

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics MobileComm U.S.A. Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 12/22/2016 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 1M1701030001-09.ZNF

FCC ID:

ZNFLS777

APPLICANT:

LG ELECTRONICS MOBILECOMM U.S.A. INC.

Scope of Test:	Audio Ba
Application Type:	Class II F
FCC Rule Part(s):	CFR §20
HAC Standard:	ANSI C6
	285076 E
	285076 E
DUT Type:	Portable
Model:	LG-LS77
Additional Model(s):	LGLS777

Audio Band Magnetic Testing (T-Coil) Class II Permissive Change CFR §20.19(b) ANSI C63.19-2011 285076 D01 HAC Guidance v04 285076 D02 T-Coil testing for CMRS IP v02 Portable Handset LG-LS777 LGLS777, LS777 *Pre-Production Sample* [S/N: 06833] See FCC Change Document

C63.19-2011 HAC Category:

Class II Permissive Change(s):

Test Device Serial No.:

T3 (SIGNAL TO NOISE CATEGORY)

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 1 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 1 of 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M 11/29/2016

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	5
4.	METHOD OF MEASUREMENT	7
5.	FCC 3G MEASUREMENTS	18
6.	TEST SUMMARY	20
7.	EASUREMENT UNCERTAINTY	26
8.	EQUIPMENT LIST	27
9.	TEST DATA	28
10.	CALIBRATION CERTIFICATES	47
11.	CONCLUSION	54
12.	REFERENCES	55
13.	TEST SETUP PHOTOGRAPHS	57

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager		
Filename:	Test Dates:	DUT Type:		Page 2 of 59		
1M1701030001-09.ZNF	12/22/2016	Portable Handset		1 490 2 01 00		
© 2016 PCTEST Engineerir	© 2016 PCTEST Engineering Laboratory, Inc.					

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 2 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 3 of 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

DUT DESCRIPTION 2.

FCC ID:	ZNFLS777
Applicant:	LG Electronics MobileComm U.S.A. Inc.
	1000 Sylvan Avenue
	Englewood Cliffs, NJ 07632
	United States
Model:	LG-LS777
Additional Model(s):	LGLS777, LS777
Serial Number:	06833
HW Version:	Rev.1.0
SW Version:	LS777ZV1
Antenna:	Internal Antenna
HAC Test Configurations:	Secondary Cellular CDMA, 476, 564, 684, BT Off, WLAN Off, LTE Off
	Cellular CDMA, 1013, 384, 777, BT Off, WLAN Off, LTE Off
	PCS CDMA, 25, 600, 1175, BT Off, WLAN Off, LTE Off
	GSM 850, 128, 190, 251, BT Off, WLAN Off, LTE Off
	GSM 1900, 512, 661, 810, BT Off, WLAN Off, LTE Off
	UMTS V, 4132, 4183, 4233, BT Off, WLAN Off, LTE Off
	UMTS IV, 1312, 1412, 1513, BT Off, WLAN Off, LTE Off
	UMTS II, 9262, 9400, 9538, BT Off, WLAN Off, LTE Off
DUT Type:	Portable Handset

Dl

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Voice over Digital Transport OTT Capability	Additional GSM Power Reduction
	835	VO	Yes	Yes: WIFI or BT	N/A	N/A
CDMA	1900	VO	res	Tes: WIFI OF BI	N/A	N/A
	EVDO	DT	No	Yes: WIFI or BT	Yes	N/A
	850	vo	Yes	Yes: WIFI or BT	N/A	No
GSM	1900	VO	res	Tes: WIFI OF BI	N/A	INO
	GPRS/EDGE	DT	No	Yes: WIFI or BT	Yes	No
	850					
UMTS	1700	VD	Yes	Yes: WIFI or BT	N/A	N/A
014115	1900					
	HSPA	DT	No	Yes: WIFI or BT	Yes	N/A
	700 (B12)					
	850 (B5)	50 (B26)				
LTE (FDD)	850 (B26)		No	No Yes: WIFI or BT	Yes	N/A
LIE (FDD)	1700 (B4)	DI	NU		163	N/A
	1900 (B2)					
	1900 (B25)					
LTE (TDD)	2600 (B41)	DT	No	Yes: WIFI or BT	Yes	N/A
WIFI	2450	VD	No ¹	Yes: CDMA, GSM, UMTS, or LTE	Yes	N/A
BT	2450	DT	No	Yes: CDMA, GSM, UMTS, or LTE	N/A	N/A
			in accordance with the guidance i r CMRS IP.	issued by OET in KDB pub	lication 285076 D02 T-	

Table 2-1: ZNFLS777 HAC Air Interfaces

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 4 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 4 of 59
© 2016 DCTEST Engineering Laboratory Inc.				DEV/2.1 M

© 2016 PCTEST Engineering Laboratory, Inc.

REV 3.1.M 11/29/2016

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz - 3000 Hz per §8.3.2.

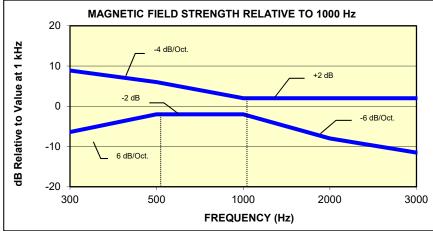
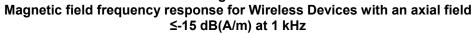
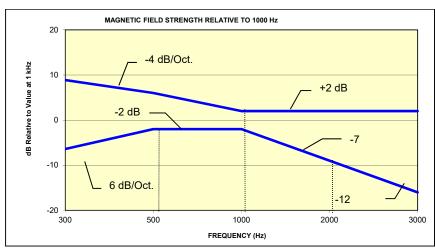




Figure 3-1

Figure 3-2

Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 5 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 5 of 59
© 2016 PCTEST Engineering	Laboratory, Inc.	· · · · · · · · · · · · · · · · · · ·		REV 3.1.M

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Cotogomy	Telephone RF Parameters			
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 3-1 Magnetic Coupling Parameters				

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 6 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 0 01 39
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

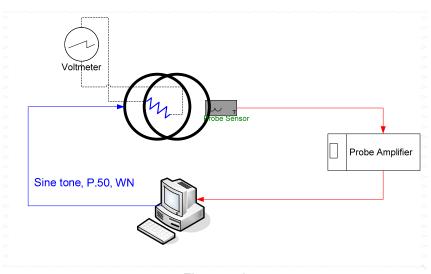
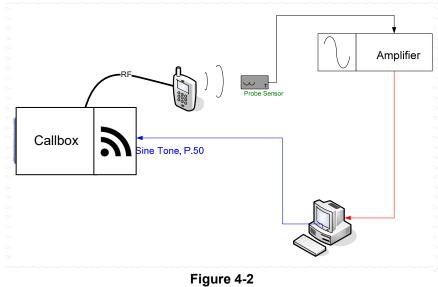
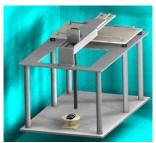



Figure 4-1 Validation Setup with Helmholtz Coil



T-Coil Test Setup

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dega 7 of 50	
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 7 of 59	
© 2016 PCTEST Engineerin	© 2016 PCTEST Engineering Laboratory, Inc.				

II. Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)

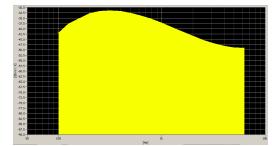
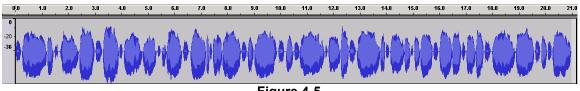


Figure 4-3 RF Near-Field Scanner


III. ITU-T P.50 Artificial Voice

Manufacturer:	
Active Frequency	
Range:	
Stimulus Type:	
Single Sample	
Duration:	
Activity Level:	

ITU-T
100 Hz – 8 kHz
Male and Female, no spaces
20.96 seconds
100%

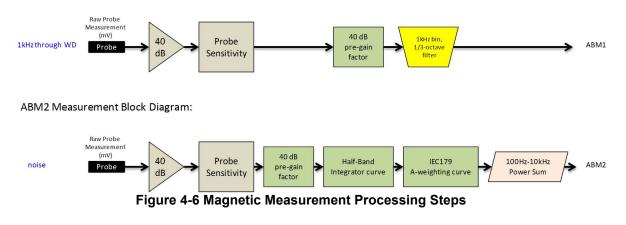

Figure 4-4 Spectral Characteristic of full P.50

Figure 4-5 Temporal Characteristic of full P.50

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕞 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 9 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 8 of 59
© 2016 PCTEST Engineering Laboratory, Inc.				REV 3.1.M 11/29/2016

ABM1 Measurement Block Diagram:

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is: -18 - 30 - 10= -58 dBA/m
- 2. Measurement System Validation(See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - ABM1 Validation The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_{c} = \frac{NI}{r\sqrt{1.25^{3}}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^{3}}}$$

Where H_c = magnetic field strength in amperes per meter

N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316A/m \approx -10dB(A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe

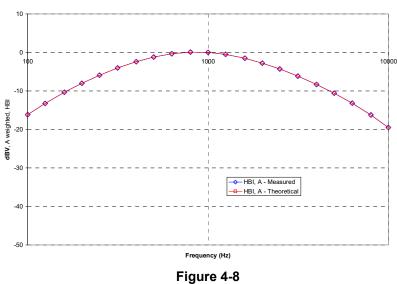
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dere 0 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 9 of 59
© 2016 PCTEST Engineerin	g Laboratory, Inc.			REV 3.1.M 11/29/2016

^{© 2016} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

measurement at -10dB(A/m). This was verified to be within ± 0.5 dB of the -10dB(A/m) value (see Page 24).

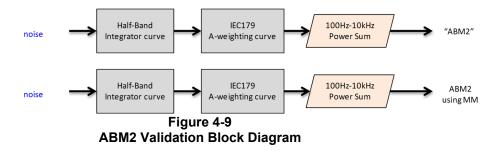
Frequency Response Validation C. The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the P.50 signal as shown below:

Figure 4-7 Frequency Response Validation


ABM2 Measurement Validation d. WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

ABM2 Frequency Response Validation				
	HBI, A -	HBI, A -		
f (Hz)	Measured	Theoretical	dB Var.	
	(dB re 1kHz)	(dB re 1kHz)		
100	-16.180	-16.170	-0.010	
125	-13.257	-13.250	-0.007	
160	-10.347	-10.340	-0.007	
200	-8.017	-8.010	-0.007	
250	-5.925	-5.920	-0.005	
315	-4.045	-4.040	-0.005	
400	-2.405	-2.400	-0.005	
500	-1.212	-1.210	-0.002	
630	-0.349	-0.350	0.001	
800	0.071	0.070	0.001	
1000	0.000	0.000	0.000	
1250	-0.503	-0.500	-0.003	
1600	-1.513	-1.510	-0.003	
2000	-2.778	-2.780	0.002	
2500	-4.316	-4.320	0.004	
3150	-6.166	-6.170	0.004	
4000	-8.322	-8.330	0.008	
5000	-10.573	-10.590	0.017	
6300	-13.178	-13.200	0.022	
8000	-16.241	-16.270	0.029	
10000	-19.495	-19.520	0.025	

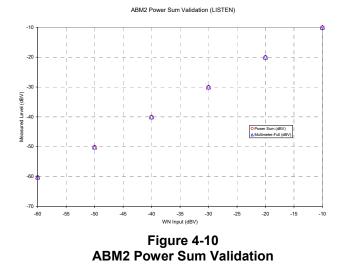
Table 4-1				
ABM2 Frequency Response Validation				


FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 10 01 59
© 2016 PCTEST Engineering Laboratory, Inc.			REV 3.1.M	
				11/29/2016

ABM2 Frequency Response Validation (LISTEN)

ABM2 Frequency Response Validation

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:



The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 11 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Tage Tronos
© 2016 PCTEST Engineering Laboratory, Inc.				

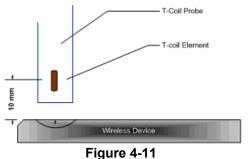
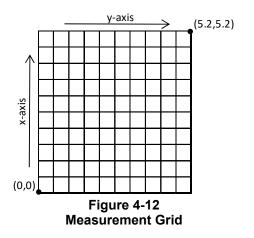

ABM2 Power Sum Validation					
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)		
-60	-60.36	-60.2	0.16		
-50	-50.19	-50.13	0.06		
-40	-40.14	-40.03	0.11		
-30	-30.13	-30.01	0.12		
-20	-20.12	-20	0.12		
-10	-10.14	-10	0.14		

Table 4-2



- 3. Measurement Test Setup
 - a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 12 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 12 01 59
© 2016 PCTEST Engineering Laboratory, Inc.				

Measurement Distance

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure4-16 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

The CMU200 audio levels were determined using base station simulator manufacturer calibration procedures resulting in the below corresponding voltages relative to handset test point level (in dBm0):

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1701030001-09.ZNF	Test Dates: 12/22/2016	DUT Type: Portable Handset		Page 13 of 59
© 2016 PCTEST Engineering	g Laboratory, Inc.			REV 3.1.M 11/29/2016

dBm0 Ref.	Input Voltage		Notes		
3.14 dBm0	1052.0 mV	0.4 dBV	From CDMA2K "DECODER CAL". (What is needed through Encoder for FS)		
-18 dBm0	92.260 mV	-20.7 dBV	For 8k Enhanced (Low)		
dBm0 Ref.	Volt	age	Notes		
3.14 dBm0	990.5 mV	-0.08 dBV	From GSM "DECODER CAL". (What is needed through Encoder for FS)		
-16 dBm0	109.4 mV	-19.2 dBV	For Speechcod/Handset Low		
dBm0 Ref.	Volt	age	Notes		
3.14 dBm0	1068.5 mV	0.58 dBV	From UMTS "DECODER CAL". (What is needed through Encoder for FS)		
-16 dBm0	118.0 mV	-18.6 dBV	For Handset Low		

Table 4-3 CMU200 Voltage Input Levels for Audio

- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (see below for GSM, see Section 5 for more information regarding worst-case configurations for CDMA and UMTS.):

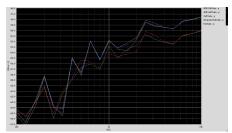


Figure 4-13 Vocoder Analysis for ABM Noise for GSM

- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dere 11 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 14 of 59
© 2016 PCTEST Engineering	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

- ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
- iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
- c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight on, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

V. Test Setup

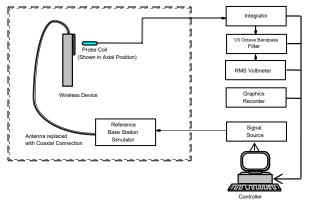


Figure 4-14 Audio Magnetic Field Test Setup

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to shielding effects of battery cover.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

According to the April 2013 TCB workshop slides, LTE and other OTT data services are outside the current definition of a managed CMRS service and are currently not required to be evaluated.

VoIP over WIFI CMRS air interfaces were not tested in accordance with the guidance issued by OET in KDB publication 285076 D02 T-Coil testing for CMRS IP.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 15 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 15 01 59
© 2016 PCTEST Engineerin	g Laboratory, Inc.			REV 3.1.M
				11/29/2016

VIII. Wireless Device Channels and Frequencies

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band.

Table 4.4

Table 4-4 Center Channels and Frequencies					
Test frequencies & associated c	hannels				
Channel	Frequency (MHz)				
Secondary Cellular 8	20				
564 (CDMA)	820.10				
Cellular 850					
384 (CDMA)	836.52				
190 (GSM)	836.60				
4183 (UMTS)	836.60				
AWS 1750					
1412 (UMTS)	1730.40				
PCS 1900	PCS 1900				
600 (CDMA)	1880				
661 (GSM)	1880				
9400 (UMTS)	1880				

IX. RF Emission Effect on T-coil Measurements

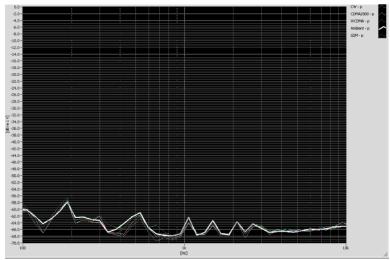


Figure 4-15 High power RF Emissions Effect with HAC Dipole on the T-coil Probe System 10mm between dipole maximum and magnetic probe

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕞 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 16 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 16 of 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M 11/29/2016

X. Test Flow

The flow diagram below was followed (From C63.19):

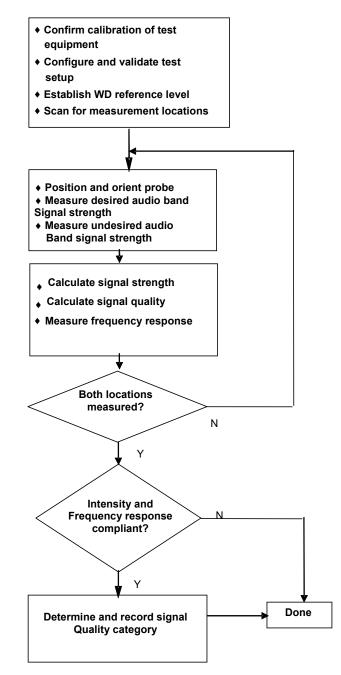


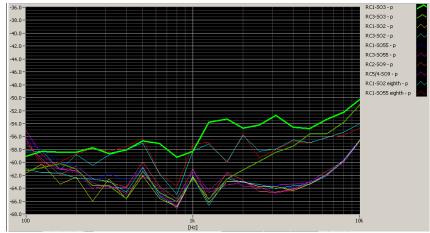
Figure 4-16 C63.19 T-Coil Signal Test Process

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dago 17 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 17 of 59
© 2016 PCTEST Engineering Laboratory, Inc.				REV 3.1.M

5. FCC 3G MEASUREMENTS

I. CDMA Test Configurations

Radio Configuration 1, Service Option 3 (thick, green data curve) was used for the testing as the worstcase configuration for the handset due to vocoder gating from the EVRC logic. See below plot for ABM noise comparison between operational field service options and radio configurations for a CDMA2000 handset:



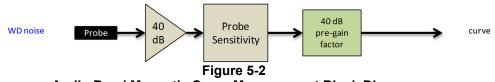

Figure 5-1 CDMA Audio Band Magnetic Noise

Table 5-1
FCC 3G ABM Measurements for ZNFLS777 (CDMA)

Codec Setting:	RC1/SO3	RC3/SO3	RC4/SO3	Orientation	Channel
ABM1 Pre-test (dBA/m)	5.22	4.97	5.31		
ABM2 Pre-test (dBA/m) (A-weight, Half-Band Int.)		-39.54	-40.85	Axial	25
S+N/N (dB)	35.43	44.51	46.16		

Mute on; Backlight on; Max Volume; Max Contrast

Power Control Bits = "All Up"

Audio Band Magnetic Curve Measurement Block Diagram

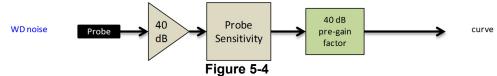
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 19 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 18 of 59
© 2016 PCTEST Engineerin	© 2016 PCTEST Engineering Laboratory, Inc.			

II. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:



Figure 5-3 UMTS Audio Band Magnetic Noise


 Table 5-2

 FCC 3G ABM Measurements for ZNFLS777 (UMTS)

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel
ABM1 Pre-test (dBA/m)	8.63	8.57	8.36		
ABM2 Pre-test (dBA/m) (A-weight, Half-Band Int.)	- 11 4/	-35.97	-34.36	Axial	1412
S+N/N (dB)	42.05	44.54	42.72		

• Mute on; Backlight on; Max Volume; Max Contrast

TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕞 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 19 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 19 01 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

6. TEST SUMMARY

I. T-Coil Test Summary

Table 6-1 Table of Results for CDMA

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	5.9	PASS
8.3.1		Secondary	Intensity, Radial	-18	-3.4	PASS
8.3.4	CDMA	Cellular	Signal-to-Noise/Noise, Axial	20	37.5	PASS
8.3.4		Celiulai	Signal-to-Noise/Noise, Radial	20	44.7	PASS
8.3.2			Frequency Response, Axial	0	2.0	PASS
8.3.1			Intensity, Axial	-18	5.9	PASS
8.3.1			Intensity, Radial	-18	-3.8	PASS
8.3.4	CDMA	Cellular	Signal-to-Noise/Noise, Axial	20	37.7	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	44.6	PASS
8.3.2			Frequency Response, Axial	0	2.0	PASS
8.3.1			Intensity, Axial	-18	5.5	PASS
8.3.1			Intensity, Radial	-18	-3.8	PASS
8.3.4	CDMA	PCS	Signal-to-Noise/Noise, Axial	20	36.1	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	44.0	PASS
8.3.2			Frequency Response, Axial	0	2.0	PASS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 6-5.

Table 6-2 Table of Results for GSM

C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict	
				dBA/m	dBA/m	PASS/FAIL	
8.3.1			Intensity, Axial	-18	7.6	PASS	
8.3.1			Intensity, Radial	-18	-2.7	PASS	
8.3.4	GSM	Cellular	Signal-to-Noise/Noise, Axial	20	28.2	PASS	
8.3.4			Signal-to-Noise/Noise, Radial	20	22.2	PASS	
8.3.2			Frequency Response, Axial	0	2.0	PASS	
8.3.1			Intensity, Axial	-18	7.4	PASS	
8.3.1			Intensity, Radial	-18	-2.4	PASS	
8.3.4	GSM	PCS	Signal-to-Noise/Noise, Axial	20	31.3	PASS	
8.3.4			Signal-to-Noise/Noise, Radial	20	26.5	PASS	
8.3.2			Frequency Response, Axial	0	2.0	PASS	

Note: The above summary table represents the worst-case numerical values according to configurations in Table 6-6.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager			
Filename:	Test Dates:	DUT Type:		Page 20 of 59			
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 20 01 59			
© 2016 PCTEST Engineering	2016 PCTEST Engineering Laboratory, Inc.						

				10		
C63.19 Sec.	Mode	Band	Test Description	Minimum Limit*	Measured	Verdict
				dBA/m	dBA/m	PASS/FAIL
8.3.1			Intensity, Axial	-18	9.1	PASS
8.3.1			Intensity, Radial	-18	-0.5	PASS
8.3.4	UMTS	Band 5	Signal-to-Noise/Noise, Axial	20	42.7	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	48.2	PASS
8.3.2			Frequency Response, Axial	0	2.0	PASS
8.3.1			Intensity, Axial	-18	9.1	PASS
8.3.1			Intensity, Radial	-18	-0.5	PASS
8.3.4	UMTS	Band 4	Signal-to-Noise/Noise, Axial	20	41.9	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	47.9	PASS
8.3.2			Frequency Response, Axial	0	2.0	PASS
8.3.1			Intensity, Axial	-18	9.2	PASS
8.3.1			Intensity, Radial	-18	-0.4	PASS
8.3.4	UMTS	Band 2	Signal-to-Noise/Noise, Axial	20	42.0	PASS
8.3.4			Signal-to-Noise/Noise, Radial	20	46.9	PASS
8.3.2			Frequency Response, Axial	0	2.0	PASS

Table 6-3 Table of Results for UMTS

Note: The above summary table represents the worst-case numerical values according to configurations in Table 6-7.

	Consolidated Tabled Results									
		Freq. Response Margin		Magnetic Intensity Verdict		FCC SNNR Verdict		FCC Margin (dB)	C63.19-2011 Rating	
		Axial	Radial	Axial	Radial	Axial	Radial		_	
	Secondary Cellular	PASS	NA	PASS	PASS	PASS	PASS			
CDMA	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-16.11	Τ4	
	PCS	PASS	NA	PASS	PASS	PASS	PASS			
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-2.21	Т3	
GSIM	PCS	PASS	NA	PASS	PASS	PASS	PASS	-2.21	15	
	Cellular	PASS	NA	PASS	PASS	PASS	PASS			
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-21.93	Τ4	
	PCS	PASS	NA	PASS	PASS	PASS	PASS			

Table 6-4 Consolidated Tabled Results

Note: Result shown is for T-coil category only.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 21 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 21 of 59
© 2016 PCTEST Engineering	g Laboratory, Inc.			REV 3.1.M

II. Raw Handset Data

					ala Resu						
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		476	6.52	-31.16		2.00	37.68	20.00	-17.68	T4	
	Axial	564	5.87	-31.79	-64.02	2.00	37.66	20.00	-17.66	T4	2.6, 3.4
Secondary		684	6.37	-31.15		2.00	37.52	20.00	-17.52	T4	
Cellular		476	-3.12	-48.07			44.95	20.00	-24.95	T4	
	Radial	564	-3.03	-48.62	-65.57	N/A	45.59	20.00	-25.59	T4	2.6, 2.0
		684	-3.38	-48.12			44.74	20.00	-24.74	T4	
		1013	5.92	-31.80		2.00	37.72	20.00	-17.72	T4	
	Axial	384	5.98	-32.55	-64.02	2.00	38.53	20.00	-18.53	T4	2.6, 3.4
Cellular		777	6.31	-31.50		2.00	37.81	20.00	-17.81	T4	
Genular		1013	-3.34	-47.91			44.57	20.00	-24.57	T4	
	Radial	384	-3.80	-48.98	-65.57	N/A	45.18	20.00	-25.18	T4	2.6, 2.0
		777	-3.39	-47.97			44.58	20.00	-24.58	T4	
		25	6.26	-29.85		2.00	36.11	20.00	-16.11	T4	
	Axial	600	5.52	-30.82	-64.02	2.00	36.34	20.00	-16.34	T4	2.6, 3.4
PCS		1175	6.32	-31.04		2.00	37.36	20.00	-17.36	T4	
103		25	-3.44	-47.47			44.03	20.00	-24.03	T4	
	Radial	600	-3.44	-48.18	-65.57	N/A	44.74	20.00	-24.74	T4	2.6, 2.0
		1175	-3.75	-48.46			44.71	20.00	-24.71	T4	

Table 6-5 Raw Data Results for CDMA

Table 6-6 Raw Data Results for GSM

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates	
		128	7.60	-20.66		2.00	28.26	20.00	-8.26	Т3		
	Axial	190	7.79	-20.48	-64.02	2.00	28.27	20.00	-8.27	Т3	2.6, 3.4	
GSM850		251	7.78	-20.37	1	2.00	28.15	20.00	-8.15	Т3		
GSW050		128	-2.68	-24.97			22.29	20.00	-2.29	Т3		
	Radial	190	-2.40	-24.61	-65.57	N/A	22.21	20.00	-2.21	Т3	2.6, 2.0	
		251	-2.43	-24.64				22.21	20.00	-2.21	Т3	
		512	8.08	-23.51		2.00	31.59	20.00	-11.59	T4		
	Axial	661	7.57	-23.75	-64.02	2.00	31.32	20.00	-11.32	T4	2.6, 3.4	
GSM1900		810	7.41	-24.79		2.00	32.20	20.00	-12.20	T4		
G3W1900		512	-2.03	-28.57			26.54	20.00	-6.54	Т3		
	Radial	661	-2.42	-29.00	-65.57	N/A	26.58	20.00	-6.58	Т3	2.6, 2.0	
		810	-2.21	-29.91			27.70	20.00	-7.70	T3		

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 22 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		
© 2016 PCTEST Engineerin	g Laboratory, Inc.			REV 3.1.M
				11/29/2016

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	FCC Margin (dB)	C63.19-2011 Rating	Test Coordinates
		4132	9.17	-34.57		2.00	43.74	20.00	-23.74	T4	
	Axial	4183	9.06	-34.80	-64.02	2.00	43.86	20.00	-23.86	T4	2.6, 3.4
UMTS Band		4233	9.06	-33.59		2.00	42.65	20.00	-22.65	T4	
5		4132	-0.49	-48.68			48.19	20.00	-28.19	T4	
	Radial	4183	-0.49	-49.22	-65.57	N/A	48.73	20.00	-28.73	T4	2.6, 2.0
		4233	-0.53	-49.11			48.58	20.00	-28.58	T4	
		1312	9.07	-33.36	-64.02	2.00	42.43	20.00	-22.43	T4	
	Axial	1412	9.12	-32.81		2.00	41.93	20.00	-21.93	T4	2.6, 3.4
UMTS Band		1513	9.16	-33.67		2.00	42.83	20.00	-22.83	T4	
4		1312	-0.45	-48.33			47.88	20.00	-27.88	T4	
	Radial	1412	-0.46	-48.83	-65.57	N/A	48.37	20.00	-28.37	T4	2.6, 2.0
		1513	-0.49	-48.64			48.15	20.00	-28.15	T4	
		9262	9.22	-32.78		2.00	42.00	20.00	-22.00	T4	
	Axial	9400	9.24	-32.79	-64.02	2.00	42.03	20.00	-22.03	T4	2.6, 3.4
UMTS Band		9538	9.27	-33.29		2.00	42.56	20.00	-22.56	T4	
2		9262	-0.44	-47.37			46.93	20.00	-26.93	T4	
		9400	-0.44	-47.60	-65.57	N/A	47.16	20.00	-27.16	T4	2.6, 2.0
		9538	-0.44	-47.67			47.23	20.00	-27.23	T4	1

Table 6-7 Raw Data Results for UMTS

III. Test Notes

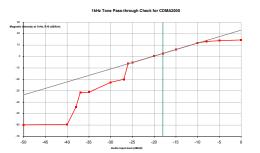
A. General

- 1. Phone Condition: Mute on; Backlight on; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (**Phone→Call Settings→More→Hearing aids**) was set to ON for Frequency Response compliance

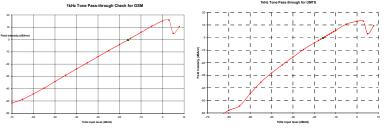
B. CDMA

- 1. Power Configuration: Power Control Bits = "All Up"
- 2. Vocoder Configuration: RC1/SO3 (CDMA EVRC)
- 3. Speech Signal: ITU-T P.50 Artificial Voice

C. GSM


- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);
- 3. Speech Signal: ITU-T P.50 Artificial Voice

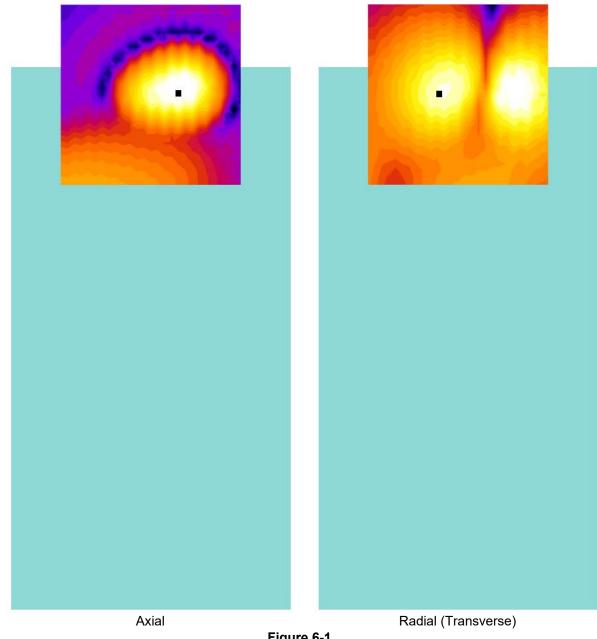
D. UMTS


- 1. Power Configuration: TPC="All 1s";
- 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);
- 3. Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 23 01 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

IV. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -18 dBm0 for CDMA. This measurement was taken in the axial configuration above the maximum location.


This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, and UMTS. This measurement was taken in the axial configuration above the maximum location.

V. T-Coil Validation Test Results

Helmholtz C	oil Validation Table	of Results	
Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.756	PASS
Environmental Noise	< -58 dBA/m	-64.02	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.927	PASS
Environmental Noise	< -58 dBA/m	-65.57	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

Table 6-8 Helmholtz Coil Validation Table of Results

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 24 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 24 of 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

VI. ABM1 Magnetic Field Distribution Scan Overlays

Figure 6-1 T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 25 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 25 of 59
© 2016 PCTEST Engineering Laboratory, Inc.				

7. EASUREMENT UNCERTAINTY

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)						17.7%	0.71
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Table 7-1 Uncertainty Estimation Table

Notes:

1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

2. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 26 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Ũ
© 2016 PCTEST Engineerin	REV 3.1.M			
-				11/29/2016

8. EQUIPMENT LIST

Table 8-1 Equipment List

		=4p				
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Listen	SoundConnect	Microphone Power Supply	6/9/2016	Annual	6/9/2017	0899-PS150
Listen	SoundCheck	Acoustic Analyzer System	6/13/2016	Annual	6/13/2017	04-06-5876
Rohde & Schwarz	CMU200	Base Station Simulator	3/29/2016	N/A	3/29/2017	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	N/A	N/A	N/A	107826
TEM	Helmholtz Coil	Helmholtz Coil	12/22/2015	Annual	12/22/2016	SBI 1052
TEM	Axial T-Coil Probe	Axial T-Coil Probe	6/8/2016	Annual	6/8/2017	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	6/8/2016	Annual	6/8/2017	TEM-1129
TEM		HAC System Controller with Software	N/A	N/A	N/A	N/A
TEM		HAC Positioner	N/A	N/A	N/A	N/A

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 27 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		1 ugo 21 01 00
© 2016 PCTEST Engineerin	ng Laboratory, Inc.			REV 3.1.M 11/29/2016

9. TEST DATA

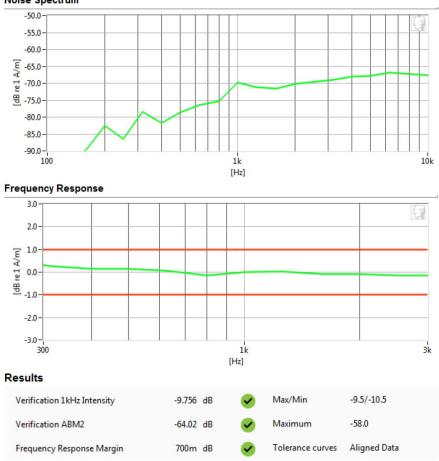
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 29 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 28 of 59
© 2016 PCTEST Engineering Laboratory, Inc.				

© 2016 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this International copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

11/29/2016

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 06/08/2016
- Helmholtz Coil SN: SBI 1052; Calibrated: 12/22/2015

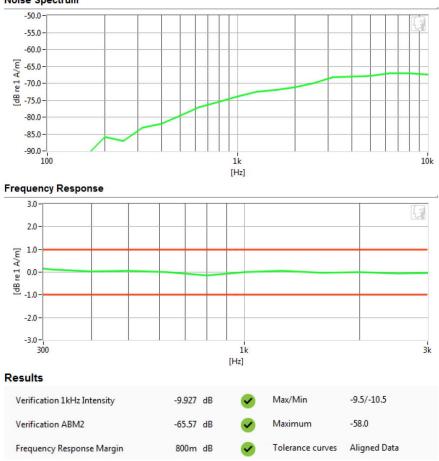
Noise Spectrum

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 29 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 29 01 09
© 2016 PCTEST Engineering Laboratory, Inc.				
				11/29/2016

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 06/08/2016
- Helmholtz Coil SN: SBI 1052; Calibrated: 12/22/2015

Noise Spectrum

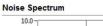
PCTEST 2016

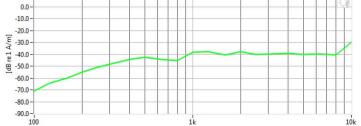
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 30 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		r ago oo or oo
© 2016 PCTEST Engineerir	REV 3.1.M			
				11/29/2016

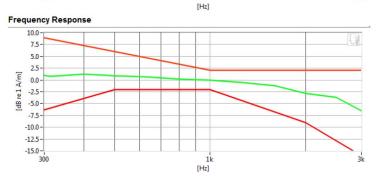
PCTEST Hearing-Aid Compatibility Facility

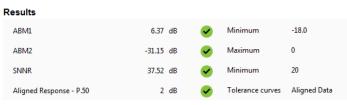
DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011


Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016


Test Configuration:

- Mode: CDMA Secondary Cellular
- Channel: 684
- Speech Signal: ITU-T P.50 Artificial Voice

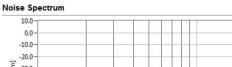
PCTEST 2016

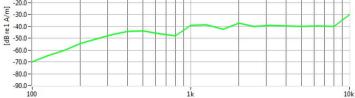
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 31 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 51 01 59
© 2016 PCTEST Engineerin	REV 3.1.M 11/29/2016			

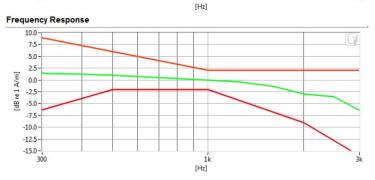
PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011


Equipment:


• Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: CDMA Cellular
- Channel: 1013
- Speech Signal: ITU-T P.50 Artificial Voice

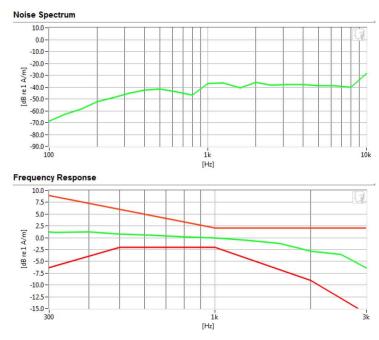
PCTEST 2016

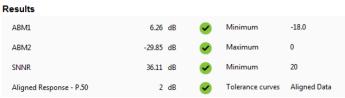
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 32 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 52 01 59
© 2016 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: CDMA PCS
- Channel: 25
- Speech Signal: ITU-T P.50 Artificial Voice

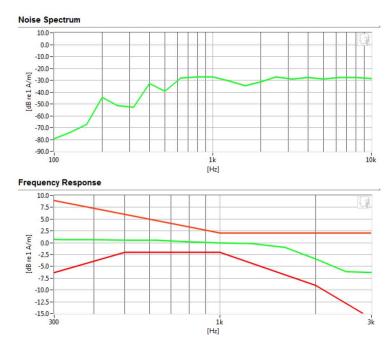
PCTEST 2016

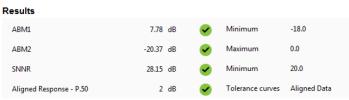
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 22 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 33 of 59
© 2016 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: GSM 850
- Channel: 251
- Speech Signal: ITU-T P.50 Artificial Voice

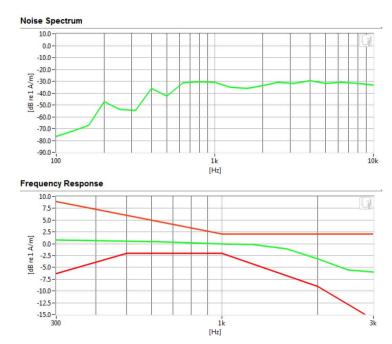
PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 34 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 34 01 59
© 2016 PCTEST Engineering Laboratory, Inc.				REV 3.1.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: GSM 1900
- Channel: 661
- Speech Signal: ITU-T P.50 Artificial Voice

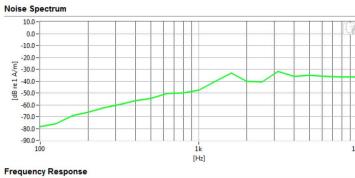
PCTEST 2016

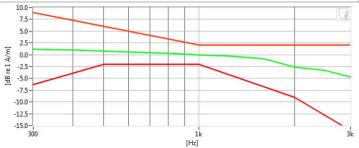
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 25 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 35 of 59
© 2016 PCTEST Engineering Laboratory, Inc.				REV 3.1.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011


Equipment:


• Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: UMTS Band 5
- Channel: 4233
- Speech Signal: ITU-T P.50 Artificial Voice

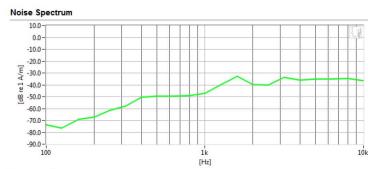
PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 36 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		r ago oo or oo
© 2016 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: UMTS Band 4
- Channel: 1412
- Speech Signal: ITU-T P.50 Artificial Voice

ABM1	9.12	dB	~	Minimum	-18.0
ABM2	-32.8	dB	 	Maximum	0.0
SNNR	41.93	dB	 	Minimum	20.0
Aligned Response - P.50	2	dB	 	Tolerance curves	Aligned Data

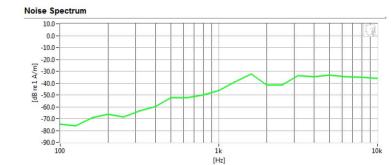
PCTEST 2016

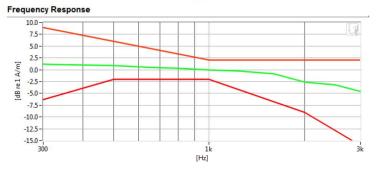
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 37 of 59	
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage St 01 59	
© 2016 PCTEST Engineering Laboratory, Inc.					

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833


Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 06/08/2016

Test Configuration:

- Mode: UMTS Band 2
- Channel: 9262
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 38 of 59	
1M1701030001-09.ZNF	12/22/2016	Portable Handset		r age oo or oo	
© 2016 PCTEST Engineering Laboratory, Inc.					

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: CDMA Secondary Cellular
- Channel: 684

Noise Spectrum

SNNR

44.74 dB

Minimum

20.0

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 39 of 59	
1M1701030001-09.ZNF	12/22/2016	Portable Handset			
© 2016 PCTEST Engineering Laboratory, Inc.					
				11/29/2016	

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: CDMA Cellular
- Channel: 1013

Noise Spectrum

SNNR

44.57 dB

Minimum

20.0

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 40 of 59	
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 40 01 39	
© 2016 PCTEST Engineering Laboratory, Inc.					

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: CDMA PCS
- Channel: 25

Noise Spectrum

SNNR

44.03 dB

Minimum

20.0

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename: 1M1701030001-09.ZNF	Test Dates: 12/22/2016	DUT Type: Portable Handset		Page 41 of 59	
© 2016 PCTEST Engineering Laboratory, Inc.					

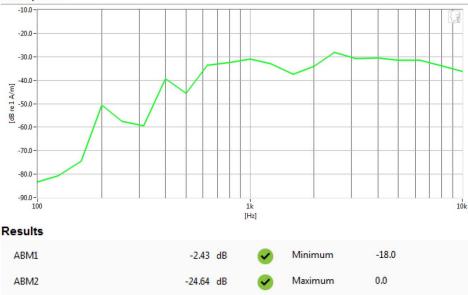
PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: GSM 850
- Channel: 251

Noise Spectrum

SNNR

22.21 dB

Minimum

20.0

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🚺 LG	Approved by: Quality Manager	
Filename: 1M1701030001-09.ZNF	Test Dates: 12/22/2016	DUT Type: Portable Handset		Page 42 of 59	
© 2016 PCTEST Engineering Laboratory, Inc.					

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: GSM 1900
- Channel: 512

Noise Spectrum

SNNR

26.54 dB

Minimum

20.0

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 43 of 59	
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 45 01 59	
© 2016 PCTEST Engineering Laboratory, Inc.					

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: UMTS Band 5
- Channel: 4132

Noise Spectrum

SNNR

48.19 dB

Minimum

20.0

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 44 of 59	
1M1701030001-09.ZNF 12/22/2016 Portable Handset © 2016 PCTEST Engineering Laboratory, Inc.					
				11/29/2016	

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: UMTS Band 4
- Channel: 1312

Noise Spectrum

SNNR

47.88 dB

Minimum

20.0

PCTEST 2016

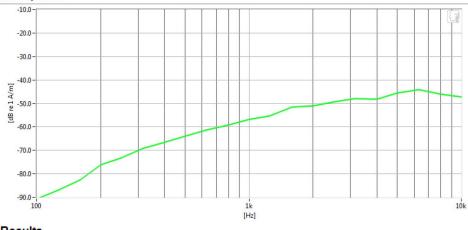
FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1701030001-09.ZNF	Test Dates: 12/22/2016	DUT Type: Portable Handset		Page 45 of 59
© 2016 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFLS777

Type: Portable Handset Serial: 06833

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 06/08/2016

Test Configuration:

- Mode: UMTS Band 2
- Channel: 9262

Noise Spectrum

Results					
ABM1	-440m	dB	<	Minimum	-18.0
ABM2	-47.37	dB	•	Maximum	0.0
SNNR	46.93	dB	~	Minimum	20.0

PCTEST 2016

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 40 01 59
© 2016 PCTEST Engineerin	REV 3.1.M 11/29/2016			

10. CALIBRATION CERTIFICATES

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 59
1M1701030001-09.ZNF	12/22/2016	6 Portable Handset		Fage 47 01 59
© 2016 PCTEST Engineering	g Laboratory, Inc.			REV 3.1.M

© 2016 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

11/29/2016

West Ca	aldwell Calibrat	ion Laborato	ries Inc.	
Certif	ficate of	Calibr	ation	
	for			1.10
	AXIAL T COI Manufactured by: Model No: Serial No: Calibration Recall No:	L PROBE TEM CONSULTI AXIAL T COIL P TEM-1123 26516		
	Submitte	ed By:		100 100 100 100 100 100 100 100 100 100
	Customer: AND	REW HARWELL		a
	Address: 6660	EST ENGINEERING L -B DOBBIN ROAD .UMBIA	AB MD 21045	
National Institute of Sta	was calibrated to the indicat ndards and Technology or to that the instrument met the s	o accepted values of nat	ural physical constants.	
West Caldwell Calibrat	on Laboratories Procedure	No. AXIAL T C TEM	° INAL	
Upon receipt for Calibra	ation, the instrument was for	and to be:	Var	100
Within	(X)		06/24/2016	
tolerance of the indicat	ed specification. See attached	d Report of Calibration.		
West Caldwell Calibrat	on Laboratories' calibration 2A, ANSI/NCSL Z540-1, IE4	control system meets th	ie requirements, ISO	
Note: With this Certificate, F	Report of Calibration is included.	Approved	by:	0
Calibration Date:	08-Jun-16		FC	
Certificate No:	26516 - 3	Felix Chr	istopher (QA Mgr.)	1.00
QA Doc. #1051 Rev. 2.0 10/1/01	Certificate Pag		/IEC 17025:2005	
		Calibratio	CCREDITED n Lab. Cert. # 1533.01	
		A Company		

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🔁 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dere 49 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 48 of 59
© 2016 PCTEST Engineerin	ng Laboratory, Inc.			REV 3.1.M

HCATEMC_TEM-1123_Jun-08-2016

uncompromised calibration Laboratories, Inc.

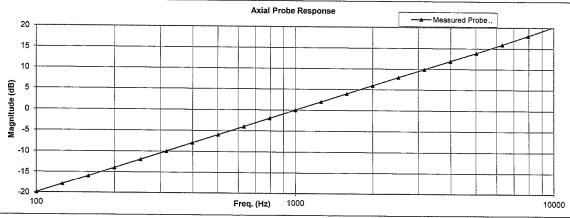
1575 State Route 96, Victor NY 14564

ACCREDITED Calibration Lab. Cert. # 1533.01

Serial No.: TEM-1123

REPORT OF CALIBRATION

Model No.: Axial T Coil Probe


TEM Consulting LP Axial T Coil Probe

Company : PCTEST Engineering Lab.

I. D. No: 80582 Calibration results: Probe Sensitivity measured with Helmholtz Coil Helmholtz Coil; Before & after data same: ...X..... the number of turns on each coil; 10 No. the radius of each coil, in meters; 0.204 m Laboratory Environment: the current in the coils, in amperes.; 0.09 Α Ambient Temperature: 20.3 °C Helmholtz Coil Constant; 7.08 A/m/V Ambient Humidity: 43.4 % RH Helmholtz Coll magnetic field; 6.20 A/m Ambient Pressure: 98.3 kPa Calibration Date: 8-Jun-16 Probe Sensitivity at 1000 Hz. Re-calibration Due: 8-Jun-17 was -60.12 dBV/A/m Report Number: 26516 -3 0.987 mV/A/m Control Number: 26516 Probe resistance 895 Ohms The above listed instrument meets or exceeds the tested manufacturer's specifications. This Calibration is traceable through NIST test numbers: 683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response

The above listed instrument was checked using calibration procedure documented in West Caldwell Calibration Laboratories Inc. procedure : Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025

Cal. Date: 8-Jun-2016 Measurements performed by: Calibrated on WCCL system type 9700 Felix Christopher Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Page 1 of 2

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 49 01 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

HCATEMC_TEM-1123_Jun-08-2016

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe

Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Company : PCTEST Engineering Lab.

Function	Tolera	nce	Me	asured val	sured values	
			Before	Out	Remarks	
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.12			
······································	-,	dB				
Probe Level Linearity		6	6.00			
	Ref. (0 dB)	0	0.00			
		-6	-6.03			
		-12	-12.04		1	
NRI 1		Hz				
Probe Frequency Response		100	-19.9			
		126	-17.9			
		158	-15.9			
		200	-14.0			
		251	-12.0			
			-10.0			
		398	-8.0			
		501	-6.0			
		631	-4.0			
		794	-2.0			
	Ref. (0 dB)	1000	0.0			
		1259	2.0			
		1585	4.0			
		1995	6.0			
		2512	7.9			
		3162	9.9			
		3981	11.9			
		5012	13.9			
		6310	15.9			
		7943	18.0			
		10000	20.2			
		Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB)	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity 6 6 Ref. (0 dB) 0 -6 -12 -12 -12 Probe Frequency Response 100 126 126 158 200 251 316 398 301 631 794 Ref. (0 dB) 1000 1259 1585 1995 2512 3162 3981 3981 1585 1995 2512 3162 3981 3981 1593 1565 1565 1595 1565 1565 1595 1565 1565 1595 1565 1565 1595 1565 1565 1595 1565 1565 1595 1565 1565 1595 1565 1565 1595 1565 1565 1595 1565 1565 1595 <	Before Probe Sensitivity at 1000 Hz. dBV/A/m -60.12 Probe Level Linearity 6 6.00 -60.00 -6 -6.03 -12 -12.04 Probe Frequency Response 100 -19.9 126 -17.9 158 -15.9 200 -14.0 251 -12.0 316 -10.0 398 -8.0 601 -6.0 631 -4.0 251 -12.0 316 -10.0 398 -8.0 601 -6.0 631 -4.0 794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1555 4.0 1995 6.0 2512 7.9 3162 9.9 3981 11.9 5012 13.9 6310 15.9 3981 11.9 5012 13.9 6310 15.9 3981 11.9 5012 13.9 6310 15.9 7943 18.0	Before Out Probe Sensitivity at 1000 Hz. dBV/A/m -60.12 -60.12 Probe Level Linearity 6 6.00 -60.00 -66 Ref. (0 dB) 0 0.00 -60.12 -60.12 Probe Level Linearity 6 6.00 -60.03 -12 -12 Probe Frequency Response 100 -19.9 -12 -12.04 -12 Probe Frequency Response 100 -19.9 -12 -12.0 -12 Ref. (0 dB) .126 -17.9 -158 -15.9 -12.0 2000 -14.0 251 -12.0 -14.0 -14.0 -14.0 251 .12.0 -14.0	

Instruments used for calibration:				Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N	36064102	1-Oct-2015	.287708	1-Oct-2016
HP	34401A	S/N	36102471	1-Oct-2015	.287708	1-Oct-2016
HP	33120A	S/N	36043716	1-Oct-2015	.287708	1-Oct-2016
B&K	2133	S/N	1583254	1-Oct-2015	683/284413-14	1-Oct-2016

Cal. Date: 8-Jun-2016

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: Felix Christopher

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 50 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 50 of 59
© 2016 PCTEST Engineerir	ng Laboratory, Inc.			REV 3.1.M 11/29/2016

West	Caldwell Calibrat	ion Laboratories Inc.	
Cert	ificate of	Calibration	
	for		
	RADIAL T COI Manufactured by: Model No: Serial No: Calibration Recall No:	L PROBE TEM CONSULTING RADIAL T COIL PROBE (ID#80583 TEM-1129 26516	
	Submitte	ed By:	
	Customer: AND	REW HARWELL	
	Address: 6660-	EST ENGINEERING LAB B DOBBIN ROAD UMBIA MD 21045	
National Institute of This document certif submitter.	Standards and Technology or to ies that the instrument met the f	ed specification using standards traceable to accepted values of natural physical constant following specification upon its return to the	S.
	ration Laboratories Procedure I ibration, the instrument was fou	NO. RADIAL T TEM C	
Withi		No. RADIAL T TEM C //// Ind to be: 06/24/2016	
tolerance of the indi	cated specification. See attached	Report of Calibration.	
West Caldwell Calib 10012-1 MIL-STD-4	ration Laboratories' calibration 5662A, ANSI/NCSL Z540-1, IEC	control system meets the requirements, ISO C Guide 25, ISO 9001:2008 and ISO 17025.	
Note: With this Certificate	e, Report of Calibration is included.	Approved by:	
Calibration Date:	08-Jun-16	FC	
Certificate No:	26516 - 2	Felix Christopher (QA Mgr.)	_
QA Doc. #1051 Rev. 2.0 10/1/01	Certificate Page	e 1 of 1 ISO/IEC 17025:2005	
٨	West Caldwell Calibration		
	Laboratories. Inc.	ACCREDITED	

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🔁 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 51 of 59
1M1701030001-09.ZNF 12/22/2016		Portable Handset	Portable Handset	
© 2016 PCTEST Engineerir	ng Laboratory, Inc.	· · · · · · · · · · · · · · · · · · ·		REV 3.1.M

HCRTEMC_TEM-1129_Jun-08-2016

uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor NY 14564

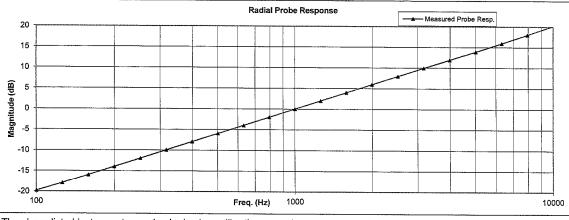
Serial No.: TEM-1129

i. D. No: 80583

Calibration Lab. Cert. # 1533.01

REPORT OF CALIBRATION

Model No.: Radial T Coil Probe


TEM Consulting LP Radial T Coil Probe

Company : PCTEST Engineering Lab.

Calibration results: Probe Sensitivity measured with Helmholtz Coil Helmholtz Coil: Before & after data same: ...X..... the number of turns on each coil; 10 No. the radius of each coil, in meters; 0.204 m Laboratory Environment: the current in the coils, in amperes.; 0.09 А Ambient Temperature: 20.3 ۰c Helmholtz Coil Constant; 7.08 A/m/V Ambient Humidity: 43.4 % RH Helmholtz Coil magnetic field; 6.22 A/m Ambient Pressure: 98.3 kPa Calibration Date: 8-Jun-16 Probe Sensitivity at 1000 Hz. Re-calibration Due: 8-Jun-17 -60.57 dBV/A/m was Report Number: 26516 -2 0.937 mV/A/m Control Number: 26516 Probe resistance 899 Ohms The above listed instrument meets or exceeds the tested manufacturer's specifications. This Calibration is traceable through NIST test numbers: 683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell Calibration Laboratories Inc. procedure : Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025

Cal. Date: 8-Jun-2016 Measurements performed by: Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Felix Christopher

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 52 of 50
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 52 of 59
© 2016 PCTEST Engineerin	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

HCRTEMC_TEM-1129_Jun-08-2016

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564

Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe

^{for} Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Company : PCTEST Engineering Lab.

easured	ed values
Out	
1	

Instruments used for calibration	1		Date of Cal.	Traceability No.	Due Date
HP	34401A	S/N 36064102	1-Oct-2015	.287708	1-Oct-2016
HP	34401A	S/N 36102471	1-Oct-2015	,287708	1-Oct-2016
HP	33120A	S/N 36043716	1-Oct-2015	,287708	1-Oct-2016
B&K	2133	S/N 1583254	1-Oct-2015	683/284413-14	1-Oct-2016

Cal. Date: 8-Jun-2016

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: Felix Christopher

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 53 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		
© 2016 PCTEST Engineerin	ng Laboratory, Inc.			REV 3.1.M 11/29/2016

11. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 54 01 59
© 2016 PCTEST Engineering Laboratory, Inc.			REV 3.1.M	

© 2016 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

11/29/2016

12. **REFERENCES**

- 1. ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- 2. FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v04," April 26, 2016
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v02," April 26, 2016
- 4. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege EE of E0
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Page 55 of 59
© 2016 PCTEST Engineering	ng Laboratory, Inc.			REV 3.1.M
				11/29/2016

- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFLS777		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 56 of 59
1M1701030001-09.ZNF	12/22/2016	Portable Handset		Fage 50 01 59
© 2016 PCTEST Engineerin	g Laboratory, Inc.	·		REV 3.1.M
				11/29/2016