

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea TEL: +82-31-645-6300 FAX: +82-31-645-6401

EMI TEST REPORT FCC CERTIFICATION

Applicant:

LG Electronics MobileComm U.S.A., Inc.

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Date of Receipt: March 30, 2017 Date of Issue: May 10, 2017

Test Report No. HCT-E-1704-F002-1

HCT FRN: 0005866421

FCC ID:

ZNFM320G

Rule Part(s) / Standard(s): FCC CFR 47 PART 15 Subpart B Class B

FCC Classification: JBP (Part 15 B – Class B Computing Device Peripheral)

EUT Type: Multi-band GSM/EDGE/WCDMA/LTE phone with Bluetooth and

WLAN

Model Name: LG-M320G

Additional Model Name: LGM320G, M320G

Date of Test: March 30, 2017 - April 06, 2017

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. (See Test Report if any modifications were made for compliance)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

HCT certifies that no party to application has been denial the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 862

Tested By

Ju-Han You Test Engineer EMC Team

Certification Division

Reviewed By

Jeong-Hyun Choi Technical Manager

EMC Team

Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

DOCUMENT HISTORY

The revision history for this document is shown in table.

Version	Date	Description
HCT-E-1704-F002	April 12, 2017	Initial Release
HCT-E-1704-F002-1	May 10, 2017	Modify Description of EUT

TABLE OF CONTENTS

	PAGE
1. GENERAL INFORMATION	4
1.1 Description of EUT	4
1.2 Related Submittal(s) / Grant(s)	5
1.3 Test Facility	5
1.4 Calibration of Measuring Instrument	5
1.5 Tested System Details	6
1.6 Cable Description	7
1.7 Noise Suppression Parts on Cable. (I/O Cable)	7
2. MEASUREMENT UNCERTAINTY	8
3. DESCRIPTION OF TEST	9
3.1 Measurement of Conducted Emission	9
3.2 Measurement of Radiated Measurements	10
4. PRELIMINARY TEST	12
4.1 Conducted Emission Test	12
4. 2 Radiated Emission Test	12
5. CONDUCTED AND RADIATED EMISSION TEST SUMMARY	13
5.1 Conducted Emission Test	13
5.2 Radiated Emission Test	20
6. LIST OF TEST EQUIPMENT	22
7 CONCLUCION	22

ATTACHMENT: TEST SETUP PHOTOGRAPHS

1. GENERAL INFORMATION

1.1 Description of EUT

Its basic purpose is used for communications.

FCC ID	ZNFM320G	
Model	LG-M320G	
Additional Model	LGM320G, M320G	
EUT Type	Multi-band GSM/EDGE/WCDMA/LTE phone with Bluetooth and WLAN	
TX Frequency	824.20 MHz to 848.80 MHz (GSM 850) 1 850.20 MHz to 1 909.80 MHz (GSM 1 900) 826.40 MHz to 846.60 MHz (WCDMA B5) 1 852.4 MHz to 1 907.6 MHz (WCDMA B2) 1712.4 MHz to 1752.6 MHz (WCDMA B4) 1 850 MHz to 1 910 MHz (LTE B2) 1 710 MHz to 1 755 MHz (LTE B4) 824 MHz to 849 MHz (LTE B5) 2 496 MHz to 2 570 MHz (LTE B7) 699 MHz to 716 MHz (LTE B12) 777 MHz to 787 MHz (LTE B13) 704 MHz to 716 MHz (LTE B17) 1 710 MHz to 1 780 MHz (LTE B66) 2 402 MHz to 2 480 MHz (Bluetooth) 2 412 MHz to 2 462 MHz (WiFi 2.4 GHz)	
RX Frequency	869.2 MHz to 893.8 MHz (GSM 850) 1 930.2 MHz to 1 989.8 MHz (GSM 1 900) 871.4 MHz to 891.6 MHz (WCDMA B5) 1 932.4 MHz to 1 987.6 MHz (WCDMA B2) 2 112.4 MHz to 2 152.6 MHz (WCDMA B4) 1 930 MHz to 1 990 MHz (LTE B2) 2 110 MHz to 2 155 MHz (LTE B4) 869 MHz to 894 MHz (LTE B5) 2 516 MHz to 2 690 MHz (LTE B7) 729 MHz to 746 MHz (LTE B12) 746 MHz to 756 MHz (LTE B13) 734 MHz to 746 MHz (LTE B17) 717 MHz to 728 MHz (LTE B29) 2 110 MHz to 2 200 MHz (LTE B66) 2 402 MHz to 2 480 MHz (Bluetooth) 2 412 MHz to 2 462 MHz (WiFi 2.4 GHz)	

1.2 Related Submittal(s) / Grant(s)

Original submittal only.

1.3 Test Facility

Test site is located at 74, SEOICHEON-RO, 578BEON-GIL, MAJANG-MYEON, ICHEON-SI, GYEONGGI-DO, SOUTH KOREA. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4-2014.

Measurement Facilities	Registration Number
Radiated Field strength measurement facility (3 m)	00661 (July 07, 2015)
Radiated Field strength measurement facility (10 m)	90661 (July 07, 2015)

1.4 Calibration of Measuring Instrument

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturers recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63 .5 (Version : 2006).

1.5 Tested System Details

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Model Name	Manufacturer	FCC ID / DoC	Connected To
EUT	LG-M320G	LG	ZNFM320G	Notebook PC, Earphone
USB Cable	EAD63769701	KSD	-	EUT, Notebook PC
USB Cable	EAD63769702	Ningbo Broad	-	EUT, Notebook PC
USB Cable	EAD63769703	CRESYN	-	EUT, Notebook PC
Earphone	EAB62910502	CRESYN	-	EUT
Notebook PC	ProBook6560b	НР	DoC	Gateway , Notebook PC adaptor, RJ45 cable, Serial mouse
Notebook PC adaptor	Series PPP009L-E	LITE-On Technology	-	Notebook PC
Gateway	TL-WR747N	TP-LINK	-	RJ45 cable, Gateway adaptor
Gateway adaptor	T120150-2H1	TP-LINK	-	Gateway
Serial mouse	Serial 2 button mouse	Radio shack	FSUGMZE3	Notebook PC
RJ45 cable	-	-	-	Notebook PC, Gateway
SD card	256 GB EVO+UHS-I microSDXC U1	SAMSUNG	-	EUT

1.6 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
EUT	Micro USB	Y	Y	(P,D)1.0
	Earphone	N/A	Y	(D)1.2
Notebook PC	RJ 45	N/A	N	(D)1.6
	Serial (Mouse)	N/A	Y	(D)1.8
	DC in	N	N/A	(P)1.8
Gateway	DC in	N	N/A	(P)1.8

^{*} The marked "(D)" means the data cable and "(P)" means the power cable.

1.7 Noise Suppression Parts on Cable. (I/O Cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
EIT	Micro USB	N	N/A	Y	Both End
EUT	Earphone	N	N/A	Y	Both End
Notebook PC	RJ 45	N	N/A	N	N/A
	Serial (Mouse)	N	N/A	Y	Notebook PC End

2. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Emission (0.158 MHz to 30 MHz)	$\pm 1.82 \text{ dB } (k=2)$
Radiated Emissions (30 MHz to 1 GHz)	$\pm 5.06 \text{ dB } (k=2)$
Radiated Emissions (1 GHz to 6 GHz)	$\pm 5.0 \text{ dB } (k=2)$
Radiated Emissions (6 GHz to 18 GHz)	$\pm 5.4 \text{ dB } (k=2)$

3. DESCRIPTION OF TEST

3.1 Measurement of Conducted Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 7.3

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly connected to a line impedance stabilization network (LISN).
 - Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both conducted lines are measured in Quasi-Peak and Average mode, including the worst-case data points for each tested configuration.
- c. The frequency range from 150 kHz to 30 MHz was searched.

[Conducted Emission Limits]

Frequency (MHz)	Resolution Bandwidth (kHz)	Quasi-Peak (dB(μV))	Average (dB(μV))
0.15 to 0.5	9	66 to 56*	56 to 46*
0.5 to 5	9	56	46
5 to 30	9	60	50

^{*}Decreases with the logarithm of the frequency.

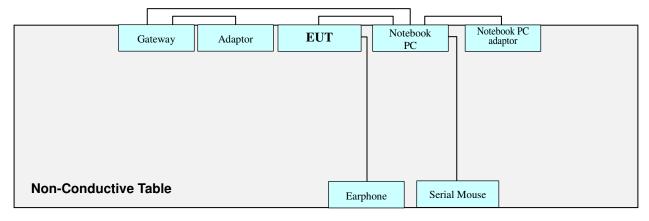
3.2 Measurement of Radiated Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 8.3

- a. The EUT was placed on the top of a turn table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 m to 4 m and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to Peak and Average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- g. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.(1 GHz to 40 GHz)

[Radiated Emission Limits]

Frequency (MHz)	Antenna Distance (m)	Field Strength (μV/m)	Quasi-Peak (dB(μV)/m)
30 to 88	3	100	40.0
88 to 216	3	150	43.5
216 to 960	3	200	46.0
Above 960	3	500	54.0
Frequency (MHz)	Antenna Distance (m)	Peak (dB(μV)/m)	Average (dB(μV)/m)
Above 1 000	3	74	54



3.2.1 Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

3.3 Configuration of Tested System

Power Line: 120 VAC, 60 Hz

4. PRELIMINARY TEST

4.1 Conducted Emission Test

It was tested Data Communication mode, after connecting all peripheral devices.

Operation Mode: \square Data Communication mode

*NOTE: The worst-case emissions are reported.

4. 2 Radiated Emission Test

It was tested Data Communication mode, after connecting all peripheral devices.

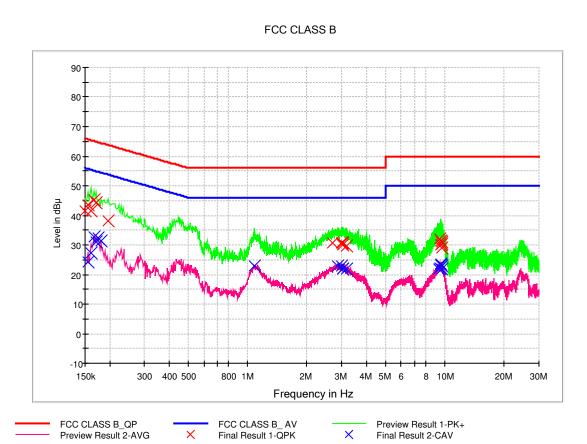
Operation Mode: \boxtimes Data Communication mode

*NOTE: The worst-case emissions are reported.

5. CONDUCTED AND RADIATED EMISSION TEST SUMMARY

5.1 Conducted Emission Test

The test results of conducted emission at mains ports provide the following information:


Rule Part / Standard	FCC PART 15 Subpart B Class B
Detector	Quasi-Peak, CISPR-Average
Bandwidth	9 kHz (6 dB)
Operation Mode	Data Communication mode
Worst Case of USB Cable	Ningbo Broad (EAD63769702)
Kind of Test Site	Shielded Room
Temperature	22.6 °C
Relative Humidity	32.3 %
Test Date	March 31, 2017

- Calculation Formula:

- 1. Conductor L1 = Hot, Conductor N = Neutral
- 2. Corr. = LISN Factor + Cable Loss
- 3. QuasiPeak or CAverage= Receiver Reading + Corr.
- 4. Margin = Limit QuasiPeak or CAverage

Figure 1: Spectral Diagrams, AC Main Port, Line (L1)

QuasiPeak Final Result, Line (L1)

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	41.6	9.000	L1	9.6	24.4	66.0
0.156000	43.4	9.000	L1	9.6	22.2	65.7
0.160000	41.6	9.000	L1	9.6	23.8	65.5
0.166000	45.1	9.000	L1	9.6	20.1	65.2
0.170000	44.3	9.000	L1	9.6	20.6	65.0
0.196000	38.0	9.000	L1	9.6	25.8	63.8
2.688000	30.6	9.000	L1	9.8	25.4	56.0
2.990000	30.7	9.000	L1	9.8	25.3	56.0
3.004000	30.8	9.000	L1	9.8	25.2	56.0
3.016000	30.0	9.000	L1	9.8	26.0	56.0
3.044000	30.6	9.000	L1	9.8	25.4	56.0
3.180000	29.7	9.000	L1	9.8	26.3	56.0
9.426000	32.1	9.000	L1	10.1	27.9	60.0
9.502000	31.2	9.000	L1	10.1	28.8	60.0
9.514000	30.0	9.000	L1	10.1	30.0	60.0
9.606000	31.1	9.000	L1	10.1	28.9	60.0
9.650000	29.0	9.000	L1	10.1	31.0	60.0
9.664000	30.4	9.000	L1	10.1	29.6	60.0

CAverage Final Result, Line (L1)

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.156000	24.2	9.000	L1	9.6	31.5	55.7
0.160000	27.2	9.000	L1	9.6	28.3	55.5
0.166000	32.8	9.000	L1	9.6	22.3	55.2
0.170000	31.1	9.000	L1	9.6	23.8	55.0
0.174000	32.2	9.000	L1	9.6	22.5	54.8
0.180000	31.3	9.000	L1	9.6	23.2	54.5
1.078000	22.8	9.000	L1	9.7	23.2	46.0
2.862000	22.8	9.000	L1	9.8	23.2	46.0
3.004000	22.8	9.000	L1	9.8	23.2	46.0
3.020000	22.0	9.000	L1	9.8	24.0	46.0
3.044000	21.8	9.000	L1	9.8	24.2	46.0
3.180000	22.0	9.000	L1	9.8	24.0	46.0
9.292000	22.0	9.000	L1	10.1	28.0	50.0
9.370000	22.2	9.000	L1	10.1	27.8	50.0
9.480000	23.5	9.000	L1	10.1	26.5	50.0
9.502000	23.4	9.000	L1	10.1	26.6	50.0
9.604000	22.9	9.000	L1	10.1	27.1	50.0
9.650000	21.8	9.000	L1	10.1	28.2	50.0

Figure 2: Spectral Diagrams, Conducted Emission, AC Main Port, Line (N)

QuasiPeak Final Result, Line (N)

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.154000	41.8	9.000	N	9.6	23.9	65.8
0.158000	42.1	9.000	N	9.6	23.5	65.6
0.162000	44.5	9.000	N	9.6	20.9	65.4
0.170000	45.1	9.000	N	9.6	19.9	65.0
0.180000	44.2	9.000	N	9.6	20.3	64.5
0.186000	43.6	9.000	N	9.6	20.6	64.2
1.080000	28.8	9.000	N	9.7	27.2	56.0
4.130000	27.3	9.000	N	9.8	28.7	56.0
4.398000	28.3	9.000	N	9.9	27.7	56.0
4.420000	28.0	9.000	N	9.9	28.0	56.0
4.858000	23.2	9.000	N	9.9	32.8	56.0
4.862000	26.4	9.000	N	9.9	29.6	56.0
9.374000	30.0	9.000	N	10.1	30.0	60.0
9.418000	28.8	9.000	N	10.1	31.2	60.0
9.460000	28.4	9.000	N	10.1	31.6	60.0
9.608000	29.9	9.000	N	10.1	30.1	60.0
9.768000	30.3	9.000	N	10.1	29.7	60.0
9.930000	29.5	9.000	N	10.1	30.5	60.0

CAverage Final Result, Line (N)

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	25.8	9.000	N	9.6	30.2	56.0
0.154000	26.0	9.000	N	9.6	29.8	55.8
0.158000	24.9	9.000	N	9.6	30.7	55.6
0.162000	29.7	9.000	N	9.6	25.7	55.4
0.168000	32.3	9.000	N	9.6	22.7	55.1
0.180000	30.9	9.000	N	9.6	23.6	54.5
4.242000	20.5	9.000	N	9.9	25.5	46.0
4.398000	20.1	9.000	N	9.9	26.0	46.0
4.414000	20.9	9.000	N	9.9	25.1	46.0
4.420000	19.9	9.000	N	9.9	26.1	46.0
4.858000	16.3	9.000	N	9.9	29.7	46.0
4.862000	16.1	9.000	N	9.9	29.9	46.0
9.374000	21.6	9.000	N	10.1	28.4	50.0
9.460000	21.1	9.000	N	10.1	28.9	50.0
9.608000	22.6	9.000	N	10.1	27.4	50.0
9.670000	21.6	9.000	N	10.1	28.4	50.0
9.768000	22.9	9.000	N	10.1	27.1	50.0
9.930000	21.8	9.000	N	10.1	28.2	50.0

5.2 Radiated Emission Test

The test results of radiated emission provide the following information:

-For Measurement Below 1 GHz

Rule Part / Standard	FCC PART 15 Subpart B Class B
Detector	Quasi-Peak
Bandwidth	120 kHz (6 dB)
Operation Mode	Data Communication mode
Worst Case of USB Cable	Ningbo Broad (EAD63769702)
Kind of Test Site	3 m semi anechoic chamber
Temperature	22.3 °C
Relative Humidity	33.4 %
Test Date	March 30, 2017

Frequency (MHz)	Quasi Peak (dBuV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
66.066133	20.6	115.0	V	222.0	21.6	19.4	40.0
83.861724	28.9	321.0	Н	87.0	18.3	11.1	40.0
85.541082	23.8	202.0	V	155.0	18.0	16.2	40.0
265.589179	34.6	100.0	Н	311.0	22.6	11.4	46.0
277.008016	33.3	133.0	Н	298.0	23.0	12.7	46.0
602.182365	29.7	115.0	V	153.0	30.9	16.3	46.0

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. QuasiPeak = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor + Cable Loss
- 4. Margin = Limit QuasiPeak

-For Measurement Above 1 GHz

Rule Part / Standard	FCC PART 15 Subpart B Class B
Detector	Peak mode: Peak (RBW: 1 MHz, VBW: 3 MHz) CISPR-Average mode: Peak (RBW: 1 MHz, VBW: 10 Hz)
Highest Operating Frequency	2 690 MHz
Upper Frequency of Measurement Range	1 GHz to 13.45 GHz
Operation Mode	Data Communication mode
Worst Case of USB Cable	Ningbo Broad (EAD63769702)
Kind of Test Site	3 m semi anechoic chamber
Temperature	22.5 / 22.0 °C
Relative Humidity	36.0 / 34.5 %
Test Date	April 04 / April 06, 2017

Frequency (MHz)	Peak (dBμV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1399.749499	47.5	344.7	V	37.0	-12.8	26.5	74.0
2000.751503	46.3	100.0	V	213.0	-12.2	27.7	74.0
2240.430862	41.8	100.0	V	200.0	-11.0	32.2	74.0
2659.769539	49.1	127.9	V	162.0	-9.1	24.9	74.0
4481.513026	41.0	100.0	V	165.0	-5.7	33.0	74.0
5984.719439	44.5	100.0	V	262.0	-2.4	29.5	74.0

Frequency (MHz)	CAverage (dBµV/m)	Antenna Height (cm)	POL. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1399.749499	44.9	344.7	V	37.0	-12.8	9.1	54.0
2000.751503	22.9	100.0	٧	213.0	-12.2	31.1	54.0
2240.430862	21.5	100.0	٧	200.0	-11.0	32.5	54.0
2659.769539	23.6	127.9	٧	162.0	-9.1	30.4	54.0
4481.513026	26.2	100.0	٧	165.0	-5.7	27.8	54.0
5984.719439	30.2	100.0	V	262.0	-2.4	23.8	54.0

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. Peak or CAverage = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor+ Cable Loss Amplifier Gain
- 4. Margin = Limit Peak or CAverage

6. LIST OF TEST EQUIPMENT

	<u>Type</u>	<u>Manufacturer</u>	Model Name	Serial Number	<u>Calibration Cycle</u>	<u>CAL Date</u>
Con	ducted Emission					
	EMI Test Receiver EMI Test Receiver LISN LISN Software	Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	ESCI ESCI ENV216 ESH3-Z5 EMC32	100033 100584 100073 100282	1 year 1 year 1 year 1 year	06.29.2016 12.23.2016 12.23.2016 06.09.2016
Rad	iated Emission					
-For	measurement belo	w 1 GHz				
	EMI Test Receiver EMI Test Receiver Trilog Antenna Antenna master Antenna master controller Turn Table Turn Table controller EMI Test Receiver Antenna master Turn Table Software	Rohde & Schwarz Rohde & Schwarz Schwarzbeck HD GmbH HD GmbH EMCO EMCO Rohde & Schwarz INNCO Systems INNCO Systems Rohde & Schwarz	ESI40 ESU40 VULB9168 MA240 HD 100 1060-2M 2090 ESU 26 MA4000-EP DT3000-3T EMC32	831564103 100514 255 240/520 100/637 - 9702-1224 100241 MA4000/283 DT3000/69	1 year 1 year 2 year N/A N/A N/A N/A 1 year N/A N/A	11.04.2016 10.10.2016 04.15.2016 - - - 05.27.2016
-For	measurement abov	e 1 GHz				
	EMI Test Receiver EMI Test Receiver Antenna master Antenna master controller Antenna master	Rohde & Schwarz Rohde & Schwarz HD GmbH HD GmbH INNCO Systems	ESI40 ESU40 MA240 HD 100 MA4000-XP-ET	831564103 100514 240/520 100/637 48709515	1 year 1 year N/A N/A N/A	11.04.2016 10.10.2016 - -
	Antenna master controller Turn Table Turn Table controller	INNCO Systems EMCO EMCO	CO 3000 1060-2M 2090	CO 3000/870/ 35990515 - 9702-1224	N/A N/A N/A	- - -
	Power Amplifier Power Amplifier Horn Antenna Horn Antenna Power Amplifier Power Amplifier	CERNEX CERNEX Schwarzbeck Schwarzbeck CERNEX CERNEX	CBLU1183540 CBLU5183530 BBHA 9120D BBHA 9170 CBL18265035 CBL26405040	21691 24348 296 BBHA9170541 21873 19660	1 year 1 year 2 year 2 year 1 year 1 year	07.04.2016 06.07.2016 10.12.2016 09.03.2015 01.19.2017 07.15.2016
	Horn Antenna EMI Test Receiver Turn Table Software	Schwarzbeck Rohde & Schwarz INNCO Systems Rohde & Schwarz	BBHA 9120D ESU 26 DT3000-3T EMC32	1300 100241 DT3000/69	2 year 1 year N/A	08.25.2016 05.27.2016 -

7. CONCLUSION

The data collected shows that the EUT Type: Multi-band GSM/EDGE/WCDMA/LTE phone with Bluetooth and WLAN, Model: LG-M320G, FCC ID: ZNFM320G complies with §15.107 and §15.109 of the FCC rules.