

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383.Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC BT LE REPORT

FCC Certification

Applicant Name:

LG Electronics MobileComm U.S.A., Inc.

Date of Issue: June 30, 2017 Test Site/Location: HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majangmyeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA Report No.: HCT-R-1706-F097 HCT FRN: 0005866421

Address:

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

FCC ID : ZNFM700Z APPLICANT : LG Electronics MobileComm U.S.A., Inc.

Model:	LG-M700Z					
Additional model(s):	LGM700Z, M700Z, LG-M700DSK, LGM700DSK, M700DSK					
EUT Type:	GSM/WCDMA/LTE Phone with Bluetooth4.2LE, WIFI802.11 b/g/n					
RF Peak Output Power:	1.531 dBm (1.42 mW)					
Frequency Range:	2402 MHz -2480 MHz					
Modulation type	GFSK					
FCC Classification:	Digital Transmission System(DTS)					
FCC Rule Part(s):	Part 15.247					

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this

equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Jung Lae Cho Engineer of Telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1706-F097	June 30, 2017	- First Approval Report

Table of Contents

1. GENERAL INFORMATION	ŀ
2. EUT DESCRIPTION	ŀ
3. TEST METHODOLOGY	;
3.1 EUT CONFIGURATION	;
3.2 EUT EXERCISE	;
3.3 GENERAL TEST PROCEDURES	;
3.4 DESCRIPTION OF TEST MODES	;
4. INSTRUMENT CALIBRATION	,
5. FACILITIES AND ACCREDITATIONS	,
5.1 FACILITIES	,
5.2 EQUIPMENT	,
6. ANTENNA REQUIREMENTS	,
7. MEASUREMENT UNCERTAINTY	,
8. SUMMARY TEST OF RESULTS 8	\$
9. TEST RESULT)
9.1 DUTY CYCLE)
9.2 6 dB BANDWIDTH MEASUREMENT11	l
9.3 OUTPUT POWER MEASUREMENT14	ŀ
9.4 POWER SPECTRAL DENSITY	İ
9.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS 25	;
9.6 RADIATED MEASUREMENT	\$
9.6.1 RADIATED SPURIOUS EMISSIONS)
9.6.2 RADIATED RESTRICTED BAND EDGES	\$
9.7 POWERLINE CONDUCTED EMISSIONS)
10. LIST OF TEST EQUIPMENT	ŀ
10.1 LIST OF TEST EQUIPMENT(Conducted Test)	ŀ
10.2 LIST OF TEST EQUIPMENT(Radiated Test)55	;

1. GENERAL INFORMATION

Applicant:	LG Electronics MobileComm U.S.A., Inc.
Address:	1000 Sylvan Avenue, Englewood Cliffs NJ 07632
FCC ID:	ZNFM700Z
EUT Type:	GSM/WCDMA/LTE Phone with Bluetooth4.2LE, WIFI802.11 b/g/n
Model:	LG-M700Z
Additional model(s):	LGM700Z, M700Z, LG-M700DSK, LGM700DSK, M700DSK
Date(s) of Tests:	June 13, 2017 ~ June 29, 2017
	HCT Co., Ltd.
Place of Tests:	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

Model	LG-M700	Z		
Additional model(s)	LGM700Z	Z, M700Z, LG-M700DSK, LGM700DSK, M700DSK		
EUT Type	GSM/WC	DMA/LTE Phone with Bluetooth4.2LE, WIFI802.11 b/g/n		
Power Supply	DC 3.85	DC 3.85 V		
Battery Information		Model: BL-T33 Type: Li-ion Battery		
Frequency Range	-	TX: 2402 MHz ~ 2480 MHz RX: 2402 MHz ~ 2480 MHz		
Max BE Output Bower	Peak	1.531 dBm (1.42 mW)		
Max. RF Output Power	Average	1.270 dBm (1.34 mW)		
BT Operating Mode	BT_Low Energy Mode			
Modulation Type	GFSK			
Number of Channels	40 Channels			
	Manufacturer: Ace Technology			
Antenna Specification	Antenna t	type: INTERNAL ANTENNA		
	Peak Gai	n : 0.6 dBi		

2. EUT DESCRIPTION

3. TEST METHODOLOGY

FCC KDB 558074 D01 DTS Meas Guidance v04 dated April 5, 2017 entitled "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

Conducted Antenna Terminal

See Section from 9.1 to 9.2.(KDB 558074 v04)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed. Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2006).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

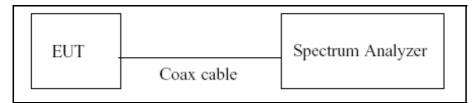
*The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70


8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Peak Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band	CONDUCTED	PASS
Band Edge(Out of Band Emissions)	§15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§15.207	Solution Section 9.6.1		PASS
Radiated Spurious Emissions §15.205, 15.209		cf. Section 9.6.1		PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 9.6.2	RADIATED	PASS

9. TEST RESULT 9.1 DUTY CYCLE

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We tested according to the zerospan measurement method, 6.0)b) in KDB 558074 v04.

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

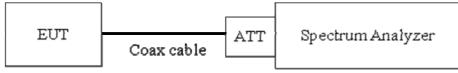
The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10*log(1/Duty Cycle)

LE Mode	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
	0.3927	0.6257	0.6275	2.02

RESULT PLOTS

	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	03:31:58 PM Jun 21, 2017	Frequency
enter Fr	eq 2.4020000	0 GHz PNO: Fast ↔→ IFGain:Low	Trig: Free Run Atten: 16 dB	#Avg Type: Pwr(RMS)	TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N	Frequency
0 dB/div	Ref Offset 10.7 dB Ref 15.00 dBm			Δ	Mkr3 625.7 µs 7.23 dB	Auto Tur
og 5.00 5.00		X			<u>3</u> <u>\</u>	Center Fre 2.402000000 GH
25.0 35.0 45.0	ukuum	Jyech.###.grd;?%-#%#		ulersky gile van provin	Nulti ⁴ 4.6.	Start Fre 2.402000000 GH
55.0 55.0 75.0						Stop Fro 2.402000000 GI
enter 2.4 es BW 8			8.0 MHz		Span 0 Hz 267 ms (1001 pts)	8.000000 MI
Center 2.4 Ces BW 8	MHz	392.7 μs (Δ)	Y -0.90 dB	Sweep 1.2	267 ms (1001 pts)	8.000000 MI
enter 2.4 es BW 8	MIHZ		Y I		267 ms (1001 pts)	CF Ste 8.000000 Mi <u>Auto</u> Mi Freq Offs 0 I
Center 2.4 Les BW 8 KR MODE TRO 1 22 F 1 3 A4 1 4 F 1 5	MHz c scl × t (Δ) t t (Δ)	392.7 μs (Δ) 478.8 μs 625.7 μs (Δ)	Y -0.90 dB -8.34 dBm 7.23 dB		267 ms (1001 pts)	8.000000 Mi <u>Auto</u> Mi Freq Offs


9.2 6 dB BANDWIDTH MEASUREMENT

Test Requirements and limit, §15.247(a)(2)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.1 in KDB 558074 v04)

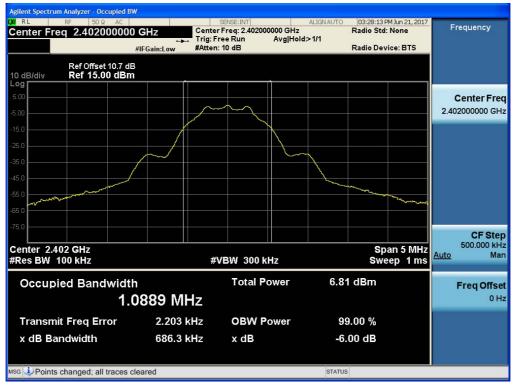
RBW = 100 kHz VBW \geq 3 x RBW

Detector = Peak

Trace mode = max hold

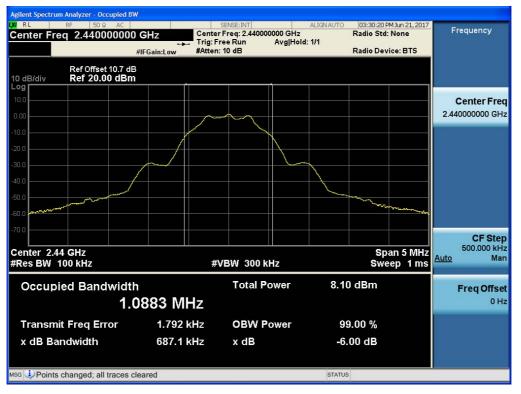
Sweep = auto couple

Allow the trace to stabilize

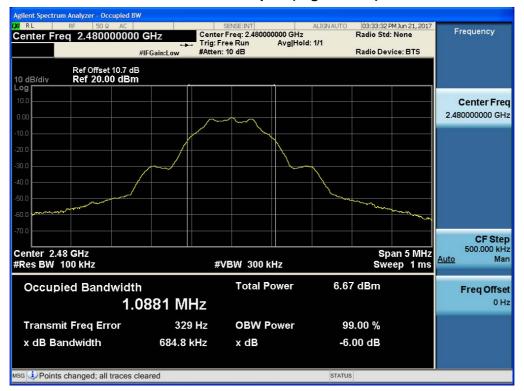

Note : We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

TEST RESULT

Mode	Channel	6 dB Bandwidth	Limit	Pass/Fail	
Mode	Channel	(kHz)	(kHz)	Fass/Fall	
	0	686.3		Pass	
BT LE	19	687.1	> 500	Pass	
	39	684.8		Pass	



RESULT PLOTS

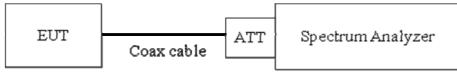

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

Model: LG-M700Z

6 dB Bandwidth plot (High-CH 39)

9.3 OUTPUT POWER MEASUREMENT


Test Requirements and limit, §15.247(b)(3)

A transmitter antenna terminal of EUT is connected to the input of a Spectrum Analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function.

This EUT TX condition is actual operating mode by BT LE mode test program.

The Spectrum Analyzer is set to

- Peak Power (Procedure 9.1.1 in KDB 558074 v04)
 - RBW ≥ DTS Bandwidth
 - $VBW \ge 3 \times RBW$
 - SPAN ≥ 3 x RBW
 - Detector Mode = Peak
 - Sweep = auto couple
 - Trace Mode = max hold

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level

• Average Power (Procedure 9.2.2.4 in KDB 558074 v04)

Measure the duty cycle

Set span to at least 1.5 times the OBW

RBW = 1-5 % of the OBW, not to exceed 1 MHz.

 $VBW \ge 3 \times RBW.$

Number of points in sweep $\ge 2 x$ span / RBW. (This gives bin-to-bin spacing \le RBW/2,

so that narrowband signals are not lost between frequency bins.)

Sweep time = auto.

Detector = RMS(i.e., power averaging)

Do not use sweep triggering. Allow the sweep to "free run".

Trace average at least 100 traces in power averaging(RMS) mode.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band

power measurement function with band limits set equal to the OBW band edges.

Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

Output Power = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor Output Power = 10 dBm + 10 dB + 0.8 dB + 0.2 dB = 21.0 dBm

Note :

- 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.7 dB is offset for 2.4 GHz Band.

TEST RESULTS-Peak

Conducted Output Power Measurements

LE Mode		Measured	Limit	
Frequency[MHz]	Channel No.	Power(dBm)	(dBm)	
2402	0	-0.017	30	
2440	19	1.531	30	
2480	39	0.128	30	

TEST RESULTS-Average

Conducted Output Power Measurements

LE Mode			Duty Ovele	Measured		
Frequency[MHz]	Channel No.	Measured Power(dBm)	Duty Cycle Factor (dB)	Power(dBm) + Duty Cycle Factor(dB)	Limit (dBm)	
2402	0	-2.27	2.02	-0.24	30	
2440	19	-0.75	2.02	1.27	30	
2480	39	-2.14	2.02	-0.12	30	

RESULT PLOTS-Peak

Conducted Output Power (Low-CH 0)

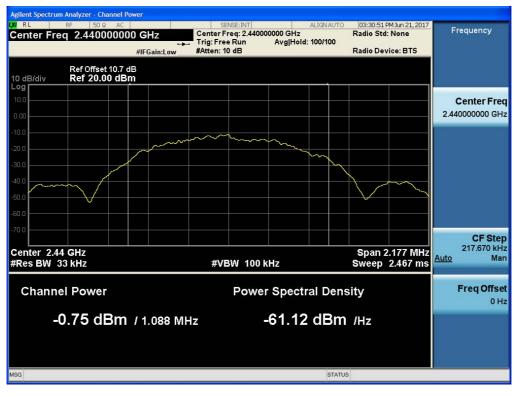
Conducted Output Power (Mid-CH 19)

RL enter F	req 2.44000000) GHz	SENSE:INT	ALIGNAUTO #Avg Type: Pwr(RMS)	03:30:41 PM Jun 21, 2017 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast ++- IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hold: 1/1		
dB/div	Ref Offset 10.7 dB Ref 20.00 dBm			Mkr1 :	2.439 986 GHz 1.531 dBm	Auto Tu
.0 						Center Fr 2.440000000 G
			• '			Start Fr
						2.438500000 G
.0						Stop Fr 2.441500000 G
.0 0.						CF St
.0						300.000 k <u>Auto</u> N
.0						Freq Offs 0
.0						
	140000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep 1	Span 3.000 MHz .07 ms (1000 pts)	

Model: LG-M700Z

RL	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	03:33:53 PM Jun 21, 2017	Frequency
enter F	req 2.48000000	PNO: Fast ++- IFGain:Low	Trig: Free Run Atten: 20 dB	#Avg Type: Pwr(RMS) Avg Hold: 1/1	TRACE 1 2 3 4 5 5 TYPE MWWWWW DET PPPPP	
) dB/div	Ref Offset 10.7 dB Ref 20.00 dBm			Mkr1	2.479 989 GHz 0.128 dBm	Auto Tun
0.0		2	1			Center Fre 2.480000000 GF
0.0						Start Fre 2.478500000 GH
0.0						Stop Fre 2.481500000 GH
0.0						CF Ste 300.000 ki Auto Ma
0.0						Freq Offs 0 H
	480000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep 1	Span 3.000 MHz .07 ms (1000 pts)	

Conducted Output Power (High-CH 39)



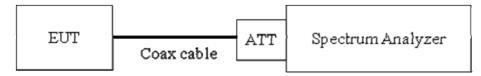
RESULT PLOTS-Average

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Model: LG-M700Z

Conducted Output Power (High-CH 39)


9.4 POWER SPECTRAL DENSITY

Test Requirements and limit, §15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard – The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

TEST CONFIGURATION

TEST PROCEDURE

We tested according to Procedure 10.2 in KDB 558074, issued 04/05/2017

The spectrum analyzer is set to :

Set analyzer center frequency to DTS channel center frequency.

Span = 1.5 times the DTS channel bandwidth.

 $RBW = 3 kHz \le RBW \le 100 kHz.$

VBW \geq 3 x RBW.

Sweep = auto couple

Detector = peak

Trace Mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

PSD = Reading Value + ATT loss + Cable loss(1 ea)

Output Power = -5 dBm + 10 dB + 0.8 dB = 5.8 dBm

Note :

- 1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So,10.7 dB is offset for 2.4 GHz Band.

Model: LG-M700Z

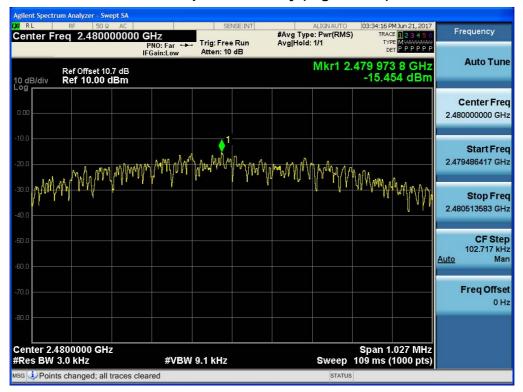
TEST RESULTS

Frequency	Channel		Test F	Result	
Frequency (MHz)	No.	Mode	PSD	Limit	Pass/
	NO.		(dBm)	(dBm)	Fail
2402	0		-15.204	8	Pass
2440	19	LE	-13.696	8	Pass
2480	39		-15.454	8	Pass

Conducted Power Density Measurements

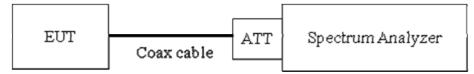


RESULT PLOTS


Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

Model: LG-M700Z



Power Spectral Density (High-CH 39)

9.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit : 20 dBc TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. (Procedure 11.0 in KDB 558074, issued 04/05/2017)

RBW = 100 kHz

VBW ≥ 3 x RBW

Set span to encompass the spectrum to be examined

Detector = Peak

Trace Mode = max hold

Sweep time = auto couple

Ensure that the number of measurement points $\geq 2^{*}$ Span/RBW

Allow trace to fully stabilize.

Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 10th harmonic range with the transmitter set to the lowest, middle, and highest channels.

Note :

1. The maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1(KDB558074 v04), so the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

Model: LG-M700Z

- 2. The band edge results in plot is already including the actual values of loss for the attenuator and cable combination.
- 3. Spectrum offset = Attenuator loss + Cable loss
- 4. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.7 dB is offset for 2.4 GHz Band.
- 5. In case of conducted spurious emissions test, please check factors blow table.
- 6. In order to simplify the report, attached plots were only the worst case channel and data rate.

FACTORS FOR FREQUENCY

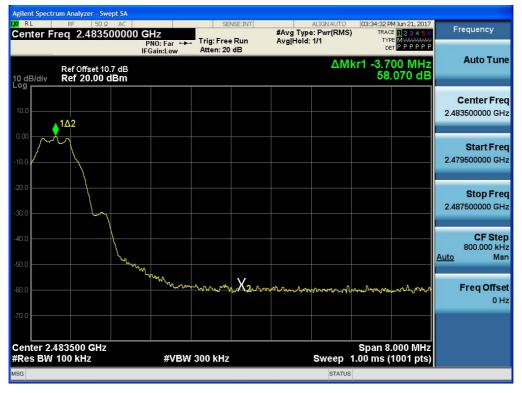
Freq(MHz)	Factor(dB)
30	11.30
100	9.83
200	10.19
300	10.13
400	10.23
500	10.25
600	10.32
700	10.35
800	10.35
900	10.34
1000	10.39
2000	10.64
2400*	10.65
2500*	10.67
3000	10.68
4000	10.89
5000	11.07
6000	11.06
7000	11.35
8000	11.32
9000	11.48
10000	11.56
11000	11.56
12000	11.68
13000	11.83
14000	11.90
15000	11.98
16000	12.04

Model: LG-M700Z

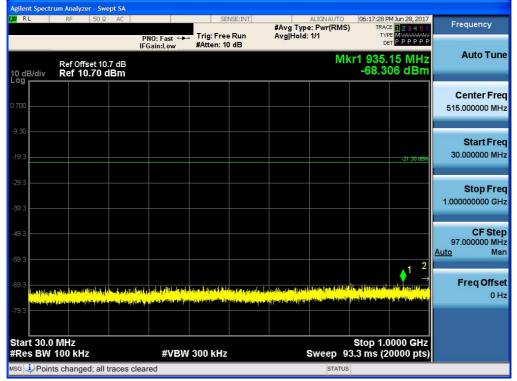

17000	12.02
18000	12.08
19000	12.07
20000	12.14
21000	12.17
22000	12.31
23000	12.60
24000	12.34
25000	12.53

Note : 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Attenuator loss



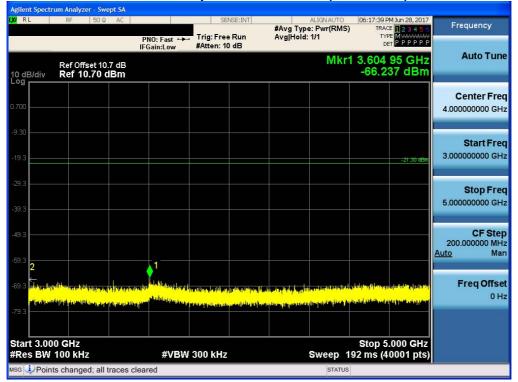
RESULT PLOTS



BandEdge (Low-CH 0)

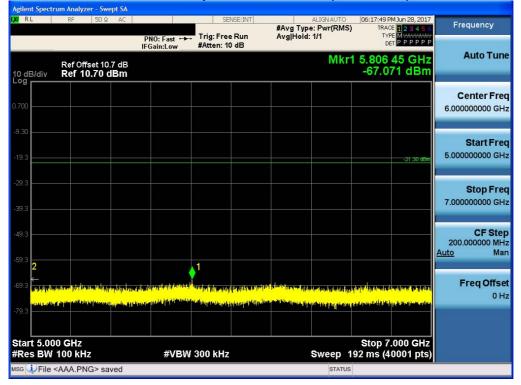
BandEdge (High-CH 39)

30 MHz ~ 1 GHz



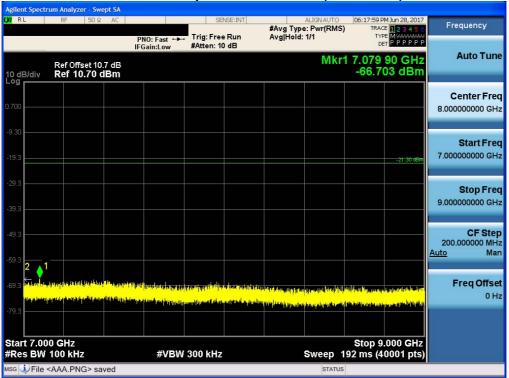
Conducted Spurious Emission (Mid-CH 19)

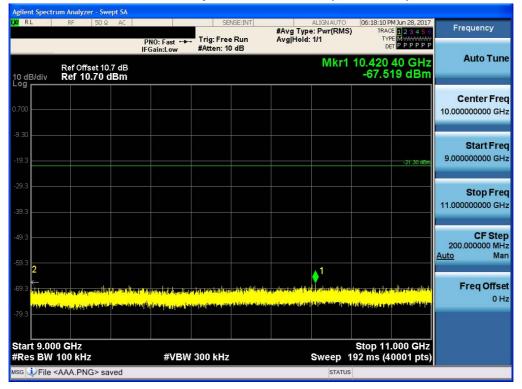
1 GHz ~ 3 GHz


RL	RF 50 Ω			SENSE:	#Avg	ALIGNAUTO Type: Pwr(RMS) Hold: 1/1	06:17:18 PM Jun 28, 2017 TRACE 1 2 3 4 5 6 TYPE M WWWWWW	Frequency
0 dB/div	Ref Offset 10. Ref 10.70 d	IF 7 dB	NO: Fast ← Gain:Low	#Atten: 10 dB			2.969 40 GHz -66.831 dBm	Auto Tune
og 700 9.30 19.3						1	-21.30 dBm	Center Free 2.000000000 GH
29.3 39.3 49.3								Start Fre 1.000000000 GH
59.3 59.3								
9.3 - 19.3	engingen af skiller der sterne skrevite	lan da lin dalatan M Pring mili provinsi		a hara yang sang kana kata kata kata yang sang kata kata yang sang kata kata kata kata kata kata kata kat		tingen gehi Denikaipinen	in problem (defined from york of the problem of the provident of the problem of t	
	0 GHz 100 kHz		#VB	W 300 kHz	FUNCTION		Stop 3.000 GHz 92 ms (40001 pts)	Stop Fre 3.00000000 GH CF Ste 200.000000 MH <u>Auto</u> Ma
79.3 Start 1.000 Res BW 1	0 GHz 100 kHz	iptog, and typical disk	#VB	W 300 kHz	in in a summer of the spectrum methods in the spectrum met	Sweep 1	Stop 3.000 GHz 92 ms (40001 pts)	3.00000000 G⊢ CF Ste 200.000000 M⊢
3.3	0 GHz 100 kHz	× 2.439 S	#VB	W 300 kHz -1.299 dBm	in in a summer of the spectrum methods in the spectrum met	Sweep 1	Stop 3.000 GHz 92 ms (40001 pts)	3.00000000 GH CF Ste 200.000000 MH <u>Auto</u> Ma

3 GHz ~ 5 GHz

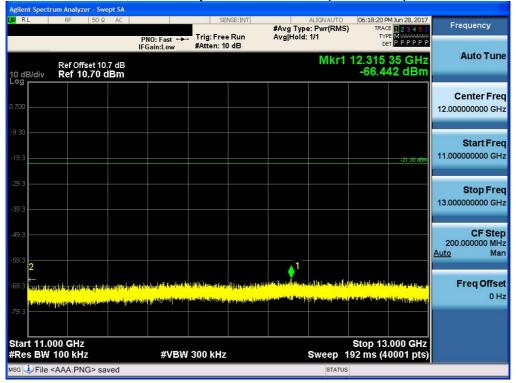
Conducted Spurious Emission (Mid-CH 19)


5 GHz ~ 7 GHz

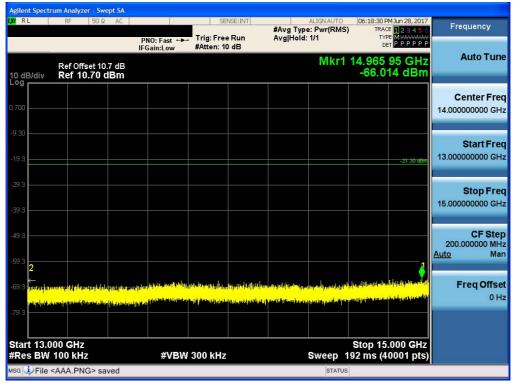


7 GHz ~ 9 GHz

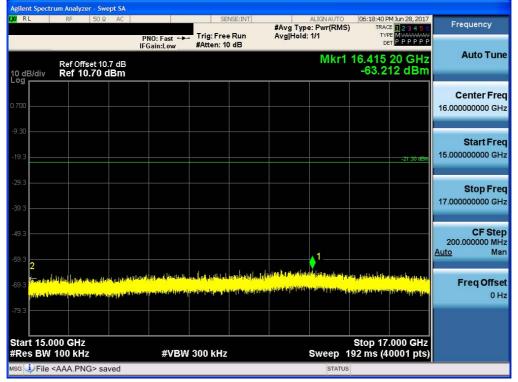
Conducted Spurious Emission (Mid-CH 19)



9 GHz ~ 11 GHz

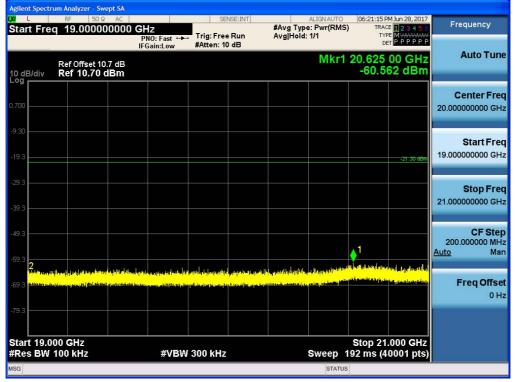


11 GHz ~ 13 GHz

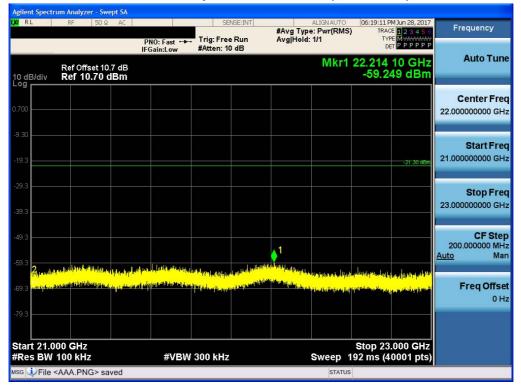

Conducted Spurious Emission (Mid-CH 19)

13 GHz ~ 15 GHz

15 GHz ~ 17 GHz


Conducted Spurious Emission (Mid-CH 19)

17 GHz ~ 19 GHz



19 GHz ~ 21 GHz

Conducted Spurious Emission (Mid-CH 19)

21 GHz ~ 23 GHz

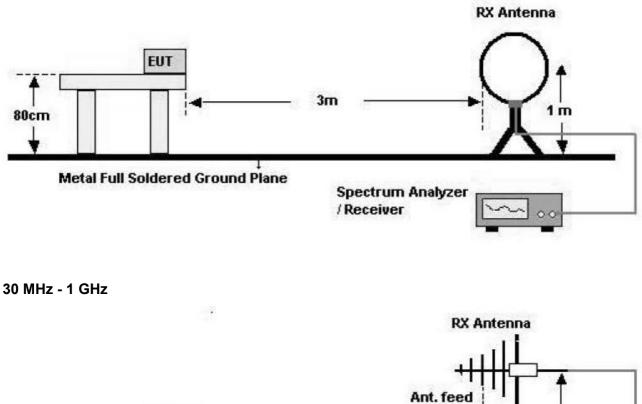
23 GHz ~ 25 GHz

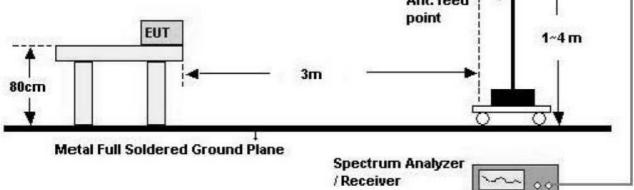
RL	RF	50 Ω	AC			SENSE:INT		ALIGN AUTO	06:19:21 PM	Jun 28, 2017	
				PNO: Fast + FGain:Low	Trig: Fr #Atten:		#Avg Typ Avg Hold	e: Pwr(RMS) : 1/1	TYPE	123456 M WWWWW PPPPPP	Frequency
) dB/div	Ref Offse Ref 10.							Mkr1 :	24.996 9 -58.11		Auto Tun
700											Center Fre 24.000000000 GH
9.3										-21.30 dBm	Start Fre 23.000000000 G⊦
19.3											Stop Fre 25.000000000 GH
19.3 19.3 				al a la traca	a olise se an inda	(kirjat, and Jursitell, and	الأولية والمراجع المراجع	ul bit an art utilized	u terre de la constante de la c	1 ratelff.	CF Ste 200.000000 MH <u>Auto</u> Ma
9.3	i i ser ander et al. Trese ander et al.	Ulenderin Termenterin	ini	en de la composition br>La composition de la co La composition de la c	an a	an in ginner.	ne manpoorte nto	an dag bing gina and here of t	<mark>na ha ka /mark>	AP THE PARTY OF TH	Freq Offs 0 F
tart 23.0	00 GHz 100 kHz			#VB	W 300 kH	Z		Sweep 19	Stop 25.0		

9.6 RADIATED MEASUREMENT.

9.6.1 RADIATED SPURIOUS EMISSIONS.

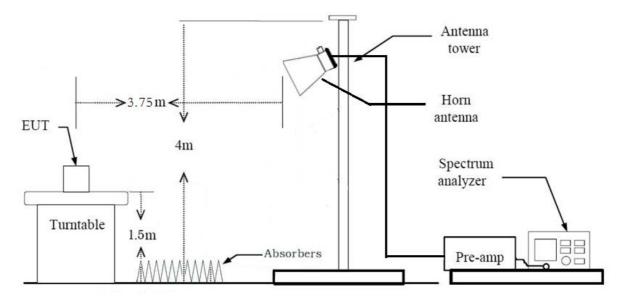
Test Requirements and limit, §15.205, §15.209


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3



Model: LG-M700Z

Test Configuration


Below 30 MHz

Above 1 GHz

TEST PROCEDURE USED

Method 12.1 in KDB 558074 v04

Spectrum Setting

- Peak

Peak emission levels are measured by setting the instrument as follows:

RBW = cf. Table 1.

VBW \geq 3 x RBW.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

(Note that the required measurement time may be longer for low duty cycle applications).

Frequency	RBW				
9-150 kHz	200-300 Hz				
0.15-30 MHz	9-10 kHz				
30-1000 MHz	100-120 kHz				
> 1000 MHz	1 MHz				

Table 1 — RBW as a function of frequency

Average (duty cycle < 98%, duty cycle variations are less than ±2%)
Set RBW = 1 MHz
Set VBW ≥ 3 x RBW
Detector = RMS.
Averaging type = power (*i.e.*, RMS).
Sweep time = auto.
Trace mode = average (at least 100 traces).

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

Note :

1. We are performed the RSE and radiated band edge using standard radiated method(RMS).

2. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).

3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)

Data packet length (Min)

LE Mode	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
	0.3927	0.6257	0.6275	2.02

TEST RESULTS

9 kHz – 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
	No Critical peaks found									

Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 6. The test results for below 30 MHz is correlated to an open site.

The result on OATS is about 2 dB higher than semi-anechoic chamber (10 m chamber)

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
No Critical peaks found									

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Above 1 GHz

Operation Mode: CH.0

Frequency	Reading	Duty Cycle Factor	A.F.+C.LA.G.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	53.26	0.00	-3.82	Н	49.44	73.98	24.54	PK
4804	40.69	2.02	-3.82	Н	38.89	53.98	15.09	AV
7206	53.41	0.00	-0.12	Н	53.29	73.98	20.69	PK
7206	41.07	2.02	-0.12	Н	42.97	53.98	11.01	AV

*A.F. : Antenna Factor / C.L. : Cable Loss / A.G. : Amplifier Gain / D.F. : Distance Factor

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor + Duty Cycle Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F	requency	Reading	Duty Cycle Factor	A.F.+C.LA.G.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
	[MHz]	[dBuV/m]	[dB]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
	4880	53.68	0.00	-6.12	Н	47.56	73.98	26.42	PK
	4880	41.26	2.02	-6.12	Н	37.16	53.98	16.82	AV
	7320	53.48	0.00	-0.27	Н	53.21	73.98	20.77	PK
	7320	41.14	2.02	-0.27	Н	42.89	53.98	11.09	AV

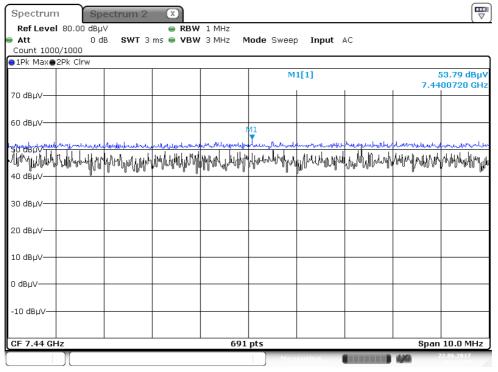
Operation Mode: CH.19

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor
 + Duty Cycle Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Frequency	Reading	Duty Cycle Factor	A.F.+C.LA.G.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	52.67	0.00	-5.54	Н	47.13	73.98	26.85	PK
4960	40.75	2.02	-5.54	Н	37.23	53.98	16.75	AV
7440	53.79	0.00	0.79	Н	54.58	73.98	19.40	PK
7440	41.15	2.02	0.79	Н	43.96	53.98	10.02	AV

Operation Mode: CH.39

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor + Duty Cycle Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.



RESULT PLOTS (Worst case : Z-H)

Radiated Spurious Emissions plot – Average Reading (Ch.39 3rd Harmonic)

Spectrum	Spectrum 2 X								
Ref Leve	I 80.00 dBµ	V	e RBW	1 MHz					
🗕 Att	0 d	в зwt з	8 ms 👄 VBW	3 MHz N	lode Sweep	Input	AC		
Count 100									
⊖1Rm AvgLi	in⊜2Pk Clrw]
					м	1[1]			41.15 dBµV 07240 GHz
70 dBµV									
60 dBµV									
յութեռ	Վանսե հ հմին։	ور الماليل الم	y y www.	ու հեշն են հոնա	հավ հուսվահ Մ.	Markahan	drakal Manua	am the solar	և տու ու անվել
J.a. washad	լ Գին Գիու Իկ	Մետուտնու	Ա ՌՈՐԻՆ օրել «Նո	WA AND MAN	ուի ողդաշի (llleofninge omki	տ լատողովով։	ի և ռուՈւ շտ	MM7046147 7 4
40 dBµV									
30 dBµV									
20 dBµV									
10 dBµV									
0 dBµV									
o aphy									
-10 dBµV—									1
CF 7.44 GH	l Hz	1	1	691	pts	1	1	l Span	10.0 MHz
					Mea	surina		1.00	22.06.2017

Radiated Spurious Emissions plot – Peak Reading (Ch.39 3rd Harmonic)

Note : Only the worst case plots for Radiated Spurious Emissions.

9.6.2 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

Operation Mode	BT_LE
Operating Frequency	2402 MHz
Channel No.	0

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F.	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	52.61	0.00	-3.91	Н	48.70	73.98	25.28	PK
2390.0	43.08	2.02	-3.91	Н	41.19	53.98	12.79	AV
2390.0	52.69	0.00	-3.91	V	48.78	73.98	25.20	PK
2390.0	43.12	2.02	-3.91	V	41.23	53.98	12.75	AV

- 1. Frequency range of measurement = 2310 MHz ~ 2390 MHz
- 2. Total = Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor
- 3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Operation Mode	BT_LE
Operating Frequency	2480 MHz
Channel No.	39

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F.	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2483.5	53.16	0.00	-3.62	Н	49.54	73.98	24.44	PK
2483.5	43.06	2.02	-3.62	Н	41.46	53.98	12.52	AV
2483.5	53.28	0.00	-3.62	V	49.66	73.98	24.32	PK
2483.5	43.12	2.02	-3.62	V	41.52	53.98	12.46	AV

Notes:

1. Frequency range of measurement = 2483.5 MHz ~ 2500 MHz

2. Total = Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor

3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)

4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

RESULT PLOTS (Worst case : Z-V)

Agilent Spectrum	n Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGNAUTO	10:59:50 AM Jun 22, 2017	
	2.48350000000) GHz	Trig: Free Run	#Avg Type: Pwr(RMS) Avg Hold:>100/100	TRACE 122455	Marker
		PNO: Fast 🖵 IFGain:Low	#Atten: 8 dB		TYPE A WWWWW DET A N N N N N	Select Marker
10 dB/div	Ref 100.99 dBµV			Mkr1 :	2.483 500 GHz 43.122 dBµV	1
91.0						Norma
81.0 71.0						Delta
61.0 51.0						Fixed
41.0						to
21.0						Properties
11.0 Start 2.4750 Res BW 1.		#VBW	3.0 MHz*	#Sweep 5	Stop 2.50000 GHz .00 ms (1001 pts)	More 1 of 2
	ent Completed			STATUS		

Radiated Restricted Band Edges plot - Peak Reading (Ch.39)

Note : Only the worst case plots for Radiated Restricted Band Edges.

9.7 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

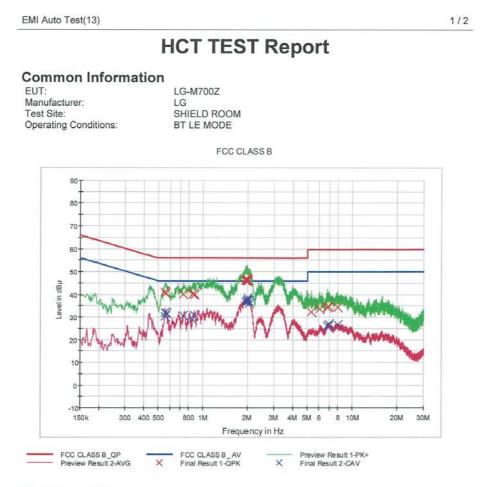
	Limits (dBµV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE


- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

RESULT PLOTSConducted Emissions (Line 1)

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.558000	41.1	9.000	Off	L1	9.7	14.9	56.0
0.564000	40.4	9.000	Off	L1	9.7	15.6	56.0
0.738000	40.2	9.000	Off	L1	9.7	15.8	56.0
0.860000	40.3	9.000	Off	L1	9.7	15.7	56.0
0.866000	40.4	9.000	Off	L1	9.7	15.6	56.0
0.882000	39.9	9.000	Off	L1	9.7	16.1	56.0
1.920000	46.2	9.000	Off	L1	9.8	9.8	56.0
1.944000	47.0	9.000	Off	L1	9.8	9.0	56.0
1.970000	46.4	9.000	Off	L1	9.8	9.6	56.0
1.974000	46.7	9.000	Off	L1	9.8	9.3	56.0
1.984000	46.4	9.000	Off	L1	9.8	9.6	56.0
1.996000	46.1	9.000	Off	L1	9.8	9.9	56.0
5.338000	32.5	9.000	Off	L1	9.9	27.5	60.0
6.036000	33.8	9.000	Off	L1	10.0	26.2	60.0
6.782000	34.4	9.000	Off	L1	10.0	25.6	60.0
6.960000	34.8	9.000	Off	L1	10.0	25.2	60.0
6.974000	34.9	9.000	Off	L1	10.0	25.2	60.0
7.990000	34.5	9.000	Off	L1	10.0	25.5	60.0

Final Result 2

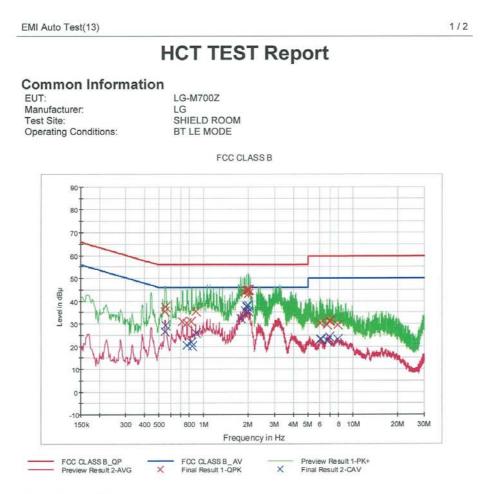
2017-06-29

오후 2:14:52

EMI Auto Test(13)

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.554000	30.5	9.000	Off	L1	9.7	15.5	46.0
0.558000	32.1	9.000	Off	L1	9.7	13.9	46.0
0.568000	31.9	9.000	Off	L1	9.7	14.1	46.0
0.738000	30.6	9.000	Off	L1	9.7	15.4	46.0
0.850000	29.0	9.000	Off	L1	9.7	17.0	46.0
0.866000	30.9	9.000	Off	L1	9.7	15.1	46.0
1.910000	36.8	9.000	Off	L1	9.8	9.2	46.0
1.972000	37.5	9.000	Off	L1	9.8	8.5	46.0
1.980000	37.5	9.000	Off	L1	9.8	8.5	46.0
1.998000	38.5	9.000	Off	L1	9.8	7.5	46.0
2.024000	37.2	9.000	Off	L1	9.8	8.8	46.0
2.042000	36.3	9.000	Off	L1	9.8	9.7	46.0
6.782000	26.3	9.000	Off	L1	10.0	23.7	50.0
6.842000	25.8	9.000	Off	L1	10.0	24.2	50.0
6.940000	27.0	9.000	Off	L1	10.0	23.0	50.0
6.974000	26.8	9.000	Off	L1	10.0	23.2	50.0
6.978000	26.8	9.000	Off	L1	10.0	23.2	50.0
7.990000	26.5	9.000	Off	L1	10.0	23.5	50.0

.


2017-06-29

오후 2:14:52

2/2

Conducted Emissions (Line 2)

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.552000	35.4	9.000	Off	N	9.7	20.6	56.0
0.556000	37.6	9.000	Off	N	9.7	18.4	56.0
0.720000	31.0	9.000	Off	N	9.7	25.0	56.0
0.774000	30.2	9.000	Off	N	9.7	25.8	56.0
0.832000	31.0	9.000	Off	N	9.7	25.0	56.0
0.890000	35.3	9.000	Off	N	9.7	20.7	56.0
1.884000	44.0	9.000	Off	N	9.7	12.0	56.0
1.938000	44.9	9.000	Off	N	9.7	11.1	56.0
1.942000	45.0	9.000	Off	N	9.7	11.0	56.0
1.984000	43.1	9.000	Off	N	9.7	12.9	56.0
1.998000	44.9	9.000	Off	N	9.7	11.1	56.0
2.002000	45.0	9.000	Off	N	9.8	11.0	56.0
6.044000	30.4	9.000	Off	N	9.9	29.6	60.0
6.722000	29.8	9.000	Off	N	10.0	30.2	60.0
6.944000	31.3	9.000	Off	N	10.0	28.7	60.0
6.986000	31.3	9.000	Off	N	10.0	28.7	60.0
6.996000	31.2	9.000	Off	N	10.0	28.8	60.0
7.938000	29.8	9.000	Off	N	10.0	30.2	60.0

Final Result 2

2017-06-29

오후 2:03:47

EMI Auto Test(13)

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.552000	26.5	9.000	Off	N	9.7	19.5	46.0
0.556000	29.3	9.000	Off	N	9.7	16.7	46.0
0.774000	20.5	9.000	Off	N	9.7	25.5	46.0
0.830000	21.9	9.000	Off	N	9.7	24.1	46.0
0.834000	20.2	9.000	Off	N	9.7	25.8	46.0
0.888000	25.9	9.000	Off	N	9.7	20.1	46.0
1.772000	32.3	9.000	Off	N	9.7	13.7	46.0
1.890000	35.8	9.000	Off	N	9.7	10.2	46.0
1.938000	37.9	9.000	Off	N	9.7	8.1	46.0
1.942000	37.5	9.000	Off	N	9.7	8.5	46.0
1.984000	35.5	9.000	Off	N	9.7	10.5	46.0
1.996000	38.1	9.000	Off	N	9.7	7.9	46.0
6.044000	23.1	9.000	Off	N	9.9	26.9	50.0
6.108000	23.1	9.000	Off	N	9.9	26.9	50.0
6.722000	22.5	9.000	Off	N	10.0	27.5	50.0
6.944000	24.3	9.000	Off	N	10.0	25.7	50.0
6.986000	24.2	9.000	Off	N	10.0	25.8	50.0
7.938000	23.3	9.000	Off	N	10.0	26.7	50.0

2017-06-29

오후 2:03:47

2/2

10. LIST OF TEST EQUIPMENT

10.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	12/23/2016	Annual	100073
Rohde & Schwarz	ESCI / Test Receiver	12/23/2016	Annual	100584
Agilent	N9020A / Signal Analyzer	06/13/2017	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	11/30/2016	Annual	MY49431210
Agilent	N1911A / Power Meter	04/17/2017	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/17/2017	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/23/2016	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/12/2017	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	07/07/2016	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/15/2016	Annual	07560
Rohde & Schwarz	CBT / Bluetooth Tester	05/16/2017	Annual	100422
Rohde & Schwarz	EMC32 / Software	-	-	-

10.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	MA4000-EP / Antenna Position Tower	N/A	N/A	N/A
Innco system	CT0800 / Turn Table	N/A	N/A	N/A
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
ETS	2090 / Controller(Turn table)	N/A	N/A	1646
Rohde & Schwarz	Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	12/11/2015	Biennial	9120D-1191
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	09/04/2015	Biennial	BBHA9170541
Rohde & Schwarz	FSP / Spectrum Analyzer	09/29/2016	Annual	836650/016
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/23/2016	Annual	101068-SZ
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	08/11/2016	Annual	4
Wainwright Instruments	WHKX8-6090-7000-18000-40SS / High Pass Filter	07/15/2016	Annual	5
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	07/06/2016	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/24/2017	Annual	2
H.P.	8491A / Attenuator(10 dB)	08/11/2016	Annual	18593
CERNEX	CBLU1183540 / Power Amplifier	01/25/2017	Annual	24614
CERNEX	CBL06185030 / Power Amplifier	01/25/2017	Annual	24615
CERNEX	CBL18265035 / Power Amplifier	01/23/2017	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	07/11/2016	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/31/2017	Annual	3000C000276