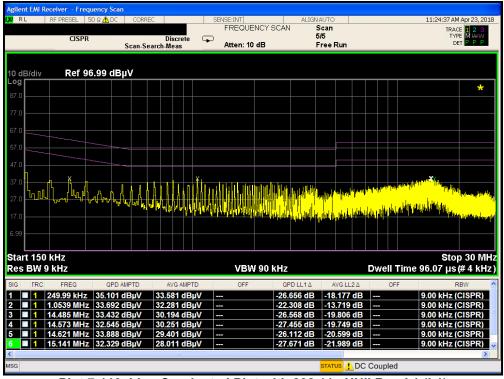
Average Field Strength Measurements

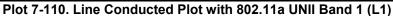

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

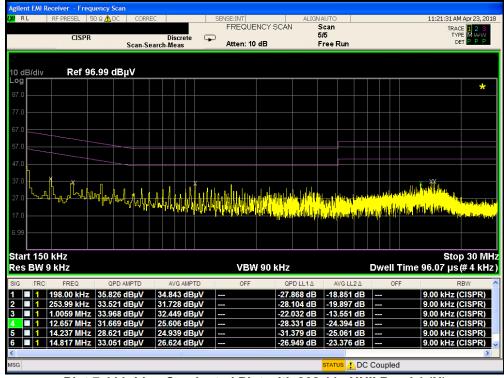
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 94 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 84 of 90
			V 8 1 05/10/2018	

Test Setup

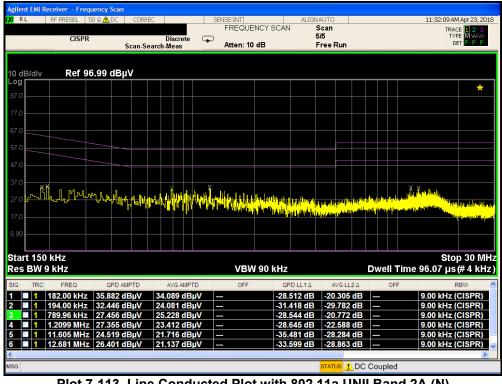
The EUT and measurement equipment were set up as shown in the diagram below.




Test Notes


- All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

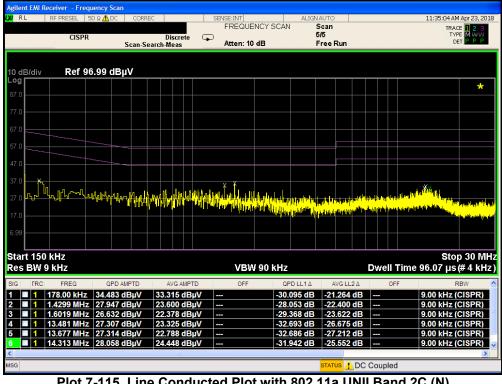
FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 85 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 85 of 90
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.1 05/10/2018	


Plot 7-111. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 96 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 86 of 90
© 2018 PCTEST Engineering Laboratory Inc.			V 8 1 05/10/2018	

	RF PRESEL 5	50 Ω 🥂 Ο	DC	CORR	REC				SEN	ISE:INT	ENCY :	SCAN	ALIG	NAUTO Scan						1			Apr 23, 20
	CISPR		Sc	can-S	earc		scret eas	e	P	Atten: 1	0 dB			5/5 Free	Run							TYPE	M₩W P P P
dB/div	Ref 9	6 99 r	1BuV	,																			
g		0.00 0																Τ					*
'.o 																	\vdash						<u> </u>
.0																							
.0																							
.0 🗙								+															
	1 .				1.0.		. . X	ΞX									+		X		AL 1.		
	ᡶ _᠃ ᡰᡞ᠕			l _{nl} l	14	W.	hŃ	Ň	uddi.	i lutini			u di kali	ie ne d anti	مططو	land	يا مراد	u In	Дит	u <mark>hran</mark>	^{h le} ht	^η γη _{ι.} ,	las buratad i
				h	trij	۳ h	I M	Ĩ	WW						hildhea <mark>Chail ta</mark>	l point Tent	dha d <mark>hand d</mark>	u al lu pa lug	l.(),₀l <mark>h laⁿⁿ</mark>	n (alara) Na fara	^{la den} trik P ^{ala} lantza	nya _{la} ,	lan han dadi
				h	 r 	₩	W		wy			n Hila Milay		ng dan N <mark>a</mark> n Pr	liddhad <mark>(perlyni</mark>	lipiol <mark>. (11</mark> 11	aliana M ^{aran} n	n al lu pe lug	i,∫ol I,∫o	n in suit	^{hala} nn ^{Mala} tri	Norm Nu _d lar	lan burdedi Karlana
.0 .0				hu,	≬ri ∦	Μ ήγ.	W Å							n plan N _a n Pri	lidebout <mark>(</mark> retyri	lipiol <mark></mark>	aliana M ^{aran} t	n al li <mark>Print</mark>	ių́n Ių́n	n (karda) Na ing pagta	^{la la} la	^{YE} YN _{DE} ^{YE} YNDE	ley burdet) ky el jala sa
					(r)	Υ ήγ								n poloni N _{as} rije 1	lidebsed <mark>(presperi</mark>	lipud <mark>(171)</mark>	alia di Mananda Mananda	s el Vi		n de servit Ne f y fr	in in t	Νγη _ι , Ն _կ եր	key ben dada <mark>keyal padaan</mark> a
.0 .0 .0 .0 .0														() 	1 	lipiol <mark>- (11) 1</mark>	pline. o period					יזיין, ע,נ,	a lundali a di alari
.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	kHz				\r	ι Γ				VB				n a chath N <mark>a</mark> ar / A	1	lipotel <mark></mark>					Ş		30 M
art 150	kHz kHz				₽₽	. <mark>₩</mark>					W 90				1 d by 10 ex.(14)	lipitel <mark>e l'ipit</mark>	Dw	ell	Tim		Ş	µs (#	#4 kH
 art 150 es BW 9	kHz kHz FREQ	QF	PD AMP				G AM			OFF	N 90	QPI	D LL1A	_			Dw		Tim	ie 96	S).07	µs († Re	# 4 kH ®W
.0 .0 art 150 es BW 9 IRC 1	KHZ KHZ FREQ 158.00 KHZ	QF 34.31	PD AMP 12 dB	μV		1.22	24 d	Bµ\		OFF	W 90	QPI -31.2	257 dB	-24	1.345	dB		ell	Tim	e 96	S 5.07 00 kH	HS († RE IZ (C	# 4 kH w (ISPR)
art 150 BW 9 TRC 1	KHz 9 KHz FREQ 158.00 KHz 198.00 KHz	QF 34.3 ⁻¹ 37.20	°D AMP 12 dB 09 dB	μV μV	3	1.22 6.17	24 d 78 d	Βµ\ Βµ\	/	OFF	N 90	QPI -31.2 -26.4	257 dB 86 dB	-24 -17	1.345 7.516	dB dB		ell	Tim	e 96 9. 9.	S 5.07 00 kH	μs († _{RE} Iz (C Iz (C	# 4 kH w (ISPR) (ISPR)
art 150 es BW 9 i I 1 i 1 i 1	KHZ KHZ FREQ 158.00 KHZ	QF 34.3 ⁻¹ 37.2(33.7/	PD AMP 12 dB	μV μV	3	1.22 6.17 0.35	24 d 78 d 59 d	Βµ\ Βµ\ Βµ\	/	OFF	A 90	QPI -31.2 -26.4 -22.2	257 dB	-24 -17 -15	1.345 7.516 5.641	dB dB dB		ell	Tim	e 96 9. 9. 9.	S 5.07 00 kH 00 kH	µs († RE 12 (C 12 (C 12 (C	# 4 kH w (ISPR) (ISPR) (ISPR)
art 150 s BW (1 1 1 1 1 1 1	KHz FREQ 158.00 kHz 198.00 kHz 917.95 kHz 1.0099 MHz 1.0539 MHz	QF 34.3' 37.20 33.74 33.85 35.54	² D AMP 12 dB 09 dB 40 dB 59 dB 46 dB	μV μV μV μV	3) 3) 3) 3) 3)	1.22 6.17 0.35 0.82 3.68	24 d 78 d 59 d 29 d 38 d	Βμ\ Βμ\ Βμ\ Βμ\	/ / /	OFF	A 90	QPI -31.2 -26.4 -22.2	257 dB 186 dB 260 dB	-24 -17 -15 -15 -12	1.345 7.516 5.641 5.171 2.312	dB dB dB dB dB		ell	Tim	90 9. 9. 9. 9. 9. 9. 9. 9.	5.07 00 kH 00 kH 00 kH 00 kH	μs († RE Iz (C Iz (C Iz (C Iz (C Iz (C	# 4 kH SW SISPR) SISPR) SISPR) SISPR) SISPR)
art 150 es BW (1 1 1 1 1 1 1 1	KHZ FREQ 158.00 kHz 198.00 kHz 917.95 kHz 1.0099 MHz	QF 34.3' 37.20 33.74 33.85 35.54	² D AMP 12 dB 09 dB 40 dB 59 dB 46 dB	μV μV μV μV	3) 3) 3) 3) 3)	1.22 6.17 0.35 0.82 3.68	24 d 78 d 59 d 29 d	Βμ\ Βμ\ Βμ\ Βμ\	/ / /	OFF	W 90	QP -31.2 -26.4 -22.2 -22.1 -20.4	257 dB 186 dB 260 dB 141 dB	-24 -17 -15 -15 -12	1.345 7.516 5.641 5.171	dB dB dB dB dB		ell	Tim	90 9. 9. 9. 9. 9. 9. 9. 9.	5.07 00 kH 00 kH 00 kH 00 kH	μs († RE Iz (C Iz (C Iz (C Iz (C Iz (C	# 4 kH 3W (ISPR) (ISPR) (ISPR) (ISPR)

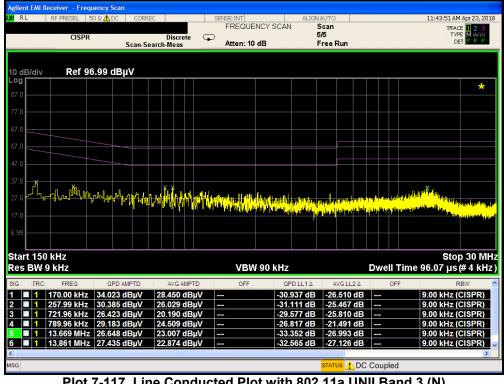
Plot 7-112. Line Conducted Plot with 802.11a UNII Band 2A (L1)


Plot 7-113. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 97 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 87 of 90
© 2018 PCTEST Engineering La	aboratory. Inc.			V 8.1 05/10/2018

R L RF PRESEL	50 Ω 🧥 DC	CORR	REC			SENSE:INT	ENCY SO		SNAUTO Scan					11	TRA	M Apr 23, 20 ACE 1 2 3
CIS	PR	Scan-S	Di earch-M	iscrete leas	Ŧ	Atten: 1	0 dB		5/5 Freel	Run						
	96.99 dE	3µV			_											
g																*
.0																
.0																
.0																
	~~				- V											
	J. IA	Anthe	a dala	. Lin	l li na	statilitatat	house the							diate the second	dital de a	
						andi Marti, Julii da		daha kata dala	h	الله ال	41.440	le linite	CIT PLATE	141 · ·		A r i think
	┙ᡗ╴╠╍┨╸╟┟	s habanna	n/h h	Υ Γ	HH	WHIN			l n.t. au		an da Lite	<mark>Webe</mark> naliwi	ang an a dalar kiri d	ener Historija (M	ÁL.	
	┙╴╻╌╗	t for the form	ſ ₩ ₽	P M				in phili	ll nde and It in p ^{alm}	i ha a la la mala Tra pala producer da	andra Militari	<mark>n lini</mark>		uliet) (ji	1	in phate in the second
.0	<u>, , , , , , , , , , , , , , , , , , , </u>		d¶, dub						lind yn de gwlai Iddae yn dae	i antri Tulo topo l	an ta PIN	t den se na ligen na ligen		-licij/ I		and the property of the
.0			╡╟╴╢┉║						lint, ort <mark>heis, p^{ala}</mark>	sta a la facto na facto producer na facto producer	andra P ¹ Viv	t Horine <mark>(10,</mark> 1441)		-liel <mark>a (</mark>)	lu _{s.}	17 10 10 10 10 10 10 10 10 10 10 10 10 10
									linis, art			telene <mark>Le</mark> lene L		n in the state of		
art 150 kHz			<mark>i 1, 1</mark> ∞ti						li na ta an t Na ta angulari Na ta angulari	n ha a la					Sto	
art 150 kHz s BW 9 kHz						VB	W 90 KI	Hz			D	wel	I Tim		Sto 07 µs	s (# 4 kH
art 150 kHz s BW 9 kHz	QPD	AMPTD		VG AMF		VB	W 90 KI	HZ QPD LL1A		NG LL2 /		well		e 96.	Sto 07 µs	(# 4 kH RBW
art 150 kHz s BW 9 kHz	QPD 12 37.996	AMPTD dBµV	A 36.6			VB	W 90 KI	Hz	A 3 -17		D	wel	I Tim	e 96.	Sto 07 µs 0 kHz	s (# 4 kH
art 150 kHz S BW 9 kHz 1 178.00 kH	APD 1z 37.996 1z 31.747 1z 31.871	AMPTD dBµV dBµV dBµV	36.6 29.2 28.4	VG AMF 42 dE 25 dE 11 dE	PTD BµV BµV BµV	VB OFF	W 90 kl	HZ QPD LL1A 26.583 dE	A 3 -17 3 -19	WG LL2 /	D B B	well	I Tim	e 96. 9.0 9.0	Sto 07 µs 0 kHz 0 kHz	6 (# 4 kH RBW (CISPR)
art 150 kHz s BW 9 kHz I 178.00 kH 1 365.99 kH 1 365.99 kH 1 1.0779 MI	42 37.996 12 31.747 12 31.871 14z 33.066	AMPTD dBpV dBpV dBpV dBpV	A 36.6 29.2 28.4 29.5	VG AMF 42 dE 25 dE 11 dE 54 dE	² TD 3µV 3µV 3µV	VB OFF	W 90 kl	Hz 26.583 dE 26.845 dE 26.278 dE 22.934 dE	A 3 -17 3 -19 3 -19 3 -16	WG LL2 <i>1</i> .936 dl .367 dl .739 dl .446 dl	D B - B - B - B -	wel	I Tim	e 96. 9.0 9.0 9.0 9.0	Sto 07 µs 0 <u>kHz</u> 0 kHz 0 kHz 0 kHz	(# 4 kH RBW (CISPR) (CISPR) (CISPR) (CISPR)
art 150 kHz s BW 9 kHz I 178.00 kH 1 365.99 kH 1 385.98 kH 1 1.3779 MI 1 1.3779 MI	APD 1z 37.996 1z 31.747 1z 31.871 1z 31.871 1z 31.074	AMPTD dBpV dBpV dBpV dBpV dBpV	A 36.6 29.2 28.4 29.5 27.3	VG AMF 42 dE 25 dE 11 dE 54 dE 01 dE	PTD 3µV 3µV 3µV 3µV	VB 0FF 	W 90 kl	HZ QPD LL1A 26.583 dE 26.845 dE 26.278 dE 22.934 dE 22.934 dE 28.926 dE	A 3 -17 3 -19 3 -19 3 -16 3 -22	VG LL22 2.936 dl 1.367 dl 0.739 dl 0.446 dl 2.699 dl	D B B B B B B B B C	well	I Tim	e 96. 9.0 9.0 9.0 9.0 9.0	Sto 07 µs 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz	(# 4 kH (CISPR) (CISPR) (CISPR) (CISPR) (CISPR)
art 150 kHz s BW 9 kHz I 178.00 kHz 1 365.99 kH 1 385.98 kH 1 3.85.98 kH 2 1 3.95.98 kH 2 1 3.85.98 k	42 37.996 12 31.747 12 31.871 14z 33.066	AMPTD dBpV dBpV dBpV dBpV dBpV	A 36.6 29.2 28.4 29.5 27.3	VG AMF 42 dE 25 dE 11 dE 54 dE	PTD 3µV 3µV 3µV 3µV	VB 0FF 	W 90 kl	Hz 26.583 dE 26.845 dE 26.278 dE 22.934 dE	A 3 -17 3 -19 3 -19 3 -16 3 -22	WG LL2 <i>1</i> .936 dl .367 dl .739 dl .446 dl	D B B B B B B B B C	wel	I Tim	e 96. 9.0 9.0 9.0 9.0 9.0	Sto 07 µs 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz 0 kHz	(CISPR) (CISPR) (CISPR) (CISPR)

Plot 7-114. Line Conducted Plot with 802.11a UNII Band 2C (L1)


Plot 7-115. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 89 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 88 of 90
© 2018 PCTEST Engineering La	boratory. Inc.	•		V 8.1 05/10/2018

RL	RF PRESEL	50 Ω 🧘	DC	CORR	EC					SE:INT		CAN		NAUTO Scan						1:	L:41:03		
	CISPE	R	S	can-S	earcł		crete as	, (Ð	Atten: 1		CAN		5/5 Free	Run						1	ACE 1 YPE M DET P	23 ₩₩ РР
dB/div	Ref 9	96.99	dBµ\	/																			
g																							*
.0																							
° =																							
																		+				+	
	0.00	B	ld La	ո տես ա	11 /14	ll.	L A	i Ada	dalu.	and also also for	hina a	11	. 161						dunda	ymyl <mark>ð</mark> i	talui () a	d I	.1
° L·L	ՠֈֈֈՠֈ	ŀ₩,	ᠰᡁᡀ	u hy r	// /	W	hí	Ň		附條			d (stillin Station	la es la s	a biri i	l _{te} ttor	ust, pot	u vil	daphe and w	ynyl <mark>iù)</mark> ynyliù	interapje Leon	hadre	, leber
		╎┉╟	ŀ\ _↓ ↓µ	u Pr	M/ľ	ΪŴ		Ŵ	Y MV.				ddfabblin <mark>Ma^{ndi}dfa</mark>	li andra April Pilit	agh Cafr Na Cafr	loile Is _t ij	nda post N <mark>a l</mark> a ba <mark>r</mark>	n an	anata Anatar Anatar	popl ^{es} (C ^r In ^{IN}	inintije ^{Len} ning	lueles.	, John
		ᡗᡁᢔᡁ	ŀ\ _J ∦	Q ^I QY	M/1	Ŵ		Ϊψ	4	剛体			i lekkin <mark>Hannana</mark>	lland fur a _n a pairt a	abad <mark>a</mark> Unully	loile. Us _{ti} l	uda ved N <mark>i (</mark> Ni ()	e y edi Vij ^{tere}	4949/99 <mark>(1916-</mark> 1997	yonder <mark>(C</mark> *N*	inter Inceren	line de la com	, lebo
والكلير	Ու-Միլիսիս(╎┉╢╷	M. LM	QP Provi	y 1 /1	i	ļr://		4 11				ulablu N ^{al} ifa	lland da <mark>d_ant (fela</mark> t	oristelle Apatolity	lain ^{(a} gi)		e gerill Voj ^k en	diapite (<mark>tail</mark> , p	hani(Ă) <mark>(</mark> Ω ⁱⁿ la ^{ta}	^{lal} the ^{La} the	lan da gan	alder Maan
0 0 9 		ſ ŀŀŀŀŀ	ŀ\ _J _ſı		// //	Ŵ				11 1 ()				llander <mark>1797 (</mark> 1817)	an da an da An an da an	linder Un _n de			dagele (<mark>tail, p</mark>	yan ⁽ Ă) <mark>(L</mark> ¹⁰ 1) ¹⁰	St	op 3	
art 150	kHz	ſ ſſŢ	M. L.M		/// /	Ϊ μ					V 90 k		al (shi) <mark>(l</mark> i ⁿⁱⁿ (la			loin L _{in} il		ell '	durte (¹⁴ , e	ہور(ڈ) رو ایر اور اور اور اور اور اور اور اور اور او	^{Μα} ίμα Γ ^{ει} οια St	op 3(# 4	0 M
art 150	kHz	,			M/1	AV	G AMF					:Hz			u da (da) (i) ni di) v			ell [°]		e 96	St .07 μ	op 30 s (# 4	0 M
art 150 s BW 9	KHz 9 KHz FREQ 174.00 KHz	Q 2 37.0	PD AMF	ртр В µV		4.05	g amf 1 de	PTD BµV		VBV	V 90 k	Hz QPD -27.72	LL1∆ 2 1 dB	A -20	WG LL .716	2 A dB				9.0	.07 µ 0 kHz	RBW	rr)
art 150 s BW 9	KHz 9 KHz FREQ 174.00 KHz 941.95 KHz	2 37.0 2 32.8	PD AMF 46 dB 06 dB	°то 3µV	31	4.05 1.18	G AMF	РТD ВµV ВµV		VBV	V 90 k	Hz QPD -27.72 -23.19	21 dB	-20 -14	VG LL .716 .813	2∆ dB dB	Dw 			9.0 9.0	.07 µ 0 kHz 0 kHz	S (# 4 RBW (CISI (CISI	R) PR)
art 150 s BW 9	KHz 9 KHz FREQ 174.00 KHz 941.95 KHz 985.94 KHz	2 37.0 2 32.8 2 32.3	PD AMF 46 dE 306 dE 32 dE	отр ВрV ВрV ВрV	31 30	4.05 1.18 0.35	G AMF 1 dE 7 dE 2 dE	РТD ВµV ВµV		VBV	V 90 k	Hz QPD -27.72 -23.19 -23.66	21 dB 94 dB 58 dB	-20 -14 -15	VG LL .716 .813 .648	2∆ dB dB dB	Dw 			9.0 9.0 9.0	07 µ 0 kHz 0 kHz 0 kHz	S (# 4 RBW (CISI (CISI (CISI	R) PR) PR) PR)
art 150 s BW 9 IRC 1 1	KHz 9 KHz FREQ 174.00 KHz 941.95 KHz	z 37.0 z 32.8 z 32.3 z 31.6	PD AMF 46 dB 06 dB	^{этр} 3µV 3µV 3µV	31 30 28	4.05 1.18 0.35 8.11	G AMF	^{РТД} ВµV ВµV ВµV		VBV	V 90 k	Hz QPD -27.72 -23.19	21 dB 94 dB 58 dB 32 dB	-20 -14 -15 -21	VG LL .716 .813	2∆ dB dB dB	Dw 			9.0 9.0 9.0 9.0	.07 µ 0 kHz 0 kHz	RBW (CISI (CISI (CISI (CISI (CISI	kH PR) PR) PR) PR)
art 150 s BW 9 1 1 1 1	KHZ FREQ 174.00 kHz 941.95 kHz 985.94 kHz 13.685 MH:	z 37.0 z 32.8 z 32.3 z 31.6 z 31.4	PD AMF 46 dE 306 dE 32 dE 18 dE	РТD ВµV ВµV ВµV ВµV ВµV	31 30 28 27	4.05 1.18 0.35 8.11 7.79	G AMF 1 dE 7 dE 2 dE 2 dE	РТD ВµV ВµV ВµV ВµV ВµV		VBV	V 90 k	Hz -27.72 -23.19 -23.66 -28.38	LL1A 21 dB 94 dB 58 dB 82 dB 11 dB	-20 -14 -15 -21 -22	WG LL .716 .813 .648 .888	2 A dB dB dB dB dB	Dw 			9.0 9.0 9.0 9.0 9.0	07 µ 0 kHz 0 kHz 0 kHz 0 kHz	S (# 4 RBW (CISI (CISI (CISI (CISI (CISI	kH PR) PR) PR) PR) PR)

Plot 7-116. Line Conducted Plot with 802.11a UNII Band 3 (L1)

Plot 7-117. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 80 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 89 of 90
© 2018 PCTEST Engineering La	boratory. Inc.	·		V 8.1 05/10/2018

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFQ610TA** is in compliance with Part 15 Subpart E (15.407) of the FCC Rules.

FCC ID: ZNFQ610TA		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 00
1M1805210108-05.ZNF	4/20/2018-6/6/2018	Portable Handset		Page 90 of 90
© 2018 PCTEST Engineering La	boratory, Inc.			V 8.1 05/10/2018