Report No.: DRTFCC1209-0490

Total 44 Pages

RF TEST REPORT

demonstration (1981)	
Test	:4
IPST	ITAM

Cellular/PCS GSM/GPRS/EDGE Phone with Bluetooth, WLAN

and NFC

Model No.

: LG-P760, LGP760, P760

Order No.

DEMC1207-01318

Date of receipt

2012-07-30

Test duration

2012-08-16 ~ 2012-08-27

Date of issue

2012-09-12

Use of report

FCC Original Grant

Applicant

: LG Electronics MobileComm U.S.A., Inc.

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Test laboratory

Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea

Test specification

: FCC Part 15 Subpart C 247

ANSI C63.4-2003, KDB558074

Test environment

See appended test report

Test result

□ Pass

Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

Tested	by:
--------	-----

Witnessed by:

Reviewed by:

Engineer H.S.SON N/A

Technical Director Harvey Sung

FCCID:

Table of Contents

1. GENERAL INFORMATION	3
2. EUT DESCRIPTION	3
3. SUMMARY OF TESTS	
4. TEST METHODOLOGY	
4.1 EUT CONFIGURATION	
4.2 EUT EXERCISE	5
4.3 GENERAL TEST PROCEDURES	5
4.4 DESCRIPTION OF TEST MODES	5
5. INSTRUMENT CALIBRATION	6
6. FACILITIES AND ACCREDITATIONS	6
6.1 FACILITIES	6
6.2 EQUIPMENT	6
7. ANTENNA REQUIREMENTS	6
8. TEST RESULT	7
8.1 6dB Bandwidth	7
8.2 Maximum Peak Conducted Output Power	12
8.3 Maximum Power Spectral Density	
8.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions	23
8.5 Radiated Spurious Emissions	36
8.6 Power-line Conducted Emissions	40
9. LIST OF TEST EQUIPMENT	43
APPENDIX I	44

FCCID: **ZNFP760** DEMC1207-01318

Report No.: DRTFCC1209-0490

1. GENERAL INFORMATION

Applicant : LG Electronics MobileComm U.S.A., Inc.

Address : 1000 Sylvan Avenue, Englewood Cliffs NJ 07632

FCC ID : ZNFP760

EUT : Cellular/PCS GSM/GPRS/EDGE Phone with Bluetooth, WLAN and NFC

Model : LG-P760

Additional Model(s) : LGP760, P760

Data of Test : 2012-08-16 ~ 2012-08-27

: Cheol Goo Lee Contact person

2. EUT DESCRIPTION

Product	Cellular/PCS GSM/GPRS/EDGE Phone with Bluetooth, WLAN and NFC
Model Name	 LG-P760, LGP760. P760 3 models are same mechanical, electrical and functional. The only difference is the model name, which are changed for marketing purpose.
Power Supply	DC 3.8V
Frequency Range	5GHz Band • 802.11a/n(20MHz): 5745~5825 MHz
Max. RF Output Power	5GHz Band • 802.11a: 14.57 dBm • 802.11n (HT20): 14.17 dBm
Modulation Type	802.11a/n: OFDM
Antenna Specification	Internal Antenna (1TX 1RX) • 5.7GHz Band Max. peak gain : 1.39dBi

3. SUMMARY OF TESTS

FCC Part Section(s)	RSS Section(s)	Parameter	Limit	Test Condition	Status Note 1
I. Transmitter	Mode (TX)				
15.247(a)	RSS-210 [A8.2]	6 dB Bandwidth	> 500 kHz		С
15.247(b)	RSS-210 [A8.4]	Transmitter Output Power	< 1Watt	Conducted	С
15.247(c)	RSS-210 [A8.5]	Out of Band Emissions / Band Edge	20dBc in any 100kHz BW	Conducted	С
15.247(d)	RSS-210 [A8.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz		С
-	RSS Gen Issue 3	Occupied Bandwidth (99%)	RSS-Gen(4.6.1)		С
15.205 15.209	RSS-210 [A8.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	< FCC 15.209 limits	Radiated	C Note2
15.207	RSS-Gen [7.2.4]	AC Conducted Emissions	< FCC 15.207 limits	AC Line Conducted	С
15.203	RSS-Gen [7.1.2]	Antenna Requirements	FCC 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis and the worst case data was reported.

FCCID: **ZNFP760** DEMC1207-01318

Report No.: DRTFCC1209-0490

4. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz(ANSI C63.4-2003) and KDB558074

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

4.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003)

4.4 DESCRIPTION OF TEST MODES

The EUT has been tested with several operating conditions for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode.

FCCID: ZNFP760 DEMC1207-01318

Report No.: DRTFCC1209-0490

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 FACILITIES

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number: 678747

6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203 & RSS-Gen [7.1.2]:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- * The internal antenna of this E.U.T is uniquely attached on the main PCB using specially spring contactors.
- * Therefore this E.U.T Complies with the requirement of §15.203

8. TEST RESULT

8.1 6dB Bandwidth

Test Requirements and limit, §15.247(a) & RSS-210 [A8.2]

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6dB bandwidth is 500 kHz.

TEST CONFIGURATION

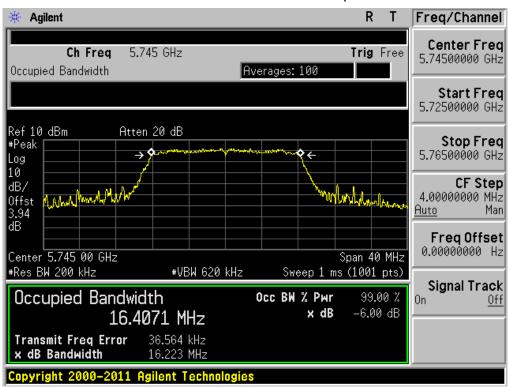
Refer to the APPENDIX I.

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074.

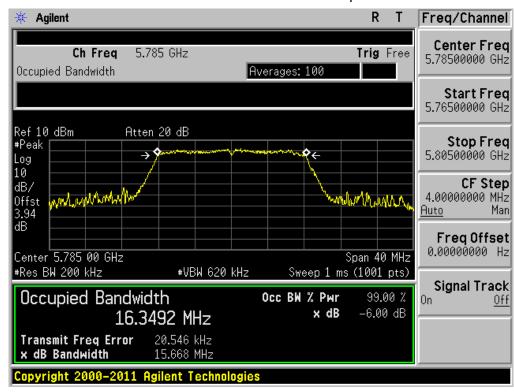
- 1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW).
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.

(RBW:200KHz/VBW:620KHz for EBW < 20 MHz , RBW:390KHz/VBW:1.2MHz for 20 MHz < EBW < 40 MHz)

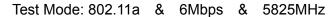

- 3. Detector = **Peak**.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

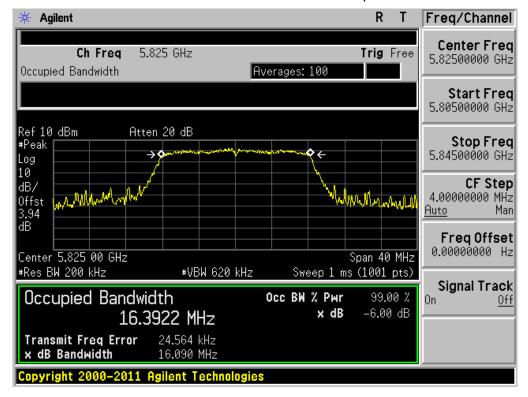
■ TEST RESULTS: Comply

Test Mode	Data Rate	Frequency [MHz]	Test Results [MHz]
		5745	16.223
802.11a	6Mbps	5785	15.668
		5825	16.090
	MCS0	5745	17.489
802.11n (20MHz)		5785	17.430
(=====)		5825	17.048
802.11n	MCS0	5755	-
(40MHz)	IVICSU	5795	-


RESULT PLOTS

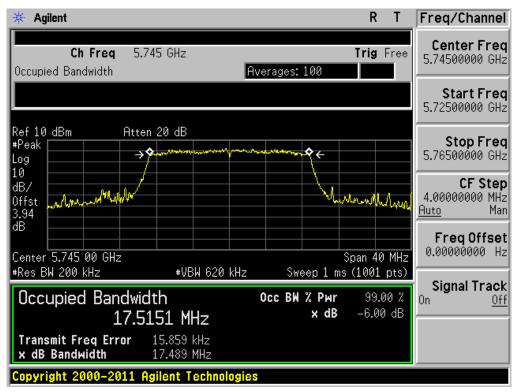
6 dB Bandwidth Test Mode: 802.11a & 6Mbps & 5745MHz

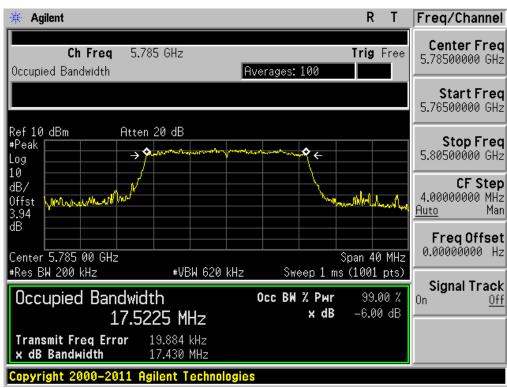



6 dB Bandwidth

Test Mode: 802.11a & 6Mbps & 5785MHz

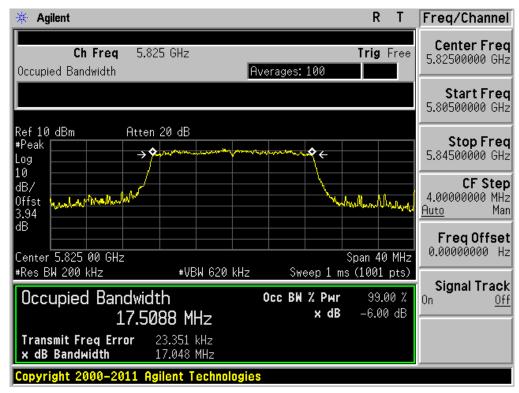
6 dB Bandwidth




DEMC1207-01318 Report No.: DRTFCC1209-0490

ZNFP760

6 dB Bandwidth Test Mode: 802.11n HT20 & MCS0 & 5745MHz


Test Mode: 802.11n HT20 6 dB Bandwidth MCS0 & 5785MHz

FCCID: ZNFP760

DEMC1207-01318 Report No.: **DRTFCC1209-0490**

6 dB Bandwidth Test Mode: 802.11n HT20 & MCS0 & 5825MHz

FCCID: **ZNFP760** DEMC1207-01318

Report No.: DRTFCC1209-0490

8.2 Maximum Peak Conducted Output Power

Test Requirements and limit, §15.247(b) & RSS-210 [A8.4]

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

TEST CONFIGURATION

Refer to the APPENDIX I.

TEST PROCEDURE :

Maximum Peak Conducted Output Power is measured using the Measurement Procedure PK2 of KDB558074.

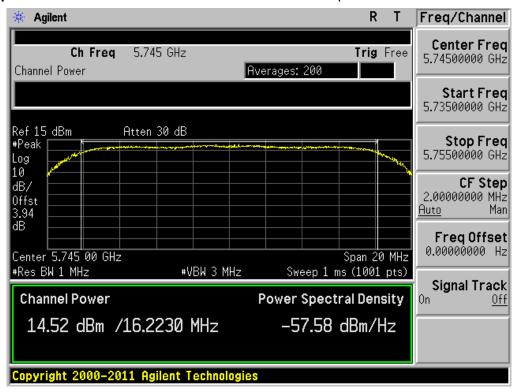
- 1. Set the RBW = 1 MHz.
- 2. Set the VBW = 3 MHz.
- 3. Set the span to a value that is **5-30** % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges (for some analyzers, this may require a manual override to ensure use of peak detector). If the spectrum analyzer does not have a band power function, sum the spectrum levels (in linear power units) at 1 MHz intervals extending across the EBW of the spectrum.

Note: Tests were performed all possible data rates and the worst case data were reported.

 DEMC1207-01318
 FCCID:
 ZNFP760

 DEMC1207-01318
 Report No.:
 DRTFCC1209-0490

■ TEST RESULTS : Comply


- Measurement Data: Comply

- Summary of Test Results

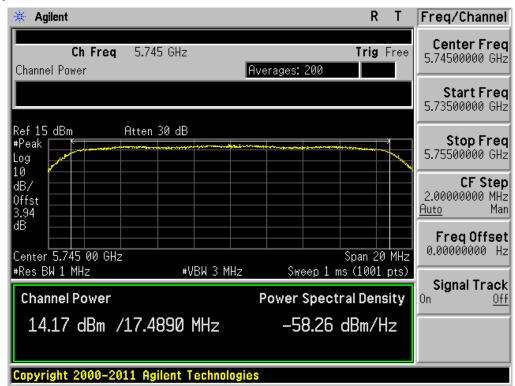
Cuminary of rest resource							
Mode	Channel	Frequency [MHz]	Test Result				
		[]	[dBm]	[W]			
	149	5745	14.52	0.028			
802.11a	157	5785	14.57	0.029			
	165	5825	14.11	0.026			
	149	5745	14.17	0.026			
802.11n HT20	157	5785	14.16	0.026			
	165	5825	13.93	0.025			
802.11n HT40	151	5755	-	-			
	159	5795	-	-			

RESULT PLOTS

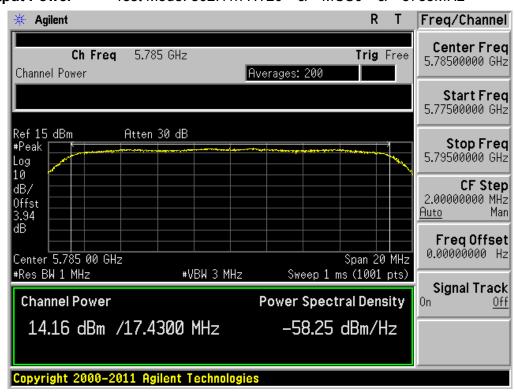
Peak Output Power Test Mode: 802.11a & 6Mbps & 5745MHz

Peak Output Power Test Mode: 802.11a & 6Mbps & 5785MHz

FCCID: ZNFP760

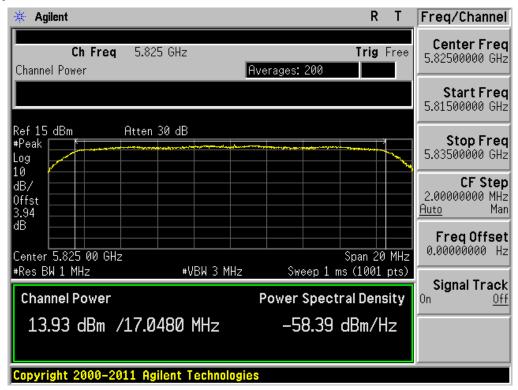

DEMC1207-01318 Report No.: **DRTFCC1209-0490**

Peak Output Power Test Mode: 802.11a & 6Mbps & 5825MHz



Report No.: DRTFCC1209-0490

Peak Output Power Test Mode: 802.11n HT20 & MCS0 & 5745MHz


Peak Output Power Test Mode: 802.11n HT20 MCS0 5785MHz

FCCID: ZNFP760

DEMC1207-01318 Report No.: **DRTFCC1209-0490**

Peak Output Power Test Mode: 802.11n HT20 & MCS0 & 5825MHz

8.3 Maximum Power Spectral Density

Test requirements and limit, §15.247(e) & RSS-210 [A8.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard –specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

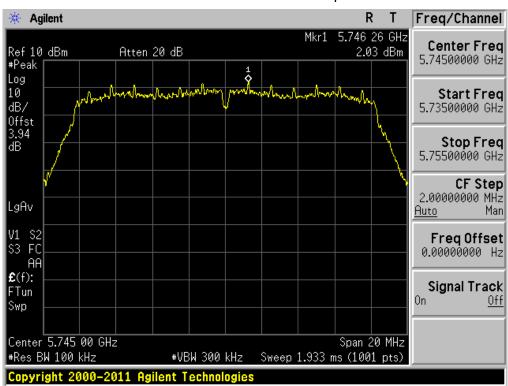
TEST CONFIGURATION

Refer to the APPENDIX I.

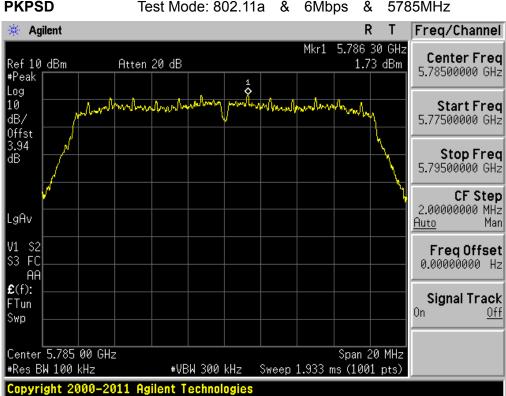
■ TEST PROCEDURE:

The Measurement Procedure PKPSD of KDB558074 is used.

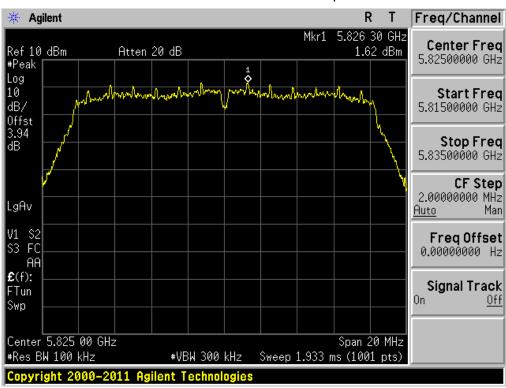
- 1. Set the **RBW = 100 kHz**.
- 2. Set the **VBW** ≥ **300** kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the **peak marker function** to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
- 9. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where **BWCF = 10log (3 kHz/100 kHz = -15.2 dB)**.
- 10. The resulting peak PSD level must be ≤ 8 dBm.


■ TEST RESULTS: Comply

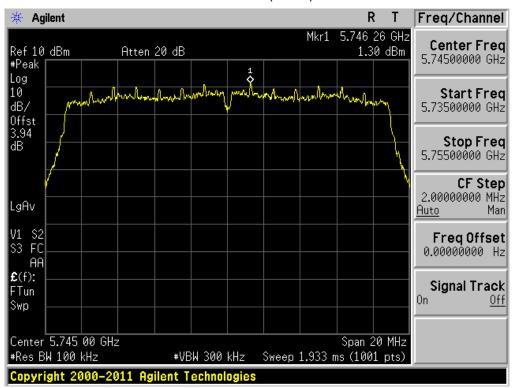
Test Mode	Data Rate	Frequency [MHz]	S/A Reading [dBm]	B.W.C.F [dB]	PKPSD [dBm]
		5745	2.03	-15.2	-13.17
802.11a	6Mbps	5785	1.73	-15.2	-13.47
		5825	1.62	-15.2	-13.58
		5745	1.30	-15.2	-13.90
802.11n HT20	MCS0	5785	1.58	-15.2	-13.62
		5825	1.29	-15.2	-13.91
802.11n HT40	MCS0	5755	-	-	-
002.1111 H140	IVICSU	5795	-	-	-


FCCID: **ZNFP760** Report No.: DRTFCC1209-0490 DEMC1207-01318

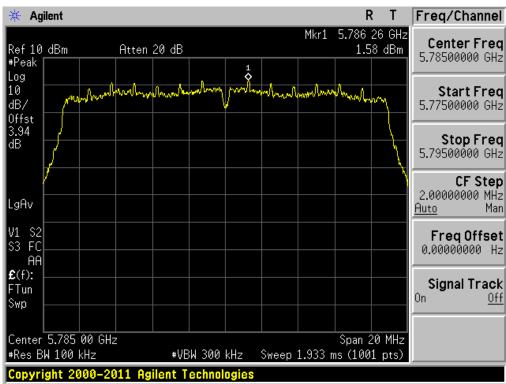
RESULT PLOTS


Maximum PKPSD Test Mode: 802.11a & 6Mbps & 5745MHz

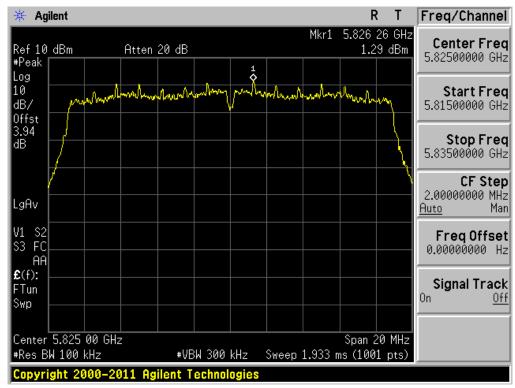
Maximum PKPSD Test Mode: 802.11a &


Maximum PKPSD Test Mode: 802.11a & 6Mbps & 5825MHz

DEMC1207-01318 Report No.: **DRTFCC1209-0490**


ZNFP760

Maximum PKPSD Test Mode: 802.11n(HT20) & MCS 0 & 5745MHz

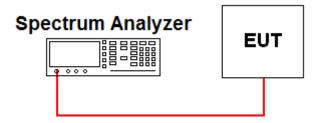

Maximum PKPSD

DEMC1207-01318 Report No.: DRTFCC1209-0490

Maximum PKPSD Test Mode: 802.11n(HT20) & MCS 0 & 5825MHz

8.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions

Test requirements and limit, §15.247(d)


§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

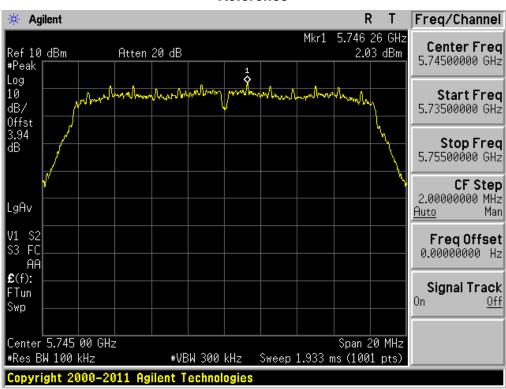
TEST CONFIGURATION

TEST PROCEDURE

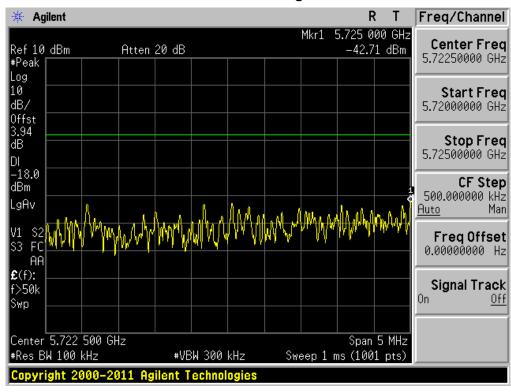
The transmitter output is connected to a spectrum analyzer.

- Measurement Procedure 1 Reference Level
- 1. Set the **RBW = 100 kHz**.
- 2. Set the **VBW** ≥ **300** kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the **peak marker function** to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

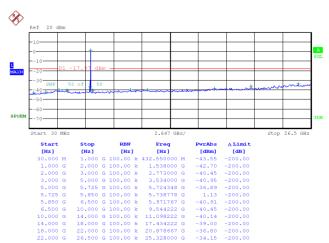
Next, **determine the power** in 100 kHz band segments outside of the authorized frequency band using the following measurement:

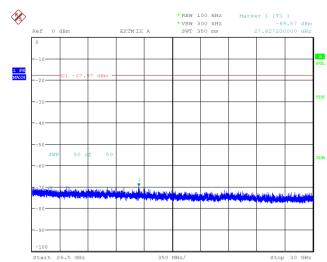

- Measurement Procedure 2 - Unwanted Emissions

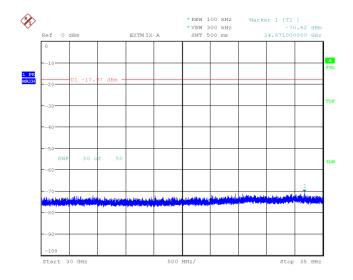
- 1. Set **RBW = 100 kHz**.
- 2. Set **VBW** ≥ **300 kHz**.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

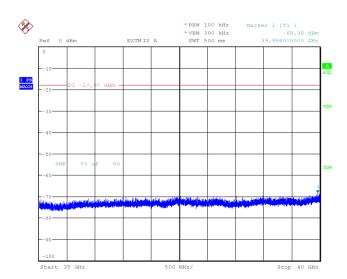

RESULT PLOTS

802.11a & 6Mbps & 5745MHz

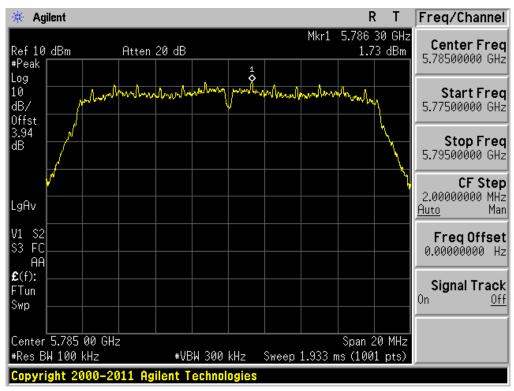

Reference



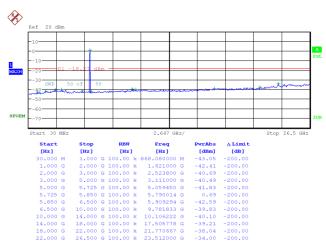

Low Band-edge

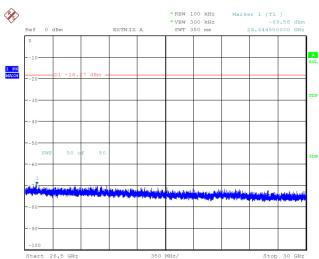


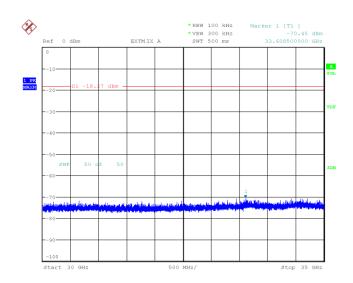
Conducted Spurious Emissions

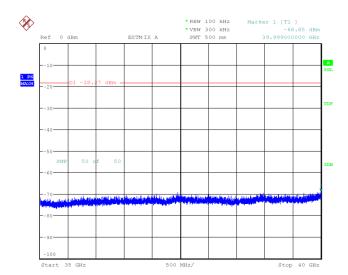


FCCID: **ZNFP760** DEMC1207-01318

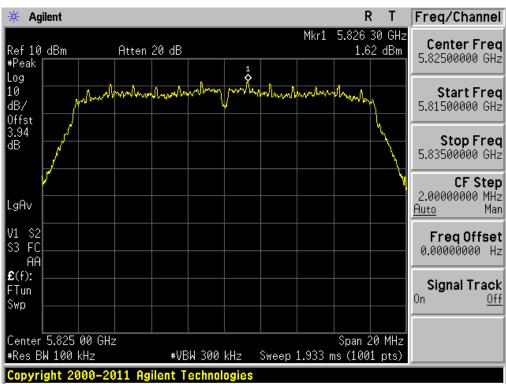

Report No.: DRTFCC1209-0490


802.11a & 6Mbps & 5785MHz

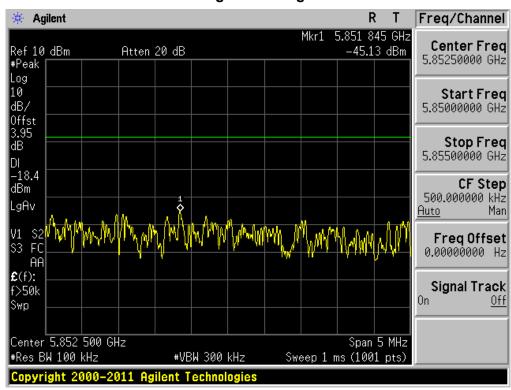

Reference



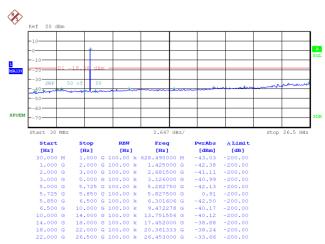
Conducted Spurious Emissions

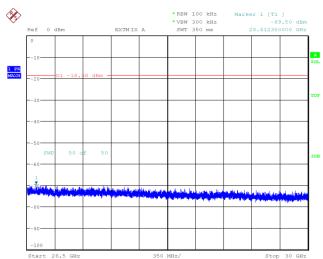


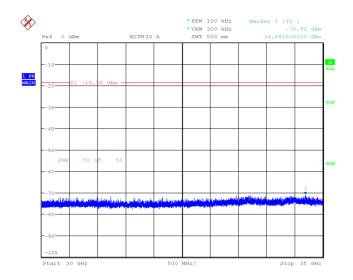
FCCID: **ZNFP760** DEMC1207-01318

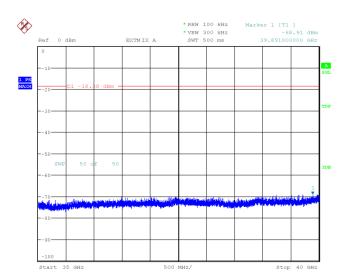

Report No.: DRTFCC1209-0490

802.11a & 6Mbps & 5825MHz

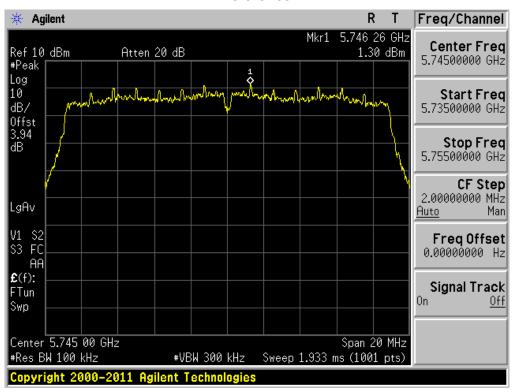

Reference



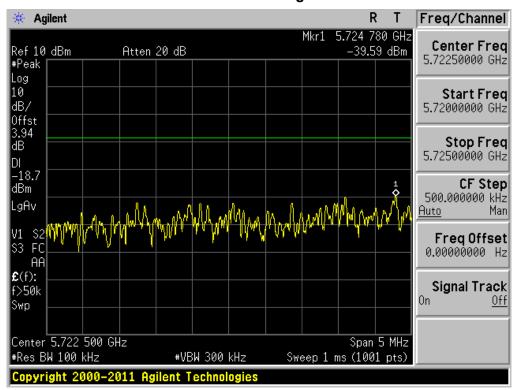

High Band-edge



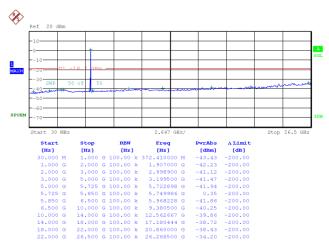
Conducted Spurious Emissions

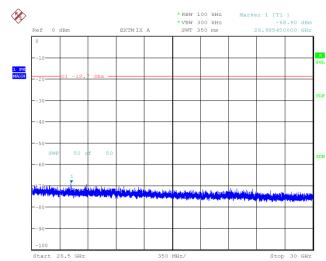


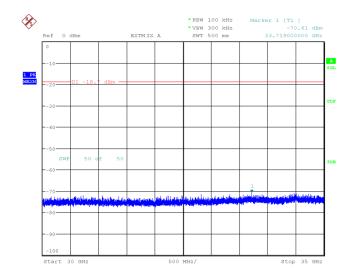
FCCID: **ZNFP760** DEMC1207-01318

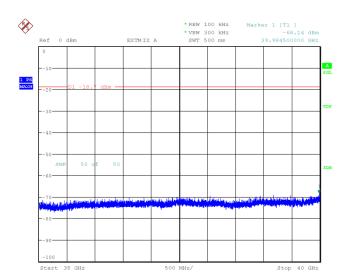

Report No.: DRTFCC1209-0490

802.11n(HT20) & MCS 0 & 5745MHz

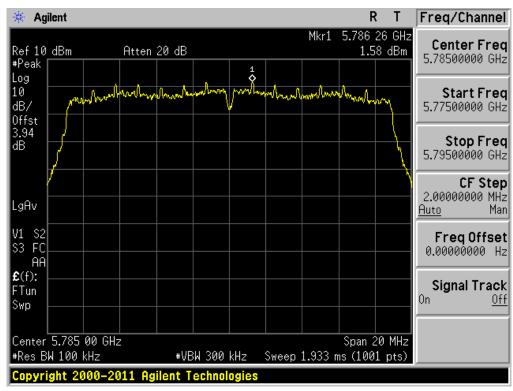

Reference

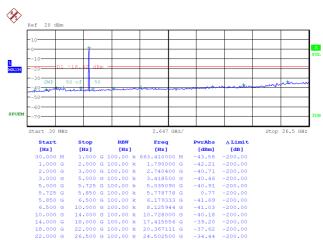


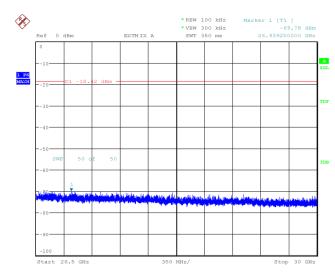

Low Band-edge

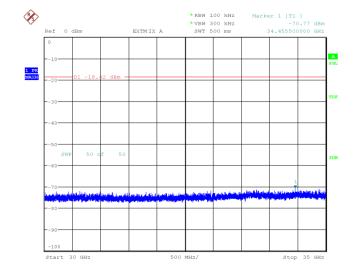


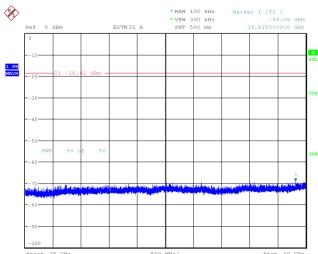
Conducted Spurious Emissions



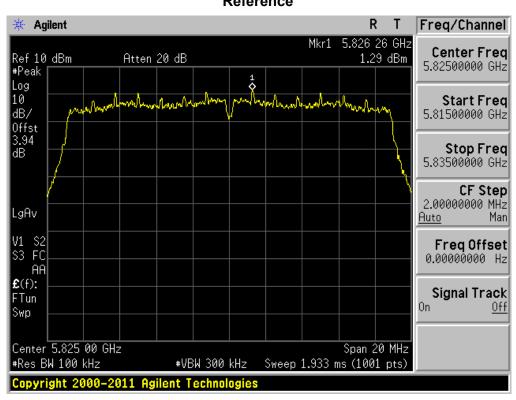

Report No.: DRTFCC1209-0490


802.11n(HT20) & MCS 0 & 5785MHz

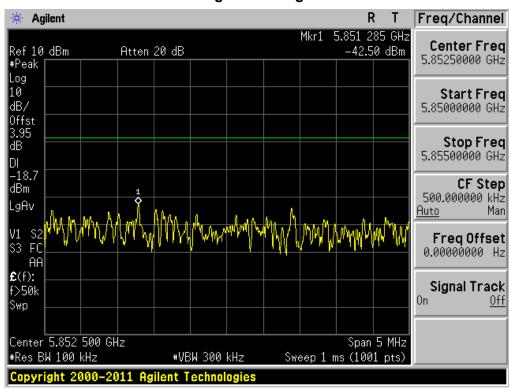

Reference



Conducted Spurious Emissions

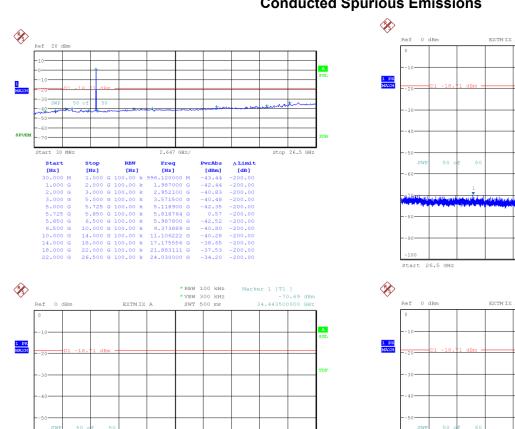


Report No.: DRTFCC1209-0490


5825MHz

802.11n(HT20) & MCS 0 &

Reference




High Band-edge

FCCID: **ZNFP760** DEMC1207-01318 Report No.: DRTFCC1209-0490

Conducted Spurious Emissions

*RBW 100 kHz *VBW 300 kHz SWT 350 ms

TRF-RF-213(01)120309

8.5 Radiated Spurious Emissions

Test Requirements and limit, §15.247(d), §15.205, §15.209 & RSS-210 [A8.5], RSS-Gen [7.2.2]

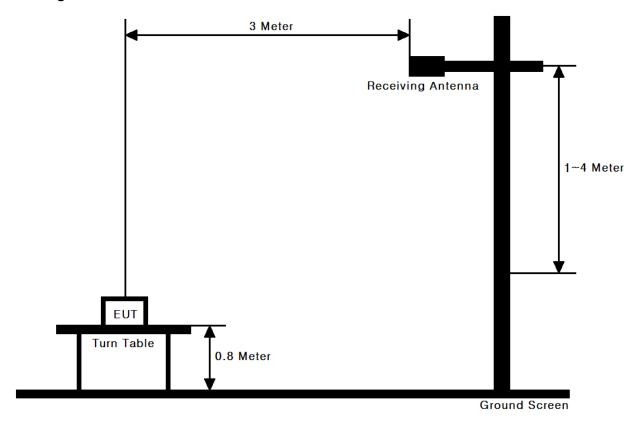
In any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:


- FCC Part 15.205	(a). Only spurious e	emissions are permi	ited in any or the n	equency bands	iisted below.
MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240			
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

[•] FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

FCCID: ZNFP760

DEMC1207-01318 Report No.: **DRTFCC1209-0490**

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

FCCID: DEMC1207-01318

ZNFP760

Report No.: DRTFCC1209-0490

30MHz ~ 40GHz Data(802.11a & 6Mbps)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Distance Correction Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
11492.140	Н	Z	PK	52.64	14.75	-6.02	61.37	74.00	12.63
11491.660	Н	Z	AV	38.65	14.75	-6.02	47.38	54.00	6.62

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Distance Correction Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
11570.900	Н	Z	PK	52.86	15.32	-6.02	62.16	74.00	11.84
11571.680	Н	Z	AV	39.56	15.32	-6.02	48.86	54.00	5.14

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Distance Correction Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
11648.560	Н	Z	PK	54.54	15.27	-6.02	63.79	74.00	10.21
11659.220	Н	Z	AV	40.32	15.27	-6.02	49.57	54.00	4.43

Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

Margin = Limit – Result 1 Result = Reading + T.F+ Distance Correction Factor / T.F = AF + CL - AGWhere, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

4. Measurement Distance above 10 GHz = 1.5 m. So Distance Correction Factor: -6.02dB = 20*log(1.5m/3m)

30MHz ~ 40GHz Data(802.11n HT20 & MCS0)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Distance Correction Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
11491.020	Н	Z	PK	51.45	14.75	-6.02	60.18	74.00	13.82
11490.620	Н	Z	AV	37.47	14.75	-6.02	46.20	54.00	7.80

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Distance Correction Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
11571.400	Н	Z	PK	53.57	15.32	-6.02	62.87	74.00	11.13
11570.880	Н	Z	AV	39.53	15.32	-6.02	48.83	54.00	5.17

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Distance Correction Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
11650.900	Н	Z	PK	53.64	15.27	-6.02	62.89	74.00	11.11
11650.660	Н	Z	AV	39.55	15.27	-6.02	48.80	54.00	5.20

Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

 $\label{eq:margin} \begin{aligned} &\text{Margin = Limit - Result } \ / \ &\text{Result = Reading + T.F+ Distance Correction Factor} \ / \ &\text{T.F = AF + CL - AG} \\ &\text{Where, T.F = Total Factor,} \ &\text{AF = Antenna Factor,} \ &\text{CL = Cable Loss,} \ &\text{AG = Amplifier Gain} \end{aligned}$

4. Measurement Distance above 10 GHz = 1.5 m. So Distance Correction Factor: -6.02dB = 20*log(1.5m/3m)

FCCID: **ZNFP760** DEMC1207-01318

Report No.: DRTFCC1209-0490

8.6 Power-line Conducted Emissions

Test Requirements and limit, §15.207 & RSS-Gen [7.2.2]

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

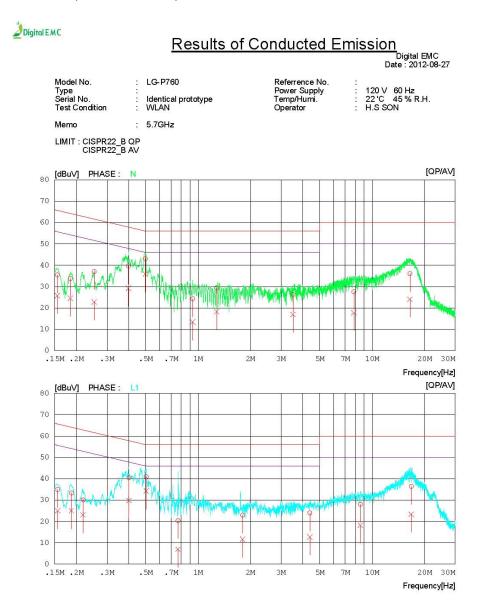
Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and support equipment.


TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

■ RESULT PLOTS

AC Line Conducted Emissions (Graph)

Test Mode: 802.11a (5.7GHz Band)

FCCID: ZNFP760

DEMC1207-01318 Report No.: **DRTFCC1209-0490**

AC Line Conducted Emissions (List)

Test Mode: 802.11a (5.7GHz Band)

Results of Conducted Emission

Digital EMC Date : 2012-08-27

 Model No.
 LG-P760
 Reference No.
 :

 Type
 :
 Power Supply
 : 120 V 60 Hz

 Serial No.
 :
 Identical prototype
 Temp/Humi.
 : 22 °C
 45 % R.H.

 Test Condition
 WLAN
 Operator
 : H.S SON

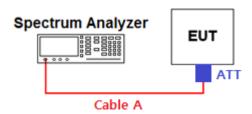
Memo : 5.7GHz

LIMIT : CISPR22_B QP CISPR22_B AV

NC	FREQ [MHz]	QP	AV	C.FACTOR	QP	AV		AV	QP		PHASE
1	0.15550	35.2	25.5	0.3	35.5	25.8	65.7	55.7	30.2	29.9	N
2	0.18464	33.6	24.4	0.2	33.8	24.6	64.3	54.3	30.5	29.7	N
3	0.25286	36.9	22.6	0.2	37.1	22.8	61.7	51.7	24.6	28.9	N
4	0.39865	39.4	28.9	0.3	39.7	29.2	57.9	47.9	18.2	18.7	N
5	0.49744	42.8	35.7	0.2	43.0	35.9	56.0	46.0	13.0	10.1	N
6	0.93244	24.0	13.2	0.3	24.3	13.5	56.0	46.0	31.7	32.5	N
7	1.28150	29.0	17.9	0.3	29.3	18.2	56.0	46.0	26.7	27.8	N
8	3.51250	26.0	16.6	0.4	26.4	17.0	56.0	46.0	29.6	29.0	N
9	7.84850	27.1	17.3	0.5	27.6	17.8	60.0	50.0	32.4	32.2	N
10	16.48500	35.1	23.1	1.0	36.1	24.1	60.0	50.0	23.9	25.9	N
11	0.15633	34.7	24.8	0.3	35.0	25.1	65.7	55.7	30.7	30.6	L1
12	0.18750	33.1	24.9	0.2	33.3	25.1	64.1	54.1	30.8	29.0	L1
13	0.21875	29.9	22.9	0.2	30.1	23.1	62.9	52.9	32.8	29.8	L1
14	0.40093	40.2	29.5	0.3	40.5	29.8	57.8	47.8	17.3	18.0	L1
15	0.50365	40.7	34.1	0.2	40.9	34.3	56.0	46.0	15.1	11.7	L1
16	0.76738	20.2	6.7	0.2	20.4	6.9	56.0	46.0	35.6	39.1	L1
17	1.80200	22.7	11.4	0.3	23.0	11.7	56.0	46.0	33.0	34.3	L1
18	4.38900	23.6	12.3	0.4	24.0	12.7	56.0	46.0	32.0	33.3	L1
19	8.55550	27.4	17.5	0.7	28.1	18.2	60.0	50.0	31.9	31.8	L1
20	16.76950	35.4	22.4	1.0	36.4	23.4	60.0	50.0	23.6	26.6	L1

 DEMC1207-01318
 FCCID:
 ZNFP760

 DEMC1207-01318
 Report No.:
 DRTFCC1209-0490


9. LIST OF TEST EQUIPMENT

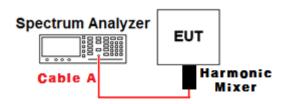
Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent	E4440A	11/09/30	12/09/30	MY45304199
Spectrum Analyzer	Rohde Schwarz	FSQ26	12/01/09	13/01/09	200445
Harmonic Mixer	OML	M28HWD	12/02/06	13/02/06	Ka100224-1
Digital Multimeter	H.P	34401A	12/03/05	13/03/05	3146A13475, US36122178
Spectrum Analyzer	Agilent	N9020A	12/01/09	13/01/09	MY49100833
Signal Generator	Rohde Schwarz	SMR20	12/03/05	13/03/05	101251
Vector Signal Generator	Rohde Schwarz	SMJ100A	12/01/09	13/01/09	100148
Thermo hygrometer	BODYCOM	BJ5478	12/01/13	13/01/13	090205-2
DC Power Supply	HP	6622A	12/03/05	13/03/05	3448A03760
Wideband Power Sensor	Rohde Schwarz	NRP-Z81	12/06/28	13/06/28	1137.9009.02-101001
High-Pass Filter	Wainwright	WHKX8.5	11/09/19	12/09/19	1
BILOG ANTENNA	SCHAFFNER	CBL6112D	10/12/21	12/12/21	22609V
HORN ANT	ETS	3115	12/02/20	13/02/20	6419
HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
Attenuator (3dB)	WEINSCHEL	56-3	11/09/30	12/09/30	Y2342
Amplifier (22dB)	H.P	8447E	12/01/09	13/01/09	2945A02865
Amplifier (30dB)	Agilent	8449B	12/03/05	13/03/05	3008A01590
EMI TEST RECEIVER	R&S	ESU	12/03/05	13/03/05	100014
RFI/Field intensity Meter	KYORITSU	KNM-2402	12/07/02	13/07/02	4N-170-3
Spectrum Analyzer	H/P	8591E	12/03/05	13/03/05	3649A05889
CVCF	NF	4420	11/09/15	12/09/15	3049354420023
LISN	R&S	ESH2-Z5	11/09/30	12/09/30	8287391006

APPENDIX I

Conducted Test set up Diagram & Path loss Information

Conducted Measurement(30MHz ~ 26.5GHz)

Path loss value information


Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	2.97	10	4.07
1	3.03	15	4.41
2.412 ~ 2.462	3.12	20	4.63
5	3.31	26.5	4.89
5.745 ~ 5.825	3.94	-	-

Note. 1: The path loss from EUT to Spectrum analyzer was measured and used for test.

Path loss (=S/A's offset value) = Cable A + ATT (Attenuator, Applied only when it was used externally)

Note. 2: For conducted spurious emissions, the path loss values were saved as the transducer factor on the spurious measurement function of the spectrum analyzer and the transducer factor of tested frequency is calculated and corrected automatically by the spectrum analyzer's measurement function.

Conducted Measurement(26.5GHz ~ 40.0GHz)

Path loss value information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
26.5	21.42	35.0	20.91
30.0	20.06	40.0	23.03

Note. 1: For conducted spurious emissions between 25.6 GHz and 40 GHz, the external harmonic mixer was used and above correction factors were saved as the transducer factor on the S/A and it was corrected automatically by the S/A's function.