

FCC BT LE REPORT

FCC Certification

Applicant Name:

LG Electronics MobileComm U.S.A., Inc.

Address:

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Date of Issue: June 02, 2017 Test Site/Location: HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majangmyeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA Report No.: HCT-R-1706-F014 HCT FRN: 0005866421

FCC ID

APPLICANT

: **ZNFM700F**

: LG Electronics MobileComm U.S.A., Inc.

According to the Evaluation report, all of the data contained herein is reused from the reference FCC ID : ZNFM700H report.

Model:	LG-M700F					
Additional model(s):	LGM700F, M700F, LG-M700AR, LGM700AR, M700AR					
EUT Type:	GSM/WCDMA/LTE Phone with Bluetooth4.2LE, WIFI802.11 b/g/n					
RF Peak Output Power:	1.659 dBm (1.47 mW)					
Frequency Range:	2402 MHz -2480 MHz					
Modulation type	GFSK					
FCC Classification:	Digital Transmission System(DTS)					
FCC Rule Part(s):	Part 15.247					

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Jung Lae Cho Engineer of Telecommunication testing center

Approved by : Jong Seok Lee Manager of Telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1706-F014	June 02, 2017	- First Approval Report

Table of Contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	4
3. TEST METHODOLOGY	5
3.1 EUT CONFIGURATION	5
3.2 EUT EXERCISE	5
3.3 GENERAL TEST PROCEDURES	5
3.4 DESCRIPTION OF TEST MODES	5
4. INSTRUMENT CALIBRATION	6
5. FACILITIES AND ACCREDITATIONS	6
5.1 FACILITIES	6
5.2 EQUIPMENT	6
6. ANTENNA REQUIREMENTS	6
7. MEASUREMENT UNCERTAINTY	7
8. SUMMARY TEST OF RESULTS	8
9. TEST RESULT	9
9.1 DUTY CYCLE	9
9.2 6 dB BANDWIDTH MEASUREMENT1	1
9.3 OUTPUT POWER MEASUREMENT 1	4
9.4 POWER SPECTRAL DENSITY 2	!1
9.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS 2	25
9.6 RADIATED MEASUREMENT 3	6
9.6.1 RADIATED SPURIOUS EMISSIONS	6
9.6.2 RADIATED RESTRICTED BAND EDGES 4	6
9.7 POWERLINE CONDUCTED EMISSIONS 4	9
10. LIST OF TEST EQUIPMENT	4
10.1 LIST OF TEST EQUIPMENT(Conducted Test) 5	4
10.2 LIST OF TEST EQUIPMENT(Radiated Test)5	5

1. GENERAL INFORMATION

Applicant:	LG Electronics MobileComm U.S.A., Inc.
Address:	1000 Sylvan Avenue, Englewood Cliffs NJ 07632
FCC ID:	ZNFM700F
EUT Type:	GSM/WCDMA/LTE Phone with Bluetooth4.2LE, WIFI802.11 b/g/n
Model:	LG-M700F
Additional model(s):	LGM700F, M700F, LG-M700AR, LGM700AR, M700AR
Date(s) of Tests:	April 26, 2017 ~ May 26, 2017
Place of Tests:	HCT Co., Ltd.
FIALE ULLESIS.	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

Madalı						
Model:	LG-M700	LG-M700F				
Additional model(s):	LGM700F	LGM700F, M700F, LG-M700AR, LGM700AR, M700AR				
EUT Type	GSM/WC	GSM/WCDMA/LTE Phone with Bluetooth4.2LE, WIFI802.11 b/g/n				
Power Supply	DC 3.85 \	/				
Battery Information		Model: BL-T33 Type: Li-ion Battery				
Frequency Range	TX: 2402 MHz ~ 2480 MHz RX: 2402 MHz ~ 2480 MHz					
Max, BE Output Bower	Peak	1.659 dBm (1.47 mW)				
Max. RF Output Power	Average 1.520 dBm (1.42 mW)					
BT Operating Mode	BT_Low Energy Mode					
Modulation Type	GFSK					
Number of Channels	40 Channels					
	Manufacturer: Ace Technology					
Antenna Specification	Antenna type: INTERNAL ANTENNA					
	Peak Gai	n : 0.6 dBi				

2. EUT DESCRIPTION

3. TEST METHODOLOGY

FCC KDB 558074 D01 DTS Meas Guidance v04 dated April 5, 2017 entitled "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

Conducted Antenna Terminal

See Section from 9.1 to 9.2.(KDB 558074 v04)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2006).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

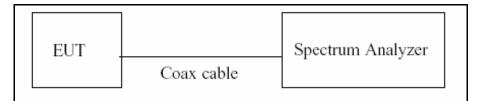
*The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70


8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Peak Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band	CONDUCTED	PASS
Band Edge(Out of Band Emissions)	§15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 9.7		PASS
Radiated Spurious Emissions	§15.205, 15.209	cf. Section 9.6.1	RADIATED	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 9.6.2	RADIATED	PASS

9. TEST RESULT 9.1 DUTY CYCLE

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We tested according to the zerospan measurement method, 6.0)b) in KDB 558074 v04.

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

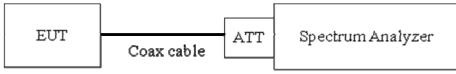
The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10*log(1/Duty Cycle)

LE Mode	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
	0.3914	0.6257	0.6255	2.04

RESULT PLOTS

KIRL	RF	zer - Swept SA 50 Ω AC 4400000			SENSI Trig: Free F Atten: 20 d	un	#Avg T	ALIGNAUTO ype: Pwr(RMS)	TRAC	M May 10, 2017 DE 1 2 3 4 5 6 PE WWWWWW ET P N N N N N	Frequency
10 dB/div		fset 10.7 dB 1 0.00 dB m	1					Δ	Mkr3 6	25.7 μs 3.08 dB	Auto Tune
10.0 0.00					Xa				142	<u>3∆∕</u>	Center Fred 2.440000000 GHz
-20.0 -30.0 -40.0			hyldrayyd	n/hl-j-lile	Juanydys]				Luttin the state		Start Fred 2.440000000 GH:
-50.0 -60.0 -70.0											Stop Fred 2.440000000 GH:
Center 2.4 Res BW 8 MKR MODE TR		×			3.0 MHz Y 3.65 dl		NCTION	Sweep 1.	.267 ms (CF Stej 8.000000 MH <u>Auto</u> Ma
2 F 1 3 ∆4 1 4 F 1 5 6 7	t (2 t (2)	621.9 μs 625.7 μs 621.9 μs		-2.07 dBr 3.08 dl -2.07 dBr	1					Freq Offse 0 H
8 9 10 11 12											
ISG								STATUS			


9.2 6 dB BANDWIDTH MEASUREMENT

Test Requirements and limit, §15.247(a)(2)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.1 in KDB 558074 v04)

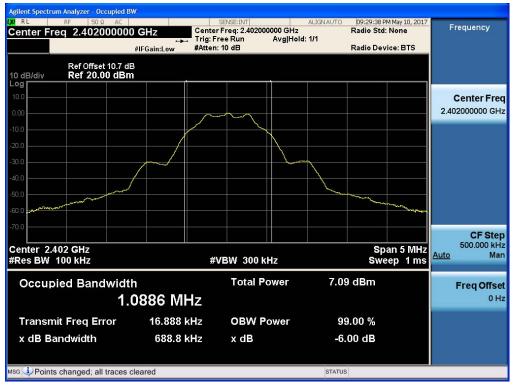
RBW = 100 kHz $VBW \ge 3 \text{ x RBW}$

Detector = Peak

Trace mode = max hold

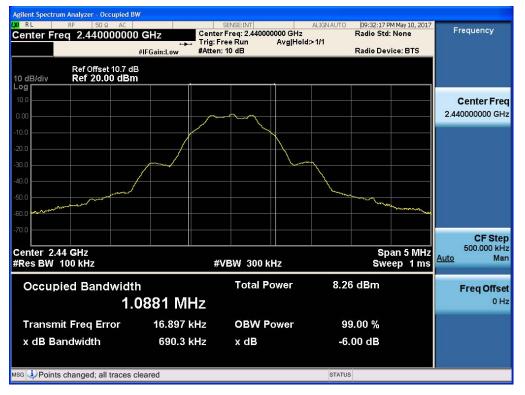
Sweep = auto couple

Allow the trace to stabilize


Note : We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

TEST RESULT

Mode	Channel	6 dB Bandwidth	Limit	Pass/Fail
	Channel	(kHz)	(kHz)	Fass/Fall
BT LE	0	688.8		Pass
	19	690.3	> 500	Pass
	39	686.0		Pass



RESULT PLOTS

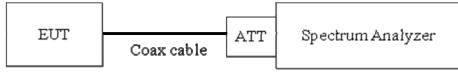
6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

Model: LG-M700F

6 dB Bandwidth plot (High-CH 39)

9.3 OUTPUT POWER MEASUREMENT


Test Requirements and limit, §15.247(b)(3)

A transmitter antenna terminal of EUT is connected to the input of a Spectrum Analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We use the spectrum analyzer's integrated band power measurement function.

This EUT TX condition is actual operating mode by BT LE mode test program.

The Spectrum Analyzer is set to

```
Peak Power (Procedure 9.1.1 in KDB 558074 v04)
```

- RBW ≥ DTS Bandwidth
- VBW ≥ 3 x RBW
- SPAN ≥ 3 x RBW
- Detector Mode = Peak
- Sweep = auto couple
- Trace Mode = max hold

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level

• Average Power (Procedure 9.2.2.4 in KDB 558074 v04)

Measure the duty cycle

Set span to at least 1.5 times the OBW

RBW = 1-5 % of the OBW, not to exceed 1 MHz.

VBW \geq 3 x RBW.

Number of points in sweep $\ge 2 x$ span / RBW. (This gives bin-to-bin spacing \le RBW/2,

so that narrowband signals are not lost between frequency bins.)

Sweep time = auto.

Detector = RMS(i.e., power averaging)

Do not use sweep triggering. Allow the sweep to "free run".

Trace average at least 100 traces in power averaging(RMS) mode.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band

power measurement function with band limits set equal to the OBW band edges.

Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

Output Power = Reading Value + ATT loss + Cable loss(1 ea) + Duty Cycle Factor Output Power = 10 dBm + 10 dB + 0.8 dB + 0.2 dB = 21.0 dBm

Note :

- 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.7 dB is offset for 2.4 GHz Band.

TEST RESULTS-Peak

Conducted Output Power Measurements

LE M	ode	Measured	Limit (dBm)	
Frequency[MHz]	Channel No.	Power(dBm)		
2402	0	0.529	30	
2440	19	1.659	30	
2480	39	0.777	30	

TEST RESULTS-Average

Conducted Output Power Measurements

LE Mode			Duty Ovele	Measured		
Frequency[MHz]	Channel No.	Measured Power(dBm)	Duty Cycle Factor (dB)	Power(dBm) + Duty Cycle Factor(dB)	Limit (dBm)	
2402	0	-1.63	2.04	0.40	30	
2440	19	-0.52	2.04	1.52	30	
2480	39	-1.49	2.04	0.54	30	

RESULT PLOTS-Peak

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

enter Fi	RF 50Ω AC req 2.44000000	0 GHz PNO: Fast ++	. Trig: Free Run Atten: 20 dB	ALIGNAUTO #Avg Type: Pwr(RMS) Avg Hold: 1/1	09:32:38 PM May 10, 2017 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P	Frequency
0 dB/div	Ref Offset 10.7 dB Ref 20.00 dBm			Mkr1 :	2.440 242 GHz 1.659 dBm	Auto Tun
10.0				, 1		Center Fre 2.440000000 GH
10.0						Start Fre 2.438500000 G⊢
30.0						Stop Fre 2.441500000 G⊦
io.o						CF Ste 300.000 kł Auto Ma
io.o ———						Freq Offs 0 F
center 2.4	140000 GHz 1.0 MHz	#VBM	3.0 MHz	Sweep 1	Span 3.000 MHz .07 ms (1000 pts)	

Model: LG-M700F

enter Freq 2.480000000	GHZ PNO: Fast +++ IFGain: Low Atten: 20 dB	ALIGN AUTO 09:34:09 PM May 10, 2017 #Avg Type: Pwr(RMS) TRACE 245 Avg[Hold: 1/1 TYPE MWWWWW DET P P P P P	Frequency
Ref Offset 10.7 dB D dB/div Ref 20.00 dBm	IFGain:Low Atten. 20 dB	Mkr1 2.479 758 GHz 0.777 dBm	Auto Tun
og 10.0	▲1		Center Fre 2.480000000 GH
0.0			Start Fre 2.478500000 GF
0.0			Stop Fre 2.481500000 GH
0.0			CF Ste 300.000 kl <u>Auto</u> Ma
0.0			Freq Offs 0 F
enter 2.480000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Span 3.000 MHz Sweep 1.07 ms (1000 pts)	

Conducted Output Power (High-CH 39)



RESULT PLOTS-Average

Conducted Output Power (Low-CH 0)

Conducted Output Power (Mid-CH 19)

Model: LG-M700F

Conducted Output Power (High-CH 39)

9.4 POWER SPECTRAL DENSITY

Test Requirements and limit, §15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard – The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

TEST CONFIGURATION

TEST PROCEDURE

We tested according to Procedure 10.2 in KDB 558074, issued 04/05/2017

The spectrum analyzer is set to :

Set analyzer center frequency to DTS channel center frequency.

Span = 1.5 times the DTS channel bandwidth.

 $RBW = 3 kHz \le RBW \le 100 kHz.$

VBW \geq 3 x RBW.

Sweep = auto couple

Detector = peak

Trace Mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

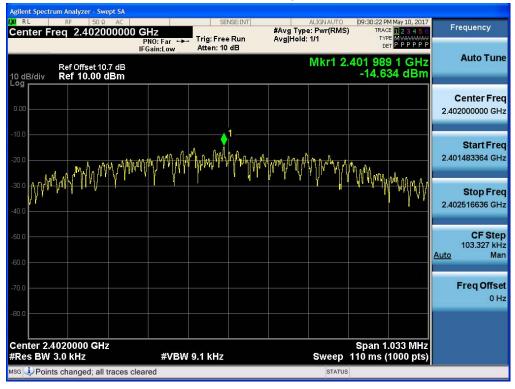
PSD = Reading Value + ATT loss + Cable loss(1 ea)

Output Power = -5 dBm + 10 dB + 0.8 dB = 5.8 dBm

Note :

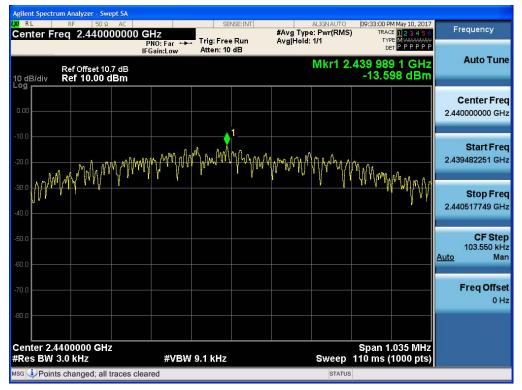
- 1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So,10.7 dB is offset for 2.4 GHz Band.

Model: LG-M700F


TEST RESULTS

Frequency (MHz)	Channel		Test Result						
	No.	Mode	PSD	Limit	Pass/				
			(dBm)	(dBm)	Fail				
2402	0		-14.634	8	Pass				
2440	19	LE	-13.598	8	Pass				
2480	39		-14.446	8	Pass				

Conducted Power Density Measurements

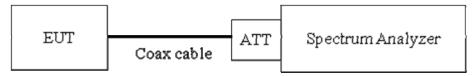


RESULT PLOTS

Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

Model: LG-M700F



Power Spectral Density (High-CH 39)

9.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit : 20 dBc TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. (Procedure 11.0 in KDB 558074, issued 04/05/2017)

RBW = 100 kHz

VBW ≥ 3 x RBW

Set span to encompass the spectrum to be examined

Detector = Peak

Trace Mode = max hold

Sweep time = auto couple

Ensure that the number of measurement points $\ge 2^{*}$ Span/RBW

Allow trace to fully stabilize.

Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 10th harmonic range with the transmitter set to the lowest, middle, and highest channels.

Note :

1. The maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1(KDB558074 v04), so the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

Model: LG-M700F

- 2. The band edge results in plot is already including the actual values of loss for the attenuator and cable combination.
- 3. Spectrum offset = Attenuator loss + Cable loss
- 4. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.7 dB is offset for 2.4 GHz Band.
- 5. In case of conducted spurious emissions test, please check factors blow table.
- 6. In order to simplify the report, attached plots were only the worst case channel and data rate.

FACTORS FOR FREQUENCY

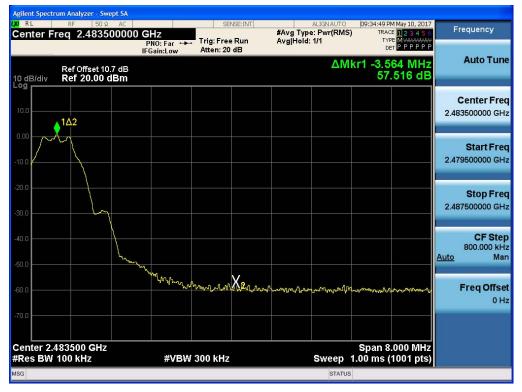
Freq(MHz)	Factor(dB)		
30	11.30		
100	9.83		
200	10.19		
300	10.13		
400	10.23		
500	10.25		
600	10.32		
700	10.35		
800	10.35		
900	10.34		
1000	10.39		
2000	10.64		
2400*	10.65		
2500*	10.67		
3000	10.68		
4000	10.89		
5000	11.07		
6000	11.06		
7000	11.35		
8000	11.32		
9000	11.48		
10000	11.56		
11000	11.56		
12000	11.68		
13000	11.83		
14000	11.90		
15000	11.98		
16000	12.04		

Model: LG-M700F

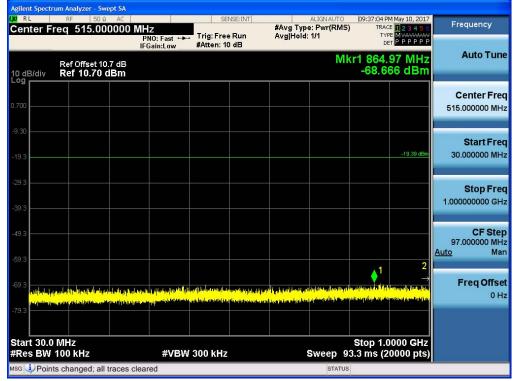

17000	12.02
18000	12.08
19000	12.07
20000	12.14
21000	12.17
22000	12.31
23000	12.60
24000	12.34
25000	12.53

Note : 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Attenuator loss



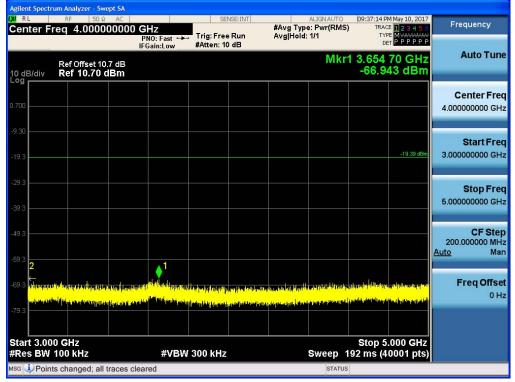
RESULT PLOTS



BandEdge (Low-CH 0)

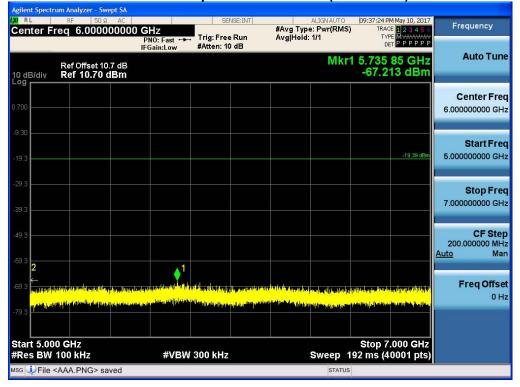
BandEdge (High-CH 39)

30 MHz ~ 1 GHz


Conducted Spurious Emission (Mid-CH 19)

1 GHz ~ 3 GHz

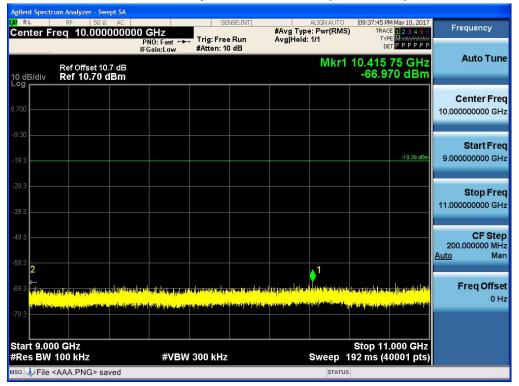
Agilent Spectr	rum Analyzer - S	Swept SA	-	SENSE:I	NIT	ALIGN AUTO	09:36:53 PM May 10, 2017	
	req 2.000	000000			#Avg	Type: Pwr(RMS) Hold: 1/1	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div	Ref Offset	10.7 dB	PNO: Fast ← FGain:Low	#Atten: 10 dB			2.772 35 GHz -66.929 dBm	Auto Tune
Log 0.700 -9.30 -19.3						1 	-19.39 dBm	Center Freq 2.000000000 GHz
-29.3 -39.3 -49.3 -59.3							.2	Start Freq 1.000000000 GHz
-69.3 <mark>(1999) -79.3 (1999) -79.3 (1999) -79.3 (1999) - 79.</mark>					nen en er forsen dat seler når fot biske Fragmen state stran biske se state et det i se			Stop Freq 3.000000000 GHz
Start 1.00 #Res BW	100 kHz		#VB	W 300 kHz		Sweep 1	Stop 3.000 GHz 92 ms (40001 pts)	CF Step 200.000000 MHz
MKR MODE TI	f		25 GHz 35 GHz	0.612 dBm -66.929 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
3 4 5 6 7 8 9 10								Freq Offset 0 Hz
11 12 MSG DOIN	ts changed; a	II traces cle	ared			STATUS		



3 GHz ~ 5 GHz

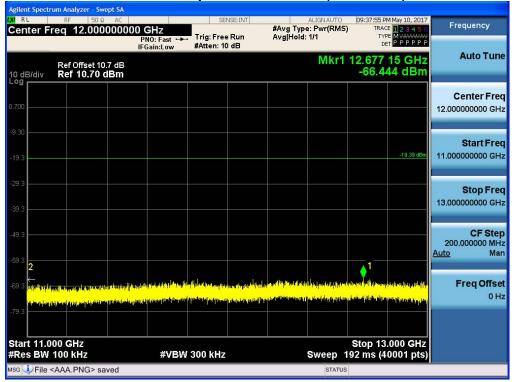
Conducted Spurious Emission (Mid-CH 19)

5 GHz ~ 7 GHz



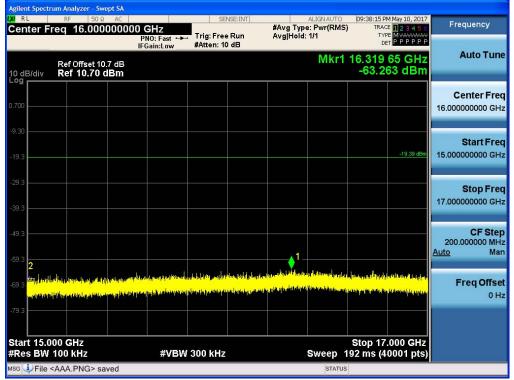
7 GHz ~ 9 GHz

Conducted Spurious Emission (Mid-CH 19)


		ım Analyzer - Sı									
LXI R		RF 50: eq 8.000		11-7	SEI	NSE:INT	#Ava Typ	ALIGNAUTO e: Pwr(RMS)		May 10, 2017	Frequency
Gen		eq 0.000	P	NO: Fast 🔸	Trig: Free #Atten: 10		Avg Hold:		TYF	E M WWWWWW T P P P P P P	
	_		IF	Gain:Low	#Atten: 10	aB		Miland			Auto Tune
10 di Log	B/div	Ref Offset 1 Ref 10.70						WIKE		55 GHz 24 dBm	
208											Center Freq
0.700											8.000000000 GHz
-9.30	<u> </u>										
										-19.39 dBm	Start Freq 7.000000000 GHz
-19.3										10,00 0.011	7.00000000 GH2
-29.3											
											Stop Freq
-39.3											9.00000000 GHz
-49.3											CF Step 200.000000 MHz
											Auto Man
-59.3	2 1										
-69.3	The later	والمتلك والمتلك	والمعاد المقادرات المالي	kudile her i lare	ال هدي	the wither to the			1		Freq Offset
00.0	-		all destated to be The second se	programs a serie al la contra	adaritation of the second	in parte el como de la	and the second start of th	Aller Harberg des meth	division of the state of the second	tedan minante	0 Hz
-79.3			and the particular second s	an out of a transfer.	Constant of the local division of the		and the state of t	Here Child Street Hereit	in the state of the sec	Alth-stated states	
Star	L t 7.000) GH7							Stop 9	.000 GHz	
		100 kHz		#VBW	300 kHz			Sweep 1			
MSG 🤇	₽File <	AAA.PNG> s	aved					STATUS			

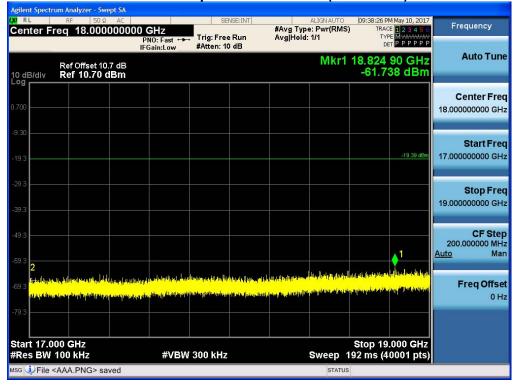
9 GHz ~ 11 GHz

11 GHz ~ 13 GHz

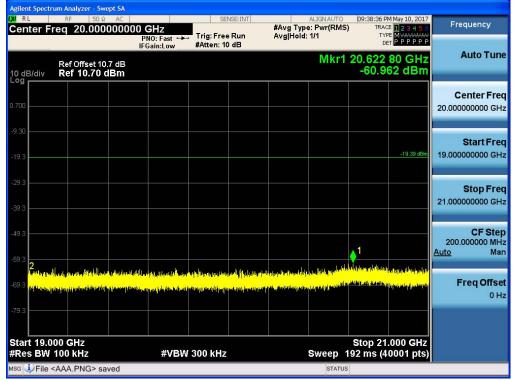

Conducted Spurious Emission (Mid-CH 19)

13 GHz ~ 15 GHz

Agilent Spectru	m Analyzer - Swe			SE SE	NSE:INT		ALIGNAUTO	19:38:05 PM	1 May 10, 2017	
	eq 14.0000	000000	GHz NO: Fast 🕶			#Avg Type Avg Hold:	e: Pwr(RMS)	TRACE	123456 Mwwwww	Frequency
10 dB/div	Ref Offset 10. Ref 10.70 d	IFC 7 dB	Gain:Low	#Atten: 10) dB		Mkr1	14.859	00 GHz 8 dBm	Auto Tune
0.700										Center Freq 14.000000000 GHz
-9.30									-19,39 dBm	Start Freq 13.000000000 GHz
-29.3										Stop Freq 15.00000000 GHz
-49.3										CF Step 200.000000 MHz <u>Auto</u> Man
2 -69.3 <mark>संविधार्थल</mark> ा							laringtan Detected of Temperature and		Laud Heitheath peoperates (17)	Freq Offset 0 Hz
-79.3 Start 13.00								Stop 15.		
#Res BW 1	100 kHz AAA.PNG> sav	(ed	#VBW	300 kHz			Sweep 1			



15 GHz ~ 17 GHz



Conducted Spurious Emission (Mid-CH 19)

17 GHz ~ 19 GHz

19 GHz ~ 21 GHz

Conducted Spurious Emission (Mid-CH 19)

21 GHz ~ 23 GHz

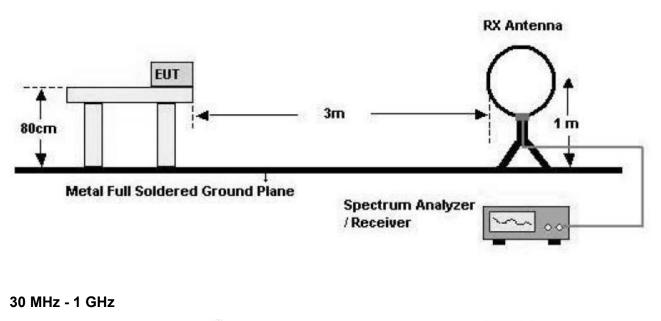
23 GHz ~ 25 GHz

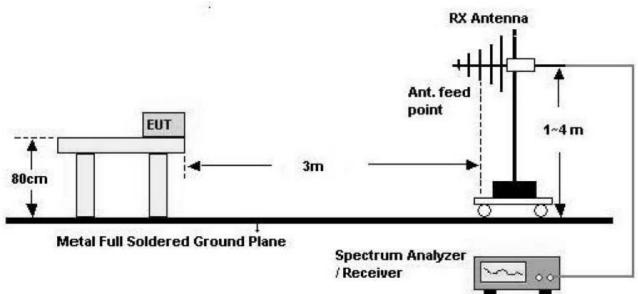
	rum Analyzer - Swej	pt SA								
LXI RL	RF 50 Ω		011	SEN	ISE:INT	House Trees	ALIGNAUTO e: Pwr(RMS)	09:38:57 PM	May 10, 2017	Frequency
Center F	req 24.0000	Р	GHZ NO: Fast ↔→→ Gain:Low	Trig: Free #Atten: 10		Avg Hold		TYPE	123456 M wwww PPPPPP	
10 dB/div Log	Ref Offset 10.7 Ref 10.70 d						Mkr1	24.986 7 -57.67	′0 GHz 4 dBm	Auto Tune
0.700										Center Freq 24.00000000 GHz
-9.30									-19.39 dBm	Start Freq 23.000000000 GHz
-29.3										Stop Freq 25.00000000 GHz
-49.3	dödlasi irstensi, "I ol isseits			sau llus ta bí n	s skintelsk klas misse	h. H Indesattilied	need in the last of the	der Mirrow, adv. Jackie	1	CF Step 200.000000 MHz <u>Auto</u> Man
-69.3 <mark>4154.411</mark>	hillen as an a day a daadh Minifilmaayaa a georrait	e _{np} resentes	and a second and a second	<mark>ph.,.d.(</mark>	the particular second data	o consequenti da la fi	neterijni, processe destre	le to elevel oblighere	<mark>aletti ale</mark> tti	Freq Offset 0 Hz
-79.3 Start 23.0								Stop 25.0		
#Res BW	<pre>100 KHz <aaa.png> sav</aaa.png></pre>	ed.	#VBW	300 kHz			Sweep 1	92 ms (40	oon pts)	
- File	-AAA.FING- Sav	eu					STATUS			

9.6 RADIATED MEASUREMENT.

9.6.1 RADIATED SPURIOUS EMISSIONS.

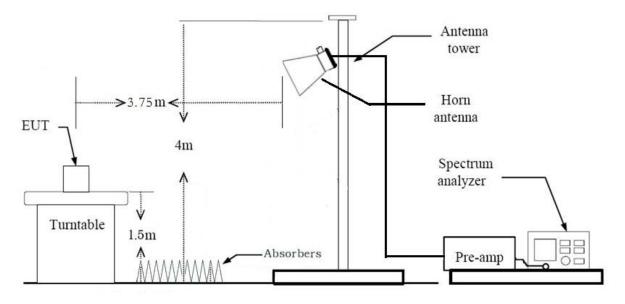
Test Requirements and limit, §15.205, §15.209


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		



Model: LG-M700F

Test Configuration


Below 30 MHz

Above 1 GHz

TEST PROCEDURE USED

Method 12.1 in KDB 558074 v04

Spectrum Setting

- Peak

Peak emission levels are measured by setting the instrument as follows:

RBW = cf. Table 1.

VBW \geq 3 x RBW.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

(Note that the required measurement time may be longer for low duty cycle applications).

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Table 1 — RBW as a function of frequency

Average (duty cycle < 98%, duty cycle variations are less than ±2%)
Set RBW = 1 MHz
Set VBW ≥ 3 x RBW
Detector = RMS.
Averaging type = power (*i.e.*, RMS).
Sweep time = auto.
Trace mode = average (at least 100 traces).

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

Note :

1. We are performed the RSE and radiated band edge using standard radiated method(RMS).

2. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).

3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)

Data packet length (Min)

LE Mode	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
	0.3914	0.6257	0.6255	2.04

TEST RESULTS

9 kHz – 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
No Critical peaks found									

Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 6. The test results for below 30 MHz is correlated to an open site.

The result on OATS is about 2 dB higher than semi-anechoic chamber (10 m chamber)

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin		
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB		
No Critical peaks found									

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Above 1 GHz

Operation Mode: CH.0

Frequency	Reading	Duty Cycle Factor	A.F.+C.LA.G.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	49.05	0	2.35	V	51.40	73.98	22.58	PK
4804	36.74	0	2.35	V	39.09	53.98	14.89	AV
7206	48.41	0	9.30	V	57.71	73.98	16.27	PK
7206	36.47	0	9.30	V	45.77	53.98	8.21	AV
4804	49.21	0	2.35	Н	51.56	73.98	22.42	PK
4804	36.90	0	2.35	Н	39.25	53.98	14.73	AV
7206	48.47	0	9.30	Н	57.77	73.98	16.21	PK
7206	36.50	0	9.30	Н	45.8	53.98	8.18	AV

*A.F. : Antenna Factor / C.L. : Cable Loss / A.G. : Amplifier Gain / D.F. : Distance Factor

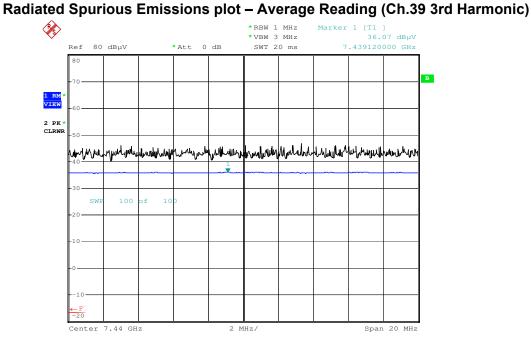
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor
 + Duty Cycle Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Model: LG-M700F

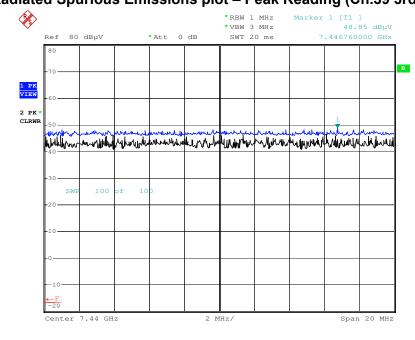
Frequency	Reading	Duty Cycle Factor	A.F.+C.LA.G.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4880	48.79	0	2.77	V	51.56	73.98	22.42	PK
4880	36.62	0	2.77	V	39.39	53.98	14.59	AV
7320	47.86	0	9.35	V	57.21	73.98	16.77	PK
7320	35.85	0	9.35	V	45.2	53.98	8.78	AV
4880	49.28	0	2.77	Н	52.05	73.98	21.93	PK
4880	36.70	0	2.77	Н	39.47	53.98	14.51	AV
7320	48.22	0	9.35	Н	57.57	73.98	16.41	PK
7320	35.90	0	9.35	Н	45.25	53.98	8.73	AV

Operation Mode: CH.19

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor
 + Duty Cycle Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.



Frequency	Reading	Duty Cycle Factor	A.F.+C.LA.G.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dBm]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	48.44	0	3.28	V	51.72	73.98	22.26	PK
4960	36.52	0	3.28	V	39.80	53.98	14.18	AV
7440	47.89	0	9.91	V	57.8	73.98	16.18	PK
7440	35.96	0	9.91	V	45.87	53.98	8.11	AV
4960	48.74	0	3.28	Н	52.02	73.98	21.96	PK
4960	36.66	0	3.28	Н	39.94	53.98	14.04	AV
7440	48.85	0	9.91	Н	58.76	73.98	15.22	PK
7440	36.07	0	9.91	Н	45.98	53.98	8.00	AV


Operation Mode: CH.39

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor
 + Duty Cycle Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

RESULT PLOTS (Worst case : Z-H)

Date: 8.MAY.2017 15:07:40

Radiated Spurious Emissions plot – Peak Reading (Ch.39 3rd Harmonic)

Date: 8.MAY.2017 15:08:44

Note : Only the worst case plots for Radiated Spurious Emissions.

9.6.2 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

Operation Mode	BT_LE
Operating Frequency	 2402 MHz
Channel No.	0

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F.	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	19.52	0.00	34.35	н	53.87	73.98	20.12	PK
2390.0	8.63	0.00	34.35	н	42.98	53.98	11.00	AV
2390.0	19.48	0.00	34.35	V	53.83	73.98	20.15	PK
2390.0	8.62	0.00	34.35	V	42.97	53.98	11.01	AV

- 1. Frequency range of measurement = 2310 MHz ~ 2390 MHz
- 2. Total = Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor
- 3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Operation Mode	BT_LE
Operating Frequency	2480 MHz
Channel No.	39

Frequency	Reading	Duty Cycle Factor	A.F.+C.L.+D.F.	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV/m]	[dB]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2483.5	19.46	0.00	34.68	н	54.14	73.98	19.84	PK
2483.5	8.62	0.00	34.68	н	43.30	53.98	10.68	AV
2483.5	19.39	0.00	34.68	V	54.07	73.98	19.92	PK
2483.5	8.51	0.00	34.68	V	43.19	53.98	10.79	AV

Notes:

1. Frequency range of measurement = 2483.5 MHz ~ 2500 MHz

2. Total = Reading Value + Antenna Factor + Cable Loss + Duty Cycle Factor + Distance Factor

3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)

4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.



RESULT PLOTS (Worst case : Z-V)

_						-		
Agilent Spectr	rum Analyzer - Swept SA							
LXI	RF 50 Ω AC		SENSE:	INT	ALIGN AUTO	03:49:54 PM Ma	y 08, 2017	_
Start Fre	q 2.475000000	GH ₇			Type: RMS	TRACE	23456 www.ww	Frequency
	q 2111 0000000	PNO: Fast ↔	Trig: Free Ru	ın Avg H	lold: 100/100	TYPE A	WWWWWW	
	PREAMP	IFGain:Low	#Atten: 4 dB			DET	NNNN	
					Miked	2.485 950		Auto Tune
					IVINI	2.465 550		
10 dB/div	Ref 70.00 dBµ∖	/				8.622	авµv	
								Center Freq
60.0								•
00.0								2.487500000 GHz
50.0	$ \rightarrow $							
		1						Start Freq
								2.475000000 GHz
40.0								2.475000000 GHZ
30.0								
30.0								Stop Freq
								2.500000000 GHz
20.0								2.50000000 GH2
20.0								
		1	▲ 1					05.04
10.0			_ -					CF Step
	and the second se				and the second s		and the second se	2.500000 MHz
								<u>Auto</u> Man
0.00								
-10.0								Freq Offset
-10.0								0 Hz
-20.0								
Ot						04		
Start 2.47						Stop 2.5000	GHZ	
#Res BW	1.0 MHz	#VBW	3.0 MHz*		Sweep 1	1.000 ms (10	01 pts)	
🛃 start	🔤 🥢 🕲 🐚 💿	🗊 Agilent Spectrum An	ia				020	🕵 🔒 💿 🕸 🛄 3:49 PM
		- All and a speed of the					Y	

Radiated Restricted Band Edges plot - Peak Reading (Ch.39)

Note : Only the worst case plots for Radiated Restricted Band Edges.

9.7 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

	Limits (dBµV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

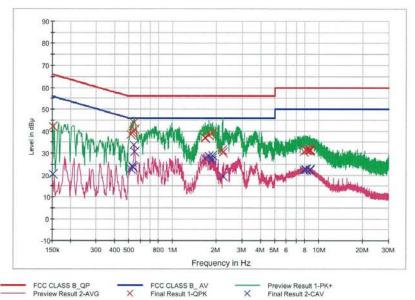
TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

RESULT PLOTS Conducted Emissions (Line 1)


EMI Auto Test(12)

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions: LG-M700H LG SHIELD ROOM BT LE MODE_L1

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.152000	42.1	9.000	Off	L1	9.6	23.8	65.9
0.520000	38.3	9.000	Off	L1	9.7	17.7	56.0
0.528000	39.1	9.000	Off	L1	9.7	16.9	56.0
0.534000	40.3	9.000	Off	L1	9.7	15.7	56.0
0.544000	43.8	9.000	Off	L1	9.7	12.2	56.0
0.552000	40.9	9.000	Off	L1	9.7	15.1	56.0
1.662000	37.0	9.000	Off	L1	9.8	19.0	56.0
1.672000	36.7	9.000	Off	L1	9.8	19.3	56.0
1.774000	38.3	9.000	Off	L1	9.8	17.7	56.0
1.870000	39.2	9.000	Off	L1	9.8	16.8	56.0
2.194000	31.3	9.000	Off	L1	9.8	24.7	56.0
2.198000	30.2	9.000	Off	L1	9.8	25.8	56.0
7.870000	30.8	9.000	Off	L1	10.0	29.2	60.0
8.228000	31.4	9.000	Off	L1	10.0	28.6	60.0
8.336000	31.2	9.000	Off	L1	10.0	28.8	60.0
8.660000	31.3	9.000	Off	L1	10.1	28.7	60.0
8.678000	31.6	9.000	Off	L1	10.1	28.4	60.0
8.710000	30.9	9.000	Off	L1	10.1	29.1	60.0

2017-05-26

오전 10:48:16

EMI Auto Test(12)

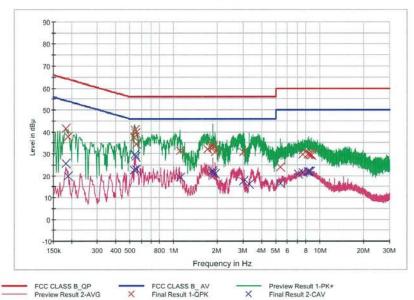
Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.152000	20.4	9.000	Off	L1	9.6	35.5	55.9
0.520000	22.9	9.000	Off	L1	9.7	23.1	46.0
0.528000	24.1	9.000	Off	L1	9.7	21.9	46.0
0.534000	23.7	9.000	Off	L1	9.7	22.3	46.0
0.546000	33.6	9.000	Off	L1	9.7	12.4	46.0
0.552000	30.6	9.000	Off	L1	9.7	15.4	46.0
1.662000	27.6	9.000	Off	L1	9.8	18.4	46.0
1.774000	28.6	9.000	Off	L1	9.8	17.4	46.0
1.858000	26.7	9.000	Off	L1	9.8	19.3	46.0
1.862000	27.6	9.000	Off	L1	9.8	18.4	46.0
1.870000	29.0	9.000	Off	L1	9.8	17.0	46.0
2.198000	19.4	9.000	Off	L1	9.8	26.6	46.0
7.870000	22.3	9.000	Off	L1	10.0	27.7	50.0
8.142000	22.6	9.000	Off	L1	10.0	27.4	50.0
8.228000	22.6	9.000	Off	L1	10.0	27.4	50.0
8.660000	22.4	9.000	Off	L1	10.1	27.6	50.0
8.678000	22.5	9.000	Off	L1	10.1	27.5	50.0
8.710000	22.3	9.000	Off	L1	10.1	27.7	50.0

2017-05-26

오전 10:48:16

Conducted Emissions (Line 2)


EMI Auto Test(12)

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions: LG-M700H LG SHIELD ROOM BT LE MODE_N

FCC CLASS B

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.182000	41.4	9.000	Off	N	9.6	22.9	64.4
0.190000	37.6	9.000	Off	N	9.6	26.4	64.0
0.536000	37.6	9.000	Off	N	9.7	18.4	56.0
0.544000	40.9	9.000	Off	N	9.7	15.1	56.0
0.550000	39.6	9.000	Off	N	9.7	16.4	56.0
0.558000	34.5	9.000	Off	N	9.7	21.5	56.0
1.102000	31.3	9.000	Off	N	9.7	24.7	56.0
1.714000	32.0	9.000	Off	N	9.7	24.0	56.0
1.852000	32.8	9.000	Off	N	9.7	23.2	56.0
1.862000	33.7	9.000	Off	N	9.7	22.3	56.0
1.930000	30.8	9.000	Off	N	9.7	25.2	56.0
2.980000	30.6	9.000	Off	N	9.8	25.4	56.0
5.390000	24.1	9.000	Off	N	9.9	35.9	60.0
7.642000	29.6	9.000	Off	N	10.0	30.4	60.0
8.314000	29.5	9.000	Off	N	10.0	30.5	60.0
8.394000	30.0	9.000	Off	N	10.0	30.0	60.0
8.560000	29.6	9.000	Off	N	10.0	30.4	60.0
8.794000	29.2	9.000	Off	N	10.1	30.8	60.0

2017-05-26

오전 10:38:02

EMI Auto Test(12)

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.182000	25.6	9.000	Off	N	9.6	28.8	54.4
0.190000	19.9	9.000	Off	N	9.6	34.2	54.0
0.536000	22.5	9.000	Off	N	9.7	23.5	46.0
0.544000	29.6	9.000	Off	N	9.7	16.4	46.0
0.550000	28.6	9.000	Off	N	9.7	17.4	46.0
0.558000	22.8	9.000	Off	N	9.7	23.2	46.0
1.102000	19.2	9.000	Off	N	9.7	26.8	46.0
1.850000	21.2	9.000	Off	N	9.7	24.8	46.0
1.856000	22.1	9.000	Off	N	9.7	23.9	46.0
1.930000	20.9	9.000	Off	N	9.7	25.1	46.0
2.980000	17.4	9.000	Off	N	9.8	28.6	46.0
3.290000	16.2	9.000	Off	N	9.8	29.8	46.0
5.390000	16.5	9.000	Off	N	9.9	33.5	50.0
7.128000	21.0	9.000	Off	N	10.0	29.0	50.0
7.622000	21.5	9.000	Off	N	10.0	28.5	50.0
8.308000	21.7	9.000	Off	N	10.0	28.3	50.0
8.394000	21.8	9.000	Off	N	10.0	28.2	50.0
8.590000	21.7	9.000	Off	N	10.0	28.3	50.0

2017-05-26

오전 10:38:02

10. LIST OF TEST EQUIPMENT

10.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Calibration	Serial No.	
Manufacturer		Date	Interval	Senai No.
Rohde & Schwarz	ENV216 / LISN	12/23/2016	Annual	100073
Rohde & Schwarz	ESCI / Test Receiver	12/23/2016	Annual	100584
Agilent	N9020A / Signal Analyzer	06/24/2016	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	11/30/2016	Annual	MY49431210
Agilent	N1911A / Power Meter	04/17/2017	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/17/2017	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/23/2016	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/14/2016	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	07/07/2016	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/15/2016	Annual	07560
Rohde & Schwarz	CBT / Bluetooth Tester	05/16/2017	Annual	100422

10.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Audix	ACT-A400 / Antenna Master	N/A	N/A	N/A
Audix	ACT-T150 / Turn Table	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	C060518
Rohde & Schwarz	Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	07/31/2015	Biennial	1151
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	09/04/2015	Biennial	BBHA9170541
Rohde & Schwarz	FSP / Spectrum Analyzer	09/10/2016	Annual	100688
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/23/2016	Annual	101068-SZ
Wainwright Instruments	F6_HPF 3.0 / High Pass Filter	01/25/2017	Annual	F6
Wainwright Instruments	WHKX8-6090-7000-18000-40SS/ High Pass Filter	11/02/2016	Annual	24
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	07/06/2016	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/24/2017	Annual	2
Weinshel	2-3 / Attenuator(3 dB)	02/14/2017	Annual	BR0617
CERNEX	CBLU1183540B-01 / Low Noise Amplifier	05/15/2017	Annual	25539
CERNEX	CBL06185030 / Power Amplifier	04/03/2017	Annual	28550
Rohde & Schwarz	SCU-18 / Signal Condigioning Unit	09/07/2016	Annual	10094
CERNEX	CBL18265035 / Power Amplifier	01/23/2017	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	07/11/2016	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/31/2017	Annual	3000C000276