

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

CELLULAR/PCS/AWS CDMA AND AWS LTE WITH BLUETOOTH AND WLAN

MODEL NUMBERS: MS840, LG-MS840, LGMS840

FCC ID: ZNFMS840

REPORT NUMBER: 11U13993-3

ISSUE DATE: SEPTEMBER 29, 2011

Prepared for

LG ELECTRONICS MOBILECOMM U.S.A., INC. 10101 OLD GROVE ROAD SAN DIEGO, CA 92131, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

*The models covered by this report are identical

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

Revision History

Rev.	Issue Date	Revised By	
	09/29/11	Initial Issue	F. Ibrahim

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TES	ST METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAI	LIBRATION AND UNCERTAINTY	6
4	1.1.	MEASURING INSTRUMENT CALIBRATION	6
4	1.2.	SAMPLE CALCULATION	6
4	1.3.	MEASUREMENT UNCERTAINTY	6
5.	EQ	UIPMENT UNDER TEST	7
į	5.1.	DESCRIPTION OF EUT	7
į	5.2.	MAXIMUM OUTPUT POWER	7
į	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
į	5.4.	SOFTWARE AND FIRMWARE	7
į	5.5.	WORST-CASE CONFIGURATION AND MODE	8
į	5.6.	DESCRIPTION OF TEST SETUP	
6.	TES	ST AND MEASUREMENT EQUIPMENT	
		TENNA PORT TEST RESULTS	
7.			
•	7.1. 7.1.	BASIC DATA RATE GFSK MODULATION	
	7.1.	.2. HOPPING FREQUENCY SEPARATION	16
	7.1.		
	7.1.		
	7.1.		
	7.1. 7.1.		
_			
•	7.2. 7.2.	ENHANCED DATA RATE 8PSK MODULATION	
	7.2.		
	7.2.		
	7.2.		
	7.2.		
	7.2.		
	7.2.	.7. CONDUCTED SPURIOUS EMISSIONS	67
8.	RAI	DIATED TEST RESULTS	
8	3.1.	LIMITS AND PROCEDURE	
8	3.2.	TRANSMITTER ABOVE 1 GHz	
	8.2.		
	8.2.	.2. ENHANCED DATA RATE 8PSK MODULATION	86
		D 0 1400	

EPORT NO: 11U13993-3	
EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN	

oth and WLAN FCC ID: ZNFMS84	T: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLA	EU
9	3.3. WORST-CASE BELOW 1 GHz	8
9	AC POWER LINE CONDUCTED EMISSIONS	9.
10	SETUP PHOTOS	10.

DATE: September 29, 2011

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: LG ELECTRONICS MOBILECOMM U.S.A., INC.

10101 OLD GROVE ROAD SAN DIEGO, CA 92131

EUT DESCRIPTION: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and

WLAN

MODEL: LG-MS840

SERIAL NUMBER: 99000073000106

DATE TESTED: SEPTEMBER 15-29, 2011

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

DAVID GARCIA EMC ENGINEER

UL CCS

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a smart-phone that features Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN.

The radio module is manufactured by Broadcom Co.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	11.07	12.79
2402 - 2480	Enhanced 8PSK	11.55	14.29

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio uses a PIFA (Planar Inverted F Antenna) with a maximum peak gain of -4dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT software installed during testing was MS840C01.

The test utility software used during testing was BT Test.

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

5.5. **WORST-CASE CONFIGURATION AND MODE**

The worst-case channel is determined as the channel with the highest output power.

Radiated emissions below 1 GHz and power line conducted emissions were performed with the EUT set to the channel with highest output power.

FCC ID: ZNFMS840

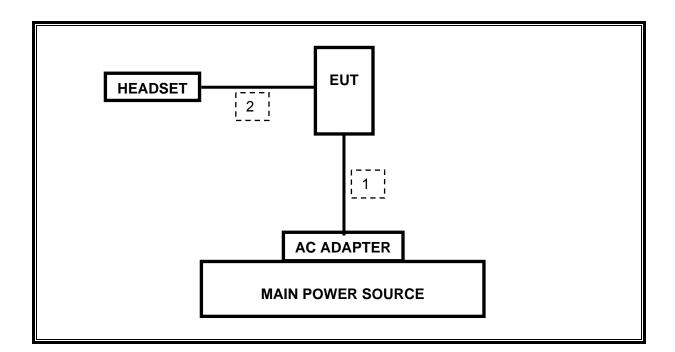
The EUT is a portable device that may be used in any orientation. The EUT may or may not be connected to its AC power adapter and earphones during use. The EUT was initially assessed in each of three axes of operation (X, Y and Z) with and without the AC adaptor and earphones connected to determine the worst-case condition. Worst-case was found to be the EUT in the Z orientation with its AC power adapter and earphones connected. See the setup photographs for an indication of the EUT orientations.

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
AC Adapter	LG Electronics	STA-U13WV	VA 11020005999	N/A			
Ear Phone	LG Electronics	N/A	N/A	N/A			


I/O CABLES

I/O CABLE LIST							
Cable No.	Port	#of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	DC	1	MINI USB	Un-Shielded	1.0m		
2	AUDIO	1	MINI JACK	Un-Shielded	1.0m	Volume control on cable	

TEST SETUP

The EUT is a stand-alone device and was tested with AC/USB adapter and earphone. Bluetooth Tester was used to control the EUT.

SETUP DIAGRAM FOR TESTS

DATE: September 29, 2011 FCC ID: ZNFMS840

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/15/12		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	07/08/12		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	01/27/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00783	06/29/12		
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	07/28/12		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/16/12		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4407B	C01098	04/30/12		
Power Meter	Agilent / HP	437B	N02778	08/11/12		
Power Sensor, 18 GHz	Agilent / HP	8481A	N02784	08/01/13		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/11		
Bluetooth Tester	R&S	1153.9000K35	NΑ	04/22/12		

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

7. ANTENNA PORT TEST RESULTS

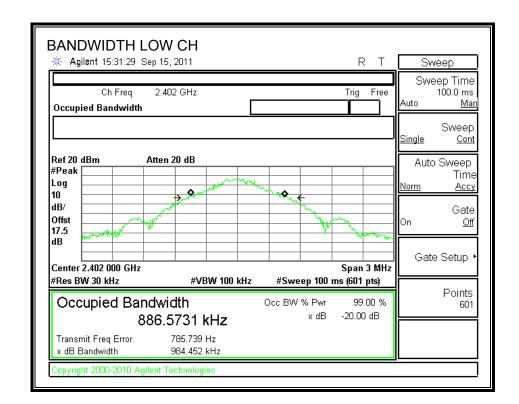
7.1. BASIC DATA RATE GFSK MODULATION

7.1.1. 20 dB BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

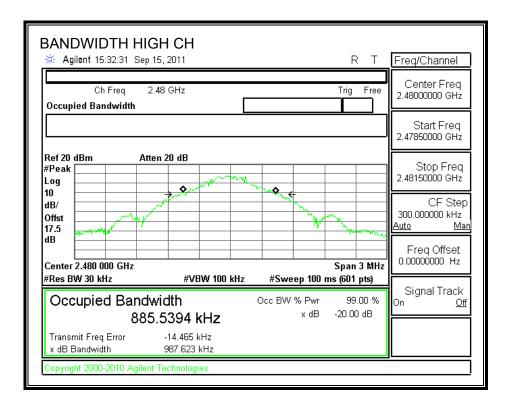

The transmitter output is connected to a spectrum analyzer. The RBW is set to ≥ 1% of the 20 dB bandwidth. The VBW is set to ≥ RBW. The sweep time is coupled.

FCC ID: ZNFMS840

RESULTS

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	984.452
Middle	2441	963.535
High	2480	987.623

20 dB BANDWIDTH



DATE: September 29, 2011 FCC ID: ZNFMS840 963.535 kHz

x dB Bandwidth

opyright 2000-2010 Agilent Technologies

DATE: September 29, 2011 FCC ID: ZNFMS840

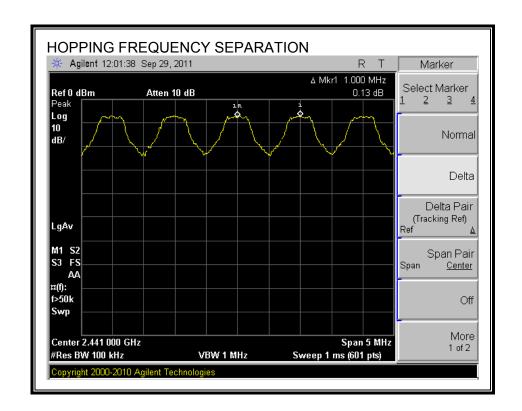
EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

7.1.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 1 MHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

DATE: September 29, 2011

FCC ID: ZNFMS840

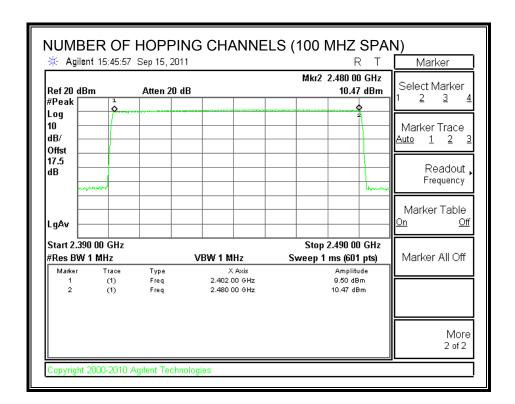
EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

7.1.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

FCC ID: ZNFMS840

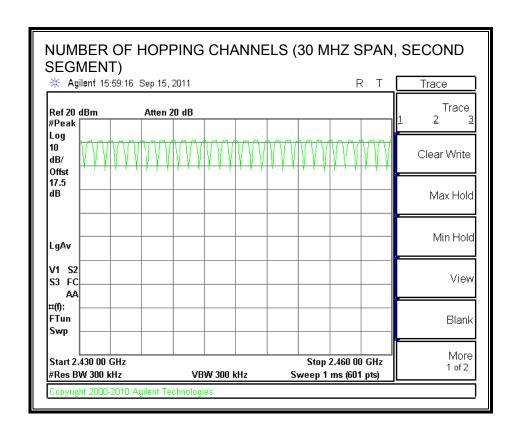
VBW 300 kHz

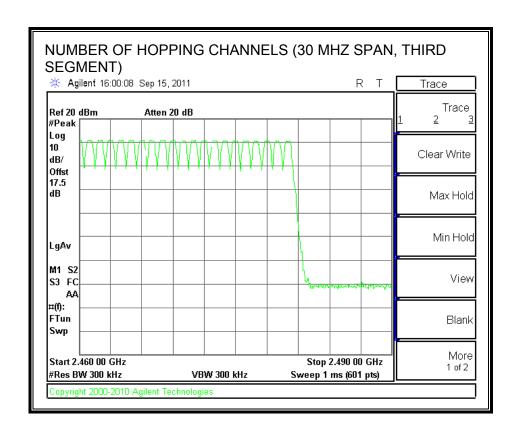
Swp

Start 2.400 00 GHz

#Res BW 300 kHz

Copyright 2000-2010 Agilent Technologies


DATE: September 29, 2011 FCC ID: ZNFMS840


More

1 of 2

Stop 2.430 00 GHz

Sweep 1 ms (601 pts)

7.1.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

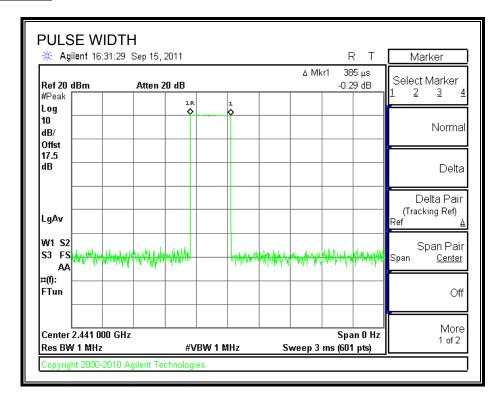
DATE: September 29, 2011 FCC ID: ZNFMS840

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

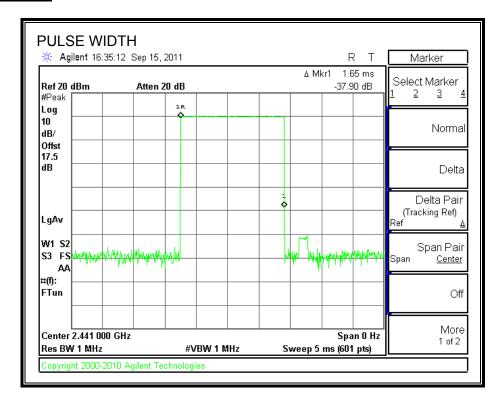

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

GFSK Mode

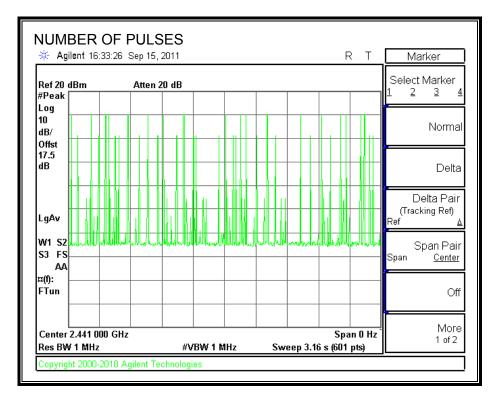
DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.385	32	0.123	0.4	-0.277
DH3	1.650	18	0.297	0.4	-0.103
DH5	2.900	11	0.319	0.4	-0.081

<u>DH1</u>

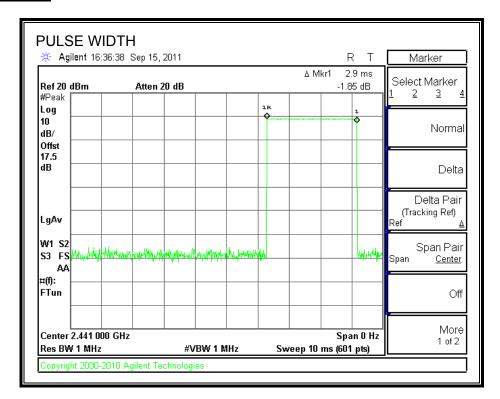
PULSE WIDTH


DATE: September 29, 2011 FCC ID: ZNFMS840

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

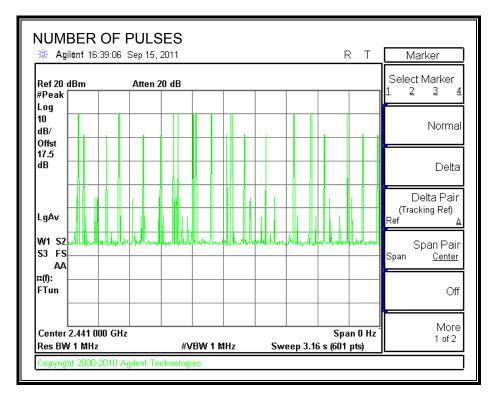

DH3

PULSE WIDTH


DATE: September 29, 2011 FCC ID: ZNFMS840

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DH5


PULSE WIDTH

DATE: September 29, 2011 FCC ID: ZNFMS840

FCC ID: ZNFMS840

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

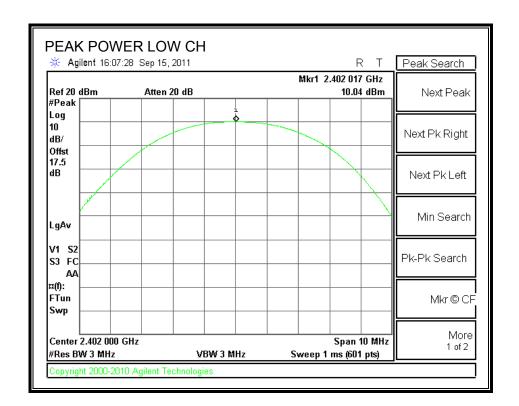
7.1.5. OUTPUT POWER

LIMIT

§15.247 (b) (1)

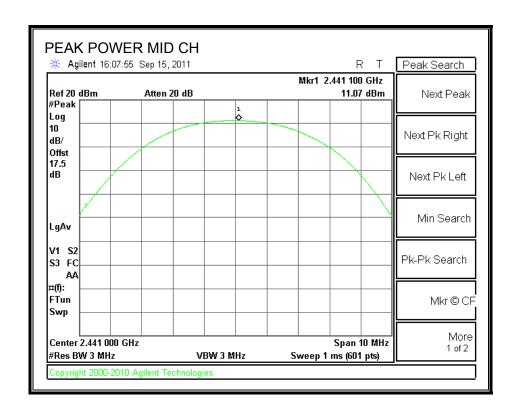
The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

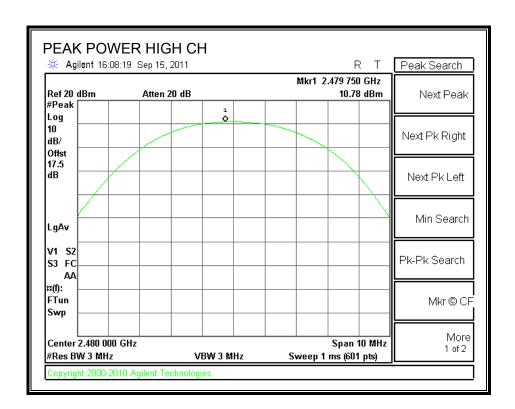
TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

FCC ID: ZNFMS840

RESULTS


Channel	Frequency	Frequency Output Power Limit		Margin	
	(MHz)	(dBm)	(dBm)	(dB)	
Low	2402	10.04	30	-19.96	
Middle	2441	11.07	30	-18.93	
High	2480	10.78	30	-19.22	


OUTPUT POWER

DATE: September 29, 2011

FCC ID: ZNFMS840

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

FCC ID: ZNFMS840

7.1.6. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	9.20
Middle	2441	9.50
High	2480	9.20

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

7.1.7. CONDUCTED SPURIOUS EMISSIONS

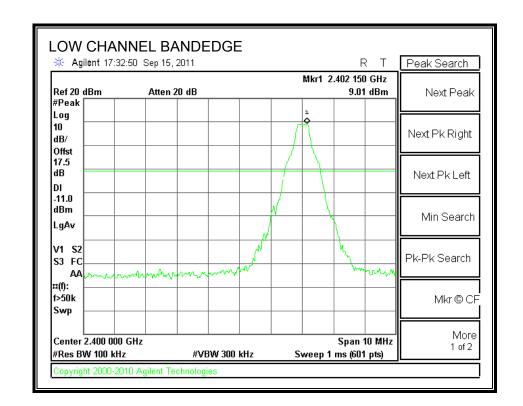
LIMITS

FCC §15.247 (d)

Limit = -20 dBc

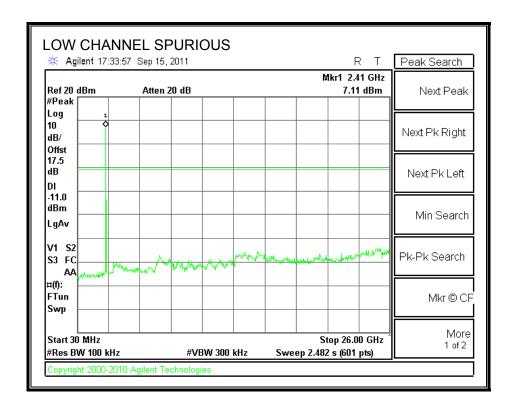
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

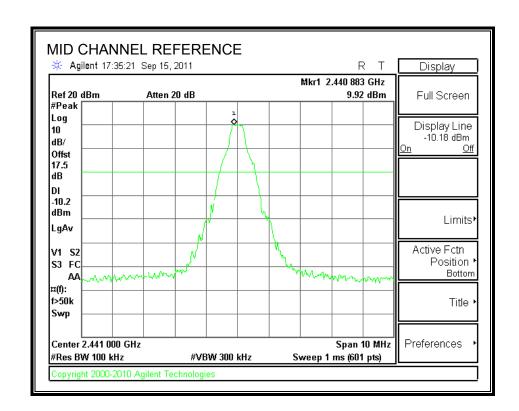

FCC ID: ZNFMS840

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

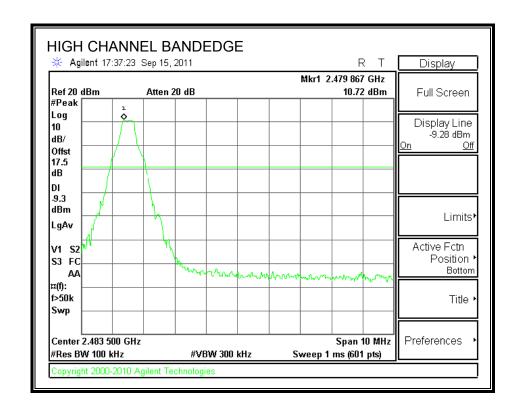

RESULTS

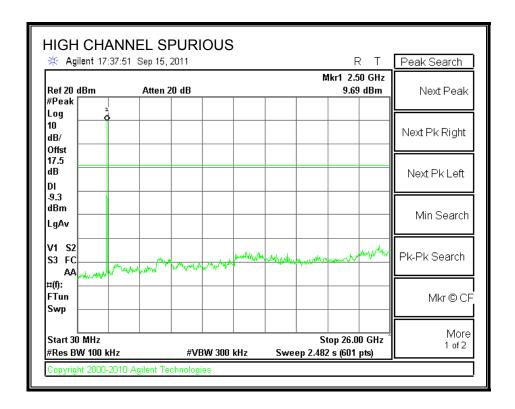
SPURIOUS EMISSIONS, LOW CHANNEL



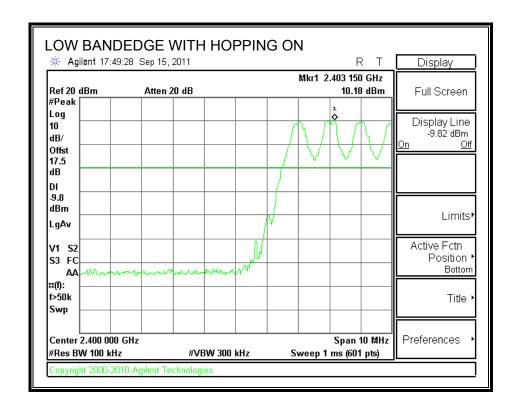
DATE: September 29, 2011

FCC ID: ZNFMS840


SPURIOUS EMISSIONS, MID CHANNEL


DATE: September 29, 2011

DATE: September 29, 2011


SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: September 29, 2011

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

FCC ID: ZNFMS840

TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

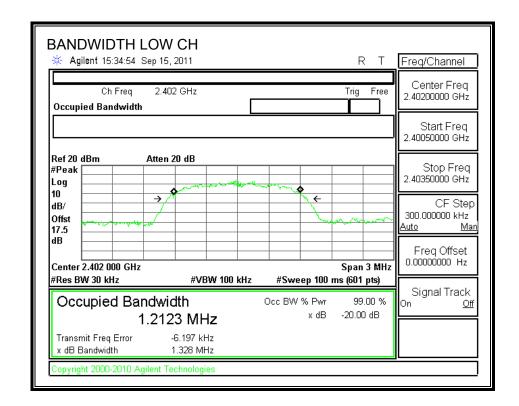
EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

7.2. ENHANCED DATA RATE 8PSK MODULATION

7.2.1. 20 dB BANDWIDTH

LIMIT

None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth
	(MHz)	(kHz)
Low	2402	1328
Middle	2441	1334
High	2480	1341

20 dB BANDWIDTH

opyright 2000-2010 Agilent Technologies

DATE: September 29, 2011

DATE: September 29, 2011

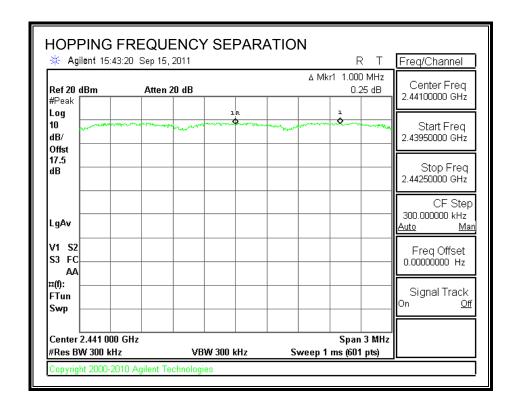
EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

7.2.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

DATE: September 29, 2011

FCC ID: ZNFMS840

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0
This report shall not be reproduced except in full, without the written approval of UL CCS.

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

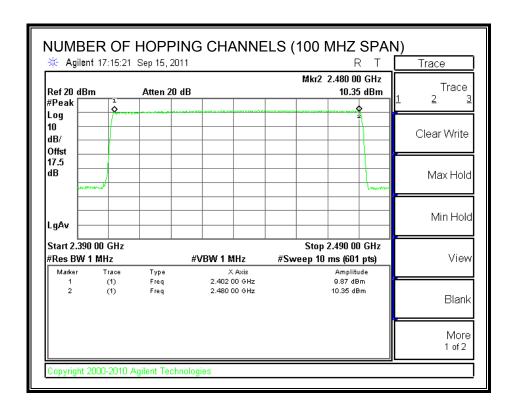
7.2.3. NUMBER OF HOPPING CHANNELS

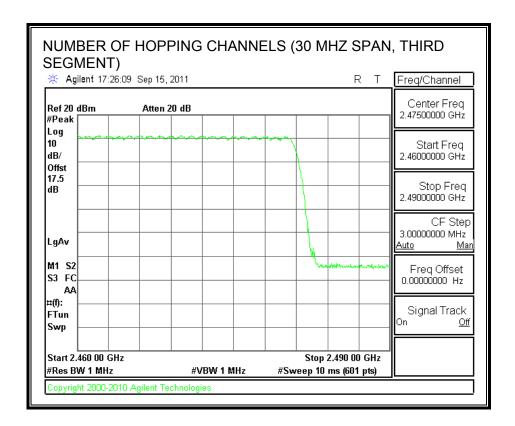
LIMIT

FCC §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 nonoverlapping channels.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


FCC ID: ZNFMS840

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.2.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

DATE: September 29, 2011 FCC ID: ZNFMS840

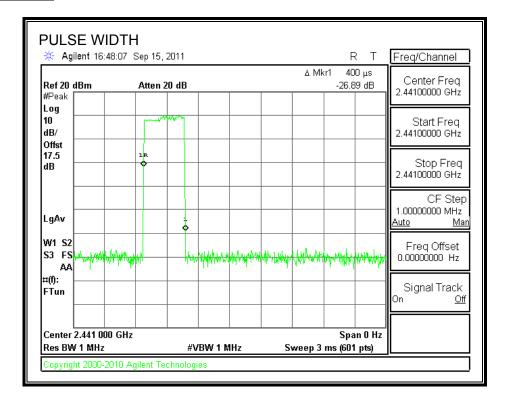
FAX: (510) 661-0888

TEST PROCEDURE

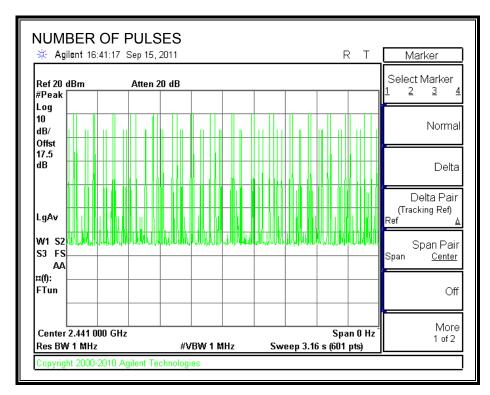
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

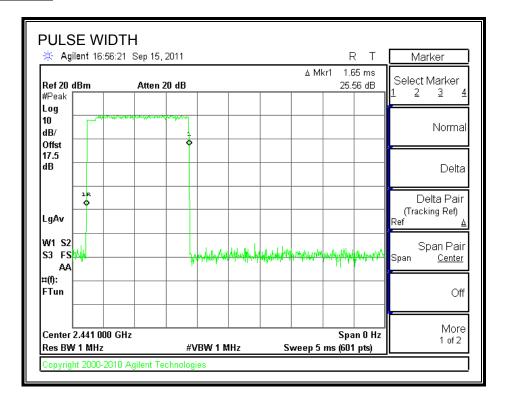

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

8PSK Mode

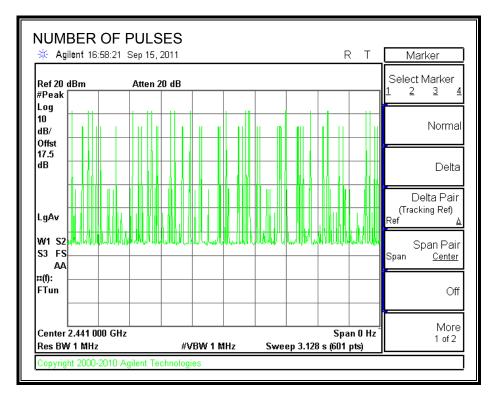

of of wode					
DH Packet	Pulse Width	Number of Pulses in 3.16	Average Time of Occupancy	Limit	Margin
	(msec)	seconds	(sec)	(sec)	(sec)
DH1	0.4	32	0.128	0.4	-0.272
DH3	1.65	17	0.281	0.4	-0.120

<u>DH1</u>

PULSE WIDTH

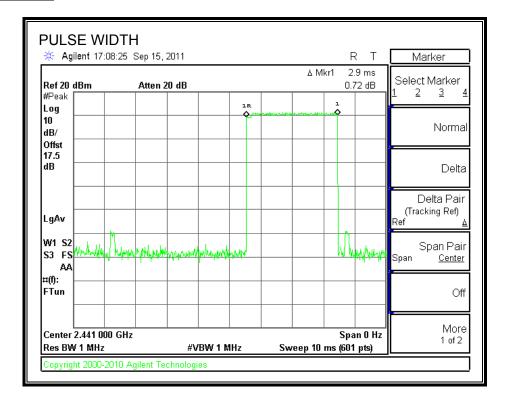


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

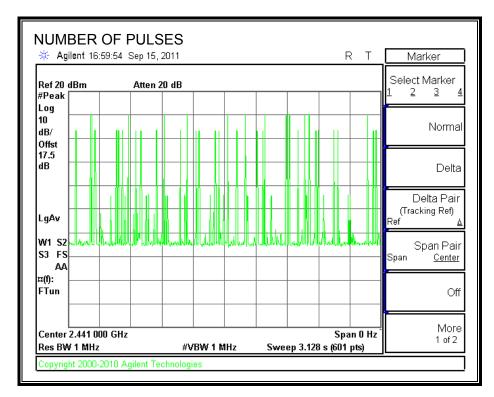


DH3

PULSE WIDTH



NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD



DH5

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

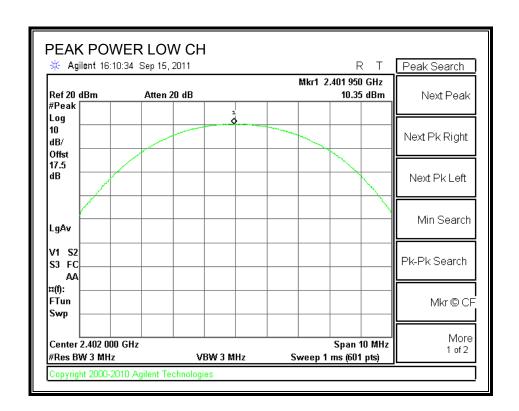
7.2.5. OUTPUT POWER

LIMIT

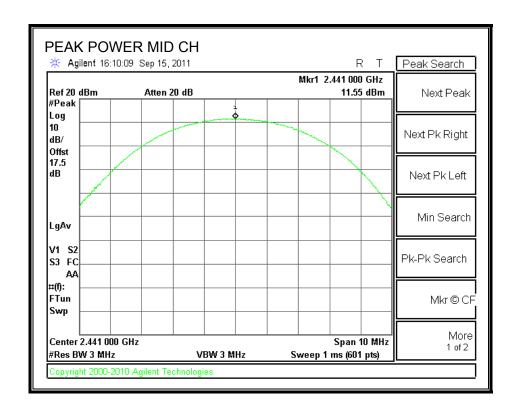
§15.247 (b) (1)

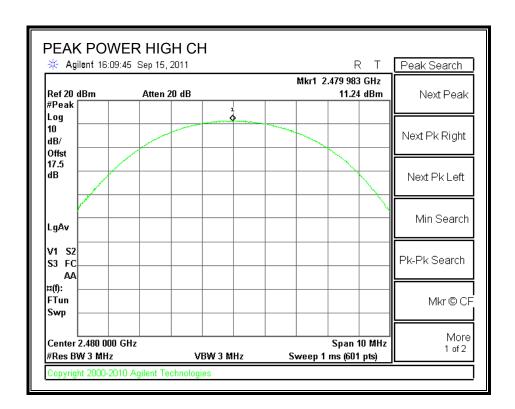
The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

FCC ID: ZNFMS840


RESULTS


Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	10.35	30	-19.65
Middle	2441	11.55	30	-18.45
High	2480	11.24	30	-18.76

OUTPUT POWER

DATE: September 29, 2011

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN

7.2.6. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	7.10
Middle	2441	7.40
High	2480	7.10

EPORT NO: 11U13993-3 DATE: September 29, 2011 EUT: Cellular/PCS/AWS CDMA and AWS LTE with Bluetooth and WLAN FCC ID: ZNFMS840

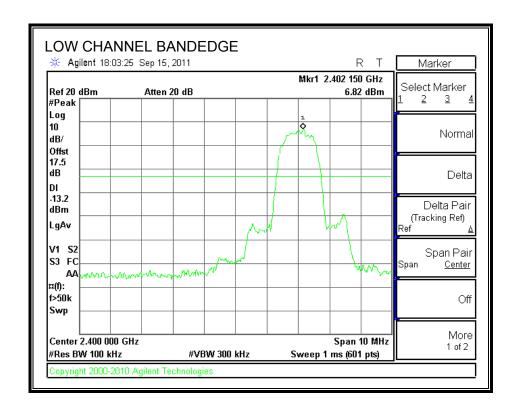
7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

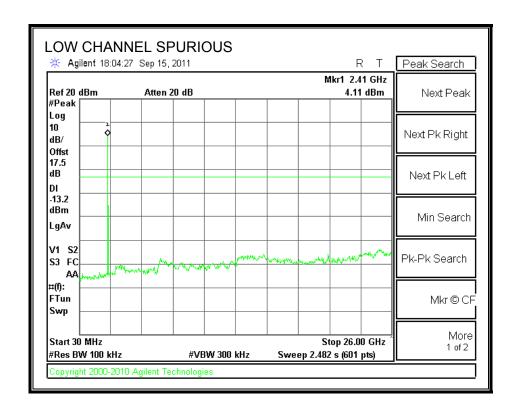
Limit = -20 dBc

TEST PROCEDURE

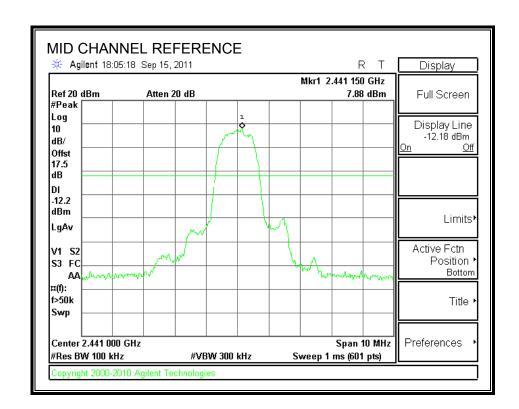

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.


RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL



FCC ID: ZNFMS840

FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

SPURIOUS EMISSIONS, MID CHANNEL

DATE: September 29, 2011

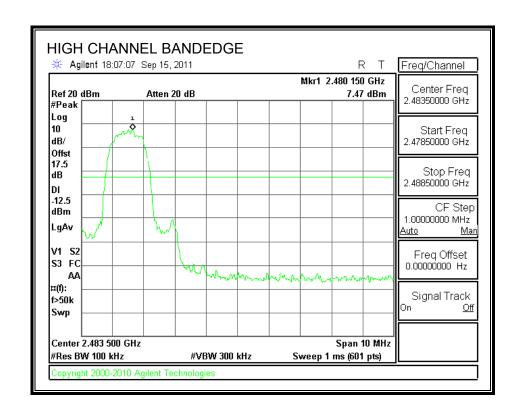
#VBW 300 kHz

Start 30 MHz

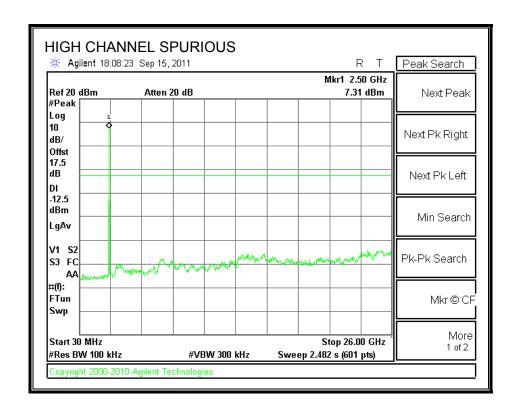
#Res BW 100 kHz

opyright 2000-2010 Agilent Technologies

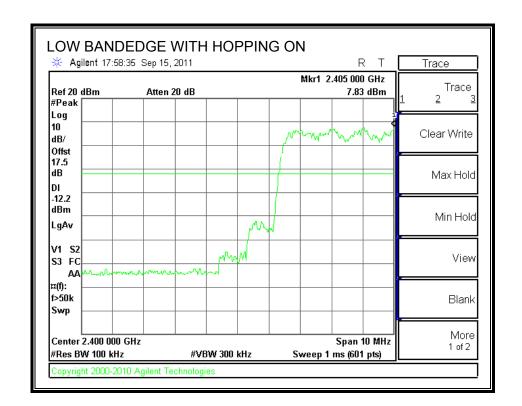
DATE: September 29, 2011


More

1 of 2


Stop 26.00 GHz

Sweep 2.482 s (601 pts)


SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: September 29, 2011

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

FCC ID: ZNFMS840

TEL: (510) 771-1000 FAX: (510) 661-0888 10

dB/

Offst 17.5 dΒ DI -12.7 dBm

LgAv

M1 S2

S3 FC

Swp

AA ¤(f): f>50k

Center 2.483 500 GHz

#Res BW 100 kHz

#VBW 300 kHz

DATE: September 29, 2011

-12.70 dBm

<u>Off</u>

Limits!

Bottom

Title

Active Fctn

Preferences

Span 10 MHz

Sweep 1 ms (601 pts)

Position

FCC ID: ZNFMS840

8. RADIATED TEST RESULTS

LIMITS AND PROCEDURE 8.1.

LIMITS

FCC §15.205 and §15.209

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

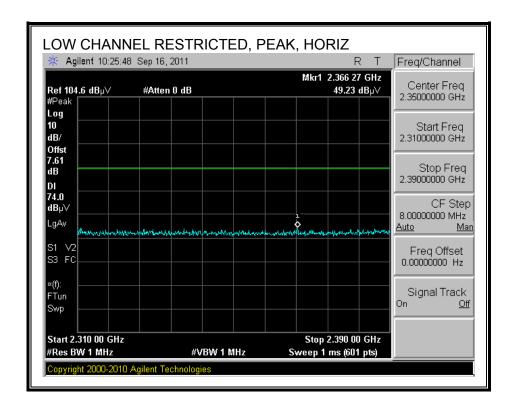
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

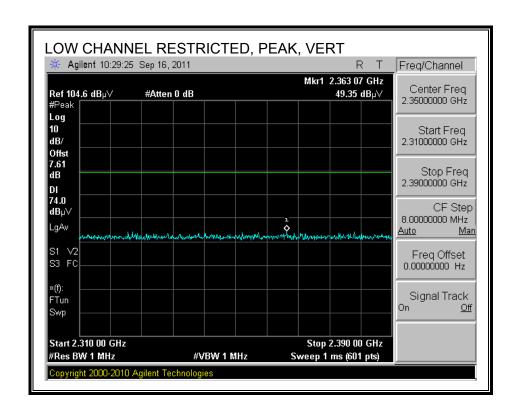
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

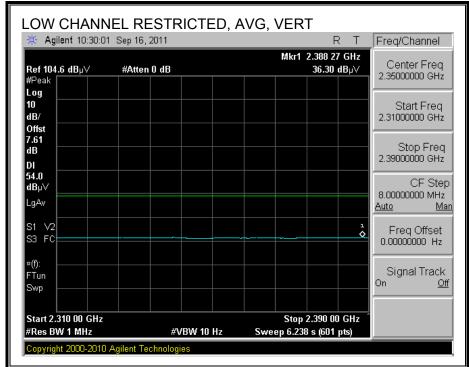
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

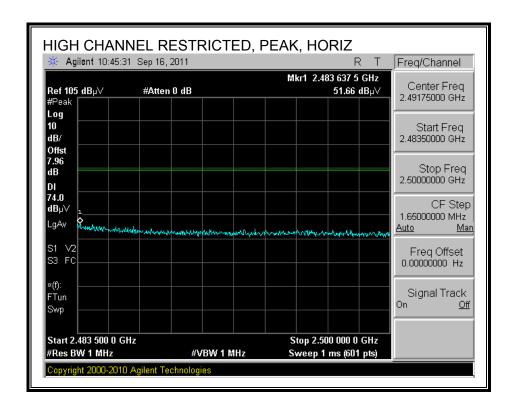

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

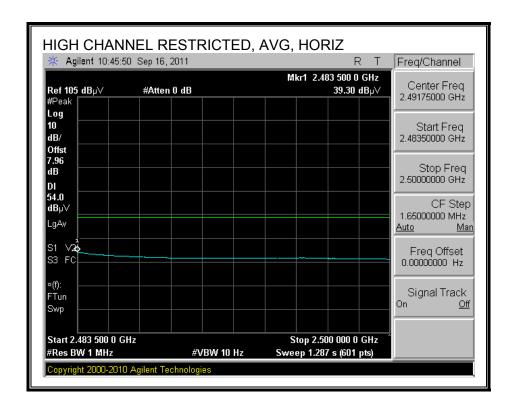
FCC ID: ZNFMS840

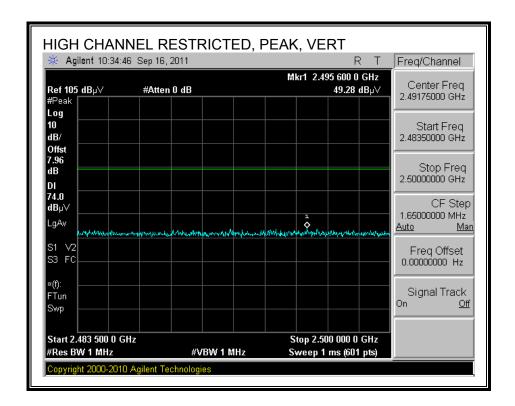

8.2. TRANSMITTER ABOVE 1 GHz


8.2.1. BASIC DATA RATE GFSK MODULATION

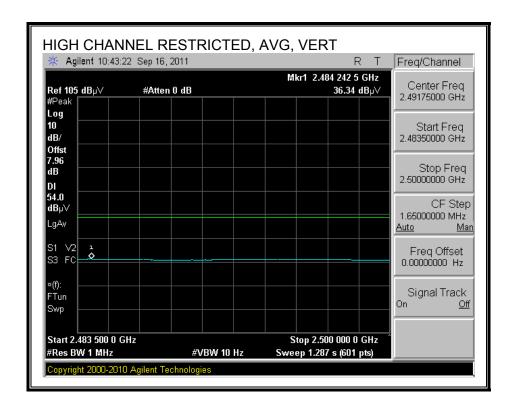
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: September 29, 2011

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

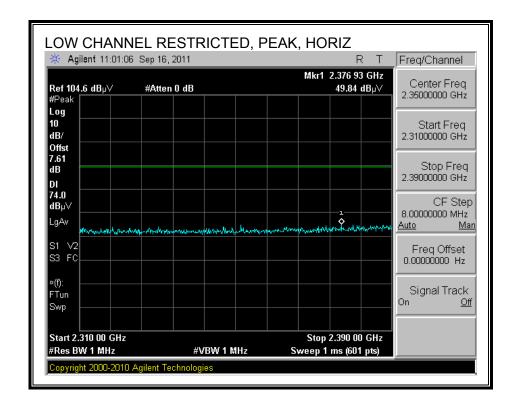
Compliance Certification Services, Fremont 5m Chamber

David Garcia Test Engr: Date: 09/16/11 11U13993 Project #: Company: FCC 15.209 Test Target: Mode Oper: Tx, GFSK

> f Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Char	nel: 24	02 MHz											
4.804	3.0	36.9	33.9	6.8	-34.1	0.0	0.0	43.5	74.0	-30.5	H	P	
4.804	3.0	24.3	33.9	6.8	-34.1	0.0	0.0	30.9	54.0	-23.1	H	A	
4.804	3.0	36.7	33.9	6.8	-34.1	0.0	0.0	43.2	74.0	-30.8	V	P	
4.804	3.0	24.3	33.9	6.8	-34.1	0.0	0.0	30.9	54.0	-23.1	V	A	
Mid Char	nel: 244	11 MHz											
4.882	3.0	36.1	33.9	6.8	-34.0	0.0	0.0	42.8	74.0	-31.2	H	P	
4.882	3.0	24.0	33.9	6.8	-34.0	0.0	0.0	30.8	54.0	-23.2	H	A	
7.323	3.0	35.3	36.6	9.1	-33.1	0.0	0.0	47.9	74.0	-26.1	H	P	
7.323	3.0	22.9	36.6	9.1	-33.1	0.0	0.0	35.5	54.0	-18.5	H	A	
4.882	3.0	36.8	33.9	6.8	-34.0	0.0	0.0	43.5	74.0	-30.5	V	P	
4.882	3.0	24.1	33.9	6.8	-34.0	0.0	0.0	30.8	54.0	-23.2	V	A	
7.323	3.0	34.9	36.6	9.1	-33.1	0.0	0.0	47.4	74.0	-26.6	V	P	
7.323	3.0	22.9	36.6	9.1	-33.1	0.0	0.0	35.5	54.0	-18.5	V	A	
High Cha	nnel: 24	480 MHz											
4.960	3.0	36.0	34.0	6.9	-34.0	0.0	0.0	42.9	74.0	-31.1	V	P	
4.960	3.0	23.7	34.0	6.9	-34.0	0.0	0.0	30.6	54.0	-23.4	V	A	
7.440	3.0	35.2	36.7	9.1	-33.0	0.0	0.0	48.0	74.0	-26.0	V	P	
7.440	3.0	22.8	36.7	9.1	-33.0	0.0	0.0	35.6	54.0	-18.4	V	A	
4.960	3.0	35.9	34.0	6.9	-34.0	0.0	0.0	42.8	74.0	-31.2	H	P	
4.960	3.0	23.6	34.0	6.9	-34.0	0.0	0.0	30.4	54.0	-23.6	H	A	
7.440	3.0	35.1	36.7	9.1	-33.0	0.0	0.0	47.9	74.0	-26.1	H	P	
7.440	3.0	22.7	36.7	9.1	-33.0	0.0	0.0	35.5	54.0	-18.5	H	A	

Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

DATE: September 29, 2011

8.2.2. ENHANCED DATA RATE 8PSK MODULATION

DATE: September 29, 2011 FCC ID: ZNFMS840

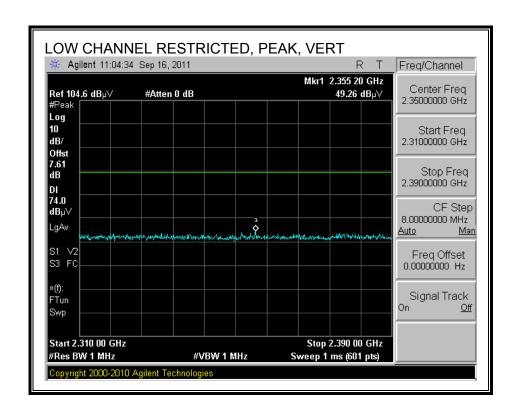
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

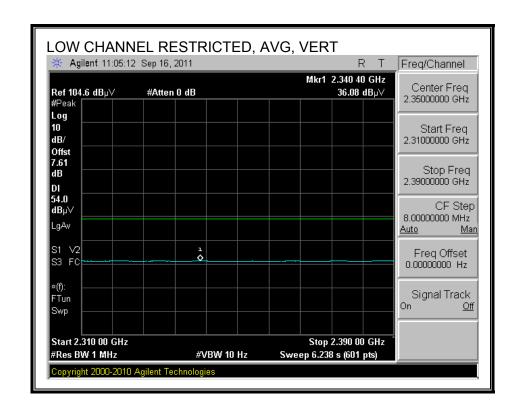
Swp

Start 2.310 00 GHz #Res BW 1 MHz

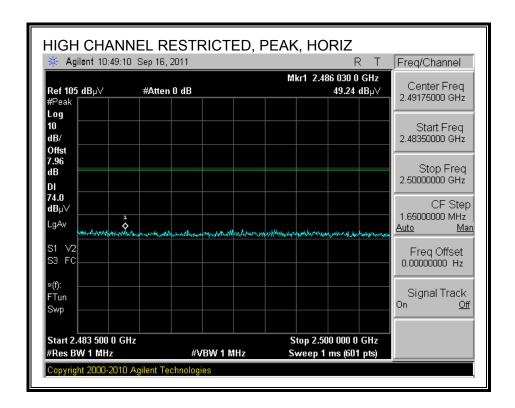
#VBW 10 Hz

Stop 2.390 00 GHz


Sweep 6.238 s (601 pts)


DATE: September 29, 2011 FCC ID: ZNFMS840

<u>Off</u>


FAX: (510) 661-0888

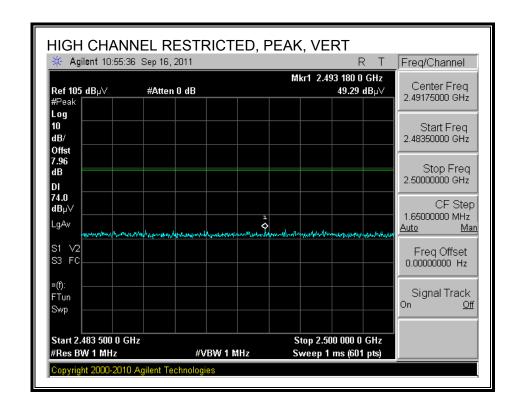
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

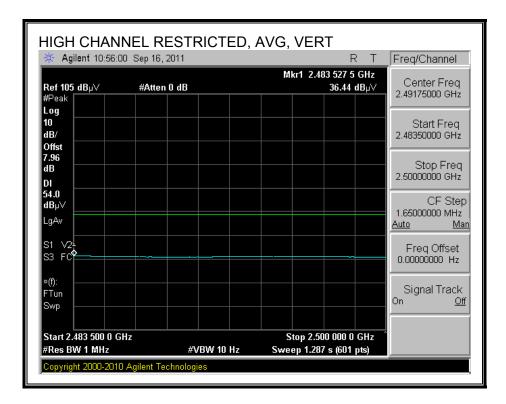
Swp

Start 2.483 500 0 GHz

#Res BW 1 MHz


#VBW 10 Hz

Stop 2.500 000 0 GHz Sweep 1.287 s (601 pts)


DATE: September 29, 2011 FCC ID: ZNFMS840

<u>Off</u>

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: September 29, 2011

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: David Garcia
Date: 09/16/11
Project #: 11U13993
Company: LG
Test Target: FCC 15.209
Mode Oper: Tx, 8PSK

 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

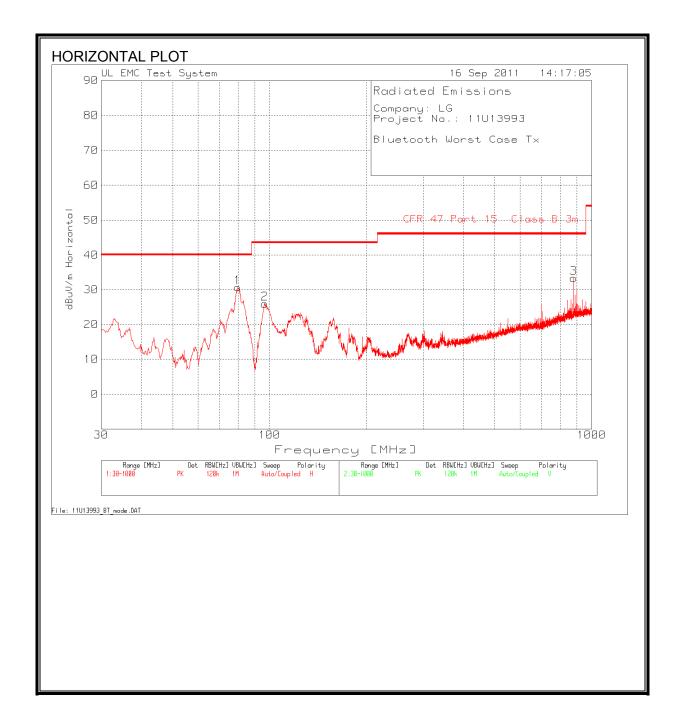
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

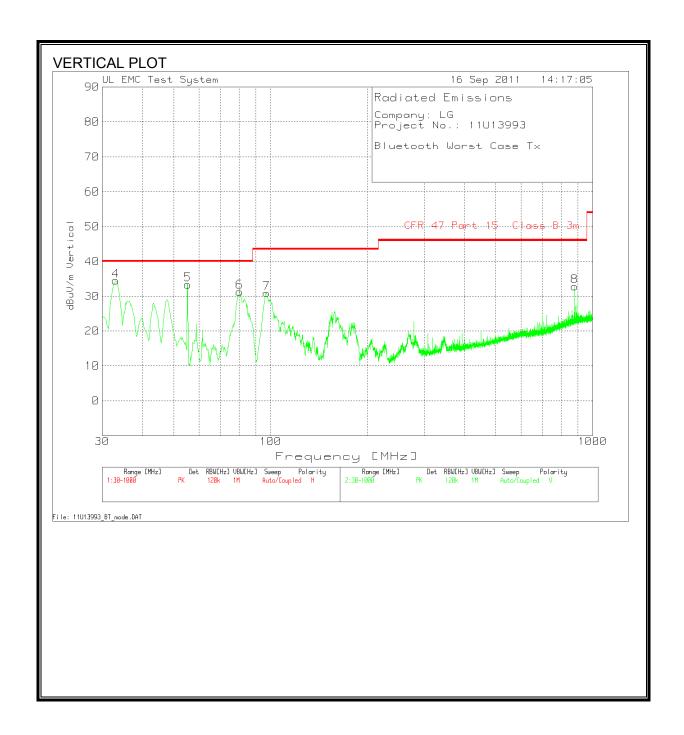
 CL
 Cable Loss
 HPF
 High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dΒ	dB	dB	dBuV/m	$dBuV/\mathbf{m}$	dB	V/H	P/A/QP	
Low Char	nel: 24	02 MHz											
4.804	3.0	36.7	33.9	6.8	-34.1	0.0	0.0	43.3	74.0	-30.7	H	P	
4.804	3.0	24.2	33.9	6.8	-34.1	0.0	0.0	30.7	54.0	-23.3	H	A	
4.804	3.0	36.4	33.9	6.8	-34.1	0.0	0.0	43.0	74.0	-31.0	V	P	
4.804	3.0	24.2	33.9	6.8	-34.1	0.0	0.0	30.7	54.0	-23.3	V	A	
Mid Chan	nel: 244	11 MHz											
4.882	3.0	37.7	33.9	6.8	-34.0	0.0	0.0	44.4	74.0	-29.6	H	P	
4.882	3.0	24.0	33.9	6.8	-34.0	0.0	0.0	30.7	54.0	-23.3	H	A	
7.323	3.0	34.9	36.6	9.1	-33.1	0.0	0.0	47.5	74.0	-26.5	H	P	
7.323	3.0	22.9	36.6	9.1	-33.1	0.0	0.0	35.4	54.0	-18.6	H	A	
4.882	3.0	36.9	33.9	6.8	-34.0	0.0	0.0	43.6	74.0	-30.4	V	P	
4.882	3.0	24.0	33.9	6.8	-34.0	0.0	0.0	30.7	54.0	-23.3	V	A	
7.323	3.0	35.1	36.6	9.1	-33.1	0.0	0.0	47.6	74.0	-26.4	V	P	
7.323	3.0	22.9	36.6	9.1	-33.1	0.0	0.0	35.4	54.0	-18.6	V	A	
High Cha	nnel: 24	480 MHz											
4.960	3.0	36.0	34.0	6.9	-34.0	0.0	0.0	42.9	74.0	-31.1	H	P	
4.960	3.0	23.7	34.0	6.9	-34.0	0.0	0.0	30.6	54.0	-23.4	H	A	
7.440	3.0	35.0	36.7	9.1	-33.0	0.0	0.0	47.7	74.0	-26.3	H	P	
7.440	3.0	22.8	36.7	9.1	-33.0	0.0	0.0	35.5	54.0	-18.5	H	A	
4.960	3.0	36.5	34.0	6.9	-34.0	0.0	0.0	43.3	74.0	-30.7	V	P	
4.960	3.0	23.8	34.0	6.9	-34.0	0.0	0.0	30.6	54.0	-23.4	V	A	
7.440	3.0	36.2	36.7	9.1	-33.0	0.0	0.0	49.0	74.0	-25.0	V	P	
7.440	3.0	22.8	36.7	9.1	-33.0	0.0	0.0	35.6	54.0	-18.4	V	A	

Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

DATE: September 29, 2011


8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: September 29, 2011

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

DATE: September 29, 2011

Company: LG	i									
Project No.:	11U13993									
Bluetooth W	orst Case Tx									
				3m T15						
			3m below	PreAmp	3m Bilog					
			1GHz	below	T185 below		CFR 47 Part			
Test	Meter		Cable.TXT	1GHz.TXT	1GHz.TXT		15 Class B			
Frequency	Reading	Detector	[dB]	[dB]	[dB]	dBuV/m	3m	Margin	Height [cm]	Polarity
79.6243	49.83	PK	1	-28.1	8	30.73	40	-9.27	251	Horz
96.4888	44.45	PK	1	-28.1	8.6	25.95	43.5	-17.55	176	Horz
880.01	36.23	PK	3.1	-27.7	21.8	33.43	46	-12.57	176	Horz
33.1015	43.73	PK	0.6	-28.3	18.5	34.53	40	-5.47	99	Vert
55.3937	52.29	PK	0.8	-28.2	8.6	33.49	40	-6.51	251	Vert
80.2058	50.6	PK	1	-28.1	7.9	31.4	40	-8.6	176	Vert
97.0703	49.27	PK	1	-28.1	8.8	30.97	43.5	-12.53	99	Vert
880.01	35.69	PK	3.1	-27.7	21.8	32.89	46	-13.11	99	Vert

DATE: September 29, 2011

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

DATE: September 29, 2011

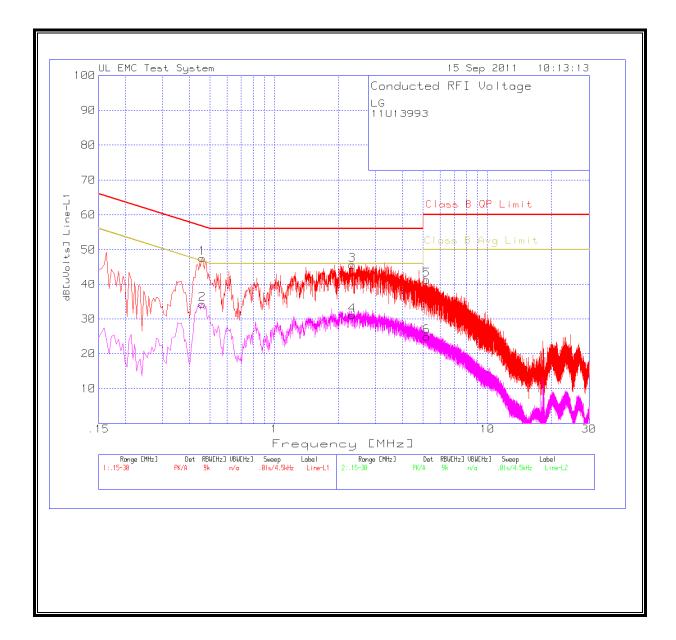
FCC ID: ZNFMS840

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as guasi-peak or average.

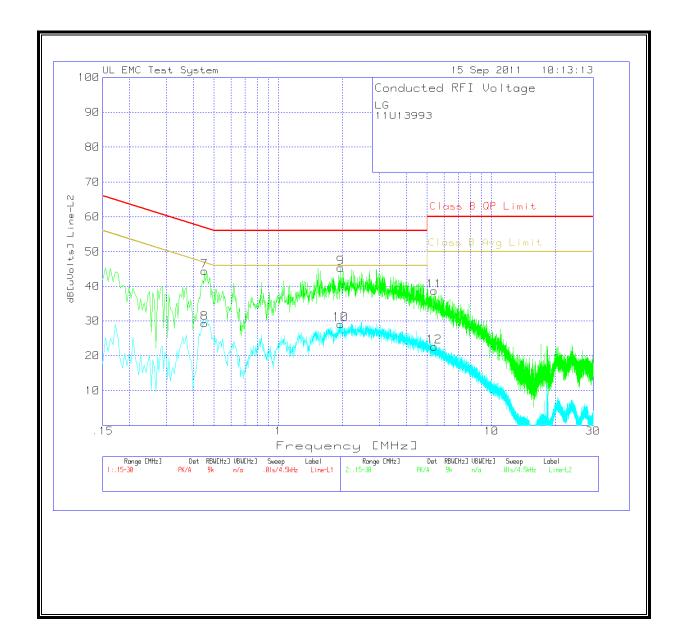
Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

Decreases with the logarithm of the frequency.

6 WORST EMISSIONS

Company: LG Ele	ctronics Inc	:.				Test Eng	ineer: Vi	en Tran	
Project: 11U1399	3					Date: 09	/15/11		
Line-L1 .15 - 30M	lHz								
				Conducted		Class B		Class B	
	Meter		LISN	Emission		QP		Avg	
Test Frequency	Reading	Detector	[dB]	Cable [dB]	dB[uVolts]	Limit	Margin	Limit	Margin
0.4605	47.60	PK	0	0	47.60	56.70	-9.10	46.70	0.90
0.4605	34.30	Av	0	0	34.30	56.70	-22.40	46.70	-12.40
2.328	45.68	PK	0	0	45.68	56.00	-10.32	46.00	-0.32
2.328	30.99	Av	0	0	30.99	56.00	-25.01	46.00	-15.01
5.199	41.38	PK	0	0	41.38	60.00	-18.62	50.00	-8.62
5.199	24.98	Av	0	0	24.98	60.00	-35.02	50.00	-25.02
Line-L2 .15 - 30M	lHz								
				Conducted		Class B		Class B	
	Meter		LISN	Emission		QP		Avg	
Test Frequency	Reading	Detector	[dB]	Cable [dB]	dB[uVolts]	Limit	Margin	Limit	Margin
	caag		[]						
0.4515	44.45	PK	0	0	44.45	56.80	-12.35	46.80	-2.35
0.4515	44.45	PK	0	0	44.45	56.80	-12.35	46.80	-2.35
0.4515 0.4515	44.45 29.28	PK Av	0	0	44.45 29.28	56.80 56.80	-12.35 -27.52	46.80 46.80	-2.35 -17.52
0.4515 0.4515 1.9635	44.45 29.28 45.39	PK Av PK	0 0	0 0 0	44.45 29.28 45.39	56.80 56.80 56.00	-12.35 -27.52 -10.61	46.80 46.80 46.00	-2.35 -17.52 -0.61
0.4515 0.4515 1.9635 1.9635	44.45 29.28 45.39 29.11	PK Av PK Av	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11	56.80 56.80 56.00 56.00	-12.35 -27.52 -10.61 -26.89	46.80 46.80 46.00 46.00	-2.35 -17.52 -0.61 -16.89
0.4515 0.4515 1.9635 1.9635 5.3835	44.45 29.28 45.39 29.11 38.66	PK Av PK Av PK	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835	44.45 29.28 45.39 29.11 38.66 22.56	PK Av PK Av PK	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835 5.3835	44.45 29.28 45.39 29.11 38.66 22.56	PK Av PK Av PK	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835 5.3835	44.45 29.28 45.39 29.11 38.66 22.56	PK AV PK AV PK AV	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835 5.3835 PK - Peak detect QP - Quasi-Peak	44.45 29.28 45.39 29.11 38.66 22.56 or detector erage detector	PK Av PK Av PK Av Av	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835 5.3835 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave	44.45 29.28 45.39 29.11 38.66 22.56 or detector erage detector	PK Av PK Av PK Av Av	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835 5.3835 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave LgAv - Log Avera	44.45 29.28 45.39 29.11 38.66 22.56 or detector erage detector tector	PK Av PK Av PK Av Control Cont	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835 5.3835 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave LgAv - Log Avera Av - Average de	44.45 29.28 45.39 29.11 38.66 22.56 or detector erage detector tector rage detector	PK Av PK Av PK Av Control Cont	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34
0.4515 0.4515 1.9635 1.9635 5.3835 5.3835 PK - Peak detect QP - Quasi-Peak LnAv - Linear Ave LgAv - Log Avera Av - Average de CAV - CISPR Ave	44.45 29.28 45.39 29.11 38.66 22.56 or detector erage detector tector rage detector	PK Av PK Av PK Av Cor	0 0 0 0	0 0 0 0	44.45 29.28 45.39 29.11 38.66	56.80 56.80 56.00 56.00 60.00	-12.35 -27.52 -10.61 -26.89 -21.34	46.80 46.80 46.00 46.00 50.00	-2.35 -17.52 -0.61 -16.89 -11.34


LINE 1 RESULTS

DATE: September 29, 2011 FCC ID: ZNFMS840

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0. This report shall not be reproduced except in full, without the written approval of UL CCS.

LINE 2 RESULTS

