PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 15.407 UNII 802.11a/n/ac

Applicant Name:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 6/7 - 7/15/2017 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 1M1706070186-06.ZNF

FCC ID:

ZNFLS998

APPLICANT:

LG Electronics MobileComm U.S.A

Application Type:	Certification
Model:	LG-LS998
Additional Model(s):	LGLS998, LS998, LG-AS998, LGAS998, AS998
EUT Type:	Portable Handset
FCC Classification:	Unlicensed National Information Infrastructure (UNII)
FCC Rule Part(s):	Part 15.407
Test Procedure(s):	KDB 789033 D02 v01r04, KDB 648474 D03 v01r04, k

Test Procedure(s):

Part 15.407 KDB 789033 D02 v01r04, KDB 648474 D03 v01r04, KDB 662911 D01 v02r01 ANT1 ANT2 MIMO

	Observat		AN	IT1	AN	IT2	MI	ON
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
1		5180 - 5240	46.026	16.63	31.550	14.99	77.003	18.87
2A	20	5260 - 5320	47.534	16.77	33.729	15.28	80.073	19.03
2C	20	5500 - 5720	46.881	16.71	37.757	15.77	84.639	19.28
3		5745 - 5825	45.604	16.59	38.637	15.87	84.240	19.26
1		5190 - 5230	35.563	15.51	23.988	13.80	59.551	17.75
2A	40	5270 - 5310	35.892	15.55	24.946	13.97	60.609	17.83
2C	40	5510 - 5710	34.914	15.43	27.990	14.47	62.106	17.93
3		5755 - 5795	35.156	15.46	28.510	14.55	63.470	18.03
1		5210	17.865	12.52	15.596	11.93	33.460	15.25
2A	80	5290	11.324	10.54	10.046	10.02	21.370	13.30
2C	00	5530 - 5690	17.418	12.41	15.885	12.01	33.304	15.22
3		5775	15.922	12.02	16.331	12.13	32.253	15.09

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02 v01r04. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 101213
© 2017 PCTEST Engineering L	aboratory, Inc.	·		V 6.

v 0.0 06/06/2017

© 2017 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

FCC P	ART 15.	407 MEA	ASUREMENT REPOR	۲۲	3				
1.0	INTRO	DUCTIO	N		5				
	1.1	Scope			5				
	1.2	PCTES	ST Test Location		5				
2.0	PROD	JCT INF	ORMATION		6				
	2.1	Equipn	nent Description		6				
	2.2	Device	Capabilities		6				
	2.3	Test C	onfiguration		8				
	2.4	EMI Su	uppression Device(s)/	Modifications	8				
3.0	DESCF	RIPTION	OF TESTS		9				
	3.1	Evalua	tion Procedure		9				
	3.2	AC Lin	e Conducted Emissio	ns	9				
	3.3	Radiate	ed Emissions						
	3.4	Enviro	nmental Conditions		10				
4.0	ANTEN	INA REG	QUIREMENTS		11				
5.0	MEAS	JREMEN	IT UNCERTAINTY		12				
6.0	TEST I	EQUIPM	ENT CALIBRATION I	DATA	13				
7.0	TEST I	RESULT	S		14				
	7.1	Summa	ary		14				
	7.2	26dB E	andwidth Measurem	ent – 802.11a/n/ac	15				
	7.3	6dB Ba	andwidth Measureme	nt – 802.11a/n/ac	48				
	7.4	UNII O	NII Output Power Measurement – 802.11a/n/ac						
	7.5	Maxim	kimum Power Spectral Density – 802.11a/n/ac65						
	7.6	Freque	ency Stability						
	7.7	Radiate	ed Spurious Emissior	n Measurements – Above 1GHz					
		7.7.1	Antenna-1 Radiated	Spurious Emission Measurements					
		7.7.2	Antenna-2 Radiated	Spurious Emission Measurements					
		7.7.3	Simultaneous Tx Ra	diated Spurious Emissions Measurements					
		7.7.4	Antenna-1 Radiated	Band Edge Measurements (20MHz BW)					
		7.7.5	Antenna-1 Radiated	Band Edge Measurements (40MHz BW)					
		7.7.6	Antenna-1 Radiated	Band Edge Measurements (80MHz BW)					
		7.7.7	Antenna-2 Radiated	Band Edge Measurements (20MHz BW)					
		7.7.8	Antenna-2 Radiated	Band Edge Measurements (40MHz BW)					
		7.7.9	Antenna-2 Radiated	Band Edge Measurements (80MHz BW)					
		7.7.10	MIMO Radiated Ba	nd Edge Measurements (20MHz BW)					
		7.7.11	MIMO Radiated Ba	nd Edge Measurements (40MHz BW)					
		7.7.12	MIMO Radiated Ba	nd Edge Measurements (80MHz BW)					
	7.8	Radiate	ed Spurious Emissior	ns Measurements – Below 1GHz					
	7.9	Line-C	onducted Test Data						
8.0	CONC	LUSION			1				
FCC ID	: ZNFLS	998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT	Approved by: Quality Manager				
	eport S/N 6070186-(Test Dates: 6/7 - 7/15/2017	EUT Type: Portable Handset	Page 2 of 213				

V 6.6 06/06/2017

Appendix A. 802	2.11a Dual Tx	206
A.1	Summary	206
A.2	Output Power Measurement	207
A.3	Power Spectral Density	208
A.4	Dual Tx Radiated Restricted Band Edge Measurements	209

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 3 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

MEASUREMENT REPORT FCC Part 15.407

APPLICANT:	LG Electronics MobileComm U.S.A					
APPLICANT ADDRESS:	1000 Sylvan Avenue					
	Englewood Cliffs, NJ 07632, United States					
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.					
TEST SITE ADDRESS:	7185 Oakland Mills Road, Columbia, MD 21046 USA					
FCC RULE PART(S):	Part 15.407					
BASE MODEL:	LG-LS998					
FCC ID:	ZNFLS998					
FCC CLASSIFICATION:	Unlicensed National Information Infrastructure (UNII)					
Test Device Serial No.:	33W2R, 04209, 04167, 04126, 33FV3 □ Production ⊠ Pre-Production □ Engineering					
DATE(S) OF TEST:	6/7 - 7/15/2017					
TEST REPORT S/N:	1M1706070186-06.ZNF					

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.

- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 4 of 213
© 2017 PCTEST Engineering L	aboratory. Inc.	•		V 6.6

06/06/2017

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (*See Figure 1-1*).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

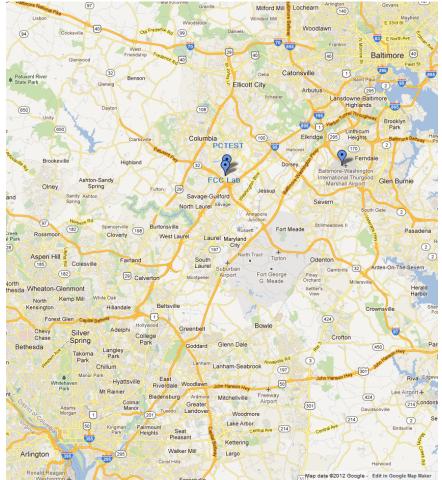


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 5 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

06/06/2017

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFLS998**. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE, v5.0), NFC

	Band 1		Band 2A			Band 2C		Band 3
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)		Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
36	5180	52	5260		100	5500	149	5745
:	:	:	:		:	:		:
42	5210	56	5280		116	5580	157	5785
:	:	:	:		:	:		:
48	5240	64	5320		144	5720	165	5825
		14-10	00 44- / 000 44 /	00		no mula may / Channe	 	

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

Band 1

Band 2A

Frequency (MHz)
5190
5230

Ch.	Frequency (MHz)
54	5270
:	:
62	5310

	Band 2C
Ch.	Frequency (MHz)
102	5510
	:
110	5550
:	:
142	5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	
155	5775
:	
159	5795
:	
163	5815

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

	Band 1		Band 2A			Band 2C		Band 3
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)		Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
42	5210	58	5290		106	5530	155	5775
					:	:		
					138	5690		

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Daga 6 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 6 of 213
© 2017 PCTEST Engineering Laboratory, Inc. V 6.				

06/06/2017

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of KDB 789033 D02 v01r04. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles						
802.11 Mode/Band			Duty Cycle [%]			
		ANT1	ANT2	MIMO		
	а	94.5	94.5	94.9		
	n (HT20)	93.9	94.3	95.0		
5GHz	ac (HT20)	93.3	94.1	95.3		
SGHZ	n (HT40)	92.1	91.1	92.2		
	ac (HT40)	92.2	91.5	92.9		
	ac (HT80)	90.8	91.6	92.2		

 Table 2-4. Measured Duty Cycles

2. The device employs MIMO technology. Below are the possible configurations.

		SISO		SISO SDM		CDD		DBS	
WiFi Confi	gurations	Primary Antenna	Secondary Antenna	Primary Antenna	Secondary Antenna	Primary Antenna	Secondary Antenna	Primary Antenna	Secondary Antenna
	11a	0	0	Х	Х	0	0	2.4GHz	0
5GHz	11n/ac	0	0	0	0	0	0	2.4GHz	0

Table 2-5. Frequency / Channel Operations

O = Support ; X = NOT Support

SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity

DBS = Dual Band Simultaneous

Data Rate(s) Tested: 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n - 20MHz)

13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n – 40MHz BW)

29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac - 80MHz BW)

13/14.4, 26.28.9, 39/43.3, 52/57.8, 78/86.7, 104/115.6, 117/130, 130/144.4MBps (MIMO n/ac – 20MHz) 156/173Mbps (MIMO ac – 20MHz)

27/30, 54/60, 81/90, 108/120, 162/180, 216/240, 243,270, 270/300Mbps (MIMO n/ac – 40MHz) 324/360, 360/400Mbps (MIMO ac – 40MHz)

58.5/65, 117/130, 175.5/195, 234/260, 351/390, 468/520, 526.5/585, 585/650, 702/780, 780/866.7Mbps (MIMO ac - 80MHz)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Dama 7 of 040
1M1706070186-06.ZNF 6/7 - 7/15/2017 Portab		Portable Handset		Page 7 of 213
© 2017 PCTEST Engineering Laboratory, Inc. V 6.6				

06/06/2017

2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v01r04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on a certified wireless charging pad (WCP) while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Page 8 of 213	
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 6 01 2 15	
© 2017 PCTEST Engineering Laboratory, Inc.					

06/06/2017

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v01r04 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Dage 0 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 9 of 213
© 2017 PCTEST Engineering Laboratory, Inc. V 6.6				

06/06/2017

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. A 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		Page 10 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 10 01 213
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 11 of 012	
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 11 of 213	
© 2017 PCTEST Engineering Laboratory, Inc.					

06/06/2017

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Deg 10 of 012			
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 12 of 213			
© 2017 PCTEST Engineering Laboratory, Inc.							

06/06/2017

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	7/11/2016	Annual	7/11/2017	RE1
-	WL25-1	Conducted Cable Set (25GHz)	10/3/2016	Annual	10/3/2017	WL25-1
Agilent	N9020A	MXA Signal Analyzer	10/28/2016	Annual	10/28/2017	US46470561
Agilent	N9038A	MXE EMI Receiver	4/26/2017	Annual	4/26/2018	MY51210133
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Anritsu	MA2411B	Pulse Power Sensor	10/14/2015	Biennial	10/14/2017	846215
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	7/30/2015	Biennial	7/30/2017	121034
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	7/11/2016	Annual	7/11/2017	441128
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	3/27/2015	Triennial	3/27/2018	9203-2178
EMCO	3160-10	Small Horn (26.5 - 40GHz)	8/23/2016	Biennial	8/23/2018	130993
Espec	ESX-2CA	Environmental Chamber	4/11/2017	Annual	4/11/2018	17620
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	12/27/2016	Biennial	12/27/2018	114451
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	10/3/2016	Annual	10/3/2017	251425001
K & L	11SH10-6000/T18000	High Pass Filter	7/11/2016	Annual	7/11/2017	11SH10-6000/T18000-1
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	10/5/2016	Annual	10/5/2017	NMLC-1
PCTEST	-	EMC Switch System	7/11/2016	Annual	7/11/2017	NM1
PCTEST	-	EMC Switch System	7/6/2016	Annual	7/6/2017	NM2
Rhode & Schwarz	TS-PR18	Pre-Amplifier	7/6/2016	Annual	7/6/2017	101622
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	7/11/2016	Annual	7/11/2017	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	4/19/2017	Annual	4/19/2018	100342
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100037
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/15/2016	Annual	7/15/2017	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	7/27/2016	Annual	7/27/2017	103200
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	7/30/2015	Biennial	7/30/2017	310233
Sunol	DRH-118	Horn Antenna (1-18GHz)	7/30/2015	Biennial	7/30/2017	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 212			
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 13 of 213			
© 2017 PCTEST Engineering I	0 2017 PCTEST Engineering Laboratory, Inc.						

06/06/2017

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	ZNFLS998
Method/System:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a)		PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a)	CONDUCTED	PASS	Section 7.5
15.407(g)	Frequency Stability	N/A		PASS	Section 7.6
15.407(h)	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b.1), (2), (3), (4)	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b)		PASS	Section 7.7
15.205, 15.407(b.1), (4), (5), (6)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Section 7.7, 7.8
15.407	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.9

Notes:

- Table 7-1. Summary of Test Results
- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.1.5.

FCC ID: ZNFLS998				Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 14 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 14 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

06/06/2017

7.2 26dB Bandwidth Measurement – 802.11a/n/ac

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r04, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

KDB 789033 D02 v01r04 - Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

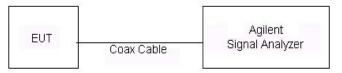


Figure 7-1. Test Instrument & Measurement Setup

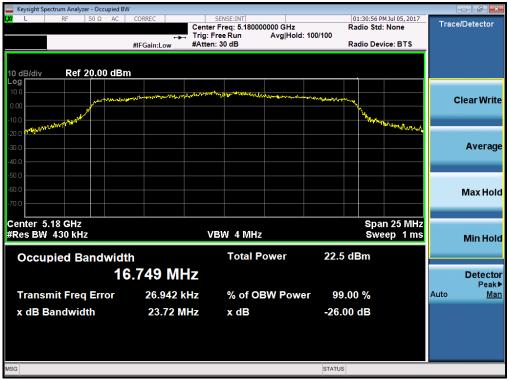
Test Notes

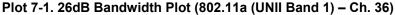
None.

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Deg 15 of 212	
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 15 of 213	
© 2017 PCTEST Engineering L	aboratory. Inc.	•		V 6.6	

06/06/2017

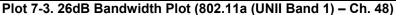
Antenna-1 26 dB Bandwidth Measurements


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	23.72
	5200	40	а	6	23.35
	5240	48	а	6	24.00
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	24.82
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	24.12
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	24.08
	5190	38	n (40MHz)	13.5/15 (MCS0)	39.63
	5230	46	n (40MHz)	13.5/15 (MCS0)	39.79
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	80.74
	5260	52	а	6	24.58
	5280	56	а	6	23.08
	5320	64	а	6	23.50
ZA	5260	52	n (20MHz)	6.5/7.2 (MCS0)	23.40
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	24.06
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	24.09
	5270	54	n (40MHz)	13.5/15 (MCS0)	39.79
	5310	62	n (40MHz)	13.5/15 (MCS0)	40.40
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	81.27
	5500	100	а	6	23.09
	5580	116	а	6	22.08
	5720	144	а	6	22.48
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	23.49
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	23.95
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	23.57
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	40.29
	5550	110	n (40MHz)	13.5/15 (MCS0)	40.42
	5710	142	n (40MHz)	13.5/15 (MCS0)	40.48
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.17
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.54


Table 7-2. Conducted Bandwidth Measurements

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dega 16 of 212			
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 16 of 213			
© 2017 PCTEST Engineering Laboratory, Inc.							

06/06/2017



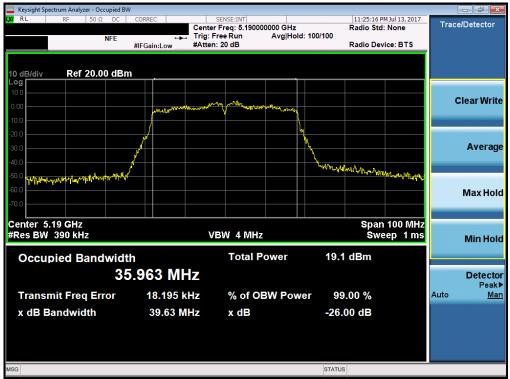
Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 17 of 212		
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 17 of 213		
© 2017 PCTEST Engineering Laboratory, Inc.						

Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 19 of 212		
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 18 of 213		
© 2017 PCTEST Engineering Laboratory, Inc.						

Keysight S	Spectrum Analyzer - Oc											
<mark>lxi</mark> l	RF 50 Ω	2 AC COI	RREC		NSE:INT reg: 5.20000	0000 GHz		01:39: Radio		1 Jul 05, 2017 None	Trac	e/Detector
			Trig: Fre	: Free Run Avg Hold: 100/100			Dealler		DTO			
	#IFGain:Low #Atten: 30 dB Radio Device: BTS											
10 dB/div Log	Ref 20.0	00 dBm							_			
10.0				1	n or for the s							
0.00		waybor	~~ ∕ ₩ _₽ ₽ _₽ ₽ <u>₽</u> ₩₩₽₽₽			*************	when the second	Repairing a				Clear Write
-10.0									W			
-20.0 John	Munderyal									`WY~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-30.0												Average
-40.0												g .
-50.0												
-60.0												
-70.0												Max Hold
-70.0												
Center			· · · · ·							n 25 MHz		
#Res BV	V 430 kHz			VBI	N 4 MHz			S	we	ep 1 ms		Min Hold
0.001	unied Bone	huidth			Total P	ower	22.3	dBm				
Ucci	upied Band				Total I	Ower	LLIN	, abiii				
		17.8	21 MF	1Z								Detector Peak▶
Trans	smit Freq Er	ror	9.956 k	Hz	% of O	BW Powe	er 99	.00 %			Auto	Man_
x dB	Bandwidth		24.12 M	Hz	x dB		-26.	00 dB				
MSG							STATUS	5				


Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 19 of 213
2017 PCTEST Engineering Laboratory, Inc.				V 6.6

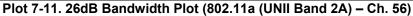
Plot 7-7. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 20 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

Keysight Spectrum Analyzer - Occupied BV	V					[
L RF 50Ω AC	CORREC	SENSE:INT enter Freg: 5.21000	0000 GH-	02:00:32 Radio St	2 PM Jul 05, 2017	Trace	e/Detector
	T Lat	rig: Free Run	Avg Hold: 100)/100			
. <u> </u>	#IFGain:Low #/	Atten: 30 dB		Radio D	evice: BTS		
10 dB/div Ref 20.00 dBn	n						
Log							
		marine marine				c	lear Write
0.00	and the second states of the s		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and the second second second	\		
-10.0					\		
-20.0					- Why		
-30.0					M _n		Average
-40.0					www.withow		
-50.0							
-60.0							Max Hold
-70.0							Muxinoiu
Center 5.21 GHz					in 100 MHz		
#Res BW 820 kHz		VBW 8 MHz		SV	veep 1 ms		Min Hold
Occupied Bandwidt	'n	Total P	ower	19.7 dBm			
14	1.974 MHz						Detector Peak▶
Transmit Freq Error	154.04 kHz	% of OE	BW Power	99.00 %		Auto	Man
x dB Bandwidth	80.74 MHz	x dB		-26.00 dB			
MSG				STATUS			

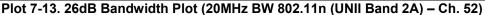
Plot 7-9. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 1) – Ch. 42)




Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) – Ch. 52)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 21 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 21 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

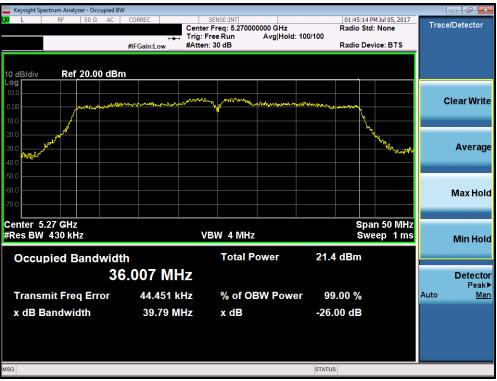
🤤 Keysight Spectrum Analyzer - Occupied E	BW				
L RF 50 Ω AC		SENSE:INT Freg: 5.280000000 GHz	01:34:35 Radio S	5 PM Jul 05, 2017	Trace/Detector
	Trig: F	ree Run Avg Hold:	100/100		
	#IFGain:Low #Atten	: 30 dB	Radio D	evice: BTS	
10 dB/div Ref 20.00 dB	m				
10.0					
0.00	and the second sec		www.www.wikefederic.		Clear Write
-10.0					
-20.0 dry month with the				Well Wardshare	
-30.0					Average
-40.0					
-50.0					
-60.0					
-70.0					Max Hold
-70.0					
Center 5.28 GHz				an 25 MHz	
#Res BW 430 kHz	V	BW 4 MHz	Sv	veep 1 ms	Min Hold
Occupied Bandwid	th	Total Power	22.5 dBm		
			22.0 0011		
1	6.738 MHz				Detector Peak▶
Transmit Freq Error	24.570 kHz	% of OBW Powe	r 99.00 %		Auto <u>Man</u>
x dB Bandwidth	23.08 MHz	x dB	-26.00 dB		
MSG			STATUS		
ino d			012100		



Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) – Ch. 64)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 22 of 213
0 2017 PCTEST Engineering Laboratory, Inc.				V 6.6




Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

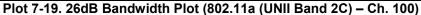
FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 23 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-16. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

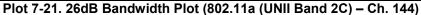
FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 24 01 213
0 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)



Plot 7-18. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 25 of 213
0 2017 PCTEST Engineering Laboratory, Inc.				V 6.6



Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 26 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 26 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 27 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 27 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-23. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)


Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 29 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 28 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-25. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)


Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 29 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-28. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 30 of 213
2017 PCTEST Engineering Laboratory, Inc.				

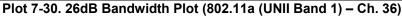
Keysight Spectrum Analyzer - Occupied BW					
L RF 50 Ω AC		SENSE:INT nter Freq: 5.690000000 GHz g: Free Run Avg Hol		24 PM Jul 05, 2017 Std: None	Trace/Detector
		ten: 30 dB		Device: BTS	
10 dB/div Ref 20.00 dBm					
Log					
0.00		Propose antidemental .			Clear Write
anna and the second second	Jan Barran Barran Jan Barran Barran	A a second and a second and	and where the second second	λ	
-10.0				1 1	
-20.0				N 4.	Average
-30.0				- Swake	Average
-40.0 slow				Server Contraction	
-50.0					
-60.0					Max Hold
-70.0					
Center 5.69 GHz			Sp	an 100 MHz	
#Res BW 820 kHz		VBW 8 MHz		weep 1ms	Min Hold
Occupied Bandwidth		Total Power	18.2 dBm		
Occupied Bandwidth		Total Fower	10.2 UBIII		
/5	.208 MHz				Detector Peak▶
Transmit Freq Error	61.366 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Man</u>
x dB Bandwidth	81.54 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-29. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 21 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 31 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

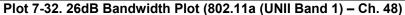
Antenna-2 26dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	22.13
	5200	40	а	6	22.19
	5240	48	а	6	21.17
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	22.55
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	23.72
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	23.37
	5190	38	n (40MHz)	13.5/15 (MCS0)	41.12
	5230	46	n (40MHz)	13.5/15 (MCS0)	40.36
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	82.05
	5260	52	а	6	21.97
	5280	56	а	6	22.56
	5320	64	а	6	22.33
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	22.49
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	22.01
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	23.26
	5270	54	n (40MHz)	13.5/15 (MCS0)	40.02
	5310	62	n (40MHz)	13.5/15 (MCS0)	39.73
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	80.19
	5500	100	а	6	22.07
	5580	116	а	6	22.50
	5720	144	а	6	22.18
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	24.13
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	23.02
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	21.91
Ва	5510	102	n (40MHz)	13.5/15 (MCS0)	40.13
	5550	110	n (40MHz)	13.5/15 (MCS0)	40.61
	5710	142	n (40MHz)	13.5/15 (MCS0)	40.44
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.88
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.25


Table 7-3. Conducted Bandwidth Measurements


FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 32 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

06/06/2017



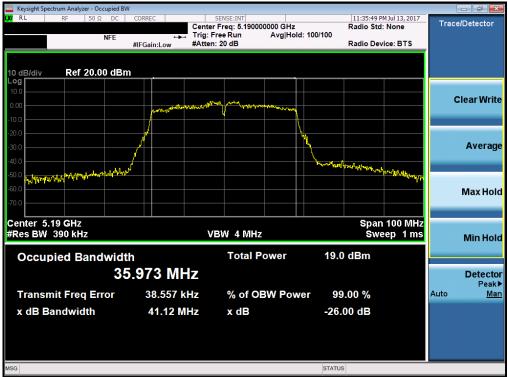
Plot 7-31. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 212	
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 33 of 213	
© 2017 PCTEST Engineering Laboratory, Inc.					

Plot 7-33. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 24 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 34 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

Keysight Spectrum Analyzer - Occupied BW					
	Center F		Radio 100/100	5:45 PM Jul 05, 2017 5 Std: None Device: BTS	Trace/Detector
#I	FGain:Low #Atten:	30 dB	Radio	Device: BTS	
10 dB/div Ref 20.00 dBm					
10.0	were here the start	Marine Ma	When a with and an an		Clear Write
				\	
-10.0 -20.0				Munan Jul	
-20.0 70-20.0					Average
-30.0					Average
-50.0					
-60.0					
-70.0					Max Hold
Center 5.2 GHz				Span 25 MHz	
#Res BW 220 kHz	VE	W 2.2 MHz		Sweep 1 ms	Min Hold
Occupied Bandwidth		Total Power	22.5 dBn	n	
	639 MHz				Detector
					Peak►
Transmit Freq Error	16.273 kHz	% of OBW Powe	r 99.00 %	6	Auto <u>Man</u>
x dB Bandwidth	23.72 MHz	x dB	-26.00 di	3	
MSG			STATUS		



Plot 7-35. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 25 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 35 of 213
2017 PCTEST Engineering Laboratory, Inc.				

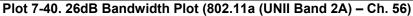
Plot 7-36. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

Plot 7-37. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) – Ch. 46)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 26 of 212	
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 36 of 213	
© 2017 PCTEST Engineering Laboratory, Inc.					

etector
ar Write
verage
ax Hold
lin Hold
etector
Peak ►
Man

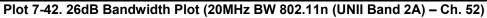
Plot 7-38. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 1) – Ch. 42)

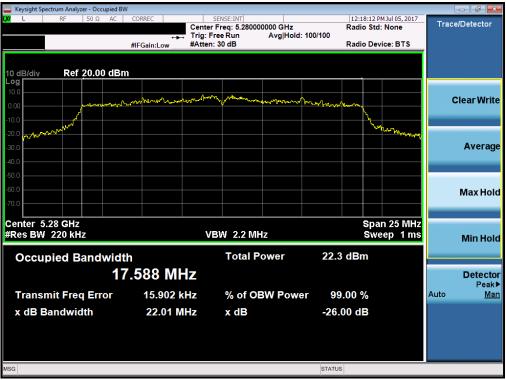



Plot 7-39. 26dB Bandwidth Plot (802.11a (UNII Band 2A) – Ch. 52)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 27 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 37 of 213
© 2017 PCTEST Engineering L	2017 PCTEST Engineering Laboratory, Inc.			

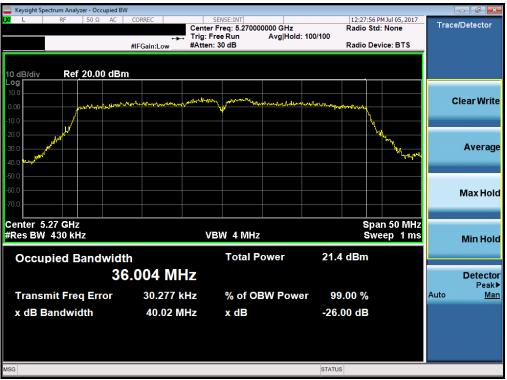
Keysight Spectrum Analyzer - Occupied BW	1				
L RF 50Ω AC		SENSE:INT Freg: 5.280000000 GHz	12:08:11 Radio St	PM Jul 05, 2017	Trace/Detector
	Trig: F	ree Run Avg Hold	: 100/100		
	#IFGain:Low #Atten	: 30 dB	Radio De	vice: BTS	
10 dB/div Ref 20.00 dBm Log					
10.0					
0.00	man man man and man	why wanter and when and the	from Month my		Clear Write
-10.0					
-20.0 mental M. M. M. M.			er harden	Mary Charles	
-30.0					Average
-40.0					
-50.0					
-60.0					
-70.0					Max Hold
-70.0					
Center 5.28 GHz				an 25 MHz	
#Res BW 220 kHz	V	BW 2.2 MHz	Sw	eep 1 ms	Min Hold
Occupied Bandwidt	6	Total Power	22.3 dBm		
Occupied Bandwidt		lotari ower	22.5 0011		
16	.446 MHz				Detector Peak▶
Transmit Freq Error	16.135 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	22.56 MHz	x dB	-26.00 dB		
			Longe all		
MSG			STATUS		
			514105		




Plot 7-41. 26dB Bandwidth Plot (802.11a (UNII Band 2A) – Ch. 64)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 20 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 38 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

Keysight Spectrum Analyzer - Occupied BW					
	Center Trig: F	SENSE:INT Freq: 5.260000000 GHz ree Run Avg Hold	Radio : 100/100	7:28 PM Jul 05, 2017 5 Std: None	Trace/Detector
	#IFGain:Low #Atten	: 30 dB	Radio	Device: BTS	
10 dB/div Ref 20.00 dBm					
10.0 0.00	nother and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000 mayor former		Clear Write
-10.0				Margard market book	
-30.0					Average
-60.0					Max Hold
-70.0					
Center 5.26 GHz #Res BW 220 kHz	VI	BW 2.2 MHz		Span 25 MHz Sweep 1 ms	Min Hold
Occupied Bandwidth		Total Power	22.2 dBn	n	
17.	632 MHz				Detector Peak▶
Transmit Freq Error	4.052 kHz	% of OBW Powe			Auto <u>Man</u>
x dB Bandwidth	22.49 MHz	x dB	-26.00 dl	3	
MSG			STATUS		


Plot 7-43. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 39 of 213
0 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

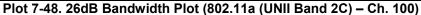
Keysight Spectrum Analyzer - Occupied BW					
	L RF 50 Ω AC CORREC SENSE:INT 12:18:58 PM Jul 05, 2017 Center Freq: 5.320000000 GHz Radio Std: None Trig: Free Run Avg Hold: 100/100 #/FGain:Low #Atten: 30 dB Radio Device: BTS				Trace/Detector
	r-Galil.Low withern				
10 dB/div Ref 20.00 dBm					
10.0 0.00	2 Born Mar Maria	James Malling May war and a faith	Mun Mus harry		Clear Write
-10.0 -20.0 Jornal Market				V- Mun yor when you want has	
-30.0					Average
-50.0					
-70.0					Max Hold
Center 5.32 GHz #Res BW 220 kHz	VE	W 2.2 MHz		Span 25 MHz Sweep 1 ms	Min Hold
Occupied Bandwidth		Total Power	22.5 dBn	n	
17.	641 MHz				Detector Peak▶
Transmit Freq Error	10.586 kHz	% of OBW Powe			Auto <u>Man</u>
x dB Bandwidth	23.26 MHz	x dB	-26.00 di	3	
MSG			STATUS		

Plot 7-44. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-45. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

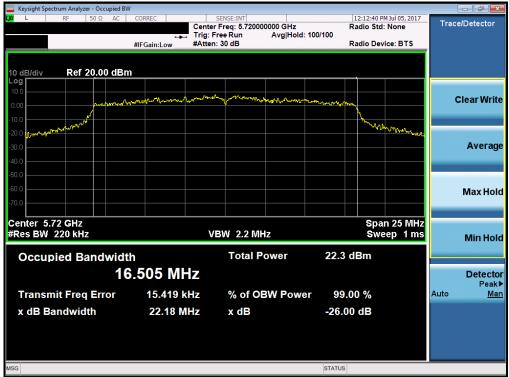
FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 40 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 40 of 213
2017 PCTEST Engineering Laboratory, Inc.				V 6.6

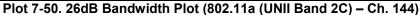

Plot 7-46. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)



Plot 7-47. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 41 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 41 of 213
0 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

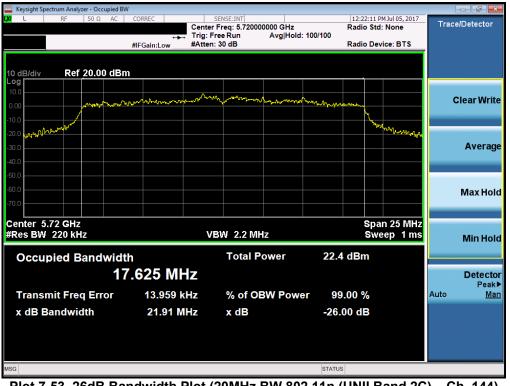




Plot 7-49. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degra 42 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 42 of 213
2017 PCTEST Engineering Laboratory, Inc.				V 6.6




Plot 7-51. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 43 of 213
0 2017 PCTEST Engineering Laboratory, Inc.				V 6.6


Plot 7-52. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)

Plot 7-53. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 44 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 44 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-54. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

Plot 7-55. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 110)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 45 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

Plot 7-56. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-57. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 46 of 213
© 2017 PCTEST Engineering L		V 6.6		

Keysight Spectrum Analyzer - Occupied BW					
			Radio Sto 00/100	PMJul 05, 2017 d: None	Trace/Detector
	Fir Galli.Low		Rudio Be		
10 dB/div Ref 20.00 dBm					
10.0					
0.00	apprendiate the second states and the second	V annow Markenson and and	www.www.www.www.www.		Clear Write
-10.0				4	
-20.0				N .	
-30.0				May May	Average
-40.0					
-50.0					
-70.0					Max Hold
Center 5.69 GHz #Res BW 820 kHz	VB	W 8 MHz		n 100 MHz /eep 1 ms	
THE DW OZU KIZ	*0	999 0 191112	314	eep mis	Min Hold
Occupied Bandwidth		Total Power	19.2 dBm		
75.	188 MHz				Detector Peak▶
Transmit Freq Error	82.732 kHz	% of OBW Power	99.00 %		Auto <u>Man</u>
x dB Bandwidth	81.25 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-58. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 47 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 47 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r04, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

KDB 789033 D02 v01r04 - Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

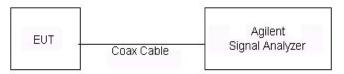


Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 49 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 48 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

Antenna-1 6 dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	13.58
	5785	157	а	6	11.37
	5825	165	а	6	15.92
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	11.42
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	14.97
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	9.98
	5755	151	n (40MHz)	13.5/15 (MCS0)	31.33
	5795	159	n (40MHz)	13.5/15 (MCS0)	32.64
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	67.64

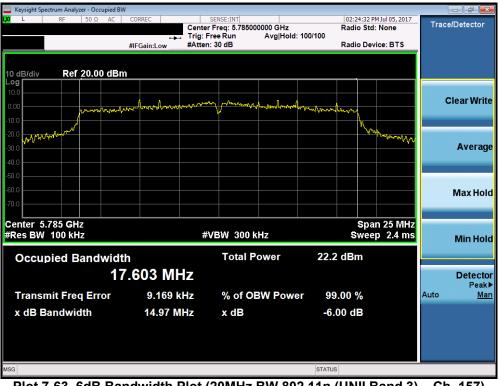
 Table 7-4. Conducted Bandwidth Measurements

Plot 7-59. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 40 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 49 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

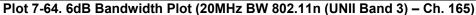
06/06/2017

Plot 7-60. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 157)


Plot 7-61. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 50 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 50 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-62. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)




Plot 7-63. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 51 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 51 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

Plot 7-65. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) – Ch. 151)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 52 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 52 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-66. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

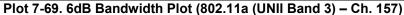
Plot 7-67. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 52 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 53 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Antenna-2 6dB Bandwidth Measurements

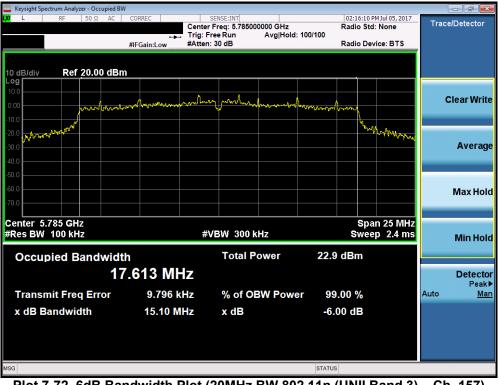
Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
5745	149	а	6	13.87
5785	157	а	6	13.88
5825	165	а	6	15.91
5745	149	n (20MHz)	6.5/7.2 (MCS0)	15.00
5785	157	n (20MHz)	6.5/7.2 (MCS0)	15.10
5825	165	n (20MHz)	6.5/7.2 (MCS0)	12.60
5755	151	n (40MHz)	13.5/15 (MCS0)	31.33
5795	159	n (40MHz)	13.5/15 (MCS0)	30.01
5775	155	ac (80MHz)	29.3/32.5 (MCS0)	71.33

 Table 7-5. Conducted Bandwidth Measurements


Plot 7-68. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

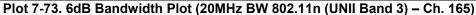
FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 54 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 54 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

06/06/2017


Plot 7-70. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

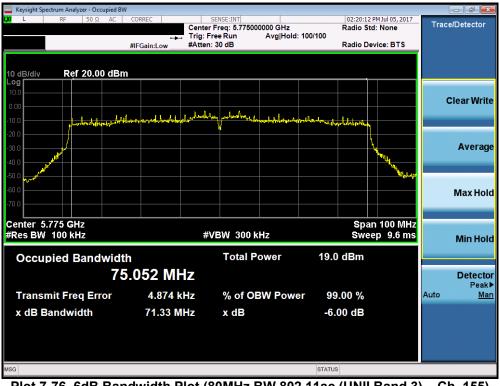
FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege EE of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 55 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

Plot 7-71. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)



Plot 7-72. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege EC of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 56 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				


Plot 7-74. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) – Ch. 151)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 57 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 57 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.	•		V 6.6

Plot 7-75. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-76. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 59 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 58 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.	•		V 6.6

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3)

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r04, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(23.08) = 24.63dBm$.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10log_{10}(26dB BW) = 11 dBm + <math>10log_{10}(22.08) = 24.44dBm$.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

KDB 789033 D02 v01r04 – Section E)3)b) Method PM-G KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

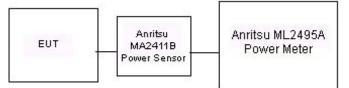


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 50 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 59 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

Antenna-1 Conducted Output Power Measurements

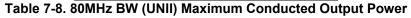

			5GHz (20MHz) Conducted Power [dBm]			
Freq [MHz]	Channel	Detector	IEEE Transmission Mode			
			802.11a	802.11n	802.11ac	
5180	36	AVG	16.63	16.55	16.53	
5200	40	AVG	16.60	16.55	16.57	
5220	44	AVG	16.61	16.54	16.56	
5240	48	AVG	16.39	16.42	16.48	
5260	52	AVG	16.42	16.52	16.50	
5280	56	AVG	16.77	16.67	16.66	
5300	60	AVG	16.54	16.52	16.53	
5320	64	AVG	16.66	16.61	16.62	
5500	100	AVG	16.58	16.52	16.57	
5580	116	AVG	16.71	16.59	16.65	
5660	132	AVG	16.65	16.45	16.45	
5720	144	AVG	16.62	16.50	16.48	
5745	149	AVG	16.59	16.46	16.47	
5785	157	AVG	16.57	16.44	16.46	
5825	165	AVG	16.55	16.44	16.47	

Table 7-6. 20MHz BW (UNII) Maximum Conducted Output Power

Freg [MHz]	Channel			5GHz (40MHz) Conducted Power [dBm]	
Fied [MHZ]	Ghanner	Detector	IEEE Transmission Mode		
			802.11n	802.11ac	
5190	38	AVG	13.45	13.39	
5230	46	AVG	15.51	15.48	
5270	54	AVG	15.55	15.46	
5310	62	AVG	13.41	13.40	
5510	102	AVG	13.44	13.39	
5550	110	AVG	15.38	15.41	
5670	134	AVG	15.35	15.43	
5710	142	AVG	15.26	15.28	
5755	151	AVG	15.42	15.41	
5795	159	AVG	15.43	15.46	

Table 7-7. 40MHz BW (UNII) Maximum Conducted Output Power

5GHz (80MHz) Conducted Power [dBm]					
Freq [MHz]	Freq [MHz] Channel Detecto		IEEE Transmission Mode		
			802.11ac		
5210	42	AVG	12.52		
5290	58	AVG	10.54		
5530	106	AVG	12.41		
5690	138	AVG	11.87		
5775	155	AVG	12.02		

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 60 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 60 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				

06/06/2017

Antenna-2 Conducted Output Power Measurements

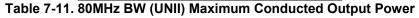

			5GHz (20MHz) Conducted Power [dBm] IEEE Transmission Mode		
Freq [MHz]	Channel	Detector			
			802.11a	802.11n	802.11ac
5180	36	AVG	14.88	14.80	14.94
5200	40	AVG	14.91	14.79	14.91
5220	44	AVG	14.94	14.79	14.95
5240	48	AVG	14.99	14.84	14.95
5260	52	AVG	14.95	14.89	14.95
5280	56	AVG	15.10	14.98	15.02
5300	60	AVG	15.14	14.96	15.07
5320	64	AVG	15.28	15.22	15.23
5500	100	AVG	15.29	15.15	15.12
5580	116	AVG	15.77	15.60	15.59
5660	132	AVG	15.71	15.56	15.49
5720	144	AVG	15.75	15.58	15.54
5745	149	AVG	15.87	15.67	15.62
5785	157	AVG	15.85	15.62	15.62
5825	165	AVG	15.77	15.60	15.52

Table 7-9. 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Channel Detector		5GHz (40MHz) Conducted Power [dBm]	
Fied [MHZ]	Ghanner	Detector	IEEE Transm	ission Mode	
			802.11n	802.11ac	
5190	38	AVG	12.87	13.04	
5230	46	AVG	13.80	13.78	
5270	54	AVG	13.93	13.97	
5310	62	AVG	13.04	13.12	
5510	102	AVG	12.88	12.90	
5550	110	AVG	14.31	14.37	
5670	134	AVG	14.32	14.31	
5710	142	AVG	14.47	14.45	
5755	151	AVG	14.55	14.51	
5795	159	AVG	14.50	14.52	

Table 7-10. 40MHz BW (UNII) Maximum Conducted Output Power

5GHz (80MHz) Conducted Power [dBm]							
Freq [MHz]	Channel	Detector	IEEE Transmission Mode				
			802.11ac				
5210	42	AVG	11.93				
5290	58	AVG	10.02				
5530	106	AVG	12.01				
5690	138	AVG	11.90				
5775	155	AVG	12.13				

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 61 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 61 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

06/06/2017

MIMO Maximum Conducted Output Power Measurements

			5GHz (20MHz) Conducted Power [dB				
Freq [MHz]	Channel	Detector	IEEE 1	Fransmission	Mode		
			ANT1	ANT2	MIMO		
5180	36	AVG	16.55	14.80	18.77		
5200	40	AVG	16.55	14.79	18.77		
5220	44	AVG	16.54	14.79	18.76		
5240	48	AVG	16.42	14.84	18.71		
5260	52	AVG	16.52	14.89	18.79		
5280	56	AVG	16.67	14.98	18.92		
5300	60	AVG	16.52	14.96	18.82		
5320	64	AVG	16.61	15.22	18.98		
5500	100	AVG	16.52	15.15	18.90		
5580	116	AVG	16.59	15.60	19.13		
5660	132	AVG	16.45	15.56	19.04		
5720	144	AVG	16.50	15.58	19.07		
5745	149	AVG	16.46	15.67	19.09		
5785	157	AVG	16.44	15.62	19.06		
5825	165	AVG	16.44	15.60	19.05		

Table 7-12. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

			5GHz (20MHz) Conducted Power [d				
Freq [MHz]	Channel	Detector	IEEE 1	Fransmission	Mode		
			ANT1	ANT2	MIMO		
5180	36	AVG	16.53	14.94	18.82		
5200	40	AVG	16.57	14.91	18.83		
5220	44	AVG	16.56	14.95	18.84		
5240	48	AVG	16.48	14.95	18.79		
5260	52	AVG	16.50	14.95	18.80		
5280	56	AVG	16.66	15.02	18.93		
5300	60	AVG	16.53	15.07	18.87		
5320	64	AVG	16.62	15.23	18.99		
5500	100	AVG	16.57	15.12	18.92		
5580	116	AVG	16.65	15.59	19.16		
5660	132	AVG	16.45	15.49	19.01		
5720	144	AVG	16.48	15.54	19.05		
5745	149	AVG	16.47	15.62	19.08		
5785	157	AVG	16.46	15.62	19.07		
5825	165	AVG	16.47	15.52	19.03		

Table 7-13. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 62 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 62 01 2 13
© 2017 PCTEST Engineering Laboratory, Inc.				

Freq [MHz]	Channel Detector		5GHz (40N	/IHz) Conduct [dBm]	ed Power
Fied [winz]	Channel	Detector	IEEE 1	Fransmission	Mode
			ANT1	ANT2	MIMO
5190	38	AVG	13.45	12.87	16.18
5230	46	AVG	15.51	13.80	17.75
5270	54	AVG	15.55	13.93	17.83
5310	62	AVG	13.41	13.04	16.24
5510	102	AVG	13.44	12.88	16.18
5550	110	AVG	15.38	14.31	17.89
5670	134	AVG	15.35	14.32	17.88
5710	142	AVG	15.26	14.47	17.89
5755	151	AVG	15.42	14.55	18.02
5795	159	AVG	15.43	14.50	18.00

Table 7-14. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	5GHz (40MHz) Conducted [dBm]		d Power	
	Channel	Detector	IEEE 1	Fransmission	Mode	
			ANT1	ANT2	MIMO	
5190	38	AVG	13.39	13.04	16.23	
5230	46	AVG	15.48	13.78	17.72	
5270	54	AVG	15.46	13.97	17.79	
5310	62	AVG	13.40	13.12	16.27	
5510	102	AVG	13.39	12.90	16.16	
5550	110	AVG	15.41	14.37	17.93	
5670	134	AVG	15.43	14.31	17.92	
5710	142	AVG	15.28	14.45	17.90	
5755	151	AVG	15.41	14.51	17.99	
5795	159	AVG	15.46	14.52	18.03	

Table 7-15. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

5GHz (80MHz) Conducted Power [dBm]						
Freq [MHz]	Channel	Detector	IEEE Transmission Mode			
			ANT1	ANT2	MIMO	
5210	42	AVG	12.52	11.93	15.25	
5290	58	AVG	10.54	10.02	13.30	
5530	106	AVG	12.41	12.01	15.22	
5690	138	AVG	11.87	11.90	14.90	
5775	155	AVG	12.02	12.13	15.09	

Table 7-16. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 62 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 63 of 213
© 2017 PCTEST Engineering L	aboratory Inc			V 6 6

2017 PCTEST Engineering Laboratory, Inc.

Note:

Per KDB 662911 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz in 802.11n MIMO (20MHz BW) mode, the average conducted output power was measured to be 16.55 dBm for Antenna-1 and 14.80 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(16.55 dBm + 14.80 dBm) = (45.19 mW + 30.20 mW) = 75.39 mW = 18.77 dBm

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 64 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 64 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.	·		V 6.

06/06/2017

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3)

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r04, and at the appropriate frequencies. Method SA-1, as defined in KDB 789033 D02 v01r04, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

KDB 789033 D02 v01r04 – Section F KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

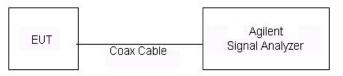


Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 65 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 65 of 213
© 2017 PCTEST Engineering L	aboratory, Inc.			V 6.6

06/06/2017

Antenna-1 Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	6.94	11.0	-4.06
	5200	40	а	6	6.87	11.0	-4.13
	5240	48	а	6	7.31	11.0	-3.69
Ξ	5180	36	n (20MHz)	6.5/7.2 (MCS0)	6.64	11.0	-4.36
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	6.81	11.0	-4.19
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	6.74	11.0	-4.26
	5190	38	n (40MHz)	13.5/15 (MCS0)	7.21	11.0	-3.79
	5230	46	n (40MHz)	13.5/15 (MCS0)	7.21	11.0	-3.79
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-2.59	11.0	-13.59
	5260	52	а	6	7.21	11.0	-3.79
	5280	56	а	6	7.31	11.0	-3.70
	5320	64	а	6	7.21	11.0	-3.79
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	6.56	11.0	-4.44
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	6.59	11.0	-4.41
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	7.11	11.0	-3.89
	5270	54	n (40MHz)	13.5/15 (MCS0)	2.72	11.0	-8.28
	5310	62	n (40MHz)	13.5/15 (MCS0)	0.57	11.0	-10.43
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-4.80	11.0	-15.80
	5500	100	а	6	7.60	11.0	-3.40
	5580	116	а	6	7.31	11.0	-3.69
	5720	144	а	6	6.38	11.0	-4.62
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	7.00	11.0	-4.01
2C	5580	116	n (20MHz)	6.5/7.2 (MCS0)	7.18	11.0	-3.82
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	5.96	11.0	-5.04
Ba	5510	102	n (40MHz)	13.5/15 (MCS0)	1.24	11.0	-9.76
	5550	110	n (40MHz)	13.5/15 (MCS0)	3.21	11.0	-7.79
	5710	142	n (40MHz)	13.5/15 (MCS0)	2.30	11.0	-8.70
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-2.73	11.0	-13.73
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-4.02	11.0	-15.02

 Table 7-17. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 66 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

06/06/2017

Plot 7-77. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)

Plot 7-78. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 67 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 67 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-79. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)

Plot 7-80. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 69 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 68 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

06/06/2017

Plot 7-81. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

Plot 7-82. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 60 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 69 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	



Plot 7-84. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 70 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 70 01 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-86. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 71 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 71 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-87. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 56)

Plot 7-88. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 64)

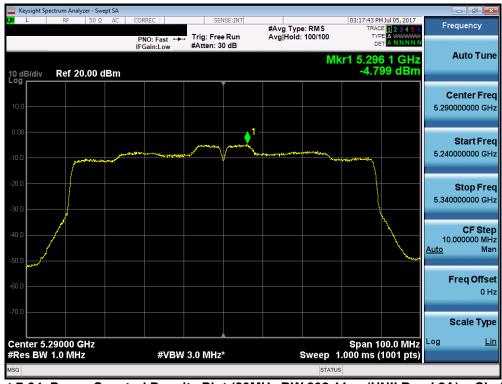
FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 010
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 72 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-89. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) – Ch. 52)

Plot 7-90. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 72 of 012
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 73 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-91. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) – Ch. 64)


Plot 7-92. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 74 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 74 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-93. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) – Ch. 62)

Plot 7-94. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 75 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 75 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-96. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 116)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 76 of 010
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 76 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-98. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

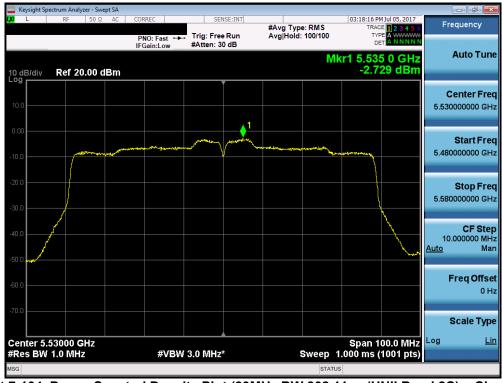
FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 77 of 010
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 77 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-99. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)

Plot 7-100. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 79 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 78 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-101. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

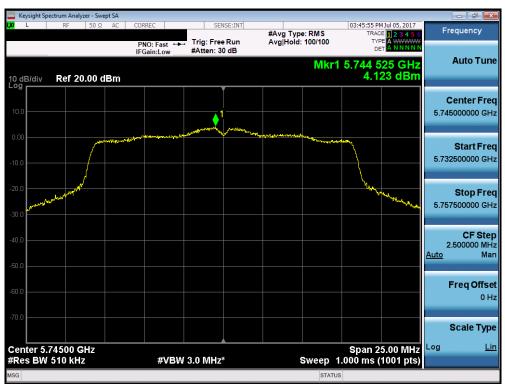

Plot 7-102. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 79 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-103. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 142)

Plot 7-104. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Demo 90 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 80 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	


Plot 7-105. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 91 of 912
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 81 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

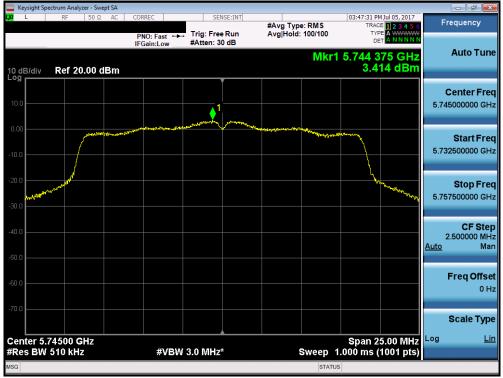
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]		Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	4.12	30.0	-25.88
	5785	157	а	6	4.35	30.0	-25.66
	5825	165	а	6	4.02	30.0	-25.98
e	5745	149	n (20MHz)	6.5/7.2 (MCS0)	3.41	30.0	-26.59
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	3.56	30.0	-26.45
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	3.28	30.0	-26.72
	5755	151	n (40MHz)	13.5/15 (MCS0)	-0.35	30.0	-30.35
	5795	159	n (40MHz)	13.5/15 (MCS0)	0.12	30.0	-29.88
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-6.93	30.0	-36.93

Table 7-18. Band 3 Conducted Power Spectral Density Measurements

Plot 7-106. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 92 of 212
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 82 of 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

06/06/2017

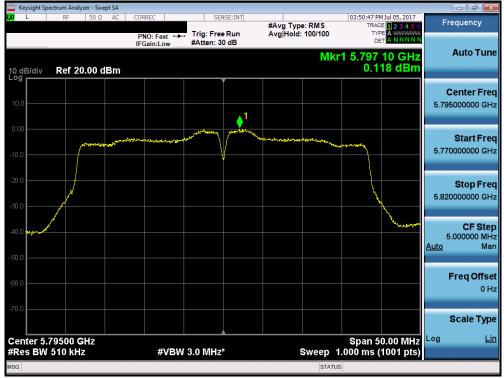


Plot 7-108. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 83 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 03 01 213
© 2017 PCTEST Engineering Laboratory, Inc.			V 6.6	

Plot 7-110. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 94 of 912
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 84 of 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6



Plot 7-112. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 85 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 65 01 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6

Plot 7-114. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFLS998		FCC Pt. 15.407 802.11a/n/ac UNII MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 86 of 213
1M1706070186-06.ZNF	6/7 - 7/15/2017	Portable Handset		Page 60 01 213
© 2017 PCTEST Engineering Laboratory, Inc.				V 6.6