

TEST REPORT

of

FCC Part 15 Subpart C §15.249

FCC ID : ZNFMEBR300

Equipment Under Test	:	WIRELESS DONGLE
Model Name	:	MEB-R300
Applicant	:	LG Electronics MobileComm USA. Inc.
Manufacturer	:	Bluecom Co., Ltd.
Date of Receipt	:	2016.07.25
Date of Test(s)	:	2016.08.01 ~ 2016.08.25
Date of Issue	:	2016.09.06

In the configuration tested, the EUT complied with the standards specified above.

	1		
Tested By:	the	Date:	2016.09.06
	Jinhyoung Cho		
Technical Manager:	Chy !!	Date:	2016.09.06
	Hyunchae You		

INDEX

Table of Contents	Page
1. General information	3
2. Fundamental and Radiated Spurious emission	6
3. 20 dB Bandwidth	27
4. AC Power Line Conducted Emission	30

1. General information

1.1 Testing laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Telephone : +82 31 688 0901

FAX : +82 31 688 0921

1.2 Details of applicant

Applicant:LG Electronics MobileComm USA. Inc.Address:1000 Sylvan Avenue Englewood Cliffs, New Jersey, United StatesContact Person:Kim, Kyung-JungPhone No.:+1 201 816 2003

1.3. Description of EUT

Kind of Product	WIRELESS DONGLE
Model Name	MEB-R300
Power Supply	DC 5.0 V
Frequency Range	2 402 MHz ~ 2 480 MHz (2.4 GHz GFSK Transceiver)
Modulation Technique	GFSK
Number of Channels	79 channels (2.4 GHz GFSK Transceiver)
Antenna Type	PCB antenna
Antenna Gain	-4.95 dB i
H/W Version	1.0
S/W Version	1.0

1.4. Test equipment list

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMBV100A	259067	Jun. 20, 2016	Annual	Jun. 20, 2017
Signal Generator	Agilent	E8257D	MY51501169	Jul. 07, 2016	Annual	Jul. 07, 2017
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 24, 2015	Annual	Sep. 24, 2016
Spectrum Analyzer	R&S	FSV30	100768	Mar. 30, 2016	Annual	Mar. 30, 2017
High Pass Filter	Wainwright Instrument GmbH	WHK3.0/18G-6SS	4	Jun. 18, 2016	Annual	Jun. 18, 2017
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 18, 2016	Annual	Jun. 18, 2017
Low Pass Filter	Mini-Circuits	NLP-1200+	V8979400903-2	Feb. 29, 2016	Annual	Feb. 29, 2017
Attenuator	Mini-Circuits	BW-N20W5+	0950-2	Jun. 18, 2016	Annual	Jun. 18, 2017
DC Power Supply	R&S	HMP2020	020089489	May 31, 2016	Annual	May 31, 2017
Preamplifier	H.P.	8447F	2944A03909	Aug. 11, 2016	Annual	Aug. 11, 2017
Preamplifier	R&S	SCU-18	10117	Apr. 07, 2016	Annual	Apr. 07, 2017
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 12, 2016	Annual	May 12, 2017
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 19, 2015	Biennial	Aug. 19, 2017
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	396	Jun. 18, 2015	Biennial	Jun. 18, 2017
Horn Antenna	R & S	HF906	100326	Feb. 01, 2016	Biennial	Feb. 01, 2018
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	9170-540	Sep. 01, 2015	Biennial	Sep. 04, 2017
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	BBHA9170223	Sep. 01, 2014	Biennial	Sep. 01, 2016
Turn Table	INN-CO systems	CONTROLLER CO3000	N/A	N. C. R	N/A	N. C. R
Antenna Master	INN-CO systems	MA4640-XP-ET	N/A	N. C. R	N/A	N. C. R
Test Receiver	R&S	ESU26	100109	Mar. 07, 2016	Annual	Mar. 07, 2017
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESCI 7	100911	Dec. 22, 2015	Annual	Dec. 22, 2016
Two-Line V-Network	R&S	ENV216	100190	Dec. 21, 2015	Annual	Dec. 21, 2016
Shield Room	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N/A	N.C.R.	N/A	N.C.R.

Note;

The equipment calibrated during the test period was used after finished the calibration.

1.5. Summary of test results

The EUT has been tested according to the following specifications:

	Applied Standard : FCC Part15, Subpart C								
Standard Section	Test Item	Result							
15.205 15.209(a) 15.249(a) 15.249(c) 15.249(d)	Fundamental and Radiated Spurious emission	Complied							
15.215(c)	20 dB Bandwidth	Complied							
15.207	AC Power Line Conducted Emissions	Complied							

1.6. Test Procedure(s)

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the DUT.

1.7. Sample calculation

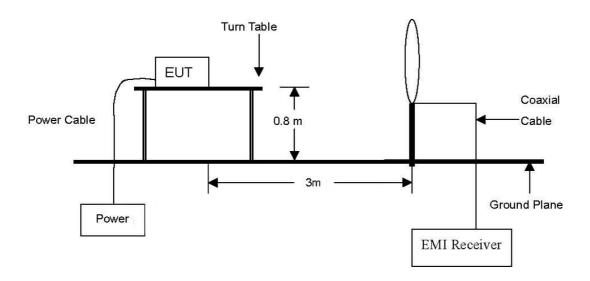
Where relevant, the following sample calculation is provided

1.7.1. Radiation test

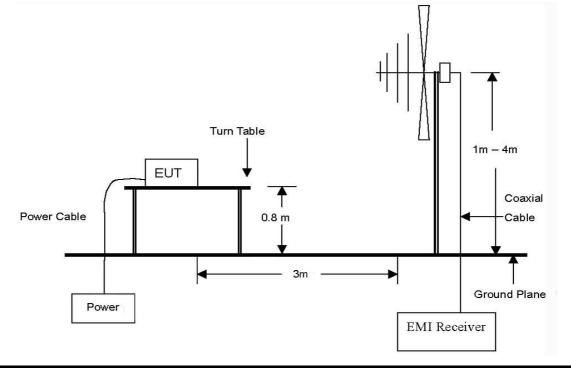
Field strength level $(dB\mu N/m)$ = Measured level $(dB\mu N)$ + Antenna factor (dB) + Cable loss (dB) – Amplifier gain (dB)

1.8. Test report revision

Revision	Report number Date of Issue		Description
0 F690501/RF-RTL010234		2016.08.18	Initial
1 F690501/RF-RTL010234-1		2016.08.25	Added 20 dB Bandwidth Test
2 F690501/RF-RTL010234-2		2016.09.06	Added Pre-scan test plots

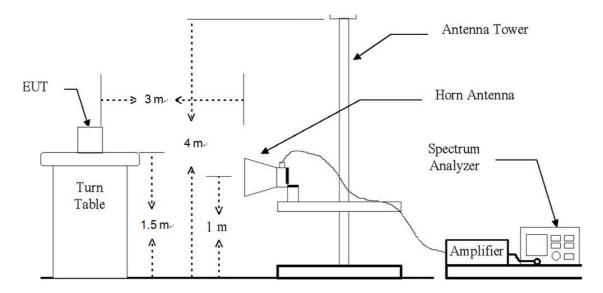


2. Fundamental and Radiated Spurious emission


2.1. Test setup

2.1.1. Fundamental and Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kl_2 to 30 M_2 Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

2.2. Test procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013.

2.2.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

Note;

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 meter open field test site.

Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

2.2.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meters above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 \mathbb{G}_k , the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 \mathbb{G}_k , the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a trilog broadband antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note;

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mz for Peak detection and frequency above 1 Gz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 $M_{\mathbb{Z}}$ and the video bandwidth is 10 $H_{\mathbb{Z}}$ for Average detection (AV) at frequency above 1 $G_{\mathbb{Z}}$.
- To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes (X, Y, Z). Worst orthogonal plan of EUT is <u>X axis</u> during radiation test.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-20(2015.10.01)(3)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

2.3. Limit

According to §15.249(a), Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (mV/m)	Field strength of harmonics $(\mu N/m)$
902 – 928 M±z	50	500
2 400 – 2 483.5 MHz	50	500
5 725 – 5 875 Mz	50	500
24.0 - 24.25 GHz	250	2 500

According to \$15.249(d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in \$15.209, whichever the lesser attenuation.

According to §15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

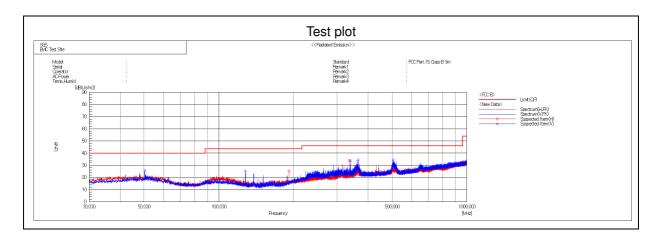
Frequency (账)	Distance (Meters)	Field Strength (dB, W/m)	Field Strength (µV/m)
0.009 - 0.490	300	20 log (2 400/F(kHz))	2 400/F(kHz)
0.490 – 1.705	30	20 log (24 000/F(kHz))	24 000/F(kHz)
1.705 – 30.0	30	29.54	30
30 – 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

Remark:

Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 Mz, 76-88 Mz, 174-216 Mz or 470-806 Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2.4. Test result

Ambient temperature	:	(23	±1) ℃
Relative humidity	:	47	% R.H.


2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 9 klb to 1 000 Mb was investigated. All reading values are peak values.

Radiated Emissions		Ant.	Correctio	Correction Factors		FCC Limit		
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
50.33	38.30	Peak	V	14.47	-26.98	25.79	40.00	14.21
128.01	42.90	Peak	V	9.15	-26.29	25.76	43.50	17.74
191.99	39.90	Peak	Н	11.07	-25.70	25.27	43.50	18.23
336.00	44.30	Peak	Н	15.01	-25.14	34.17	46.00	11.83
339.63	42.60	Peak	V	16.15	-25.18	33.57	46.00	12.43
365.05	43.10	Peak	V	16.52	-25.17	34.45	46.00	11.55
504.78	41.30	Peak	V	18.69	-25.58	34.41	46.00	11.59
Above 600.00	Not detected	-	-	-	-	-	-	-

Remark

- 1. Spurious emissions for all channels were investigated and almost the same below 1 $\,\mathrm{GHz}$.
- 2. Reported spurious emissions are in **<u>High channel</u>** as worst case among other channels.
- 3. Radiated spurious emission measurement as below.
- (Actual = Reading + AF + Amp + CL)
 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

2.4.2. Radiated Spurious Emission above 1 000 Mb

A. Low Channel (2 402 Mb)

Fundamental level		Ant.	Correction Factors		Total	Limit		
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2 402.04	57.41	Peak	Н	28.16	5.85	91.42	114.00	22.58
2 402.03	55.17	Average	Н	28.16	5.85	89.18	94.00	4.82

Radi	ated Emissi	ions	Ant.	Ant. Correction Factors		Total	Limi	t
Frequency (M脸)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	25.76	Peak	Н	28.07	5.31	59.14	74.00	14.86
*2 310.00	15.30	Average	Н	28.07	5.31	48.68	54.00	5.32
*2 389.20	28.58	Peak	Н	28.15	5.80	62.53	74.00	11.47
*2 389.70	15.57	Average	Н	28.15	5.80	49.52	54.00	4.48
*2 390.00	25.87	Peak	Н	28.15	5.80	59.82	74.00	14.18
*2 390.00	15.59	Average	Н	28.15	5.80	49.54	54.00	4.46

Radi	ated Emissio	ons	Ant.	Ant. Correction Factors		Total Limit		it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*4 803.27	48.71	Peak	Н	32.65	-30.27	51.09	74.00	22.91
*4 804.02	43.09	Average	Н	32.65	-30.26	45.48	54.00	8.52
Above 4 900.00	Not detected	-	-	-	-	-	-	-

B. Middle Channel (2 440 Mz)

Fundamental level		Ant.	Correction Factors		Total	Limit		
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2 440.34	57.78	Peak	Н	28.20	5.62	91.60	114.00	22.40
2 440.01	55.54	Average	Н	28.20	5.62	89.36	94.00	4.64

Radia	Radiated Emissions		Ant.	Correction Factors		Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 880.08	47.10	Peak	Н	32.86	-29.70	50.26	74.00	23.74
*4 880.00	41.41	Average	Н	32.86	-29.70	44.57	54.00	9.43
Above 4 900.00	Not detected	-	-	-	-	-	-	-

C. High Channel (2 480 Mz)

Fundamental level		Ant.	Correction Factors		Total	Limit		
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
2 480.37	57.87	Peak	Н	28.24	5.55	91.66	114.00	22.34
2 480.00	55.76	Average	Н	28.24	5.55	89.55	94.00	4.45

Radi	ated Emissi	ions	Ant	Ant Correction Factors		Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	34.51	Peak	Н	28.24	5.54	68.29	74.00	5.71
*2 483.50	16.83	Average	Н	28.24	5.54	50.61	54.00	3.39
*2 483.63	35.10	Peak	Н	28.24	5.54	68.88	74.00	5.12
*2 483.53	16.79	Average	Н	28.24	5.54	50.57	54.00	3.43
*2 500.00	25.47	Peak	Н	28.24	5.54	59.25	74.00	14.75
*2 500.00	16.06	Average	Н	28.26	5.49	49.81	54.00	4.19

Radi	Radiated Emissions		Ant	Correction Factors		Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*4 959.77	52.46	Peak	Н	33.07	-29.47	56.06	74.00	17.94
*4 959.97	45.20	Average	н	33.07	-29.47	48.80	54.00	5.20
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Remarks;

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 \mathbb{G} to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 M₂ were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + AMP + CL or Reading + AF + CL
- 5. According to §15.31(o), emission levels are not reported much lower than the limits by over 20 dB.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

RTT5041-20(2015.10.01)(3)

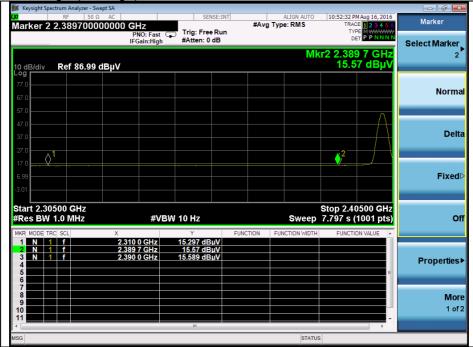
Tel. +82 31 428 5700 / Fax. +82 31 427 2370

2.4.2. Radiated Spurious Emission above 1 000 Mb

0 10:48:20 PM Peak Search #Avg Type: RMS Marker 1 2.402040000000 GHz Trig: Free Run #Atten: 0 dB PNO: Fast IFGain:High Next Peak Mkr1 2.40 402 040 GH2 57.41 dBµ\ 10 dB/div Ref 86.99 dBµV Next Pk Right 1 Next Pk Left Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Center 2.402000 GHz #Res BW 1.0 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) #VBW 1.0 MHz

Low channel fundamental (Peak)


Low channel fundamental (Average)

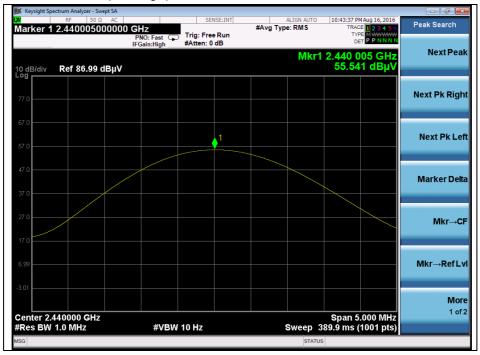

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Low channel band edge (Peak)

Low channel band edge (Average)

Low channel 2nd harmonic (Peak)

Low channel 2nd harmonic (Average)

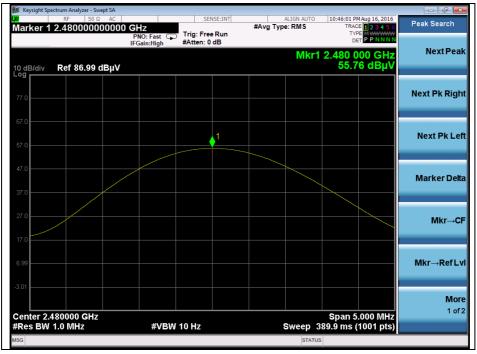


Middle channel fundamental (Peak)

Middle channel fundamental (Average)

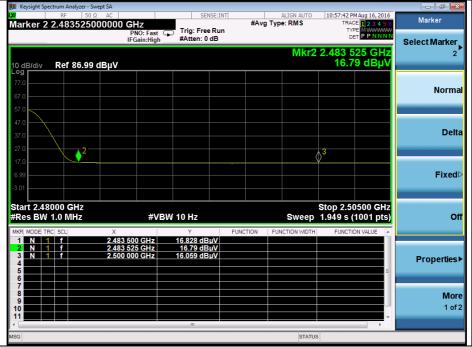
Middle channel 2nd harmonic (Peak)

Middle channel 2nd harmonic (Average)

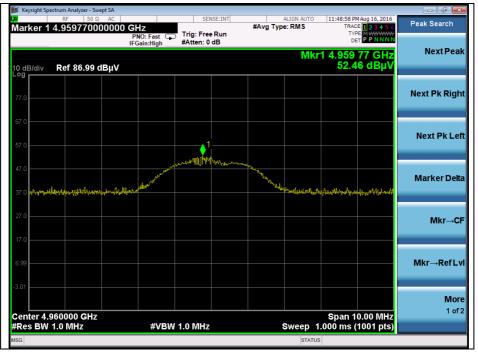


High channel fundamental (Peak)

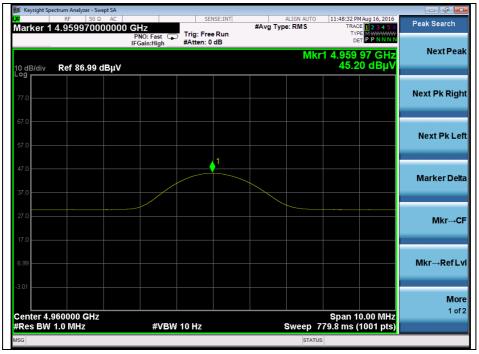
High channel fundamental (Average)



High channel band edge (Peak)

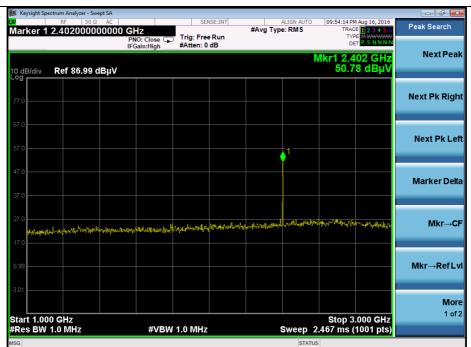


High channel band edge (Average)



High channel 2nd harmonic (Peak)

High channel 2nd harmonic (Average)




2.4.3. Pre-scan Test Plots

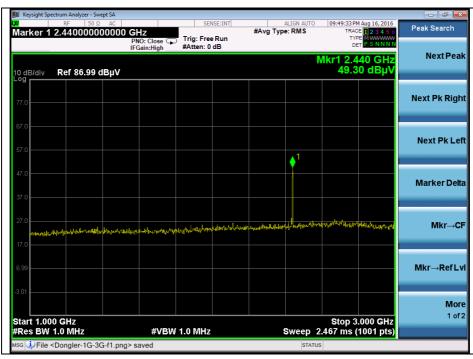
Low channel

1 GHz ~ 3 GHz

$3~{\rm GHz}~\sim 18~{\rm GHz}$

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)	4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807	<u>http://www.sgsgroup.kr</u>
RTT5041-20(2015.10.01)(3)	Tel. +82 31 428 5700 / Fax. +82 31 427 2370	A4(210 mm × 297 mm)



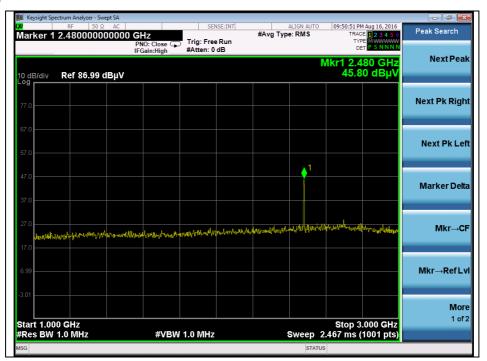
18 GHz ~ 25 GHz

Middle channel

1 GHz ~ 3 GHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>

3 GHz ~ 18 GHz


18 GHz ~ 25 GHz

High channel

1 GHz ~ 3 GHz

3~GHz $\sim 18~\text{GHz}$

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

18 GHz ~ **25** GHz

Note: Emission was scanned up to 25 GHz, No emissions were detected above the noise floor which was at least 20 dB below the specification limit.

3.20 dB Bandwidth

3.1. Test Setup

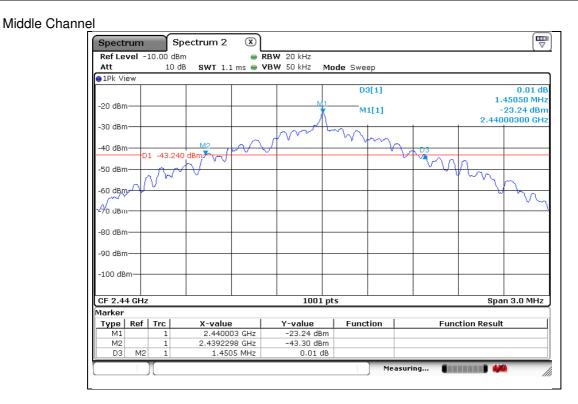
3.2. Limit

Limit: Not Applicable

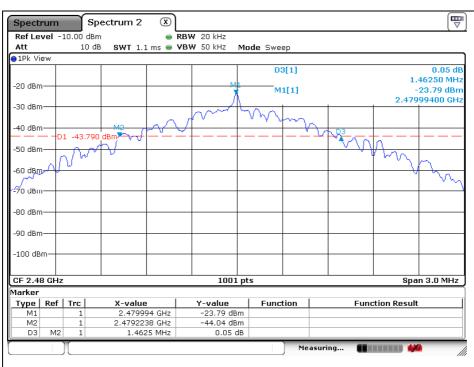
3.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=20 kHz, VBW=50 kHz and Span=3 MHz.

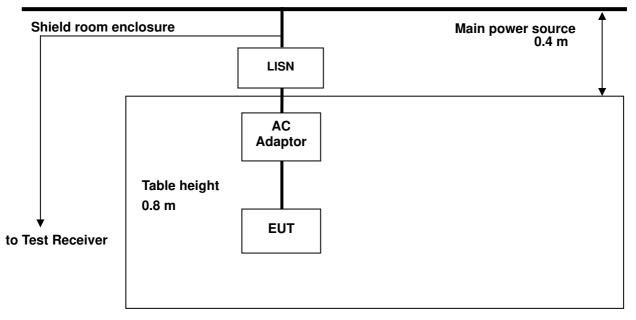
3.4. Test Results


Ambient temperature	:	(23	±1) ℃
Relative humidity	:	47	% R.H.

Channel	Frequency (雕)	20 dB Bandwidth (Mz)
Low	2 402	1.481
Middle	2 440	1.451
High	2 480	1.463


Low Channel

Spectrum Ref Level -10		ectrum 2	×	nu oo kus				(🛛
Att	1.00 aBm 10 dP			BW 20 kHz BW 50 kHz M	ode Sweep			
1Pk View	10 41	0 WT 1	L 1115 🚽 🖡	DW JORIZ W	Jue Sweep			
-20 dBm				M1	D3[1]			-0.10 dE .48050 MHz -24.86 dBm
				1 👗	witii)			200300 GHz
-30 dBm				1 million	mm	_		
-40 dBm	-44.860				,	∇A^{B}		
-50 dBm	-44.860	asm – v – –					5	
-60 dBm							M	<u> </u>
-70 dBm								
-80 dBm								
-90 dBm								
-100 dBm								
CF 2.402 GHz				1001 m				
de 2.402 GHZ Aarker				1001 p	15		spa	an 3.0 MHz
	Frc	X-value	· 1	Y-value	Function	l Eur	iction Resul	•
M1 M1	1	2.4020		-24.86 dBm	. ancelon	141		•
M2	1	2.40120		-44.98 dBm				
D3 M2	1	1.480	05 MHz	-0.10 dB				
					Me	asuring		4


High Channel

4. AC Power Line Conducted Emission

4.1. Test Setup

4.2. Limit

§15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H /50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency of Emission (ML)	Conducted limit (dBµN)				
Frequency of Emission (毗)	Quasi-peak	Average			
0.15 – 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

* Decreases with the logarithm of the frequency.

4.3. Test Procedures

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

AC line conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2013

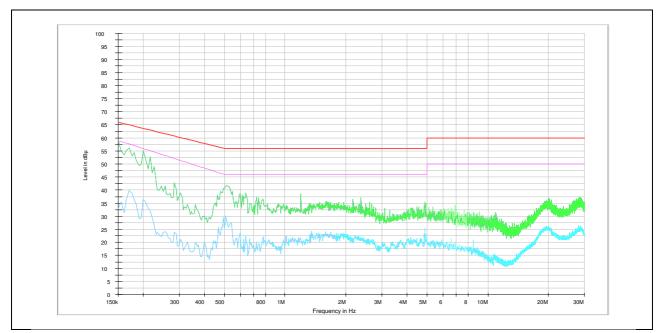
- 1. The test procedure is performed in a 6.5 m \times 3.6 m \times 3.6 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. The excess power cable between the EUT and the LISN was bundled. All connecting cables of EUT were moved to find the maximum emission.

4.4. Test Results

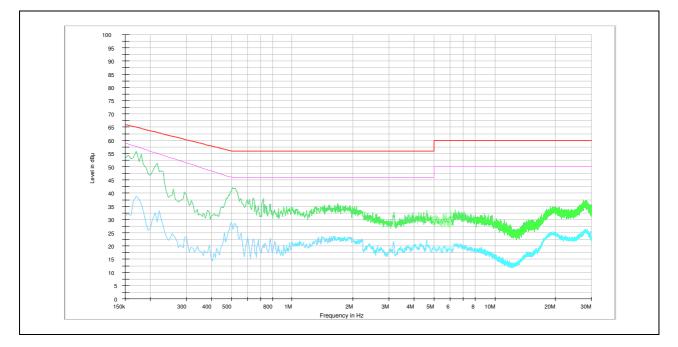
The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line

Ambient temperature	: (23 ± 1) °C
Relative humidity	: 47 % R.H.
Frequency range	: 0.15 MHz -30 MHz
Measured Bandwidth	: 9 kHz

FREQ.	LEVEL	.(dB,⊿V)		LIMIT(dBµV)		MARGIN(dB)	
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.15	53.20	40.50	Ν	66.00	56.00	12.80	15.50
0.20	51.10	36.50	Ν	63.61	53.61	12.51	17.11
0.52	38.50	29.80	Ν	56.00	46.00	17.50	16.20
1.20	39.10	30.80	Ν	56.00	46.00	16.90	15.20
19.88	30.60	25.70	Ν	60.00	50.00	29.40	24.30
28.27	32.00	26.10	Ν	60.00	50.00	28.00	23.90
0.17	39.70	27.70	Н	64.96	54.96	25.26	27.26
0.22	26.80	17.60	Н	62.82	52.82	36.02	35.22
0.50	32.00	26.10	Н	56.00	46.00	24.00	19.90
1.67	32.10	26.30	Н	56.00	46.00	23.90	19.70
19.37	25.70	20.50	Н	60.00	50.00	34.30	29.50
28.20	19.80	12.80	Н	60.00	50.00	40.20	37.20


Remark;

- 1. Line (H): Hot, Line (N): Neutral.
- 2. All modes of operation were investigated and the worst-case emissions were reported GFSK, High Channel.
- 3. Traces shown in plot mad using a peak detector and average detector.
- 4. The limit for Class B device(s) from 150 kl/z to 30 M/z are specified in Section of the Title 47 CFR.
- 5. Deviations to the Specifications: None.



Plots of Conducted Power line

Test mode: (Neutral)

Test mode: (Hot)

- End of the Test Report -

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370