

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: 01/22/17 - 02/01/17 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:**

1M1701180034-01-R4.ZNF

FCC ID: ZNFLS993

LG ELECTRONICS MOBILECOMM U.S.A., INC. APPLICANT:

DUT Type: Portable Handset **Application Type:** Certification FCC Rule Part(s): CFR §2.1093 Model: **LG-LS993**

Additional Model(s): LGLS993, LS993, LG-AS993, LGAS993, AS993

Equipment	Band & Mode	Tx Frequency	SAR			
Class	Bana a wood	TXTTEQUENCY	1 gm Head	1 gm Body-	1 gm Hotspot	
			(W/kg)	Worn (W/kg)	(W/kg)	
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.21	1.07	1.07	
PCE	GSM/GPRS/EDGE 1900	1850,20 - 1909,80 MHz	0.12	0.44	0.51	
PCE	UMTS 850	826.40 - 846.60 MHz	0.18	0.57	0.57	
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.19	0.85	0.85	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.16	0.69	0.77	
PCE	CDMA/EVDO BC0 (§22H)	824.70 - 848.31 MHz	0.26	0.73	0.71	
PCE	CDMA/EVDO BC10 (§90S)	817.90 - 823.10 MHz	0.22	0.66	0.67	
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	0.19	0.89	0.79	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.10	0.42	0.42	
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.22	0.72	0.72	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	N/A	N/A	N/A	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.24	0.83	0.83	
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.18	0.78	0.99	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	
PCE	LTE Band 41	2498.5 - 2687.5 MHz	0.12	0.53	0.65	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.70	0.16	0.16	
NII	U-N⊪1	5180 - 5240 MHz	N/A	N/A	0.46	
NII	U-NII-2A	5260 - 5320 MHz	0.56	0.48	N/A	
NII	U-NII-2C	5500 - 5720 MHz	0.56	0.65	N/A	
NII	U-NII-3	5745 - 5825 MHz	0.10	0.51	0.51	
DSS/DTS	Bluetooth	2402 - 2480 MHz		N/A		
Simultaneous	SAR per KDB 690783 D01v01r03:		1.59	1.59	1.58	

Note: This revised Test Report (S/N: 1M1701180034-01-R4.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	1 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 1 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 1 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	13
3	INTROD	UCTION	14
4	DOSIME	TRIC ASSESSMENT	15
5	DEFINIT	ION OF REFERENCE POINTS	16
6	TEST CO	ONFIGURATION POSITIONS	17
7	RF EXP	OSURE LIMITS	20
8	FCC ME	ASUREMENT PROCEDURES	21
9	RF CON	DUCTED POWERS	28
10	SYSTEM	VERIFICATION	56
11	SAR DA	TA SUMMARY	59
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	73
13	SAR ME	ASUREMENT VARIABILITY	88
14	ADDITIO	NAL TESTING PER FCC GUIDANCE	89
15	EQUIPM	ENT LIST	90
16	MEASUF	REMENT UNCERTAINTIES	91
17	CONCLU	JSION	92
18	REFERE	NCES	93
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	IDIX G:	WIFI POWER REDUCTION VERIFICATION	

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 2 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 2 of 94

1 DEVICE UNDER TEST

1.1 Device Overview

		1
Band & Mode	Operating Modes	Tx Frequency
GSWGPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSWGPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
CDMA/EVDO BC0 (§22H)	Voice/Data	824.70 - 848.31 MHz
CDMA/EVDO BC10 (§90S)	Voice/Data	817.90 - 823.10 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1852.5 - 1912.5 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

This device uses a fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description. Additional test procedure information and data verifying the WLAN power reduction mechanism is included in Appendix G.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 2 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 3 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

Nominal and Maximum Output Power Specifications 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Maximum Power

Mode / Band		Voice	Burst Aver	age GMSK	Burst Aver	rage 8-PSK
		(dBm)	(dE	Bm)	(dE	3m)
		1 TX Slot	1 TX Slots	2 TX Slots	1 TX Slots	2 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.2	33.2	32.2	27.2	27.2
GSIVI/GPRS/EDGE 850	Nominal	32.7	32.7	31.7	26.7	26.7
GSM/GPRS/EDGE 1900	Maximum	30.2	30.2	29.2	26.2	26.2
GSIVI/GPRS/EDGE 1900	Nominal	29.7	29.7	28.7	25.7	25.7

Mode / Band		Modula	ted Average	e (dBm)
		3GPP	3GPP	3GPP
		WCDMA	HSDPA	HSUPA
	Maximum	24.7	24.7	24.7
UMTS Band 5 (850 MHz)	Nominal	24.2	24.2	24.2
LIMITS Dand 4 (1750 MHz)	Maximum	24.7	24.7	24.7
UMTS Band 4 (1750 MHz)	Nominal	24.2	24.2	24.2
UMTS Band 2 (1900 MHz)	Maximum	24.7	24.7	24.7
Olvi13 Bailu 2 (1900 WHZ)	Nominal	24.2	24.2	24.2

Mode / Band		Modulated Average (dBm)
CDMA/EVDO BC10 (§90S)	Maximum	25.2
CDIVIA/EVDO BCTO (9903)	Nominal	24.7
CD144 (EVDO DC0 (\$3311)	Maximum	25.5
CDMA/EVDO BC0 (§22H)	Nominal	25.0
DCC CD144 /EV/DC	Maximum	25.2
PCS CDMA/EVDO	Nominal	24.7

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	① LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 4 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 4 of 94
17 PCTEST Engineering Laboratory, Inc.		•		REV 18.2 M

Mode / Band		Modulated Average (dBm)
LTE Band 12	Maximum	25.5
LIE Ballu 12	Nominal	25.0
LTE Dand 26 (Call)	Maximum	25.5
LTE Band 26 (Cell)	Nominal	25.0
LTE Band 5 (Cell)	Maximum	25.5
	Nominal	25.0
LTE Donal 4 (A)A(C)	Maximum	25.0
LTE Band 4 (AWS)	Nominal	24.5
LTE Band 25 (DCS)	Maximum	25.5
LTE Band 25 (PCS)	Nominal	25.0
LTE Band 2 (DCC)	Maximum	25.5
LTE Band 2 (PCS)	Nominal	25.0
LTE Dand 41 (DC2)	Maximum	25.5
LTE Band 41 (PC3)	Nominal	25.0
LTE Band 41 HPUE (PC2)	Maximum	26.7
LIE Dallu 41 HPUE (PCZ)	Nominal	26.2

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 5 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 5 of 94

Mode / Band	Modulated Average - Single Tx Chain (Antenna 1 & 2) (dBm)		
	Ch.1-2	Ch.3-11	
1555 002 441 /2 4 CH \	Maximum	16.5	17.0
IEEE 802.11b (2.4 GHz)	Nominal	15.5	16.0
IFFF 902 11~ (2.4 CU-)	Maximum	15.0	15.5
IEEE 802.11g (2.4 GHz)	Nominal	14.0	14.5
IFFF 902 11 ~ (2.4 CU-)	Maximum	15.0	15.5
IEEE 802.11n (2.4 GHz)	Nominal	14.0	14.5
LEEE 902 1100 /2 4 CU-)	Maximum	15.0	15.5
IEEE 802.11ac (2.4 GHz)	Nominal	14.0	14.5

Mode / Band	Modulated Average - Single Tx Chain	
	(dBm)	
Bluetooth (1 Mbps)	Maximum	12.5
Bidetootii (1 Mbps)	Nominal	11.5
Bluetooth (2 Mbps)	Maximum	12.0
bidetootii (2 Mbps)	Nominal	11.0
Bluetooth (3 Mbps)	Maximum	12.0
biuetootii (5 Mbps)	Nominal	11.0
Bluetooth LE	Maximum	8.0
Bluetooth LE	Nominal	7.0

Mode / Band			Modulated Average - Single Tx Chain (Antenna 1 & 2) (dBm)							
		20 MHz Bandwidth		40 MHz Bandwidth		80 MHz Bandwidth				
		Ch. 36, 64, 100, 165	Ch. 40-48, 52-60, 104- 144, 149-161	Ch. 38, 62, 102	Ch. 46, 54, 110-159	Ch. 42, 58, 106	Ch. 138, 155			
IEEE 802.11a (5 GHz)	Maximum	12.5	16.5							
TEEE 802.11a (3 GHz)	Nominal	11.5	15.5							
IEEE 903 44 m /E CUla)	Maximum	12.5	16.5	9.5	13.5					
IEEE 802.11n (5 GHz)	Nominal	11.5	15.5	8.5	12.5					
IEEE 902 1126 /E CH7\	Maximum	12.5	16.5	9.5	13.5	8.5	11.5			
IEEE 802.11ac (5 GHz)	Nominal	11.5	15.5	8.5	12.5	7.5	10.5			

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 6 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 6 of 94

Mode / Band		Modulated Average - MIMO (dBm)						
		20 N	ИHz Bandwidth	40 MHz Bandwidth		80 MHz Bandwidth		
		Ch.1-2	Ch.3-11	Ch. 38, 62, 102	Ch. 46, 54, 110-159	Ch. 42, 58, 106	Ch. 138, 155	
LEEE 802 11 7/2/2012 4 CH-)	Maximum	18.0	18.5					
IEEE 802.11 g/n/ac (2.4 GHz)	Nominal	17.0	17.5					
		Ch. 36, 64, 100, 165	Ch. 40-48, 52-60, 104- 144, 149-161					
IEEE 003 44 - /E CU-)	Maximum	15.5	19.5					
IEEE 802.11 a (5 GHz)	Nominal	14.5	18.5					
IEEE 802.11 n/ac (5 GHz)	Maximum	15.5	19.5	12.5	16.5	11.5	14.5	
1EEE 802.11 11/ac (5 GHZ)	Nominal	14.5	18.5	11.5	15.5	10.5	13.5	

1.3.2 Reduced Power

N		Modulated Average - Single Tx Chain (Antenna 1 &2) (dBm)						
	Ch.1-2 Ch.		3-11					
LEEE 002 44b /	2.4.611-1	Maximum		15.0		15.5		
IEEE 802.11b (2.4 GHZ)		Nominal	14.0)	1	4.5	
		Modulated Average - Single Tx Chain (Antenna 1 & 2) (dBm)						
Mode / Band		20 MHz Bandwidth		40 MHz Bandwidth		80 MHz Bandwidth		
		Ch. 36, 64, 100, 165	Ch. 40-48, 52-60, 104- 144, 149-161	Ch. 38, 62, 102	Ch. 46,	54, 142, 110-159	Ch. 42, 58, 106	Ch. 138, 155
IEEE 802.11a (5 GHz)	Maximum	12.5	14.5					
TEEE 802.11a (3 GHZ)	Nominal	11.5	13.5					
IEEE 802.11n (5 GHz)	Maximum	12.5	14.5	9.5		13.5		
1222 002.1111 (3 0112)	Nominal	11.5	13.5	8.5		12.5		
IEEE 802.11ac (5 GHz)	Maximum	12.5	14.5	9.5		13.5	8.5	11.5
1222 002.1146 (3 0112)	Nominal	11.5	13.5	8.5		12.5	7.5	10.5
		Modulated Average - MIMO (dBm)						
Mode / Band		20 N	ИНz Bandwidth	40 MHz Bandwidth		ndwidth	80 MHz Bandwidth	
		Ch. 36, 64, 100, 165	Ch. 40-48, 52-60, 104- 144, 149-161	Ch. 38, 62, 102	Ch. 4	6, 54, 110-159	Ch. 42, 58, 106	Ch. 138, 155
IEEE 802.11 a (5 GHz)	Maximum	15.5	17.5					
1222 002.11 0 (5 0112)	Nominal	14.5	16.5					
IEEE 802.11 n/ac (5 GHz)	Maximum	15.5	17.5	12.5		16.5	11.5	14.5
.222 302.21 11,00 (3 0112)	Nominal	14.5	16.5	11.5		15.5	10.5	13.5

Quality Manager
Dana 7 of 04
Page 7 of 94
REV 18.2 M 11/28/2016
u

1.4 DUT Antenna Locations

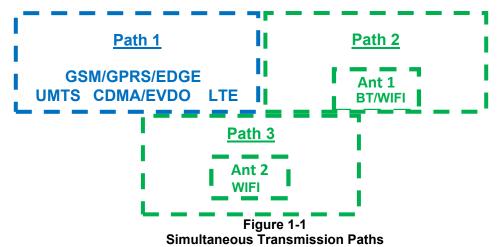
The overall dimensions of this device are $> 9 \times 5$ cm. The overall diagonal dimension of the device is ≤ 160 mm and the diagonal display is ≤ 150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1
Device Edges/Sides for SAR Testing

		, , - , - , - , - , - , - , - , - ,	JI OAK ICSE	9		
Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	No	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1750	Yes	Yes	No	Yes	No	Yes
UMTS 1900	Yes	Yes	No	Yes	No	Yes
EVDO BC0 (§22H)	Yes	Yes	No	Yes	Yes	Yes
EVDO BC10 (§90S)	Yes	Yes	No	Yes	Yes	Yes
PCS EVDO	Yes	Yes	No	Yes	No	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes
LTE Band 26 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	Yes	No	Yes
LTE Band 25 (PCS)	Yes	Yes	No	Yes	No	Yes
LTE Band 41	Yes	Yes	No	Yes	No	Yes
2.4 GHz WLAN Ant 1	Yes	Yes	Yes	No	No	Yes
2.4 GHz WLAN Ant 2	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN Ant 1	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN Ant 2	Yes	Yes	Yes	No	No	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A, U-NII-2C operations are disabled. Therefore, U-NII-2A, U-NII-2C operations are not considered in this section.

1.5 Near Field Communications (NFC) Antenna


This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 9 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 8 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

> Table 1-2 Simultaneous Transmission Scenarios

Simultaneous Transmission Scenarios								
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes			
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A				
2	1x CDMA voice + 5 GHz WI-FI	Yes	Yes	N/A				
3	1x CDMA voice + 2.4 GHz Bluetooth	N/A	Yes	N/A				
4	1x CDMA voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A				
5	1x CDMA voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A				
6	1x CDMA voice + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	N/A				
7	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A				
8	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A				
9	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A				
10	GSM voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A				
11	GSM voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A				
12	GSM voice + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	N/A				
13	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes				
14	UMTS + 5 GHz WI-FI	Yes	Yes	Yes				
15	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A				
16	UMTS + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes				
17	UMTS + 5 GHz WI-FI MIMO	Yes	Yes	Yes				
18	UMTS + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	Yes				
19	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes				
20	LTE + 5 GHz WI-FI	Yes	Yes	Yes				
21	LTE + 2.4 GHz Bluetooth	N/A	Yes	N/A				
22	LTE + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes				
23	LTE + 5 GHz WI-FI MIMO	Yes	Yes	Yes				
24	LTE + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes	Yes	Yes				
25	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
26	CDMA/EVDO data + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
27	CDMA/EVDO data + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.			
28	CDMA/EVDO data + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
29	CDMA/EVDO data + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
30	CDMA/EVDO data + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
31	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
32	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
33	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.			
34	GPRS/EDGE + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
35	GPRS/EDGE + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
36	GPRS/EDGE + 2.4 GHz WI-FI + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 0 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 9 of 94

- 1. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 2. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 3. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 4. 5 GHz Wireless Router is only supported for U-NII-1, U-NII-3 by S/W, therefore U-NII2A and U-NII2C were not evaluated for wireless router conditions.
- 5. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 6. This device supports VOLTE and VoWIFI

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, Head and body-worn SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz, U-NII-1 and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; $[(18/10)^* \sqrt{2.480}] = 2.8 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 2 Tx antenna output
- d) 256 QAM is supported
- e) Band gap channels are supported

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 10 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

CDMA 1X Advanced technology was not required for SAR since the maximum allowed output powers for 1x Advanced was not more than 0.25 dB higher than the maximum powers for 1x and the measured SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg per FCC KDB Publication 941225 D01v03r01.

This device supports both LTE B26 (Cell) and LTE B5 (Cell). Since the supported frequency span for LTE B5 (Cell) falls completely within the supported frequency span for LTE B26 (Cell), both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE B26 (Cell).

This device supports both LTE B25 (PCS) and LTE B2 (PCS). Since the supported frequency span for LTE B2 (PCS) falls completely within the supported frequency span for LTE B25 (PCS), both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE B25 (PCS).

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

This device supports 64QAM on the uplink for LTE Operations. Conducted powers for 64QAM uplink configurations were measured per Section 5.1 of FCC KDB Publication 941225 D05v02r05. SAR was not required for 64QAM since the highest maximum output power for 64 QAM is

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 11 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 11 of 94

1.9 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational

tolerances expected for production units.

expected for production units.			
	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS/EDGE 850	01412	01417	01417
GSM/GPRS/EDGE 1900	01417	01412	01412
UMTS 850	01417	01417	01417
UMTS 1750	01412	01417	01417
UMTS 1900	01417	01417	01417
CDMA/EVDO BC0 (§22H)	01417	01417	01417
CDMA/EVDO BC10 (§90S)	01417	01417	01417
PCS CDMA/EVDO	01417	01412	01412
LTE Band 12	01410	01414	01414
LTE Band 26 (Cell)	01411	01414	01414
LTE Band 4 (AWS)	01413	01414	01414
LTE Band 25 (PCS)	01413	01413	01413
LTE Band 41	01410	01414	01414
2.4 GHz WLAN	01430	01430	01430
5 GHz WLAN	01430	01430	01430

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 12 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 12 of 94

		LTE Information			
FCC ID			ZNFLS993		
Form Factor			Portable Handset		
requency Range of each LTE transmission band			E Band 12 (699.7 - 715.3 M		•
	LTE Band 26 (Cell) (814.7 - 848.3 MHz)				
		LTE Band 5 (Cell) (824.7 - 848.3 MHz)			
		LTE Ba	ind 4 (AWS) (1710.7 - 1754	l.3 MHz)	
		LTE Ba	nd 25 (PCS) (1850.7 - 1914	I.3 MHz)	
		LTE Ba	and 2 (PCS) (1850.7 - 1909	.3 MHz)	
		LTE	Band 41 (2498.5 - 2687.5	MHz)	
hannel Bandwidths		LTE Band	12: 1.4 MHz, 3 MHz, 5 MH	lz, 10 MHz	
			I): 1.4 MHz, 3 MHz, 5 MHz		
			(Cell): 1.4 MHz, 3 MHz, 5 I		
			4 MHz, 3 MHz, 5 MHz, 10		
			4 MHz, 3 MHz, 5 MHz, 10		
			4 MHz, 3 MHz, 5 MHz, 10		
Shannal Numbers and Fraguencies (MHz)	Low	Low-Mid	41: 5 MHz, 10 MHz, 15 MI		Lligh
thannel Numbers and Frequencies (MHz) TE Band 12: 1.4 MHz	Low	<u> </u>	Mid 707.5 (23095)	Mid-High	High
TE Band 12: 1.4 MHz		699.7 (23017) 700.5 (23025)			23173)
TE Band 12: 5 MHz		700.5 (23025)		714.5 (
		(23035)	707.5 (23095) 707.5 (23095)	713.5 (
TE Band 12: 10 MHz		704 (23060)		711 (2	
TE Band 26 (Cell): 1.4 MHz		814.7 (26697)		848.3 (
TE Band 26 (Cell): 3 MHz	815.5 (26705)		831.5 (26865) 831.5 (26865)	847.5 (
TE Band 26 (Cell): 5 MHz	816.5 (816.5 (26715)		846.5 (27015)
ΓE Band 26 (Cell): 10 MHz	819 (2	26740)	831.5 (26865)	844 (26990)	
TE Band 26 (Cell): 15 MHz	821.5 ((26765)	831.5 (26865)	841.5 (26965)	
TE Band 5 (Cell): 1.4 MHz	824.7 (20407)		836.5 (20525)	848.3 (20643)	
E Band 5 (Cell): 3 MHz	825.5 (20415)		836.5 (20525)	847.5 (20635)	
TE Band 5 (Cell): 5 MHz	826.5 (20425)		836.5 (20525)	846.5 (20625)	
TE Band 5 (Cell): 10 MHz	829 (2	20450)	836.5 (20525)	844 (20600)	
TE Band 4 (AWS): 1.4 MHz	1710.7	1710.7 (19957)		1754.3 (20393)	
TE Band 4 (AWS): 3 MHz	1711.5	(19965)	1732.5 (20175)	1753.5 (20385)	
TE Band 4 (AWS): 5 MHz		(19975)	1732.5 (20175)	1752.5 (20375)	
TE Band 4 (AWS): 10 MHz		20000)	1732.5 (20175)	1750 (20350)	
TE Band 4 (AWS): 15 MHz	,	(20025)	1732.5 (20175)	1747.5 (20325)	
TE Band 4 (AWS): 20 MHz		20050)	1732.5 (20175)	1745 (20300)	
TE Band 25 (PCS): 1.4 MHz		(26047)	1882.5 (26365)	1914.3 (26683)	
TE Band 25 (PCS): 3 MHz		(26055)	1882.5 (26365)	1913.5 (26675)	
TE Band 25 (PCS): 5 MHz		(26065)	1882.5 (26365)	1913.5 (26665)	
TE Band 25 (PCS): 10 MHz		26090)	1882.5 (26365)	1910 (26640)	
TE Band 25 (PCS): 15 MHz		(26115)	1882.5 (26365)	1907.5	,
TE Band 25 (PCS): 13 MHz		26140)	1882.5 (26365)	1907.5	
TE Band 2 (PCS): 1.4 MHz	,	(18607)	1880 (18900)	,	(19193)
TE Band 2 (PCS): 3 MHz		,	, ,		. ,
TE Band 2 (PCS): 5 MHz		(18615)	1880 (18900)	1908.5	
		(18625)	1880 (18900)		(19175)
TE Band 2 (PCS): 10 MHz	,	18650)	1880 (18900)	1905 (,
TE Band 2 (PCS): 15 MHz TE Band 2 (PCS): 20 MHz		(18675)	1880 (18900)	1902.5	
, ,	,	18700)	1880 (18900)	1900 (,
TE Band 41: 5 MHz TE Band 41: 10 MHz	2506 (39750) 2506 (39750)	2549.5 (40185) 2549.5 (40185)	2593 (40620) 2593 (40620)	2636.5 (41055) 2636.5 (41055)	2680 (41490) 2680 (41490)
TE Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
E Band 41: 13 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)
E Category	2000 (00100)	2010.0 (40 100)	9	2000.0 (41000)	2000 (41430)
odulations Supported in UL			QPSK, 16QAM, 64QAM		
E MPR Permanently implemented per 3GPP TS			o.t., .o.g/1111, o.t.g/1111		
6.101 section 6.2.3~6.2.5? (manufacturer			YES		
testation to be provided)			-		
-MPR (Additional MPR) disabled for SAR			YES		
TE Carrier Aggregation Possible Combinations	Th	e technical description in	cludes all the possible cam	ier aggregation combination	ons
TE Release 10 Additional Information	Specifications. Uplink co	mmunications are done of	3GPP Release 10. All uplin on the PCC. The following L lading, MDH, eMBMS, Cros	TE Release 10 Features a	are not supported: Re

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 12 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 13 of 94

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 14 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 14 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

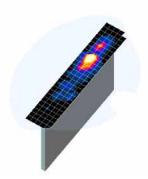


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Maximum Zoom Scar		Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 15 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 15 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

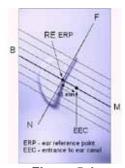


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

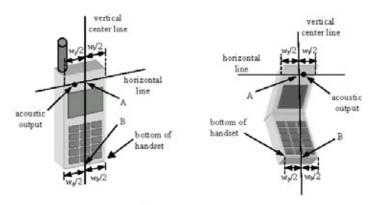


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dana 40 of 04	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 16 of 94	

ncluding photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front. Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 17 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 17 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

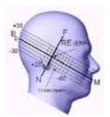


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 18 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Fage 18 01 94

© 2017 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 19 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)			
Peak Spatial Average SAR Head	1.6	8.0			
Whole Body SAR	0.08	0.4			
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20			

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 20 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 20 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 21 of 04	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 21 of 94	

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3.4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1 Parameters for Max. Power for RC1

Parameter	Units	Value	
Îor	dBm/1.23 MHz	-104	
Pilot E _c	dB	-7	
Traffic E _c	dB	-7.4	

Table 8-2 Parameters for Max. Power for RC3

Parameter	Units	Value
Íor	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 **Head SAR Measurements**

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

Body-worn SAR Measurements

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

8.4.4 **Body-worn SAR Measurements for EVDO Devices**

For handsets with Ev-Do capabilities, the 3G SAR test reduction procedure is applied to Ev-Do Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 22 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 22 of 94

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For Ev-Do data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with Ev-Do Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.4.6 CDMA2000 1x Advanced

This device additionally supports 1x Advanced. Conducted powers are measured using SO75 with RC8 on the uplink and RC11 on the downlink per FCC KDB Publication 941225 D01v03r01. Smart blanking is disabled for all measurements. The EUT is configured with forward power control Mode 000 and reverse power control at 400 bps. Conducted powers are measured on an Agilent 8960 Series 10 Wireless Communications Test Set, Model E5515C using the CDMA2000 1x Advanced application, Option E1962B-410.

The 3G SAR test reduction procedure is applied to the 1x-Advanced transmission mode with 1x RTT RC3 as the primary mode. When SAR measurement is required, the 1x-Advanced power measurement configurations are used. The1x Advanced SAR procedures are applied separately to head, body-worn accessory and other exposure conditions.

8.5 SAR Measurement Conditions for UMTS

8.5.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.5.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	
Document S/N:	Test Dates:	DUT Type:	Dogo 22 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 23 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

8.5.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH $_{\rm n}$ configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH $_{\rm n}$, for the highest reported SAR configuration in 12.2 kbps RMC.

8.5.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.6 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.6.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 24 of 04	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 24 of 94	

© 2017 PCTEST Engineering Laboratory, Inc.

8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.6.5 **TDD**

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.6.6 **Downlink Only Carrier Aggregation**

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. For every supported combination of downlink only carrier aggregation, additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 25 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Fage 23 01 94

8.7 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.7.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.7.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

8.7.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.7.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.7.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	
Document S/N:	Test Dates:	DUT Type:	Dogo 26 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 26 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is >1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.7.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.7.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6).

8.7.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

8.7.9 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 27 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 27 of 94

 $\hbox{@}$ 2017 PCTEST Engineering Laboratory, Inc.

9 RF CONDUCTED POWERS

9.1 **CDMA Conducted Powers**

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
Cellular	564	90S	820.1	25.20	25.18	25.16	25.20	25.17	25.18	25.20
	1013	22H	824.7	25.50	25.48	25.50	25.50	25.49	25.45	25.46
Cellular	384	22H	836.52	25.45	25.44	25.46	25.48	25.49	25.47	25.45
	777	22H	848.31	25.47	25.45	25.41	25.50	25.44	25.49	25.45
	25	24E	1851.25	25.20	25.20	25.11	25.11	25.14	25.20	25.13
PCS	600	24E	1880	25.17	25.18	25.13	25.18	25.19	25.18	25.19
	1175	24E	1908.75	25.20	25.14	25.09	25.16	25.18	25.20	25.16

Note: RC1 is only applicable for IS-95 compatibility. For FCC Rule Part 90S, Per FCC KDB Publication 447498 D01v06 4.1.g), only one channel is required since the device operates within the transmission range of 817.90 – 823.10 MHz.

Figure 9-1 **Power Measurement Setup**

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 29 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 28 of 94
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M

9.2 **GSM Conducted Powers**

	Maximum Burst-Averaged Output Power								
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	33.15	33.12	32.07	27.10	27.20			
GSM 850	190	33.20	33.20	32.16	27.16	27.16			
	251	33.13	33.12	32.19	27.12	27.13			
	512	30.19	30.20	29.15	25.85	25.80			
GSM 1900	661	30.18	30.18	29.17	25.91	25.96			
	810	30.20	30.18	29.17	25.85	25.88			

Calculated Maximum Frame-Averaged Output Power									
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	24.12	24.09	26.05	18.07	21.18			
GSM 850	190	24.17	24.17	26.14	18.13	21.14			
	251	24.10	24.09	26.17	18.09	21.11			
	512	21.16	21.17	23.13	16.82	19.78			
GSM 1900	661	21.15	21.15	23.15	16.88	19.94			
	810	21.17	21.15	23.15	16.82	19.86			
		_							
GSM 850	Frame	23.67	23.67	25.68	17.67	20.68			

GSM 850	Frame	23.67	23.67	25.68	17.67	20.68
GSM 1900	Avg.Targets:	20.67	20.67	22.68	16.67	19.68

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 29 of 94

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B

GPRS Multislot class: 10 (Max 2 Tx uplink slots) EDGE Multislot class: 10 (Max 2 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-2 Power Measurement Setup

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 30 of 94

9.3 **UMTS Conducted Powers**

3GPP Release	Mode	de 3GPP 34.121 Subtest		lar Band	[dBm]	AW	S Band [d	Bm]	PCS	Band [d	Bm]	3GPP MPR [dB]
Version		Gubtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	iiii it [ab]
99	WCDMA	12.2 kbps RMC	24.60	24.68	24.68	24.67	24.67	24.70	24.67	24.70	24.69	-
99	VVCDIVIA	12.2 kbps AMR	24.65	24.66	24.70	24.61	24.70	24.70	24.70	24.66	24.64	-
6		Subtest 1	24.63	24.68	24.70	24.65	24.65	24.65	24.55	24.58	24.55	0
6	HSDPA	Subtest 2	24.63	24.67	24.70	24.68	24.65	24.67	24.57	24.55	24.58	0
6	TIODI A	Subtest 3	24.16	24.18	24.19	24.15	24.18	24.15	24.10	24.06	24.20	0.5
6		Subtest 4	24.15	24.17	24.17	24.15	24.20	24.15	24.08	24.10	24.17	0.5
6		Subtest 1	24.63	24.68	24.70	24.60	24.62	24.60	24.50	24.50	24.60	0
6		Subtest 2	22.60	22.65	22.64	22.60	22.63	22.61	22.52	22.53	22.60	2
6	HSUPA	Subtest 3	23.55	23.64	23.60	23.53	23.50	23.55	23.44	23.40	23.43	1
6		Subtest 4	22.57	22.65	22.63	22.62	22.63	22.60	22.53	22.50	22.58	2
6		Subtest 5	24.61	24.63	24.60	24.60	24.62	24.60	24.51	24.60	24.60	0

This device does not support DC-HSDPA.

Figure 9-3 Power Measurement Setup

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 21 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 31 of 94

9.4 LTE Conducted Powers

9.4.1 LTE Band 12

Table 9-1
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

			LTE Band 12 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power		
			[dBm]		
	1	0	25.50		0
	1	25	25.48	0	0
	1	49	25.47		0
QPSK	25	0	24.47		1
	25	12	24.45	0-1	1
	25	25	24.46	0-1	1
	50	0	24.40		1
	1	0	24.45		1
	1	25	24.48	0-1	1
	1	49	24.48		1
16QAM	25	0	23.44		2
	25	12	23.47	0-2	2
	25	25	23.47	0-2	2
	50	0	23.49		2
	1	0	23.44		2
	1	25	23.06	0-2	2
	1	49	23.11		2
64QAM	25	0	22.09		3
	25	12	22.03	0-3	3
	25	25	22.23	0-3	3
	50	0	22.15		3

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 22 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 32 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

Table 9-2 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

				LTE Band 12 5 MHz Bandwidth	<u> </u>		
Modulation	Modulation RB Size RE	RB Offset	23035 (701.5 MHz)	Mid Channel 23095 (707.5 MHz)	High Channel 23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBn	,	- 3011 [ub]	
	1	0	25.43	25.45	25.43		0
	1	12	25.42	25.43	25.42	0	0
	1	24	25.44	25.42	25.43		0
QPSK	12	0	24.43	24.44	24.45		1
	12	6	24.42	24.43	24.43		1
	12	13	24.40	24.46	24.40	0-1	1
	25	0	24.44	24.33	24.43		1
	1	0	24.42	24.43	24.40		1
	1	12	24.41	24.45	24.40	0-1	1
	1	24	24.43	24.40	24.45	1	1
16QAM	12	0	23.42	23.41	23.43		2
	12	6	23.44	23.40	23.44	0-2	2
	12	13	23.43	23.43	23.43	0-2	2
	25	0	23.35	23.43	23.42	1	2
	1	0	23.43	23.28	23.08		2
	1	12	23.29	23.39	23.20	0-2	2
	1	24	23.40	23.24	23.22		2
64QAM	12	0	22.16	22.30	22.42		3
	12	6	22.14	22.29	22.29	0-3	3
	12	13	22.15	22.36	22.49		3
	25	0	22.26	22.39	22.29	1	3

Table 9-3 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

				LTE Band 12 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 23025 (700.5 MHz)	Mid Channel 23095 (707.5 MHz)	High Channel 23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	25.42	25.43	25.43		0
	1	7	25.42	25.42	25.40	0	0
	1	14	25.43	25.43	25.40		0
QPSK	8	0	24.43	24.46	24.42		1
	8	4	24.40	24.40	24.43	0-1	1
	8	7	24.40	24.46	24.41	0-1	1
	15	0	24.41	24.30	24.40		1
	1	0	24.40	24.43	24.40		1
	1	7	24.41	24.45	24.41	0-1	1
	1	14	24.40	24.43	24.43	1	1
16QAM	8	0	23.42	23.41	23.41		2
	8	4	23.42	23.44	23.43	0-2	2
	8	7	23.40	23.43	23.42	0-2	2
	15	0	23.34	23.43	23.42	1 [2
	1	0	23.14	23.36	23.32		2
	1	7	23.37	23.20	23.20	0-2	2
	1	14	23.44	23.41	23.22] [2
64QAM	8	0	22.29	22.30	22.16		3
	8	4	22.21	22.28	22.37	0-3	3
	8	7	22.17	22.41	22.15	0-3	3
	15	0	22.10	22.24	22.34	7	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 22 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 33 of 94
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M

Table 9-4 LTF Rand 12 Conducted Powers -1 4 MHz Randwidth

				LTE Band 12 1.4 MHz Bandwidth			
Modulation	RB Size	Size RB Offset	23017 (699.7 MHz)	Mid Channel 23095 (707.5 MHz)	High Channel 23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			, ,	Conducted Power [dBn		1 1	
	1	0	25.43	25.41	25.41		0
	1	2	25.42	25.42	25.43		0
	1	5	25.41	25.41	25.40		0
QPSK 3	3	0	25.43	25.43	25.43	0 -1	0
	3	2	25.44	25.43	25.40		0
	3	3	25.42	25.42	25.40		0
	6	0	24.40	24.30	24.40		1
	1	0	24.42	24.43	24.30		1
	1	2	24.41	24.48	24.40		1
	1	5	24.43	24.44	24.44		1
16QAM	3	0	24.42	24.40	24.42	0-1	1
	3	2	24.41	24.42	24.42	1	1
	3	3	24.42	24.30	24.40	1	1
	6	0	23.33	23.40	23.30	0-2	2
	1	0	23.37	23.24	23.22		2
	1	2	23.24	23.45	23.33	T	2
	1	5	23.43	23.45	23.31	0-2	2
64QAM	3	0	23.32	23.15	23.44	U-Z	2
	3	2	23.24	23.10	23.48		2
	3	3	23.22	23.36	23.46	1	2
	6	0	22.31	22.34	22.18	0-3	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	① LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 24 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 34 of 94
17 PCTEST Engineering Laboratory, Inc.	·.			REV 18.2 M

9.4.2 LTE Band 26 (Cell)

Table 9-5
LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth

LTE Band 26 (Cell) Conducted Powers - 15 MH2 Bandwidth LTE Band 26 (Cell) 15 MHz Bandwidth							
			Mid Channel				
Modulation	RB Size	RB Offset	26865 (831.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1	0	25.50		0		
	1	36	25.49	0	0		
	1	74	25.48		0		
QPSK	36	0	24.45		1		
	36	18	24.44	0-1	1		
	36	37	24.46	0-1	1		
	75	0	24.43		1		
	1	0	24.35		1		
	1	36	24.45	0-1	1		
	1	74	24.46		1		
16QAM	36	0	23.45		2		
	36	18	23.46	0-2	2		
	36	37	23.47	0-2	2		
	75	0	23.48		2		
	1	0	23.20		2		
	1	36	23.18	0-2	2		
	1	74	23.10		2		
64QAM	36	0	22.06		3		
	36	18	22.23	0-3	3		
	36	37	22.16] 0-3	3		
	75	0	22.10		3		

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 25 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 35 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

Table 9-6 LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

LTE Band 26 (Cell) 10 MHz Bandwidth							
Modulation	RB Size	RB Offset	Low Channel 26740 (819.0 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 26990 (844.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	25.44	25.45	25.43		0
	1	25	25.45	25.43	25.44	- o	0
	<u>'</u> 1	49	25.44	25.44	25.43		0
QPSK	25	0	24.43	24.43	24.40	0-1	1
α. σ. τ	25	12	24.44	24.40	24.40		<u>·</u> 1
	25	25	24.45	24.40	24.43		<u>·</u> 1
	50	0	24.43	24.40	24.43		1
	1	0	24.45	24.41	24.44		1
	1	25	24.40	24.43	24.40	0-1	1
<u> </u>	1	49	24.45	24.45	24.43		1
16QAM	25	0	23.44	23.43	23.43		2
	25	12	23.43	23.45	23.44		2
	25	25	23.44	23.43	23.43	0-2	2
	50	0	23.45	23.44	23.46		2
	1	0	23.45	23.31	23.47		2
	1	25	23.21	23.30	23.18	0-2	2
	1	49	23.37	23.30	23.35	1	2
64QAM	25	0	22.29	22.46	22.38		3
	25	12	22.42	22.48	22.26	0-3	3
	25	25	22.32	22.34	22.34	0-3	3
Ī	50	0	22.34	22.30	22.30		3

Table 9-7 LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

LTE Band 26 (Cell) 5 MHz Bandwidth							
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	25.44	25.44	25.46		0
	1	12	25.43	25.45	25.44	0	0
	1	24	25.45	25.43	25.43		0
QPSK	12	0	24.45	24.45	24.45		1
	12	6	24.43	24.46	24.44	0-1	1
	12	13	24.44	24.44	24.43		1
	25	0	24.46	24.40	24.44		1
	1	0	24.45	24.45	24.43	0-1	1
	1	12	24.43	24.43	24.45		1
	1	24	24.46	24.46	24.44		1
16QAM	12	0	23.43	23.44	23.44		2
	12	6	23.45	23.43	23.43	0-2	2
	12	13	23.46	23.46	23.44	0-2	2
	25	0	23.43	23.45	23.45		2
	1	0	23.42	23.46	23.46		2
	1	12	23.23	23.38	23.40	0-2	2
	1	24	23.36	23.45	23.24		2
64QAM	12	0	22.40	22.36	22.33		3
	12	6	22.35	22.32	22.38	1 , F	3
	12	13	22.41	22.48	22.36	0-3	3
ľ	25	0	22.21	22.30	22.37	1 –	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 26 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 36 of 94
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M

Table 9-8 LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

				LTE Band 26 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	25.44	25.44	25.43		0
	1	7	25.43	25.45	25.44	0	0
	1	14	25.44	25.43	25.45		0
QPSK	8	0	24.43	24.44	24.44		1
	8	4	24.44	24.45	24.46	0-1	1
	8	7	24.43	24.43	24.43	0-1	1
	15	0	24.40	24.34	24.35		1
	1	0	24.40	24.44	24.43		1
	1	7	24.44	24.43	24.43	0-1	1
	1	14	24.43	24.45	24.42	1	1
16QAM	8	0	23.45	23.43	23.44		2
	8	4	23.42	23.43	23.47	0-2	2
	8	7	23.45	23.45	23.43	0-2	2
	15	0	23.33	23.45	23.45	1	2
	1	0	23.23	23.35	23.38		2
	1	7	23.21	23.28	23.50	0-2	2
	1	14	23.29	23.41	23.39	1	2
64QAM	8	0	22.47	22.30	22.31		3
	8	4	22.39	22.35	22.41		3
	8	7	22.36	22.43	22.42	0-3	3
	15	0	22.40	22.24	22.32	1	3

Table 9-9 LTE Band 26 (Cell) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 26 (Cell)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26697 (814.7 MHz)	26865 (831.5 MHz)	27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			•	Conducted Power [dBm	1]		
	1	0	25.44	25.42	25.44		0
	1	2	25.43	25.40	25.43		0
	1	5	25.43	25.43	25.45	0	0
QPSK	3	0	25.45	25.45	25.43]	0
	3	2	25.44	25.43	25.43		0
	3	3	25.40	25.43	25.42	1	0
	6	0	24.44	24.35	24.43	0-1	1
	1	0	24.43	24.47	24.45	0-1	1
	1	2	24.41	24.43	24.40		1
	1	5	24.40	24.44	24.43		1
16QAM	3	0	24.43	24.47	24.44]	1
	3	2	24.43	24.40	24.43		1
	3	3	24.40	24.40	24.45		1
	6	0	23.30	23.42	23.42	0-2	2
	1	0	23.38	23.50	23.46		2
	1	2	23.44	23.35	23.23	1	2
	1	5	23.33	23.29	23.32	1 ,,	2
64QAM	3	0	23.29	23.30	23.39	0-2	2
	3	2	23.33	23.38	23.46		2
	3	3	23.24	23.29	23.48		2
	6	0	22.10	22.27	22.32	0-3	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	① LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 27 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 37 of 94
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M

9.4.3 LTE Band 4 (AWS)

Table 9-10
LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

			LTE Band 4 (AWS)	20 mile Danawidth	
		<u> </u>	20 MHzBandwidth	T	
			Mid Channel		
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	0011 [05]	
	1	0	25.00		0
	1	50	24.97	0	0
	1	99	24.95		0
QPSK	50	0	23.96		1
	50	25	23.95	0-1	1
	50	50	23.97	0-1	1
	100	0	23.86		1
	1	0	24.00		1
	1	50	24.00	0-1	1
	1	99	24.00		1
16QAM	50	0	22.97		2
	50	25	22.97	0-2	2
	50	50	22.98	0-2	2
	100	0	23.00		2
	1	0	22.78		2
	1	50	22.74	0-2	2
	1	99	22.60		2
64QAM	50	0	21.69		3
	50	25	21.70	0-3	3
	50	50	21.59		3
Note: LTE D	100	0	21.65	Al-	3

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 38 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

Table 9-11 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

			()	LTE Band 4 (AWS) 15 MHzBandwidth			
Modulation	RB Size	RB Offset	Low Channel 20025 (1717.5 MHz)	Mid Channel 20175 (1732.5 MHz)	High Channel 20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.96	24.92	24.92		0
ĺ	1	36	24.95	24.94	24.92	0	0
ĺ	1	74	24.93	24.95	24.93	1	0
QPSK	36	0	23.95	23.90	23.94		1
ĺ	36	18	23.90	23.93	23.95	0-1	1
ĺ	36	37	23.92	23.92	23.93		1
	75	0	23.93	23.92	23.92		1
	1	0	24.00	24.00	23.94		1
ſ	1	36	23.94	23.98	23.93	0-1	1
	1	74	24.00	23.99	24.00	1	1
16QAM	36	0	23.00	22.90	22.93		2
ĺ	36	18	22.98	22.96	22.94	0-2	2
	36	37	22.97	22.97	22.94	0-2	2
ſ	75	0	23.00	23.00	22.96]	2
	1	0	22.95	22.88	22.88		2
	1	36	22.95	22.98	22.79	0-2	2
[1	74	22.90	22.99	22.96		2
64QAM	36	0	21.87	21.94	21.77		3
	36	18	21.90	21.88	21.92	0-3	3
[36	37	21.86	21.85	21.89] "-" [3
ſ	75	0	21.91	21.87	22.00] [3

Table 9-12 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

			, , ,	LTE Band 4 (AWS) 10 MHzBandwidth			
Modulation	RB Size	RB Offset	Low Channel 20000 (1715.0 MHz)	Mid Channel 20175 (1732.5 MHz)	High Channel 20350 (1750.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	24.95	24.94	24.95		0
[1	25	24.96	24.96	24.93	0	0
ſ	1	49	24.95	24.96	24.96] [0
QPSK	25	0	23.94	23.90	23.96		1
ĺ	25	12	23.92	23.92	23.95	0-1	1
İ	25	25	23.95	23.91	23.95	0-1	1
	50	0	23.96	23.92	23.94	1	1
	1	0	23.98	23.95	24.00		1
ĺ	1	25	23.94	23.94	23.94	0-1	1
	1	49	23.99	23.92	23.95	1	1
16QAM	25	0	22.94	22.96	23.00		2
İ	25	12	22.95	22.94	22.98	0-2	2
	25	25	22.94	22.95	22.96	0-2	2
İ	50	0	23.00	22.96	23.00		2
	1	0	22.97	22.87	22.91		2
	1	25	22.89	22.78	22.86	0-2	2
ĺ	1	49	22.87	22.89	22.80]	2
64QAM	25	0	21.91	21.94	21.84		3
İ	25	12	21.84	21.95	21.94	0-3	3
	25	25	21.98	21.78	21.92	J 0-3	3
	50	0	21.98	21.98	21.87	1	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 20 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 39 of 94
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M

Table 9-13 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

				LTE Band 4 (AWS) 5 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	i]		
	1	0	25.00	24.95	25.00		0
	1	12	24.94	24.92	24.99	0	0
	1	24	24.93	24.94	24.98		0
QPSK	12	0	23.93	23.93	23.95		1
	12	6	23.95	23.95	23.96	0-1	1
	12	13	23.94	23.94	23.95	0-1	1
	25	0	23.90	23.92	23.92		1
	1	0	24.00	24.00	24.00		1
	1	12	23.97	23.95	23.97	0-1	1
	1	24	23.98	23.97	23.98		1
16QAM	12	0	23.00	23.00	23.00		2
	12	6	22.98	22.98	22.98	0-2	2
	12	13	22.97	22.97	22.97	0-2	2
	25	0	22.96	22.98	23.00		2
	1	0	22.82	22.84	23.00		2
Ī	1	12	22.97	22.96	22.87	0-2	2
	1	24	22.81	22.95	22.68		2
64QAM	12	0	21.95	21.95	21.91		3
	12	6	21.88	21.97	21.84	0-3	3
	12	13	21.90	21.99	21.98]	3
	25	0	21.89	21.87	21.95		3

Table 9-14 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

			<u> </u>	LTE Band 4 (AWS)	15 - 3 WITZ Dall		
				3 MHzBandwidth	1		
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	24.98	24.94	24.95		0
	1	7	24.95	25.00	25.00	0	0
	1	14	24.90	24.96	24.95	1 [0
QPSK	8	0	23.95	23.92	23.95		1
	8	4	23.94	23.94	23.94	0-1	1
	8	7	23.97	23.95	23.95	0-1	1
	15	0	23.94	23.94	23.92	1	1
	1	0	23.90	24.00	23.95	0-1	1
	1	7	23.94	23.98	23.95		1
	1	14	23.94	24.00	23.97	1	1
16QAM	8	0	23.00	23.00	23.00		2
	8	4	22.97	22.98	22.94	0-2	2
	8	7	23.00	23.00	22.97	0-2	2
	15	0	22.98	22.97	23.00	1	2
	1	0	22.72	22.95	22.87		2
Ī	1	7	22.89	22.85	22.97	0-2	2
	1	14	22.87	22.87	22.84]	2
64QAM	8	0	21.85	21.89	21.92		3
	8	4	21.98	21.59	21.85	0-3	3
	8	7	21.97	21.66	21.93		3
	15	0	21.90	21.88	21.93]	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 40 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 40 of 94

Table 9-15 LTF Band 4 (AWS) Conducted Powers -1 4 MHz Bandwidth

				LTE Band 4 (AWS) 1.4 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	i]		
	1	0	24.95	24.94	24.90		0
	1	2	24.97	24.93	24.97	1	0
	1	5	24.90	24.91	24.92	0 [0
QPSK	3	0	24.96	24.92	24.85	1 ° F	0
	3	2	24.94	24.93	24.97		0
	3	3	24.93	24.93	24.95	1	0
	6	0	23.90	23.85	23.94	0-1	1
	1	0	23.94	23.94	23.90		1
	1	2	23.94	23.96	24.00		1
	1	5	23.93	23.95	23.96	0-1	1
16QAM	3	0	24.00	23.98	24.00]	1
	3	2	23.99	23.97	24.00		1
	3	3	23.96	23.97	23.98		1
	6	0	23.00	23.00	23.00	0-2	2
	1	0	22.88	22.85	22.84		2
	1	2	22.97	22.95	22.90	1	2
ļ	1	5	22.88	22.76	22.95	0-2	2
64QAM	3	0	22.80	22.84	22.95	0-2	2
	3	2	22.93	22.89	22.95		2
	3	3	23.00	22.94	22.89	1	2
Ī	6	0	21.95	21.89	21.97	0-3	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 41 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Fage 41 01 94

LTE Band 25 (PCS) 9.4.4

Table 9-16 LTE Band 25 (PCS) Conducted Powers - 20 MHz Bandwidth

			<u> 20 (1. 00) 0</u>	LTE Band 25 (PCS)			
Modulation	RB Size	RB Offset	Low Channel 26140 (1860.0 MHz)	20 MHz Bandwidth Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	25.41	25.46	25.30		0
	1	50	25.49	25.48	25.49	0	0
	1	99	25.50	25.44	25.49	1	0
QPSK	50	0	24.48	24.44	24.48		1
	50	25	24.49	24.50	24.47	0-1	1
	50	50	24.44	24.45	24.47	0-1	1
	100	0	24.48	24.48	24.48	1	1
	1	0	24.50	24.50	24.50		1
	1	50	24.50	24.48	24.50	0-1	1
	1	99	24.50	24.50	24.50		1
16QAM	50	0	23.50	23.50	23.50		2
	50	25	23.49	23.50	23.48	0-2	2
	50	50	23.49	23.48	23.46	0-2	2
	100	0	23.50	23.50	23.49		2
	1	0	23.30	23.45	23.40		2
	1	50	23.46	23.46	23.41	0-2	2
	1	99	23.38	23.29	23.49	7	2
64QAM	50	0	22.32	22.32	22.50		3
	50	25	22.40	22.44	22.49	0-3	3
	50	50	22.41	22.39	22.41	0-3	3
	100	0	22.40	22.42	22.33		3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 42 of 94
	ission in writing from PCTEST Eng	ecified, no part of this report may be reproduced or utilized in ar gineering Laboratory, Inc. If you have any questions about this in CCTESTLAB.COM.		

Table 9-17 LTE Band 25 (PCS) Conducted Powers - 15 MHz Bandwidth

		LIED	anu 25 (PCS) C	LTE Band 25 (PCS)	15 - 15 WITZ Dai	iuwiutii	
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	25.49	25.50	25.50		0
	1	36	25.48	25.48	25.49	0	0
	1	74	25.46	25.47	25.47		0
QPSK	36	0	24.45	24.48	24.44		1
	36	18	24.43	24.50	24.48	0-1	1
	36	37	24.41	24.49	24.44	0-1	1
	75	0	24.44	24.48	24.44		1
	1	0	24.50	24.50	24.50		1
	1	36	24.44	24.50	24.48	0-1	1
	1	74	24.50	24.50	24.50		1
16QAM	36	0	23.48	23.48	23.48		2
	36	18	23.45	23.50	23.46	0-2	2
	36	37	23.48	23.49	23.48	0-2	2
	75	0	23.48	23.50	23.50		2
	1	0	23.36	23.34	23.45		2
	1	36	23.46	23.38	23.40	0-2	2
	1	74	23.37	23.31	23.32		2
64QAM	36	0	22.40	22.47	22.44		3
	36	18	22.48	22.50	22.48	0-3	3
ı	36	37	22.48	22.36	22.37		3
1	75	0	22.33	22.40	22.13		3

Table 9-18 LTE Band 25 (PCS) Conducted Powers - 10 MHz Bandwidth

			<u> </u>	LTE Band 25 (PCS)			
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	25.48	25.48	25.48		0
	1	25	25.44	25.44	25.44	0	0
	1	49	25.48	25.45	25.45		0
QPSK	25	0	24.48	24.44	24.42		1
	25	12	24.45	24.44	24.46	0-1	1
	25	25	24.44	24.45	24.44	0-1	1
	50	0	24.47	24.40	24.48		1
	1	0	24.50	24.50	24.45		1
	1	25	24.42	24.44	24.48	0-1	1
	1	49	24.50	24.48	24.43		1
16QAM	25	0	23.45	23.44	23.44		2
	25	12	23.43	23.45	23.43	0-2	2
	25	25	23.46	23.42	23.45	0-2	2
	50	0	23.50	23.48	23.48		2
	1	0	23.40	23.38	23.40		2
	1	25	23.33	23.42	23.34	0-2	2
	1	49	23.31	23.46	23.22	1	2
64QAM	25	0	22.46	22.29	22.28		3
	25	12	22.36	22.44	22.44	0-3	3
ļ	25	25	22.39	22.45	22.40	0-3	3
	50	0	22.32	22.39	22.39	7	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 42 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 43 of 94

Table 9-19 LTE Band 25 (PCS) Conducted Powers - 5 MHz Bandwidth

			<u> </u>	LTE Band 25 (PCS)	or or mile Bar	id Wild City	
		,		5 MHz Bandwidth			
Modulation	RB Size	RB Offset	26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	25.45	25.46	25.45		0
	1	12	25.45	25.43	25.46	- o	0
QPSK	1	24	25.48	25.46	25.44		0
	12	0	24.43	24.44	24.42		1
QI OIL	12	6	24.44	24.41	24.45	+ -	1
	12	13	24.42	24.44	24.42	0-1	1
	25	0	24.45	24.36	24.40	+ +	1
	1	0	24.50	24.47	24.40		1
	1	12	24.40	24.44	24.44	0-1	<u>'</u> 1
	1	24	24.50	24.46	24.43	- "	<u>·</u>
16QAM	12	0	23.44	23.42	23.44		2
	12	6	23.43	23.44	23.43	† +	2
	12	13	23.45	23.45	23.45	0-2	2
	25	0	23.40	23.50	23.50	† +	2
	1	0	23.31	23.23	23.43		2
	1	12	23.40	23.34	23.39	0-2	2
	1	24	23.34	23.32	23.43	† +	2
64QAM	12	0	22.34	22.28	22.35		3
	12	6	22.25	22.35	22.40	1	3
	12	13	22.32	22.36	22.32	0-3	3
	25	0	22.40	22.36	22.44	1	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 44 of 94	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset			
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M	

Table 9-20 LTE Band 25 (PCS) Conducted Powers - 3 MHz Bandwidth

			Janu 23 (1 00) C	LTE Band 25 (PCS)	713 - 3 WILL Dall	awiatii	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26055 (1851.5 MHz)	26365 (1882.5 MHz)	26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm			
	1	0	25.47	25.45	25.46		0
	1	7	25.45	25.46	25.44	0	0
QPSK	1	14	25.47	25.43	25.46		0
	8	0	24.45	24.46	24.44		1
	8	4	24.46	24.43	24.46	0-1	1
	8	7	24.44	24.46	24.40	1 0-1	1
	15	0	24.41	24.32	24.36		1
	1	0	24.42	24.48	24.42		1
	1	7	24.41	24.45	24.40	0-1	1
	1	14	24.45	24.48	24.43		1
16QAM	8	0	23.42	23.40	23.40		2
	8	4	23.42	23.47	23.45	0-2	2
	8	7	23.45	23.50	23.45	0-2	2
	15	0	23.36	23.50	23.50	1	2
	1	0	23.34	23.46	23.33		2
	1	7	23.43	23.33	23.20	0-2	2
	1	14	23.46	23.49	23.25	1	2
64QAM	8	0	22.29	22.43	22.42		3
	8	4	22.38	22.47	22.41	1	3
	8	7	22.25	22.47	22.39	0-3	3
	15	0	22.32	22.33	22.49	1	3

Table 9-21 LTE Band 25 (PCS) Conducted Powers - 1.4 MHz Bandwidth

				LTE Band 25 (PCS)	5 1.4 WHILE DU		
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26047 (1850.7 MHz)		MPR Allowed per 3GPP [dB]	MPR [dB]	
			(Conducted Power [dBm			
	1	0	25.46	25.43	25.43		0
	1	2	25.45	25.45	25.45		0
	1	5	25.45	25.42	25.46	0	0
QPSK	3	0	25.47	25.46	25.43		0
	3	2	25.48	25.43	25.45		0
	3	3	25.43	25.45	25.40		0
	6	0	24.40	24.35	24.40	0-1	1
	1	0	24.42	24.50	24.50	0-1	1
	1	2	24.41	24.48	24.42		1
	1	5	24.45	24.46	24.44		1
16QAM	3	0	24.40	24.50	24.45	0-1	1
	3	2	24.41	24.43	24.42		1
	3	3	24.42	24.35	24.44		1
	6	0	23.36	23.45	23.32	0-2	2
	1	0	23.30	23.30	23.41		2
	1	2	23.48	23.27	23.34	1	2
	1	5	23.44	23.34	23.32	0-2	2
64QAM	3	0	23.27	23.48	23.40	0-2	2
	3	2	23.26	23.25	23.32	1	2
	3	3	23.40	23.23	23.25	1	2
	6	0	22.29	22.32	22.30	0-3	3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 45 of 04	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 45 of 94	
17 PCTEST Engineering Laboratory, Inc		-		REV 18.2 M	

LTE Band 41 (PC 3) 9.4.5

Table 9-22 LTE Band 41 Conducted Powers - 20 MHz Bandwidth

			LIL Dalla	41 Conducti	LTE Band 41	ZO WITTE Dai	Idwidti		
				2	0 MHzBandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [di	Bm]			
	1	0	25.48	25.30	25.50	25.40	25.30		0
	1	50	25.49	25.16	25.49	25.45	25.48	0	0
	1	99	25.44	25.20	25.49	25.40	25.44		0
QPSK	50	0	24.48	24.43	24.49	24.49	24.45		1
	50	25	24.49	24.50	24.47	24.44	24.43	0-1	1
	50	50	24.45	24.45	24.47	24.45	24.44	0-1	1
	100	0	24.49	24.48	24.48	24.49	24.48		1
	1	0	24.50	24.43	24.48	24.50	24.47	0-1	1
	1	50	24.48	24.48	24.50	24.48	24.47		1
	1	99	24.50	24.50	24.48	24.48	24.48		1
16QAM	50	0	23.48	23.47	23.50	23.50	23.50		2
	50	25	23.49	23.50	23.44	23.48	23.48	0-2	2
	50	50	23.49	23.48	23.45	23.48	23.44	0-2	2
	100	0	23.49	23.50	23.43	23.50	23.50		2
	1	0	23.47	23.45	23.40	23.44	23.48		2
	1	50	23.47	23.47	23.40	23.46	23.37	0-2	2
	1	99	23.32	23.33	23.29	23.44	23.47		2
64QAM	50	0	22.45	22.27	22.41	22.36	22.35	0-3	3
	50	25	22.39	22.38	22.47	22.47	22.35		3
	50	50	22.50	22.36	22.46	22.30	22.45		3
I	100	0	22.30	22.36	22.22	22.39	22.37		3

Table 9-23 LTE Band 41 Conducted Powers - 15 MHz Bandwidth

				1	LTE Band 41 5 MHzBandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co					
	1	0	25.43	25.45	25.43	25.40	25.50		0
	1	36	25.43	25.43	25.43	25.43	25.49	0	0
	1	74	25.40	25.44	25.44	25.44	25.47		0
QPSK	36	0	24.43	24.45	24.44	24.45	24.44		1
	36	18	24.44	24.45	24.48	24.43	24.48	0-1	1
	36	37	24.45	24.43	24.40	24.43	24.40	0-1	1
	75	0	24.43	24.44	24.44	24.46	24.44		1
	1	0	24.34	24.40	24.50	24.43	24.45		1
	1	36	24.44	24.40	24.43	24.42	24.43	0-1	1
	1	74	24.45	24.40	24.50	24.40	24.43		1
16QAM	36	0	23.43	23.43	23.44	23.48	23.42		2
	36	18	23.44	23.43	23.43	23.50	23.44	0-2	2
	36	37	23.45	23.43	23.48	23.49	23.43	0-2	2
	75	0	23.43	23.45	23.45	23.50	23.47		2
	1	0	23.22	23.40	23.36	23.35	23.40		2
	1	36	23.42	23.27	23.36	23.25	23.37	0-2	2
	1	74	23.46	23.23	23.50	23.34	23.35		2
64QAM	36	0	22.50	22.26	22.26	22.46	22.31		3
	36	18	22.40	22.34	22.24	22.50	22.50	0-3	3
	36	37	22.34	22.41	22.35	22.42	22.24		3
	75	0	22.50	22.32	22.39	22.42	22.46		3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 46 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 46 of 94

Table 9-24 LTE Band 41 Conducted Powers - 10 MHz Bandwidth

				1	LTE Band 41 0 MHzBandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co					
	1	0	25.44	25.45	25.44	25.45	25.33		0
	1	25	25.43	25.43	25.43	25.43	25.40	0	0
	1	49	25.44	25.45	25.44	25.44	25.47		0
QPSK	25	0	24.45	24.43	24.43	24.43	24.30		1
	25	12	24.43	24.43	24.40	24.44	24.43	0-1	1
	25	25	24.44	24.43	24.43	24.43	24.43	0-1	1
	50	0	24.43	24.42	24.43	24.46	24.42		1
	1	0	24.43	24.41	24.44	24.43	24.44		1
	1	25	24.44	24.43	24.43	24.44	24.43	0-1	1
	1	49	24.45	24.44	24.45	24.46	24.43		1
16QAM	25	0	23.43	23.45	23.44	23.43	23.20		2
	25	12	23.43	23.43	23.46	23.44	23.45	0-2	2
	25	25	23.45	23.45	23.40	23.43	23.43	0-2	2
	50	0	23.43	23.45	23.43	23.47	23.45		2
	1	0	23.45	23.34	23.24	23.22	23.36		2
	1	25	23.28	23.20	23.40	23.31	23.45	0-2	2
	1	49	23.48	23.34	23.25	23.28	23.43		2
64QAM	25	0	22.48	22.34	22.46	22.46	22.06		3
	25	12	22.26	22.46	22.32	22.37	22.47	0-3	3
	25	25	22.40	22.45	22.27	22.37	22.24	0-5	3
	50	0	22.46	22.42	22.32	22.46	22.32		3

Table 9-25 LTE Band 41 Conducted Powers - 5 MHz Bandwidth

			LIL Danu	+1 Conduct	LTE Band 41	- 5 WITZ Dail	awiatii		
				5	MHzBandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [di	Bm]			
	1	0	25.43	25.47	25.46	25.50	25.44		0
	1	12	25.45	25.43	25.47	25.43	25.44	0	0
	1	24	25.44	25.46	25.44	25.45	25.43		0
QPSK	12	0	24.43	24.44	24.43	24.43	24.40		1
	12	6	24.44	24.43	24.43	24.45	24.43	0-1	1
	12	13	24.40	24.45	24.43	24.43	24.44	0-1	1
	25	0	24.45	24.40	24.45	24.43	24.40		1
	1	0	24.50	24.47	24.43	24.48	24.42		1
	1	12	24.43	24.44	24.43	24.44	24.40	0-1	1
	1	24	24.50	24.46	24.44	24.45	24.40		1
16QAM	12	0	23.44	23.45	23.45	23.44	23.43		2
	12	6	23.45	23.43	23.44	23.46	23.44	0-2	2
	12	13	23.45	23.46	23.43	23.44	23.45] 0-2	2
	25	0	23.43	23.48	23.47	23.43	23.44		2
	1	0	23.29	23.48	23.40	23.39	23.21		2
	1	12	23.47	23.36	23.46	23.44	23.32	0-2	2
	1	24	23.38	23.30	23.42	23.30	23.43		2
64QAM	12	0	22.44	22.50	22.38	22.38	22.33		3
	12	6	22.40	22.41	22.45	22.50	22.42	0-3	3
	12	13	22.40	22.16	22.38	22.41	22.40]	3
<u> </u>	25	0	22.32	22.49	22.32	22.26	22.35		3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 47 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 47 of 94
17 PCTEST Engineering Laboratory, Inc	•			REV 18.2 M

9.4.6 LTE Band 41 (HPUE PC 2)

Table 9-26
LTE Band 41 Conducted Powers - 20 MHz Bandwidth

					LTE Band 41 0 MHzBandwidth	- 20 MINZ Bar			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [de	Bm]			
	1	0	26.54	26.57	26.58	26.50	26.56		0
	1	50	26.54	26.53	26.53	26.53	26.54	0	0
	1	99	26.50	26.52	26.51	26.54	26.54		0
QPSK	50	0	25.48	25.54	25.52	25.56	25.54		1
	50	25	25.43	25.58	25.56	25.57	25.55	0-1	1
	50	50	25.47	25.53	25.44	25.62	25.55	0-1	1
	100	0	25.45	25.54	25.50	25.54	25.53		1
	1	0	25.58	25.53	25.49	25.56	25.55		1
	1	50	25.58	25.51	25.54	25.55	25.59	0-1	1
	1	99	25.48	25.54	25.52	25.57	25.53		1
16QAM	50	0	24.55	24.55	24.54	24.55	24.55		2
	50	25	24.51	24.58	24.50	24.55	24.53	0-2	2
	50	50	24.58	24.54	24.52	24.54	24.54	0-2	2
	100	0	24.58	24.53	24.52	24.58	24.55		2
	1	0	24.52	24.60	24.33	24.56	24.41		2
	1	50	24.56	24.31	24.56	24.37	24.43	0-2	2
	1	99	24.46	24.38	24.43	24.44	24.38		2
64QAM	50	0	23.35	23.42	23.61	23.49	23.52		3
	50	25	23.43	23.63	23.35	23.60	23.47	0-3	3
	50	50	23.49	23.55	23.43	23.43	23.52]	3
	100	0	23.56	23.61	23.42	23.57	23.49		3

Table 9-27 LTE Band 41 Conducted Powers - 15 MHz Bandwidth

					LTE Band 41 5 MHzBandwidth	- 13 WILL DAI			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)			MPR Allowed per 3GPP [dB]	MPR [dB]		
				Co	nducted Power [di	Bm]			
	1	0	26.55	26.53	26.58	26.57	26.56		0
	1	36	26.58	26.58	26.54	26.53	26.58	0	0
	1	74	26.50	26.53	26.52	26.55	26.54		0
QPSK	36	0	25.48	25.52	25.49	25.54	25.52		1
	36	18	25.50	25.54	25.45	25.59	25.54	0-1	1
	36	37	25.47	25.57	25.48	25.64	25.57]	1
	75	0	25.54	25.53	25.44	25.53	25.50		1
	1	0	25.48	25.54	25.49	25.59	25.52		1
	1	36	25.51	25.51	25.55	25.55	25.53	0-1	1
	1	74	25.48	25.52	25.52	25.53	25.50		1
16QAM	36	0	24.53	24.55	24.53	24.58	24.53		2
	36	18	24.51	24.53	24.53	24.54	24.53	0-2	2
	36	37	24.51	24.58	24.58	24.55	24.50	0-2	2
	75	0	24.47	24.59	24.53	24.59	24.56		2
	1	0	24.42	24.60	24.45	24.42	24.50		2
	1	36	24.58	24.47	24.55	24.60	24.55	0-2	2
	1	74	24.50	24.54	24.51	24.37	24.31		2
64QAM	36	0	23.43	23.35	23.38	23.40	23.41		3
	36	18	23.53	23.42	23.38	23.55	23.31	0-3	3
	36	37	23.45	23.52	23.52	23.60	23.33	J ŭ	3
	75	0	23.44	23.38	23.34	23.42	23.49		3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 40 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 48 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

Table 9-28 LTE Band 41 Conducted Powers - 10 MHz Bandwidth

				1	LTE Band 41 0 MHzBandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co					
	1	0	26.54	26.58	26.54	26.57	26.58		0
	1	25	26.58	26.53	26.54	26.54	26.53	0	0
	1	49	26.52	26.52	26.50	26.55	26.54		0
QPSK	25	0	25.52	25.54	25.49	25.58	25.52		1
	25	12	25.51	25.58	25.43	25.59	25.54	0-1	1
	25	25	25.47	25.58	25.51	25.60	25.59	0-1	1
	50	0	25.45	25.53	25.45	25.55	25.59		1
	1	0	25.50	25.53	25.49	25.53	25.54		1
	1	25	25.49	25.51	25.54	25.57	25.58	0-1	1
	1	49	25.50	25.54	25.52	25.54	25.55		1
16QAM	25	0	24.50	24.55	24.53	24.54	24.53		2
	25	12	24.52	24.56	24.55	24.53	24.54	0-2	2
	25	25	24.48	24.53	24.53	24.55	24.54	0-2	2
	50	0	24.50	24.58	24.58	24.59	24.55		2
	1	0	24.53	24.54	24.49	24.39	24.55		2
	1	25	24.51	24.40	24.38	24.46	24.51	0-2	2
	1	49	24.46	24.40	24.61	24.36	24.51		2
64QAM	25	0	23.46	23.51	23.61	23.56	23.56		3
	25	12	23.53	23.57	23.56	23.39	23.39	0-3	3
	25	25	23.38	23.43	23.42	23.41	23.40		3
	50	0	23.43	23.45	23.50	23.49	23.56		3

Table 9-29 LTF Band 41 Conducted Powers - 5 MHz Bandwidth

			LIE Ballu	41 Conduct	LTE Band 41	- 5 MHZ Ban	awiatii		
				5	MHzBandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co					
	1	0	26.50	26.53	26.54	26.57	26.53		0
	1	12	26.54	26.51	26.53	26.53	26.53	0	0
	1	24	26.45	26.52	26.43	26.55	26.50		0
QPSK	12	0	25.48	25.52	25.49	25.54	25.52		1
	12	6	25.47	25.58	25.43	25.59	25.52	0-1	1
	12	13	25.47	25.57	25.44	25.60	25.57	0-1	1
	25	0	25.45	25.54	25.45	25.53	25.59		1
	1	0	25.48	25.50	25.49	25.53	25.52		1
	1	12	25.49	25.51	25.51	25.55	25.58	0-1	1
	1	24	25.48	25.52	25.52	25.54	25.53		1
16QAM	12	0	24.50	24.51	24.50	24.55	24.53		2
	12	6	24.51	24.52	24.53	24.53	24.56	0-2	2
	12	13	24.48	24.53	24.52	24.55	24.52	0-2	2
	25	0	24.47	24.55	24.52	24.58	24.52		2
	1	0	24.42	24.45	24.48	24.33	24.41		2
	1	12	24.36	24.52	24.37	24.48	24.44	0-2	2
	1	24	24.34	24.41	24.35	24.50	24.55		2
64QAM	12	0	23.56	23.52	23.53	23.52	23.52		3
	12	6	23.41	23.29	23.50	23.44	23.39	0-3	3
	12	13	23.54	23.59	23.42	23.40	23.49] 0-3	3
	25	0	23.45	23.53	23.44	23.53	23.49		3

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 40 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 49 of 94

9.4.7 **LTE Carrier Aggregation Conducted Powers**

Table 9-30 LTE Carrier Aggregation Conducted Powers (2 CC)

					uiiici A	<u> </u>	jutioi		aaotot	<i>4</i> 1 0 11	013 (L 1				
				PCC						scc				Power	
LTE B41 Power Class	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)
PC 3	LTE B41	20	40620	2593	QPSK	1	0	40620	2593	LTE B41	20	40422	2573.2	25.48	25.50
N/A	LTE B25	10	26090	1855	QPSK	1	0	8040	1930	LTE B25	5	8665	1992.5	25.44	25.48
PC 2	LTF R41	20	40620	2593	OPSK	1	0	40620	2593	ITF B41	20	40422	2573.2	26.60	26.58

Table 9-31 LTE Carrier Aggregation Conducted Powers (3 CC)

		PCC						SCO	1			SCC 2 Power		Power						
	LTE B41 ower Class	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	Frequency	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)
П	PC3	LTE B41	20	40620	2593	QPSK	1	0	40620	2593	LTE B41	20	40422	2573.2	LTE B41	20	40224	2553.4	25.46	25.50
	PC 2	LTE B41	20	40620	2593	QPSK	1	0	40620	2593	LTE B41	20	40422	2573.2	LTE B41	20	40224	2553.4	26.52	26.58

Notes:

- 1. The device only supports downlink Carrier Aggregation. Uplink Carrier Aggregation is not supported. For every supported combination of downlink carrier aggregation, power measurements were performed with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.
- 2. All control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.

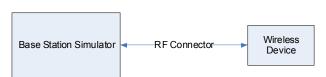


Figure 9-4 **Power Measurement Setup**

FCC ID: ZNFLS993		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 50 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 50 of 94

9.5 WLAN Conducted Powers

Table 9-32
2.4 GHz WLAN Reduced Average RF Power (Held-to-Ear) –Antenna 1

Freq [MHz]	Channel	2.40	GHz Conducte	d Power [dB	m]
ried [MIDZ]	Chamilei		IEEE Transmi	ssion Mode	
		802.11b	802.11g	802.11n	802.11ac
2412	1	14.98	14.61	14.19	14.44
2422	3	15.41	14.96	14.88	14.79
2437	6	15.46	15.26	15.32	15.18
2462	11	15.42	15.16	14.87	15.04

Table 9-33
2.4 GHz WLAN Reduced Average RF Power (Held-to-Ear) - Antenna 2

		2.40	GHz Conducte	•	sm]
Freq [MHz]	Channel		ission Mode		
		802.11b	802.11g	802.11n	802.11ac
2412	1	14.97	14.46	14.30	14.30
2422	3	15.23	15.01	14.99	14.79
2437	6	15.27	15.01	15.30	14.94
2462	11	15.03	15.02	15.05	14.95

Table 9-34
2.4 GHz WLAN Maximum Average RF Power- Antenna 1

			GHz Conducto				
Freq [MHz]	Channel	IEEE Transmission Mode					
		802.11b	802.11g	802.11n	802.11ac		
2412	1	16.15	14.61	14.19	14.44		
2422	3	16.30	14.96	14.88	14.79		
2437	6	16.82	15.26	15.32	15.18		
2462	11	16.61	15.16	14.87	15.04		

FCC ID: ZNFLS993		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 51 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Fage 51 01 94

Table 9-35 2.4 GHz WLAN Maximum Average RF Power- Antenna 2

		2.4G	Hz Conduct	ed Power [dl	Bm]	
Freq [MHz]	Channel	IEEE Transmission N			le	
		802.11b	802.11g	802.11n	802.11ac	
2412	1	15.73	14.46	14.30	14.30	
2422	3	16.24	15.01	14.99	14.79	
2437	6	16.73	15.01	15.30	14.94	
2462	11	16.39	15.02	15.05	14.95	

Table 9-36 5 GHz WLAN Reduced Average RF Power (Held-to-Ear)- Antenna 1

Freq [MHz]	Channel	5GHz (20MHz) Conducted Power [dBm]					
		IEEE Transmission Mode					
		802.11a	802.11n	802.11ac			
5180	36	11.91	12.01	11.89			
5200	40	14.21	14.08	14.01			
5220	44	14.06	14.22	14.01			
5240	48	14.09	14.16	14.12			
5260	52	14.16	14.18	14.13			
5280	56	14.00	14.05	14.21			
5300	60	14.18	14.13	14.23			
5320	64	12.13	11.89	11.97			
5500	100	12.23	12.04	12.11			
5580	116	14.03	14.18	14.02			
5660	132	13.74	13.88	13.74			
5720	144	13.73	13.74	13.75			
5745	149	14.17	14.13	14.04			
5785	157	14.14	14.12	14.20			
5825	165	12.08	12.16	12.09			

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 52 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 52 of 94

Table 9-37 5 GHz WLAN Reduced Average RF Power (Held-to-Ear)- Antenna 2

Freq [MHz]	Channel	5GHz (20MHz) Conducted Power [dBm]					
		IEEE Transmission Mode					
		802.11a	802.11n	802.11ac			
5180	36	12.08	12.12	12.12			
5200	40	14.03	14.06	14.13			
5220	44	14.16	14.01	14.14			
5240	48	14.19	14.21	14.22			
5260	52	14.14	14.06	14.10			
5280	56	14.02	14.23	14.18			
5300	60	14.14	14.04	14.18			
5320	64	12.19	12.49	11.89			
5500	100	12.17	12.10	12.26			
5580	116	14.10	14.20	14.21			
5660	132	13.89	13.84	13.83			
5720	144	13.82	13.82	13.85			
5745	149	14.07	14.14	14.08			
5785	157	14.22	14.07	14.04			
5825	165	12.27	11.94	12.00			

Table 9-38 5 GHz WLAN Maximum Average RF Power- Antenna 1

Freq [MHz]	Channel	5GHz (20MHz) Conducted Power [dBm]					
Freq [MHZ]	Chainlei	IEEE Transmission Mode					
		802.11a	802.11n	802.11ac			
5180	36	11.91	12.01	11.89			
5200	40	15.94	15.95	15.87			
5220	44	16.03	15.86	15.75			
5240	48	15.98	15.83	15.73			
5260	52	16.01	16.06	15.91			
5280	56	15.98	15.95	15.90			
5300	60	15.85	15.85	15.93			
5320	64	12.13	11.89	11.97			
5500	100	12.23	12.04	12.11			
5580	116	16.14	15.89	15.79			
5660	132	15.89	15.59	15.74			
5720	144	15.87	15.58	15.63			
5745	149	16.26	16.02	16.14			
5785	157	16.04	15.82	15.95			
5825	165	12.08	12.16	12.09			

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 53 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Fage 55 01 94

Table 9-39 5 GHz WLAN Maximum Average RF Power- Antenna 2

Freq [MHz]	Channel	5GHz (20MHz) Conducted Power [dBm]								
		IEEE Transmission Mode								
		802.11a 802.11n 802								
5180	36	12.08	12.12	12.12						
5200	40	16.20	15.94	16.06						
5220	44	16.22	16.09	16.28						
5240	48	16.49	16.14	15.99						
5260	52	16.25	15.93	15.85						
5280	56	16.03	15.86	15.92						
5300	60	16.00	15.89	16.01						
5320	64	12.19	12.49	11.89						
5500	100	12.17	12.10	12.26						
5580	116	15.91	15.94	15.78						
5660	132	15.18	15.58	15.18						
5720	144	14.87	14.91	14.86						
5745	149	15.84	16.16	16.01						
5785	157	15.74	16.02	15.91						
5825	165	12.27	11.94	12.00						

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Occument S/N: Test Dates: DUT Type:				
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 54 of 94	
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M	

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

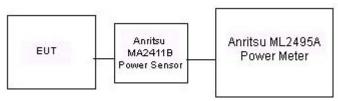


Figure 9-5 **Power Measurement Setup for Bandwidths < 50 MHz**

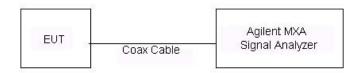


Figure 9-6 Power Measurement Setup for Bandwidths > 50 MHz

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo EE of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 55 of 94

10.1 Tissue Verification

Table 10-1 Measured Tissue Properties (Head)

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	%devε		
			700	0.859	42.900	0.889	42.201	-3.37%	1.66%		
1/25/2017	750H	22.2	710	0.869	42.739	0.890	42.149	-2.36%	1.40%		
1720/2017	73011	22.2	740	0.897	42.315	0.893	41.994	0.45%	0.76%		
			755	0.910	42.124	0.894	41.916	1.79%	0.50%		
			820	0.897	43.193	0.899	41.578	-0.22%	3.88%		
1/31/2017	835H	22.1	835	0.912	43.015	0.900	41.500	1.33%	3.65%		
			850	0.927	42.828	0.916	41.500	1.20%	3.20%		
			820	0.889	40.464	0.899	41.578	-1.11%	-2.68%		
2/1/2017	835H	21.4	835	0.903	40.281	0.900	41.500	0.33%	-2.94%		
			850	0.918	40.084	0.916	41.500	0.22%	-3.41%		
			1710	1.325	39.024	1.348	40.142	-1.71%	-2.79%		
1/27/2017	1750H	22.0	1750	1.360	38.821	1.371	40.079	-0.80%	-3.14%		
			1790	1.398	38.651	1.394	40.016	0.29%	-3.41%		
	1900H		1850	1.395	38.408	1.400	40.000	-0.36%	-3.98%		
1/30/2017		1900H	1900H	1900H	21.3	1880	1.430	38.258	1.400	40.000	2.14%
			1910	1.464	38.120	1.400	40.000	4.57%	-4.70%		
			2400	1.814	38.386	1.756	39.289	3.30%	-2.30%		
			2450	1.869	38.155	1.800	39.200	3.83%	-2.67%		
1/22/2017	2450H	24.0	2500	1.931	37.926	1.855	39.136	4.10%	-3.09%		
			2550	1.984	37.744	1.909	39.073	3.93%	-3.40%		
			2600	2.042	37.518	1.964	39.009	3.97%	-3.82%		
			5240	4.554	34.993	4.696	35.940	-3.02%	-2.63%		
			5260	4.590	34.983	4.717	35.917	-2.69%	-2.60%		
			5300	4.613	34.928	4.758	35.871	-3.05%	-2.63%		
01/23/2017	5200H-	20.3	5580	4.883	34.540	5.045	35.551	-3.21%	-2.84%		
	5800H	20.3	5600	4.914	34.502	5.065	35.529	-2.98%	-2.89%		
			5745	5.070	34.326	5.214	35.363	-2.76%	-2.93%		
			5765	5.085	34.297	5.234	35.340	-2.85%	-2.95%		
			5785	5.101	34.275	5.255	35.317	-2.93%	-2.95%		

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo FC of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 56 of 94

Table 10-2 Measured Tissue Properties (Body)

					operties (DC	<u>, ~ , , , , , , , , , , , , , , , , , ,</u>			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	% dev ε
			700	0.913	55.104	0.959	55.726	-4.80%	-1.12%
1/20/2017	7500	20.0	710	0.923	54.953	0.960	55.687	-3.85%	-1.32%
1/30/2017	750B	20.8	740	0.952	54.559	0.963	55.570	-1.14%	-1.82%
			755	0.966	54.398	0.964	55.512	0.21%	-2.01%
			820	0.989	56.595	0.969	55.258	2.06%	2.42%
1/26/2017	835B	21.4	835	1.004	56.440	0.970	55.200	3.51%	2.25%
			850	1.019	56.294	0.988	55.154	3.14%	2.07%
			820	0.992	53.982	0.969	55.258	2.37%	-2.31%
2/1/2017	835B	20.7	835	1.004	53.787	0.970	55.200	3.51%	-2.56%
			850	1.020	53.608	0.988	55.154	3.24%	-2.80%
			1710	1.464	51.733	1.463	53.537	0.07%	-3.37%
1/23/2017	1750B	22.0	1750	1.506	51.573	1.488	53.432	1.21%	-3.48%
			1790	1.550	51.401	1.514	53.326	2.38%	-3.61%
			1710	1.444	52.390	1.463	53.537	-1.30%	-2.14%
1/27/2017	1750B	21.4	1750	1.488	52.205	1.488	53.432	0.00%	-2.30%
			1790	1.533	52.023	1.514	53.326	1.25%	-2.44%
			1850	1.504	52.304	1.520	53.300	-1.05%	-1.87%
1/25/2017	1900B	22.9	1880	1.536	52.210	1.520	53.300	1.05%	-2.05%
			1910	1.570	52.121	1.520	53.300	3.29%	-2.21%
			1850	1.480	52.091	1.520	53.300	-2.63%	-2.27%
1/23/2017	1900B	23.0	1880	1.512	51.983	1.520	53.300	-0.53%	-2.47%
			1910	1.544	51.897	1.520	53.300	1.58%	-2.63%
			1850	1.517	53.391	1.520	53.300	-0.20%	0.17%
1/30/2017	1900B	23.0	1880	1.547	53.261	1.520	53.300	1.78%	-0.07%
			1910	1.588	53.189	1.520	53.300	4.47%	-0.21%
			2400	1.951	52.052	1.902	52.767	2.58%	-1.36%
			2450	2.014	51.856	1.950	52.700	3.28%	-1.60%
1/24/2017	2450B	23.7	2500	2.086	51.676	2.021	52.636	3.22%	-1.82%
			2550	2.151	51.482	2.092	52.573	2.82%	-2.08%
			2600	2.220	51.304	2.163	52.509	2.64%	-2.29%
			5220	5.452	48.208	5.323	48.987	2.42%	-1.59%
			5240	5.478	48.177	5.346	48.960	2.47%	-1.60%
04/20/0047	5200B-	20.4	5260	5.506	48.169	5.369	48.933	2.55%	-1.56%
01/30/2017	5800B	22.4	5580	5.935	47.666	5.743	48.499	3.34%	-1.72%
			5600 5745	5.973	47.621	5.766 5.936	48.471 48.275	3.59%	-1.75%
			5745 5765	6.156 6.193	47.400 47.398	5.936	48.275 48.248	3.71% 3.93%	-1.81% -1.76%
		1	3703	0.193	41.390	ე.ყეყ	40.240	3.33%	-1./0%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 57 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 57 of 94

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

> **Table 10-3 System Verification Results**

	System vernication results													
						ystem Ve		_						
				•	TA	RGET & M	IEASUREI	D						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)		
- 1	750	HEAD	01/25/2017	22.3	22.2	0.200	1161	3209	1.570	8.170	7.850	-3.92%		
K	835	HEAD	01/31/2017	23.1	22.1	0.200	4d047	7409	1.730	9.130	8.650	-5.26%		
G	835	HEAD	02/01/2017	23.1	21.9	0.200	4d047	3287	1.870	9.130	9.350	2.41%		
1	1750	HEAD	01/27/2017	24.0	23.0	0.100	1148	3209	3.370	36.200	33.700	-6.91%		
F	1900	HEAD	01/30/2017	22.5	21.5	0.100	5d149	3332	3.890	40.100	38.900	-2.99%		
G	2450	HEAD	01/22/2017	23.2	22.5	0.100	981	3287	5.640	52.800	56.400	6.82%		
G	2600	HEAD	01/22/2017	23.2	22.5	0.100	1071	3287	5.610	56.300	56.100	-0.36%		
J	5250	HEAD	01/23/2017	20.9	20.3	0.050	1191	7357	3.880	78.900	77.600	-1.65%		
J	5600	HEAD	01/23/2017	20.9	20.3	0.050	1191	7357	4.120	83.600	82.400	-1.44%		
J	5750	HEAD	01/23/2017	20.9	20.3	0.050	1191	7357	3.910	79.100	78.200	-1.14%		
I	750	BODY	01/30/2017	22.7	20.8	0.200	1161	3209	1.760	8.430	8.800	4.39%		
Н	835	BODY	01/26/2017	22.8	21.4	0.200	4d047	3319	2.020	9.570	10.100	5.54%		
Н	835	BODY	02/01/2017	22.6	20.7	0.200	4d047	3319	2.040	9.570	10.200	6.58%		
I	1750	BODY	01/23/2017	23.6	23.0	0.100	1148	3209	3.930	37.100	39.300	5.93%		
D	1750	BODY	01/27/2017	23.2	21.6	0.100	1148	3213	3.570	37.100	35.700	-3.77%		
K	1900	BODY	01/23/2017	23.9	23.4	0.100	5d149	7409	3.930	39.900	39.300	-1.50%		
K	1900	BODY	01/25/2017	24.0	21.5	0.100	5d080	7409	3.980	39.100	39.800	1.79%		
К	1900	BODY	01/30/2017	22.3	22.8	0.100	5d149	7409	4.090	39.900	40.900	2.51%		
Н	2450	BODY	01/24/2017	22.4	22.7	0.100	797	3319	5.210	50.700	52.100	2.76%		
Н	2600	BODY	01/24/2017	22.4	22.7	0.100	1126	3319	5.760	54.500	57.600	5.69%		
D	5250	BODY	01/30/2017	21.9	21.3	0.050	1057	3914	3.490	74.600	69.800	-6.43%		
D	5600	BODY	01/30/2017	21.6	21.1	0.050	1057	3914	3.880	78.900	77.600	-1.65%		
D	5750	BODY	01/30/2017	21.6	21.1	0.050	1057	3914	3.460	75.500	69.200	-8.34%		

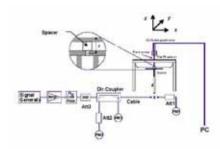


Figure 10-1 **System Verification Setup Diagram**

Figure 10-2 **System Verification Setup Photo**

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 50 of 04	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 58 of 94	

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1 GSM 850 Head SAR

						MEAS	JREMEN	T RESUL	TS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Social # of Time Duty Co		SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)	3	(W/kg)	
836.60	190	GSM 850	GSM	33.2	33.20	0.19	Right	Cheek	01412	1	1:8.3	0.075	1.000	0.075	
836.60	190	GSM 850	GSM	33.2	33.20	0.17	Right	Tilt	01412	1	1:8.3	0.044	1.000	0.044	
836.60	190	GSM 850	GSM	33.2	33.20	-0.03	Left	Cheek	01412	1	1:8.3	0.105	1.000	0.105	
836.60	190	GSM 850	GSM	33.2	33.20	0.03	Left	Tilt	01412	1	1:8.3	0.044	1.000	0.044	
836.60	190	GSM 850	GPRS	32.2	32.16	0.07	Right	Cheek	01412	2	1:4.15	0.142	1.009	0.143	
836.60	190	GSM 850	GPRS	32.2	32.16	-0.01	Right	Tilt	01412	2	1:4.15	0.087	1.009	0.088	
836.60	190	GSM 850	GPRS	32.2	32.16	-0.12	Left	Cheek	01412	2	1:4.15	0.207	1.009	0.209	A1
836.60 190 GSM 850 GPRS 32.2 32.16 -0.17							7 Left Tilt 01412 2 1:4.15 0.088 1.009 0.089							0.089	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head							
	Spatial Peak Uncontrolled Exposure/General Population										1.6 W/kg averaged ov				

Table 11-2 GSM 1900 Head SAR

						MEAS	UREMEN	T RESUL	.TS						
FREQUE	NCY	Mode/Band	ode/Band Service Allowed Conducted Power Side Test Device Serial # of Time D		Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #						
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)		(W/kg)	
1880.00	661	GSM 1900	GSM	30.2	30.18	0.12	Right	Cheek	01417	1	1:8.3	0.055	1.005	0.055	
1880.00	661	GSM 1900	GSM	30.2	30.18	0.03	Right	Tilt	01417	1	1:8.3	0.021	1.005	0.021	
1880.00	661	GSM 1900	GSM	30.2	30.18	0.05	Left	Cheek	01417	1	1:8.3	0.083	1.005	0.083	
1880.00	661	GSM 1900	GSM	30.2	30.18	0.04	Left	Tilt	01417	1	1:8.3	0.026	1.005	0.026	
1880.00	661	GSM 1900	GPRS	29.2	29.17	0.01	Right	Cheek	01417	2	1:4.15	0.089	1.007	0.090	
1880.00	661	GSM 1900	GPRS	29.2	29.17	0.05	Right	Tilt	01417	2	1:4.15	0.033	1.007	0.033	
1880.00	661	GSM 1900	GPRS	29.2	29.17	-0.04	Left	Cheek	01417	2	1:4.15	0.117	1.007	0.118	A2
1880.00	661	GSM 1900	0.14	Left	Tilt	01417	2	1:4.15	0.036	1.007	0.036				
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram								

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	① LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 50 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 59 of 94
17 PCTEST Engineering Laboratory, Inc.		•		REV 18.2 M

Table 11-3 UMTS 850 Head SAR

							o Hica							
					М	EASURE	MENT RI	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)	•	(W/kg)	
836.60	4183	UMTS 850	RMC	24.7	24.68	-0.05	Right	Cheek	01417	1:1	0.145	1.005	0.146	
836.60	4183	UMTS 850	RMC	24.7	24.68	0.12	Right	Tilt	01417	1:1	0.100	1.005	0.101	
836.60	4183	UMTS 850	RMC	24.7	24.68	-0.18	Left	Cheek	01417	1:1	0.182	1.005	0.183	A3
836.60	4183	UMTS 850	RMC	24.7	24.68	-0.07	Left	Tilt	01417	1:1	0.083	1.005	0.083	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	ged over 1 gran	n		

Table 11-4 UMTS 1750 Head SAR

						<u> </u>	<u> </u>	 						
					М	EASURE	MENT RI	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.7	24.67	0.02	Right	Cheek	01412	1:1	0.164	1.007	0.165	
1732.40	1412	UMTS 1750	RMC	24.7	24.67	0.03	Right	Tilt	01412	1:1	0.112	1.007	0.113	
1732.40	1412	UMTS 1750	RMC	24.7	24.67	0.18	Left	Cheek	01412	1:1	0.191	1.007	0.192	A4
1732.40	1412	UMTS 1750	RMC	24.7	24.67	-0.01	Left	Tilt	01412	1:1	0.130	1.007	0.131	
		ANSI / IEI	EE C95.1 1992 -		Т			•	•		Head			•
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	eneral Popula	tion					averaç	ged over 1 gran	n		

Table 11-5 UMTS 1900 Head SAR

					М	EASURE	MENT RI	ESULTS						
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
1880.00	9400	UMTS 1900	RMC	24.7	24.70	-0.03	Right	Cheek	01417	1:1	0.138	1.000	0.138	
1880.00	0.00 9400 UMTS 1900 RMC 24.7 24.70						Right	Tilt	01417	1:1	0.055	1.000	0.055	
1880.00	9400	UMTS 1900	RMC	24.7	24.70	0.04	Left	Cheek	01417	1:1	0.160	1.000	0.160	A5
1880.00							Left	Tilt	01417	1:1	0.057	1.000	0.057	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т						Head			
			Spatial Pea							1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	ged over 1 gran	n		

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 60 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 60 of 94

Table 11-6 CDMA BC0 (§22H) Head SAR

					ODIVIA	DOU (32211)	neau S	<u> </u>					
					М	EASURE	MENT RE	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.5	25.44	0.13	Right	Cheek	01417	1:1	0.193	1.014	0.196	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.5	25.44	0.124	1.014	0.126						
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.5	25.44	-0.10	Left	Cheek	01417	1:1	0.254	1.014	0.258	A6
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.5	25.44	-0.16	Left	Tilt	01417	1:1	0.113	1.014	0.115	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.45	0.06	Right	Cheek	01417	1:1	0.156	1.012	0.158	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.45	-0.20	Right	Tilt	01417	1:1	0.104	1.012	0.105	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.45	-0.04	Left	Cheek	01417	1:1	0.223	1.012	0.226	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.45	0.21	Left	Tilt	01417	1:1	0.099	1.012	0.100	
			Spatial Pea	ak							Head W/kg (mW/g)	_		
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averag	jed over 1 gran	n		

Table 11-7 CDMA BC10 (§90S) Head SAR

					М		MENT RI	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dbm]	Drift [GB]		Position	Number		(W/kg)		(W/kg)	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.2	25.18	0.02	Right	Cheek	01417	1:1	0.134	1.005	0.135	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.2	25.18	0.05	Right	Tilt	01417	1:1	0.106	1.005	0.107	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.2	25.18	0.03	Left	Cheek	01417	1:1	0.221	1.005	0.222	A7
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.18	0.09	Left	Tilt	01417	1:1	0.106	1.005	0.107		
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.20	0.07	Right	Cheek	01417	1:1	0.149	1.000	0.149		
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.2	25.20	0.11	Right	Tilt	01417	1:1	0.104	1.000	0.104	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.2	25.20	0.07	Left	Cheek	01417	1:1	0.215	1.000	0.215	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.2	25.20	-0.08	Left	Tilt	01417	1:1	0.107	1.000	0.107	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							Head W/kg (mW/g) ged over 1 gran	n		

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 61 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 61 of 94

Table 11-8 PCS CDMA Head SAR

								u oak						
					М	EASURE	MENT RE	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Se rial	Duty Cycle -	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	Wode/Balld	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	Duty Cycle	(W/kg)	Scaling Factor	(W/kg)	PIOL#
1880.00	600	PCS CDMA	RC3 / SO55	25.2	25.18	0.01	Right	Cheek	01417	1:1	0.131	1.005	0.132	
1880.00	600	PCS CDMA	RC3 / SO55	25.2	25.18	0.04	Right	Tilt	01417	1:1	0.049	1.005	0.049	
1880.00	600	PCS CDMA	RC3 / SO55	25.2	25.18	0.01	Left	Cheek	1.005	0.188	A8			
1880.00	600	PCS CDMA	RC3 / SO55	25.2	25.18	0.02	0.02 Left Tilt 01417 1:1					1.005	0.058	
1880.00	600	PCS CDMA	EVDO Rev. A	25.2	25.19	0.06	Right	Cheek	01417	1:1	0.142	1.002	0.142	
1880.00	600	PCS CDMA	EVDO Rev. A	25.2	25.19	0.07	Right	Tilt	01417	1:1	0.049	1.002	0.049	
1880.00	600	PCS CDMA	EVDO Rev. A	25.2	25.19	-0.06	Left	Cheek	01417	1:1	0.178	1.002	0.178	
1880.00	600	PCS CDMA	EVDO Rev. A	25.2	25.19	-0.07	Left	Tilt	01417	1:1	0.061	1.002	0.061	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т						Head			
			Spatial Pea	ak						1.6 \	N/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popular	tion					averag	jed over 1 gran	n		

Table 11-9 LTE Band 12 Head SAR

								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	De vice Se rial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	C	٦.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.03	0	Right	Cheek	QPSK	1	0	01410	1:1	0.083	1.000	0.083	
707.50	23095	Mid	LTE Band 12	10	24.5	24.47	0.14	1	Right	Cheek	QPSK	25	0	01410	1:1	0.071	1.007	0.071	
707.50	23095	Mid	LTE Band 12	10	25.5	0.07	0	Right	Tilt	QPSK	1	0	01410	1:1	0.051	1.000	0.051		
707.50	23095	Mid	LTE Band 12	10	24.5	24.47	0.18	1	Right Tilt QPSK 25 0 01410 1:1 0.048							1.007	0.048		
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.07	0	Left	Cheek	QPSK	1	0	01410	1:1	0.104	1.000	0.104	A9
707.50	23095	Mid	LTE Band 12	10	24.5	24.47	0.08	1	Left	Cheek	QPSK	25	0	01410	1:1	0.088	1.007	0.089	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.15	0	Left	Tilt	QPSK	1	0	01410	1:1	0.054	1.000	0.054	
707.50	23095 Mid LTE Band 12 10 24.5 24.47 0.11								Left	Tilt	QPSK	25	0	01410	1:1	0.048	1.007	0.048	
				Spatial Pea										Head 1.6 W/kg (m eraged over					

Table 11-10 LTE Band 26 (Cell) Head SAR

									 ,	 		•							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	De vice Se rial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	۱.	1	[MHz]	Power [dBm]	Power [dBm]	Drift (aB)			Position				Number	Cycle	(W/kg)		(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	-0.11	0	Right	Cheek	QPSK	1	0	01411	1:1	0.140	1.000	0.140	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.46	0.08	1	Right	Cheek	QPSK	36	37	01411	1:1	0.113	1.009	0.114	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	-0.13	0	Right	Tilt	QPSK	1	0	01411	1:1	0.103	1.000	0.103	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.46	0.12	1	Right	Tilt	QPSK	36	37	01411	1:1	0.075	1.009	0.076	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	0.02	0	Left	Cheek	QPSK	1	0	01411	1:1	0.221	1.000	0.221	A10
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.46	0.00	1	Left	Cheek	QPSK	36	37	01411	1:1	0.160	1.009	0.161	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	0.10	0	Left	Tilt	QPSK	1	0	01411	1:1	0.105	1.000	0.105	
831.50	26865 Mid LTE Band 26 (Cell) 15 24.5 24.46 0.04								Left	Tilt	QPSK	36	37	01411	1:1	0.071	1.009	0.072	
				Spatial Pea										Head 1.6 W/kg (m eraged over					

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 62 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 62 01 94
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M

Table 11-11 LTE Band 4 (AWS) Head SAR

								Juliu	7 (7)		iicaa	O,							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	۱.		[WITZ]	Power [dBm]	Fower [dBill]	Driit [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	I
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	0.10	0	Right	Cheek	QPSK	1	0	01413	1:1	0.176	1.000	0.176	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.97	0.07	1	Right	Cheek	QPSK	50	50	01413	1:1	0.142	1.007	0.143	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	0.02	0	Right	Tilt	QPSK	1	0	1:1	0.104	1.000	0.104		
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.97	0.07	1	Right	Tilt	QPSK	50	50	01413	1:1	0.081	1.007	0.082	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	0.12	0	Left	Cheek	QPSK	1	0	01413	1:1	0.236	1.000	0.236	A11
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.97	0.06	1	Left	Cheek	QPSK	50	50	01413	1:1	0.175	1.007	0.176	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	0.01	0	Left	Tilt	QPSK	1	0	01413	1:1	0.124	1.000	0.124	
1732.50	20175	Mid	LTE Band 4 (AWS)	1	Left	Tilt	QPSK	50	50	01413	1:1	0.100	1.007	0.101					
				95.1 1992 - Spatial Pea	SAFETY LIMI	т								Head 1.6 W/kg (m		•			
			Uncontrolled E	•		tion								eraged over					

Table 11-12 LTE Band 25 (PCS) Head SAR

						-		Jana	20 (00,	Heau	UAIN							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	De vice Se rial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	-0.16	0	Right	Cheek	QPSK	1	99	01413	1:1	0.141	1.000	0.141	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	-0.16	1	Right	Cheek	QPSK	50	25	01413	1:1	0.104	1.000	0.104	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	0.02	0	Right	Tilt	QPSK	1	99	01413	1:1	0.054	1.000	0.054	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	0.14	1	Right	Tilt	QPSK	50	25	01413	1:1	0.042	1.000	0.042	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	-0.02	0	Left	Cheek	QPSK	1	99	01413	1:1	0.184	1.000	0.184	A12
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	0.07	1	Left	Cheek	QPSK	50	25	01413	1:1	0.135	1.000	0.135	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	0.00	0	Left	Tilt	QPSK	1	99	01413	1:1	0.072	1.000	0.072	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	0.07	1	Left	Tilt	QPSK	50	25	01413	1:1	0.051	1.000	0.051	
			ANSI / IEEE (C95.1 1992 -	SAFETY LIMI	Ť	•			•				Head					
				Spatial Per	ak									1.6 W/kg (m	ıW/g)				ĺ
			Uncontrolled E	xposure/Ge	neral Populat	tion							a	eraged over	1 gram				

Table 11-13 LTE Band 41 Head SAR

								<u> </u>	Janu	711	leau	JAK								
								N	MEASUR	EMENT	RESULT	s								
Pow er Class	FF	REQUENCY		Mode	Bandwidth [MHz]	Maxim um Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
	MHz	С	h.		[MHZ]	Power [dBm]	Power (asm)	Drift (aB)			Position				Number	Cycle	(W/kg)		(W/kg)	1
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	-0.03	0	Right	Cheek	QPSK	1	0	01410	1:1.58	0.090	1.000	0.090	
PC 3	2549.50	40185	Low-Mid	LTE Band 41	20	24.5	24.50	-0.04	1	Right	Cheek	QPSK	50	25	01410	1:1.58	0.057	1.000	0.057	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	0.16	0	Right	Tilt	QPSK	1	0	01410	1:1.58	0.069	1.000	0.069	
PC 3	2549.50	40185	Low-Mid	LTE Band 41	20	24.5	24.50	0.13	1	Right	Tilt	QPSK	50	25	01410	1:1.58	0.039	1.000	0.039	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	0.05	0	Left	Cheek	QPSK	1	0	01410	1:1.58	0.124	1.000	0.124	A13
PC 3	2549.50	40185	Low-Mid	LTE Band 41	20	24.5	24.50	0.06	1	Left	Cheek	QPSK	50	25	01410	1:1.58	0.082	1.000	0.082	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	0.04	0	Left	Tilt	QPSK	1	0	01410	1:1.58	0.038	1.000	0.038	
PC 3	2549.50	40185	Low-Mid	LTE Band 41	20	24.5	24.50	0.05	1	Left	Tilt	QPSK	50	25	01410	1:1.58	0.024	1.000	0.024	
					Spatial Pea						•				Head 1.6 W/kg (m eraged over					

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	.G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 62 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 63 of 94

Table 11-14 DTS Head SAR

									0	<u> </u>									
								ME	ASUREM	ENT RES	ULTS								
FREQUE	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Antenna	De vice Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Config.	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	15.5	15.46	0.06	Right	Cheek	1	01430	1	99.9	0.796	0.623	1.009	1.001	0.629	
2437	6	802.11b	DSSS	22	15.5	15.46	0.20	Right	Tilt	1	01430	1	99.9	0.173	0.132	1.009	1.001	0.133	
2437	6	802.11b	DSSS	22	15.5	15.46	0.04	Left	Cheek	1	01430	1	99.9	0.164	-	1.009	1.001	-	
2437	6	802.11b	DSSS	22	15.5	15.46	0.03	Left	Tilt	1	01430	1	99.9	0.054	-	1.009	1.001	-	
2437	6	802.11b	DSSS	22	15.5	15.27	0.05	Right	Cheek	2	01430	1	99.9	0.754	0.662	1.054	1.001	0.698	A14
2437	6	802.11b	DSSS	22	15.5	15.27	0.11	Right	Tilt	2	01430	1	99.9	0.606	0.509	1.054	1.001	0.537	
2437	6	802.11b	DSSS	22	15.5	15.27	-0.04	Left	Cheek	2	01430	1	99.9	0.469	-	1.054	1.001	-	
2437	6	802.11b	DSSS	22	15.5	15.27	-0.01	Left	Tilt	2	01430	1	99.9	0.403	-	1.054	1.001	-	
			C95.1 1992 Spatial Pe	ak										Head I.6 W/kg (mW					
		Uncontrolled	Exposure/G	eneral Popu	ulation								av	eraged over 1 g	ram				

Table 11-15 NII Head SAR

								1.4	ппес	au Or	11 X								
								MEA	SUREM	ENT RES	ULTS								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Antenna	De vice Serial	Data Rate	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.	Mode	Service	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Config.	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	riot#
5300	60	802.11a	OFDM	20	14.5	14.18	0.01	Right	Cheek	1	01430	6	99.3	0.073	0.025	1.076	1.007	0.027	
5300	60	802.11a	OFDM	20	14.5	14.18	0.12	Right	Tilt	1	01430	6	99.3	0.037		1.076	1.007	-	
5300	60	802.11a	OFDM	20	14.5	14.18	0.10	Left	Cheek	1	01430	6	99.3	0.024	-	1.076	1.007	-	
5300	60	802.11a	OFDM	20	14.5	14.18	0.17	Left	Tilt	1	01430	6	99.3	0.025	-	1.076	1.007	-	
5300	60	802.11a	OFDM	20	14.5	14.14	0.10	Right	Cheek	2	01430	6	99.3	0.957	0.516	1.086	1.007	0.564	A15
5300	60	802.11a	OFDM	20	14.5	14.14	0.09	Right	Tilt	2	01430	6	99.3	0.860	0.485	1.086	1.007	0.530	
5300	60	802.11a	OFDM	20	14.5	14.14	0.20	Left	Cheek	2	01430	6	99.3	0.386	-	1.086	1.007	-	
5300	60	802.11a	OFDM	20	14.5	14.14	0.11	Left	Tilt	2	01430	6	99.3	0.356	-	1.086	1.007	-	
5580	116	802.11a	OFDM	20	14.5	14.03	-0.02	Right	Cheek	1	01430	6	99.3	0.167	0.058	1.114	1.007	0.065	
5580	116	802.11a	OFDM	20	14.5	14.03	0.09	Right	Tilt	1	01430	6	99.3	0.039	-	1.114	1.007	-	
5580	116	802.11a	OFDM	20	14.5	14.03	0.11	Left	Cheek	1	01430	6	99.3	0.029	-	1.114	1.007	-	
5580	116	802.11a	OFDM	20	14.5	14.03	0.10	Left	Tilt	1	01430	6	99.3	0.029	-	1.114	1.007	-	
5580	116	802.11a	OFDM	20	14.5	14.10	0.10	Right	Cheek	2	01430	6	99.3	0.658	0.504	1.096	1.007	0.556	
5580	116	802.11a	OFDM	20	14.5	14.10	0.07	Right	Tilt	2	01430	6	99.3	0.765	0.404	1.096	1.007	0.446	
5580	116	802.11a	OFDM	20	14.5	14.10	0.04	Left	Cheek	2	01430	6	99.3	0.355	-	1.096	1.007	-	
5580	116	802.11a	OFDM	20	14.5	14.10	0.10	Left	Tilt	2	01430	6	99.3	0.310	-	1.096	1.007	-	
5745	149	802.11a	OFDM	20	14.5	14.17	0.10	Right	Cheek	1	01430	6	99.3	0.340	0.094	1.079	1.007	0.102	
5745	149	802.11a	OFDM	20	14.5	14.17	0.03	Right	Tilt	1	01430	6	99.3	0.065	-	1.079	1.007	-	
5745	149	802.11a	OFDM	20	14.5	14.17	0.13	Left	Cheek	1	01430	6	99.3	0.046	-	1.079	1.007	-	
5745	149	802.11a	OFDM	20	14.5	14.17	0.11	Left	Tilt	1	01430	6	99.3	0.057	-	1.079	1.007	-	
5785	157	802.11a	OFDM	20	14.5	14.22	0.03	Right	Cheek	2	01430	6	99.3	0.127	0.045	1.067	1.007	0.048	
5785	157	802.11a	OFDM	20	14.5	14.22	0.03	Right	Tilt	2	01430	6	99.3	0.101	-	1.067	1.007	-	
5785	157	802.11a	OFDM	20	14.5	14.22	0.10	Left	Cheek	2	01430	6	99.3	0.043	-	1.067	1.007	-	
5785	157	802.11a	OFDM	20	14.5	14.22	0.03	Left	Tilt	2	01430	6	99.3	0.059	-	1.067	1.007	-	
		ANSI	/ IEEE C95.1		TY LIMIT									Head					
		Uncontr	Spati olled Exposu	ial Peak	Population									.6 W/kg (mW eraged over 1 o					
		Uncontr	oneu Expost	in 6/General	i opulation								avi	raged over 1 (grant				

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 64 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 64 of 94

11.2 Standalone Body-Worn SAR Data

Table 11-16 GSM/UMTS/CDMA Body-Worn SAR Data

					ME			RESULTS	-						
FREQUE	NCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
836.60	190	GSM 850	GSM	33.2	33.20	0.00	10 mm	01417	1	1:8.3	back	0.569	1.000	0.569	
824.20	128	GSM 850	GPRS	32.2	32.07	-0.05	10 mm	01417	2	1:4.15	back	0.933	1.030	0.961	
836.60	190	GSM 850	GPRS	32.2	32.16	-0.02	10 mm	01417	2	1:4.15	back	1.020	1.009	1.029	
848.80	251	GSM 850	GPRS	32.2	32.19	-0.02	10 mm	01417	2	1:4.15	back	0.940	1.002	0.942	
836.60	190	GSM 850	GPRS	32.2	32.16	0.15	10 mm	01417	2	1:4.15	back	1.060	1.009	1.070	A16
1880.00	661	GSM 1900	GSM	30.2	30.18	0.00	10 mm	01412	1	1:8.3	back	0.299	1.005	0.300	
1880.00	661	GSM 1900	GPRS	29.2	29.17	-0.04	10 mm	01412	2	1:4.15	back	0.438	1.007	0.441	A17
836.60	4183	UMTS 850	RMC	24.7	24.68	0.03	10 mm	01417	N/A	1:1	back	0.568	1.005	0.571	A19
1712.40	1312	UMTS 1750	RMC	24.7	24.67	-0.04	10 mm	01417	N/A	1:1	back	0.730	1.007	0.735	
1732.40	1412	UMTS 1750	RMC	24.7	24.67	0.03	10 mm	01417	N/A	1:1	back	0.816	1.007	0.822	
1752.60	1513	UMTS 1750	RMC	24.7	24.70	-0.05	10 mm	01417	N/A	1:1	back	0.844	1.000	0.844	
1752.60	1513	UMTS 1750	RMC	24.7	24.70	0.00	10 mm	01417	N/A	1:1	back	0.854	1.000	0.854	A20
1880.00	9400	UMTS 1900	RMC	24.7	24.70	0.05	10 mm	01417	N/A	1:1	back	0.692	1.000	0.692	A21
836.52	384	CDMA BC0 (§22H)	TDSO/SO32	25.5	25.49	0.05	10 mm	01417	N/A	1:1	back	0.724	1.002	0.725	A23
820.10	564	CDMA BC10 (§90S)	TDSO/SO32	25.2	25.17	0.02	10 mm	01417	N/A	1:1	back	0.655	1.007	0.660	A25
1851.25	25	PCS CDMA	TDSO/SO32	25.2	25.14	0.07	10 mm	01412	N/A	1:1	back	0.880	1.014	0.892	A27
1880.00	600	PCS CDMA	TDSO/SO32	25.2	25.19	0.11	10 mm	01412	N/A	1:1	back	0.803	1.002	0.805	
1908.75	1175	PCS CDMA	TDSO / SO32	25.2	25.18	0.06	10 mm	01412	N/A	1:1	back	0.772	1.005	0.776	
		ANSI / IEE	E C95.1 1992 - SA Spatial Peak	FETY LIMIT								ody g (mW/g)			
		Uncontrolled	Exposure/Gener	al Population								g (mw/g) over 1 gram			

Note: Blue Entries Represent Variability Measurements

Table 11-17 LTE Body-Worn SAR

								MEA	SUREME	NT RESU	LTS									
Power Class	FF	REQUENCY	r	Mode	Bandwidth	Maximum	Conducted	Power	MPR (dB)	De vice Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
	MHz	C	Ch.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	[]	Number						Cycle	(W/kg)		(W/kg)	
	707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.01	0	01414	QPSK	1	0	10 mm	back	1:1	0.424	1.000	0.424	A29
	707.50	23095	Mid	LTE Band 12	10	24.5	24.47	0.02	1	01414	QPSK	25	0	10 mm	back	1:1	0.343	1.007	0.345	
	831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	0.02	0	01414	QPSK	1	0	10 mm	back	1:1	0.717	1.000	0.717	A30
	831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.46	-0.04	1	01414	QPSK	36	37	10 mm	back	1:1	0.540	1.009	0.545	
	1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	-0.01	0	01414	QPSK	1	0	10 mm	back	1:1	0.826	1.000	0.826	A31
	1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.97	0.03	1	01414	QPSK	50	50	10 mm	back	1:1	0.676	1.007	0.681	
	1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.86	0.00	1	01414	QPSK	100	0	10 mm	back	1:1	0.668	1.033	0.690	
	1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	-0.03	0	01413	QPSK	1	99	10 mm	back	1:1	0.778	1.000	0.778	A32
	1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	0.07	1	01413	QPSK	50	25	10 mm	back	1:1	0.570	1.000	0.570	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	0.00	0	01414	QPSK	1	0	10 mm	back	1:1.58	0.532	1.000	0.532	A34
PC 3	2549.50	40185	Low-Mid	LTE Band 41	20	24.5	24.50	0.01	1	01414	QPSK	50	25	10 mm	back	1:1.58	0.348	1.000	0.348	
				ANSI / IEEE	Spatial Per										1.6 W/kg	dy (mW/g) wer 1 gran	1			

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 65 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 65 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

Table 11-18 DTS Body-Worn SAR

								MEAS	UREMEN	NT RES	ULTS					`			
FREQU	ENCY	Mode	Service	Bandwidth	Maxim um Allowed		Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	17.0	16.82	0.02	10 mm	1	01430	1	back	99.9	0.127	0.108	1.042	1.001	0.113	
2437	6	802.11b	DSSS	22	17.0	16.73	0.01	10 mm	2	01430	1	back	99.9	0.177	0.151	1.064	1.001	0.161	A36
		ANSI	/ IEEE C95	.1 1992 - SA	FETY LIMIT									Body					
				atial Peak										1.6 W/kg (m)	•				
		Uncontr	olled Expo	osure/Gener	al Population									averaged over 1	gram				

Table 11-19 NII Body-Worn SAR

								MEASURI	EMENT RE	ESULTS								
ICY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Contig.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
52	802.11a	OFDM	20	16.5	16.01	-0.03	10 mm	1	01430	6	back	99.3	0.802	0.426	1.119	1.007	0.480	
52	802.11a	OFDM	20	16.5	16.25	0.08	10 mm	2	01430	6	back	99.3	0.411	0.197	1.059	1.007	0.210	
116	802.11a	OFDM	20	16.5	16.14	0.03	10 mm	1	01430	6	back	99.3	1.048	0.598	1.086	1.007	0.654	A37
116	802.11a	OFDM	20	16.5	15.91	-0.01	10 mm	2	01430	6	back	99.3	0.566	0.273	1.146	1.007	0.315	
149	802.11a	OFDM	20	16.5	16.26	-0.06	10 mm	1	01430	6	back	99.3	0.948	0.483	1.057	1.007	0.514	
149	802.11a	OFDM	20	16.5	15.84	0.02	10 mm	2	01430	6	back	99.3	0.193	0.105	1.164	1.007	0.123	
	ANS	SI / IEEE CS	95.1 1992 - S	AFETY LIMIT									Body					
	Uncor				n									1				
	Ch. 52 52 116 116 119	Ch. Mode Ch. 802.11a 52 802.11a 52 802.11a 116 802.11a 116 802.11a 149 802.11a ANS	Ch. Mode Service 52 802.11a OFDM 52 802.11a OFDM 116 802.11a OFDM 116 802.11a OFDM 149 802.11a OFDM ANSI / IEEE C S	Ch. Mode Service (IM-2) 52 802.11a OFDM 20 52 802.11a OFDM 20 116 802.11a OFDM 20 116 802.11a OFDM 20 149 802.11a OFDM 20 149 802.11a OFDM 20 ANSI / IEEE C95.1 1992 - S Spatial Peak	Mode	Mode Service Bandwidth Allowed Conducted Power (dBm)	Mode Service Bandwidth Allowed Conducted Power [dfm] 52 802.11a OFDM 20 16.5 16.01 -0.03 52 802.11a OFDM 20 16.5 16.26 0.08 116 802.11a OFDM 20 16.5 16.14 0.03 116 802.11a OFDM 20 16.5 15.91 -0.01 149 802.11a OFDM 20 16.5 16.26 -0.06 149 802.11a OFDM 20 16.5 15.84 0.02 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	Mode Service Bandwidth Allowed Conducted Fower (18th 16th 18th Mode Service Bendwidth Allowed Conducted Power (18th)	Mode	Mode Service Bendwith Allowed Conducted Power (Jeff) (Ell) Spacing Config. Config. Multiple Config. Config. Multiple Config.	Mode Service Bandwidth Allowed Power [dem] Power [dem] Sepacing Allowed Conducted Config. Sepacing	Mode Service Bandwith Allowed Conducted Power (Iden) (Iden) Spacing Config. Naminor Config. Naminor	Mode Service Bandwidth Allowed Power [dBm] Conducted Conduct	Mode Service Bandwitth MiHz Power [dBm] Power [dBm] Power [dBm] Fower [dBm] Power [dBm] Power [dBm] Fower [dBm] Power [dBm] Fower [dBm] Power [dBm] Fower [dBm] Power [dBm] Fower	Mode Service Bandwith Mik2 Power [dBm] Milbord Power [dBm] Milbord Power [dBm] Milbord Power [dBm] Milbord Milbord Power [dBm] Milbord	No. No.	Mode Service Bandwitch Allowed Conducted Power (dBn) Power	

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 66 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 66 of 94

Standalone Hotspot SAR Data

Table 11-20 GPRS/UMTS/CDMA Hotspot SAR Data

				<u> </u>	M			RESULTS										
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing		# of GPRS	Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #			
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)		(W/kg)				
824.20	128	GSM 850	GPRS	32.2	32.07	-0.05	10 mm	01417	2	1:4.15	back	0.933	1.030	0.961				
836.60	190	GSM 850	GPRS	32.2	32.16	-0.02	10 mm	01417	2	1:4.15	back	1.020	1.009	1.029				
848.80	251	GSM 850	GPRS	32.2	32.19	-0.02	10 mm	01417	2	1:4.15	back	0.940	1.002	0.942				
824.20	128	GSM 850	GPRS	32.2	32.07	-0.04	10 mm	01417	2	1:4.15	front	0.925	1.030	0.953				
836.60	190	GSM 850	GPRS	32.2	32.16	0.03	10 mm	01417	2	1:4.15	front	0.899	1.009	0.907				
848.80	251	GSM 850	GPRS	32.2	32.19	-0.01	10 mm	01417	2	1:4.15	front	0.925	1.002	0.927				
836.60	190	GSM 850	GPRS	32.2	32.16	-0.03	10 mm	01417	2	1:4.15	bottom	0.488	1.009	0.492				
836.60	190	GSM 850	GPRS	32.2	32.16	-0.02	10 mm	01417	2	1:4.15	right	0.185	1.009	0.187				
836.60	190	GSM 850	GPRS	32.2	32.16	-0.09	10 mm	01417	2	1:4.15	left	0.536	1.009	0.541				
836.60	190	GSM 850	GPRS	32.2	32.16	0.15	10 mm	01417	2	1:4.15	back	1.060	1.009	1.070	A16			
1880.00	661	GSM 1900	GPRS	29.2	29.17	-0.04	10 mm	01412	2	1:4.15	back	0.438	1.007	0.441				
1880.00	661	GSM 1900	GPRS	29.2	29.17	0.00	10 mm	01412	2	1:4.15	front	0.390	1.007	0.393				
1880.00	661	GSM 1900	GPRS	29.2	29.17	0.16	10 mm	01412	2	1:4.15	bottom	0.503	1.007	0.507	A18			
1880.00	661	GSM 1900	GPRS	29.2	29.17	0.15	10 mm	01412	2	1:4.15	left	0.189	1.007	0.190				
836.60	4183	UMTS 850	RMC	24.7	24.68	0.03	10 mm	01417	N/A	1:1	back	0.568	1.005	0.571	A19			
836.60	4183	UMTS 850	RMC	24.7	24.68	-0.08	10 mm	01417	N/A	1:1	front	0.540	1.005	0.543				
836.60	4183	UMTS 850	RMC	24.7	24.68	-0.02	10 mm	01417	N/A	1:1	bottom	0.305	1.005	0.307				
836.60	4183	UMTS 850	RMC	24.7	24.68	-0.03	10 mm	01417	N/A	1:1	right	0.127	1.005	0.128				
836.60	4183	UMTS 850	RMC	24.7	24.68	-0.03	10 mm	01417	N/A	1:1	left	0.315	1.005	0.317				
1712.40	1312	UMTS 1750	RMC	24.7	24.67	-0.11	10 mm	01417	N/A	1:1	back	0.730	1.007	0.735				
1732.40	1412	UMTS 1750	RMC	24.7	24.67	0.03	10 mm	01417	N/A	1:1	back	0.816	1.007	0.822				
1752.60	1513	UMTS 1750	RMC	24.7	24.70	0.01	10 mm	01417	N/A	1:1	back	0.844	1.000	0.844				
1732.40	1412	UMTS 1750	RMC	24.7	24.67	-0.02	10 mm	01417	N/A	1:1	front	0.668	1.007	0.673				
1732.40	1412	UMTS 1750	RMC	24.7	24.67	-0.03	 											
1732.40	1412	UMTS 1750	RMC	24.7	24.67	0.01												
1752.60	1513	UMTS 1750	RMC	24.7	24.70	0.00 10 mm 01417 N/A 1:1 back 0.854 1.000 0.854 A20												
1880.00	9400	UMTS 1900	RMC	24.7	24.70	0.05 10 mm 01417 N/A 1:1 back 0.692 1.000 0.692												
1880.00	9400	UMTS 1900	RMC	24.7	24.70	0.01	10 mm	01417	N/A	1:1	front	0.600	1.000	0.600				
1880.00	9400	UMTS 1900	RMC	24.7	24.70	-0.02	10 mm	01417	N/A	1:1	bottom	0.767	1.000	0.767	A22			
1880.00	9400	UMTS 1900	RMC	24.7	24.70	-0.02	10 mm	01417	N/A	1:1	left	0.275	1.000	0.275				
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.47	-0.05	10 mm	01417	N/A	1:1	back	0.707	1.007	0.712	A24			
836.52	384	CDMABC0 (§22H)	EVDO Rev. 0	25.5	25.47	-0.01	10 mm	01417	N/A	1:1	front	0.684	1.007	0.689	72.7			
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.47	-0.08	10 mm	01417	N/A	1:1	bottom	0.390	1.007	0.393				
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.47	-0.02	10 mm	01417	N/A	1:1	right	0.157	1.007	0.158				
836.52	384	CDMABC0 (§22H)	EVDO Rev. 0	25.5	25.47	-0.02	10 mm	01417	N/A N/A	1:1	left	0.157	1.007	0.156				
															455			
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.18	0.04	10 mm	01417	N/A	1:1	back	0.662	1.005	0.665	A26			
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.18	0.02	10 mm	01417	N/A	1:1	front	0.643	1.005	0.646				
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.18	-0.06	10 mm	01417	N/A	1:1	bottom	0.395	1.005	0.397				
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.18	-0.15	10 mm	01417	N/A	1:1	right	0.157	1.005	0.158				
	820.10 564 CDMABC10 (§90S) EVDO Rev. 0 25.2 25.18 0.02 10 mm 01417 N/A 1:1 left 0.327 1.005 0.329																	
1880.00																		
1880.00	600	PCS CDMA	EVDO Rev. 0	25.2	25.18	-0.10	10 mm	01412	N/A	1:1	front	0.595	1.005	0.598				
1880.00	600	PCS CDMA	EVDO Rev. 0	25.2	25.18	0.02	10 mm	01412	N/A	1:1	bottom	0.764	1.005	0.768				
1880.00	600	PCS CDMA	EVDO Rev. 0	25.2	25.18	0.08	10 mm	01412	N/A	1:1	left	0.328	1.005	0.330				
		ANSI / IEE	E C95.1 1992 - SA Spatial Peak	FETY LIMIT								ody g (mW/g)						
		Uncontrolled	Exposure/Gener	ral Population	ı							over 1 gram						

Note: Blue Entries Represent Variability Measurements

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT ((LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 67 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 67 of 94

Table 11-21 LTE Band 12 Hotspot SAR

										otopo.									
								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth	Maxim um Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	<u> </u>
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.01	0	01414	QPSK	1	0	10 mm	back	1:1	0.424	1.000	0.424	A29
707.50	23095	Mid	LTE Band 12	10	24.5	24.47	0.02	1	01414	QPSK	25	0	10 mm	back	1:1	0.343	1.007	0.345	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.13	0	01414	QPSK	1	0	10 mm	front	1:1	0.397	1.000	0.397	
707.50	23095	Mid	LTE Band 12	10	24.5	24.47	-0.01	1	01414	QPSK	25	0	10 mm	front	1:1	0.331	1.007	0.333	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.02	0	01414	QPSK	1	0	10 mm	bottom	1:1	0.282	1.000	0.282	
707.50	23095	Mid	LTE Band 12	10	24.5	24.47													
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.15	0	01414	QPSK	1	0	10 mm	right	1:1	0.151	1.000	0.151	
707.50	23095	Mid	LTE Band 12	10	24.5	24.47	0.00	1	01414	QPSK	25	0	10 mm	right	1:1	0.122	1.007	0.123	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.11	0	01414	QPSK	1	0	10 mm	left	1:1	0.139	1.000	0.139	
707.50	23095	Mid	LTE Band 12	10	24.5	0.03	1	01414	QPSK	25	0	10 mm	left	1:1	0.116	1.007	0.117		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Body					
			Spa	itial Peak									1.6 V	//kg (mW	I/g)				
		ι	Jncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				
707.50 707.50 707.50 707.50	23095 23095 23095 23095	Mid Mid Mid Mid Mid	LTE Band 12 LTE Band 12 LTE Band 12 LTE Band 12 LTE Band 12 LTE Band 12 ANSI / IEEE C95. Spa	10 10 10 10 10 10 10 11 10 11 11 11 11 1	24.5 25.5 24.5 25.5 24.5 24.5	24.47 25.50 24.47	-0.02 -0.15 0.00 0.11	1 0	01414 01414 01414 01414	QPSK QPSK QPSK QPSK	1 25 1	0 0 0	10 mm 10 mm 10 mm 10 mm 10 mm	bottom right right left left Body V/kg (mW	1:1 1:1 1:1 1:1 1:1	0.222 0.151 0.122 0.139		1.007 1.000 1.007	1.007 0.224 1.000 0.151 1.007 0.123 1.000 0.139

Table 11-22 LTE Band 26 (Cell) Hotspot SAR

								MEASU	JREMENT	RESULTS	,								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	C	h.		[m/LZ]	Power [dBm]	rower [dbin]	Drift [db]		Number							(W/kg)	ractor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	0.02	0	01414	QPSK	1	0	10 mm	back	1:1	0.717	1.000	0.717	A30
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.46	-0.04	1	01414	QPSK	36	37	10 mm	back	1:1	0.540	1.009	0.545	
831.50 26865 Mid LTE Band 26 (Cell) 15 25.5 25.50 0.08 0 01414 QPSK 1 0 10 mm front 1:1										0.684	1.000	0.684							
831.50	50 26865 Mid LTE Band 26 (Cell) 15 24.5 24.46 -0.02 1 01414 QPSK 36 37 10 mm front 1:1 0.528 1.009 0.533																		
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	0.00	0	01414	QPSK	1	0	10 mm	bottom	1:1	0.409	1.000	0.409	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.46	-0.02	1	01414	QPSK	36	37	10 mm	bottom	1:1	0.298	1.009	0.301	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	-0.18	0	01414	QPSK	1	0	10 mm	right	1:1	0.152	1.000	0.152	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.46	-0.04	1	01414	QPSK	36	37	10 mm	right	1:1	0.111	1.009	0.112	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.50	0.06	0	01414	QPSK	1	0	10 mm	left	1:1	0.342	1.000	0.342	
831.50	331.50 26865 Mid LTE Band 26 (Cell) 15 24.5 24.46								01414	QPSK	36	37	10 mm	left	1:1	0.246	1.009	0.248	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT				•				Body			•			
			Spa	itial Peak								1.6 W	/kg (mW	/g)					
		- 1	Uncontrolled Expo	sure/Genera	I Population								average	d over 1 g	ıram				

Table 11-23 LTE Band 4 (AWS) Hotspot SAR

									(, , , , , , , , , , , , , , , , , , , 	<i>,</i>	P • •	O , \							
								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Num be r							(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	-0.01	0	01414	QPSK	1	0	10 mm	back	1:1	0.826	1.000	0.826	A31
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.97	0.03	1	01414	QPSK	50	50	10 mm	back	1:1	0.676	1.007	0.681	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.86	0.00	1	01414	QPSK	100	0	10 mm	back	1:1	0.668	1.033	0.690	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	-0.10	0 0 01414 QPSK 1 0 10 mm front 1:1 0.768 1.000 0.768											
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.97	-0.03	1 01414 QPSK 50 50 10 mm front 1:1 0.628 1.007 0.632											
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	-0.01	0	01414	QPSK	1	0	10 mm	bottom	1:1	0.633	1.000	0.633	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.0	23.97	-0.08	1	01414	QPSK	50	50	10 mm	bottom	1:1	0.592	1.007	0.596	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	25.0	25.00	-0.01	0	01414	QPSK	1	0	10 mm	left	1:1	0.407	1.000	0.407	
1732.50	io 20175 Mid LTE Band 4 (AWS) 20 24.0 23.97							1	01414	QPSK	50	50	10 mm	left	1:1	0.316	1.007	0.318	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Body					
			Spa	itial Peak									1.6 V	//kg (mW	//g)				
			Uncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 60 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 68 of 94

Table 11-24 LTE Band 25 (PCS) Hotspot SAR

									UREMENT		•								
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MITZ]	Power [dBm]	rower [dbin]	Drint [GD]		Number							(W/kg)		(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	-0.03	0	01413	QPSK	1	99	10 mm	back	1:1	0.778	1.000	0.778	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	0.07	1	01413	QPSK	50	25	10 mm	back	1:1	0.570	1.000	0.570	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	0.07	0	01413	QPSK	1	99	10 mm	front	1:1	0.692	1.000	0.692	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	-0.05	1	01413	QPSK	50	25	10 mm	front	1:1	0.524	1.000	0.524	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	-0.17	0	01413	QPSK	1	99	10 mm	bottom	1:1	0.984	1.000	0.984	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	25.5	25.48	0.11	0	01413	QPSK	1	50	10 mm	bottom	1:1	0.818	1.005	0.822	
1905.00	26590	High	LTE Band 25 (PCS)	20	25.5	25.49	-0.02	0	01413	QPSK	1	50	10 mm	bottom	1:1	0.784	1.002	0.786	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.50	-0.02	1	01413	QPSK	50	25	10 mm	bottom	1:1	0.684	1.000	0.684	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.5	24.48	-0.05	1	01413	QPSK	100	0	10 mm	bottom	1:1	0.760	1.005	0.764	
1860.00	26140	Low	LTE Band 25 (PCS)	20	25.5	25.50	0.15	0	01413	QPSK	1	99	10 mm	left	1:1	0.286	1.000	0.286	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	0.16	1	01413	QPSK	50	25	10 mm	left	1:1	0.250	1.000	0.250			
1860.00	26140 Low LTE Band 25 (PCS) 20 25.5 25.50							0	01413	QPSK	1	99	10 mm	bottom	1:1	0.987	1.000	0.987	A33
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Body					
		Spatial Peak												//kg (mW	•				l
			Incontrolled Expo	sure/Genera	I Population			l					average	ed over 1	gram				

Note: Blue Entry Represents Variability Measurement

Table 11-25 LTE Band 41 Hotspot SAR

											.opot									
								M	EASURE	MENTRI	ESULTS									
Power Class	FRI	EQUENCY		Mode	Bandw idth	Maximum Allowed	Conducted Power	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
	MHz	CI	n.		[MHz]	Power [dBm]	[dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	0.00	0	01414	QPSK	1	0	10 mm	back	1:1.58	0.532	1.000	0.532	
PC 3	2549.50	40185	Low- Mid	LTE Band 41	20	24.5	24.50	0.01	1	01414	QPSK	50	25	10 mm	back	1:1.58	0.348	1.000	0.348	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	0.07	0	01414	QPSK	1	0	10 mm	front	1:1.58	0.382	1.000	0.382	
PC 3	2549.50	40185	Low- Mid	LTE Band 41	20	24.5	24.50	0.03	1	01414	QPSK	50	25	10 mm	front	1:1.58	0.216	1.000	0.216	
PC 3	2506.00	39750	Low	LTE Band 41	20	25.5	25.49	0.02	0	01414	QPSK	1	50	10 mm	bottom	1:1.58	0.465	1.002	0.466	
PC 3	2549.50	40185	Low- Mid	LTE Band 41	20	25.5	25.30	-0.02	0	01414	QPSK	1	0	10 mm	bottom	1:1.58	0.609	1.047	0.638	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	-0.07	0	01414	QPSK	1	0	10 mm	bottom	1:1.58	0.650	1.000	0.650	A35
PC 3	2636.50	41055	Mid- High	LTE Band 41	20	25.5	25.45	-0.02	0	01414	QPSK	1	50	10 mm	bottom	1:1.58	0.557	1.012	0.564	
PC 3	2680.00	41490	High	LTE Band 41	20	25.48	-0.01	0	01414	QPSK	1	50	10 mm	bottom	1:1.58	0.646	1.005	0.649		
PC 3	2549.50	40185	Low- Mid	LTE Band 41	20	24.5	24.50	0.00	1	01414	QPSK	50	25	10 mm	bottom	1:1.58	0.485	1.000	0.485	
PC 3	2636.50	41055	Mid- High	LTE Band 41	20	24.5	24.49	-0.04	1	01414	QPSK	100	0	10 mm	bottom	1:1.58	0.422	1.002	0.423	
PC 3	2593.00	40620	Mid	LTE Band 41	20	25.5	25.50	0.02	0	01414	QPSK	1	0	10 mm	left	1:1.58	0.115	1.000	0.115	
PC 3	2549.50	40185	Low- Mid	LTE Band 41	0.00	1	01414	QPSK	50	25	10 mm	left	1:1.58	0.072	1.000	0.072				
PC 2	2593.00 40620 Mid LTE Band 41 20 26.7 26.58 -								0	01414	QPSK	1	0	10 mm	bottom	1:2.309	0.530	1.028	0.545	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										•	•	•		Body					
		Spatial Peak													V/kg (mV	•				
			Un	controlled Exposi	ure/General	Population								averag	ed over 1	gram				

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 60 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 69 of 94

Table 11-26 WLAN Hotspot SAR

									JREME	_	ULTS								
FREQU	ENCY Ch.	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g) (W/kg)	Plot#
2437	6 6	802.11b	DSSS	22	17.0	16.82	0.02	10 mm	1	01430	1	back	99.9	W/kg 0.127	(W/kg)	1.042	1.001	(W/Kg)	
2437	6	802.11b	DSSS	22	17.0	16.82	0.04	10 mm	1	01430	1	front	99.9	0.137		1.042	1.001	-	
2437	6	802.11b	DSSS	22	17.0	16.82	0.05	10 mm	1	01430	1	top	99.9	0.030	-	1.042	1.001	-	
2437	6	802.11b	DSSS	22	17.0	16.82	0.02	10 mm	1	01430	1	left	99.9	0.174	0.130	1.042	1.001	0.136	
2437	6	802.11b	DSSS	22	17.0	16.73	0.01	10 mm	2	01430	1	back	99.9	0.177	0.151	1.064	1.001	0.161	A36
2437	6	802.11b	DSSS	22	17.0	16.73	0.05	10 mm	2	01430	1	front	99.9	0.145		1.064	1.001	-	
2437	6	802.11b	DSSS	22	17.0	16.73	-0.02	10 mm	2	01430	1	top	99.9	0.026	-	1.064	1.001	-	
2437	6	802.11b	DSSS	22	17.0	16.73	0.13	10 mm	2	01430	1	left	99.9	0.171		1.064	1.001	-	
5220	44	802.11a	OFDM	20	16.5	16.03	80.0	10 mm	1	01430	6	back	99.3	0.758	0.412	1.114	1.007	0.462	
5220	44	802.11a	OFDM	20	16.5	16.03	0.04	10 mm	1	01430	6	front	99.3	0.034	0.022	1.114	1.007	0.025	
5220	44	802.11a	OFDM	20	16.5	16.03	0.02	10 mm	1	01430	6	top	99.3	0.085		1.114	1.007	-	
5220	44	802.11a	OFDM	20	16.5	16.03	0.18	10 mm	1	01430	6	left	99.3	0.242	0.127	1.114	1.007	0.142	
5240	48	802.11a	OFDM	20	16.5	16.49	0.03	10 mm	2	01430	6	back	99.3	0.487	0.232	1.002	1.007	0.234	
5240	48	802.11a	OFDM	20	16.5	16.49	0.05	10 mm	2	01430	6	front	99.3	0.193	0.093	1.002	1.007	0.094	
5240	48	802.11a	OFDM	20	16.5	16.49	0.11	10 mm	2	01430	6	top	99.3	0.291	-	1.002	1.007	-	
5240	48	802.11a	OFDM	20	16.5	16.49	0.06	10 mm	2	01430	6	left	99.3	0.088		1.002	1.007	-	
5745	149	802.11a	OFDM	20	16.5	16.26	-0.06	10 mm	1	01430	6	back	99.3	0.948	0.483	1.057	1.007	0.514	A38
5745	149	802.11a	OFDM	20	16.5	16.26	0.17	10 mm	1	01430	6	front	99.3	0.064	0.022	1.057	1.007	0.023	
5745	149	802.11a	OFDM	20	16.5	16.26	0.02	10 mm	1	01430	6	top	99.3	0.111		1.057	1.007	-	
5745	149	802.11a	OFDM	20	16.5	16.26	0.18	10 mm	1	01430	6	left	99.3	0.351	0.172	1.057	1.007	0.183	
5745	149	802.11a	OFDM	20	16.5	15.84	0.02	10 mm	2	01430	6	back	99.3	0.193	0.105	1.164	1.007	0.123	
5745	149	802.11a	OFDM	20	16.5	15.84	-0.18	10 mm	2	01430	6	front	99.3	0.035	0.024	1.164	1.007	0.028	
5745	149	802.11a	OFDM	20	16.5	15.84	0.11	10 mm	2	01430	6	top	99.3	0.162	٠	1.164	1.007	-	
5745	149	802.11a	OFDM	20	16.5	15.84	0.04	10 mm	2	01430	6	left	99.3	0.030	-	1.164	1.007	-	
		ANSI			AFETY LIMIT									Body					
		Spatial Peak Uncontrolled Exposure/General Population											á	1.6 W/kg (mV averaged over 1	•				

11.4 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 70 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 70 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).

GSM Test Notes:

- Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.
- 3. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 4. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

CDMA Notes:

- 1. Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 71 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 71 of 94

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4.
- MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported (scaled) for LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR among all exposure condition. Please see Section 14 for linearity results.
- 7. Per KDB Publication 941225 D05Av01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 8.7.6 for more information.
- 4. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06. Please see Section 12 for complete analysis.
- 5. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 6. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 72 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2480	12.50	10	0.378

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 72 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 73 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	:	ΣSAR (W/kg)
		1	2	3	1+2	1+3	1+2+3
	GSM/GPRS 850	0.209	0.629	0.698	0.838	0.907	1.536
	GSM/GPRS 1900	0.118	0.629	0.698	0.747	0.816	1.445
	UMTS 850	0.183	0.629	0.698	0.812	0.881	1.510
	UMTS 1750	0.192	0.629	0.698	0.821	0.890	1.519
	UMTS 1900	0.160	0.629	0.698	0.789	0.858	1.487
	CDMA/EVDO BC0 (§22H)	0.258	0.629	0.698	0.887	0.956	1.585
Head SAR	CDMA/EVDO BC10 (§90S)	0.222	0.629	0.698	0.851	0.920	1.549
	PCS CDMA/EVDO	0.188	0.629	0.698	0.817	0.886	1.515
	LTE Band 12	0.104	0.629	0.698	0.733	0.802	1.431
	LTE Band 26 (Cell)	0.221	0.629	0.698	0.850	0.919	1.548
	LTE Band 4 (AWS)	0.236	0.629	0.698	0.865	0.934	1.563
	LTE Band 25 (PCS)	0.184	0.629	0.698	0.813	0.882	1.511
	LTE Band 41	0.124	0.629	0.698	0.753	0.822	1.451

Table 12-3
Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Cimulaticous Transmission occidano with 5 Citz WEAR (Neid to Edi)								
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)		ΣSAR (W/kg)	
		1	2	3	1+2	1+3	1+2+3	
	GSM/GPRS 850	0.209	0.102	0.564	0.311	0.773	0.875	
	GSM/GPRS 1900	0.118	0.102	0.564	0.220	0.682	0.784	
	UMTS 850	0.183	0.102	0.564	0.285	0.747	0.849	
	UMTS 1750	0.192	0.102	0.564	0.294	0.756	0.858	
	UMTS 1900	0.160	0.102	0.564	0.262	0.724	0.826	
	CDMA/EVDO BC0 (§22H)	0.258	0.102	0.564	0.360	0.822	0.924	
Head SAR	CDMA/EVDO BC10 (§90S)	0.222	0.102	0.564	0.324	0.786	0.888	
	PCS CDMA/EVDO	0.188	0.102	0.564	0.290	0.752	0.854	
	LTE Band 12	0.104	0.102	0.564	0.206	0.668	0.770	
	LTE Band 26 (Cell)	0.221	0.102	0.564	0.323	0.785	0.887	
	LTE Band 4 (AWS)	0.236	0.102	0.564	0.338	0.800	0.902	
	LTE Band 25 (PCS)	0.184	0.102	0.564	0.286	0.748	0.850	
•	LTE Band 41	0.124	0.102	0.564	0.226	0.688	0.790	

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 74 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 74 of 94

Table 12-4 Simultaneous Transmission Scenario with 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN (Held to Ear)

Jiiii	Simultaneous Transmission Scenario with 2.4 GHz Ant 1 and 5 GHz Ant 2 WEAN (Held to Ear)								
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	:	ΣSAR (W/kg)		
		1	2	3	1+2	1+3	1+2+3		
	GSM/GPRS 850	0.209	0.629	0.564	0.838	0.773	1.402		
	GSM/GPRS 1900	0.118	0.629	0.564	0.747	0.682	1.311		
	UMTS 850	0.183	0.629	0.564	0.812	0.747	1.376		
	UMTS 1750	0.192	0.629	0.564	0.821	0.756	1.385		
	UMTS 1900	0.160	0.629	0.564	0.789	0.724	1.353		
	CDMA/EVDO BC0 (§22H)	0.258	0.629	0.564	0.887	0.822	1.451		
Head SAR	CDMA/EVDO BC10 (§90S)	0.222	0.629	0.564	0.851	0.786	1.415		
	PCS CDMA/EVDO	0.188	0.629	0.564	0.817	0.752	1.381		
	LTE Band 12	0.104	0.629	0.564	0.733	0.668	1.297		
	LTE Band 26 (Cell)	0.221	0.629	0.564	0.850	0.785	1.414		
	LTE Band 4 (AWS)	0.236	0.629	0.564	0.865	0.800	1.429		
	LTE Band 25 (PCS)	0.184	0.629	0.564	0.813	0.748	1.377		
	LTE Band 41	0.124	0.629	0.564	0.753	0.688	1.317		

Table 12-5 Simultaneous Transmission Scenario with 2.4 GHz Ant 2 and 5 GHz Ant 1 WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)		Σ SAR (W/kg)
		1	2	3	1+2	1+3	1+2+3
	GSM/GPRS 850	0.209	0.698	0.102	0.907	0.311	1.009
	GSM/GPRS 1900	0.118	0.698	0.102	0.816	0.220	0.918
	UMTS 850	0.183	0.698	0.102	0.881	0.285	0.983
	UMTS 1750	0.192	0.698	0.102	0.890	0.294	0.992
	UMTS 1900	0.160	0.698	0.102	0.858	0.262	0.960
	CDMA/EVDO BC0 (§22H)	0.258	0.698	0.102	0.956	0.360	1.058
Head SAR	CDMA/EVDO BC10 (§90S)	0.222	0.698	0.102	0.920	0.324	1.022
	PCS CDMA/EVDO	0.188	0.698	0.102	0.886	0.290	0.988
	LTE Band 12	0.104	0.698	0.102	0.802	0.206	0.904
	LTE Band 26 (Cell)	0.221	0.698	0.102	0.919	0.323	1.021
	LTE Band 4 (AWS)	0.236	0.698	0.102	0.934	0.338	1.036
	LTE Band 25 (PCS)	0.184	0.698	0.102	0.882	0.286	0.984
	LTE Band 41	0.124	0.698	0.102	0.822	0.226	0.924

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 75 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 75 01 94

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-6
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

					(Doug Hon)	· · · · · · · · · · · · · · · · · · ·	
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ	SAR (W/kg))
		1	2	3	1+2	1+3	1+2+3
	GSM/GPRS 850	1.070	0.113	0.161	1.183	1.231	1.344
	GSM/GPRS 1900	0.441	0.113	0.161	0.554	0.602	0.715
	UMTS 850	0.571	0.113	0.161	0.684	0.732	0.845
	UMTS 1750	0.854	0.113	0.161	0.967	1.015	1.128
	UMTS 1900	0.692	0.113	0.161	0.805	0.853	0.966
	CDMA BC0 (§22H)	0.725	0.113	0.161	0.838	0.886	0.999
Body-Worn	CDMA BC10 (§90S)	0.660	0.113	0.161	0.773	0.821	0.934
	PCS CDMA	0.892	0.113	0.161	1.005	1.053	1.166
	LTE Band 12	0.424	0.113	0.161	0.537	0.585	0.698
	LTE Band 26 (Cell)	0.717	0.113	0.161	0.830	0.878	0.991
	LTE Band 4 (AWS)	0.826	0.113	0.161	0.939	0.987	1.100
	LTE Band 25 (PCS)	0.778	0.113	0.161	0.891	0.939	1.052
	LTE Band 41	0.532	0.113	0.161	0.645	0.693	0.806

Table 12-7
Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

	Cimataneous Transmission Scenario With S Sitz WEAR (Body World at 1.5 Sit)									
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)			SPLSR		
		1	2	3	1+2	1+3	1+2+3	1+2	1+3	2+3
	GSM/GPRS 850	1.070	0.654	0.315	See Note 1	1.385	See Note 1	0.02	0.01	0.03
	GSM/GPRS 1900	0.441	0.654	0.315	1.095	0.756	1.410	N/A	N/A	N/A
	UMTS 850	0.571	0.654	0.315	1.225	0.886	1.540	N/A	N/A	N/A
	UMTS 1750	0.854	0.654	0.315	1.508	1.169	See Note 1	0.02	0.01	0.03
	UMTS 1900	0.692	0.654	0.315	1.346	1.007	See Note 1	0.02	0.01	0.03
	CDMA BC0 (§22H)	0.725	0.654	0.315	1.379	1.040	See Note 1	0.02	0.01	0.03
Body-Worn	CDMA BC10 (§90S)	0.660	0.654	0.315	1.314	0.975	See Note 1	0.02	0.01	0.03
	PCS CDMA	0.892	0.654	0.315	1.546	1.207	See Note 1	0.02	0.01	0.03
	LTE Band 12	0.424	0.654	0.315	1.078	0.739	1.393	N/A	N/A	N/A
	LTE Band 26 (Cell)	0.717	0.654	0.315	1.371	1.032	See Note 1	0.02	0.01	0.03
	LTE Band 4 (AWS)	0.826	0.654	0.315	1.480	1.141	See Note 1	0.02	0.01	0.03
	LTE Band 25 (PCS)	0.778	0.654	0.315	1.432	1.093	See Note 1	0.02	0.01	0.03
	LTE Band 41	0.532	0.654	0.315	1.186	0.847	1.501	N/A	N/A	N/A

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 76 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 76 of 94

Table 12-8 Simultaneous Transmission Scenario with 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN (Body-Worn at 1.0 cm)

Official Code Transmission Occident With 2.4 One Ant 1			and continue to but (Lought continue no only				
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)		SAR (W/kg	j)
		1	2	3	1+2	1+3	1+2+3
	GSM/GPRS 850	1.070	0.113	0.315	1.183	1.385	1.498
	GSM/GPRS 1900	0.441	0.113	0.315	0.554	0.756	0.869
	UMTS 850	0.571	0.113	0.315	0.684	0.886	0.999
	UMTS 1750	0.854	0.113	0.315	0.967	1.169	1.282
	UMTS 1900	0.692	0.113	0.315	0.805	1.007	1.120
	CDMA BC0 (§22H)	0.725	0.113	0.315	0.838	1.040	1.153
Body-Worn	CDMA BC10 (§90S)	0.660	0.113	0.315	0.773	0.975	1.088
	PCS CDMA	0.892	0.113	0.315	1.005	1.207	1.320
	LTE Band 12	0.424	0.113	0.315	0.537	0.739	0.852
	LTE Band 26 (Cell)	0.717	0.113	0.315	0.830	1.032	1.145
	LTE Band 4 (AWS)	0.826	0.113	0.315	0.939	1.141	1.254
	LTE Band 25 (PCS)	0.778	0.113	0.315	0.891	1.093	1.206
	LTE Band 41	0.532	0.113	0.315	0.645	0.847	0.960

Table 12-9 Simultaneous Transmission Scenario with 2.4 GHz Ant 2 and 5 GHz Ant 1 WLAN (Body-Worn at 1.0 cm)

						<u> </u>	-	(===,	ut	
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	Σ SAR (W/kg)			SPLSR		
		1	2	3	1+2	1+3	1+2+3	1+2	1+3	2+3
	GSM/GPRS 850	1.070	0.161	0.654	1.231	See Note 1	See Note 1	0.01	0.02	0.02
	GSM/GPRS 1900	0.441	0.161	0.654	0.602	1.095	1.256	N/A	N/A	N/A
	UMTS 850	0.571	0.161	0.654	0.732	1.225	1.386	N/A	N/A	N/A
	UMTS 1750	0.854	0.161	0.654	1.015	1.508	See Note 1	0.01	0.02	0.02
	UMTS 1900	0.692	0.161	0.654	0.853	1.346	1.507	N/A	N/A	N/A
	CDMA BC0 (§22H)	0.725	0.161	0.654	0.886	1.379	1.540	N/A	N/A	N/A
Body-Worn	CDMA BC10 (§90S)	0.660	0.161	0.654	0.821	1.314	1.475	N/A	N/A	N/A
	PCS CDMA	0.892	0.161	0.654	1.053	1.546	See Note 1	0.01	0.02	0.02
	LTE Band 12	0.424	0.161	0.654	0.585	1.078	1.239	N/A	N/A	N/A
	LTE Band 26 (Cell)	0.717	0.161	0.654	0.878	1.371	1.532	N/A	N/A	N/A
	LTE Band 4 (AWS)	0.826	0.161	0.654	0.987	1.480	See Note 1	0.01	0.02	0.02
	LTE Band 25 (PCS)	0.778	0.161	0.654	0.939	1.432	1.593	N/A	N/A	N/A
	LTE Band 41	0.532	0.161	0.654	0.693	1.186	1.347	N/A	N/A	N/A

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 77 of 04	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset		Page 77 of 94	
017 PCTEST Engineering Laboratory, Inc.				REV 18.2 M	

Table 12-10 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

<u> </u>	Transinission ocenar	o with Biasts	our (Body fre	in at no only
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	1.070	0.378	1.448
	GSM/GPRS 1900	0.441	0.378	0.819
	UMTS 850	0.571	0.378	0.949
	UMTS 1750	0.854	0.378	1.232
	UMTS 1900	0.692	0.378	1.070
	CDMA BC0 (§22H)	0.725	0.378	1.103
Body-Worn	CDMA BC10 (§90S)	0.660	0.378	1.038
	PCS CDMA	0.892	0.378	1.270
	LTE Band 12	0.424	0.378	0.802
	LTE Band 26 (Cell)	0.717	0.378	1.095
	LTE Band 4 (AWS)	0.826	0.378	1.204
	LTE Band 25 (PCS)	0.778	0.378	1.156
	LTE Band 41	0.532	0.378	0.910

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 79 of 04	
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 78 of 94	

Hotspot SAR Simultaneous Transmission Analysis

Table 12-11 Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg))
		1	2	3	1+2	1+3	1+2+3
	GPRS 850	1.070	0.136	0.161	1.206	1.231	1.367
	GPRS 1900	0.507	0.136	0.161	0.643	0.668	0.804
	UMTS 850	0.571	0.136	0.161	0.707	0.732	0.868
	UMTS 1750	0.854	0.136	0.161	0.990	1.015	1.151
	UMTS 1900	0.767	0.136	0.161	0.903	0.928	1.064
	EVDO BC0 (§22H)	0.712	0.136	0.161	0.848	0.873	1.009
Hotspot SAR	EVDO BC10 (§90S)	0.665	0.136	0.161	0.801	0.826	0.962
	PCS EVDO	0.791	0.136	0.161	0.927	0.952	1.088
	LTE Band 12	0.424	0.136	0.161	0.560	0.585	0.721
	LTE Band 26 (Cell)	0.717	0.136	0.161	0.853	0.878	1.014
	LTE Band 4 (AWS)	0.826	0.136	0.161	0.962	0.987	1.123
	LTE Band 25 (PCS)	0.987	0.136	0.161	1.123	1.148	1.284
	LTE Band 41	0.650	0.136	0.161	0.786	0.811	0.947

Table 12-12 Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

						ot at 110 on	
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)		
		1	2	3	1+2	1+3	1+2+3
	GPRS 850	1.070	0.514	0.234	1.584	1.304	See Table Below
	GPRS 1900	0.507	0.514	0.234	1.021	0.741	1.255
	UMTS 850	0.571	0.514	0.234	1.085	0.805	1.319
	UMTS 1750	0.854	0.514	0.234	1.368	1.088	See Table Below
	UMTS 1900	0.767	0.514	0.234	1.281	1.001	1.515
	EVDO BC0 (§22H)	0.712	0.514	0.234	1.226	0.946	1.460
Hotspot SAR	EVDO BC10 (§90S)	0.665	0.514	0.234	1.179	0.899	1.413
	PCS EVDO	0.791	0.514	0.234	1.305	1.025	1.539
	LTE Band 12	0.424	0.514	0.234	0.938	0.658	1.172
	LTE Band 26 (Cell)	0.717	0.514	0.234	1.231	0.951	1.465
	LTE Band 4 (AWS)	0.826	0.514	0.234	1.340	1.060	1.574
	LTE Band 25 (PCS)	0.987	0.514	0.234	1.501	1.221	See Table Below
	LTE Band 41	0.650	0.514	0.234	1.164	0.884	1.398

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 70 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 79 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

Simult Tx	Configuration	GPRS 8 SAR (W/	50 Ant 1	SAR	5 GHz WLAN Ant 2 SAR (W/kg)	:	Σ SAF	R (W/kg)		SPLSR	
		1	2	2	3	1+2	1	l + 3	1+2+3	1+2	1+3	2+3
	Back	1.070	0.5	14	0.234	1.584	1.	.304	See Note	0.02	0.01	0.03
•	Front	0.953	0.0	25	0.094	0.978	1.	.047	1.072	N/A	N/A	N/A
Hotspot SAR	Тор	-	0.5	14*	0.234*	0.514	0.	.234	0.748	N/A	N/A	N/A
Hotspot SAR	Bottom	0.492	-		-	0.492		.492	0.492	N/A	N/A	N/A
	Right	0.187	-		-	0.187		.187	0.187	N/A	N/A	N/A
	Left	0.541	0.1	83	0.234*	0.724	0.	.775	0.958	N/A	N/A	N/A
Simult Tx Configuration			MTS 1750 S GHz WLAN 5 Ant 1 SAR (W/kg)		5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)				SPLSR		
		1	2	2	3	1+2	1	l + 3	1+2+3	1+2	1+3	2+3
	Back	0.854	0.5	14	0.234	1.368	1.	.088	See Note	0.01	0.01	0.03
	Front	0.673	0.0		0.094	0.698		.767	0.792	N/A	N/A	N/A
Hotspot SAR	Тор	-	0.5	14*	0.234*	0.514	0.	.234	0.748	N/A	N/A	N/A
riotopot o/ tr	Bottom	0.634	-		-	0.634		.634	0.634	N/A	N/A	N/A
	Right	-	-		-	0.000		.000	0.000	N/A	N/A	N/A
	Left	0.317	0.1	83	0.234*	0.500	0.	.551	0.734	N/A	N/A	N/A
		LTE Band (PCS) Sa (W/kg)	AR	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz W Ant 2 S (W/kg	AR		+2	SAR (W/			
	Back	(0.778		0.514	0.234	4	1	.292	1.012	1	.526
	Fron		0.692		0.025	0.094			.717	0.786		.811
	Ton		-		0.514*	0.234			.514	0.234		.748
Hotspot SA	R Botto		0.987		-	-			.987	0.987		.987
	Righ		-		_	_			.000	0.000		.000
	Left		0.286		0.183	0.234	! *		.469	0.520		.703

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 90 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 80 of 94

Table 12-13 Simultaneous Transmission Scenario with 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN (Hotspot at 1.0 cm)

<u>antanicous i</u>	Talisiilissioii oce	ilailo Witi	OII- / (I	it i and o	7112 7 1116 2 1	7727 117 (1100	opot at 110
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)		
		1	2	3	1+2	1+3	1+2+3
	GPRS 850	1.070	0.136	0.234	1.206	1.304	1.440
	GPRS 1900	0.507	0.136	0.234	0.643	0.741	0.877
	UMTS 850	0.571	0.136	0.234	0.707	0.805	0.941
	UMTS 1750	0.854	0.136	0.234	0.990	1.088	1.224
	UMTS 1900	0.767	0.136	0.234	0.903	1.001	1.137
	EVDO BC0 (§22H)	0.712	0.136	0.234	0.848	0.946	1.082
Hotspot SAR	EVDO BC10 (§90S)	0.665	0.136	0.234	0.801	0.899	1.035
	PCS EVDO	0.791	0.136	0.234	0.927	1.025	1.161
	LTE Band 12	0.424	0.136	0.234	0.560	0.658	0.794
	LTE Band 26 (Cell)	0.717	0.136	0.234	0.853	0.951	1.087
	LTE Band 4 (AWS)	0.826	0.136	0.234	0.962	1.060	1.196
	LTE Band 25 (PCS)	0.987	0.136	0.234	1.123	1.221	1.357
	LTE Band 41	0.650	0.136	0.234	0.786	0.884	1.020

Table 12-14 Simultaneous Transmission Scenario with 2.4 GHz Ant 2 and 5 GHz Ant 1 WLAN (Hotspot at 1.0 cm)

iuitaiieous	Transmission Sc	enano wit	11 Z.4 GI1Z	Aiit Z aiiu	J GIIZ AIIL	I AAFWIA (Hotspot at 1.0	
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)		Σ SAR (W/kg)		
		1	2	3	1+2	1+3	1+2+3	
	GPRS 850	1.070	0.161	0.514	1.231	1.584	See Table Below	
	GPRS 1900	0.507	0.161	0.514	0.668	1.021	1.182	
	UMTS 850	0.571	0.161	0.514	0.732	1.085	1.246	
	UMTS 1750	0.854	0.161	0.514	1.015	1.368	1.529	
	UMTS 1900	0.767	0.161	0.514	0.928	1.281	1.442	
	EVDO BC0 (§22H)	0.712	0.161	0.514	0.873	1.226	1.387	
Hotspot SAR	EVDO BC10 (§90S)	0.665	0.161	0.514	0.826	1.179	1.340	
	PCS EVDO	0.791	0.161	0.514	0.952	1.305	1.466	
	LTE Band 12	0.424	0.161	0.514	0.585	0.938	1.099	
	LTE Band 26 (Cell)	0.717	0.161	0.514	0.878	1.231	1.392	
	LTE Band 4 (AWS)	0.826	0.161	0.514	0.987	1.340	1.501	
	LTE Band 25 (PCS)	0.987	0.161	0.514	1.148	1.501	See Table Below	
	LTE Band 41	0.650	0.161	0.514	0.811	1.164	1.325	

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 94 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 81 of 94

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)		Σ SAR (W/kg)		SPLSR		
		1	2	3	1+2	1+3	1+2+3	1+2	1+3	2+3
	Back	1.070	0.161	0.514	1.231	1.584	See Note 1	0.01	0.02	0.02
	Front	0.953	0.161*	0.025	1.114	0.978	1.139	N/A	N/A	N/A
Hotspot SAR	Тор	-	0.161*	0.514*	0.161	0.514	0.675	N/A	N/A	N/A
Tiotspot SAIX	Bottom	0.492	-	-	0.492	0.492	0.492	N/A	N/A	N/A
	Right	0.187	-	-	0.187	0.187	0.187	N/A	N/A	N/A
	Left	0.541	0.161*	0.183	0.702	0.724	0.885	N/A	N/A	N/A

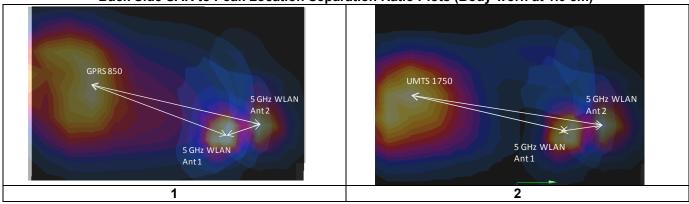
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)		ESAR (W/kg))
		1	2	3	1+2	1+3	1+2+3
	Back	0.778	0.161	0.514	0.939	1.292	1.453
	Front	0.692	0.161*	0.025	0.853	0.717	0.878
Hotspot SAR	Тор	-	0.161*	0.514*	0.161	0.514	0.675
Ποίδροί ΘΑΚ	Bottom	0.987	1	-	0.987	0.987	0.987
	Right	-	-	-	0.000	0.000	0.000
	Left	0.286	0.161*	0.183	0.447	0.469	0.630

Notes:

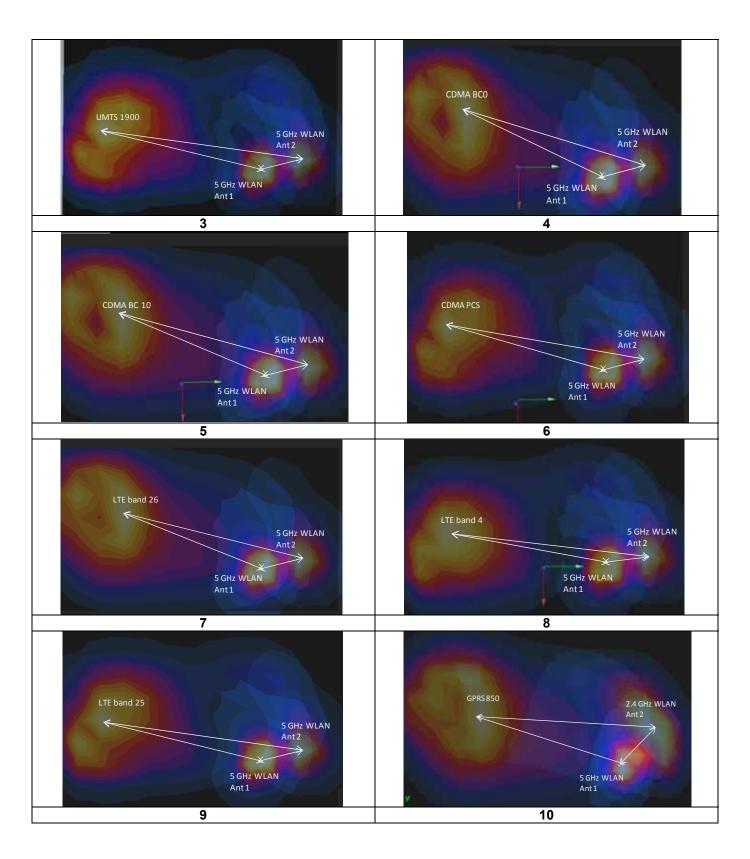
- 1.No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.
- 2. (*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.
- 3. Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 92 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 82 of 94

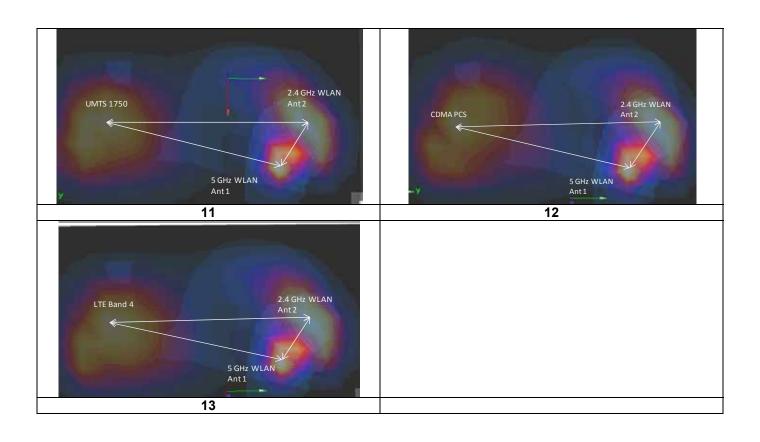
12.6 SPLSR Evaluation and Analysis


Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 92 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 83 of 94


Table 12-16 Back Side SAR to Peak Location Separation Ratio Calculations (Body-Worn at 1.0 cm)

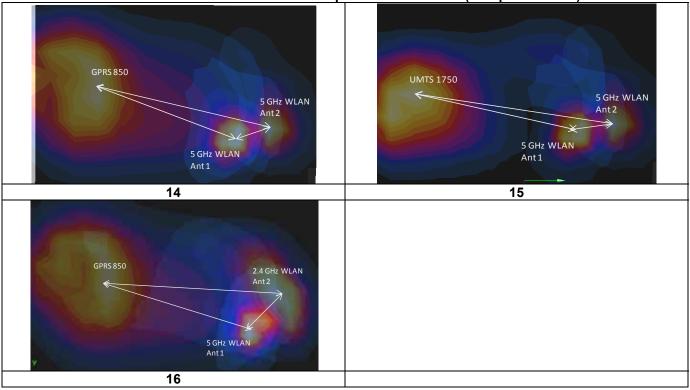
Dack Side	SAR to Peak Location	l Separa	tion Nat			in at 1.0 cmj	1
Anton	na Dair	Standalo	ne 1g SAR	Standalone	Peak SAR	CDI C Dati c	
Anten	na Pair	(W)	/kg)	SAR Sum	Separation	SPLS Ratio	Plot
	1		I .	(W/kg)	Distance (mm)	1.5	Number
Ant "a"	Ant "b"	a	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN Ant 2	5 GHz WLAN Ant 1	0.161	0.654	0.815	34.38	0.02	10 to 13
5 GHz WLAN Ant 1	5 GHz WLAN Ant 2	0.654	0.315	0.969	27.89	0.03	1 to 9
GPRS 850	5 GHz WLAN Ant 1	1.07	0.654	1.724	95.82	0.02	1, 10
UMTS 1750	5 GHz WLAN Ant 1	0.854	0.654	1.508	112.38	0.02	2, 11
UMTS 1900	5 GHz WLAN Ant 1	0.692	0.654	1.346	101.79	0.02	3
CDMA BC0	5 GHz WLAN Ant 1	0.725	0.654	1.379	90.90	0.02	4
CDMA BC10	5 GHz WLAN Ant 1	0.66	0.654	1.314	94.14	0.02	5
PCS CDMA	5 GHz WLAN Ant 1	0.892	0.654	1.546	101.39	0.02	6, 12
LTE Band 26 (Cell)	5 GHz WLAN Ant 1	0.717	0.654	1.371	92.29	0.02	7
LTE Band 4 (AWS)	5 GHz WLAN Ant 1	0.826	0.654	1.480	100.66	0.02	8, 13
LTE Band 25 (PCS)	5 GHz WLAN Ant 1	0.778	0.654	1.432	106.96	0.02	9
GPRS 850	5 GHz WLAN Ant 2	1.07	0.315	1.385	119.45	0.01	1
UMTS 1750	5 GHz WLAN Ant 2	0.854	0.315	1.169	137.93	0.01	2
UMTS 1900	5 GHz WLAN Ant 2	0.692	0.315	1.007	126.67	0.01	3
CDMA BC0	5 GHz WLAN Ant 2	0.725	0.315	1.040	114.61	0.01	4
CDMA BC10	5 GHz WLAN Ant 2	0.66	0.315	0.975	116.72	0.01	5
PCS CDMA	5 GHz WLAN Ant 2	0.892	0.315	1.207	126.44	0.01	6
LTE Band 26 (Cell)	5 GHz WLAN Ant 2	0.717	0.315	1.032	116.07	0.01	7
LTE Band 4 (AWS)	5 GHz WLAN Ant 2	0.826	0.315	1.141	126.02	0.01	8
LTE Band 25 (PCS)	5 GHz WLAN Ant 2	0.778	0.315	1.093	132.02	0.01	9
GPRS 850	2.4 GHz WLAN Ant 2	1.07	0.161	1.231	114.62	0.01	10
UMTS 1750	2.4 GHz WLAN Ant 2	0.854	0.161	1.015	135.00	0.01	11
PCS CDMA	2.4 GHz WLAN Ant 2	0.892	0.161	1.053	123.02	0.01	12
LTE Band 4 (AWS)	2.4 GHz WLAN Ant 2	0.826	0.161	0.987	123.00	0.01	13


Table 12-17 Back Side SAR to Peak Location Separation Ratio Plots (Body-worn at 1.0 cm)

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 94 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 84 of 94

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 95 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 85 of 94

Table 12-18 Peak SAR Locations for Body Back Side (Hotspot at 1.0 cm)


Mode/Band	x (mm)	y (mm)	Reported SAR (W/kg)
2.4 GHz WLAN Ant 2	-14.60	66.00	0.161
5 GHz WLAN Ant 1	10.00	42.00	0.514
5 GHz WLAN Ant 2	8.00	65.00	0.234
GPRS 850	-26.50	-48.00	1.07
UMTS 1750	-14.00	-69.00	0.854

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 96 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 86 of 94

Table 12-19 Back Side SAR to Peak Location Separation Ratio Calculations (Hotspot at 1.0 cm)

Antenna Pair			Standalone 1g SAR (W/kg)		Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	a b		a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN Ant 2	5 GHz WLAN Ant 1	0.161	0.514	0.675	34.37	0.02	16
5 GHz WLAN Ant 1	5 GHz WLAN Ant 2	0.514	0.234	0.748	23.09	0.03	14 to 15
GPRS 850	5 GHz WLAN Ant 1	1.07	0.514	1.584	97.12	0.02	14, 16
UMTS 1750	5 GHz WLAN Ant 1	0.854	0.514	1.368	113.56	0.01	15
GPRS 850	5 GHz WLAN Ant 2	1.07	0.234	1.304	118.15	0.01	14
UMTS 1750	5 GHz WLAN Ant 2	0.854	0.234	1.088	135.79	0.01	15
GPRS 850	2.4 GHz WLAN Ant 2	1.07	0.161	1.231	114.62	0.01	16

Table 12-20 Back Side SAR to Peak Location Separation Ratio Plots (Hotspot at 1.0cm)

12.7 **Simultaneous Transmission Conclusion**

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 97 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 87 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-q SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS												
Band	FREQUENCY		Mode	Service Sid	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
835	836.60	190	GSM 850	GPRS	back	10 mm	1.020	1.060	1.04	N/A	N/A	N/A	N/A
1750	1752.60	1513	UMTS 1750	RMC	back	10 mm	0.844	0.854	1.01	N/A	N/A	N/A	N/A
1900	1860.00	26140	LTE Band 25 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 99 RB Offset	bottom	10 mm	0.984	0.987	1.00	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT				Body								
	Spatial Peak					1.6 W/kg (mW/g)							
		Unc	ontrolled Exposure/General Populat	ion				a	veraged o	ver 1 gram			

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 90 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 88 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

14 ADDITIONAL TESTING PER FCC GUIDANCE

LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR among all exposure conditions. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. Per FCC Guidance, no additional SAR measurements were required.

Table 14-1 LTE Band 41 Linearity Data

3		i i
	LTE Band 41 PC3	LTE Band 41 PC2
Maximum Allowed Output Power (dBm)	25.5	26.7
Measured Output Power (dBm)	25.50	26.58
Measured SAR (W/kg)	0.65	0.53
Measured Power (mW)	354.81	454.99
Duty Cycle	63.3%	43.3%
Frame Averaged Output Power (mW)	224.60	197.01
% deviation from expected linarity		-7.04%

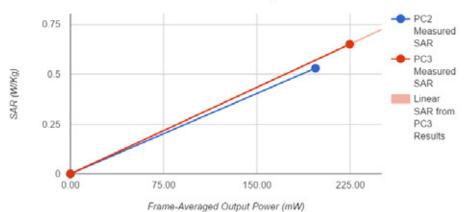


Figure 14-1 LTE Band 41 Linearity

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 90 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 89 of 94

Manufacturer Model Description Description Cal Date Cal Investor Cal Date Select Number			5 1.0				
Agillett							
Agilleter			(250kHz-20GHz) Signal Generator		Annual		
Agilient E44852 E65 Vestos Signal Generation \$1272001 Annual \$12772017 Messon M	Agilent	8753E	(30kHz-6GHz) Network Analyzer		Annual	3/2/2017	JP38020182
Agilient E44852 E65 Vestos Signal Generation \$1272001 Annual \$12772017 Messon M	Agilent	E5515C	8960 Series 10 Wireless Communications Test Set	10/5/2016	Annual	10/5/2017	GB42230325
Agillett							
Agillant							
Applient							
Agient							
Agilest 9318A							
Agricol	Agilent	N5182A	MXG Vector Signal Generator	2/27/2016	Annual	2/27/2017	MY47420651
Agillent EP3815 S-Parameter Network Analyzer 49120056 Annual 67262617 Mr40000811	Agilent	N5182A	MXG Vector Signal Generator	3/5/2016	Annual	3/5/2017	MY47420800
Agilest E7385 S. Fernmetor Vector Review Analyzer M13/2005 Bennial M15/2017 M14/2005 Agilest E5355 Wireless Communications Test Set M17/2005 Bennial M17/2007 G84350479 Agilest E5355 Wireless Communications Test Set M17/2005 Bennial M17/2007 G84350479	Agilent	8753ES	S-Parameter Network Analyzer	3/3/2016	Annual	3/3/2017	US39170122
Agilest E7385 S. Fernmetor Vector Review Analyzer M13/2005 Bennial M15/2017 M14/2005 Agilest E5355 Wireless Communications Test Set M17/2005 Bennial M17/2007 G84350479 Agilest E5355 Wireless Communications Test Set M17/2005 Bennial M17/2007 G84350479						6/28/2017	
Agilent							
Applient							
Ampilliter Research							
Amplifier Research MAISSAGE Amplifier CST M/A CST 4,93972 Amritsu MAISSAGE Power Meter 31/15/2015 Biennial 10/16/2017 109008 Amritsu MAISSAGE Power Meter 30/16/2015 Biennial 10/16/2017 109008 Amritsu MAISSAGE MAISSAG							
Annthu					_		1000.2
Annitsu	Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Annitsu	Anritsu	ML2496A	Power Meter	3/5/2016	Annual	3/5/2017	1351001
Annitsu	Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	1039008
Annitsu							
Annisu MR820C Radio Communication Analyzer 4/14/2016 Annisu 4/14/2017 2602144319 Annisu MR820C Radio Communication Analyzer 9/13/2016 Annisu 3/12/2017 2602144319 Annisu MA2400A USB Power Senior 3/14/2016 Annisu 3/12/2017 134655 Annisu MA2400A USB Power Senior 3/14/2016 Annisu 3/12/2017 134655 Annisu MA2400A USB Power Senior 3/14/2016 Annisu 3/12/2017 134655 Annisu MA2400A USB Power Senior 3/14/2016 Annisu 3/12/2017 134655 CONTICO CONTIC							
Annitsu MR82006							
Annitsu							
Anitsu	Anritsu		Radio Communication Analyzer		Annual		
COMTECH	Anritsu	MA24106A	USB Power Sensor	3/4/2016	Annual	3/4/2017	1344555
COMTECH	Anritsu	MA24106A	USB Power Sensor	3/4/2016	Annual	3/4/2017	1344556
COMTech							
Control Company 4900 Digital Thermometer 3115/2015 Blennial 315/2017 150094920							
Control Company					_		
Control Company							
Control Company							
Mary		4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261701
Mary	Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261729
MiniCircuits SU-2009-							MY52180215
Minicrarits							
Mini-Circuits							
Mini-Circuits NP-1200-							
Mini-Circuits NIP-2809-) Low Pass Filter DC to 2000 MHz C8T N/A C8T N/A C8T N/A Mini-Circuits BW-2809-) Low Pass Filter DC to 2000 MHz C8T N/A N/A C8T N/A N							
Mmil-Circuits MN-XDM/5 Down Pass Filter DC to 2700 Mftz CBT N/A CBT 1226 Millutoyo CD-6*CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 13264152 Millutoyo CD-6*CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 13264152 Nintropy CD-6*CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 13264152 Nintropy CD-6*CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 33264152 Nintropy CD-6*CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 33264152 Nintropy CD-6*CSX Digital Caliper 3/2/2016 Biennial 3/2/2018 33264152 Nintropy CBT N/A	Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Milliory Co-FCSX	Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Milliory Co-FCSX	Mini-Circuits	NIP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutoyo		RW-N20W5					
Mitutoyo					_		
Narda							
Narda							
Narda	Narda		4 - 8 GHz SMA 6 dB Directional Coupler				
Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Base Station Simulator 3/29/2016 Annual 3/29/2017 836371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 3/25/2016 Annual 3/25/2017 126863 Rohde & Schwarz CMW500 Radio Communication Tester 4/33/2016 Annual 4/33/2017 140148 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/20/2016 Annual 7/20/2017 132885 Seekonk NC-100 Torque Wrench (8°1b) 8/30/2016 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench (8°1b) 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (5°1b) 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (5°1b) 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (5°1b) 8/30/2016 Annual 7/30/2017 1148 SPEAG D1750V2 1750 MW1 SAR Dipole 5/9/2016 Annual 5/9/2017 1148 SPEAG D1900V2 1900 MW1 SAR Dipole 7/8/2016 Annual 7/9/2017 50489 SPEAG D1900V2 1900 MW1 SAR Dipole 7/8/2016 Annual 3/3/2017 981 SPEAG D2500V2 2500 MW1 SAR Dipole 7/25/2016 Annual 3/3/2017 991 SPEAG D2500V2 2500 MW1 SAR Dipole 7/25/2016 Annual 3/3/2017 797 SPEAG D250V2 2500 MW1 SAR Dipole 7/25/2016 Annual 3/3/2017 797 SPEAG D250V2 2500 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 797 SPEAG D250V2 2500 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 1161 SPEAG D250V2 S050 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 1161 SPEAG D250V2 S050 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 1161	Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Base Station Simulator 3/29/2016 Annual 3/29/2017 836371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 3/25/2016 Annual 3/25/2017 126863 Rohde & Schwarz CMW500 Radio Communication Tester 4/33/2016 Annual 4/33/2017 140148 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/20/2016 Annual 7/20/2017 132885 Seekonk NC-100 Torque Wrench (8°1b) 8/30/2016 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench (8°1b) 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (5°1b) 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (5°1b) 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (5°1b) 8/30/2016 Annual 7/30/2017 1148 SPEAG D1750V2 1750 MW1 SAR Dipole 5/9/2016 Annual 5/9/2017 1148 SPEAG D1900V2 1900 MW1 SAR Dipole 7/8/2016 Annual 7/9/2017 50489 SPEAG D1900V2 1900 MW1 SAR Dipole 7/8/2016 Annual 3/3/2017 981 SPEAG D2500V2 2500 MW1 SAR Dipole 7/25/2016 Annual 3/3/2017 991 SPEAG D2500V2 2500 MW1 SAR Dipole 7/25/2016 Annual 3/3/2017 797 SPEAG D250V2 2500 MW1 SAR Dipole 7/25/2016 Annual 3/3/2017 797 SPEAG D250V2 2500 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 797 SPEAG D250V2 2500 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 1161 SPEAG D250V2 S050 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 1161 SPEAG D250V2 S050 MW1 SAR Dipole 3/3/2016 Annual 3/3/2017 1161	Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack PE2209-10 Bildrectional Coupler CBT N/A CBT N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2017 N/A Pasternack NC-100 Torque Wrench 5/21/2016 Annual 5/21/2017 N/A Rohde & Schwarz CMU200 Radio Communication Tester 3/25/2016 Annual 3/25/2017 128633 Rohde & Schwarz CMW500 Radio Communication Tester 3/25/2016 Annual 3/25/2017 128633 Rohde & Schwarz CMW500 Radio Communication Tester 4/13/2016 Annual 4/13/2017 128633 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/20/2016 Annual 7/20/2017 132885 Seekonk NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench 5/16', 8' lbs 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench 5/16', 8' lbs 8/30/2016 Biennial 8/30/2018 N/A SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2016 Annual 5/9/2017 1148 SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Annual 7/8/2017 50189 SPEAG D1900V2 2450 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 54149 SPEAG D2850V2 2450 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 54149 SPEAG D2850V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 250 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 SGHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 SGHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2850V2 SGHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2860V2 SGHz SAR Dipole 9/13/2016 A							
Pasternack NC-100							
Pasternack NC-100							
Rohde & Schwarz CMU200 Base Station Simulator 3/29/2016 Annual 3/29/2017 836371/0079 Rohde & Schwarz CMW500 Radio Communication Tester 4/13/2016 Annual 3/25/2017 128633 Rohde & Schwarz CMW500 Radio Communication Tester 4/13/2016 Annual 4/13/2017 128633 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 4/13/2016 Annual 4/13/2017 140148 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/20/2016 Annual 7/20/2017 132885 Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Biennial 3/2/2018 N/A Seekonk NC-100 Torque Wrench (18" lb) 8/30/2016 Annual 5/9/2017 1148 SPEAG D1900V2 1900 MHz SAR Dipole 7/18/2016 Annual 7/18/2017 50880 SPEAG D2450V2 2450 MHz SAR Dipole 9/13/2016 Annual 7/18/2017 1071 SPEAG D2450V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D2450V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D250V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D250V2 350 MHz SAR Dipole 9/13/2016 Annual 7/13/2017 1071 SPEAG D250V2 350 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 1070 SPEAG D250V2 2500 MHz SAR Dipole 7/13/2016 Annu							
Rohde & Schwarz							
Rohde & Schwarz CMW500 Radio Communication Tester 4/13/2016 Annual 4/13/2017 140148 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/20/2016 Annual 7/20/2017 N/A Seekonk NC-100 Torque Wrench (8° lb) 8/30/2016 Blennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench (8° lb) 8/30/2016 Blennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (8° lb) 8/30/2016 Blennial 8/30/2018 N/A SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2016 Annual 5/9/2017 1148 SPEAG D1900V2 1900 MHz SAR Dipole 7/18/2016 Annual 5/18/2017 5d189 SPEAG D250V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/15/2017 981 SPEAG D256DV2 2450 MHz SAR Dipole 9/13/2016 Annual 7/13/2017 991 SPEAG D256DV2 250 MHz SAR Dipole 9/13/2016 Annual 9/		CMU200	Base Station Simulator	3/29/2016		3/29/2017	836371/0079
Rohde & Schwarz CMW500 Radio Communication Tester 4/13/2016 Annual 4/13/2017 140148 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/20/2016 Annual 7/20/2017 N/A Seekonk NC-100 Torque Wrench (8° lb) 8/30/2016 Blennial 11/6/2017 N/A Seekonk NC-100 Torque Wrench (8° lb) 8/30/2016 Blennial 8/30/2018 N/A Seekonk NC-100 Torque Wrench (8° lb) 8/30/2016 Blennial 8/30/2018 N/A SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2016 Annual 5/9/2017 1148 SPEAG D1900V2 1900 MHz SAR Dipole 7/18/2016 Annual 5/18/2017 5d189 SPEAG D250V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/15/2017 981 SPEAG D256DV2 2450 MHz SAR Dipole 9/13/2016 Annual 7/13/2017 991 SPEAG D256DV2 250 MHz SAR Dipole 9/13/2016 Annual 9/	Rohde & Schwarz	CMW500	Radio Communication Tester	3/25/2016	Annual	3/25/2017	128633
Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/20/2016 Annual 7/20/2017 132885		CMW500		4/13/2016	Annual	4/13/2017	140148
Seekonk NC-100 Torque Wrench 11/6/2015 Blennial 11/6/2017 N/A							132885
Seekonk NC-100 Torque Wrench (8" lb) 8/30/2016 Biennial 8/30/2018 N/A							
Seekonk NC-100 Torque Wrench S/16", 8" lbs 3/2/2016 Biennial 3/2/2018 N/A							
SPEAG D1750V2 1750 MHz SAR Dipole 5/9/2016 Annual 5/9/2017 1148 SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Annual 7/8/2017 5d080 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 9/13/2016 Annual 7/25/2017 981 SPEAG D2260V2 2450 MHz SAR Dipole 9/13/2016 Annual 1/31/2017 1971 SPEAG D2450V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1971 SPEAG D256VV2 5 GHz SAR Dipole 9/12/2016 Annual 9/13/2017 1971 SPEAG D56HzV2 5 GHz SAR Dipole 7/13/2016 Annual 9/21/2017 1191 SPEAG D56HzV2 5 GHz SAR Dipole 7/13/2016 Annual 7/13/2017 40047 SPEAG D56HzV2 5 GHz SAR Dipole 1/20/2017 Annual 7/13/2017 40047							
SPEAG D1900V2 1900 MHz SAR Dipole 7/8/2016 Annual 7/8/2017 50808 SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 51149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/15/2017 981 SPEAG D2600V2 2600 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2600V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D250V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1191 SPEAG D56HzV2 5 GHz SAR Dipole 7/13/2016 Annual 7/13/2017 1161 SPEAG D839V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 1161 SPEAG D56HzV2 5 GHz SAR Dipole 1/20/2017 Annual 1/20/2018 1057 SPEAG D56HzV2 5 GHz SAR Dipole 1/20/2016 Annual 1/20/2018 1057							
SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 50149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D250V2 2600 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D250V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D5GHzV2 5 GHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D5GHzV2 5 GHz SAR Dipole 9/13/2016 Annual 9/12/2017 1161 SPEAG D5GW2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/12/2017 Annual 7/13/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/12/2017 Annual 1/12/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/12/2010 Annual 1/12/2017 1126 SP	SPEAG	D1750V2	1750 MHz SAR Dipole	5/9/2016	Annual	5/9/2017	1148
SPEAG D1900V2 1900 MHz SAR Dipole 7/15/2016 Annual 7/15/2017 50149 SPEAG D2450V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D250V2 2600 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D250V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D5GHzV2 5 GHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D5GHzV2 5 GHz SAR Dipole 9/13/2016 Annual 9/12/2017 1161 SPEAG D5GW2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/12/2017 Annual 7/13/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/12/2017 Annual 1/12/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/12/2010 Annual 1/12/2017 1126 SP	SPEAG	D1900V2	1900 MHz SAR Dipole	7/8/2016	Annual	7/8/2017	5d080
SPEAG D2850V2 2450 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 981 SPEAG D2600V2 2600 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D260V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D56HzV2 5 GHz SAR Dipole 7/13/2016 Annual 9/21/2017 1191 SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Annual 9/13/2017 1191 SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 40047 SPEAG D838V2 835 MHz SAR Dipole 1/12/02017 Annual 7/13/2017 40047 SPEAG D56HzV2 5 GHz SAR Dipole 1/20/2017 Annual 1/13/2017 40047 SPEAG D56HzV2 5 GHz SAR Dipole 1/20/2017 Annual 1/13/2017 40047 SPEAG D56HzV2 5 GHz SAR Dipole 1/12/2016 Annual 1/13/2017 40047 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
SPEAG D2600V2 2600 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 1071 SPEAG D2450V2 2450 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D56HzV2 5 GHz SAR Dipole 9/21/2016 Annual 9/12/2017 1191 SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 1161 SPEAG D83SV2 838 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 46047 SPEAG D55HzV2 5 GHz SAR Dipole 1/20/2017 Annual 1/20/2018 1057 SPEAG D260V2 2600 MHz SAR Dipole 1/20/2017 Annual 1/25/2017 1126 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 1/218/2017 1126 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 13							
SPEAG D28SW2 24S0 MHz SAR Dipole 9/13/2016 Annual 9/13/2017 797 SPEAG D5GHzV2 5 GHz SAR Dipole 9/21/2016 Annual 9/21/2017 1191 SPEAG D7SOV3 750 Mtz SAR Dipole 7/13/2016 Annual 9/21/2017 1191 SPEAG D835V2 835 Mtz SAR Dipole 7/13/2016 Annual 7/13/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/20/2017 Annual 7/13/2017 40047 SPEAG D5GHzV2 5 GHz SAR Dipole 1/20/2017 Annual 7/13/2016 100/2018 100/2018 100/2017 40047 40047 500/2017 40047 40047 500/2017 40047 40047 500/2017 40047 40047 500/2017 40047 40047 500/2017 40047 40047 500/2017 40047 500/2017 40047 500/2017 40047 500/2017 40047 500/2017 40047 500/2017 40047 500/2017 40047 500/2017							
SPEAG DSGHzV2 5 GHz SAR Dipole 9/21/2016 Annual 9/21/2017 1191 SPEAG D7SOV3 750 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 1161 SPEAG D83SV2 833 SMHz SAR Dipole 7/13/2016 Annual 7/13/2017 1161 SPEAG D5GHzV2 5 GHz SAR Dipole 1/20/2017 Annual 1/20/2018 1057 SPEAG D2600V2 2600 MHz SAR Dipole 7/25/2017 Annual 1/20/2018 1057 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/18/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 5/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 3/14/201							
SPEAG D750V3 750 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 1161 SPEAG D835V2 833 MHz SAR Dipole 1/13/2016 Annual 7/13/2017 40047 SPEAG DSGHzV2 5 GHt SAR Dipole 1/20/2017 Annual 1/12/2018 1057 SPEAG D2600V2 2600 MHz SAR Dipole 1/22/2016 Annual 7/25/2010 1126 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 3/14/2017 369 SPEAG DAE4 Dasy Data Acquisition Electronics 8/12/2016 Annual 8/12/2017 3164 SPEAG DAE4 Dasy Data Acquisition Electronics 8/12/2016 Annual							
SPEAG D835V2 835 MHz SAR Dipole 7/13/2016 Annual 7/13/2017 4d047 SPEAG D56HV2 5 GHz SAR Dipole 1/20/2017 Annual 1/20/2018 1057 SPEAG D2660V2 2600 MHz SAR Dipole 7/25/2016 Annual 1/25/2017 1126 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 2/18/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 5/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 5/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual<							
SPEAG D5GHzV2 5 GHz SAR Dipole 1/20/2017 Annual 1/20/2018 1057 SPEAG D2600V2 2600 MHz SAR Dipole 7/25/2016 Annual 1/20/2017 1126 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 5/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 3/14/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 9/14/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016							
SPEAG D2600V2 2600 MHz SAR Dipole 7/25/2016 Annual 7/25/2017 1126 SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 3/14/2017 1398 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 8/14/2016 Annual 8/12/2017 1369 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14							
SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 5/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAE3 Dielectric Assessment Kit 5/	SPEAG		5 GHz SAR Dipole	1/20/2017	Annual	1/20/2018	
SPEAG DAE4 Dasy Data Acquisition Electronics 2/18/2016 Annual 2/18/2017 1272 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 5/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1304 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAE3.5 Dielectric Assessment Kit	SPEAG	D2600V2	2600 MHz SAR Dipole	7/25/2016	Annual	7/25/2017	1126
SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2017 665 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1366 SPEAG DAE4 Dasy Data Acquisition Electronics 5/11/2016 Annual 3/14/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 8/12/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/14/2011 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAK-3.5 Dielectric Assessment Rit 9/13/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Dielectric Assessment Rit 9/13/2016 Annual 3/13/2017 1091 SPEAG DAK-12 Dielectric Assessment Rit (10MHz - 3GHz)		DAE4					1272
SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2017 1368 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 5/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAE3.5 Dielectric Assessment Kit 9/13/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 9/13/2016 Annual 9/13/2017 1091 SPEAG DAK-1.2 Dielectric Assessment Kit 9/13/2016 Annual 3/12/2017 1102 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/							
SPEAG DAE4 Dasy Data Acquisition Electronics \$/11/2016 Annual \$/11/2017 859 SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1091 SPEAG DAK-1.2 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1091 SPEAG ES30V3 SAR Probe 2/19/2016 Annual 3/1/2017 1102 SPEAG ES30V3 SAR Probe 2/19/2016 Annual 2/22/2017 3914 SPEAG ES30V3 SAR Probe 3/18/2016 Annual 3/18/2							
SPEAG DAE4 Dasy Data Acquisition Electronics 8/22/2016 Annual 8/22/2017 1364 SPEAG DAE4 Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAK-3.5 Dielectric Assessment Rit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Dielectric Assessment Rit 9/13/2016 Annual 5/10/2017 1070 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/13/2017 1102 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 3/12/2017 3213 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/18/2017 3223 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209							
SPEAG DAEA Dasy Data Acquisition Electronics 9/14/2016 Annual 9/14/2017 1408 SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 9/13/2016 Annual 9/13/2017 1091 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG EX3DV4 SAR Probe 3/18/2016 Annual 2/12/2017 3914 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES3DV4 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
SPEAG DAE4 Dasy Data Acquisition Electronics 9/15/2016 Annual 9/15/2017 1333 SPEAG DAK-3.5 Dielectric Assessment Kit 5/10/2016 Annual 5/10/2017 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 9/13/2016 Annual 9/13/2017 1091 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG ES30V3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG ES30V4 SAR Probe 2/19/2016 Annual 2/19/2017 3914 SPEAG ES30V3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES30V3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX30V4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX30V4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG DAK-3.5 Dielectric Assessment Kit \$5/10/2016 Annual \$5/10/2017 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 9/13/2016 Annual 9/13/2017 1091 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/27/2017 3914 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3309 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG EX3DV4 SAR Probe 9/19/2016 Annual 5/17/2017 7357 SPEAG EX3DV	SPEAG	DAE4			Annual		1408
SPEAG DAK-3.5 Dielectric Assessment Kit \$5/10/2016 Annual \$5/10/2017 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 9/13/2016 Annual 9/13/2017 1091 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/27/2017 3914 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3309 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG EX3DV4 SAR Probe 9/19/2016 Annual 5/17/2017 7357 SPEAG EX3DV	SPEAG	DAE4	Dasy Data Acquisition Electronics	9/15/2016	Annual	9/15/2017	1333
SPEAG DAK-3.5 Dielectric Assessment kit 9/13/2016 Annual 9/13/2017 1091 SPEAG DAK-12 Dielectric Assessment kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG EX3DV4 SAR Probe 9/19/2016 Annual 5/17/2017 7409 SPEAG EX3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3287	SPEAG	DAK-3.5					1070
SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2017 1102 SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG EX3DV3 SAR Probe 9/19/2016 Annual 5/19/2017 3287							
SPEAG ES3DV3 SAR Probe 2/19/2016 Annual 2/19/2017 3213 SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG EX3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3287							
SPEAG EX3DV4 SAR Probe 2/22/2016 Annual 2/22/2017 3914 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG ES3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3287							
SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3209 SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG ES3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3287							
SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG EX3DV4 SAR Probe 9/19/2016 Annual 9/19/2017 3287							
SPEAG ES3DV3 SAR Probe 3/18/2016 Annual 3/18/2017 3319 SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG ES3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3287	SPEAG	ES3DV3	SAR Probe	3/18/2016	Annual	3/18/2017	3209
SPEAG EX3DV4 SAR Probe 4/19/2016 Annual 4/19/2017 7:357 SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7:409 SPEAG ES3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3:287	SPEAG	ES3DV3	SAR Probe				3319
SPEAG EX3DV4 SAR Probe 5/17/2016 Annual 5/17/2017 7409 SPEAG ES3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3287							
SPEAG ES3DV3 SAR Probe 9/19/2016 Annual 9/19/2017 3287							
SPEAG ES3DV3 SAR Probe 8/25/2016 Annual 8/25/2017 3332							
	SPEAG	ES3DV3	SAR Probe	8/25/2016	Annual	8/25/2017	3332

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 90 of 94
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Fage 90 01 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	v _i
	(,					(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	× ×
Hemishperical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	× ×
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	× ×
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	× ×
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	× ×
Readout ⊟ectronics	0.3	N	1	1.0	1.0	0.3	0.3	×
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	×
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	×
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	×
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	×
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	×
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	œ
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	œ
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	oc
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	00
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	oc
Combined Standard Uncertainty (k=1)		RSS			1 21.10	11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)		_						

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 04 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 91 of 94

17 CONCLUSION

17.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 02 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 92 of 94

18 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 02 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 93 of 94

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFLS993	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 04 of 04
1M1701180034-01-R4.ZNF	01/22/17 - 02/01/17	Portable Handset	Page 94 of 94

APPENDIX A: SAR TEST DATA

DUT: ZNFLS993; Type: Portable Handset; Serial: 01412

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.914 \text{ S/m}; \ \epsilon_r = 42.995; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-31-2017; Ambient Temp: 23.1°C; Tissue Temp: 22.1°C

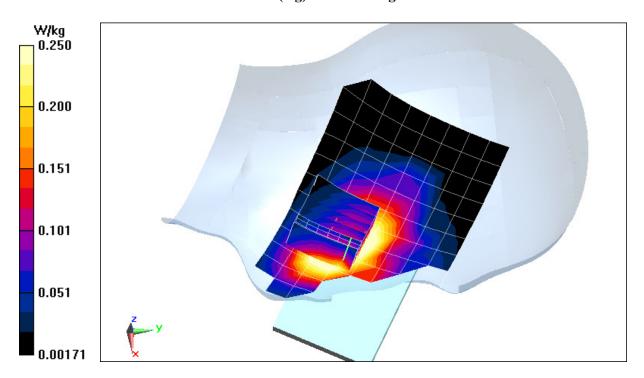
Probe: EX3DV4 - SN7409; ConvF(10.04, 10.04, 10.04); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/11/2016

Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.05 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.265 W/kg

SAR(1 g) = 0.207 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, GSM GPRS; 2 Tx slots (0); Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.43 \text{ S/m}; \ \epsilon_r = 38.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

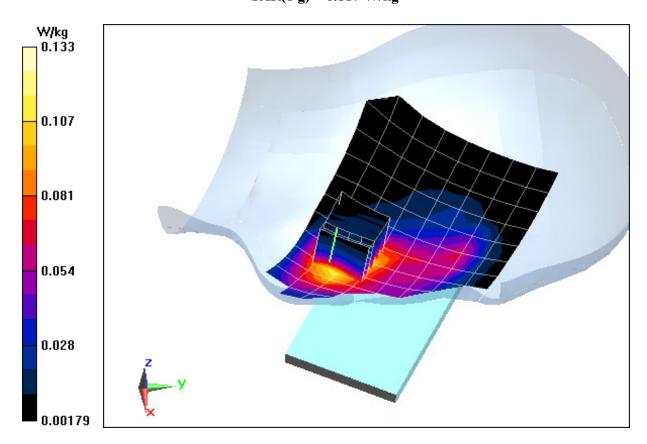
Test Date: 01-30-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(5.45, 5.45, 5.45); Calibrated: 8/25/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 9/15/2016
Phantom: SAM Left; Type: SAM; Serial: 1688

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.463 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.188 W/kg

SAR(1 g) = 0.117 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.905 \text{ S/m}; \ \epsilon_r = 40.26; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

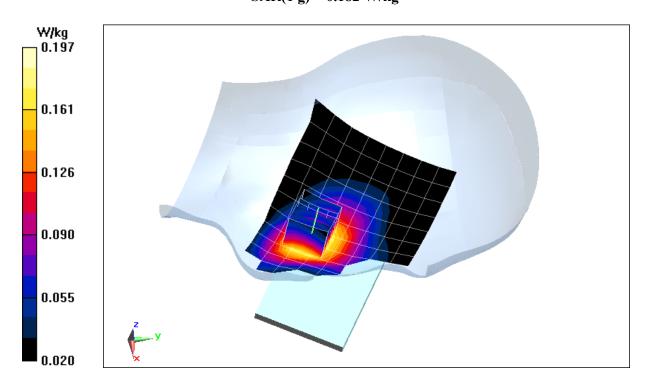
Test Date: 02-01-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3287; ConvF(6.67, 6.67, 6.67); Calibrated: 9/19/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Left Head, Cheek, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.82 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.182 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01412

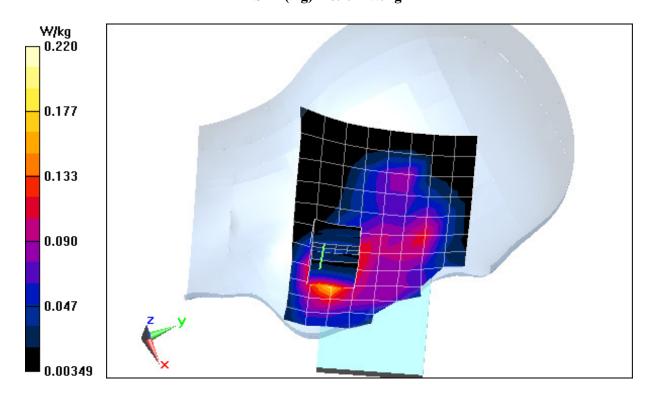
Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.345 \text{ S/m}; \ \epsilon_r = 38.91; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-27-2017; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(5.28, 5.28, 5.28); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.97 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.191 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.43 \text{ S/m}; \ \epsilon_r = 38.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

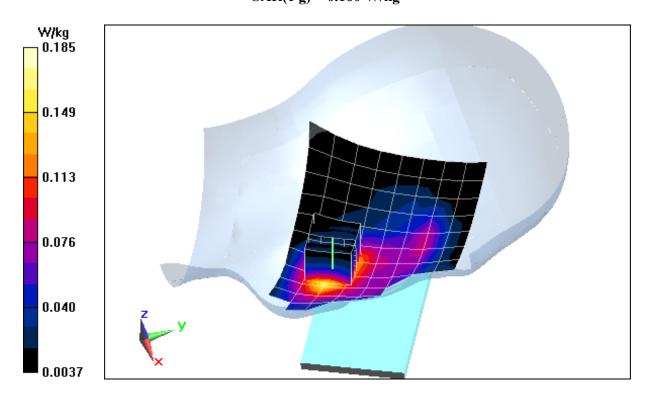
Test Date: 01-30-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(5.45, 5.45, 5.45); Calibrated: 8/25/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/15/2016 Phantom: SAM Left; Type: SAM; Serial: 1688

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.03 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.160 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, Cellular CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.905 \text{ S/m}; \ \epsilon_r = 40.261; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

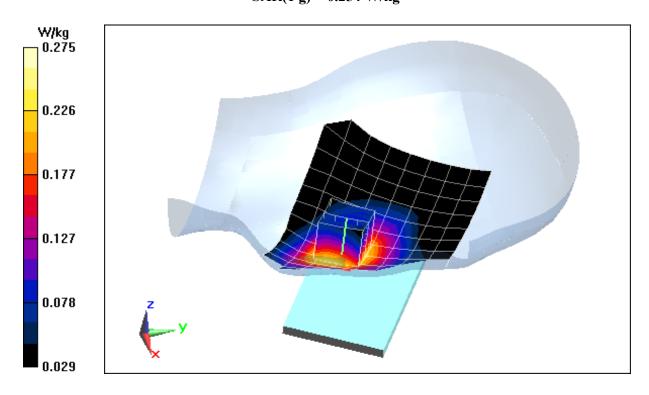
Test Date: 02-01-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3287; ConvF(6.67, 6.67, 6.67); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA, Rule Part 22H, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.33 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.314 W/kg

SAR(1 g) = 0.254 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, Cellular CDMA (0); Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 820.1 \text{ MHz}; \ \sigma = 0.889 \text{ S/m}; \ \epsilon_r = 40.463; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

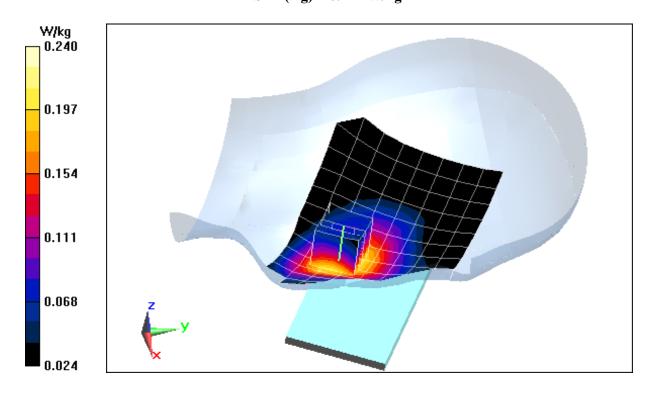
Test Date: 02-01-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3287; ConvF(6.67, 6.67, 6.67); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA, Rule Part 90S, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.99 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.221 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.43 \text{ S/m}; \ \epsilon_r = 38.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

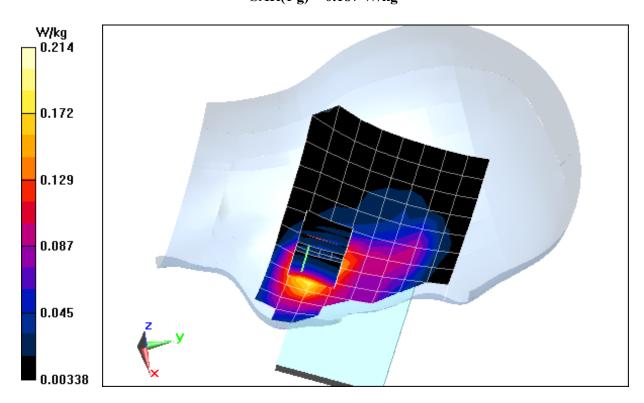
Test Date: 01-30-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(5.45, 5.45, 5.45); Calibrated: 8/25/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/15/2016 Phantom: SAM Left; Type: SAM; Serial: 1688

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.86 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.297 W/kg

SAR(1 g) = 0.187 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01410

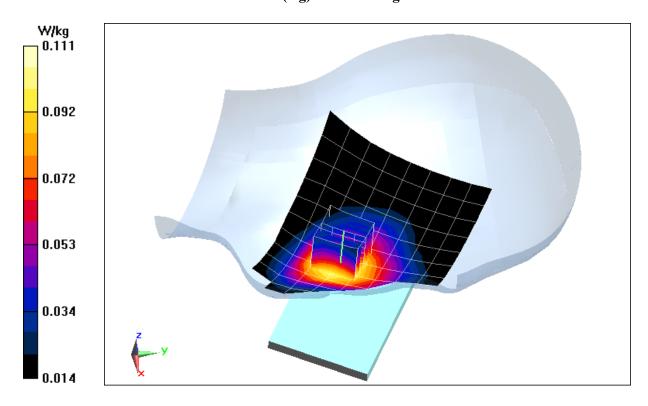
Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.866 \text{ S/m}; \ \epsilon_r = 42.779; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-25-2017; Ambient Temp: 22.3°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3209; ConvF(6.6, 6.6, 6.6); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Right; Type: SAM; Serial: 1757

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.88 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.104 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01411

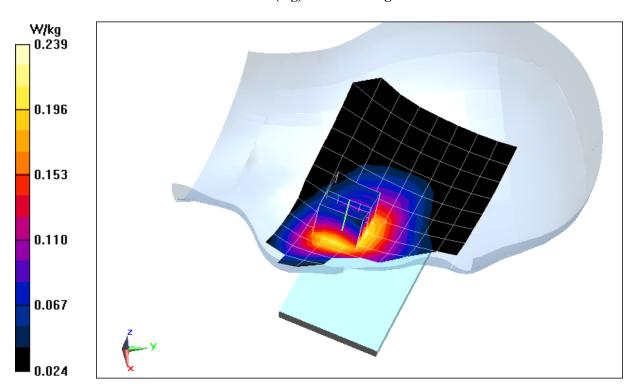
Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.9 \text{ S/m}; \ \epsilon_r = 40.324; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02-01-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3287; ConvF(6.67, 6.67, 6.67); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 26 (Cell.), Left Head, Cheek, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.87 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.221 W/kg

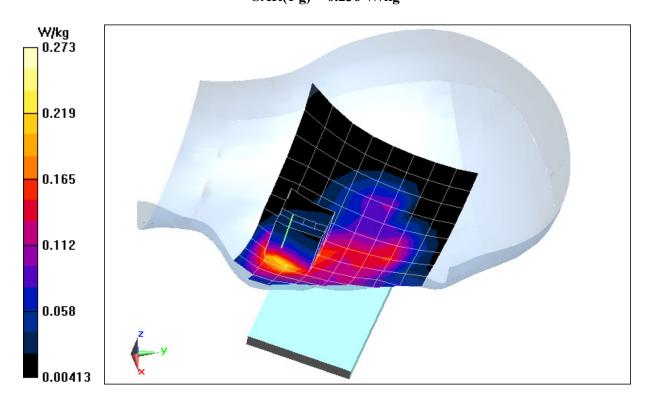
DUT: ZNFLS993; Type: Portable Handset; Serial: 01413

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.345 \text{ S/m}; \ \epsilon_r = 38.91; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-27-2017; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(5.28, 5.28, 5.28); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8):SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.95 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.371 W/kg

SAR(1 g) = 0.236 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01413

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.407 \text{ S/m}; \ \epsilon_r = 38.358; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

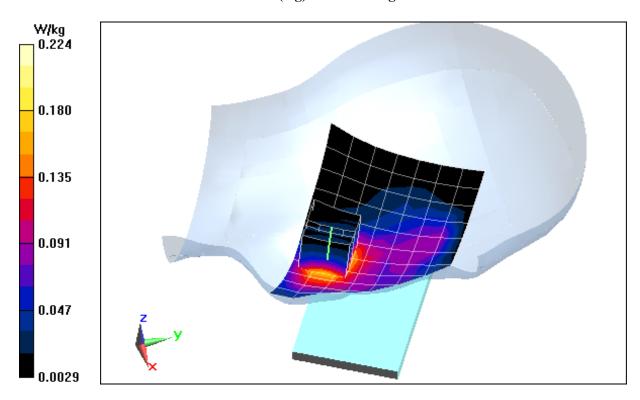
Test Date: 01-30-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(5.45, 5.45, 5.45); Calibrated: 8/25/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 9/15/2016 Phantom: SAM Left; Type: SAM; Serial: 1688

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.04 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.297 W/kg

SAR(1 g) = 0.184 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01410

Communication System: UID 0, LTE Band 41; Frequency: 2593 MHz; Duty Cycle: 1:1.58 Medium: 2450 Head Medium parameters used (interpolated): $f = 2593 \text{ MHz}; \ \sigma = 2.034 \text{ S/m}; \ \epsilon_r = 37.55; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

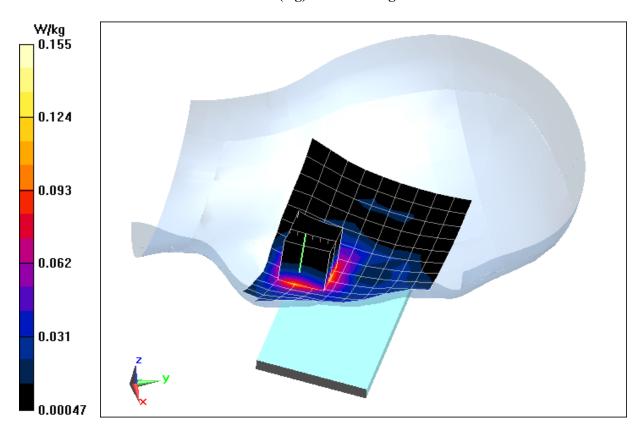
Test Date: 01-22-2017; Ambient Temp: 23.2°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3287; ConvF(4.41, 4.41, 4.41); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Left Head, Cheek, Mid.ch, QPSK, 20 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.849 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.244 W/kg

SAR(1 g) = 0.124 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01430

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.855 \text{ S/m}; \ \epsilon_r = 38.215; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

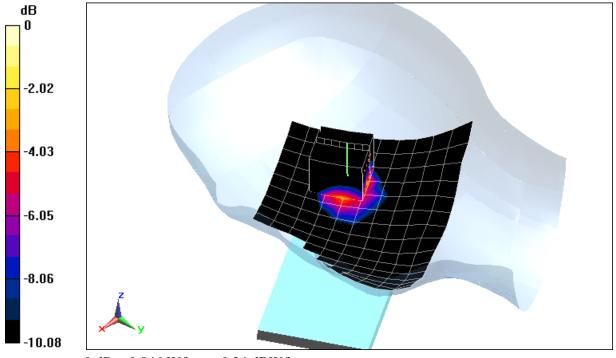
Test Date: 01-22-2017; Ambient Temp: 23.2°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3287; ConvF(4.54, 4.54, 4.54); Calibrated: 9/19/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Antenna 2 Right Head, Cheek, Ch 6, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.52 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.662 W/kg

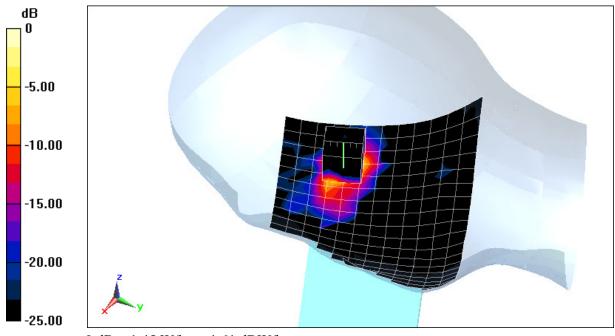
DUT: ZNFLS993; Type: Portable Handset; Serial: 01430

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used: $f = 5300 \text{ MHz}; \ \sigma = 4.613 \text{ S/m}; \ \epsilon_r = 34.928; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-23-2017; Ambient Temp: 20.9°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(5.1, 5.1, 5.1); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-2A, Antenna 2, 20 MHz Bandwidth, Right Head, Cheek, Ch 60, 6 Mbps


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 0.7550 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 0.516 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

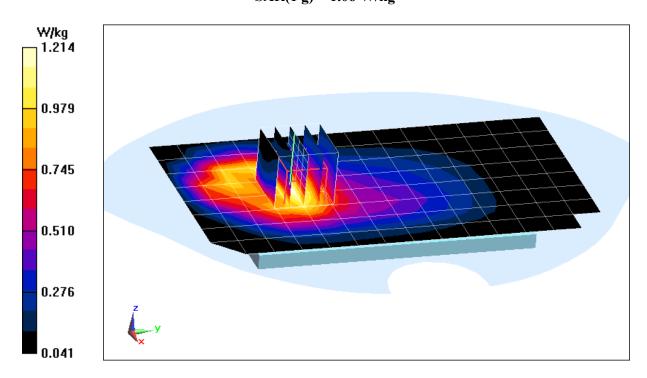
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 1.006 \text{ S/m}; \ \epsilon_r = 53.768; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-01-2017; Ambient Temp: 22.6°C; Tissue Temp: 20.7°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.76 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 1.06 W/kg

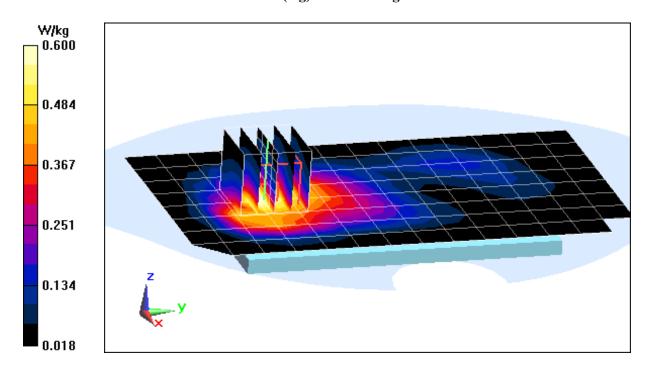
DUT: ZNFLS993; Type: Portable Handset; Serial: 01412

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.536 \text{ S/m}; \ \epsilon_r = 52.21; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 1-25-2017; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.58 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.701 W/kg

SAR(1 g) = 0.438 W/kg

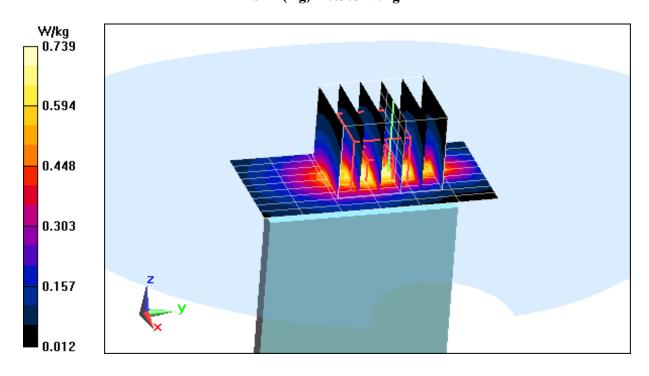
DUT: ZNFLS993; Type: Portable Handset; Serial: 01412

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.536 \text{ S/m}; \ \epsilon_r = 52.21; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 1-25-2017; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8):SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Bottom Edge, Mid.ch, 2 Tx Slots


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.51 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.892 W/kg

SAR(1 g) = 0.503 W/kg

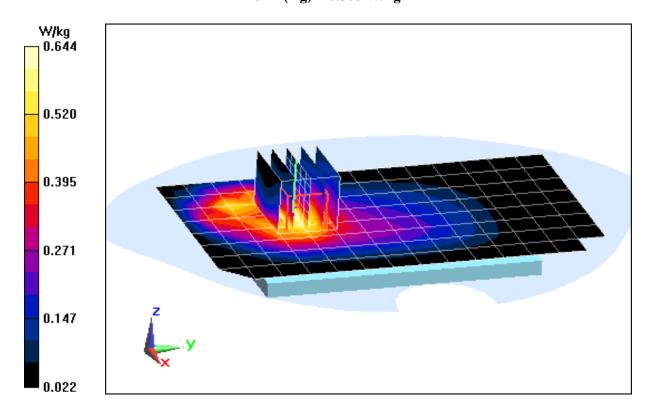
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 1.006 \text{ S/m}; \ \epsilon_r = 56.424; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-26-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.71 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.843 W/kg

SAR(1 g) = 0.568 W/kg

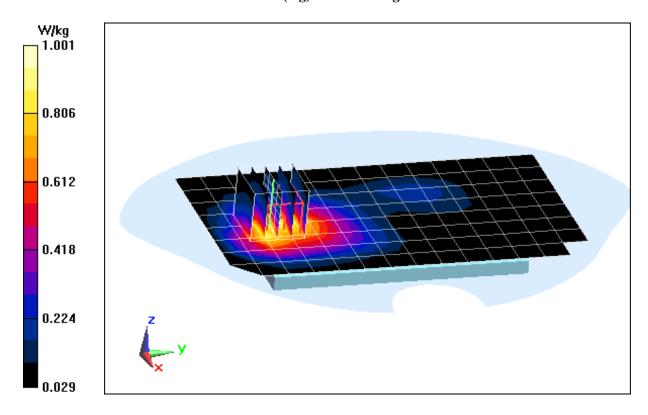
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1752.6 \text{ MHz}; \ \sigma = 1.491 \text{ S/m}; \ \epsilon_r = 52.193; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-27-2017; Ambient Temp: 23.2°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3213; ConvF(4.94, 4.94, 4.94); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Body SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.33 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.854 W/kg

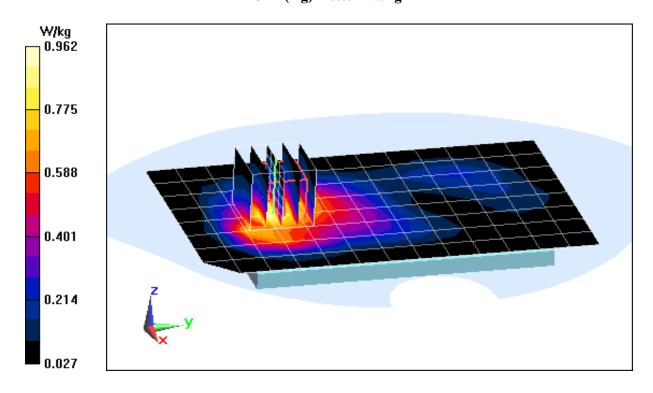
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.536 \text{ S/m}; \ \epsilon_r = 52.21; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 1-25-2017; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.04 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.692 W/kg

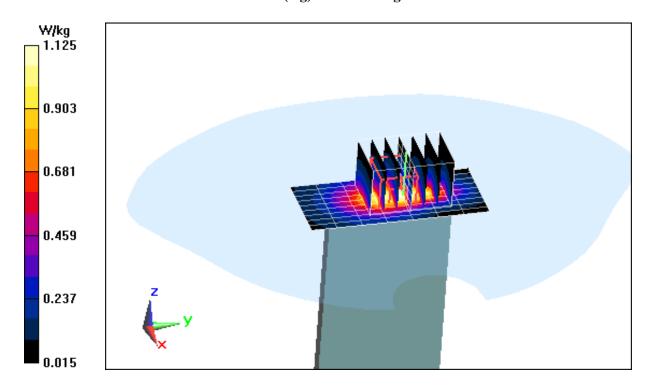
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.536 \text{ S/m}; \ \epsilon_r = 52.21; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 1-25-2017; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Bottom Edge, Mid.ch


Area Scan (10x8x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.64 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.767 W/kg

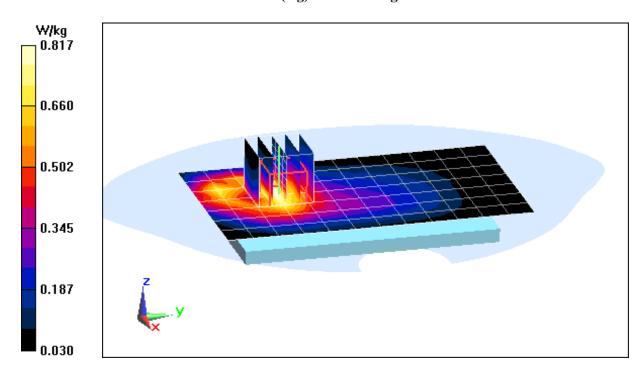
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 1.006 \text{ S/m}; \ \epsilon_r = 56.425; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-26-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA, Rule Part 22H, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.97 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.724 W/kg

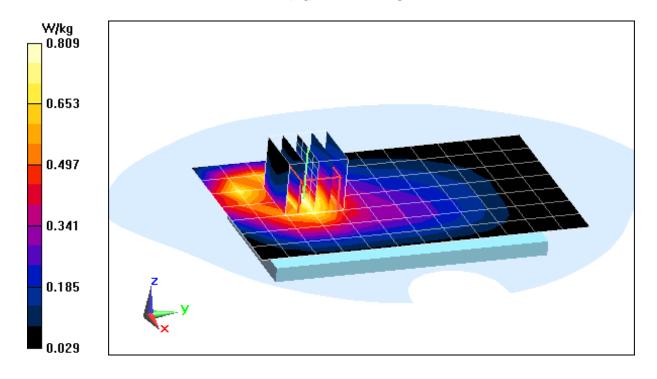
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 1.006$ S/m; $\epsilon_r = 56.425$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-26-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO, Rule Part 22H, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.78 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.707 W/kg

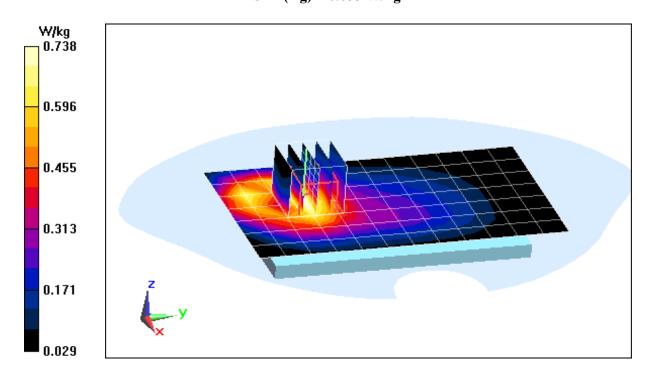
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 820.1 MHz; $\sigma = 0.989$ S/m; $\varepsilon_r = 56.594$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-26-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA BC10, Rule Part 90S, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.93 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.655 W/kg

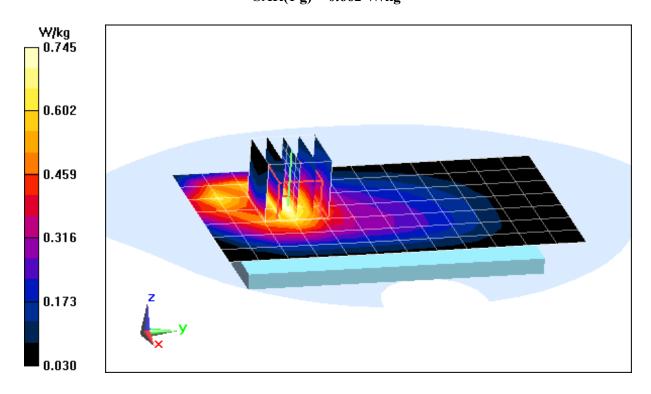
DUT: ZNFLS993; Type: Portable Handset; Serial: 01417

Communication System: UID 0, CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 820.1 MHz; $\sigma = 0.989$ S/m; $\varepsilon_r = 56.594$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 01-26-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO BC10, Rule Part 90S, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.94 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.662 W/kg

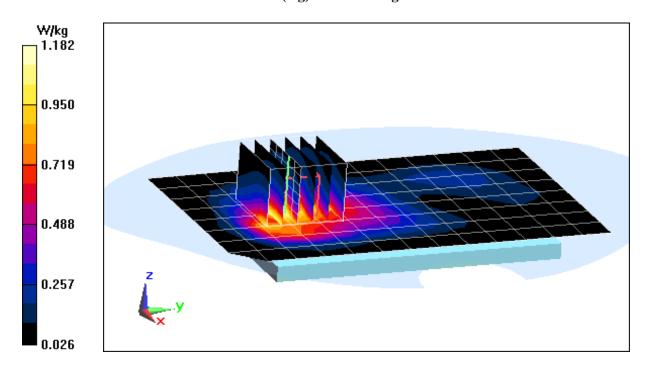
DUT: ZNFLS993; Type: Portable Handset; Serial: 01412

Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.505 \text{ S/m}$; $\epsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 1-25-2017; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Body SAR, Back side, Low ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.71 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.880 W/kg

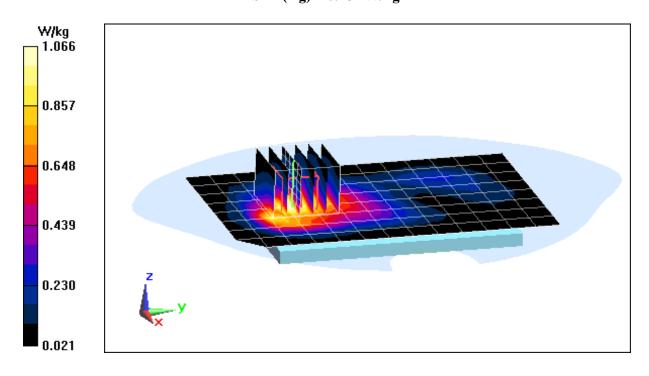
DUT: ZNFLS993; Type: Portable Handset; Serial: 01412

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.536 \text{ S/m}; \ \epsilon_r = 52.21; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 1-25-2017; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS EVDO, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.27 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.787 W/kg

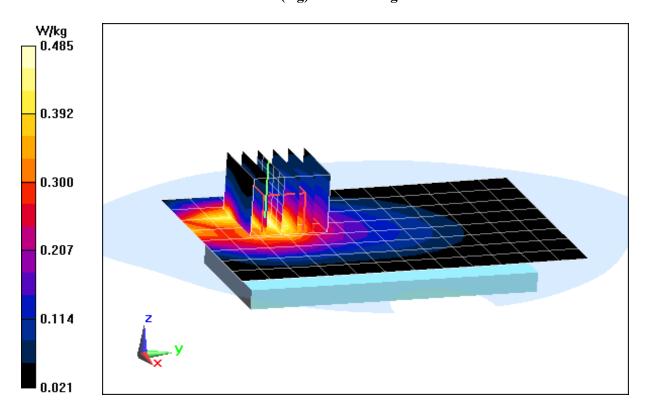
DUT: ZNFLS993; Type: Portable Handset; Serial: 01414

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.92 \text{ S/m}; \ \epsilon_r = 54.991; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 22.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(6.19, 6.19, 6.19); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.42 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.639 W/kg

SAR(1 g) = 0.424 W/kg

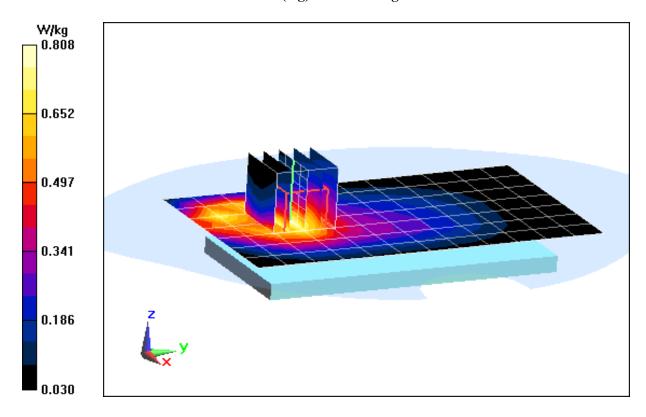
DUT: ZNFLS993; Type: Portable Handset; Serial: 01414

Communication System: UID 0, LTE Band 26 (0); Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 1 \text{ S/m}; \ \epsilon_r = 56.476; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-26-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.86 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.717 W/kg

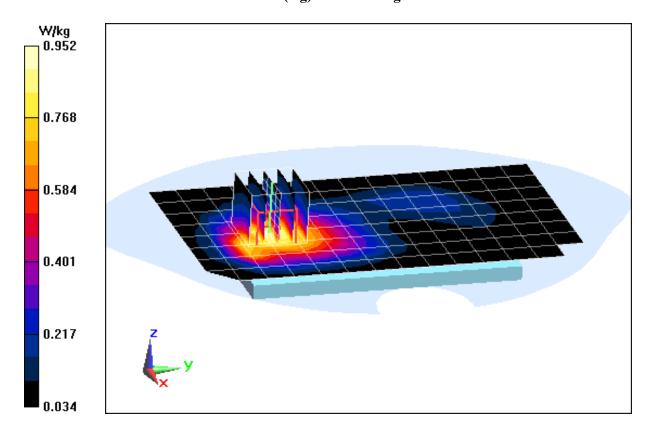
DUT: ZNFLS993; Type: Portable Handset; Serial: 01414

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.488 \text{ S/m}; \ \epsilon_r = 51.643; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 01-23-2017; Ambient Temp: 23.6°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(4.99, 4.99, 4.99); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.87 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.826 W/kg

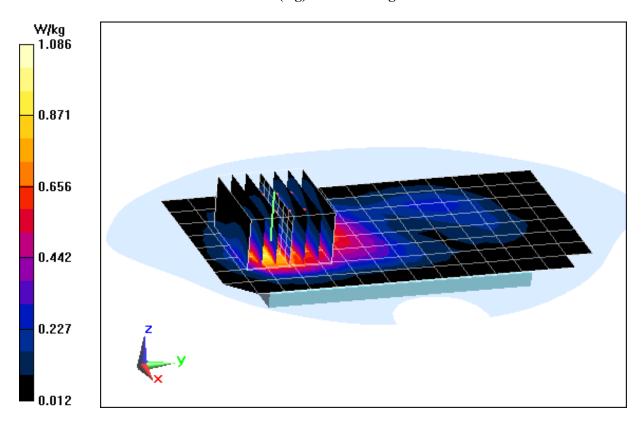
DUT: ZNFLS993; Type: Portable Handset; Serial: 01413

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.491 \text{ S/m}$; $\varepsilon_r = 52.055$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-23-2017; Ambient Temp: 23.9°C; Tissue Temp: 23.4°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.42 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.778 W/kg

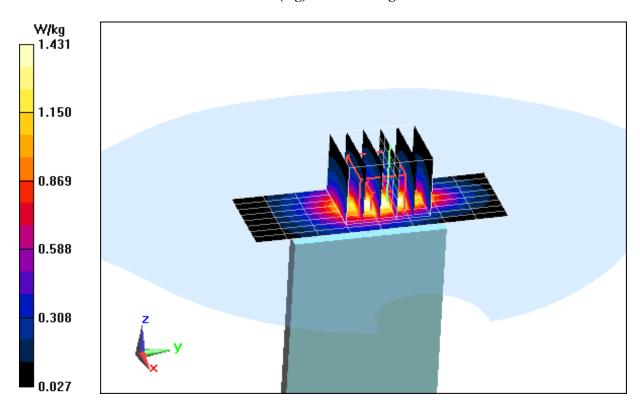
DUT: ZNFLS993; Type: Portable Handset; Serial: 01413

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.527 \text{ S/m}; \ \epsilon_r = 53.348; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 22.3°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 25 (PCS), Body SAR, Bottom Edge, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (9x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.44 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.987 W/kg

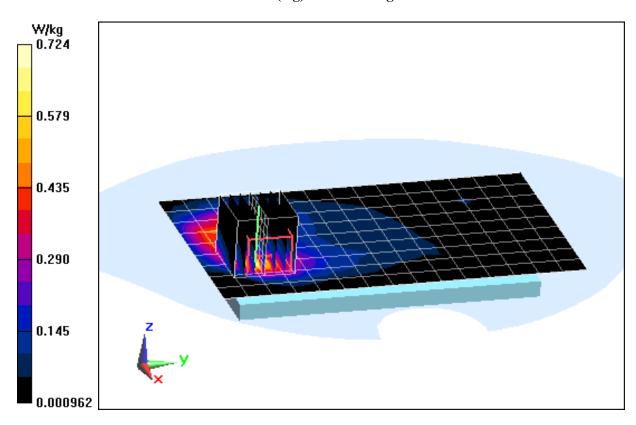
DUT: ZNFLS993; Type: Portable Handset; Serial: 01414

Communication System: UID 0, LTE Band 41; Frequency: 2593 MHz; Duty Cycle: 1:1.58 Medium: 2450 Body Medium parameters used (interpolated): $f = 2593 \text{ MHz}; \ \sigma = 2.21 \text{ S/m}; \ \epsilon_r = 51.329; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-24-2017; Ambient Temp: 22.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3319; ConvF(3.99, 3.99, 3.99); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.82 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.532 W/kg

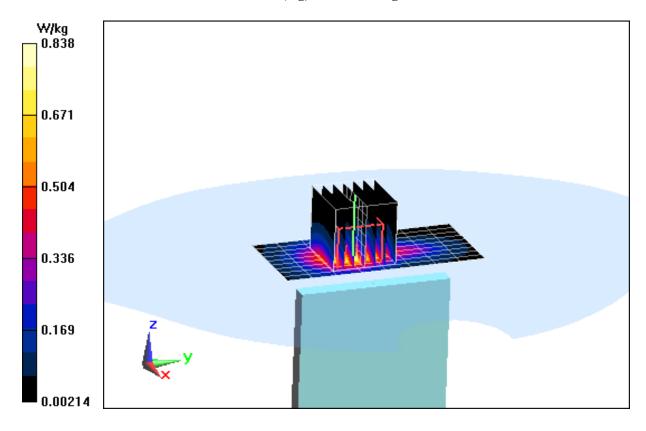
DUT: ZNFLS993; Type: Portable Handset; Serial: 01414

Communication System: UID 0, LTE Band 41; Frequency: 2593 MHz; Duty Cycle: 1:1.58 Medium: 2450 Body Medium parameters used (interpolated): $f = 2593 \text{ MHz}; \ \sigma = 2.21 \text{ S/m}; \ \epsilon_r = 51.329; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 01-24-2017; Ambient Temp: 22.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3319; ConvF(3.99, 3.99, 3.99); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Body SAR, Bottom Edge, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (10x9x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.44 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.650 W/kg

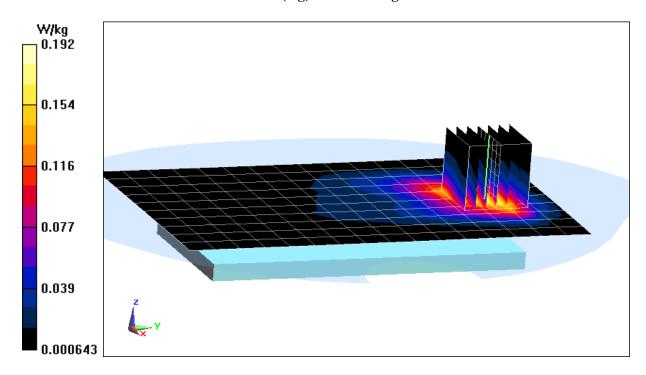
DUT: ZNFLS993; Type: Portable Handset; Serial: 01430

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.998 \text{ S/m}; \ \epsilon_r = 51.907; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-24-2017; Ambient Temp: 22.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3319; ConvF(4.2, 4.2, 4.2); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Antenna 2, Body SAR, Ch 06, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.386 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.291 W/kg

SAR(1 g) = 0.151 W/kg

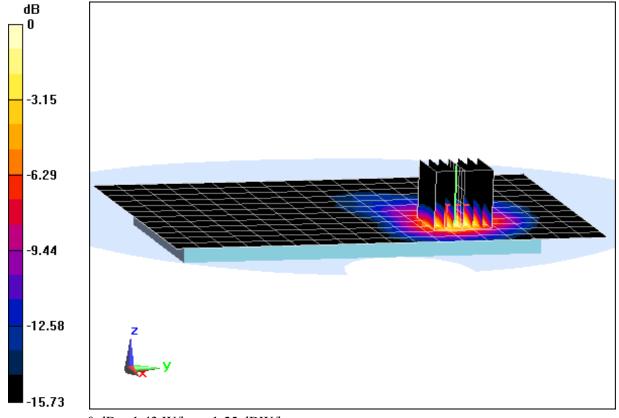
DUT: ZNFLS993; Type: Portable Handset; Serial: 01430

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5580 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5580 \text{ MHz}; \ \sigma = 5.935 \text{ S/m}; \ \epsilon_r = 47.666; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 21.6°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN3914; ConvF(3.63, 3.63, 3.63); Calibrated: 2/22/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.8 (8):SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, UNII-2C, 20 MHz Bandwidth, Antenna 1, Body SAR, Ch 116, 6 Mbps, Back Side


Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm

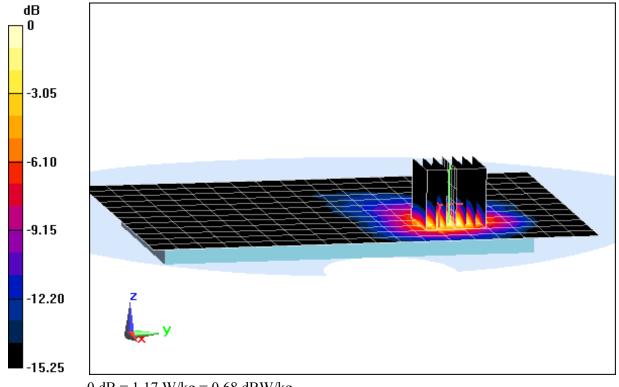
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 10.90 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.26 W/kg

SAR(1 g) = 0.598 W/kg

DUT: ZNFLS993; Type: Portable Handset; Serial: 01430


Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5745 \text{ MHz}; \sigma = 6.156 \text{ S/m}; \epsilon_r = 47.4; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 21.6°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN3914; ConvF(3.86, 3.86, 3.86); Calibrated: 2/22/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/18/2016 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

> Mode: IEEE 802.11a, UNII-3, 20 MHz Bandwidth, Antenna 1, Body SAR, Ch 149, 6 Mbps, Back Side

Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 9.527 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.93 W/kgSAR(1 g) = 0.483 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.906 \text{ S/m}; \ \epsilon_r = 42.188; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

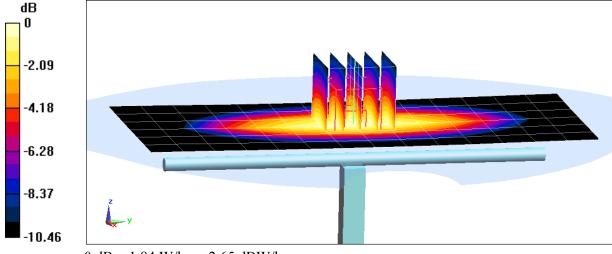
Test Date: 01-25-2017; Ambient Temp: 22.3°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3209; ConvF(6.6, 6.6, 6.6); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1364; Calibrated: 8/22/2016 Phantom: SAM Right; Type: SAM; Serial: 1757

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.29 W/kg

SAR(1 g) = 1.57 W/kg

Deviation(1 g) = -3.92%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

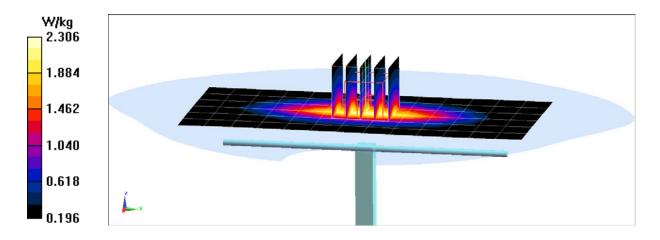
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.912 \text{ S/m}; \ \epsilon_r = 43.015; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-31-2017; Ambient Temp: 23.1°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7409; ConvF(10.04, 10.04, 10.04); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/11/2016

Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.59 W/kgSAR(1 g) = 1.73 W/kgDeviation(1 g) = -5.26 %

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 40.281; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

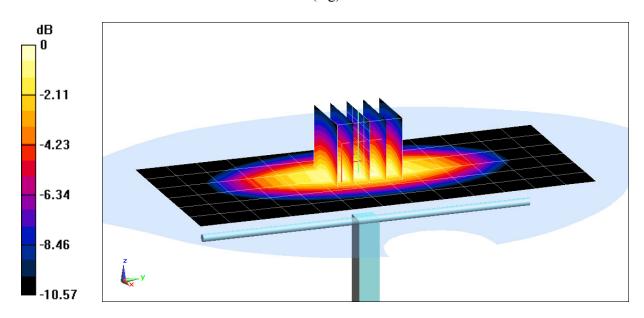
Test Date: 02-01-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3287; ConvF(6.67, 6.67, 6.67); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.76 W/kg

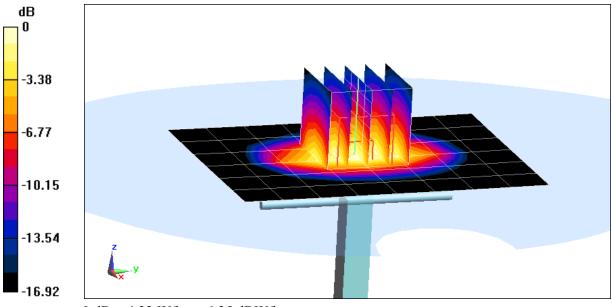
SAR(1 g) = 1.87 W/kg

Deviation(1 g) = 2.41%

0 dB = 2.18 W/kg = 3.38 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.36 \text{ S/m}; \ \epsilon_r = 38.821; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 01-27-2017; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(5.28, 5.28, 5.28); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.02 W/kg SAR(1 g) = 3.37 W/kg Deviation(1 g) = -6.91%

0 dB = 4.22 W/kg = 6.25 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.453 \text{ S/m}; \ \epsilon_r = 38.166; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

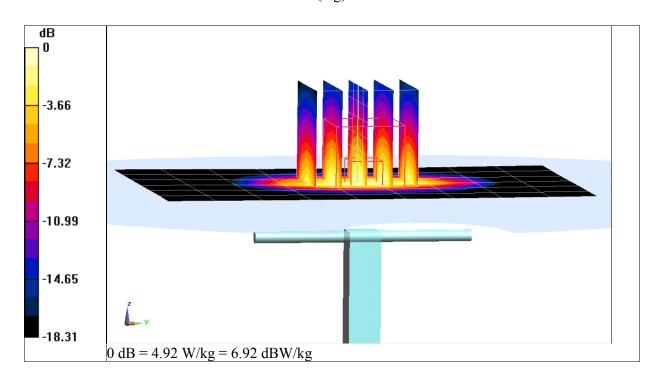
Test Date: 01-30-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(5.45, 5.45, 5.45); Calibrated: 8/25/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 9/15/2016 Phantom: SAM Left; Type: SAM; Serial: 1688

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.11 W/kg

SAR(1 g) = 3.89 W/kg

Deviation(1 g) = -2.99%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981

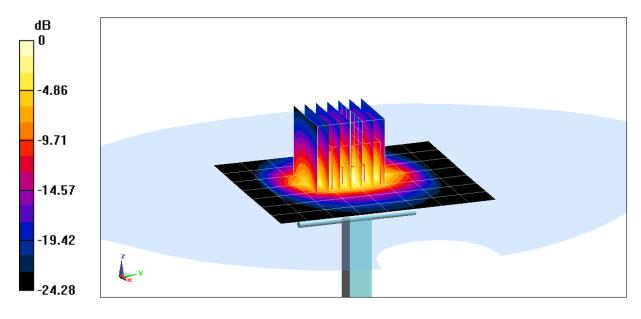
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.869 \text{ S/m}; \ \epsilon_r = 38.155; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-22-2017; Ambient Temp: 23.2°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3287; ConvF(4.54, 4.54, 4.54); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.9 W/kg

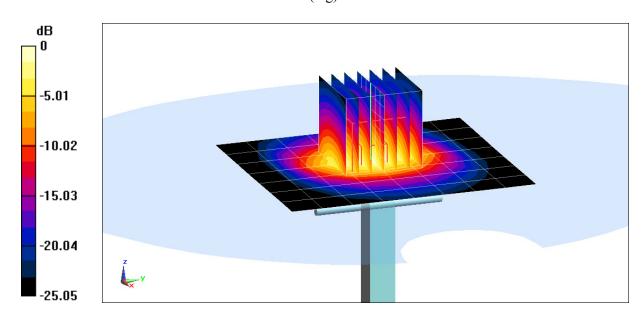
SAR(1 g) = 5.64 W/kg

Deviation(1 g) = 6.82%

0 dB = 7.52 W/kg = 8.76 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1071

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.042 \text{ S/m}; \ \epsilon_r = 37.518; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 01-22-2017; Ambient Temp: 23.2°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3287; ConvF(4.41, 4.41, 4.41); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.8 W/kg SAR(1 g) = 5.61 W/kg Deviation(1 g) = -0.36%

0 dB = 7.56 W/kg = 8.79 dBW/kg

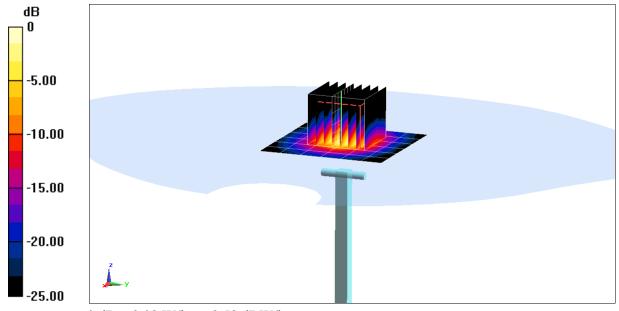
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 4.572$ S/m; $\varepsilon_r = 34.988$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-23-2017; Ambient Temp: 20.9°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(5.1, 5.1, 5.1); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5250 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 3.88 W/kg

SAR(1 g) = 3.88 W/kg Deviation(1 g) = -1.65%

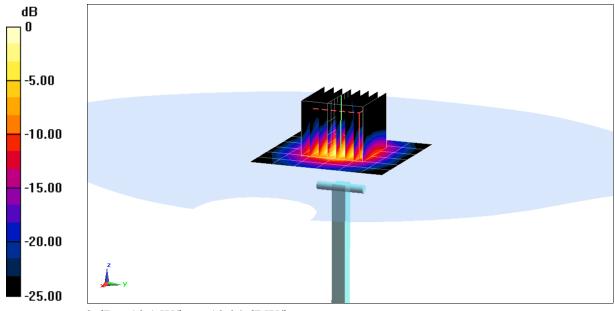
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used: f = 5600 MHz; $\sigma = 4.914$ S/m; $\epsilon_r = 34.502$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-23-2017; Ambient Temp: 20.9°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(4.41, 4.41, 4.41); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 4.12 W/kg

SAR(1 g) = 4.12 W/kgDeviation(1 g) = -1.44%

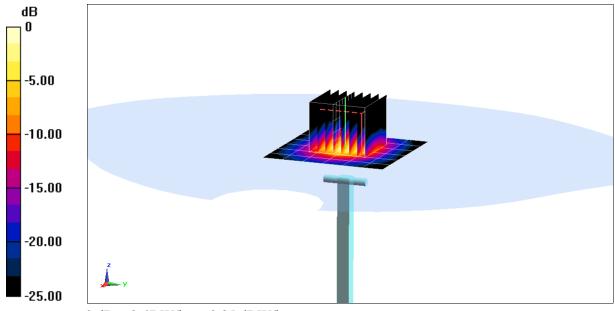
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.074$ S/m; $\varepsilon_r = 34.319$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-23-2017; Ambient Temp: 20.9°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(4.65, 4.65, 4.65); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 3.91 W/kg

SAR(1 g) = 3.91 W/kg Deviation(1 g) = -1.14%

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161

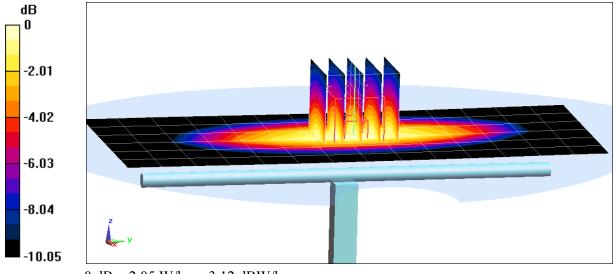
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.961 \text{ S/m}$; $\epsilon_r = 54.452$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-30-2017; Ambient Temp: 22.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(6.19, 6.19, 6.19); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.57 W/kg

SAR(1 g) = 1.76 W/kg

Deviation(1 g) = 4.39%

0 dB = 2.05 W/kg = 3.12 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

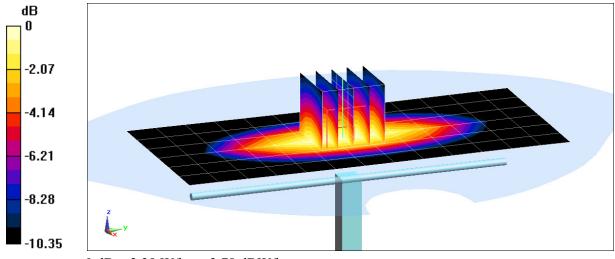
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 1.004$ S/m; $\epsilon_r = 53.787$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-01-2017; Ambient Temp: 22.6°C; Tissue Temp: 20.7°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.03 W/kg

SAR(1 g) = 2.04 W/kg

Deviation(1 g) = 6.58%

0 dB = 2.39 W/kg = 3.78 dBW/kg

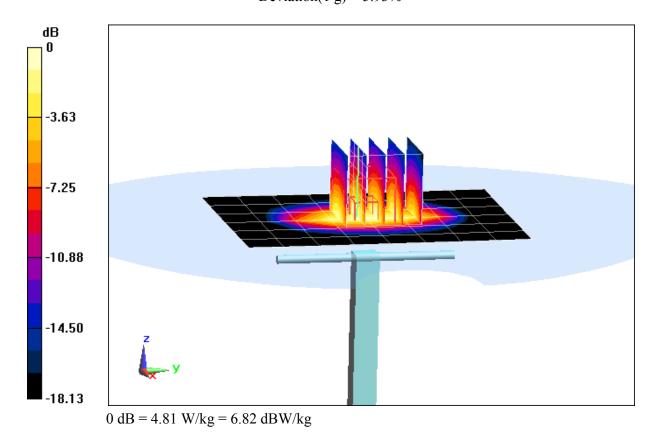
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.506 \text{ S/m}; \ \epsilon_r = 51.573; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-23-2017; Ambient Temp: 23.6°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(4.99, 4.99, 4.99); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.96 W/kg

SAR(1 g) = 3.93 W/kg

Deviation(1 g) = 5.93%

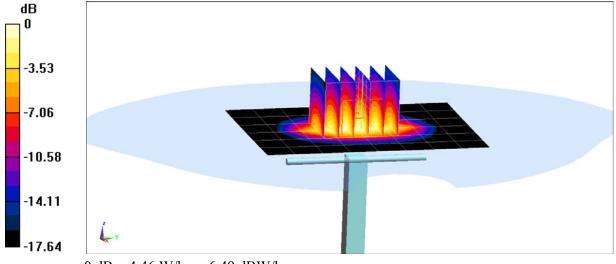
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.488 \text{ S/m}; \ \epsilon_r = 52.205; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-27-2017; Ambient Temp: 23.2°C; Tissue Temp: 21.6°C

Probe: ES3DV3 - SN3213; ConvF(4.94, 4.94, 4.94); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.23 W/kg

SAR(1 g) = 3.57 W/kg

Deviation(1 g) = -3.77%

0 dB = 4.46 W/kg = 6.49 dBW/kg

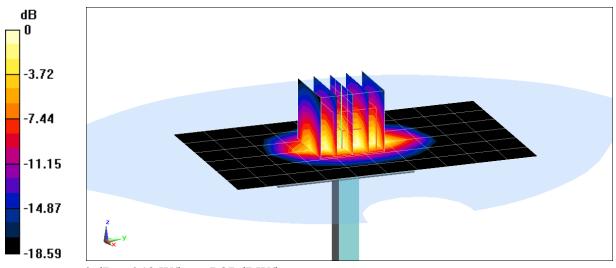
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.559 \text{ S/m}; \ \epsilon_r = 52.151; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 1-25-2017; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.37 W/kg

SAR(1 g) = 3.98 W/kg

Deviation(1 g) = 1.79%

0 dB = 6.13 W/kg = 7.87 dBW/kg

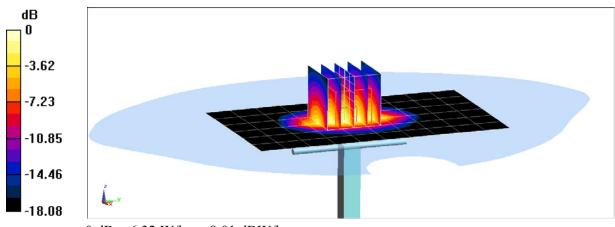
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.574 \text{ S/m}; \ \epsilon_r = 53.213; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 22.3°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7409; ConvF(7.47, 7.47, 7.47); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.50 W/kg

SAR(1 g) = 4.09 W/kg

Deviation(1 g) = 2.51%

0 dB = 6.32 W/kg = 8.01 dBW/kg

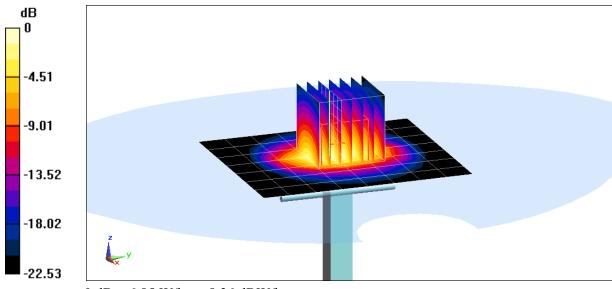
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.014 \text{ S/m}; \ \epsilon_r = 51.856; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-24-2017; Ambient Temp: 22.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3319; ConvF(4.2, 4.2, 4.2); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.9 W/kg

SAR(1 g) = 5.21 W/kg

Deviation(1 g) = 2.76%

0 dB = 6.85 W/kg = 8.36 dBW/kg

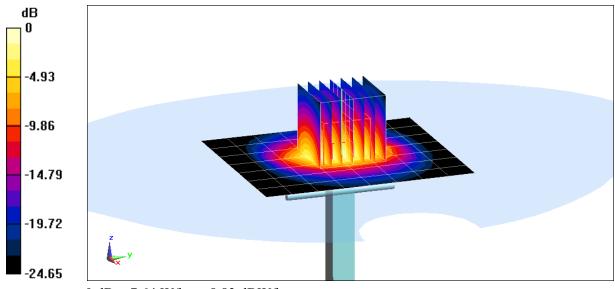
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.22 \text{ S/m}; \ \epsilon_r = 51.304; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-24-2017; Ambient Temp: 22.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3319; ConvF(3.99, 3.99, 3.99); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.8 W/kg

SAR(1 g) = 5.76 W/kg

Deviation(1 g) = 5.69%

0 dB = 7.64 W/kg = 8.83 dBW/kg

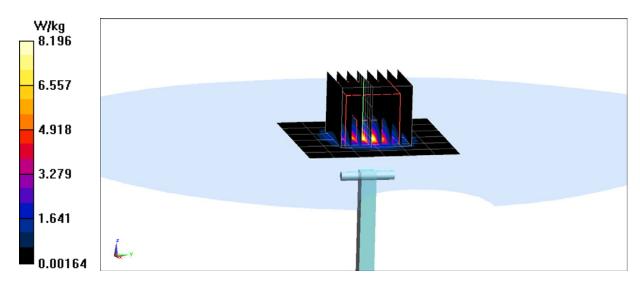
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.492$ S/m; $\varepsilon_r = 48.173$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 21.9°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN3914; ConvF(4.32, 4.32, 4.32); Calibrated: 2/22/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5250 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.4 W/kg

SAR(1 g) = 3.49 W/kg

SAR(1 g) = 3.49 W/kg Deviation(1 g) = -6.43%

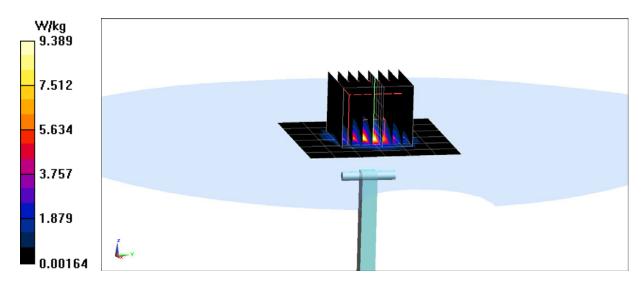
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.973 \text{ S/m}; \ \epsilon_r = 47.621; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 21.6°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN3914; ConvF(3.63, 3.63, 3.63); Calibrated: 2/22/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 3.88 W/kg

Deviation(1 g) = -1.65%

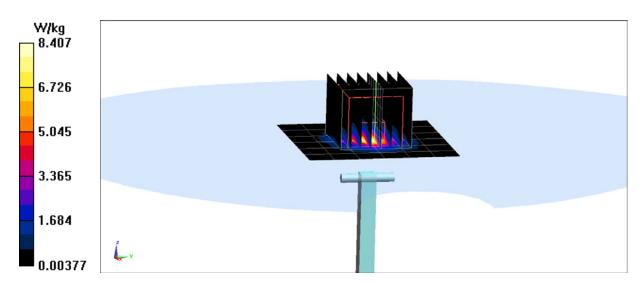
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 6.165$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-30-2017; Ambient Temp: 21.6°C; Tissue Temp: 21.1°C

Probe: EX3DV4 - SN3914; ConvF(3.86, 3.86, 3.86); Calibrated: 2/22/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/18/2016
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.0 W/kg

SAR(1 g) = 3.46 W/kg

SAR(1 g) = 3.46 W/kg Deviation(1 g) = -8.34%

