

FCC CFR47 PART 15 SUBPART C CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT

FOR

DUAL BAND PHONE WITH BT & WLAN

MODEL NUMBER: LG-P769, LGP769, P769

FCC ID: ZNFP769

REPORT NUMBER: 12U14595-2

ISSUE DATE: AUGUST 24, 2012

Prepared for

LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NJ 07632

Prepared by

UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/24/2012	Initial Issue	T. LEE

TABLE OF CONTENTS

1.	ΑT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	SAMPLE CALCULATION	5
	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	MAXIMUM OUTPUT POWER	6
	5.3.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	6
	5. <i>4</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	6
	5.5.	SOFTWARE AND FIRMWARE	6
	5.6.	WORST-CASE CONFIGURATION AND MODE	7
,	5.7.	DESCRIPTION OF TEST SETUP	8
6.	TE	ST AND MEASUREMENT EQUIPMENT	10
7.	RA	DIATED TEST RESULTS	11
	7.1.	LIMITS AND PROCEDURE	11
	7.2. 7.2 7.2 7.2 7.2 7.2 7.3.	.2. TX ABOVE 1 GHz FOR 802.11g 1TX MODE IN THE 2.4 GHz BAND	12 30 39
8.	AC	POWER LINE CONDUCTED EMISSIONS	47
9.	SE	TUP PHOTOS	54

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: LG ELECTRONICS MOBLILECOMM USA, INC.

1000 SYLVAN AVENUE

ENGLEWOOD, NJ 07632, USA

EUT DESCRIPTION: DUAL BAND PHONE WITH BT & WLAN

MODEL: LG-P769, LGP769, P769

SERIAL NUMBER: 208KPTM229281 (Conducted)

205KPYR203930 (Radiated)

DATE TESTED: AUGUST 21ST TO 24TH, 2012

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

TIM LEE

STAFF ENGINEER

UL CCS

STEVE AGUILAR EMC ENGINEER

Stru Guilan

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n transceiver.

The radio module is manufactured by Broadcom with Chipset: BCM4330X.

5.2. MAXIMUM OUTPUT POWER

The measured average power values were within \pm 0.5 dB of the original values. Refer to original report number 12U14516 for exact output power values and for all antenna port results.

5.3. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The change filed under this application has the following changes.

Antenna pattern shape and length changed to improve RF performance.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna, with a maximum gain of -0.45 dBi.

5.5. SOFTWARE AND FIRMWARE

The Baseband version was LGP769AT-00-V08k_310-260-JUL 9-2012+0. The Kernel version was 3.0.21. The HW version was Rev.1.0

The firmware installed in the EUT during testing was Version 4.0.4.

The EUT software version installed during testing LGP769-V08k.

The test utility software used during testing was WLAN Test.

5.6. WORST-CASE CONFIGURATION AND MODE

For the fundamental investigation, since the EUT is a portable device that has three orientations; X, Y and Z orientations have been investigated, also with AC/DC adapter, and earphone, and the worst case was found to be at X orientation with AC adapter and earphone for both 2.4GHz and 5GHz band.

For Radiated Emissions below 1 GHz and Power line Conducted Emissions, the channel with the highest conducted output power was selected as a worst-case scenario.

Worst-case data rates based on base line measurement are:

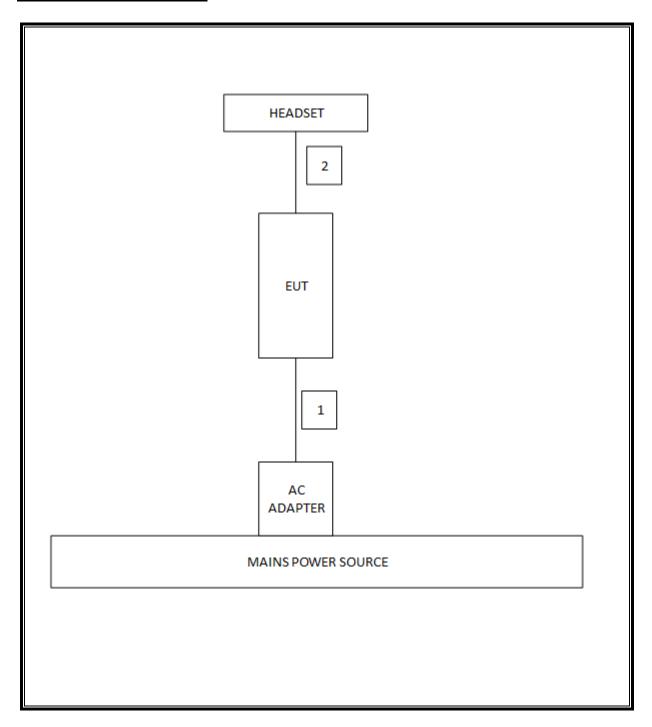
For 11b mode: 1Mbps For 11g mode: 6Mbps For 11n HT20: MCS0

For 11a mode (5.8 GHz band): 6Mbps For 11n HT20 (5.8 GHz band): MCS0

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List					
Description	Manufacturer	Model	Serial Number	FCC ID	
USB Travel Adapter	LG Electronics	MCS-02WR	RA250126222	N/A	
Headphones	LG Electronics	N/A	N/A	N/A	


I/O CABLES

	I/O Cable List					
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	USB	1	USB	Shielded	1.2m	None.
2	Headphone	1	Audio	Unshielded	1.15m	None.

TEST SETUP

The EUT is a stand-alone device.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	9/2/2011	9/2/2012
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	3/22/2012	3/22/2013
Power Meter	Agilent / HP	437B		8/9/2012	8/9/2013
Power Sensor, 18 GHz	Agilent / HP	8481A		8/21/2012	8/21/2013
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	7/28/2011	7/28/2013
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	11/11/2011	11/11/2012
Antenna, Horn, 18 GHz	EMCO	3115	C00872	9/20/2011	9/20/2012
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	C01011	3/23/2012	3/23/2013
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	11/11/2011	11/11/2012
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	8/8/2012	8/8/2013
LISN, 30 MHz	FCC	50/250-25-2	C00626	12/13/2011	12/13/2012
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	C00981	6/14/2011	6/14/2013
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	8/2/2011	8/2/2013

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

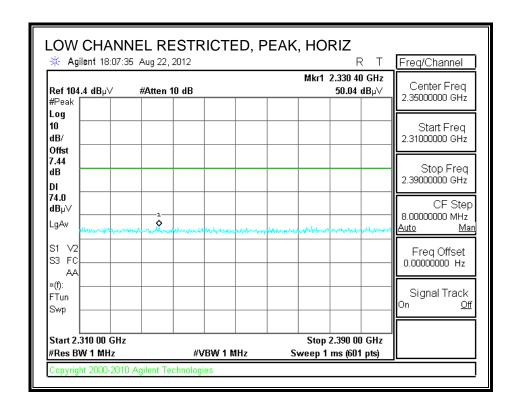
TEST PROCEDURE

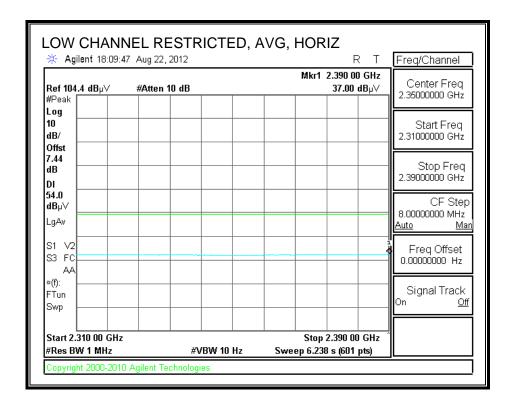
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

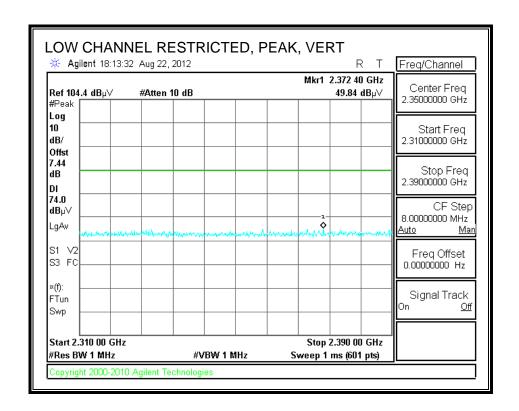
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

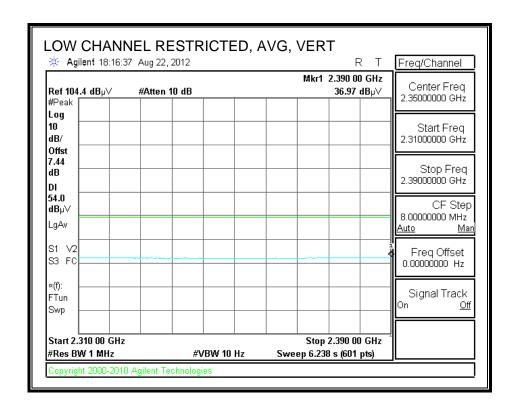
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

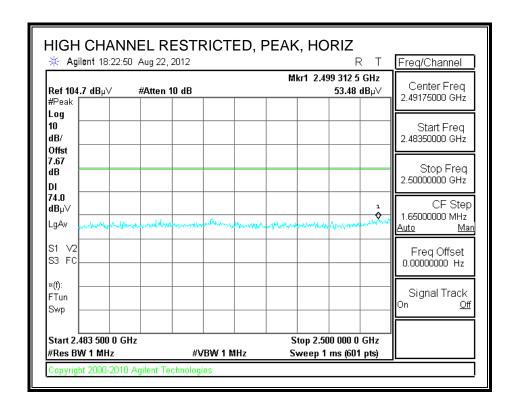

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

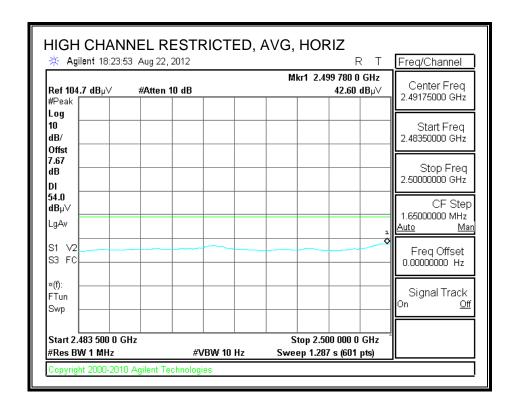
7.2. TRANSMITTER ABOVE 1 GHz

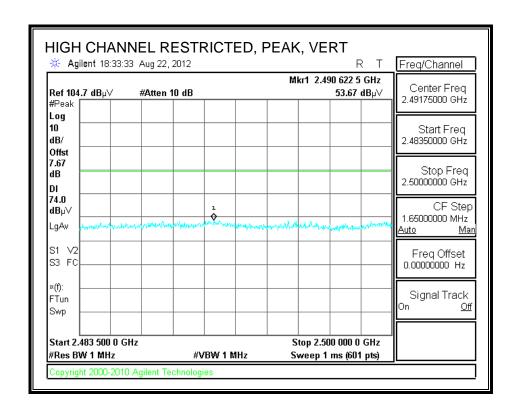

7.2.1. TX ABOVE 1 GHz FOR 802.11b 1TX MODE IN THE 2.4 GHz BAND

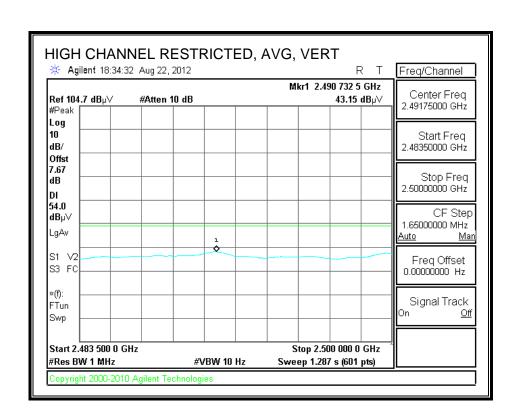

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



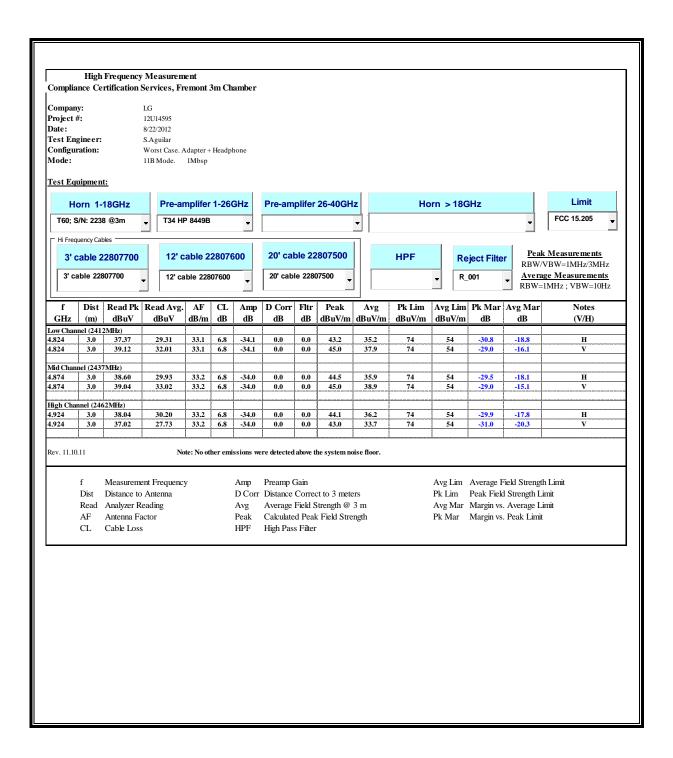
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

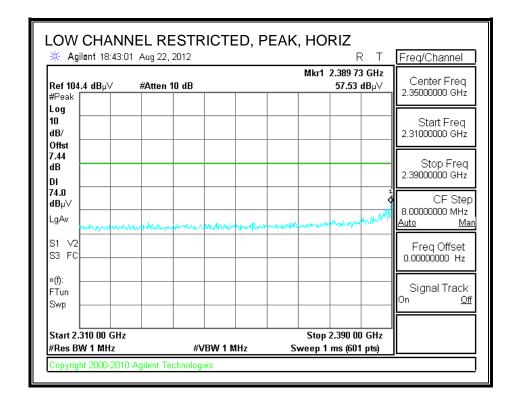

REPORT NO: 12U14595-2 FCC ID: ZNFP769

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



REPORT NO: 12U14595-2 FCC ID: ZNFP769

DATE: AUGUST 24, 2012


HARMONICS AND SPURIOUS EMISSIONS

7.2.2. TX ABOVE 1 GHz FOR 802.11g 1TX MODE IN THE 2.4 GHz BAND

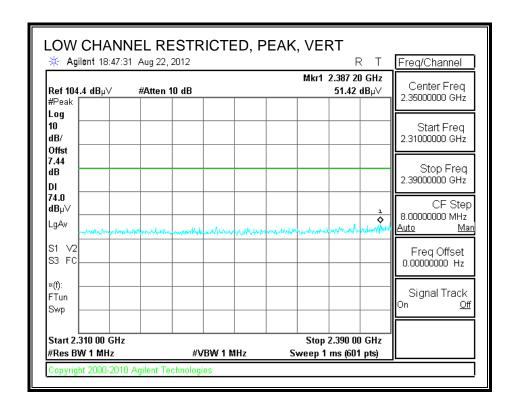
DATE: AUGUST 24, 2012

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

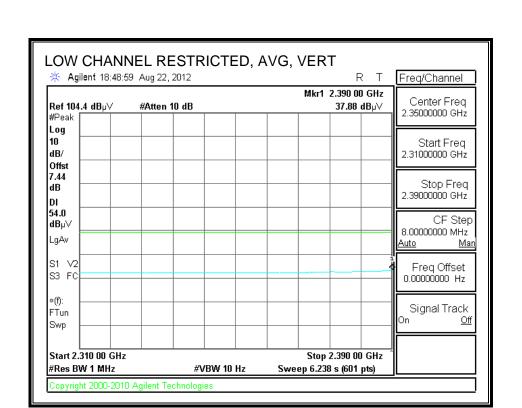
Start 2.310 00 GHz

opyright 2000-2010 Agilent Technologies

#Res BW 1 MHz

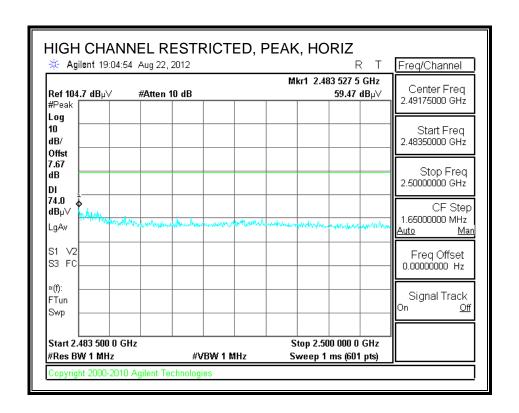

#VBW 10 Hz

Stop 2.390 00 GHz

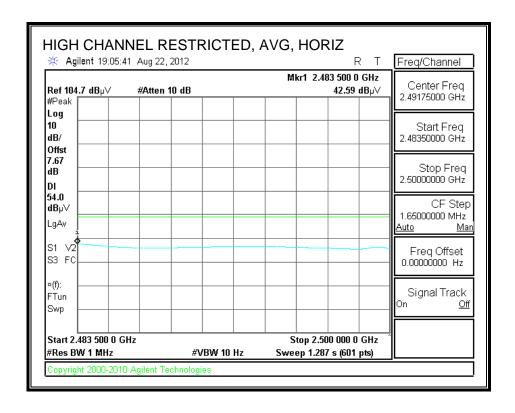

Sweep 6.238 s (601 pts)

DATE: AUGUST 24, 2012

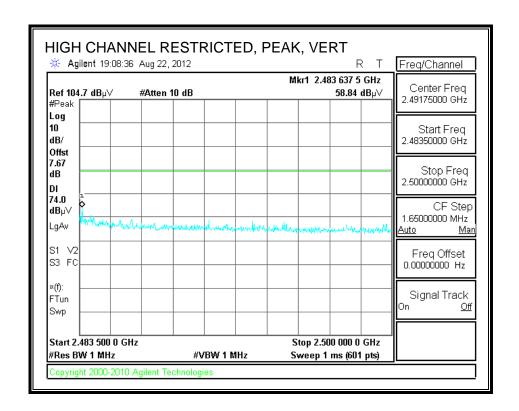
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

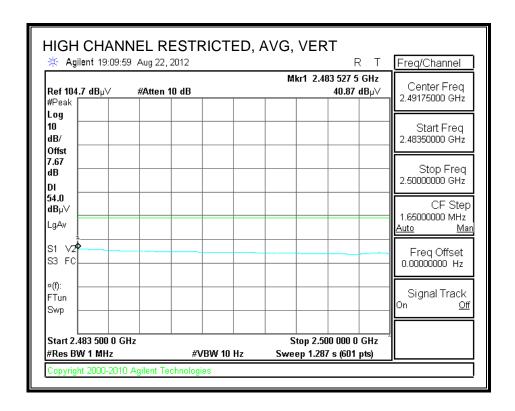


REPORT NO: 12U14595-2 FCC ID: ZNFP769

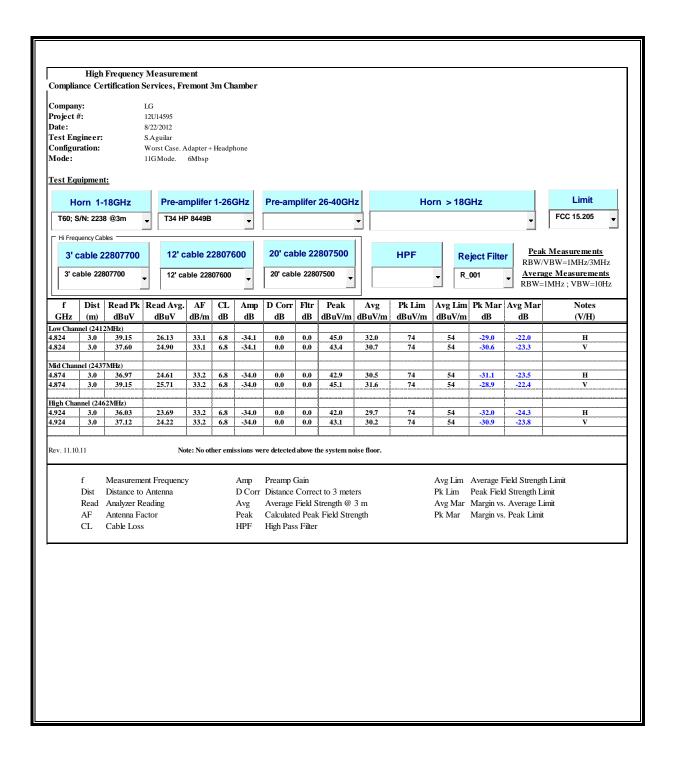


DATE: AUGUST 24, 2012

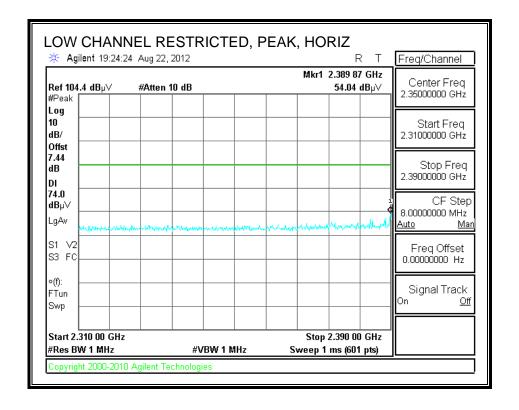

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



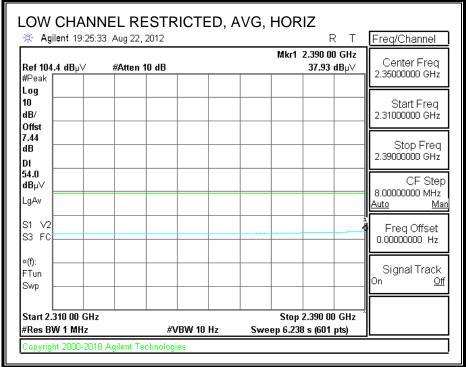
REPORT NO: 12U14595-2 FCC ID: ZNFP769



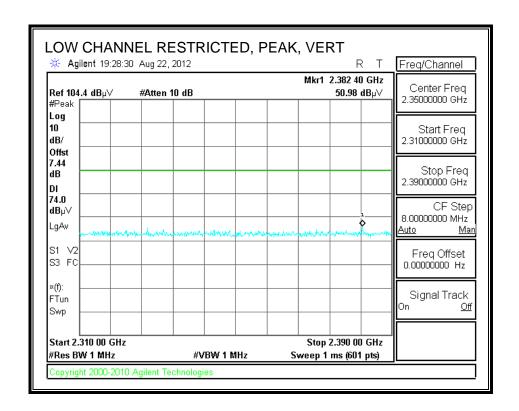
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

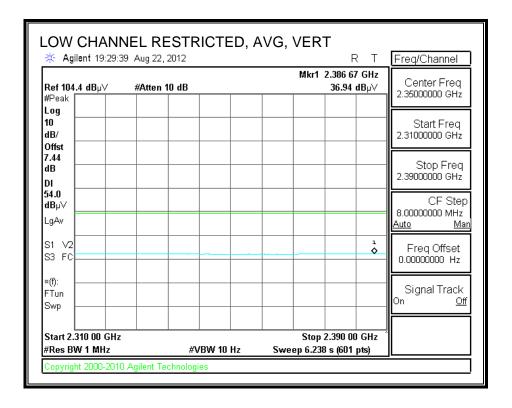


HARMONICS AND SPURIOUS EMISSIONS

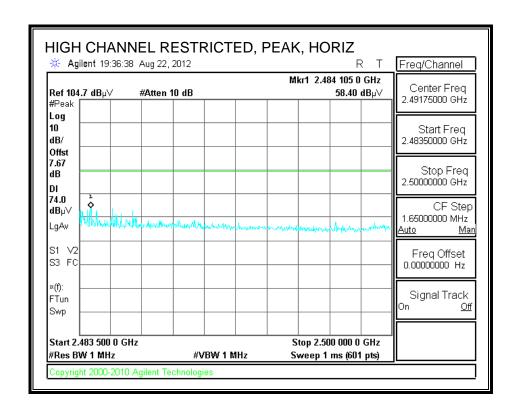


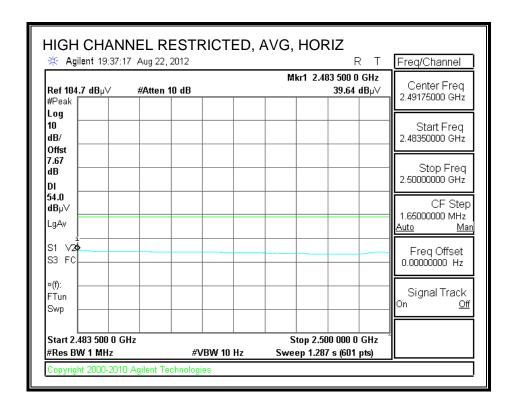
7.2.3. TX ABOVE 1 GHz FOR 802.11n HT20 1TX MODE IN THE 2.4 GHz BAND

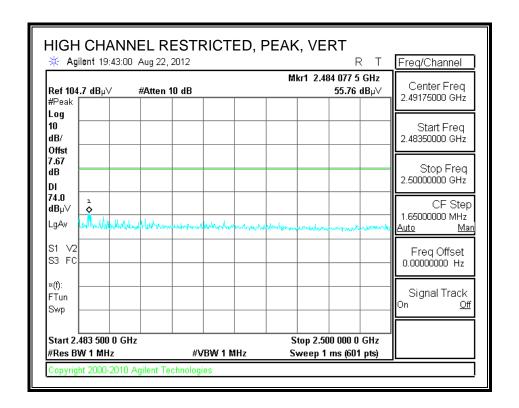

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



DATE: AUGUST 24, 2012




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

FTun

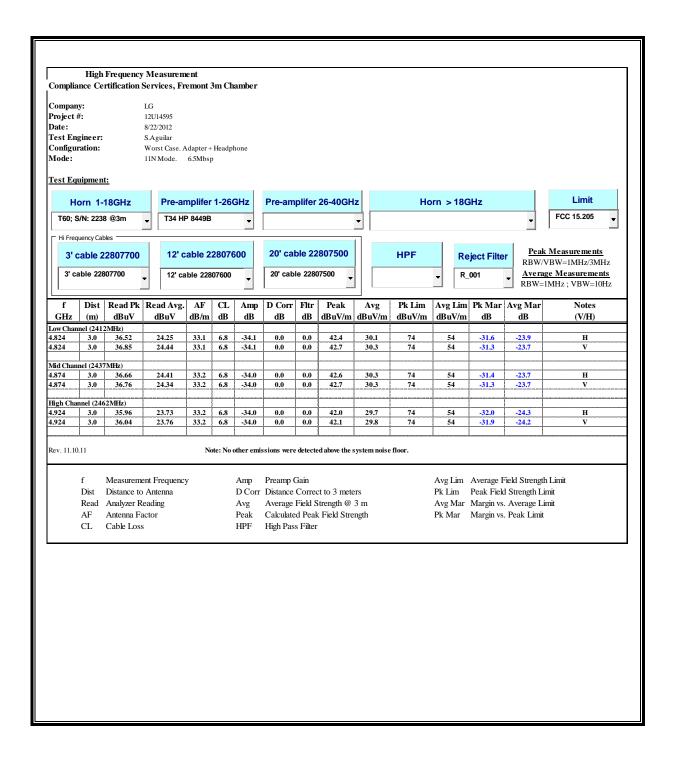
Swp

Start 2.483 500 0 GHz #Res BW 1 MHz

opyright 2000-2010 Agilent Technologies

#VBW 10 Hz

DATE: AUGUST 24, 2012


Signal Track

Stop 2.500 000 0 GHz

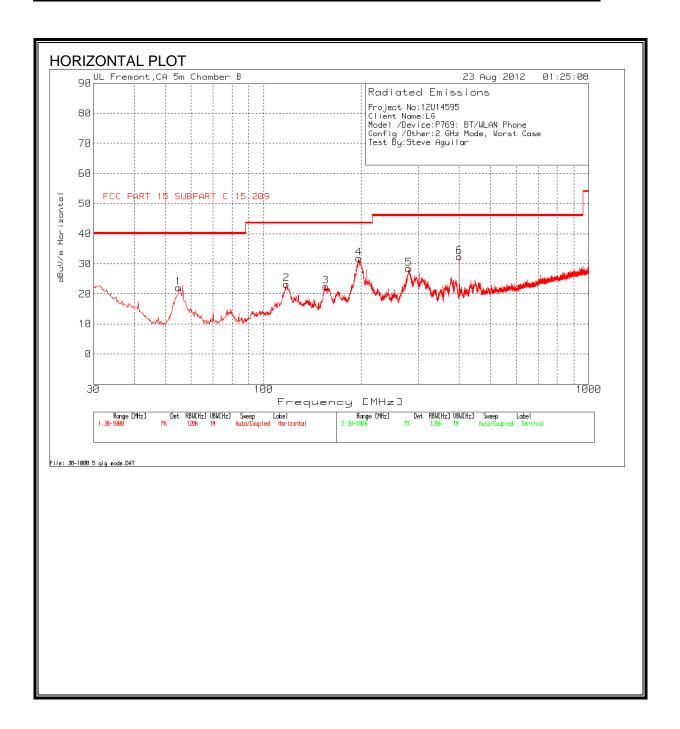
Sweep 1.287 s (601 pts)

<u>Off</u>

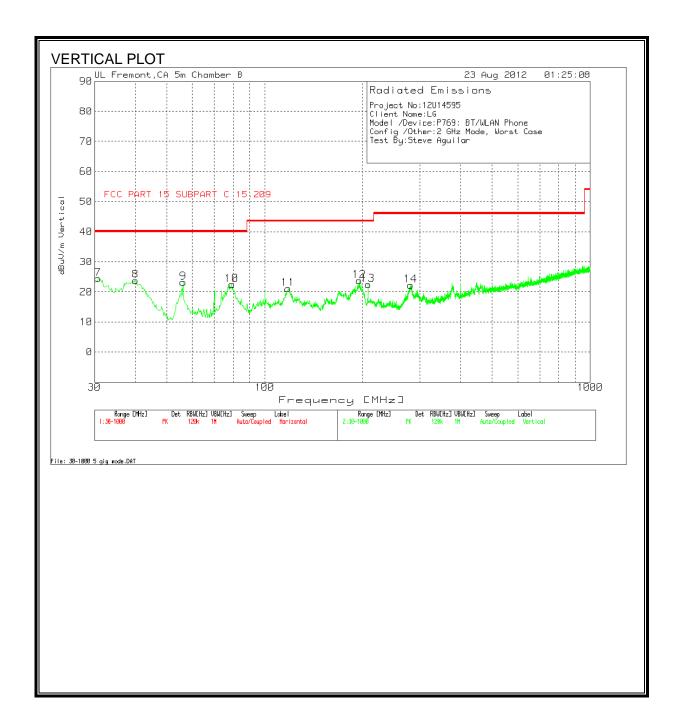
HARMONICS AND SPURIOUS EMISSIONS

7.2.4. TX ABOVE 1 GHz FOR 802.11a MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS


Company: Project #: Date: Fest Engine Configuratio Mode: Fest Equipm	n:	LG 12U14595 8/22/2012 S.Aguilar Worst Case. A 11A Mode.	.dapter + 6Mbsp	Headpl	none									
Test Equipm	nent:	TIT Mode.	оттоор											
Horn														
Horn 1-18GHz Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz Horn > 18GHz Limit										Но	rn > 18G	iHz		Limit
T60; S/N: 2238 @3m							FCC 15.205							
3' cable		12' cable 22807600			20' cable 22807500						20' cable 22807500			Measurements /BW=1MHz/3MHz ge Measurements MHz; VBW=10H:
1	3	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim			Avg Mar	Notes
GHz (n ow Channel (5		dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
1.490 3. 1.490 3.	.0 33.89	21.05 21.02	38.9 38.9	11.2 11.2	-32.4 -32.4	0.0	0.0	51.6 51.4	38.7 38.7	74 74	54 54	-22.4 -22.6	-15.3 -15.3	H V
/lid Channel (5														
1.570 3.	.0 33.54	21.08	38.9	11.3	-32.4	0.0	0.0	51.4	39.0	74	54	-22.6	-15.0	H
1.570 3.		21.13	38.9	11.3	-32.4	0.0	0.0	51.1	39.0	74	54	-22.9	-15.0	V
ligh Channel (1.650 3.		21.63	39.0	11.4	-32.4	0.0	0.0	52.1	39.7	74	54	-21.9	-14.3	Н
1.650 3.	.0 33.76	21.61	39.0	11.4	-32.4	0.0	0.0	51.8	39.7	74	54	-22.2	-14.3	V
Rev. 11.10.11		Note: No othe	er emissi	ons wer	e detected	l above the s	system	noise floor.						
f Dist Rea AF CL	t Distance to ad Analyzer F Antenna F	Reading actor	y		Amp D Corr Avg Peak HPF	Average	Correc Field S d Peak	et to 3 mete strength @ : Field Stre	3 m		Pk Lim Avg Mar	Peak Fiek Margin vs	Field Strength I Strength Li . Average Li . Peak Limit	mit

7.2.5. TX ABOVE 1 GHz FOR 802.11n HT20 MODE IN THE 5.8 GHz BAND


HARMONICS AND SPURIOUS EMISSIONS

Total Tota	Sec. Adapter + Headphone E. 6.5Mbsp
Horn 1-18GHz	e-amplifer 1-26GHz 4 HP 8449B 2 Cable 22807600 2 Cable 22807500 2 Cable 22807500 2 Cable 22807500 3 Cable 22807500 4 PF CL Amp D Corr Fitr Peak Avg BW/M dBw/m dBw/m dBw/m dB
T60; S/N: 2238 @3m	2' cable 22807600 2' cable 22807500 2' cable 22807500 2' cable 22807500 2' cable 22807600 2' cable 22807500 4 HPF Reject Filter Rew=IMHz; WBW=IMHz; WBW=I
This frequency Cables This	2' cable 22807600
3' cable 22807700 3' cable 22807600 12' cable 22807600 20' cable 22807500 20' cable 22807	2' cable 22807600
GHz (m) dBuV dBuV dBu dB	V dB/m dB dB dB dB uV/m dBuV/m dBuV/m dB uV/m dB uV/m dB uV/m dB dB (V/H) 8 38.9 11.2 -32.4 0.0 0.0 51.9 38.9 74 54 -22.1 -15.1 H
Continue	8 38.9 11.2 -32.4 0.0 0.0 51.9 38.9 74 54 -22.1 -15.1 H
1.490 3.0 33.17 21.08 38.9 11.2 -32.4 0.0 0.0 50.8 38.8 74 54 -23.2 -15.2	
1.570 3.0 33.50 21.23 38.9 11.3 -32.4 0.0 0.0 51.4 39.1 74 54 -22.6 -14.9 1.570 3.0 33.43 21.26 38.9 11.3 -32.4 0.0 0.0 51.3 39.1 74 54 -22.7 -14.9 18gh Channel (5825MHz) 1.650 3.0 33.71 21.42 39.0 11.4 -32.4 0.0 0.0 51.8 39.5 74 54 -22.2 -14.5 1.650 3.0 33.84 21.58 39.0 11.4 -32.4 0.0 0.0 51.9 39.7 74 54 -22.1 -14.3 1.650 3.0 33.84 21.58 39.0 11.4 -32.4 0.0 0.0 51.9 39.7 74 54 -22.1 -14.3 1.650 3.0 3.0 33.84 21.58 39.0 11.4 -32.4 0.0 0.0 51.9 39.7 74 54 -22.1 -14.3	
1.570 3.0 33.50 21.23 38.9 11.3 -32.4 0.0 0.0 51.4 39.1 74 54 -22.6 -14.9 1.570 3.0 33.43 21.26 38.9 11.3 -32.4 0.0 0.0 51.3 39.1 74 54 -22.7 -14.9 18gh Channel (5825MHz) 1.650 3.0 33.71 21.42 39.0 11.4 -32.4 0.0 0.0 51.8 39.5 74 54 -22.2 -14.5 1.650 3.0 33.84 21.58 39.0 11.4 -32.4 0.0 0.0 51.9 39.7 74 54 -22.1 -14.3 1.650 3.0 33.84 21.58 39.0 11.4 -32.4 0.0 0.0 51.9 39.7 74 54 -22.1 -14.3 1.650 3.0 3.0 33.84 21.58 39.0 11.4 -32.4 0.0 0.0 51.9 39.7 74 54 -22.1 -14.3	
1.650 3.0 33.71 21.42 39.0 11.4 -32.4 0.0 0.0 51.8 39.5 74 54 -22.2 -14.5 1.650 3.0 33.84 21.58 39.0 11.4 -32.4 0.0 0.0 51.9 39.7 74 54 -22.1 -14.3 Rev. 11.10.11 Note: No other emissions were detected above the system noise floor.	
Note: No other emissions were detected above the system noise floor.	
Dist Distance to Antenna D Corr Distance Correct to 3 meters Pk Lim Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Avg Mar AF Antenna Factor Peak Calculated Peak Field Strength Pk Mar Margin vs. Average Limit CL Cable Loss HPF High Pass Filter Pk Mar Margin vs. Peak Limit	nency Amp Preamp Gain Avg Lim Average Field Strength Limit D Corr Distance Correct to 3 meters Pk Lim Peak Field Strength Limit Avg Average Field Strength @ 3 m Avg Mar Margin vs. Average Limit Peak Calculated Peak Field Strength Pk Mar Margin vs. Peak Limit

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

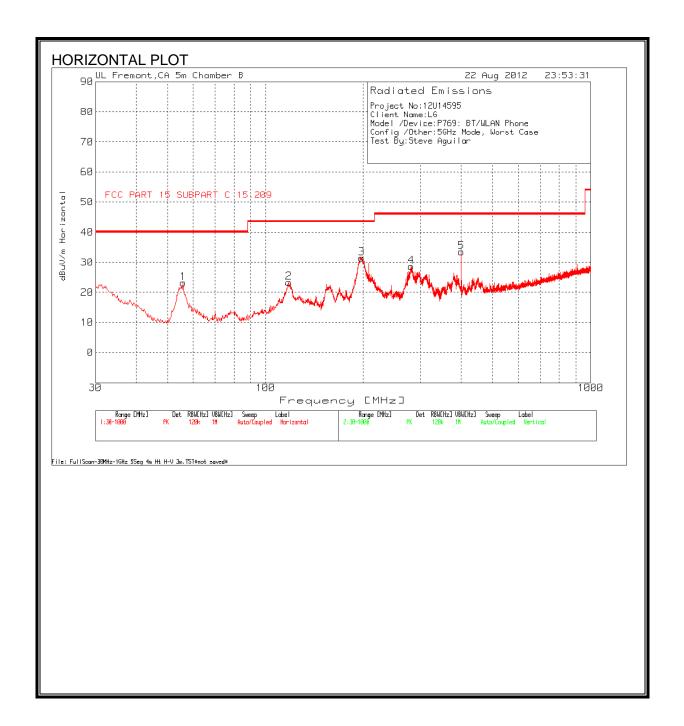
HORIZONTAL AND VERTICAL DATA

 Company Name:
 LG

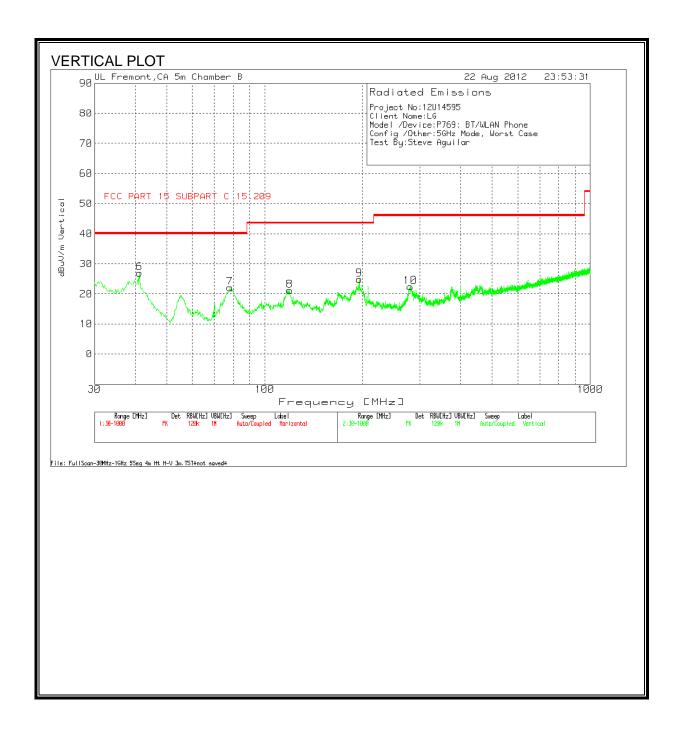
 Project:
 12U14595

 Date:
 8/23/2012

Configuration: EUT + Adapter + Headset **Mode:** 2 GHz , Worst Case


Tested by: S.Aguilar

Test	Meter		Pre Amp	Antenna		Class C PK			
Frequency	Reading	Detector	Factor	Factor	Corrected	limit	QP	Height	
[MHz]	[dB(μV)]		[dB]	[dB/m]	[dB(µV/m)]	[dB(µV/m)]	Margin [dB]	[cm]	Polarity
Range 1 30) - 1000MH	z							
54.8122	43.78	PK	7.3	-29	22.08	40	-17.92	400	Horz
117.6179	37.85	PK	13.8	-28.4	23.25	43.5	-20.25	300	Horz
155.4177	38.02	PK	12.5	-28	22.52	43.5	-20.98	200	Horz
196.3189	47.25	PK	12.2	-27.6	31.85	43.5	-11.65	200	Horz
280.2538	42.03	PK	13.3	-26.9	28.43	46	-17.57	100	Horz
399.8561	43.84	PK	15.5	-27	32.34	46	-13.66	100	Horz
Range 2 3	0 - 1000MH	łz							
30.7754	32.81	PK	20.9	-29.3	24.41	40	-15.59	100	Vert
40.0799	39.32	PK	13.7	-29.2	23.82	40	-16.18	100	Vert
56.1691	44.97	PK	7.2	-29	23.17	40	-16.83	100	Vert
79.2366	43.36	PK	7.9	-28.8	22.46	40	-17.54	100	Vert
118.0056	35.47	PK	13.9	-28.3	21.07	43.5	-22.43	100	Vert
195.3497	39.3	PK	12	-27.6	23.7	43.5	-19.8	200	Vert
207.9496	39.33	PK	10.6	-27.5	22.43	43.5	-21.07	200	Vert
280.8353	35.83	PK	13.3	-26.9	22.23	46	-23.77	200	Vert


PK - Peak detector QP - Quasi-peak detector

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: AUGUST 24, 2012

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL AND VERTICAL DATA

 Company Name:
 LG

 Project:
 12U14595

 Date:
 8/23/2012

Configuraiton: EUT + Adapter + Headset **Mode:** 5 GHz , Worst Case

Tested by: S.Aguilar

Test	Meter		Pre Amp	Antenna		Class C PK			
Frequency	Reading	Detector	Factor	Factor	Corrected	limit	QP	Height	
[MHz]	[dB(μV)]		[dB]	[dB/m]	[dB(µV/m)]	[dB(µV/m)]	Margin [dB]	[cm]	Polarity
Range 1 30) - 1000MH	z							
55.7814	45.01	PK	7.2	-29	23.21	40	-16.79	400	Horz
118.0056	37.73	PK	13.9	-28.3	23.33	43.5	-20.17	200	Horz
197.6759	46.56	PK	12.4	-27.6	31.36	43.5	-12.14	100	Horz
280.4476	42.25	PK	13.3	-26.9	28.65	46	-17.35	100	Horz
399.8561	44.92	PK	15.5	-27	33.42	46	-12.58	100	Horz
Range 2 3	0 - 1000MH	łz							
41.243	43.39	PK	12.8	-29.2	26.99	40	-13.01	200	Vert
78.2674	42.92	PK	8	-28.8	22.12	40	-17.88	100	Vert
119.3625	35.47	PK	14	-28.3	21.17	43.5	-22.33	100	Vert
195.3497	40.45	PK	12	-27.6	24.85	43.5	-18.65	100	Vert
280.2538	36	PK	13.3	-26.9	22.4	46	-23.6	200	Vert

PK - Peak detector QP - Quasi-peak detector

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted L	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

6 WORST EMISSIONS

 Company Name:
 LG

 Project:
 12U14595

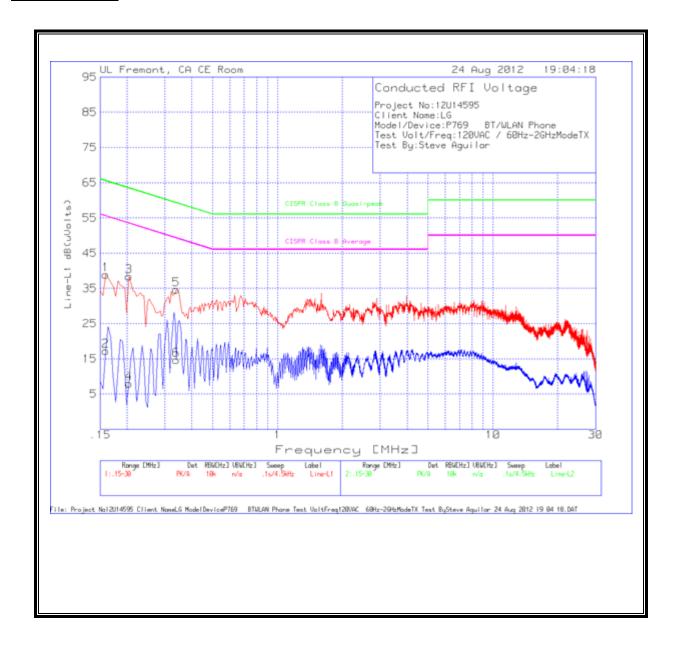
 Date:
 8/24/2012

 Configuration:
 120VAC / 60 Hz

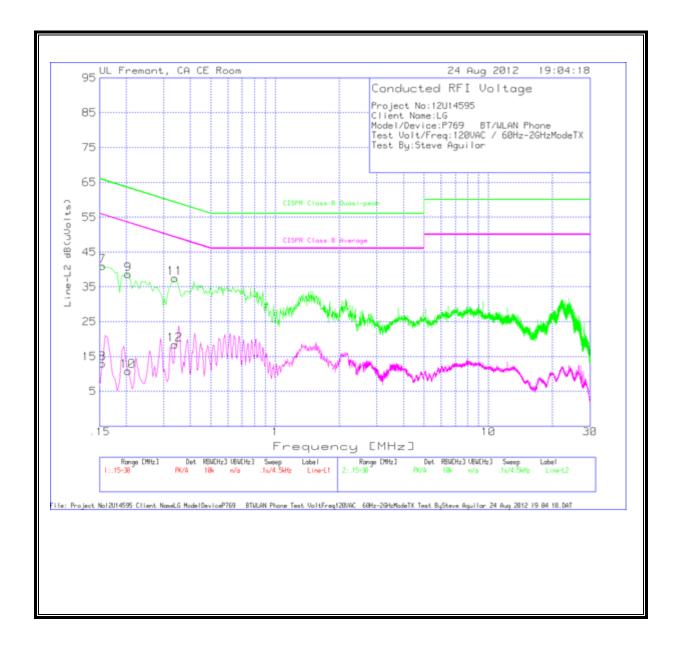
Mode: 2GHz TX mode Worst Case

Tested by: S. Aguilar

Line-L1 .15 - 30MHz


Test Frequency [MHz]	Meter Reading [dBuV]	Detector Type	LISN [dB]	Cables [dB]	Corrected [dB(uV)]	Class B QP Limit	QP Margin	Class B Av Limit [dB(uV)]	Av Margin [dB]
0.159	38.76	PK	0.1	0	38.86	65.5	-26.64	-	
0.159	17.18	Av	0.1	0	17.28	-	-	55.5	-38.22
0.204	38.28	PK	0.1	0	38.38	63.4	-25.02	-	-
0.204	7.87	Av	0.1	0	7.97	-	-	53.4	-45.43
0.339	34.6	PK	0.1	0	34.7	59.2	-24.5	-	,
0.339	14.63	Av	0.1	0	14.73	-	-	49.2	-34.47

Line-L2 .15 - 30MHz


	Meter								Av
Test Frequency [MHz]	Reading [dBuV]	Detector Type	LISN [dB]	Cables [dB]	Corrected [dB(uV)]	Class B QP Limit	QP Margin	Class B Av Limit [dB(uV)]	Margin [dB]
0.1545	40.87	PK	0.1	0	40.97	65.8	-24.83	-	-
0.1545	12.88	Av	0.1	0	12.98	-	-	55.8	-42.82
0.204	38.5	PK	0.1	0	38.6	63.4	-24.8	-	-
0.204	10.76	Av	0.1	0	10.86	-	-	53.4	-42.54
0.339	37.35	PK	0.1	0	37.45	59.2	-21.75	-	-
0.339	18.29	Av	0.1	0	18.39	-	-	49.2	-30.81

PK - Peak detector QP - Quasi-Peak detector Av - Average detector

LINE 1 RESULTS

LINE 2 RESULTS

6 WORST EMISSIONS

 Company Name:
 LG

 Project:
 12U14595

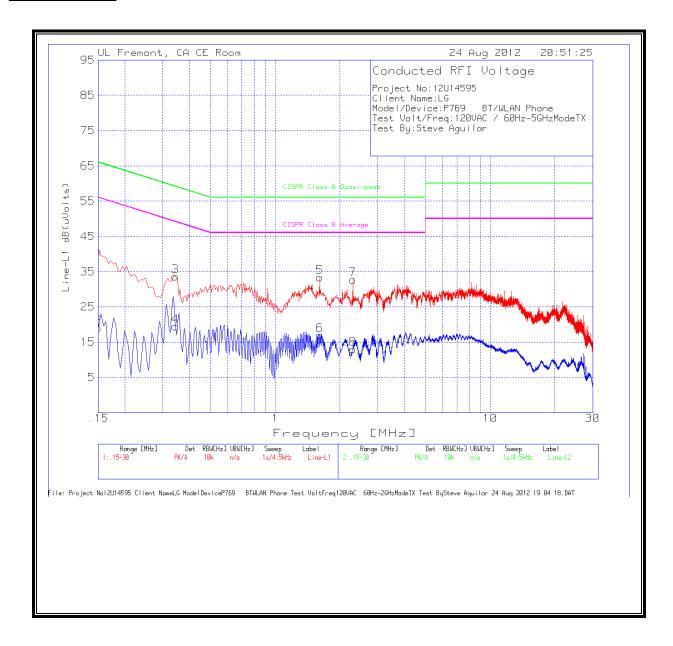
 Date:
 8/24/2012

 Configuration:
 120VAC / 60 Hz

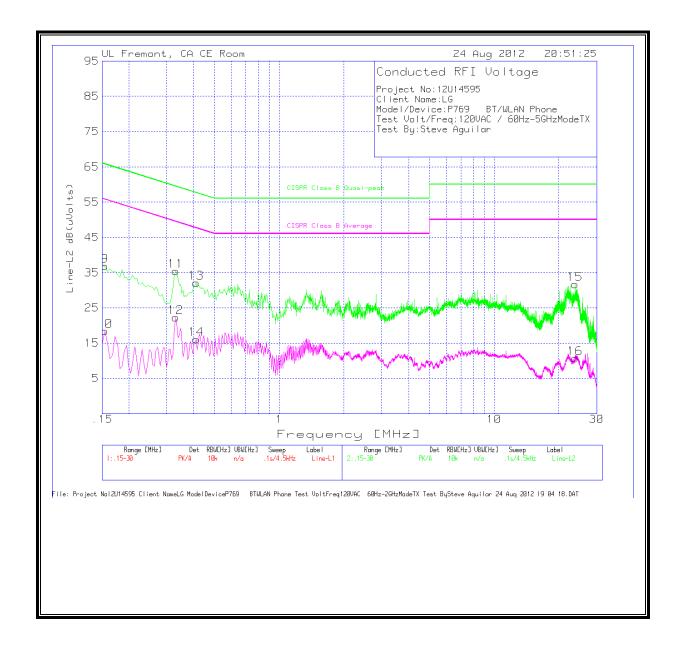
Mode: 5 GHz TX mode Worst Case

Tested by: S. Aguilar

Line-L1 .15 - 30MHz


Test Frequency [MHz]	Meter Reading [dBuV]	Detector Type	LISN [dB]	Cables [dB]	Corrected [dB(uV)]	Class B QP Limit	QP Margin	Class B Av Limit [dB(uV)]	Av Margin [dB]
0.15	40.81	PK	0.1	0	40.91	66	-25.09	-	-
0.15	19.01	Av	0.1	0	19.11	-	1	56	-36.89
0.3435	33.5	PK	0.1	0	33.6	59.1	-25.5	-	-
0.3435	19.35	Av	0.1	0	19.45	-	ı	49.1	-29.65
1.6125	33.19	PK	0.1	0.1	33.39	56	-22.61	-	1
1.6125	16.75	Av	0.1	0.1	16.95	-	1	46	-29.05
2.2965	32.5	PK	0.1	0.1	32.7	56	-23.3	-	1
2.2965	12.79	Av	0.1	0.1	12.99	-	ı	46	-33.01

Line-L2 .15 - 30MHz


Test Frequency [MHz]	Meter Reading [dBuV]	Detector Type	LISN [dB]	Cables [dB]	Corrected [dB(uV)]	Class B QP Limit	QP Margin	Class B Av Limit [dB(uV)]	Av Margin [dB]
0.1545	36.8	PK	0.1	0	36.9	65.8	-28.9	-	1
0.1545	18.29	Av	0.1	0	18.39	-	1	55.8	-37.41
0.33	35.32	PK	0.1	0	35.42	59.5	-24.08	-	1
0.33	22.2	Av	0.1	0	22.3	-	1	49.5	-27.2
0.411	31.93	PK	0.1	0	32.03	57.6	-25.57	-	1
0.411	15.95	Av	0.1	0	16.05	-	1	47.6	-31.55
23.802	31.07	PK	0.4	0.2	31.67	60	-28.33	-	1
23.802	10.04	Av	0.4	0.2	10.64	-	-	50	-39.36

PK - Peak detector QP - Quasi-Peak detector Av - Average detector

LINE 1 RESULTS

LINE 2 RESULTS

