

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm USA, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 USA Date of Testing: 01/12/16 - 01/19/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1601150088-R1.ZNF

FCC ID: ZNFLS775

APPLICANT: LG ELECTRONICS MOBILECOMM USA, INC.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093

Model(s): LGLS775, LG-LS775, LS775

Equipment	Band & Mode	Tx Frequency		SAR		
Class			1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	10 gm Phablet (W/kg)
PCE	GSWGPRS/EDGE 850	824.20 - 848.80 MHz	0.40	0.67	0.75	
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.25	0.36	0.36	
PCE	UMTS 850	826.40 - 846.60 MHz	0.36	0.59	0.59	
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.44	0.83	0.83	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.46	0.66	0.66	
PCE	CDMA/EVDO BC0 (§22H)	824.70 - 848.31 MHz	0.47	0.68	0.69	
PCE	CDMA/EVDO BC10 (§90S)	817.90 - 823.10 MHz	0.37	0.64	0.63	
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	0.52	0.64	0.64	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.16	0.33	0.35	
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.35	0.54	0.56	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz				
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.46	0.78	0.78	
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.49	0.50	0.53	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz				
PCE	LTE Band 41	2498.5 - 2687.5 MHz	0.10	0.76	0.76	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.57	0.15	0.15	
DSS/DTS	Bluetooth	2402 - 2480 MHz		N	/A	
Simultaneous	SAR per KDB 690783 D01v0)1r03:	1.08	0.99	0.98	N/A

Note: This revised Test Report (S/N: 0Y1601150088-R1.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 1 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 1 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	9
3	INTROD	UCTION	10
4	DOSIME	TRIC ASSESSMENT	11
5	DEFINIT	ON OF REFERENCE POINTS	12
6	TEST CO	DNFIGURATION POSITIONS	13
7	RF EXPO	OSURE LIMITS	17
8	FCC ME	ASUREMENT PROCEDURES	18
9	RF CON	DUCTED POWERS	25
10	SYSTEM	VERIFICATION	41
11	SAR DA	TA SUMMARY	43
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	56
13	SAR ME	ASUREMENT VARIABILITY	60
14	EQUIPM	ENT LIST	61
15	MEASUF	REMENT UNCERTAINTIES	62
16	CONCLU	JSION	63
17	REFERE	NCES	64
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFLS775	POTEST NO INCIDENT INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done O of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 2 of 65

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSWGPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
CDMA/EVDO BC0 (§22H)	Voice/Data	824.70 - 848.31 MHz
CDMA/EVDO BC10 (§90S)	Voice/Data	817.90 - 823.10 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
LTE Band 12	Data	699.7 - 715.3 MHz
LTE Band 26 (Cell)	Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
LTE Band 41	Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

		Voice	Burst Aver	age GMSK	Burst Ave	age 8-PSK
Mode / Band	(dBm)	(dE	Bm)	(dE	Bm)	
		1 TX Slot	1 TX Slots	2 TX Slots	1 TX Slots	2 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.0	33.0	31.0	27.7	25.7
d3lvi/dFR3/EDdE 830	Nominal	32.5	32.5	30.5	27.2	25.2
GSM/GPRS/EDGE 1900	Maximum	29.7	29.7	27.7	26.7	24.7
GSIVI/GPN3/EDGE 1900	Nominal	29.2	29.2	27.2	26.2	24.2

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 2 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 3 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

	Modula	ted Average	e (dBm)	
Mode / Band	3GPP	3GPP	3GPP	
	WCDMA	HSDPA	HSUPA	
LIMITS Dand E (SEO MHz)	Maximum	23.7	23.7	23.7
UMTS Band 5 (850 MHz)	Nominal	23.2	23.2	23.2
LINATE Dand 4 (1750 NALL-)	Maximum	23.7	23.7	23.7
UMTS Band 4 (1750 MHz)	Nominal	23.2	23.2	23.2
UMTS Band 2 (1900 MHz)	Maximum	23.7	23.7	23.7
Olvi13 Balla 2 (1900 WHZ)	Nominal	23.2	23.2	23.2

Mode / Band		Modulated Average (dBm)
CDMA/EVDO BC10 (§90S)	Maximum	24.7
CDIVIA/EVDO BCTO (9903)	Nominal	24.2
CDMA/EVDO BC0 (§22H)	Maximum	24.7
CDIVIA/EVDO BCO (922H)	Nominal	24.2
PCS CDMA/EVDO	Maximum	24.2
PC3 CDIVIA/EVDO	Nominal	23.7

Mode / Band		Modulated Average (dBm)
LTE Band 12	Maximum	23.7
LIE Ballu 12	Nominal	23.2
LTE Band 26 (Cell)	Maximum	23.7
LTE Ballu 26 (Cell)	Nominal	23.2
	Maximum	23.7
LTE Band 5 (Cell)	Nominal	23.2
LTE Dand 4 (AVA)S	Maximum	24.2
LTE Band 4 (AWS)	Nominal	23.7
LTE Dand 2E (DCC)	Maximum	23.7
LTE Band 25 (PCS)	Nominal	23.2
LTE Dand 2 (DCC)	Maximum	23.7
LTE Band 2 (PCS)	Nominal	23.2
LTC Dand 41	Maximum	23.7
LTE Band 41	Nominal	23.2

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 4 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 4 of 65

Mode / Band	Modulated Average (dBm)	
IEEE 802.11b (2.4 GHz)	Maximum	17.0
TEEE 802.11b (2.4 GHZ)	Nominal	16.0
IEEE 902 11a (2.4 CHz)	Maximum	16.0
IEEE 802.11g (2.4 GHz)	Nominal	15.0
IEEE 802 112 (2.4 CHz)	Maximum	17.0
IEEE 802.11n (2.4 GHz)	Nominal	16.0
Plustooth	Maximum	9.0
Bluetooth	Nominal	8.0
Bluetooth LE	Maximum	0.0 (Peak)

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet.".

Table 1-1
Device Edges/Sides for SAR Testing

Device Sides/Edges for SAR Testing							
Mode	Back	Front	Тор	Bottom	Right	Left	
GPRS 850	Yes	Yes	No	Yes	Yes	Yes	
GPRS 1900	Yes	Yes	No	Yes	No	Yes	
UMTS 850	Yes	Yes	No	Yes	Yes	Yes	
UMTS 1750	Yes	Yes	No	Yes	No	Yes	
UMTS 1900	Yes	Yes	No	Yes	No	Yes	
EVDO BC0 (§22H)	Yes	Yes	No	Yes	Yes	Yes	
EVDO BC10 (§90S)	Yes	Yes	No	Yes	Yes	Yes	
PCS EVDO	Yes	Yes	No	Yes	No	Yes	
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes	
LTE Band 26 (Cell)	Yes	Yes	No	Yes	Yes	Yes	
LTE Band 4 (AWS)	Yes	Yes	No	Yes	No	Yes	
LTE Band 25 (PCS)	Yes	Yes	No	Yes	No	Yes	
LTE Band 41	Yes	Yes	No	Yes	Yes	Yes	
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No	

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type: Portable Handset		Dama E of CE	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16			Page 5 of 65	

© 2016 PCTEST Engineering Laboratory, Inc.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-1
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	1x CDMA voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	
3	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
4	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	
5	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	
6	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A	
7	LTE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.
8	LTE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.
9	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.
10	CDMA/EVDO data + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.
11	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.
12	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call.
- 5. This device does not supports VOLTE.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Done Cof CE	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 6 of 65	

© 2016 PCTEST Engineering Laboratory, Inc.

Miscellaneous SAR Test Considerations 1.6

(A) WIFI/BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required; [(8/10)* \(\sqrt{2.480} \)] = 1.3< 3.0. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v06, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \le 7.5$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, phablet Bluetooth SAR was not required; [(8/5)* \(\sqrt{2.480} \)] = 2.5< 7.5. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are supported for 2.4Ghz WLAN, phablet SAR tests were not performed for 2.4 GHz WLAN.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

This device supports both LTE B25 (PCS) and LTE B2 (PCS). Since the supported frequency span for LTE B2 (PCS) falls completely within the supported frequency span for LTE B25 (PCS), both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE B25 (PCS).

This device supports both LTE B26 and LTE B5. Since the supported frequency span for LTE B5 falls completely within the supported frequency span for LTE B26, both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE B26.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 7 of 65	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 7 of 65	

CDMA 1X Advanced technology was not required for SAR since the maximum allowed output powers for 1x Advanced was not more than 0.25 dB higher than the maximum powers for 1x and the measured SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg per FCC KDB Publication 941225 D01v03r01.

1.7 **Guidance Applied**

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS/EDGE 850	4391	4391	4391
GSM/GPRS/EDGE 1900	1081	4391	4391
UMTS 850	4391	4391	4391
UMTS 1750	4391	4391	4391
UMTS 1900	1081	4391	4391
CDMA/EVDO BC0 (§22H)	4391	4391	4391
CDMA/EVDO BC10 (§90S)	4391	4391	4391
PCS CDMA/EVDO	1081	4391	4391
LTE Band 12	4409	4409	4409
LTE Band 26 (Cell)	1088	1088	1088
LTE Band 4 (AWS)	4409	4409	4409
LTE Band 25 (PCS)	4409	1088	1088
LTE Band 41	4409	1088	1088
2.4 GHz WLAN	0431	1089	1089

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Handset		Done 9 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16			Page 8 of 65

2 LTE INFORMATION

		LTE Information					
FCC ID			ZNFLS775				
Form Factor		Portable Handset					
Frequency Range of each LTE transmission band	-	LT	E Band 12 (699.7 - 715.3 M	Hz)			
requestry mange or oder 212 transmission said			Band 26 (Cell) (814.7 - 848.3				
			Band 5 (Cell) (824.7 - 848.3	,			
 			and 4 (AWS) (1710.7 - 1754	,			
			nd 25 (PCS) (1850.7 - 1914				
 			and 2 (PCS) (1850.7 - 1909	· · · · · · · · · · · · · · · · · · ·			
 			Band 41 (2498.5 - 2687.5	,			
Channel Bandwidths			12: 1.4 MHz, 3 MHz, 5 MH				
Chamber Bahawatho			II): 1.4 MHz, 3 MHz, 5 MHz				
	-		(Cell): 1.4 MHz, 3 MHz, 5 I				
			4 MHz, 3 MHz, 5 MHz, 10				
			.4 MHz, 3 MHz, 5 MHz, 10				
			4 MHz, 3 MHz, 5 MHz, 10				
		LTE Band	41: 5 MHz, 10 MHz, 15 MH	lz, 20 MHz			
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High		
LTE Band 12: 1.4 MHz	699.7	(23017)	707.5 (23095)	715.3 (23173)		
LTE Band 12: 3 MHz	700.5	(23025)	707.5 (23095)	714.5 (23165)		
LTE Band 12: 5 MHz		(23035)	707.5 (23095)	713.5 (
LTE Band 12: 10 MHz		(23060)	707.5 (23095)	711 (2			
LTE Band 26 (Cell): 1.4 MHz		(26697)	831.5 (26865)	848.3 (
LTE Band 26 (Cell): 3 MHz		(26705)	831.5 (26865)	847.5 (
LTE Band 26 (Cell): 5 MHz	816.5 (26715)		831.5 (26865)	846.5 (27015)			
LTE Band 26 (Cell): 10 MHz	819 (26740)		831.5 (26865)	844 (26990)			
LTE Band 26 (Cell): 15 MHz	831.5 (26865)		836.5 (26915)	841.5 (2			
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)		836.5 (20525)	848.3 (
LTE Band 5 (Cell): 3 MHz	825.5 (20415)			847.5 (
LTE Band 5 (Cell): 5 MHz			836.5 (20525)				
LTE Band 5 (Cell): 10 MHz	826.5 (20425)		836.5 (20525)	846.5 (20625) 844 (20600)			
LTE Band 4 (AWS): 1.4 MHz	829 (20450)		836.5 (20525)				
	1710.7 (19957)		1732.5 (20175)	1754.3 (20393)			
LTE Band 4 (AWS): 3 MHz		5 (19965)	1732.5 (20175)	1753.5 (20385)			
LTE Band 4 (AWS): 5 MHz		5 (19975)	1732.5 (20175)	1752.5 (20375)			
LTE Band 4 (AWS): 10 MHz		(20000)	1732.5 (20175)	1750 (20350)			
LTE Band 4 (AWS): 15 MHz		5 (20025)	1732.5 (20175)	1747.5 (20325)			
LTE Band 4 (AWS): 20 MHz		(20050)	1732.5 (20175)	1745 (20300)			
LTE Band 25 (PCS): 1.4 MHz		7 (26047)	1882.5 (26365)	1914.3 (26683)			
LTE Band 25 (PCS): 3 MHz		5 (26055)	1882.5 (26365)	1913.5			
LTE Band 25 (PCS): 5 MHz		5 (26065)	1882.5 (26365)	1912.5			
LTE Band 25 (PCS): 10 MHz		(26090)	1882.5 (26365)	1910 (2			
LTE Band 25 (PCS): 15 MHz		5 (26115)	1882.5 (26365)	1907.5			
LTE Band 25 (PCS): 20 MHz		(26140)	1882.5 (26365)	1905 (2			
LTE Band 2 (PCS): 1.4 MHz		7 (18607)	1880 (18900)	1909.3	<u> </u>		
LTE Band 2 (PCS): 3 MHz	1851.5	5 (18615)	1880 (18900)	1908.5	(19185)		
LTE Band 2 (PCS): 5 MHz	1852.5	5 (18625)	1880 (18900)	1907.5	(19175)		
LTE Band 2 (PCS): 10 MHz			1905 (1	19150)			
LTE Band 2 (PCS): 15 MHz			1902.5	(19125)			
LTE Band 2 (PCS): 20 MHz	1860 (18700) 1880 (18900)		1900 (1	19100)			
LTE Band 41: 5 MHz	2506 (39750) 2549.5 (40185) 2593 (40620)			2636.5 (41055)	2680 (41490)		
LTE Band 41: 10 MHz			2636.5 (41055)	2680 (41490)			
LTE Band 41: 15 MHz			2636.5 (41055)	2680 (41490)			
LTE Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
UE Category			4				
Modulations Supported in UL			QPSK, 16QAM				
LTE MPR Permanently implemented per 3GPP TS 36.101			YES				
section 6.2.3~6.2.5? (manufacturer attestation to be provided)			1E9				
A-MPR (Additional MPR) disabled for SAR Testing?			YES				
A TWILL TO CAUCITOTICAL INITERNAL DISABILITY OF THE STITING!		·	IES				

FCC ID: ZNFLS775	PCTEST INDIVIDUAL LADRATORY, INC.	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manage	
Document S/N:	Test Dates:	DUT Type:		D 0 (05	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 9 of 65	
	all rights reserved. Unless otherwise s	pecified, no part of this report may be reproduced or utilized in ingineering Laboratory, Inc. If you have any questions about to PCTESTLAB.COM.			

3

INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Done 10 of CE	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 10 of 65	

© 2016 PCTEST Engineering Laboratory, Inc.

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

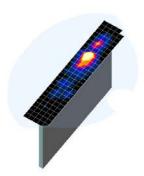


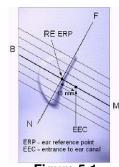
Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	eximum Zoom Scan Reso		can Spatial mm)	Minimum Zoom Scan	
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	niform Grid Graded Grid		Volume (mm) (x,y,z)	
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*		
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30	
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30	
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28	
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25	
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22	

^{*}Also compliant to IEEE 1528-2013 Table 6


FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 11 -6 05
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 11 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The "M" is the reference point for the center of the mouth, "LE" is the left ear reference (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The passing through the two ear canals and M is defined as the Reference Plane. The N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

point point the plane line the N-F

Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2
Front, back and side view of SAM Twin Phantom

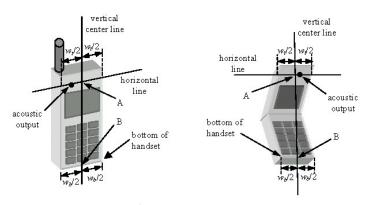


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 10 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 12 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15º Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 12 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 13 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15º Tilt
Position

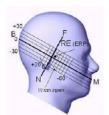


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

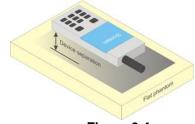


Figure 6-4 Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 14 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 14 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 **Extremity Exposure Configurations**

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 **Wireless Router Configurations**

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 15 of C5
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 15 of 65

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 10 of 05
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 16 of 65

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dona 17 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 17 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

FCC ID: ZNFLS775	@ PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by:
	SNG(NEERING LAROKATORY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 18 of 65
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		PEV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1
Parameters for Max. Power for RC1

Parameter	Units	Value
Îor	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 8-2
Parameters for Max. Power for RC3

Parameter	Units	Value
lor	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7,4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

8.4.3 Body-worn SAR Measurements

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

8.4.4 Body-worn SAR Measurements for EVDO Devices

For handsets with Ev-Do capabilities, the 3G SAR test reduction procedure is applied to Ev-Do Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

FCC ID: ZNFLS775	PETEST WORKERS LADVATER, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 10 of CE	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 19 of 65	
116 PCTEST Engineering Laboratory In	r			REV 17.0 M	

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For Ev-Do data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with Ev-Do Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.4.6 CDMA2000 1x Advanced

This device additionally supports 1x Advanced. Conducted powers are measured using SO75 with RC8 on the uplink and RC11 on the downlink per FCC KDB Publication 941225 D01v03r01. Smart blanking is disabled for all measurements. The EUT is configured with forward power control Mode 000 and reverse power control at 400 bps. Conducted powers are measured on an Agilent 8960 Series 10 Wireless Communications Test Set, Model E5515C using the CDMA2000 1x Advanced application, Option E1962B-410.

The 3G SAR test reduction procedure is applied to the 1x-Advanced transmission mode with 1x RTT RC3 as the primary mode. When SAR measurement is required, the 1x-Advanced power measurement configurations are used. The1x Advanced SAR procedures are applied separately to head, body-worn accessory and other exposure conditions.

8.5 SAR Measurement Conditions for UMTS

8.5.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.5.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.5.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 20 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 20 of 65
016 PCTEST Engineering Laboratory, I	nc.	•		REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.5.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.6 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.6.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama O1 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	/16 - 01/19/16 Portable Handset		Page 21 of 65
16 PCTEST Engineering Laboratory I	nc			REV 17.0 M

- ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
- iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.6.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. Per FCC KDB Publication 447498 D01v06, when the reported (scaled) for LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg, testing at the other channels was required for such test configurations.

8.7 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.7.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 20 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 22 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

Initial Test Position Procedure 8.7.2

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.7.3 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.7.4 **OFDM Transmission Mode and SAR Test Channel Selection**

For the 2.4 GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

Initial Test Configuration Procedure 8.7.5

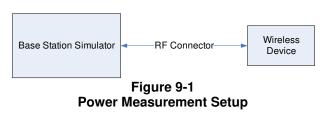
For OFDM, in both 2.4 Ghz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the

FCC ID: ZNFLS775	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 00 of CE	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 23 of 65	
016 PCTEST Engineering Laboratory, I	nc.			REV 17.0 M	

same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.4).

8.7.6 Subsequent Test Configuration Procedures


For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is $\leq 1.2 \text{ W/kg}$, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 24 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 24 of 65

9.1 CDMA Conducted Powers

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
Cellular	564	90S	820.1	24.70	24.68	24.68	24.66	24.63	24.67	24.68
	1013	22H	824.7	24.67	24.66	24.65	24.65	24.65	24.66	24.63
Cellular	384	22H	836.52	24.64	24.61	24.61	24.65	24.63	24.61	24.60
	777	22H	848.31	24.64	24.65	24.57	24.60	24.62	24.60	24.60
	25	24E	1851.25	24.15	24.15	24.13	24.15	24.15	24.15	24.15
PCS	600	24E	1880	24.15	24.13	24.12	24.13	24.15	24.16	24.15
	1175	24E	1908.75	24.20	24.13	24.15	24.13	24.15	24.20	24.15

Note: RC1 is only applicable for IS-95 compatibility. For FCC Rule Part 90S, Per FCC KDB Publication 447498 D01v06 4.1.g), only one channel is required since the device operates within the transmission range of 817.90 – 823.10 MHz.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done OF of CF
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 25 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

9.2 GSM Conducted Powers

		Maxim	um Burst-	Averaged	Output P	ower			
		Voice	GPRS/ Data (0			GE 3-PSK)			
Band	Band Channel		GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	32.60	32.60	30.70	27.45	25.50			
GSM 850	190	32.63	32.61	30.66	27.45	25.46			
	251	32.66	32.65	30.69	27.40	25.44			
	512	29.50	29.50	27.50	26.44	24.42			
GSM 1900	661	29.40	29.40	27.56	26.50	24.45			
	810		29.55	27.52	26.55	24.52			
		Calculated Maximum Frame-Averaged Output							
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	23.57	23.57	24.68	18.42	19.48			
GSM 850	190	23.60	23.58	24.64	18.42	19.44			
	251	23.63	23.62	24.67	18.37	19.42			
	512	20.47	20.47	21.48	17.41	18.40			
GSM 1900	661	20.37	20.37	21.54	17.47	18.43			
	810	20.52	20.52	21.50	17.52	18.50			
GSM 850	Frame	23.47	23.47 24.48		18.17	19.18			
GSM 1900	Avg.Targets:	20.17	20.17 21.18		17.17	18.18			

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B
GPRS Multislot class: 10 (Max 2 Tx uplink slots)
EDGE Multislot class: 10 (Max 2 Tx uplink slots)
DTM Multislot Class: N/A

Base Station Simulator RF Connector Wireless Device

Figure 9-2
Power Measurement Setup

	FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dans OC of CE
	0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset	Page 26 of 65
201	6 DCTECT Engineering Laboratory Inc.			DEV/ 17 0 M

9.3 **UMTS Conducted Powers**

3GPP Release	Release Mode Subtr	3GPP 34.121 Subtest	Cellu	Cellular Band [dBm]		AWS Band [dBm]		PCS Band [dBm]		3GPP MPR [dB]		
Version		Sublest	4132	4183	4233	1312	1412	1513	9262	9400	9538	WEN [UD]
99	WCDMA	12.2 kbps RMC	23.52	23.53	23.51	23.33	23.38	23.37	23.40	23.35	23.40	-
99	WCDIVIA	12.2 kbps AMR	23.52	23.47	23.50	23.35	23.40	23.36	23.45	23.35	23.35	-
6		Subtest 1	23.53	23.50	23.50	23.38	23.37	23.39	23.38	23.45	23.41	0
6	HSDPA	Subtest 2	23.55	23.53	23.51	23.44	23.46	23.41	23.37	23.43	23.41	0
6	ПОДРА	Subtest 3	22.93	22.98	23.00	22.91	23.00	22.94	22.95	23.05	23.03	0.5
6		Subtest 4	22.92	22.90	22.98	22.88	22.92	22.95	22.95	23.00	23.05	0.5
6		Subtest 1	23.44	23.48	23.50	23.44	23.47	23.47	23.44	23.47	23.50	0
6		Subtest 2	21.55	21.52	21.65	21.35	21.45	21.47	21.55	21.50	21.55	2
6	HSUPA	Subtest 3	22.60	22.55	22.65	22.35	22.40	22.40	22.40	22.38	22.48	1
6		Subtest 4	21.44	21.50	21.45	21.42	21.45	21.45	21.50	21.45	21.53	2
6		Subtest 5	23.55	23.52	23.65	23.35	23.45	23.45	23.50	23.54	23.52	0

This device does not support DC-HSDPA.

Figure 9-3 **Power Measurement Setup**

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 07 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 27 of 65

9.4 LTE Conducted Powers

9.4.1 LTE Band 12

Table 9-1
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

LIE Band 12 Conducted Powers - 10 MHz Bandwidth									
			LTE Band 12						
			10 MHz Bandwidth						
			Mid Channel						
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power	00 [0.2]					
			[dBm]						
	1	0	23.70		0				
	1	25	23.57	0	0				
	1	49	23.66		0				
QPSK	25	0	22.59		1				
	25	12	22.63	0-1	1				
	25	25	22.69	0-1	1				
	50	0	22.68		1				
	1	0	22.70		1				
	1	25	22.70	0-1	1				
	1	49	22.62		1				
16QAM	25	0	21.40		2				
	25	12	21.45	0-2	2				
	25	25	21.52	0-2	2				
	50	0	21.50		2				

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-2 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

	LTE Band 12										
	5 MHz Bandwidth										
			Low Channel Mid Channel High Channel								
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	Conducted Power [dBm]	Conducted Power [dBm]	our r [us]					
	1	0	23.70	23.70	23.52		0				
	1	12	23.65	23.58	23.66	0	0				
	1	24	23.60	23.70	23.64		0				
QPSK	12	0	22.64	22.59	22.69	0-1	1				
	12	6	22.62	22.50	22.64		1				
	12	13	22.56	22.55	22.65		1				
	25	0	22.67	22.65	22.69		1				
	1	0	22.34	22.43	22.70		1				
	1	12	22.39	22.62	22.67	0-1	1				
	1	24	22.58	22.59	22.70		1				
16QAM	12	0	21.38	21.36	21.54		2				
	12	6	21.36	21.23	21.59	0-2	2				
	12	13	21.42	21.32	21.52	0-2	2				
	25	0	21.46	21.49	21.44		2				

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg OO of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 28 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

REV 17.0 M 12/1/2015

Table 9-3 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

		<u>_</u>	E Ballu 12 Coll	auctea Powers	- 3 MINZ Dalluw	iutii	
				LTE Band 12			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025	23095	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	112 0120		(700.5 MHz)	(707.5 MHz)			
			(Conducted Power [dBm]		
	1	0	23.62	23.53	23.51		0
	1	7	23.55	23.50	23.58	0	0
	1	14	23.39	23.56	23.68		0
QPSK	8	0	22.50	22.39	22.43	0-1	1
	8	4	22.31	22.27	22.48		1
	8	7	22.50	22.25	22.45		1
	15	0	22.47	22.29	22.54		1
	1	0	22.51	22.62	22.55		1
	1	7	22.07	22.70	22.67	0-1	1
	1	14	22.70	22.61	22.68		1
16QAM	8	0	21.39	21.37	21.60		2
ľ	8	4	21.32	20.91	21.67	1	2
	8	7	21.35	20.92	21.57	0-2	2
	15	0	21.17	21.08	21.47		2

Table 9-4 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.56	23.51	23.39		0
	1	2	23.66	23.70	23.45		0
	1	5	23.34	23.41	23.70	0	0
QPSK	3	0	23.40	23.41	23.55		0
	3	2	23.49	23.45	23.49		0
	3	3	23.46	23.36	23.62		0
	6	0	22.42	22.24	22.55	0-1	1
	1	0	22.59	22.52	22.62		1
	1	2	22.61	22.65	22.70		1
	1	5	22.57	22.42	22.64	0.1	1
16QAM	3	0	22.64	22.24	22.53	0-1	1
[3	2	22.22	22.43	22.41		1
	3	3	22.36	22.24	22.25		1
	6	0	21.30	20.83	21.02	0-2	2

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 20 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 29 of 65

9.4.2 LTE Band 26 (Cell)

Table 9-5
LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth

		(00)	LTE Band 26 (Cell)		
I		1	15 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	26915 (836.5 MHz)	MPR Allowed per	MPR [dB]
	115 0120	TID GIIGGE	Conducted Power	3GPP [dB]	[d5]
			[dBm]		
	1	0	23.70		0
	1	36	23.64	0	0
	1	74	23.69		0
QPSK	36	0	22.70		1
	36	18	22.58		1
	36	37	22.68		1
	75	0	22.66	0-1	1
	1	0	22.65		1
	1	36	22.70		1
	1	74	22.69		1
16QAM	36	0	21.67		2
	36	18	21.58	0-2	2
	36	37	21.55	0-2	2
	75	0	21.65		2

LTE Band 26 at 15 MHz bandwidth is only supported for FCC Rule Part 22H. There are not three non overlapping channels within FCC Rule Part 22H. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-6
LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

				LTE Band 26 (Cell) 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26740 (819.0 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 26990 (844.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.70	23.56	23.70		0
	1	25	23.53	23.58	23.45	0	0
	1	49	23.66	23.50	23.70		0
QPSK	25	0	22.57	22.53	22.64		1
	25	12	22.62	22.41	22.35		1
	25	25	22.55	22.49	22.43		1
	50	0	22.59	22.50	22.46	0-1	1
	1	0	22.68	22.65	22.70		1
	1	25	22.70	22.27	22.60		1
	1	49	22.68	22.70	22.07		1
16QAM	25	0	21.70	21.53	21.47		2
	25	12	21.37	21.62	21.43	1 ,	2
	25	25	21.44	21.49	21.40	0-2	2
	50	0	21.56	21.45	21.43		2

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 30 of 65

Table 9-7 LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

			band 26 (Cell) C	LTE Band 26 (Cell)	75 O MILLE DULL	awiatii	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm]		
	1	0	23.54	23.59	23.32		0
	1	12	23.34	23.39	23.51	0	0
	1	24	23.68	23.52	23.22		0
QPSK	12	0	22.52	22.36	22.50		1
	12	6	22.36	22.39	22.42	-	1
	12	13	22.58	22.41	22.42		1
	25	0	22.50	22.44	22.47	0-1	1
	1	0	22.70	22.41	22.28		1
	1	12	22.53	22.32	22.51		1
	1	24	22.44	22.31	22.58		1
16QAM	12	0	21.44	21.28	21.34		2
	12	6	21.46	21.33	21.22	1 ,	2
	12	13	21.62	21.34	21.29	0-2	2
	25	0	21.48	21.51	21.43		2

Table 9-8 LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

				LTE Band 26 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.66	23.50	23.39		0
	1	7	23.30	23.52	23.45	0	0
	1	14	23.41	23.65	23.56		0
QPSK	8	0	22.43	22.37	22.46		1
	8	4	22.45	22.46	22.40		1
	8	7	22.44	22.47	22.39		1
	15	0	22.49	22.51	22.44	0-1	1
	1	0	22.64	22.45	22.70		1
	1	7	22.70	22.49	21.99		1
	1	14	22.70	22.39	22.60		1
16QAM	8	0	21.53	21.26	21.23		2
	8	4	21.64	21.49	21.31	1	2
	8	7	21.44	21.42	21.09	0-2	2
	15	0	21.36	21.38	21.35		2

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 21 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 31 of 65

Table 9-9 LTE Band 26 (Cell) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 26 (Cell) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	26697 (814.7 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			· '	Conducted Power [dBm		1	
	1	0	23.70	23.60	23.65		0
	1	2	23.70	23.69	23.68		0
QPSK	1	5	23.55	23.64	23.33	0	0
	3	0	23.60	23.44	23.64		0
	3	2	23.64	23.48	23.56		0
	3	3	23.63	23.45	23.62		0
	6	0	22.59	22.55	22.56	0-1	1
	1	0	22.70	22.61	22.70		1
	1	2	22.56	22.62	22.58		1
	1	5	22.69	22.65	22.68	0-1	1
16QAM	3	0	22.65	22.56	22.70	0-1	1
-	3	2	22.39	22.40	22.70	1	1
	3	3	22.55	22.27	22.21		1
	6	0	21.34	21.66	21.51	0-2	2

LTE Band 4 (AWS) 9.4.3

Table 9-10 LTE Rand 4 (AWS) Conducted Powers - 20 MHz Bandwidth

LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth								
			LTE Band 4 (AWS) 20 MHzBandwidth					
			Mid Channel					
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]	odi i [ub]				
	1	0	24.10		0			
	1	50	24.20	0	0			
	1	99	24.11		0			
QPSK	50	0	23.19		1			
	50	25	23.03		1			
	50	50	23.05		1			
	100	0	23.10	0-1	1			
	1	0	23.11		1			
	1	50	22.96		1			
	1	99	22.87		1			
16QAM	50	0	22.12		2			
	50	25	21.91	0-2	2			
	50	50	21.97	0-2	2			
	100	0	22.04		2			

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFLS775		SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	- 7 F-		Done 20 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16			Page 32 of 65

Table 9-11 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

				LTE Band 4 (AWS) 15 MHzBandwidth			
			Low Channel				
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	n]		
	1	0	24.03	24.04	23.81		0
	1	36	23.99	23.77	23.67	0	0
	1	74	23.84	23.76	23.98		0
QPSK	36	0	22.82	22.88	22.73		1
	36	18	22.76	22.79	22.72	0-1	1
	36	37	22.77	22.77	22.68		1
	75	0	22.82	22.81	22.66		1
	1	0	22.88	23.20	23.16		1
	1	36	23.20	22.86	23.08	0-1	1
	1	74	23.20	22.88	23.15		1
16QAM	36	0	21.65	21.88	21.74		2
	36	18	21.76	21.93	21.72	0-2	2
	36	37	21.79	21.95	21.81	0-2	2
	75	0	21.76	21.86	21.69]	2

Table 9-12 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

			pariu 4 (AWS) Ci		5 TO WITTE Dat	awiatii	
				LTE Band 4 (AWS)			
			1	10 MHzBandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20000	20175	20350 (1750.0 MHz)	MPR Allowed per	MPR [dB]
Modulation	110 3126	IID Oliset	(1715.0 MHz)	(1732.5 MHz)		3GPP [dB]	WEN [UD]
			(Conducted Power [dBm]		
	1	0	24.12	23.95	23.92		0
	1	25	23.97	24.08	23.90	0	0
[1	49	24.06	24.00	23.84		0
QPSK	25	0	22.84	22.85	22.74	0-1	1
	25	12	22.86	22.90	22.83		1
	25	25	22.89	22.96	22.84		1
	50	0	22.83	22.89	22.78		1
	1	0	23.08	23.20	22.97		1
	1	25	23.20	23.09	23.04	0-1	1
	1	49	23.18	23.20	22.71		1
16QAM	25	0	21.78	21.79	21.83		2
	25	12	21.80	21.75	21.86	0-2	2
	25	25	21.93	21.83	21.99	0-2	2
	50	0	21.85	21.86	21.86		2

FCC ID: ZNFLS775	PCTEST INGUISITE LABORATORY, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	ates: DUT Type:		Dago 22 of 65	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 33 of 65	

Table 9-13 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

			bulla 4 (ATTO) C	LTE Band 4 (AWS)	13 O MILL Dall	awiatii	
				5 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.95	23.75	23.66		0
	1	12	23.98	24.19	23.70	0	0
	1	24	23.92	23.87	23.58		0
QPSK	12	0	22.79	22.90	22.81		1
	12	6	22.80	22.88	22.81	0-1	1
	12	13	22.77	22.82	22.84		1
	25	0	22.79	22.85	22.88		1
	1	0	22.50	23.07	23.01		1
	1	12	22.53	22.82	23.05	0-1	1
	1	24	22.50	22.82	22.96		1
16QAM	12	0	21.74	21.69	21.72		2
	12	6	21.73	21.92	21.60	0-2	2
	12	13	21.80	21.91	21.66	0-2	2
	25	0	21.76	21.94	21.77		2

Table 9-14 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

	LTE Band 4 (AWS) 3 MHzBandwidth										
			Frequency [MHz]	Frequency [MHz]	Frequency [MHz]						
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			C	Conducted Power [dBm	i]						
	1	0	23.89	23.82	23.95	0	0				
	1	7	24.18	24.08	23.91		0				
	1	14	23.94	23.83	23.89		0				
QPSK	8	0	22.81	22.73	22.75		1				
	8	4	22.83	22.78	22.72	0-1	1				
	8	7	22.73	22.98	22.71	0-1	1				
	15	0	22.85	22.83	22.76		1				
	1	0	23.16	23.20	23.04		1				
	1	7	23.20	22.99	23.01	0-1	1				
	1	14	23.15	23.19	22.80		1				
16QAM	8	0	22.20	21.93	21.83		2				
	8	4	22.02	21.76	21.77	0-2	2				
	8	7	22.03	21.88	21.97	0-2	2				
	15	0	21.91	21.91	21.77		2				

FCC ID: ZNFLS775	SAR EVALUATION REPORT		(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	ates: DUT Type:		Dago 24 of 65	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 34 of 65	

Table 9-15 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth

			alid + (AWS) C	onducted Fowe	3 -1.4 WILL Dall	awiatii					
				LTE Band 4 (AWS)							
	1.4 MHzBandwidth										
			Low Channel	Mid Channel	Frequency [MHz]		MPR [dB]				
Modulation	RB Size	RB Offset	19957	20175	20393	MPR Allowed per					
ouulutioii	112 0120	112 011301	(1710.7 MHz)	(1732.5 MHz)	(1754.3 MHz)	3GPP [dB]	[0.5]				
			(Conducted Power [dBm	1]						
	1	0	23.75	23.72	23.91		0				
	1	2	23.80	23.91	23.89	0	0				
	1	5	23.68	23.94	23.69		0				
QPSK	3	0	23.70	23.83	23.78		0				
	3	2	23.72	23.94	23.80		0				
	3	3	23.69	23.85	23.79		0				
	6	0	22.76	22.88	22.75	0-1	1				
	1	0	22.86	22.77	23.18		1				
	1	2	22.80	22.98	23.20		1				
	1	5	22.88	22.92	23.20	0-1	1				
16QAM	3	0	22.31	22.95	22.98	0-1	1				
	3	2	22.34	22.73	23.01		1				
	3	3	22.30	22.67	23.05		1				
	6	0	21.23	21.92	22.05	0-2	2				

LTE Band 25 (PCS) 9.4.4

Table 9-16 LTE Band 25 (PCS) Conducted Powers - 20 MHz Bandwidth

			uu =0 (: 00) 0	2 12 Dana 20 (1 00) October 10 10 10 10 10 10 10 10 10 10 10 10 10										
				LTE Band 25 (PCS)										
		1		20 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel	MPR Allowed per 3GPP [dB]								
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365	26590		MPR [dB]							
ouu.uu.o	112 0.20	112 011001		(1882.5 MHz)	(1905.0 MHz)		[0.2]							
			Conducted Power [dBm]											
	1	0	23.47	23.50	23.41		0							
	1	50	23.13	23.38	23.39	0	0							
	1	99	23.27	23.26	23.22		0							
QPSK	50	0	22.15	22.42	22.48	-	1							
	50	25	22.43	22.32	22.54		1							
	50	50	22.18	22.38	22.41		1							
	100	0	22.21	22.36	22.40	0-1	1							
	1	0	22.61	22.43	22.36		1							
	1	50	22.70	22.70	22.65		1							
	1	99	22.68	22.30	22.09		1							
16QAM	50	0	21.12	21.28	21.38		2							
	50	25	21.07	21.25	21.43	0.0	2							
	50	50	21.08	21.36	21.49	0-2	2							
	100	0	21.11	21.30	21.53		2							

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	s: DUT Type:		Done OF of CF	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16 Portable Handset			Page 35 of 65	

Table 9-17 LTE Band 25 (PCS) Conducted Powers - 15 MHz Bandwidth

				LTE Band 25 (PCS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	1		
	1	0	23.70	23.56	23.48		0
	1	36	23.13	23.41	23.45	0	0
	1	74	23.30	23.56	23.43		0
QPSK	36	0	22.15	22.37	22.49		1
	36	18	22.06	22.25	22.45		1
	36	37	22.14	22.26	22.52		1
	75	0	22.17	22.27	22.50	0-1	1
	1	0	22.70	22.16	22.51		1
	1	36	22.59	22.22	22.63]	1
	1	74	22.12	22.29	22.70	1	1
16QAM	36	0	21.04	21.34	21.27		2
	36	18	21.25	21.00	21.32]	2
	36	37	21.14	21.10	21.70	0-2	2
	75	0	21.12	21.26	21.51		2

Table 9-18 LTE Band 25 (PCS) Conducted Powers - 10 MHz Bandwidth

				LTE Band 25 (PCS) 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26090 (1855.0 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.60	23.51	23.40		0
	1	25	23.26	23.41	23.63	0	0
	1	49	23.36	23.54	23.62		0
QPSK	25	0	22.35	22.38	22.37		1
	25	12	22.17	22.32	22.54		1
	25	25	22.23	22.35	22.59		1
	50	0	22.23	22.35	22.42	0-1	1
	1	0	22.46	22.50	22.55		1
	1	25	22.41	22.68	22.69		1
	1	49	22.70	22.65	22.63		1
16QAM	25	0	21.39	21.17	21.32		2
	25	12	21.04	21.19	21.60]	2
	25	25	20.99	21.22	21.60	0-2	2
	50	0	21.23	21.12	21.29		2

FCC ID: ZNFLS775	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dama OC of CE	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 36 of 65	

Table 9-19 LTE Band 25 (PCS) Conducted Powers - 5 MHz Bandwidth

	LTE Ballu 23 (PC3) Collucted Powers - 3 Winz Balluwidth										
				LTE Band 25 (PCS)							
		1	1	5 MHz Bandwidth		1					
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	26065	26365	26665	MPR Allowed per	MPR [dB]				
modulation		TID CHOCK	(1852.5 MHz)	(1882.5 MHz)	(1912.5 MHz)	3GPP [dB]	Mil II [GD]				
			(Conducted Power [dBm]						
	1	0	23.24	23.33	23.48		0				
	1	12	23.51	23.33	23.58	0	0				
	1	24	23.15	23.37	23.05		0				
QPSK	12	0	22.31	22.27	22.49		1				
	12	6	22.26	22.24	22.45		1				
	12	13	22.17	22.26	22.53		1				
	25	0	22.32	22.25	22.53	0-1	1				
	1	0	22.53	22.29	22.41		1				
	1	12	22.15	22.02	22.52		1				
	1	24	21.94	22.25	22.35		1				
16QAM	12	0	21.33	21.13	21.46		2				
	12	6	21.36	21.15	21.49	0-2	2				
	12	13	21.23	21.10	21.32	U-Z	2				
	25	0	21.24	21.27	21.54		2				

Table 9-20 LTE Band 25 (PCS) Conducted Powers - 3 MHz Bandwidth

			(* 55)	LTE Band 25 (PCS) 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.70	23.54	23.51		0
	1	7	23.32	23.59	23.57	0	0
	1	14	23.26	23.40	23.34		0
QPSK	8	0	22.29	22.30	22.49		1
	8	4	22.26	22.29	22.52		1
	8	7	22.27	22.24	22.43		1
	15	0	22.32	22.29	22.53	0-1	1
	1	0	22.50	22.43	22.70		1
	1	7	22.70	22.26	22.58		1
	1	14	22.70	22.27	22.69		1
16QAM	8	0	21.34	21.16	21.31		2
	8	4	21.36	21.03	21.48	0-2	2
	8	7	21.42	21.09	21.53	0-2	2
	15	0	21.24	21.19	21.46		2

FCC ID: ZNFLS775	@\PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:	Page 37 of 65		
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	1/19/16 Portable Handset			
16 DCTECT Engineering Laboratory Inc.			DEV/ 17.0 M		

Table 9-21 LTE Band 25 (PCS) Conducted Powers -1.4 MHz Bandwidth

			and 23 (1 03) 0		13 - 1.7 WILL Da	iawiatii	LTE Band 25 (PCS) Conducted Powers - 1.4 MHZ Bandwidth										
				LTE Band 25 (PCS) 1.4 MHz Bandwidth													
			Law Channal		High Channel												
	RB Size		Low Channel	Mid Channel	•												
Modulation		RB Offset	26047	26365	26683	MPR Allowed per	MPR [dB]										
			(1850.7 MHz)	(1882.5 MHz)	(1914.3 MHz)	3GPP [dB]											
			(Conducted Power [dBm]												
	1	0	23.21	23.33	23.50		0										
	1	2	23.42	23.63	23.41		0										
	1	5	23.29	23.43	23.25] [0										
QPSK	3	0	23.23	23.29	23.41	0	0										
	3	2	23.27	23.31	23.37		0										
	3	3	23.33	23.39	23.31		0										
	6	0	22.32	22.38	22.42	0-1	1										
	1	0	22.64	22.33	22.50		1										
	1	2	22.70	22.61	22.70		1										
	1	5	22.35	22.44	22.70	0-1	1										
16QAM	3	0	22.07	22.25	22.55] 0-1	1										
	3	2	22.52	22.17	22.17		1										
	3	3	22.68	22.11	22.34	<u> </u>	1										
	6	0	20.99	21.32	21.04	0-2	2										

9.4.5 LTE Band 41

Table 9-22 LTE Band 41 Conducted Powers - 20 MHz Bandwidth

				ia ii oonaa		- ZU WITIZ D			
					LTE Band 41				
					20 MHzBandwidth				
	RB Size		Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation		RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(======		Conducted Power [dBm		(======		
	1	0	23.55	23.53	23.54	23.45	23.65		0
	1	50	23.47	23.56	23.57	23.69	23.70	0	0
	1	99	23.60	23.41	23.42	23.57	23.62		0
QPSK	50	0	22.62	22.49	22.51	22.69	22.67		1
	50	25	22.53	22.47	22.46	22.70	22.56	0-1	1
	50	50	22.48	22.57	22.54	22.68	22.45		1
	100	0	22.49	22.52	22.53	22.60	22.56		1
	1	0	22.70	22.44	22.48	22.64	22.70		1
	1	50	22.55	22.47	22.44	22.64	22.25	0-1	1
	1	99	22.61	22.37	22.33	22.61	22.26		1
16QAM	50	0	21.66	21.59	21.58	21.63	21.70		2
	50	25	21.60	21.53	21.53	21.65	21.65	0-2	2
	50	50	21.38	21.56	21.55	21.57	21.54	0-2	2
	100	0	21.64	21.63	21.62	21.68	21.54		2

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 20 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 38 of 65

Table 9-23 LTE Band 41 Conducted Powers - 15 MHz Bandwidth

				ia 41 Conaa	LTE Band 41	10 111112 25			
			Low Channel	Low-Mid Channel	15 MHzBandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				(Conducted Power [dBm	1]			
	1	0	23.58	23.56	23.37	23.56	23.67		0
	1	36	23.58	23.60	23.22	23.60	23.34	0	0
	1	74	23.42	23.38	23.24	23.41	23.41		0
QPSK	36	0	22.48	22.49	22.37	22.50	22.64		1
	36	18	22.42	22.46	22.26	22.52	22.51	0-1	1
	36	37	22.54	22.49	22.28	22.50	22.55		1
	75	0	22.56	22.51	22.36	22.54	22.51		1
	1	0	22.49	22.52	22.70	22.46	22.70		1
	1	36	22.50	22.44	22.61	22.44	22.52	0-1	1
	1	74	22.38	22.30	22.68	22.30	22.55		1
16QAM	36	0	21.53	21.57	21.36	21.56	21.69		2
	36	18	21.50	21.55	21.26	21.50	21.57	0-2	2
	36	37	21.54	21.56	21.20	21.53	21.63	0-2	2
	75	0	21.60	21.61	21.37	21.61	21.69		2

Table 9-24 LTE Band 41 Conducted Powers - 10 MHz Bandwidth

			LIL Dai	ia 41 Oonaa	LTE Band 41	S - TO WITE DO	anawiath	 	
					10 MHzBandwidth				
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				C	Conducted Power [dBr	n]			
	1	0	23.50	23.54	23.57	23.53	23.70		0
	1	25	23.46	23.54	23.57	23.56	23.46	0	0
	1	49	23.48	23.45	23.42	23.63	23.56		0
QPSK	25	0	22.62	22.48	22.51	22.68	22.64	0-1	1
	25	12	22.60	22.42	22.45	22.65	22.55		1
	25	25	22.47	22.53	22.54	22.70	22.61		1
	50	0	22.43	22.53	22.52	22.65	22.56		1
	1	0	22.70	22.50	22.43	22.70	22.70		1
	1	25	22.55	22.40	22.42	22.55	22.65	0-1	1
	1	49	22.58	22.31	22.32	22.64	22.64	1	1
16QAM	25	0	21.69	21.57	21.54	21.57	21.70		2
	25	12	21.46	21.48	21.56	21.60	21.68	0-2	2
	25	25	21.31	21.55	21.54	21.60	21.69	0-2	2
	50	0	21.51	21.57	21.61	21.60	21.51	1	2

Table 9-25 LTE Band 41 Conducted Powers - 5 MHz Bandwidth

				11. 0011.00	LTE Band 41	<u> </u>			
					5 MHzBandwidth				
Modulation	RB Size	Size RB Offset	39750 (2506.0 MHz)	Low-Mid Channel 40185 (2549.5 MHz)	Mid Channel 40620 (2593.0 MHz)	Mid-High Channel 41055 (2636.5 MHz)	High Channel 41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				C	Conducted Power [dBn	n]			
	1	0	23.48	23.58	23.36	23.57	23.46		0
	1	12	23.59	23.61	23.60	23.60	23.70	0	0
	1	24	23.42	23.39	23.23	23.48	23.38		0
QPSK	12	0	22.56	22.55	22.30	22.51	22.57		1
	12	6	22.50	22.49	22.21	22.47	22.53	0-1	1
	12	13	22.48	22.55	22.29	22.59	22.45		1
	25	0	22.56	22.57	22.23	22.56	22.60		1
	1	0	22.52	22.46	21.90	22.43	22.39		1
	1	12	22.49	22.39	22.04	22.43	22.50	0-1	1
	1	24	22.26	22.28	21.89	22.29	22.29		1
16QAM	12	0	21.58	21.60	21.15	21.63	21.65		2
	12	6	21.56	21.51	21.06	21.57	21.49	1	2
	12	13	21.55	21.55	21.06	21.53	21.52	0-2	2
	25	0	21.63	21.60	21.18	21.57	21.70		2

FCC ID: ZNFLS775	SAR EVALUATION REPORT		(L) LG	Reviewed by:
	PROGRESSIAN LABORATEST, INC.			Quality Manager
Document S/N:	Test Dates: DUT Type:			Page 39 of 65
	01/12/16 - 01/19/16	Portable Handset		Fage 39 01 63
	Document S/N: 0Y1601150088-R1.ZNF	Document S/N: Test Dates: 0Y1601150088-R1.ZNF 01/12/16 - 01/19/16	Document S/N: Test Dates: DUT Type:	Document S/N: Test Dates: DUT Type: 0Y1601150088-R1.ZNF 01/12/16 - 01/19/16 Portable Handset

9.5 WLAN Conducted Powers

Table 9-26 IEEE 802.11b Average RF Power

Freq [MHz]	Channel	2.4GHz Conducted Power [dBm]			
- 41		IEEE Transmission Mode			
		802.11b	802.11n		
2412	1	16.30	16.42		
2437	6	16.42	16.70		
2462	11	16.69	16.65		

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

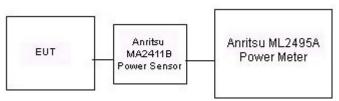


Figure 9-4
Power Measurement Setup for Bandwidths

FCC ID: ZNFLS775	SAR EVALUATION REPORT		(1) LG	Reviewed by:
	V SNG(NELDING LABORATORY, INC.			Quality Manager
Document S/N:	Test Dates:		Page 40 of 65	
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		PEV 17.0 M

10.1 Tissue Verification

Table 10-1
Measured Tissue Properties

Calibrated for Tests Performed	Tissue	Tissue Temp During	Measured Frequency	Measured Conductivity,	Measured Dielectric	TARGET Conductivity,	TARGET Dielectric	% dev σ	%devε
on:	Type	Calibration (C°)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε		
			700	0.850	42.427	0.889	42.201	-4.39%	0.54%
			710	0.858	42.312	0.890	42.149	-3.60%	0.39%
1/18/2016	750H	20.9	725	0.872	42.130	0.891	42.071	-2.13%	0.14%
			740	0.886	41.922	0.893	41.994	-0.78%	-0.17%
			755	0.900	41.713	0.894	41.916	0.67%	-0.48%
			820	0.872	40.023	0.899	41.578	-3.00%	-3.74%
1/15/2016	835H	23.1	835	0.885	39.828	0.900	41.500	-1.67%	-4.03%
			850	0.899	39.645	0.916	41.500	-1.86%	-4.47%
			1710	1.327	39.595	1.348	40.142	-1.56%	-1.36%
1/12/2016	1750H	22.7	1750	1.366	39.353	1.371	40.079	-0.36%	-1.81%
			1790	1.405	39.208	1.394	40.016	0.79%	-2.02%
			1850	1.357	39.045	1.400	40.000	-3.07%	-2.39%
1/13/2016	1900H	22.5	1880	1.385	38.947	1.400	40.000	-1.07%	-2.63%
			1910	1.417	38.811	1.400	40.000	1.21%	-2.97%
			2400	1.786	38.449	1.756	39.289	1.71%	-2.14%
1/19/2016	2450H	21.0	2450	1.840	38.234	1.800	39.200	2.22%	-2.46%
			2500	1.896	38.069	1.855	39.136	2.21%	-2.73%
			2600	2.008	37.684	1.964	39.009	2.24%	-3.40%
1/19/2016	2600H	21.0	2650	2.065	37.474	2.018	38.945	2.33%	-3.78%
			2700	2.121	37.285	2.073	38.882	2.32%	-4.11%
			700	0.927	54.900	0.959	55.726	-3.34%	-1.48%
			710	0.937	54.860	0.960	55.687	-2.40%	-1.49%
1/15/2016	750B	22.6	725	0.948	54.786	0.961	55.629	-1.35%	-1.52%
		22.0	740	0.967	54.548	0.963	55.570	0.42%	-1.84%
			755	0.975	54.327	0.964	55.512	1.14%	-2.13%
			820	0.983	54.224	0.969	55.258	1.44%	-1.87%
1/12/2016	835B	21.8	835	0.996	54.061	0.970	55.200	2.68%	-2.06%
.,	0002	21.0	850	1.012	53.915	0.988	55.154	2.43%	-2.25%
			820	0.992	56.185	0.969	55.258	2.37%	1.68%
1/19/2016	835B	20.1	835	1.005	56.042	0.970	55.200	3.61%	1.53%
1710/2010	0000	20.1	850	1.021	55.874	0.988	55.154	3.34%	1.31%
			1710	1.419	51.788	1.463	53.537	-3.01%	-3.27%
1/18/2016	1750B	22.1	1750	1.462	51.662	1.488	53.432	-1.75%	-3.31%
1/10/2010	17500	22.1	1790	1.502	51.550	1.514	53.326	-0.79%	-3.33%
			1850	1.466	52.557	1.520	53.300	-3.55%	-1.39%
1/18/2016	1900B	22.5	1880	1.496	52.560	1.520	53.300	-1.58%	-1.39%
1/10/2010	19000	22.0	1910	1.530	52.464	1.520	53.300	0.66%	-1.57%
			2400	1.920	52.493	1.902	52.767	0.00%	-0.52%
1/12/2016	2450B	22.5	2400	1.920	52.493	1.950	52.700	2.26%	-0.32%
1/12/2010	2430B	22.5	2500						
				2.062	52.082	2.021	52.636	2.03%	-1.05%
1/10/0016	00005	00.5	2600	2.200	51.704	2.163	52.509	1.71%	-1.53%
1/12/2016	2600B	22.5	2650	2.267	51.519	2.234	52.445	1.48%	-1.77%
			2700	2.339	51.291	2.305	52.382	1.48%	-2.08%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

SAR EVALUATION REPORT	Quality Manager
ЈТ Туре:	Page 41 of 65
rtable Handset	PEV 17.0 M
	•

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-2 System Verification Results

						System Ve LRGET & M		D				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
K	750	HEAD	01/18/2016	21.4	20.9	0.200	1054	3022	1.720	8.280	8.600	3.86%
G	835	HEAD	01/15/2016	22.0	23.0	0.200	4d119	3334	1.930	9.380	9.650	2.88%
Н	1750	HEAD	01/12/2016	23.3	22.7	0.100	1051	3263	3.440	36.200	34.400	-4.97%
G	1900	HEAD	01/13/2016	24.4	22.8	0.100	5d149	3334	4.200	40.700	42.000	3.19%
E	2450	HEAD	01/19/2016	22.3	21.0	0.100	719	3351	5.060	54.200	50.600	-6.64%
Е	2600	HEAD	01/19/2016	22.6	21.0	0.100	1004	3351	5.510	55.800	55.100	-1.25%
G	750	BODY	01/15/2016	24.5	23.9	0.200	1054	3334	1.790	8.530	8.950	4.92%
Н	835	BODY	01/12/2016	23.3	22.7	0.200	4d133	3263	2.000	9.250	10.000	8.11%
Н	835	BODY	01/19/2016	23.5	21.5	0.200	4d119	3263	1.950	9.200	9.750	5.98%
К	1750	BODY	01/18/2016	23.5	22.7	0.100	1051	3022	3.750	37.100	37.500	1.08%
1	1900	BODY	01/18/2016	21.1	22.5	0.100	5d141	3333	4.060	40.000	40.600	1.50%
J	2450	BODY	01/12/2016	22.1	22.5	0.100	719	3319	5.330	51.900	53.300	2.70%
J	2600	BODY	01/12/2016	22.1	22.5	0.100	1004	3319	5.600	56.200	56.000	-0.36%

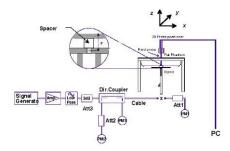


Figure 10-1 **System Verification Setup Diagram**

Figure 10-2 **System Verification Setup Photo**

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 42 of 65

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 GSM 850 Head SAR

						MEAS	JREMEN	T RESUL	TS						
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	, . ,	(W/kg)	3	(W/kg)	
836.60	190	GSM 850	GSM	33.0	32.63	-0.14	Right	Cheek	4391	1	1:8.3	0.316	1.089	0.344	
836.60	190	GSM 850	GSM	33.0	32.63	0.12	Right	Tilt	4391	1	1:8.3	0.186	1.089	0.203	
836.60	190	GSM 850	GSM	33.0	32.63	0.14	Left	Cheek	4391	1	1:8.3	0.267	1.089	0.291	
836.60	190	GSM 850	GSM	33.0	32.63	0.00	Left	Tilt	4391	1	1:8.3	0.223	1.089	0.243	
836.60	190	GSM 850	GPRS	31.0	30.66	0.05	Right	Cheek	4391	2	1:4.15	0.368	1.081	0.398	A1
836.60	190	GSM 850	GPRS	31.0	30.66	-0.12	Right	Tilt	4391	2	1:4.15	0.215	1.081	0.232	
836.60	190	GSM 850	GPRS	31.0	30.66	0.10	Left	Cheek	4391	2	1:4.15	0.342	1.081	0.370	
836.60	96.60 190 GSM850 GPRS 31.0 30.66 0.0							Tilt	4391	2	1:4.15	0.209	1.081	0.226	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Hea 1.6 W/kg averaged ov	(mW/g)			

Table 11-2 GSM 1900 Head SAR

						MEAS	JREMEN	T RESUL	TS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	.,,,,,	(W/kg)	3	(W/kg)	
1880.00	661	GSM 1900	GSM	29.7	29.40	0.02	Right	Cheek	1081	1	1:8.3	0.114	1.072	0.122	
1880.00	661	GSM 1900	GSM	29.7	29.40	0.06	Right	Tilt	1081	1	1:8.3	0.088	1.072	0.094	
1880.00	661	GSM 1900	GSM	29.7	29.40	-0.17	Left	Cheek	1081	1	1:8.3	0.191	1.072	0.205	
1880.00	661	GSM 1900	GSM	29.7	29.40	0.06	Left	Tilt	1081	1	1:8.3	0.073	1.072	0.078	
1880.00	661	GSM 1900	GPRS	27.7	27.56	0.06	Right	Cheek	1081	2	1:4.15	0.163	1.033	0.168	
1880.00	661	GSM 1900	GPRS	27.7	27.56	-0.20	Right	Tilt	1081	2	1:4.15	0.115	1.033	0.119	
1880.00	661	GSM 1900	GPRS	27.7	27.56	-0.05	Left	Cheek	1081	2	1:4.15	0.241	1.033	0.249	A2
1880.00	1880.00 661 GSM1900 GPRS 27.7 27.56 0.0							Tilt	1081	2	1:4.15	0.096	1.033	0.099	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Hea 1.6 W/kg averaged ov	(mW/g)			

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 42 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 43 of 65

Table 11-3 UMTS 850 Head SAR

							o i ica	. 0,						
					М	EASURE	MENT RE	SULTS						
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
836.60	4183	UMTS 850	RMC	23.7	23.53	-0.03	Right	Cheek	4391	1:1	0.346	1.040	0.360	A3
836.60	4183	UMTS 850	RMC	23.7	23.53	0.18	Right	Tilt	4391	1:1	0.195	1.040	0.203	
836.60	4183	UMTS 850	RMC	23.7	23.53	-0.10	Left	Cheek	4391	1:1	0.277	1.040	0.288	
836.60	4183	UMTS 850	RMC	23.7	23.53	0.13	Left	Tilt	4391	1:1	0.201	1.040	0.209	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head			
	Spatial Peak Uncontrolled Exposure/General Population										W/kg (mW/g) ged over 1 gran			
	Uncontrolled Exposure/General Population									averaç	jeu over i gran			

Table 11-4 UMTS 1750 Head SAR

					M	EASURE	MENT RE	SULTS						
FREQUENC	СУ	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	modo/2and	00.1100	Power [dBm]	Power [dBm]	Drift [dB]	0.40	Position	Number	Daty Gyold	(W/kg)	County Fuctor	(W/kg)	
1732.40 1	1412	UMTS 1750	RMC	23.7	23.38	0.00	Right	Cheek	4391	1:1	0.267	1.076	0.287	
1732.40 1	1412	UMTS 1750	RMC	23.7	23.38	0.01	Right	Tilt	4391	1:1	0.234	1.076	0.252	
1732.40 1	1412	UMTS 1750	RMC	23.7	23.38	-0.01	Left	Cheek	4391	1:1	0.405	1.076	0.436	A4
1732.40 1	1412	UMTS 1750	RMC	23.7	23.38	-0.01	Left	Tilt	4391	1:1	0.217	1.076	0.233	
		ANSI / IEI	E C95.1 1992 -	SAFETY LIMI	Т						Head			
	Spatial Peak									1.6	W/kg (mW/g)			
	Uncontrolled Exposure/General Population									averag	jed over 1 gran	า		

Table 11-5 LIMTS 1900 Head SAR

					Olv	113 19	оо пеа	u SAN						
					М	EASURE	MENT RE	SULTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
1880.00	9400	UMTS 1900	RMC	23.7	23.35	-0.11	Right	Cheek	1081	1:1	0.244	1.084	0.264	
1880.00	9400	UMTS 1900	RMC	23.7	23.35	0.10	Right	Tilt	1081	1:1	0.194	1.084	0.210	
1880.00	9400	UMTS 1900	RMC	23.7	23.35	-0.02	Left	Cheek	1081	1:1	0.426	1.084	0.462	A5
1880.00	1880.00 9400 UMTS 1900 RMC 23.7 23.35 0.16							Tilt	1081	1:1	0.162	1.084	0.176	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head	-	-	
	Spatial Peak									1.6	W/kg (mW/g)			
	Uncontrolled Exposure/General Population									averaç	jed over 1 gran	n		

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 44 of 65

Table 11-6 CDMA BC0 (§22H) Head SAR

					DIVIA D	-0 (3-	,		<u> </u>					
					MEAS	SUREME	NT RESU	JLTS						
FREQUE	ENCY	Mode/Band	Service	Maxim um Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR(1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	mode/Dand	OCT VICE	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	buty Oycic	(W/kg)	J country 1 actor	(W/kg)	1101#
836.52	384	CDMABC0 (§22H)	RC3 / SO55	24.7	24.61	0.09	Right	Cheek	4391	1:1	0.455	1.021	0.465	A6
836.52	384	CDMABC0 (§22H)	RC3 / SO55	24.7	24.61	0.05	Right	Tilt	4391	1:1	0.248	1.021	0.253	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	24.7	24.61	0.15	Left	Cheek	4391	1:1	0.368	1.021	0.376	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	24.7	24.61	-0.02	Left	Tilt	4391	1:1	0.220	1.021	0.225	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	24.7	24.60	0.00	Right	Cheek	4391	1:1	0.446	1.023	0.456	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	24.7	24.60	-0.12	Right	Tilt	4391	1:1	0.263	1.023	0.269	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	24.7	24.60	0.14	Left	Cheek	4391	1:1	0.348	1.023	0.356	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	24.7	24.60	0.10	Left	Tilt	4391	1:1	0.196	1.023	0.201	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Head W/kg (mW/g) ged over 1 gran			

Table 11-7 CDMA BC10 (§90S) Head SAR

					MEAS	UREME	NT RESU	LTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, ,	(W/kg)	Ü	(W/kg)	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	24.7	24.68	0.05	Right	Cheek	4391	1:1	0.344	1.005	0.346	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	24.7	24.68	0.06	Right	Tilt	4391	1:1	0.195	1.005	0.196	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	24.7	24.68	0.21	Left	Cheek	4391	1:1	0.312	1.005	0.314	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	24.7	24.68	-0.04	Left	Tilt	4391	1:1	0.200	1.005	0.201	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	24.7	24.68	0.06	Right	Cheek	4391	1:1	0.367	1.005	0.369	A7
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	24.7	24.68	0.08	Right	Tilt	4391	1:1	0.203	1.005	0.204	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	24.7	24.68	-0.06	Left	Cheek	4391	1:1	0.311	1.005	0.313	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	24.7	24.68	0.17	Left	Tilt	4391	1:1	0.190	1.005	0.191	
			95.1 1992 - SAF Spatial Peak posure/Genera								Head W/kg (mW/g) ged over 1 gran	n		

FCC ID: ZNFLS775	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 45 of C5
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 45 of 65

Table 11-8 PCS CDMA Head SAR

					М	EASURE	MENT RE	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	WOUE/Ballu	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	buty Cycle	(W/kg)	Scaling Factor	(W/kg)	PIOL#
1880.00	600	PCS CDMA	RC3 / SO55	24.2	24.13	-0.11	Right	Cheek	1081	1:1	0.246	1.016	0.250	
1880.00	600	PCS CDMA	RC3 / SO55	24.2	24.13	0.08	Right	Tilt	1081	1:1	0.214	1.016	0.217	
1880.00	600	PCS CDMA	RC3 / SO55	24.2	24.13	-0.09	Left	Cheek	1081	1:1	0.510	1.016	0.518	A8
1880.00	600	PCS CDMA	RC3 / SO55	24.2	24.13	0.03	Left	Tilt	1081	1:1	0.178	1.016	0.181	
1880.00	600	PCS CDMA	EVDO Rev. A	24.2	24.15	-0.12	Right	Cheek	1081	1:1	0.249	1.012	0.252	
1880.00	600	PCS CDMA	EVDO Rev. A	24.2	24.15	0.16	Right	Tilt	1081	1:1	0.208	1.012	0.210	
1880.00	600	PCS CDMA	EVDO Rev. A	24.2	24.15	-0.02	Left	Cheek	1081	1:1	0.506	1.012	0.512	
1880.00	600	PCS CDMA	EVDO Rev. A	24.2	24.15	0.03	Left	Tilt	1081	1:1	0.174	1.012	0.176	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							Head W/kg (mW/g) ged over 1 gran			

Table 11-9 LTE Band 12 Head SAR

								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	De vice Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ci	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	-0.03	0	Right	Cheek	QPSK	1	0	4409	1:1	0.156	1.000	0.156	A9
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.15	1	Right	Cheek	QPSK	25	25	4409	1:1	0.129	1.002	0.129	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.20	0	Right	Tilt	QPSK	1	0	4409	1:1	0.088	1.000	0.088	
707.50									Right	Tilt	QPSK	25	25	4409	1:1	0.074	1.002	0.074	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	-0.09	0	Left	Cheek	QPSK	1	0	4409	1:1	0.139	1.000	0.139	
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.18	1	Left	Cheek	QPSK	25	25	4409	1:1	0.119	1.002	0.119	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.21	0	Left	Tilt	QPSK	1	0	4409	1:1	0.081	1.000	0.081	
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.00	1	Left	Tilt	QPSK	25	25	4409	1:1	0.073	1.002	0.073	
				Spatial Pea										Head 1.6 W/kg (m veraged over			,		

Table 11-10 LTE Band 26 (Cell) Head SAR

								Dania	20 (ocii,	iicau	UAII							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	-0.15	0	Right	Cheek	QPSK	1	0	1088	1:1	0.353	1.000	0.353	A10
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.19	1	Right	Cheek	QPSK	36	0	1088	1:1	0.256	1.000	0.256	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.16	0	Right	Tilt	QPSK	1	0	1088	1:1	0.201	1.000	0.201	
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.05	1	Right	Tilt	QPSK	36	0	1088	1:1	0.142	1.000	0.142	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.08	0	Left	Cheek	QPSK	1	0	1088	1:1	0.289	1.000	0.289	
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.04	1	Left	Cheek	QPSK	36	0	1088	1:1	0.236	1.000	0.236	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.09	0	Left	Tilt	QPSK	1	0	1088	1:1	0.165	1.000	0.165	
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.02	1	Left	Tilt	QPSK	36	0	1088	1:1	0.137	1.000	0.137	
				Spatial Per			·							Head 1.6 W/kg (n	•				
			Uncontrolled E	x posure/Ge	neral Populat	tion			ı				a	veraged over	1 gram				

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 40 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 46 of 65

Table 11-11 LTE Band 4 (AWS) Head SAR

									- 1-	·····	iicuu	<u> </u>							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	De vice Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
M Hz	CI	h.	Ī	[MHz]	Power [dBm]	Power [dBm]	Drift (dB)			Position				Number	Cycle	(W/kg)	-	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.01	0	Right	Cheek	QPSK	1	50	4409	1:1	0.304	1.000	0.304	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.19	0.03	1	Right	Cheek	QPSK	50	0	4409	1:1	0.220	1.002	0.220	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.06	0	Right	Tilt	QPSK	1	50	4409	1:1	0.257	1.000	0.257	
1732.50	 ` 									Tilt	QPSK	50	0	4409	1:1	0.187	1.002	0.187	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.02	0	Left	Cheek	QPSK	1	50	4409	1:1	0.461	1.000	0.461	A11
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.19	0.01	1	Left	Cheek	QPSK	50	0	4409	1:1	0.351	1.002	0.352	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.11	0	Left	Tilt	QPSK	1	50	4409	1:1	0.244	1.000	0.244	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.19	0.16	1	Left	Tilt	QPSK	50	0	4409	1:1	0.169	1.002	0.169	
				Spatial Per			•				•			Head 1.6 W/kg (m veraged over	ıW/g)	•	•		

Table 11-12 LTE Band 25 (PCS) Head SAR

						-		Juliu	20 (.	00,	Heau	UAII							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	۱.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	L
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.03	0	Right	Cheek	QPSK	1	0	4409	1:1	0.295	1.047	0.309	
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.12	1	Right	Cheek	QPSK	50	25	4409	1:1	0.204	1.038	0.212	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.05	0	Right	Tilt	QPSK	1	0	4409	1:1	0.213	1.047	0.223	
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.01	1	Right	Tilt	QPSK	50	25	4409	1:1	0.192	1.038	0.199	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.20	0	Left	Cheek	QPSK	1	0	4409	1:1	0.464	1.047	0.486	A12
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.01	1	Left	Cheek	QPSK	50	25	4409	1:1	0.356	1.038	0.370	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.10	0	Left	Tilt	QPSK	1	0	4409	1:1	0.221	1.047	0.231	
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.05	1	Left	Tilt	QPSK	50	25	4409	1:1	0.157	1.038	0.163	
				Spatial Pea										Head 1.6 W/kg (n veraged over	ıW/g)		•		

Table 11-13 I TF Band 41 Head SAR

									Dain	u + i i	пеац	SAN								
									MEASU	REMENT	RESULT	s								
F	REQUENCY	Y	Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Scaling Factor CP Duty	Reported SAR (1g)	Plot#
MHz	(Ch.		[MHz]	Power [dBm]	Power [dBm]	рын (ав)			Position				Number	Cycle	(W/kg)		CP Duty	(W/kg)	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.06	0	Right	Cheek	QPSK	1	50	4409	1:1.59	0.103	1.000	1.010	0.104	A13
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.09	1	Right	Cheek	QPSK	50	25	4409	1:1.59	0.088	1.000	1.010	0.089	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.21	0	Right	Tilt	QPSK	1	50	4409	1:1.59	0.039	1.000	1.010	0.039	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	1	Right	Tilt	QPSK	50	25	4409	1:1.59	0.035	1.000	1.010	0.035		
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.06	0	Left	Cheek	QPSK	1	50	4409	1:1.59	0.038	1.000	1.010	0.038	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.09	1	Left	Cheek	QPSK	50	25	4409	1:1.59	0.029	1.000	1.010	0.029	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.05	0	Left	Tilt	QPSK	1	50	4409	1:1.59	0.040	1.000	1.010	0.040	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.08	1	Left	Tilt	QPSK	50	25	4409	1:1.59	0.034	1.000	1.010	0.034	
	•		ANSI / IEEE C	Spatial Pea	k						,		,		Head V/kg (mW/ ed over 1 g		,	,		

	FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dono 47 of CE
	0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset	Page 47 of 65
١.	6 DCTEST Engineering Laboratory Inc.		•	DEV/ 17.0 M

Table 11-14 DTS Head SAR

							1	MEASU	REMENT	RESULT	s							
FREQUE	ENCY	Mode	Service	Bandwidth	Maxim um Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	17.0	16.69	-	Right	Cheek	0431	1	99.8	0.286	-	1.074	1.002	-	
2462	11	802.11b	DSSS	22	17.0	16.69	-	Right	Tilt	0431	1	99.8	0.249	-	1.074	1.002	-	
2462	11	802.11b	DSSS	22	17.0	16.69	0.03	Left	Cheek	0431	1	99.8	0.634	0.526	1.074	1.002	0.566	A14
2462	11	802.11b	DSSS	22	0.07	Left	Tilt	0431	1	99.8	0.560	0.439	1.074	1.002	0.472			
		ANSI / IEEE	C95.1 1992	- SAFETY LI	MIT								Hea	ıd	·			
			Spatial Pe	ak									1.6 W/kg	(mW/g)				
		Uncontrolled	Exposure/Ge	eneral Popu	lation								averaged ov	er 1 gram				

11.2 Standalone Body-Worn SAR Data

Table 11-15 GSM/UMTS/CDMA Body-Worn SAR Data

				0.0	OIVI I O			,	<u> </u>						
					MI	EASURE	MENT F	RESULTS							
FREQUE		Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[-,		(W/kg)		(W/kg)	
836.60	190	GSM 850	GSM	33.0	32.63	-0.03	10 mm	4391	1	1:8.3	back	0.524	1.089	0.571	
836.60	190	GSM 850	GPRS	31.0	30.66	-0.07	10 mm	4391	2	1:4.15	back	0.618	1.081	0.668	A15
1880.00	661	GSM 1900	GSM	29.7	29.40	-0.02	10 mm	4391	1	1:8.3	back	0.269	1.072	0.288	
1880.00	661	GSM 1900	GPRS	27.7	27.56	-0.03	10 mm	4391	2	1:4.15	back	0.347	1.033	0.358	A17
836.60	4183	UMTS 850	RMC	23.7	23.53	0.08	10 mm	4391	N/A	1:1	back	0.571	1.040	0.594	A18
1712.40	1312	UMTS 1750	RMC	23.7	23.33	-0.03	10 mm	4391	N/A	1:1	back	0.706	1.089	0.769	
1732.40	1412	UMTS 1750	RMC	23.7	23.38	-0.05	10 mm	4391	N/A	1:1	back	0.767	1.076	0.825	A19
1752.60	1513	UMTS 1750	RMC	23.7	23.37	0.00	10 mm	4391	N/A	1:1	back	0.752	1.079	0.811	
1880.00	9400	UMTS 1900	RMC	23.7	23.35	-0.04	10 mm	4391	N/A	1:1	back	0.613	1.084	0.664	A20
836.52	384	CDMA BC0 (§22H)	TDSO / SO32	24.7	24.63	0.01	10 mm	4391	N/A	1:1	back	0.673	1.016	0.684	A21
820.10	564	CDMA BC10 (§90S)	TDSO / SO32	24.7	24.63	0.01	10 mm	4391	N/A	1:1	back	0.629	1.016	0.639	A23
1880.00	600	PCS CDMA	TDSO / SO32	24.2	24.15	0.05	10 mm	4391	N/A	1:1	back	0.630	1.012	0.638	A25
			E C95.1 1992 - SA Spatial Peak Exposure/Gener								1.6 W/k	ody g (mW/g) over 1 gram			

FCC ID: ZNFLS775	PCTEST INSINEARING LABORATORY, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 40 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 48 of 65

Table 11-16 LTE Body-Worn SAR

									Doug	- 44 011	. 0									
								М	EASURE	MENT RES	ULTS									
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR[dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor CP Duty	Reported SAR (1g)	Plot #
MHz	(Ch.		[Mrk]	Power [dBm]	Power [abili]	Driit [ubj		Number						Cycle	(W/kg)		CF Duty	(W/kg)	ļ
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.09	0	4409	QPSK	1	0	10 mm	back	1:1	0.327	1.000	N/A	0.327	A27
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.07	1	4409	QPSK	25	25	10 mm	back	1:1	0.261	1.002	N/A	0.262	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.01	0	1088	QPSK	1	0	10 mm	back	1:1	0.540	1.000	N/A	0.540	A29
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.07	1	1088	QPSK	36	0	10 mm	back	1:1	0.435	1.000	N/A	0.435	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.03	0	4409	QPSK	1	50	10 mm	back	1:1	0.777	1.000	N/A	0.777	A31
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.19	0.14	1	4409	QPSK	50	0	10 mm	back	1:1	0.582	1.002	N/A	0.583	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.05	0	1088	QPSK	1	0	10 mm	back	1:1	0.475	1.047	N/A	0.497	A32
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.19	1	1088	QPSK	50	25	10 mm	back	1:1	0.427	1.038	N/A	0.443	
2506.00	39750	Low	LTE Band 41	20	23.7	23.60	0.08	0	1088	QPSK	1	99	10 mm	back	1:1.59	0.454	1.023	1.010	0.469	
2549.50	40185	Low-Mid	LTE Band 41	20	23.7	23.56	0.21	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.418	1.033	1.010	0.436	
2593.00	40620	Mid	LTE Band 41	20	23.7	23.57	0.10	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.453	1.030	1.010	0.472	
2636.50	41055	Mid-High	LTE Band 41	20	23.7	23.69	0.16	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.634	1.002	1.010	0.641	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.06	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.752	1.000	1.010	0.760	A34
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.03	1	1088	QPSK	50	25	10 mm	back	1:1.59	0.493	1.000	1.010	0.498	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.60	0.07	1	1088	QPSK	100	0	10 mm	back	1:1.59	0.499	1.023	1.010	0.515	
			ANSI / IEEE	C95.1 1992 -	SAFETY LIMI	Т									Body					
				Spatial Pea	ak									1.	6 W/kg (n	nW/g)				
			Uncontrolled E	xposure/Ge	neral Populat	ion								ave	raged over	1 gram				

Table 11-17 DTS Body-Worn SAR

							М	EASURE	EMENT	RESUL	rs							
FREQU	JENCY	Mode	Service	Bandwidth	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor		Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	17.0	16.69	0.06	10 mm	1089	1	back	99.8	0.154	0.143	1.074	1.002	0.154	A35
		ANSI	IEEE C95	.1 1992 - SA	FETY LIMIT								Е	Body				
				atial Peak									1.6 W/I	(g (mW/g)				
		Uncontro	olled Expo	sure/Gener	al Population	1							averaged	over 1 gram				

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	_G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 40 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 49 of 65
16 DCTECT Engineering Laboratory Inc.				DEV/ 17.0 M

11.3 Standalone Hotspot SAR Data

Table 11-18 GPRS/UMTS/CDMA Hotspot SAR Data

				GFF	KS/UNIT			RESULTS	SAN	Data					
FREQUE	NCV			Maximum	ı	1	 				Г	SAR (1g)	I	Reported SAR	
MHz	Ch.	Mode	Service	Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	(W/kg)	Scaling Factor	(1g) (W/kg)	Plot #
836.60	190	GSM 850	GPRS	31.0	30.66	-0.07	10 mm	4391	2	1:4.15	back	0.618	1.081	0.668	
836.60	190	GSM 850	GPRS	31.0	30.66	0.02	10 mm	4391	2	1:4.15	front	0.441	1.081	0.477	
836.60	190	GSM 850	GPRS	31.0	30.66	-0.06	10 mm	4391	2	1:4.15	bottom	0.345	1.081	0.373	
836.60	190	GSM 850	GPRS	31.0	30.66	0.09	10 mm	4391	2	1:4.15	right	0.697	1.081	0.753	A16
836.60	190	GSM 850	GPRS	31.0	30.66	0.07	10 mm	4391	2	1:4.15	left	0.346	1.081	0.374	
1880.00	661	GSM 1900	GPRS	27.7	27.56	-0.03	10 mm	4391	2	1:4.15	back	0.347	1.033	0.358	A17
1880.00	661	GSM 1900	GPRS	27.7	27.56	0.00	10 mm	4391	2	1:4.15	front	0.296	1.033	0.306	
1880.00	661	GSM 1900	GPRS	27.7	27.56	-0.02	10 mm	4391	2	1:4.15	bottom	0.231	1.033	0.239	
1880.00	661	GSM 1900	GPRS	27.7	27.56	0.08	10 mm	4391	2	1:4.15	left	0.267	1.033	0.276	
836.60	4183	UMTS 850	RMC	23.7	23.53	0.08	10 mm	4391	N/A	1:1	back	0.571	1.040	0.594	A18
836.60	4183	UMTS 850	RMC	23.7	23.53	-0.08	10 mm	4391	N/A	1:1	front	0.400	1.040	0.416	
836.60	4183	UMTS 850	RMC	23.7	23.53	-0.04	10 mm	4391	N/A	1:1	bottom	0.304	1.040	0.316	
836.60	4183	UMTS 850	RMC	23.7	23.53	0.00	10 mm	4391	N/A	1:1	right	0.569	1.040	0.592	
836.60	4183	UMTS 850	RMC	23.7	23.53	0.01	10 mm	4391	N/A	1:1	left	0.295	1.040	0.307	
1712.40	1312	UMTS 1750	RMC	23.7	23.33	-0.03	10 mm	4391	N/A	1:1	back	0.706	1.089	0.769	
1732.40	1412	UMTS 1750	RMC	23.7	23.38	-0.05	10 mm	4391	N/A	1:1	back	0.767	1.076	0.825	A19
1752.60	1513	UMTS 1750	RMC	23.7	23.37	0.00	10 mm	4391	N/A	1:1	back	0.752	1.079	0.811	
1732.40	1412	UMTS 1750	RMC	23.7	23.38	-0.04	10 mm	4391	N/A	1:1	front	0.662	1.076	0.712	
1732.40	1412	UMTS 1750	RMC	23.7	23.38	-0.03	10 mm	4391	N/A	1:1	bottom	0.434	1.076	0.467	
1732.40	1412	UMTS 1750	RMC	23.7	23.38	0.08	10 mm	4391	N/A	1:1	left	0.548	1.076	0.590	
1880.00	9400	UMTS 1900	RMC	23.7	23.35	-0.04	10 mm	4391	N/A	1:1	back	0.613	1.084	0.664	A20
1880.00	9400	UMTS 1900	RMC	23.7	23.35	0.15	10 mm	4391	N/A	1:1	front	0.575	1.084	0.623	
1880.00	9400	UMTS 1900	RMC	23.7	23.35	-0.02	10 mm	4391	N/A	1:1	bottom	0.405	1.084	0.439	
1880.00	9400	UMTS 1900	RMC	23.7	23.35	-0.10	10 mm	4391	N/A	1:1	left	0.431	1.084	0.467	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	24.7	24.61	-0.02	10 mm	4391	N/A	1:1	back	0.678	1.021	0.692	A22
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	24.7	24.61	0.04	10 mm	4391	N/A	1:1	front	0.489	1.021	0.499	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	24.7	24.61	0.00	10 mm	4391	N/A	1:1	bottom	0.356	1.021	0.363	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	24.7	24.61	-0.02	10 mm	4391	N/A	1:1	right	0.611	1.021	0.624	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	24.7	24.61	-0.03	10 mm	4391	N/A	1:1	left	0.309	1.021	0.315	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	24.7	24.67	0.00	10 mm	4391	N/A	1:1	back	0.621	1.007	0.625	A24
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	24.7	24.67	0.01	10 mm	4391	N/A	1:1	front	0.442	1.007	0.445	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	24.7	24.67	-0.14	10 mm	4391	N/A	1:1	bottom	0.279	1.007	0.281	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	24.7	24.67	-0.02	10 mm	4391	N/A	1:1	right	0.522	1.007	0.526	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	24.7	24.67	0.02	10 mm	4391	N/A	1:1	left	0.257	1.007	0.259	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.2	24.16	-0.03	10 mm	4391	N/A	1:1	back	0.631	1.009	0.637	A26
1880.00	600	PCS CDMA	EVDO Rev. 0	24.2	24.16	0.08	10 mm	4391	N/A	1:1	front	0.616	1.009	0.622	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.2	24.16	0.02	10 mm	4391	N/A	1:1	bottom	0.458	1.009	0.462	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.2	24.16	0.01	10 mm	4391	N/A	1:1	left	0.482	1.009	0.486	
		ANSI / IEE	E C95.1 1992 - SA Spatial Peak	FEIT LIMIT								ody :g (mW/g)			
		Uncontrolled	Exposure/Gener	al Population	1						averaged	over 1 gram			

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done FO of CF
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 50 of 65

Table 11-19 LTE Band 12 Hotspot SAR

								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Num ber							(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.09	0	4409	QPSK	1	0	10 mm	back	1:1	0.327	1.000	0.327	
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.07	1	4409	QPSK	25	25	10 mm	back	1:1	0.261	1.002	0.262	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.07	0	4409	QPSK	1	0	10 mm	front	1:1	0.181	1.000	0.181	
707.50	23095	Mid	LTE Band 12	10	22.7	0.00	1	4409	QPSK	25	25	10 mm	front	1:1	0.144	1.002	0.144		
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.19	0	4409	QPSK	1	0	10 mm	bottom	1:1	0.105	1.000	0.105	
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.05	1	4409	QPSK	25	25	10 mm	bottom	1:1	0.091	1.002	0.091	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.08	0	4409	QPSK	1	0	10 mm	right	1:1	0.353	1.000	0.353	A28
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.13	1	4409	QPSK	25	25	10 mm	right	1:1	0.232	1.002	0.232	
707.50	23095	Mid	LTE Band 12	10	23.7	23.70	0.10	0	4409	QPSK	1	0	10 mm	left	1:1	0.122	1.000	0.122	
707.50	23095	Mid	LTE Band 12	10	22.7	22.69	0.15	1	4409	QPSK	25	25	10 mm	left	1:1	0.087	1.002	0.087	
		ι	ANSI / IEEE C95. Spa Uncontrolled Expo	itial Peak										Body V/kg (mW ed over 1 (•				

Table 11-20 LTE Band 26 (Cell) Hotspot SAR

								MEAS	UREMENT	RESULTS	3						•		
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[2]	Power [dBm]	Tower [dain]	Dimit [GD]		Tall Del							(W/kg)		(W/kg)	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.01	0	1088	QPSK	1	0	10 mm	back	1:1	0.540	1.000	0.540	
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.07	1	1088	QPSK	36	0	10 mm	back	1:1	0.435	1.000	0.435	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.09	0	1088	QPSK	1	0	10 mm	front	1:1	0.401	1.000	0.401	
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.04	1	1088	QPSK	36	0	10 mm	front	1:1	0.300	1.000	0.300	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.05	0	1088	QPSK	1	0	10 mm	bottom	1:1	0.289	1.000	0.289	
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.02	1	1088	QPSK	36	0	10 mm	bottom	1:1	0.220	1.000	0.220	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.01	0	1088	QPSK	1	0	10 mm	right	1:1	0.561	1.000	0.561	A30
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.09	1	1088	QPSK	36	0	10 mm	right	1:1	0.451	1.000	0.451	
836.50	26915	Mid	LTE Band 26 (Cell)	15	23.7	23.70	0.16	0	1088	QPSK	1	0	10 mm	left	1:1	0.306	1.000	0.306	
836.50	26915	Mid	LTE Band 26 (Cell)	15	22.7	22.70	0.07	1	1088	QPSK	36	0	10 mm	left	1:1	0.234	1.000	0.234	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT							•	16 W	Body //kg (mW	//a)			•	_
			Uncontrolled Expo		l Population						-			ed over 1	-		-		

Table 11-21 LTE Band 4 (AWS) Hotspot SAR

								110 7	(7110	<i>)</i> 11013	pot	OAII							
								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Num ber							(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.03	0	4409	QPSK	1	50	10 mm	back	1:1	0.777	1.000	0.777	A31
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.19	0.14	1	4409	QPSK	50	0	10 mm	back	1:1	0.582	1.002	0.583	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.06	0	4409	QPSK	1	50	10 mm	front	1:1	0.662	1.000	0.662	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	0.00	1	4409	QPSK	50	0	10 mm	front	1:1	0.515	1.002	0.516		
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.17	0	4409	QPSK	1	50	10 mm	bottom	1:1	0.374	1.000	0.374	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.19	0.01	1	4409	QPSK	50	0	10 mm	bottom	1:1	0.323	1.002	0.324	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.20	0.19	0	4409	QPSK	1	50	10 mm	left	1:1	0.603	1.000	0.603	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.19	0.01	1	4409	QPSK	50	0	10 mm	left	1:1	0.404	1.002	0.405	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT									Body					
			Spa	itial Peak									1.6 V	//kg (mW	/g)				
		1	Uncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

		•	Quality Manager
Document S/N: Test Dates:	DUT Type:		Dage E1 of CE
0Y1601150088-R1.ZNF 01/12/16 - 01/19	Portable Handset		Page 51 of 65

Table 11-22 LTE Band 25 (PCS) Hotspot SAR

							LDa	IIG Z	, (i. OO) Hots	pot	UAII							
								MEAS	UREMENT	RESULTS	3								
FRI	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Num ber							(W/kg)		(W/kg)	<u> </u>
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.05	0	1088	QPSK	1	0	10 mm	back	1:1	0.475	1.047	0.497	
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.19	1	1088	QPSK	50	25	10 mm	back	1:1	0.427	1.038	0.443	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.19	0	1088	QPSK	1	0	10 mm	front	1:1	0.506	1.047	0.530	A33
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.10	1	1088	QPSK	50	25	10 mm	front	1:1	0.402	1.038	0.417	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.16	0	1088	QPSK	1	0	10 mm	bottom	1:1	0.338	1.047	0.354	
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.15	1	1088	QPSK	50	25	10 mm	bottom	1:1	0.308	1.038	0.320	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.50	0.15	0	1088	QPSK	1	0	10 mm	left	1:1	0.399	1.047	0.418	
1905.00	26590	High	LTE Band 25 (PCS)	20	22.7	22.54	0.01	1	1088	QPSK	50	25	10 mm	left	1:1	0.334	1.038	0.347	
				tial Peak										Body //kg (mW	•				
		ı	Incontrolled Expos	sure/Genera	I Population			l					average	ed over 1	gram				

Table 11-23 LTE Band 41 Hotspot SAR

																	-			
								M	EASUREM	ENT RESU	JLTS									
F	REQUENC	Y	Mode	Bandw idth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz		Ch.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		CP Duty	(W/kg)	
2506.00	39750	Low	LTE Band 41	20	23.7	23.60	0.08	0	1088	QPSK	1	99	10 mm	back	1:1.59	0.454	1.023	1.010	0.469	
2549.50	40185	Low-Mid	LTE Band 41	20	23.7	23.56	0.21	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.418	1.033	1.010	0.436	
2593.00	40620	Mid	LTE Band 41	20	23.7	23.57	0.10	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.453	1.030	1.010	0.472	
2636.50	41055	Mid-High	LTE Band 41	20	23.7	23.69	0.16	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.634	1.002	1.010	0.641	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.06	0	1088	QPSK	1	50	10 mm	back	1:1.59	0.752	1.000	1.010	0.760	A34
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.03	1	1088	QPSK	50	25	10 mm	back	1:1.59	0.493	1.000	1.010	0.498	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.60	0.07	1	1088	QPSK	100	0	10 mm	back	1:1.59	0.499	1.023	1.010	0.515	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.02	0	1088	QPSK	1	50	10 mm	front	1:1.59	0.488	1.000	1.010	0.493	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.02	1	1088	QPSK	50	25	10 mm	front	1:1.59	0.345	1.000	1.010	0.348	
2506.00	39750	Low	LTE Band 41	20	23.7	23.60	0.08	0	1088	QPSK	1	99	10 mm	bottom	1:1.59	0.329	1.023	1.010	0.340	
2549.50	40185	Low-Mid	LTE Band 41	20	23.7	23.56	0.20	0	1088	QPSK	1	50	10 mm	bottom	1:1.59	0.356	1.033	1.010	0.372	
2593.00	40620	Mid	LTE Band 41	20	23.7	23.57	0.00	0	1088	QPSK	1	50	10 mm	bottom	1:1.59	0.393	1.030	1.010	0.409	
2636.50	41055	Mid-High	LTE Band 41	20	23.7	23.69	0.20	0	1088	QPSK	1	50	10 mm	bottom	1:1.59	0.437	1.002	1.010	0.442	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.03	0	1088	QPSK	1	50	10 mm	bottom	1:1.59	0.619	1.000	1.010	0.625	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.14	1	1088	QPSK	50	25	10 mm	bottom	1:1.59	0.359	1.000	1.010	0.363	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.60	0.14	1	1088	QPSK	100	0	10 mm	bottom	1:1.59	0.359	1.023	1.010	0.371	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.14	0	1088	QPSK	1	50	10 mm	right	1:1.59	0.544	1.000	1.010	0.549	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.04	1	1088	QPSK	50	25	10 mm	right	1:1.59	0.442	1.000	1.010	0.446	
2680.00	41490	High	LTE Band 41	20	23.7	23.70	0.07	0	1088	QPSK	1	50	10 mm	left	1:1.59	0.044	1.000	1.010	0.044	
2636.50	41055	Mid-High	LTE Band 41	20	22.7	22.70	0.20	1	1088	QPSK	50	25	10 mm	left	1:1.59	0.034	1.000	1.010	0.034	
			ANSI / IEEE C95.1	1992 - SAFE	TY LIMIT									E	Body					
				ial Peak											kg (mW/g)					
		Ur	ncontrolled Exposu	ure/General	Population			ļ			-			averaged	over 1 gram	1				

FCC ID: ZNFLS775	@\PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga EO of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset	Page 52 of 65
16 DCTECT Engineering Laboratory Inc.			DEV/17.0 M

Table 11-24 WLAN Hotspot SAR

	WEART HOLOPOT OATT																	
	MEASUREMENT RESULTS																	
FREQU	FREQUENCY	Mode Service	Service	Bandw idth	Maximum Allowed	Conducted	Power Drift	r Drift Spacing	Device Serial	Data Rate	Side		Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)			W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	17.0	16.69	0.06	10 mm	1089	1	back	99.8	0.154	0.143	1.074	1.002	0.154	A35
2462	11	802.11b	DSSS	22	17.0	16.69	-	10 mm	1089	1	front	99.8	0.140		1.074	1.002	٠	
2462	11	802.11b	DSSS	22	17.0	16.69	-	10 mm	1089	1	top	99.8	0.007	ı	1.074	1.002	-	
2462	11	802.11b	DSSS	22	17.0	16.69	-	10 mm	1089	1	right	99.8	0.095	-	1.074	1.002	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body																	
			Spa	atial Peak									1.6 W/k	g (mW/g)				
		Uncontro	lled Expo	sure/Gene	ral Population	n							averaged	over 1 gram				

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
 GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
 was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or
 more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn voice calls for VoIP operations.

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 65
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 53 of 65

CDMA Notes:

- Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- 2. Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported (scaled) for LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using normal cyclic prefix only and special subframe configuration 6. Due to equipment setup issues with extended cyclic prefix as a result of test samples configured for normal cyclic prefix, SAR tests were performed at maximum output power and worst-case transmission duty factor in normal cyclic prefix. Results were then scaled to the duty factor required for extended cyclic prefix listed in 3GPP TS 36.211 Section 4. The cyclic prefix scaling factor for LTE Band 41 was calculated by dividing the extended cyclic prefix duty factor by the normal cyclic prefix duty factor. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using normal cyclic prefix is 0.629. The duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done E4 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 54 of 65

WLAN Notes:

- 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.2 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFLS775	CONTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done EE of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 55 of 65

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5}*\frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2480	9.00	10	0.168

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done EC of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 56 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.398	0.566	0.964
	GSM/GPRS 1900	0.249	0.566	0.815
	UMTS 850	0.360	0.566	0.926
	UMTS 1750	0.436	0.566	1.002
	UMTS 1900	0.462	0.566	1.028
	CDMA/EVDO BC0 (§22H)	0.465	0.566	1.031
Head SAR	CDMA/EVDO BC10 (§90S)	0.369	0.566	0.935
	PCS CDMA/EVDO	0.518	0.566	1.084
	LTE Band 12	0.156	0.566	0.722
	LTE Band 26 (Cell)	0.353	0.566	0.919
	LTE Band 4 (AWS)	0.461	0.566	1.027
	LTE Band 25 (PCS)	0.486	0.566	1.052
	LTE Band 41	0.104	0.566	0.670

Body-Worn Simultaneous Transmission Analysis 12.4

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

inditalieous Transmission Scenario With 2.4 GHz WEAN (Body-Worll at 1.6							
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)			
	GSM/GPRS 850	0.668	0.154	0.822			
	GSM/GPRS 1900	0.358	0.154	0.512			
	UMTS 850	0.594	0.154	0.748			
	UMTS 1750	0.825	0.154	0.979			
	UMTS 1900	0.664	0.154	0.818			
	CDMA BC0 (§22H)	0.684	0.154	0.838			
Body-Worn	CDMA BC10 (§90S)	0.639	0.154	0.793			
	PCS CDMA	0.638	0.154	0.792			
	LTE Band 12	0.327	0.154	0.481			
	LTE Band 26 (Cell)	0.540	0.154	0.694			
	LTE Band 4 (AWS)	0.777	0.154	0.931			
	LTE Band 25 (PCS)	0.497	0.154	0.651			
	LTE Band 41	0.760	0.154	0.914			

FCC ID: ZNFLS775	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 57 -4 05
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 57 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.668	0.168	0.836
	GSM/GPRS 1900	0.358	0.168	0.526
	UMTS 850	0.594	0.168	0.762
	UMTS 1750	0.825	0.168	0.993
	UMTS 1900	0.664	0.168	0.832
	CDMA BC0 (§22H)	0.684	0.168	0.852
Body-Worn	CDMA BC10 (§90S)	0.639	0.168	0.807
	PCS CDMA	0.638	0.168	0.806
	LTE Band 12	0.327	0.168	0.495
	LTE Band 26 (Cell)	0.540	0.168	0.708
	LTE Band 4 (AWS)	0.777	0.168	0.945
	LTE Band 25 (PCS)	0.497	0.168	0.665
	LTE Band 41	0.760	0.168	0.928

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: ZNFLS775	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage E0 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 58 of 65

Hotspot SAR Simultaneous Transmission Analysis 12.5

Table 12-5 Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GPRS 850	0.753	0.154	0.907
	GPRS 1900	0.358	0.154	0.512
	UMTS 850	0.594	0.154	0.748
	UMTS 1750	0.825	0.154	0.979
	UMTS 1900	0.664	0.154	0.818
	EVDO BC0 (§22H)	0.692	0.154	0.846
Hotspot SAR	EVDO BC10 (§90S)	0.625	0.154	0.779
	PCS EVDO	0.637	0.154	0.791
	LTE Band 12	0.353	0.154	0.507
	LTE Band 26 (Cell)	0.561	0.154	0.715
	LTE Band 4 (AWS)	0.777	0.154	0.931
	LTE Band 25 (PCS)	0.530	0.154	0.684
	LTE Band 41	0.760	0.154	0.914

Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done FO of CF
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 59 of 65

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was not assessed for any frequency band since all measured SAR values were less than 0.80 W/kg.

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done CO of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 60 of 65

14

EQUIPMENT LIST

Sectors NC-100 Torque Wrench \$718/2016 Bernolal \$718/2016 N/A	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Molitory	Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	N/A
Maturopo	Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/18/2014	Biennial	3/18/2016	N/A
SPEAG DACE Day Data Acquisition Electronics 2/18/2015 Annual 37/12/016 634-4555 Annitriu MAA100A USB Power Senior 3/12/015 Annual 3/12/016 334-4555 Annitriu MAA100A USB Power Senior 3/12/015 Annual 3/12/016 334-4555 Annitriu MAA100A Dower Senior 3/12/015 Annual 3/12/016 334-4555 Annitriu MAA100A Power Senior 3/12/015 Annual 3/12/016 502-502 Annitriu MAA100A Power Senior 3/12/0105 Annual 3/12/016 502-502 Annitriu MAA100A Power Senior 3/12/0105 Annual 3/12/016 502-502 Annitriu MAA100A Power Senior 3/12/0105 Annual 3/12/016 502-502 Annitriu MAA300A SPAIR			ESG Vector Signal Generator		Biennial		
Annitsu	Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264162
Annibu	SPEAG		Dasy Data Acquisition Electronics	2/18/2015		2/18/2016	
Control Company	Anritsu	MA24106A	USB Power Sensor	3/2/2015	Annual	3/2/2016	
Anrifsu							
Anntsu							
SPEAG	Anritsu		Power Sensor		Annual		5821
Aglient							
SPEAG	SPEAG	D750V3	750 MHz Dipole				
Annitsu							
Anntsu ML2488A Power Meter 311/2015 Annual 311/2016 1070301 Anntsu ML2496A Power Meter 311/2015 Annual 311/2016 1300301 Anntsu ML2496A Power Meter 311/2015 Annual 311/2016 1300301 Anntsu MA2411B Pulse Power Service 311/2015 Annual 311/2016 1300301 Anntsu MA2411B Pulse Power Service 311/2015 Annual 311/2016 1300301 Anntsu MA2411B Pulse Power Service 311/2015 Annual 311/2016 1300301 Anntsu MA2411B Pulse Power Service 311/2015 Annual 311/2016 1300301 Anntsu MA2411B Pulse Power Service 311/2015 Annual 311/2016 1300301 Anntsu MA2411B Pulse Power Service 311/2015 Annual 311/2016 1300401 Applient R85701 (150849: 4004) Signal Generator 311/2015 Annual 311/2016 13004000 Applient Service Service Service Generator 311/2015 Annual 311/2016 M045001484 Applient Service Service Service Generator 311/2015 Annual 311/2016 M045001484 Applient Service Service Service Generator 311/2015 Annual 311/2016 M045001484 Applient Service Service Service Generator 311/2015 Annual 311/2016 M045001484 Applient M1582A MM5 Vertor Signal Generator 311/2015 Annual 311/2016 M04500149 Applient Service Service Service Generator 311/2015 Annual 311/2016 M04500149 Applient Service Service Service Generator 311/2015 Annual 311/2016 M04500149 Applient Service Service Service Generator 311/2015 Annual 311/2016 Service Servi				-, -, -			
Annitsu							
Annitsu							
Annitsu							
Aglient Re5D7D (2508tz-200tt) Signal Generator 315/2015 Annual 3715/2016 Mr645/01044 Aglient Re6B0 (89ktz-40tt) Signal Generator 315/2015 Annual 3715/2016 Mr645/01044 Aglient E4380 E50 Cester Signal Generator 315/2015 Annual 3715/2016 Mr645/01046 Aglient E4328 E50-D Series Signal Generator 315/2015 Annual 3715/2016 Mr645/01046 Aglient Reference Reference Reference 315/2015 Annual 3715/2016 Mr645/01046 Aglient Reference							
Agilent	Anritsu		Pulse Power Sensor		Annual		
Aglient E4438C ESS Vector Signal Generator 3/15/2015 Annual 3/15/2016 Mr/4500136 Aglient E4428 ESC-D Senes Signal Generator 3/16/2015 Annual 3/15/2016 Mr/4500136 Aglient SEC-D Senes Signal Generator 3/16/2015 Annual 3/16/2016 Mr/4200515 Aglient Mr/4200517 Mr					Annual		
Agient ESG D Series Signal Generator 3/16/2015 Annaual 3/16/2016 US-0003896 Agient NSISBA MXG Vector Signal Generator 3/16/2015 Annaual 3/16/2016 MW240051 Control Company 4040 Digital Thermometer 3/18/2015 Blennial 3/18/2017 150918986 Kolde & Schwarz CAWNSOD Rado Communication Tester 3/18/2015 Annaual 3/18/2016 128633 SPEAG ESSIV3 SAR Probe 3/19/2015 Annaual 3/18/2016 3819 Aglient 875845 Network Analyzer 3/20/2015 Annaual 4/13/2016 3819 Aglient 855852 Network Analyzer 3/20/2015 Annaual 4/13/2016 4019 Aglient ESSISC Wireless Communications Test Set 4/13/2015 Annaual 4/13/2016 4019 SPEAG D1900V2 1900 MHz SAR Dipole 4/13/2015 Annaual 4/13/2016 5004 SPEAG D1900V2 1900 MHz SAR Dipole 4/13/2015 Annaual 4/13/20			i				
Agilent							
Control Company							
Rodick 8.schwarz	Agilent	N5182A		3/16/2015	Annual	3/16/2016	MY47420651
SPEAG							
Agient 87585 Network Analyzer 3/20/2015 Annual 3/20/2016 MY40001472 SPEAG D835V2 833 MHz SAR Dipole 4/13/2015 Annual 4/13/2016 4/13/2016 4/13/2016 4/13/2015 Annual 4/13/2016 648446054 SPEAG D1900V2 1900 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 5014 SPEAG D2000V2 1900 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 5014 SPEAG D1750V2 1750 MHz SAR Dipole 4/15/2015 Annual 4/15/2016 1001 SPEAG DAX-5.5 Dielectric Assessment Kit 5/12/2015 Annual 4/15/2016 1070 SPEAG ES3DV3 SAR Probe 5/20/2015 Annual 5/20/2016 3263 SPEAG DASA DASA Acquisition Electronics 6/17/2015 Annual 6/17/2016 3351 SPEAG D835V2 838 MHz SAR Dipole 7/14/2015 Annual 6/17/2016 3351 SPEAG D835V2 838						-, -,	
SPEAG				-, -, -			
Agilent	Agilent	8753ES	Network Analyzer	3/20/2015	Annual	3/20/2016	MY40001472
SPEAG	SPEAG	D835V2	835 MHz SAR Dipole	4/13/2015	Annual		
SPEAG D2600V2 2600 MHz SAR Dipole 4/14/2015 Annual 4/14/2016 1004 SPEAG D1750V2 1750 MHz SAR Dipole 4/15/2015 Annual 4/15/2016 1051 SPEAG DAK-3-5 Dielectric Assessment Kit 5/12/2015 Annual 5/12/2016 306 SPEAG DAE4 Dasy Data Acquisition Electronics 6/12/2015 Annual 5/20/2016 326 SPEAG DAE4 Dasy Data Acquisition Electronics 6/12/2015 Annual 6/12/2016 3351 SPEAG DESJOV2 1900 MHz SAR Dipole 7/14/2015 Annual 6/22/2016 3351 SPEAG DBSDV2 835 MHz SAR Dipole 7/12/2015 Annual 7/12/2016 5419 SPEAG DBSSV2 835 MHz SAR Dipole 7/12/2015 Annual 8/12/2016 5419 SPEAG DASS VAN R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 1124 SPEAG DAKS VAN R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016	Agilent	E5515C	Wireless Communications Test Set	4/13/2015	Annual	4/13/2016	GB43460554
SPEAG D1750V2 1750MHz SAR Dipole	SPEAG	D1900V2		4/14/2015	Annual		5d141
SPEAG DAK-3.5 Dielectric Assessment Kit \$/12/2015 Annual \$/12/2016 1070 SPEAG ES30V3 SAR Probe \$/20/2015 Annual \$/20/2016 3263 SPEAG DAE4 Dasy Data Acquisition Electronics \$/17/2015 Annual \$/20/2016 3263 SPEAG ES30V3 SAR Probe \$/22/2015 Annual \$/17/2016 54149 SPEAG D1900V2 1990 MHz SAR Dipole 7/14/2015 Annual 7/14/2016 54149 SPEAG D835V2 835 MHz SAR Dipole 7/12/2015 Annual 7/12/2016 40133 Anrisu MAZ4118 Pulse Power Sensor 8/3/2015 Annual 8/3/2016 80133 SPEAG DAKS NNA R140 VNA For Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS NNA R140 VNA For Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS -3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/12/2016	SPEAG		2600 MHz SAR Dipole				1004
SPEAG ES3DV3 SAR Probe \$/20/2015 Annual \$/20/2016 3263 SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 6/17/2016 3859 SPEAG ES3DV3 SAR Probe 6/22/2016 3351 SPEAG D1900V2 1900 MHz SAR Dipole 7/14/2015 Annual 7/24/2016 5d149 SPEAG D835V2 835 MHz SAR Dipole 7/23/2015 Annual 7/23/2016 4d133 Anritsu MA2411B Pulse Power Sensor 8/3/2015 Annual 8/16/2016 1126066 SPEAG DAKS NNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 10513 SPEAG DAKS AND AR140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 1061 SPEAG DAK4 DAK5-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/16/2016 1021 SPEAG DE30V2 2450 MHz SAR Dipole 8/24/2015 Annual 8/24/2016 102	SPEAG	D1750V2	1750 MHz SAR Dipole	4/15/2015	Annual	4/15/2016	1051
SPEAG DAE4 Dasy Data Acquisition Electronics 6/17/2015 Annual 6/17/2016 859 SPEAG ES30V3 SAR Probe 6/22/2015 Annual 6/22/2016 3351 SPEAG D1900V2 1900 MHz SAR Dipole 7/14/2015 Annual 7/14/2016 56149 SPEAG D835V2 835 MHz SAR Dipole 7/23/2015 Annual 7/12/2016 56149 SPEAG D835V2 835 MHz SAR Dipole 7/23/2015 Annual 8/3/2016 112606 SPEAG DAKS JNA R140 VNN A for Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS JNA R140 VNN A for Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS JNA R140 VNN A for Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS JNA R140 VNN A for Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS JNA R140 DAKS A R140 8/24/2016 8022 8022	SPEAG	DAK-3.5			Annual		1070
SPEAG ES3DV3 SAR Probe 6/22/2015 Annual 6/22/2016 3351 SPEAG D1900V2 1900 MHz SAR Dipole 7/14/2015 Annual 7/14/2016 56149 SPEAG D83SV2 835 MHz SAR Dipole 7/23/2015 Annual 7/23/2016 40133 Anritsu MA2411B Pulse Power Sensor 8/3/2015 Annual 8/3/2016 1126066 SPEAG DAKS, VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS, SAR AND Poble 8/26/2015 Annual 8/16/2016 80513 SPEAG DAKS -3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/16/2016 7091 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2015 Annual 8/26/2016 7322 SPEAG ES3DV2 SAR Probe 8/26/2015 Annual 8/26/2016 3022 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001	SPEAG	ES3DV3		5/20/2015		-, -,	3263
SPEAG D1900V2 1900 MHz SAR Dipole 7/14/2015 Annual 7/14/2016 5d149 SPEAG D835V2 835 MHz SAR Dipole 7/23/2015 Annual 7/23/2016 4d133 Anritsu MA2411B Pulse Power Sensor 8/3 (2015) Annual 8/3 (2016) 1126066 SPEAG DAKS LAN R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS LAS LAS LAS LAS LAS LAS LAS LAS LAS LA							
SPEAG D835V2 B35 MHz SAR Dipole 7/23/2015 Annual 7/23/2016 4d133		ES3DV3	SAR Probe	6/22/2015	Annual	6/22/2016	3351
Anritsu					Annual		
SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2016 80513 SPEAG DAKS-3-5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 SPEAG D2450V2 2450 MHz SAR Dipole 8/20/2015 Annual 8/20/2016 719 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2015 Annual 8/24/2016 1322 SPEAG ES3DV2 SAR Probe 8/26/2015 Annual 8/26/2016 3022 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual	SPEAG	D835V2	835 MHz SAR Dipole	7/23/2015	Annual	7/23/2016	4d133
SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 8/19/2015 Annual 8/19/2016 1041 SPEAG D2450V2 2450 MHz SAR Dipole 8/20/2015 Annual 8/20/2016 719 SPEAG DAE4 Dasy Data Acquisition Electronics 8/26/2015 Annual 8/26/2016 1322 SPEAG ES3DV2 SAR Probe 8/26/2015 Annual 8/26/2016 3022 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 SPEAG DAE4 Dasy Data Acquisition Electronics 11/27/2015 Annual 10/27/2016 1333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 11/11/2016 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1333 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/11/2016	Anritsu	MA2411B	Pulse Power Sensor	8/3/2015	Annual	8/3/2016	1126066
SPEAG D2450V2 2450 MHz SAR Dipole 8/20/2015 Annual 8/20/2016 719 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2015 Annual 8/24/2016 1322 SPEAG ES3DV2 SAR Probe 8/26/2015 Annual 8/26/2016 3022 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/11/2016 3334 Rohde	SPEAG	DAKS_VNA R140		8/16/2015			
SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2015 Annual 8/24/2016 1322 SPEAG ES3DV2 SAR Probe 8/26/2015 Annual 8/26/2016 3022 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 11/2016 1415 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 1415 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 1333 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 11/17/2016 3334	SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/19/2015	Annual	8/19/2016	1041
SPEAG ES3DV2 SAR Probe 8/26/2015 Annual 8/26/2016 3022 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1431 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1431 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1431 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual			·				
Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 941001 Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 3333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/12/2016 3333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/12/2016 3333 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3333 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 11/17/2016 83855/0010 Anritsu MT8820C Radio Communication Analyzer 12/4/2015 Annual 11/2/2016 83855/0010 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 6dB Attenuator CBT N/A	SPEAG	DAE4	Dasy Data Acquisition Electronics	8/24/2015	Annual	8/24/2016	1322
Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2017 1039008 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/11/2016 1415 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 11/2/2016 3334 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 11/2/2016 333855/0010 Anritsu MR820C Radio Communication Analyzer 12/2/2015 Annual 12/2/2016 8201300731 Amplifier CBT N/A CBT N/A CBT N/A	SPEAG	ES3DV2	SAR Probe	8/26/2015	Annual	8/26/2016	3022
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2016 1333 SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 11/17/2016 3334 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 12/2/2016 833855/0010 Anritsu Mr8820C Radio Communication Analyzer 12/4/2015 Annual 12/2/2016 6201300731 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT N/A Amplifier Research 15S1G6 Amplifier CBT N/A CBT <td< td=""><td>Anritsu</td><td></td><td>Power Meter</td><td>10/16/2015</td><td>Biennial</td><td>10/16/2017</td><td></td></td<>	Anritsu		Power Meter	10/16/2015	Biennial	10/16/2017	
SPEAG ES3DV3 SAR Probe 10/29/2015 Annual 10/29/2016 3333 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/11/2015 Annual 11/11/2016 3333 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 12/2/2016 838855/0010 Anritsu MT8820C Radio Communication Analyzer 12/4/2015 Annual 12/2/2016 6201300731 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT N/A Amplifier Research 155166 Amplifier CBT N/A CBT 133971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT N/A Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Mini-Circ			Power Meter		Biennial		
SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2016 1415 SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 12/2/2016 833855/010 Anritsu MT8820C Radio Communication Analyzer 12/4/2015 Annual 12/4/2016 6201300731 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 Amplifier Research 155166 Amplifier CBT N/A CBT 433971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A							
SPEAG ES3DV3 SAR Probe 11/17/2015 Annual 11/17/2016 3334 Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 12/2/2016 838855/0010 Anritsu MT8820C Radio Communication Analyzer 12/4/2015 Annual 12/4/2016 6301300731 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 Amplifier Research 15S166 Amplifier CBT N/A CBT 433971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Rohde & Schwarz CMU200 Base Station Simulator 12/2/2015 Annual 12/2/2016 833855/0010 Anritsu MT8820C Radio Communication Analyzer 12/4/2015 Annual 12/4/2016 6201300731 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 66B Attenuator CBT N/A CBT 1139 Amplifier Research 15S1G6 Amplifier CBT N/A CBT 433971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT N/A							
Anritsu MT8820C Radio Communication Analyzer 12/4/2015 Annual 12/4/2016 6201300731 Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 Amplifier Research 155166 Amplifier CBT N/A CBT 433971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits<							
Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A CBT N/A MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 Amplifier Research 155166 Amplifier CBT N/A CBT 433971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SU-2400+ Low Pass Filter DC to 2000 MHz CBT N/A CBT N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 2000 MHz CBT N/A CBT N/A <							
MCL BW-N6W5+ 6dB Attenuator CBT N/A CBT 1139 Amplifier Research 155166 Amplifier CBT N/A CBT 433971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter C CBT N/A CBT N/A Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT N/A COMTech AR85729-5 <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td>			,				
Amplifier Research 1551G6 Amplifier CBT N/A CBT 433971 Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT N/A COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M/A CBT MISSA00-009							
Narda BW-S3W2 Attenuator (3dB) CBT N/A CBT 120 Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Itelligent							
Pasternack PE2208-6 Bidirectional Coupler CBT N/A CBT N/A Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-232 Peak Power Sensor CBT N/A CBT DK/A <	•						
Pasternack PE2209-10 Bidirectional Coupler CBT N/A CBT N/A Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter DC to 1000 MHz CBT N/A CBT R897950093 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Intelligent Weighing PD-3000 Electroic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-232 Peak Power Sensor CBT N/A CBT 385019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE2725							
Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CBT N/A Mini-Circuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-12950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-232 Peak Power Sensor CBT N/A CBT 386019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259			·				
MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CBT R8979500903 Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-Z32 Peak Power Sensor CBT N/A CBT 836019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259			·				
Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CBT N/A Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-232 Peak Power Sensor CBT N/A CBT 836019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259							
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CBT N/A Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M155A00-009 Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-232 Peak Power Sensor CBT N/A CBT 385019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259							
Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CBT 1226 COMTech AR85729-5 Solid State Amplifier CBT N/A CBT MISSA00-009 Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-232 Peak Power Sensor CBT N/A CBT 385019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259							
COMTech AR85729-5 Solid State Amplifier CBT N/A CBT M1SSA00-009 Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-Z32 Peak Power Sensor CBT N/A CBT 836019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259							
Intelligent Weighing PD-3000 Electronic Balance CBT N/A CBT 120405017 Rohde & Schwarz NRV-Z32 Peak Power Sensor CBT N/A CBT 836019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259							
Rohde & Schwarz NRV-Z32 Peak Power Sensor CBT N/A CBT 836019/013 Rohde & Schwarz SMIQ03B Signal Generator CBT N/A CBT DE27259	COMTech	AR85729-5	·	CBT		CBT	
Rohde & Schwarz SMIQO3B Signal Generator CBT N/A CBT DE27259		PD-3000	Electronic Balance	CBT	N/A	CBT	120405017
	Rohde & Schwarz	NRV-Z32	Peak Power Sensor	CBT	N/A	CBT	836019/013
Pasternack NC-100 Torque Wrench CBT N/A CBT N/A	Rohde & Schwarz	SMIQ03B	Signal Generator	CBT	N/A	CBT	DE27259
	Pasternack	NC-100	Torque Wrench	CBT	N/A	CBT	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

	·	<u>'</u>		
FCC ID: ZNFLS775	@ PCTEST	SAR EVALUATION REPORT	1 LG	Reviewed by:
1 00 IB1 2IVI E0110	SEGUNDEDED LABORATERY, INC.	CAR EVALUATION HEI GITT	U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done C1 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 61 of 65
1C DOTECT Engineering Laboratory L	• •	•		DEV/ 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

a	С	d	е=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	×
Hemishperical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	œ
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	× ×
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	8
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	× ×
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	8
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	œ
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	œ
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	× ×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	× ×
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)						_5.0		

FCC ID: ZNFLS775	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done CO of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 62 of 65
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		DEV 17.0

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done CO of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 63 of 65

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done C4 of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 64 of 65

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFLS775	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done CE of CE
0Y1601150088-R1.ZNF	01/12/16 - 01/19/16	Portable Handset		Page 65 of 65

APPENDIX A: SAR TEST DATA

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 0.886 \text{ S/m}; \ \epsilon_r = 39.808; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

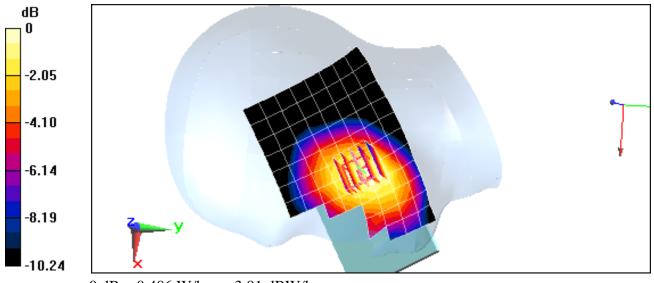
Test Date: 01-15-2016; Ambient Temp: 22.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.58 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.466 W/kg

SAR(1 g) = 0.368 W/kg

0 dB = 0.406 W/kg = -3.91 dBW/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 1081

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \sigma = 1.385 \text{ S/m}; \ \epsilon_r = 38.947; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

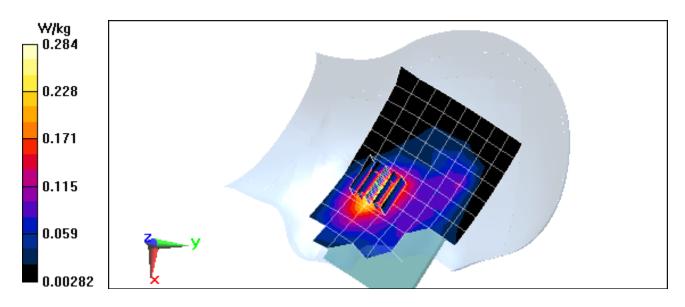
Test Date: 01-13-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(5.18, 5.18, 5.18); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.85 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.382 W/kg

SAR(1 g) = 0.241 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, UMTS; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.886$ S/m; $\varepsilon_r = 39.808$; $\rho = 1000$ kg/m³ Phantom section: Right Section

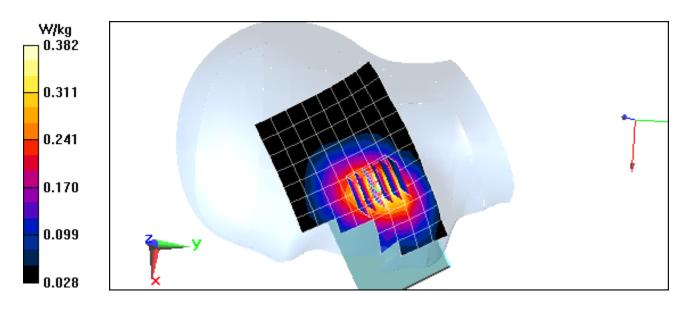
Test Date: 01-15-2016; Ambient Temp: 22.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.00 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.346 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.349$ S/m; $\varepsilon_r = 39.459$; $\rho = 1000$ kg/m³ Phantom section: Left Section

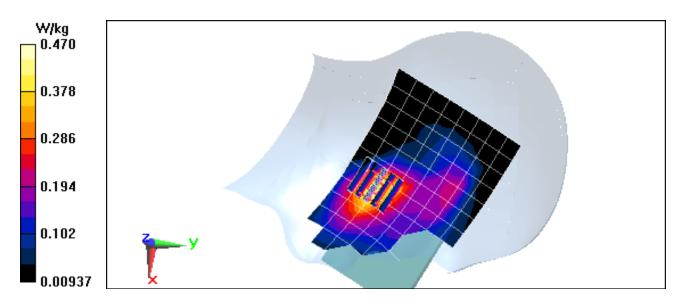
Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(5.27, 5.27, 5.27); Calibrated: 5/20/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 6/17/2015

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: AWS UMTS, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.33 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.589 W/kg

SAR(1 g) = 0.405 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 1081

Communication System: UID 0, UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.385 \text{ S/m}; \ \epsilon_r = 38.947; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

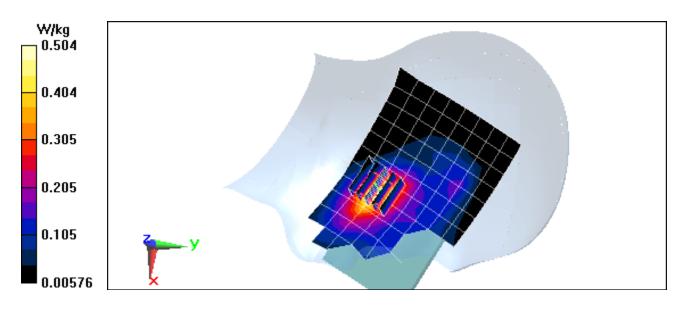
Test Date: 01-13-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(5.18, 5.18, 5.18); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.76 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.679 W/kg

SAR(1 g) = 0.426 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.886 \text{ S/m}; \ \epsilon_r = 39.809; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

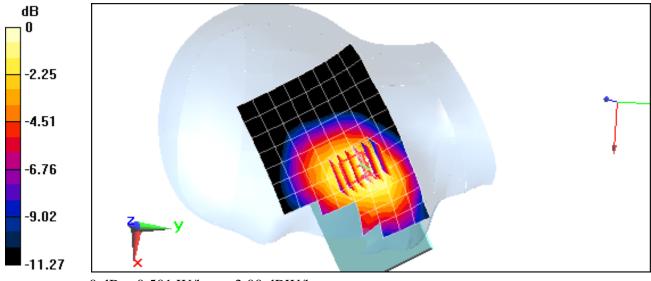
Test Date: 01-15-2016; Ambient Temp: 22.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA BC0, Rule Part 22H, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.82 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.593 W/kg

SAR(1 g) = 0.455 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, CDMA, Cellular CDMA; Frequency: 820.1 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 820.1 \text{ MHz}; \ \sigma = 0.872 \text{ S/m}; \ \epsilon_r = 40.022; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

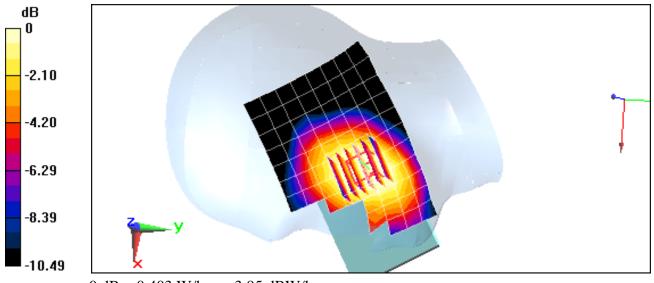
Test Date: 01-15-2016; Ambient Temp: 22.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO BC10 Rev. A, Rule Part 90S, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.68 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.469 W/kg

SAR(1 g) = 0.367 W/kg

0 dB = 0.403 W/kg = -3.95 dBW/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 1081

Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.385 \text{ S/m}; \ \epsilon_r = 38.947; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

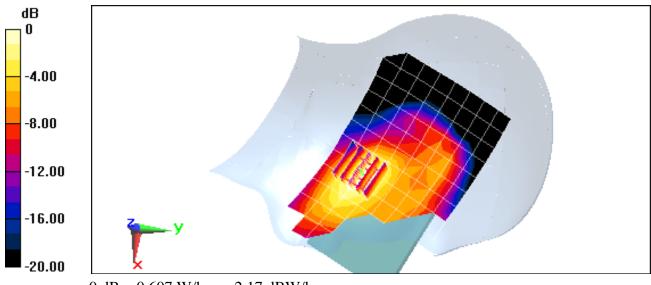
Test Date: 01-13-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(5.18, 5.18, 5.18); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.89 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.831 W/kg

SAR(1 g) = 0.510 W/kg

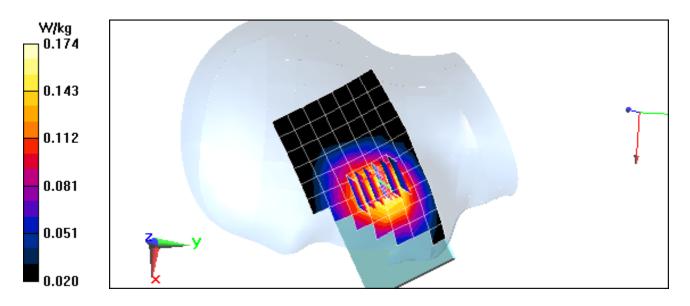
DUT: ZNFLS775; Type: Portable Handset; Serial: 4409

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.856 \text{ S/m}; \ \epsilon_r = 42.341; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-18-2016; Ambient Temp: 21.4°C; Tissue Temp: 20.9°C

Probe: ES3DV2 - SN3022; ConvF(6.33, 6.33, 6.33); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.27 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.195 W/kg

SAR(1 g) = 0.156 W/kg

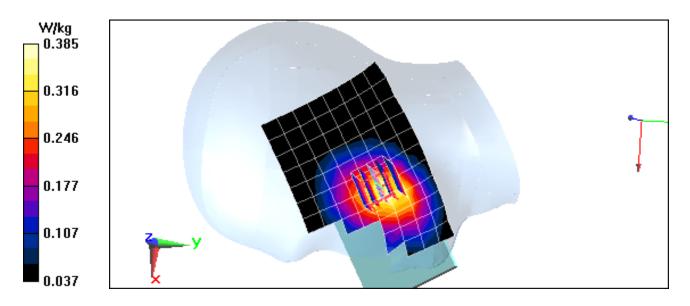
DUT: ZNFLS775; Type: Portable Handset; Serial: 1088

Communication System: UID 0, LTE Band 26; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.886 \text{ S/m}; \ \epsilon_r = 39.81; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-15-2016; Ambient Temp: 22.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 26 (Cell.), Right Head, Cheek, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.47 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.353 W/kg

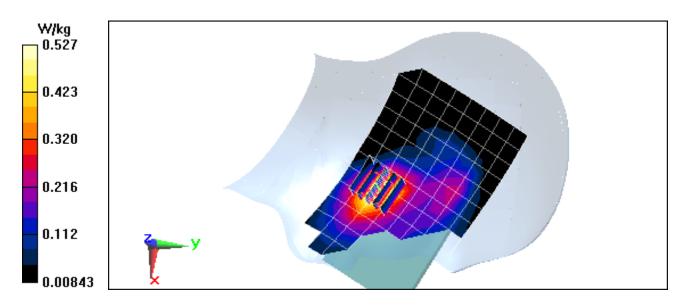
DUT: ZNFLS775; Type: Portable Handset; Serial: 4409

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.349 \text{ S/m}; \ \epsilon_r = 39.459; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(5.27, 5.27, 5.27); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.43 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.681 W/kg

SAR(1 g) = 0.461 W/kg

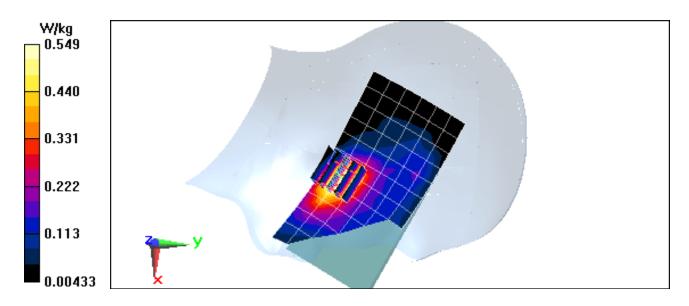
DUT: ZNFLS775; Type: Portable Handset; Serial: 4409

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.388$ S/m; $\varepsilon_r = 38.936$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Test Date: 01-13-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(5.18, 5.18, 5.18); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.01 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.732 W/kg

SAR(1 g) = 0.464 W/kg

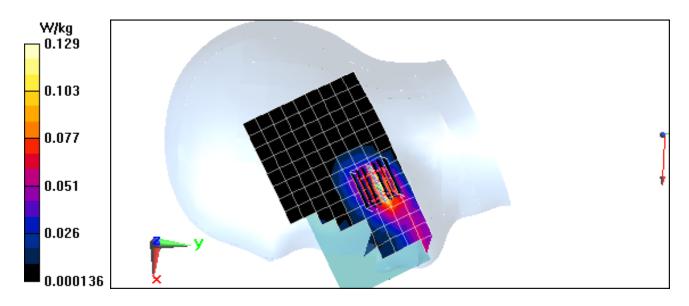
DUT: ZNFLS775; Type: Portable Handset; Serial: 4409

Communication System: UID 0, LTE Band 41; Frequency: 2680 MHz;Duty Cycle: 1:1.59 Medium: 2600 Head Medium parameters used (interpolated): $f = 2680 \text{ MHz}; \ \sigma = 2.099 \text{ S/m}; \ \epsilon_r = 37.361; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-19-2016; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3351; ConvF(4.35, 4.35, 4.35); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Right Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.089 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.194 W/kg

SAR(1 g) = 0.103 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 0431

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.853 \text{ S/m}; \ \epsilon_r = 38.194; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-19-2016; Ambient Temp: 22.3°C; Tissue Temp: 21.0°C

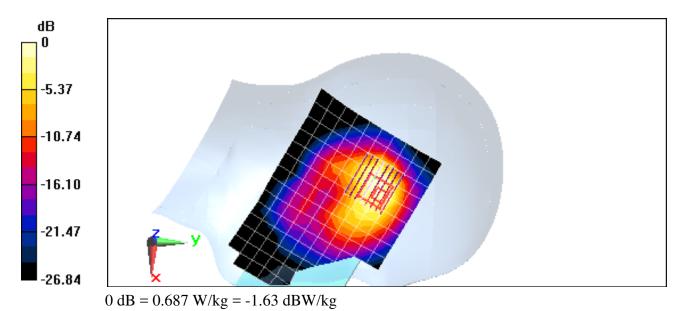
Probe: ES3DV3 - SN3351; ConvF (4.46, 4.46, 4.46); Calibrated: 6/22/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2015

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 11, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.56 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.526 W/kg

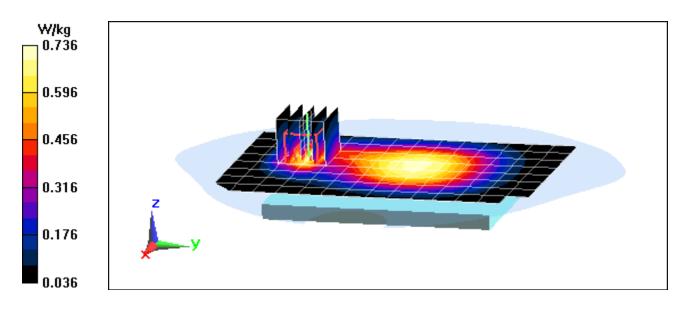
DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 0.998 \text{ S/m}; \ \epsilon_r = 54.045; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.21 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.618 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 0.998 \text{ S/m}; \ \epsilon_r = 54.045; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

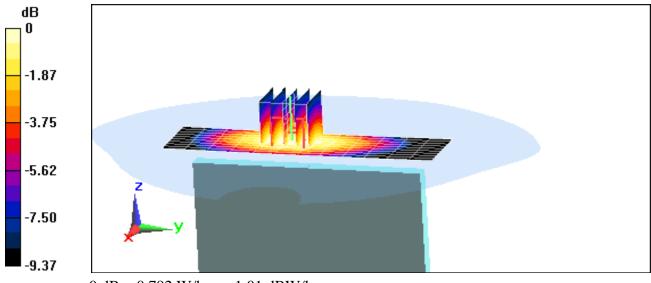
Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 6/17/2015

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Right Edge, Mid.ch, 2 Tx Slots


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.58 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.971 W/kg

SAR(1 g) = 0.697 W/kg

0 dB = 0.792 W/kg = -1.01 dBW/kg

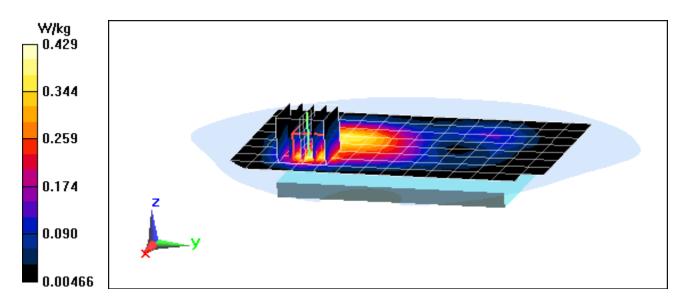
DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \sigma = 1.496 \text{ S/m}; \ \epsilon_r = 52.56; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 21.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.85 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.635 W/kg

SAR(1 g) = 0.347 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

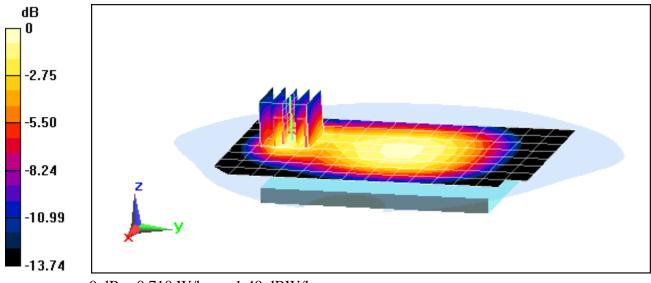
Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 54.045$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.24 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.964 W/kg

SAR(1 g) = 0.571 W/kg

0 dB = 0.710 W/kg = -1.49 dBW/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.443 \text{ S/m}; \ \epsilon_r = 51.717; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.7°C

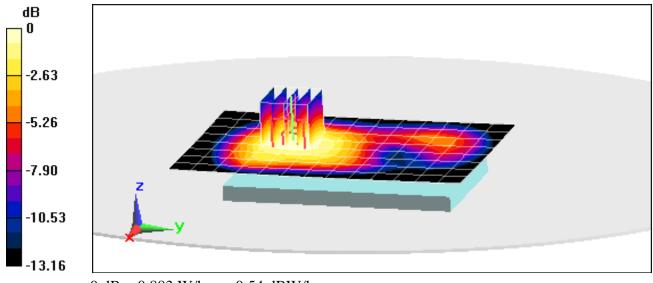
Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/18/2015

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: AWS UMTS, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.88 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.767 W/kg

0 dB = 0.883 W/kg = -0.54 dBW/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

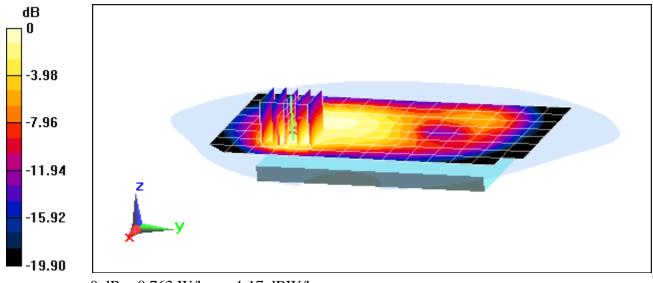
Communication System: UID 0, UMTS; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.496 \text{ S/m}; \ \epsilon_r = 52.56; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 21.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.90 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.613 W/kg

0 dB = 0.763 W/kg = -1.17 dBW/kg

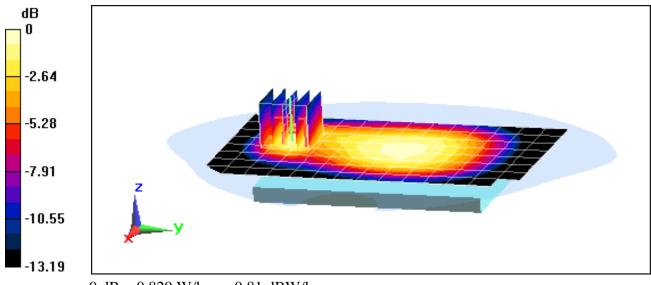
DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.998 \text{ S/m}; \ \epsilon_r = 54.046; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA BC0 Rule Part 22H, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.57 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.673 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

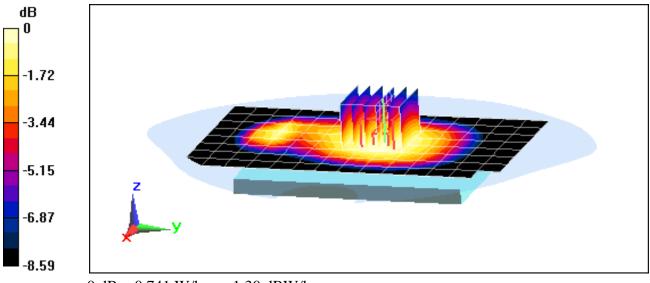
Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 54.046$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO Rev.0 BC0 Rule Part 22H, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.95 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.852 W/kg

SAR(1 g) = 0.678 W/kg

0 dB = 0.741 W/kg = -1.30 dBW/kg

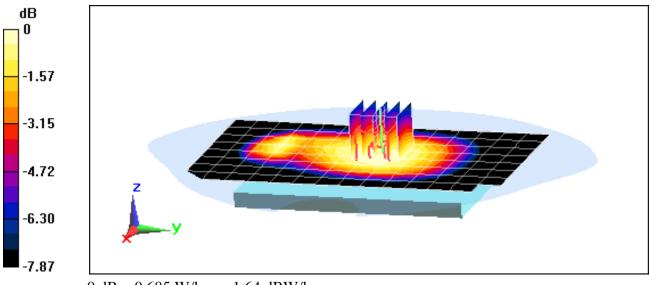
DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, CDMA; Frequency: 820.1 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 820.1 MHz; $\sigma = 0.983$ S/m; $\epsilon_r = 54.223$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA BC10 Rule Part 90S, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.92 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.779 W/kg

SAR(1 g) = 0.629 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

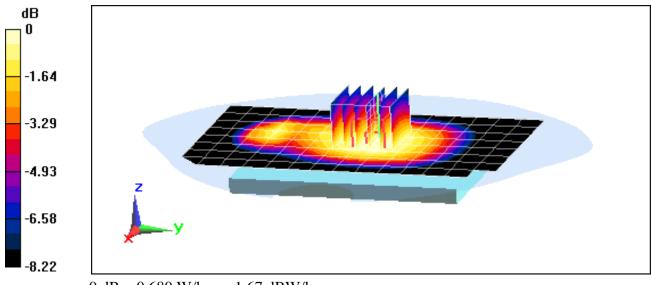
Communication System: UID 0, CDMA; Frequency: 820.1 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 820.1 MHz; $\sigma = 0.983$ S/m; $\epsilon_r = 54.223$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO Rev.0 BC10 Rule Part 90S, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.72 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.780 W/kg

SAR(1 g) = 0.621 W/kg

0 dB = 0.680 W/kg = -1.67 dBW/kg

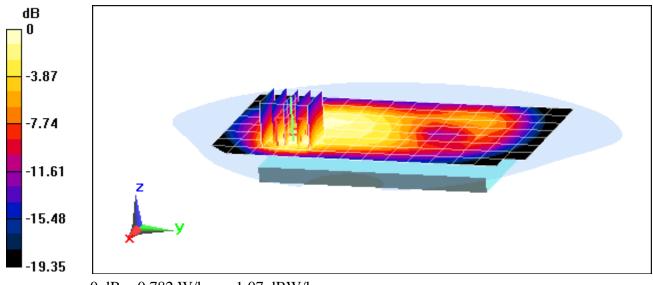
DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, CDMA; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.496 \text{ S/m}; \ \epsilon_r = 52.56; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 21.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.84 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.630 W/kg

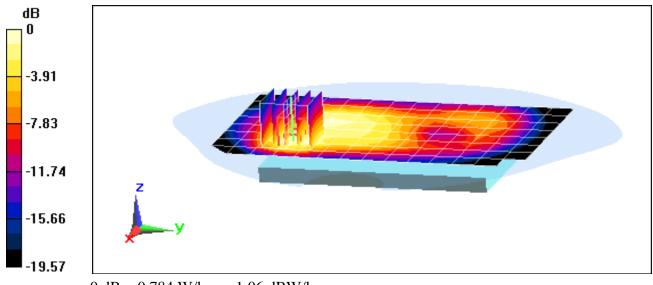
DUT: ZNFLS775; Type: Portable Handset; Serial: 4391

Communication System: UID 0, CDMA; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.496 \text{ S/m}; \ \epsilon_r = 52.56; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 21.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: PCS EVDO Rev.0, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.82 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.631 W/kg

0 dB = 0.784 W/kg = -1.06 dBW/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4409

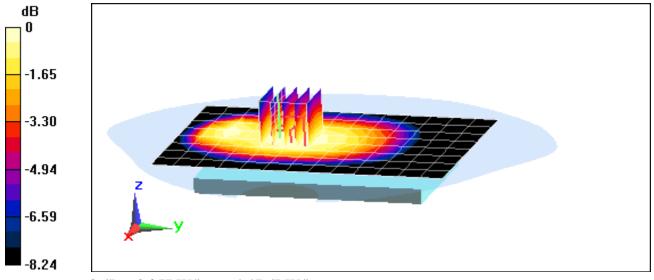
Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.935 \text{ S/m}; \ \epsilon_r = 54.87; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-15-2016; Ambient Temp: 24.5°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.24 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.419 W/kg

SAR(1 g) = 0.327 W/kg

0 dB = 0.357 W/kg = -4.47 dBW/kg

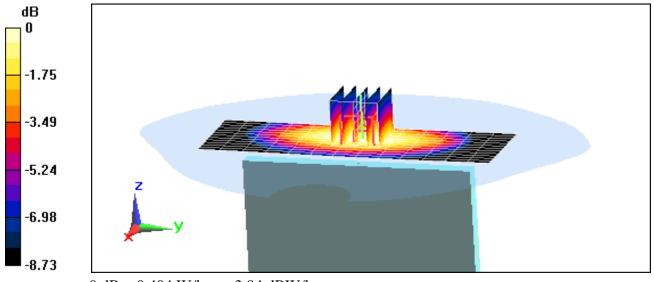
DUT: ZNFLS775; Type: Portable Handset; Serial: 4409

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.935 \text{ S/m}; \ \epsilon_r = 54.87; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-15-2016; Ambient Temp: 24.5°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Right Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (13x14x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.54 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.495 W/kg

SAR(1 g) = 0.353 W/kg

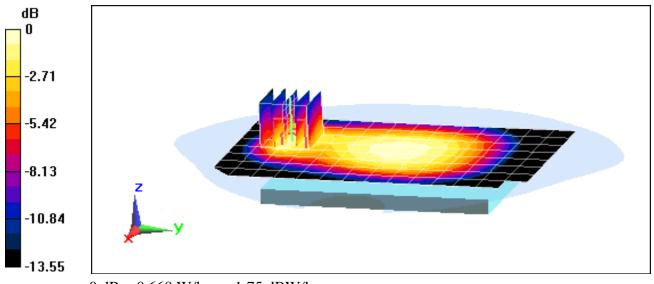
DUT: ZNFLS775; Type: Portable Handset; Serial: 1088

Communication System: UID 0, LTE Band 26; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.007$ S/m; $\epsilon_r = 56.025$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-19-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.85 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.897 W/kg

SAR(1 g) = 0.540 W/kg

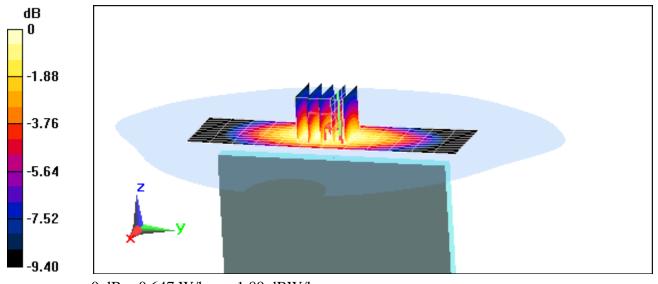
DUT: ZNFLS775; Type: Portable Handset; Serial: 1088

Communication System: UID 0, LTE Band 26; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.007$ S/m; $\epsilon_r = 56.025$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-19-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 26 (Cell.), Body SAR, Right Edge, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.84 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.784 W/kg

SAR(1 g) = 0.561 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 4409

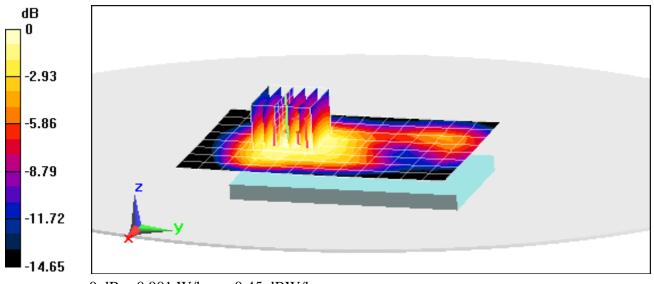
Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.443 \text{ S/m}; \ \epsilon_r = 51.717; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.7°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.70 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.777 W/kg

0 dB = 0.901 W/kg = -0.45 dBW/kg

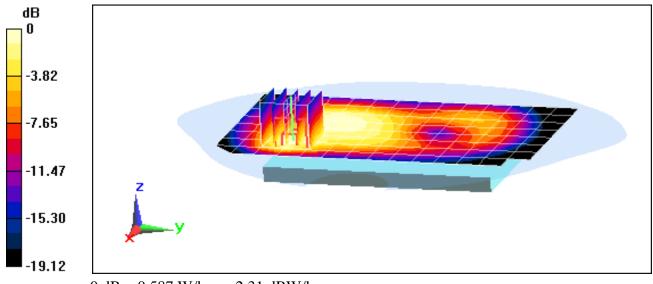
DUT: ZNFLS775; Type: Portable Handset; Serial: 1088

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1882.5 \text{ MHz}; \ \sigma = 1.499 \text{ S/m}; \ \epsilon_r = 52.552; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 21.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.19 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.870 W/kg

SAR(1 g) = 0.475 W/kg

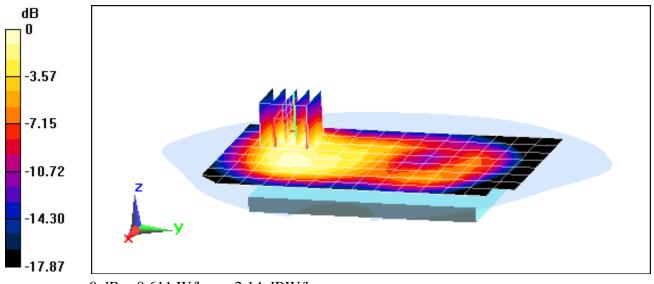
DUT: ZNFLS775; Type: Portable Handset; Serial: 1088

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.499 \text{ S/m}$; $\epsilon_r = 52.552$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 21.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 25 (PCS), Body SAR, Front side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.39 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.924 W/kg

SAR(1 g) = 0.506 W/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 1088

Communication System: UID 0, LTE Band 41; Frequency: 2680 MHz;Duty Cycle: 1:1.59 Medium: 2600 Body Medium parameters used (interpolated): $f = 2680 \text{ MHz}; \ \sigma = 2.31 \text{ S/m}; \ \epsilon_r = 51.382; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ; Space: 1.0 cm

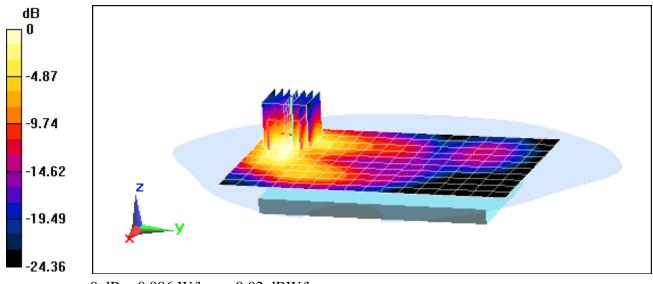
Test Date: 01-12-2016; Ambient Temp: 22.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(3.9, 3.9, 3.9); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 41, Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x10x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.70 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.752 W/kg

0 dB = 0.996 W/kg = -0.02 dBW/kg

DUT: ZNFLS775; Type: Portable Handset; Serial: 1089

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.01 \text{ S/m}; \ \epsilon_r = 52.247; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

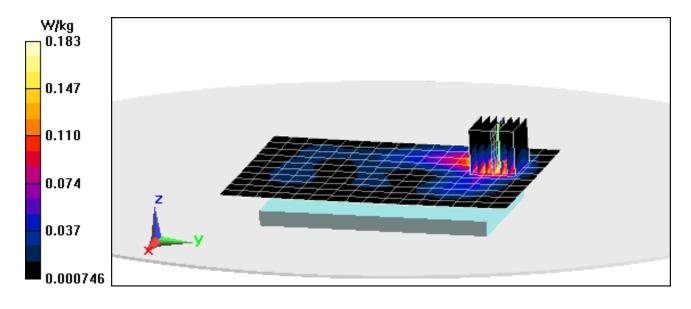
Test Date: 01-12-2016; Ambient Temp: 22.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.905 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.327 W/kg

SAR(1 g) = 0.143 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

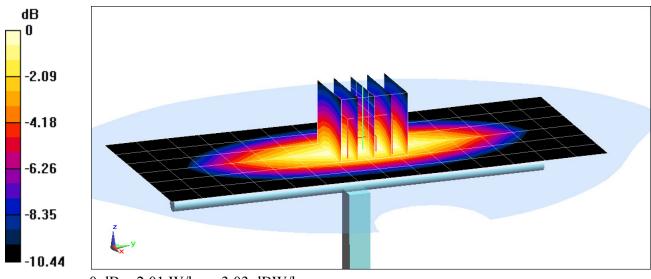
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.895 \text{ S/m}$; $\epsilon_r = 41.783$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-18-2016; Ambient Temp: 21.4°C; Tissue Temp: 20.9°C

Probe: ES3DV2 - SN3022; ConvF(6.33, 6.33, 6.33); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.53 W/kg

SAR(1 g) = 1.72 W/kg

Deviation(1 g) = 3.86%

0 dB = 2.01 W/kg = 3.03 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.885 \text{ S/m}; \ \epsilon_r = 39.828; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

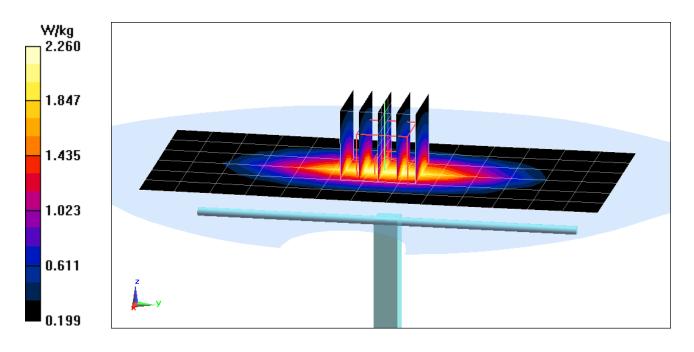
Test Date: 01-15-2016; Ambient Temp: 22.0°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 1.93 W/kg

Deviation(1 g) = 2.88%

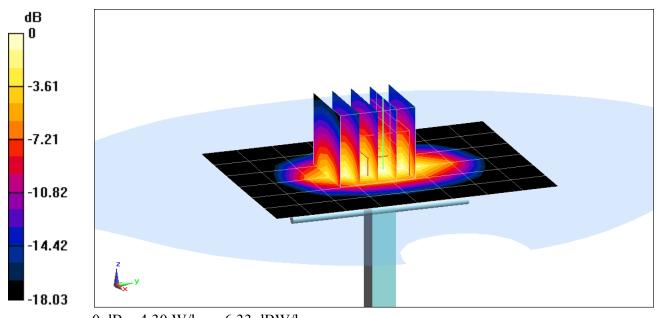
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.366$ S/m; $\varepsilon_r = 39.353$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(5.27, 5.27, 5.27); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.18 W/kg

SAR(1 g) = 3.44 W/kg

Deviation(1 g) = -4.97%

0 dB = 4.30 W/kg = 6.33 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.406 \text{ S/m}$; $\epsilon = 38.856$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

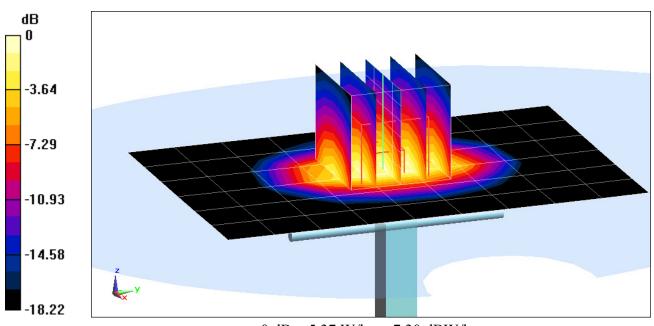
Test Date: 01-13-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3334; ConvF(5.18, 5.18, 5.18); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.76 W/kg

SAR(1 g) = 4.20 W/kg

Deviation(1 g) = 3.19%

0 dB = 5.37 W/kg = 7.30 dBW/kg

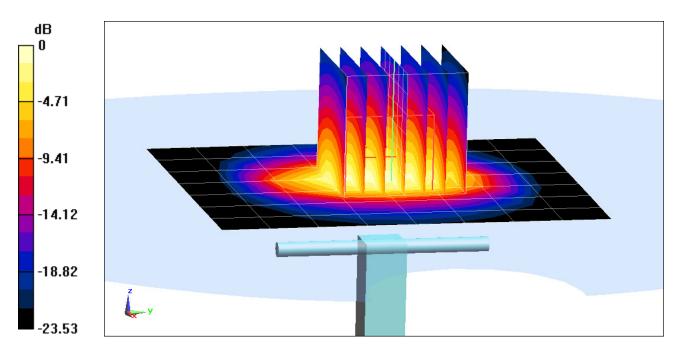
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.84 \text{ S/m}; \ \epsilon_r = 38.234; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-19-2016; Ambient Temp: 22.3°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3351; ConvF(4.46, 4.46, 4.46); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.5 W/kg

SAR(1 g) = 5.06 W/kg

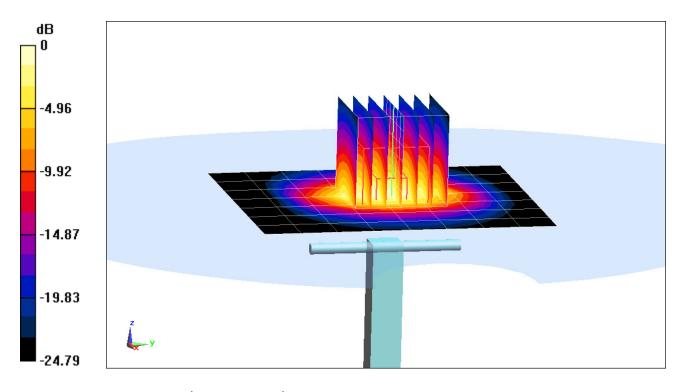
Deviation(1 g) = -6.64%

0 dB = 6.60 W/kg = 8.20 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Head Medium parameters used: f = 2600 MHz; $\sigma = 2.008$ S/m; $\varepsilon_r = 37.684$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-19-2016; Ambient Temp: 22.6°C; Tissue Temp: 21.0°C


Probe: ES3DV3 - SN3351; ConvF(4.35, 4.35, 4.35); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.2 W/kgSAR(1 g) = 5.51 W/kgDeviation(1 g) = -1.25%

0 dB = 7.33 W/kg = 8.65 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.972 \text{ S/m}$; $\epsilon_r = 54.401$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

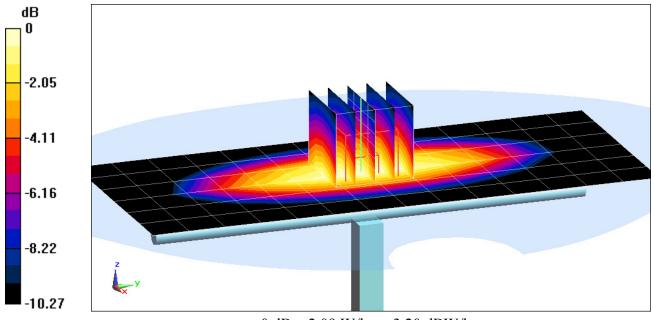
Test Date: 01-15-2016; Ambient Temp: 24.5°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.62 W/kg

SAR(1 g) = 1.79 W/kg

Deviation(1 g) = 4.92%

0 dB = 2.09 W/kg = 3.20 dBW/kg

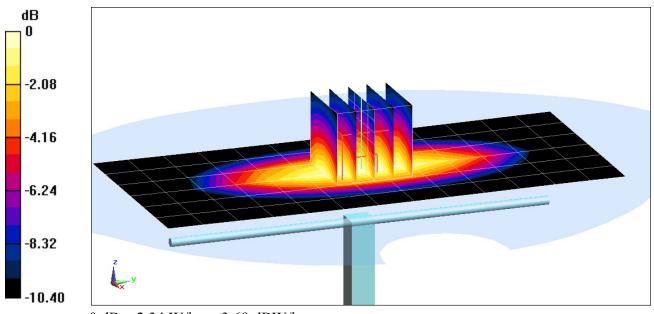
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.996$ S/m; $\varepsilon_r = 54.061$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-12-2016; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

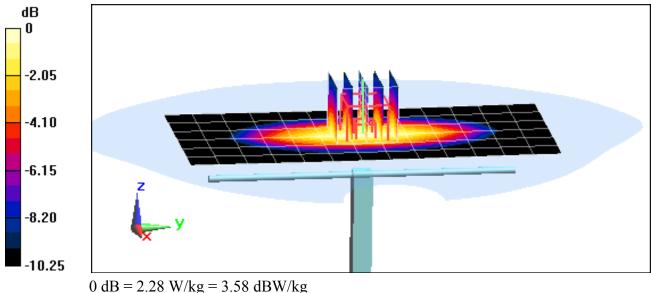
Peak SAR (extrapolated) = 2.92 W/kg

SAR(1 g) = 2.00 W/kg

Deviation(1 g) = 8.11%

0 dB = 2.34 W/kg = 3.69 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 835 \text{ MHz}; \sigma = 1.005 \text{ S/m}; \epsilon_r = 56.042; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-19-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.5°C

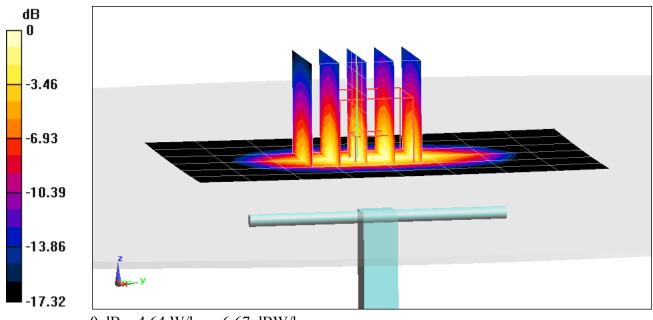
Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859: Calibrated: 6/17/2015 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.83 W/kgSAR(1 g) = 1.95 W/kgDeviation (1 g) = 5.98%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.462 \text{ S/m}$; $\epsilon_r = 51.662$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 01-18-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.7°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.57 W/kg SAR(1 g) = 3.75 W/kg Deviation(1 g) = 1.08%

0 dB = 4.64 W/kg = 6.67 dBW/kg

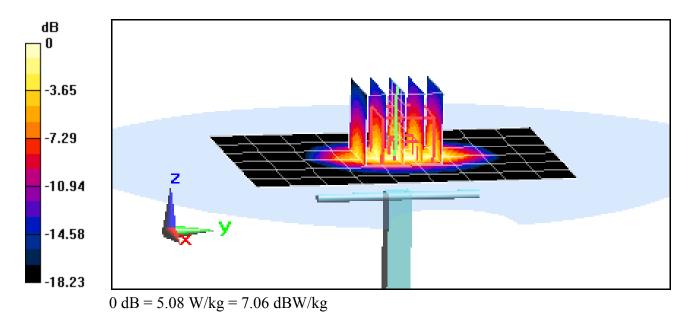
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.519$ S/m; $\epsilon_r = 52.496$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-18-2016; Ambient Temp: 21.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.34 W/kg

SAR(1 g) = 4.06 W/kg

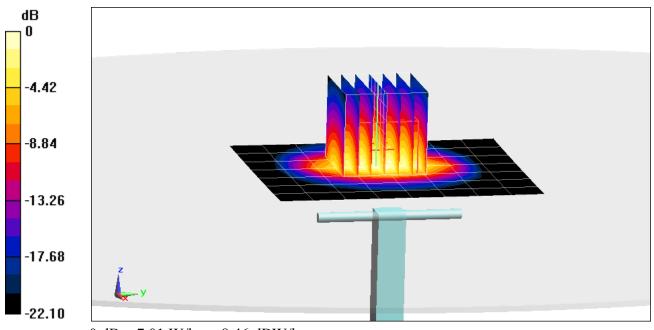
Deviation(1 g) = 1.50%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 1.994$ S/m; $\varepsilon_r = 52.299$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 22.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015;


Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.3 W/kg SAR(1 g) = 5.33 W/kg Deviation(1 g) = 2.70%;

0 dB = 7.01 W/kg = 8.46 dBW/kg

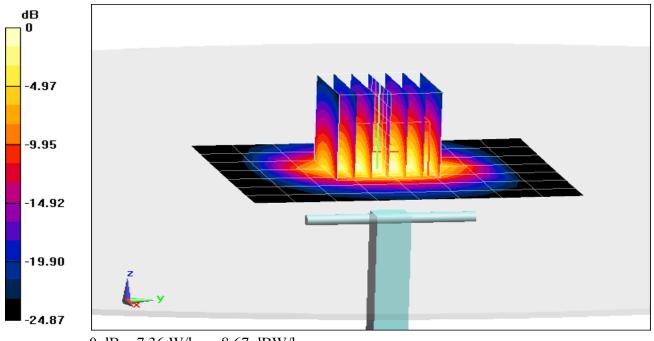
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\epsilon_r = 51.704$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 22.1°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(3.9, 3.9, 3.9); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.5 W/kgSAR(1 g) = 5.60 W/kgDeviation(1 g) = -0.36%

0 dB = 7.36 W/kg = 8.67 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D750V3-1054_Mar15

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 11, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Michael Weber Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: March 11, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054_Mar15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Tie following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and saliculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1054_Mar15 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω - 0.6 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 2.6 jΩ
Return Loss	- 30.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
· · · · · · · · · · · · · · · · · · ·	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 08, 2011

Certificate No: D750V3-1054_Mar15

DASY5 Validation Report for Head TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

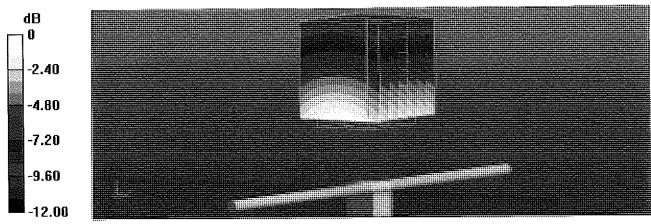
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

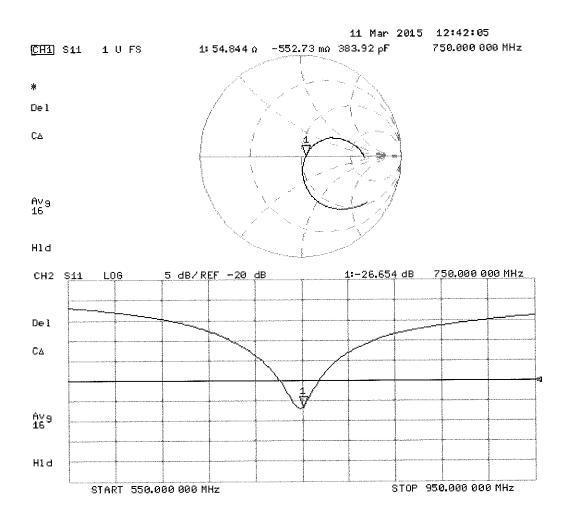
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.06 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.16 W/kg


SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.46 W/kg

0 dB = 2.46 W/kg = 3.91 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

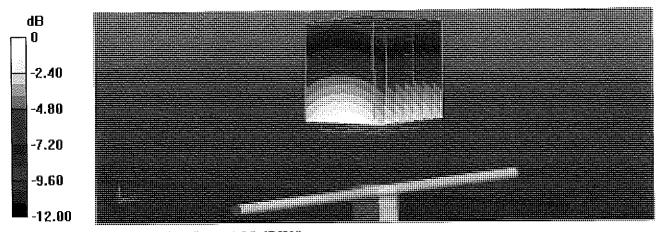
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

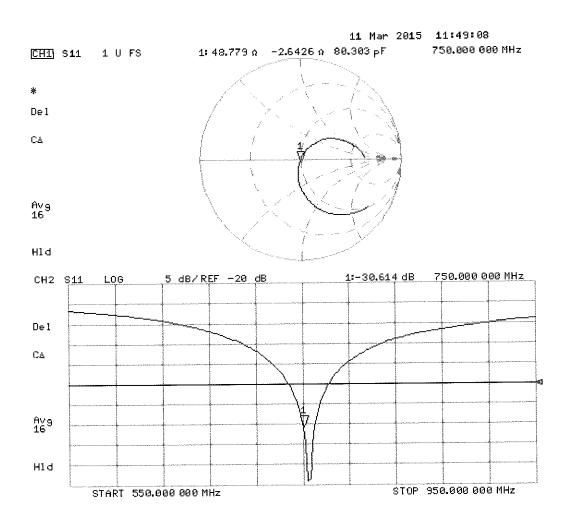
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.35 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.20 W/kg


SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.05 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d119_Apr15

Object	D835V2 - SN:4d	119 military described a symmetric describe	·
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	RN ove 700 MHz 4/29
Calibration date:	April 13, 2015		e sa seria artik artik 1905-en alem
The measurements and the tince	rtainties with confidence p	ional standards, which realize the physical unprobability are given on the following pages are facility: environment temperature $(22 \pm 3)^{\circ}$ 0	nd are part of the certificate.
Primary Standards	ID #	Cal Data (0, 115	
Power meter EPM-442A	GB37480704	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02020)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Oct-14 (No. 217-02021)	Oct-15
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02131)	Mar-16
Reference Probe ES3DV3	SN: 3205	01-Apr-15 (No. 217-02134)	Mar-16
DAE4	SN: 601	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
, ·	514. 001	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Mreen Chaecee
Approved by:	Katja Pokovic	Technical Manager	Ally-
This calibration certificate shall no	ot be reproduced except in	full without written approval of the laboratory.	Issued: April 13, 2015

Certificate No: D835V2-4d119_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d119_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	V OZ0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	with opacer
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.20 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.06 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.2 Ω - 2.2 jΩ
Return Loss	- 33.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 4.9 ϳΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Flectrical Doloy (one dispetion)	
Electrical Delay (one direction)	1 000
	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr15

DASY5 Validation Report for Head TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

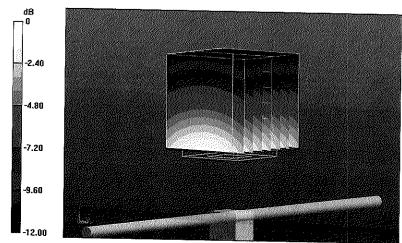
Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

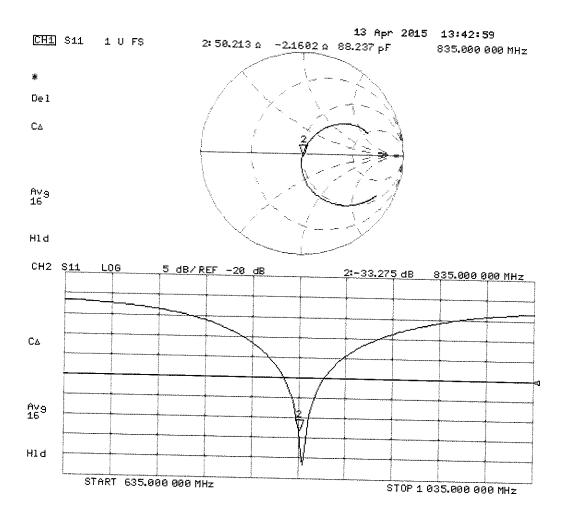
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.77 V/m P

Reference Value = 56.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

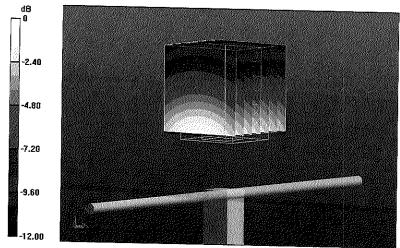
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

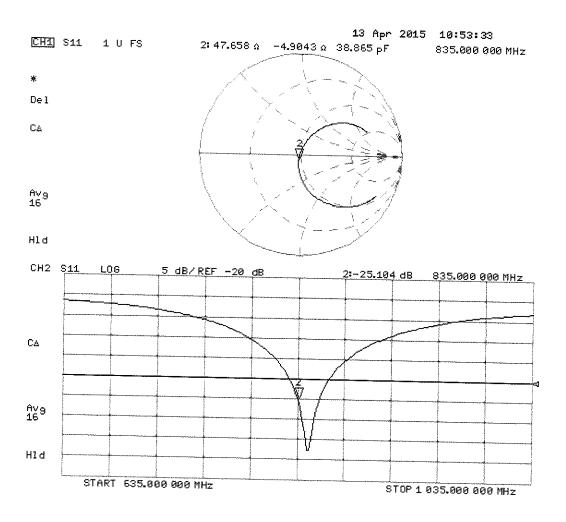
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.52 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1750V2-1051 Apr15

CALIBRATION CERTIFICATE

Object D1750V2 - SN:1051

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date:

April 15, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1.0-
Approved by:	Katja Pokovic	Technical Manager	

Issued: April 15, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1051_Apr15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1051_Apr15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	VJ2.0.0
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	with Opacei
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	250 mW input power	4.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
	250 mW input power	9.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	250 mW input power	5.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1051_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω - 0.2 jΩ
Return Loss	- 37.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω + 0.3 jΩ
Return Loss	- 29.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
= comodi Belay (one difection)	1.221 ns
	1.221118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	
Manadactared by	SPEAG
Manufactured on	Fobruary 10, 0040
	February 19, 2010

Certificate No: D1750V2-1051_Apr15

DASY5 Validation Report for Head TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

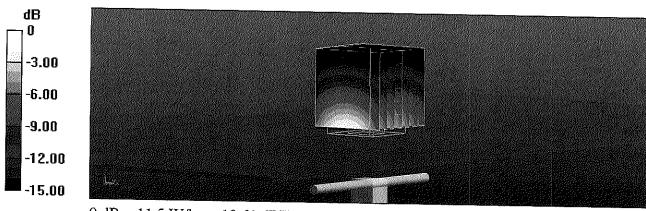
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

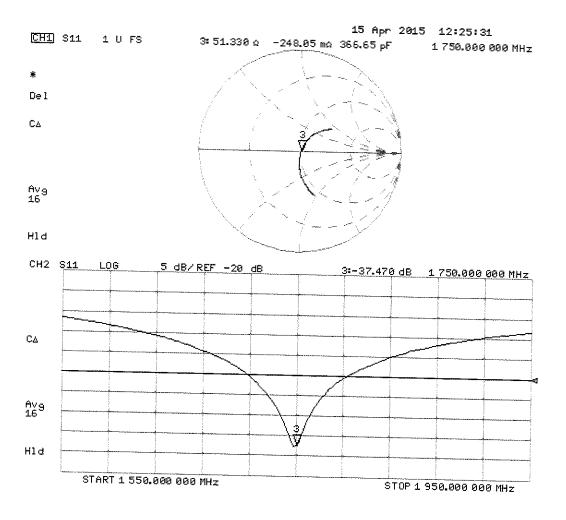
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.99 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.3 W/kg


SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

0 dB = 11.5 W/kg = 10.61 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

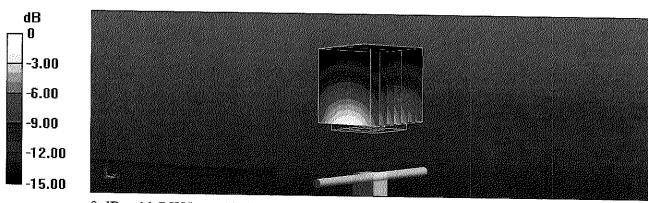
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

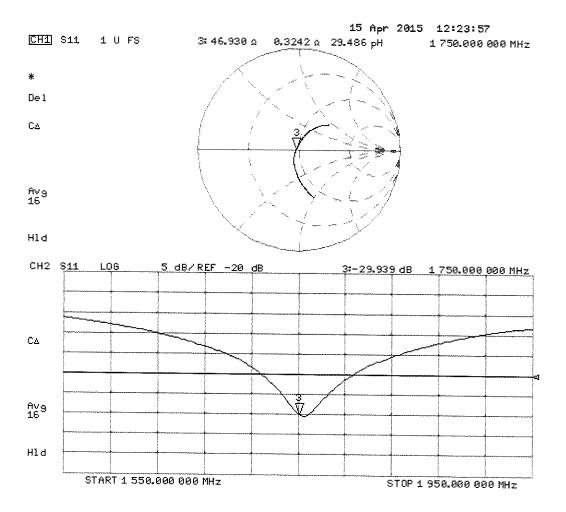
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.87 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.32 W/kg; SAR(10 g) = 5.01 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d149 Jul15

1	CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d149

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

UU√ 8/4/1°

Calibration date:

July 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature

Calibrated by:

Leif Klysner

Function

Laboratory Technician

Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: July 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d149_Jul15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d149_Jul15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω + 5.6 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 6.1 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Florida de Dalace / como Pro (U. A.)	
Electrical Delay (one direction)	1.197 ns
(1111)	11107 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

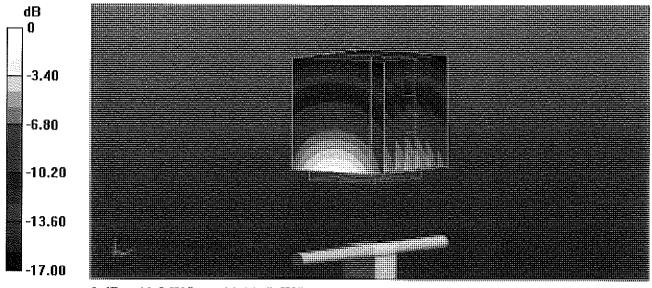
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

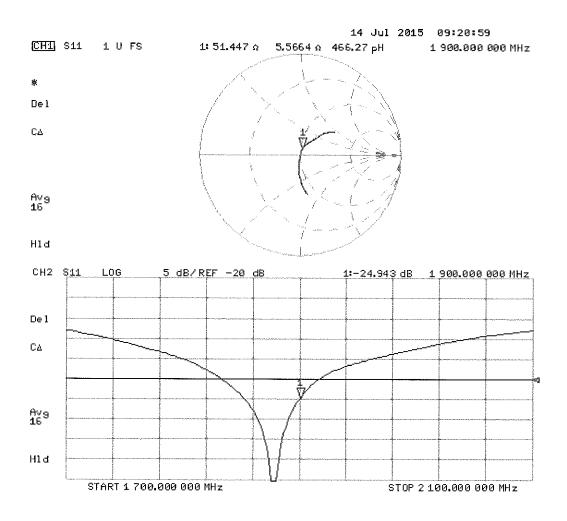
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.22 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.3 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ S/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

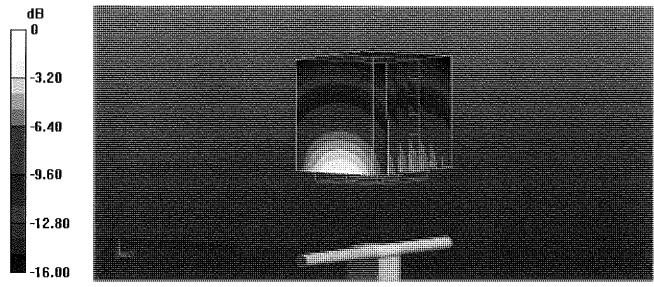
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

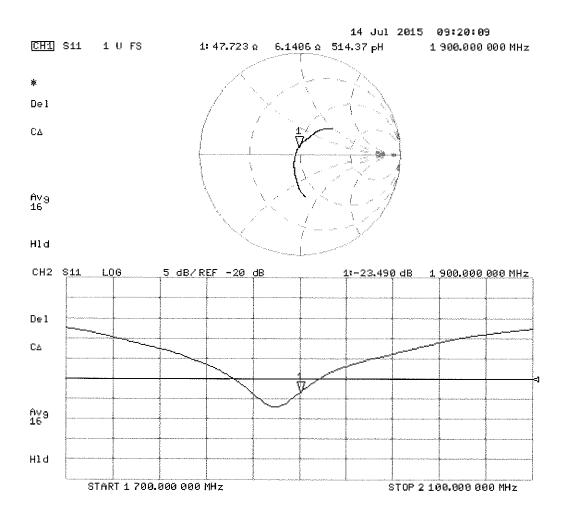
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.96 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg


SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.49 W/kg

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-719_Aug15

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 719

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092 3 17	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	17-Aug-15 (No. DAE4-601_Aug15)	Aug-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name

Function

Michael Weber

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: August 21, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-719 Aug15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-719_Aug15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	***	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52. 7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-719_Aug15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.5 Ω + 5.3 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 6.5 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	4.440
Listing Doidy (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

Certificate No: D2450V2-719_Aug15

DASY5 Validation Report for Head TSL

Date: 20.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;

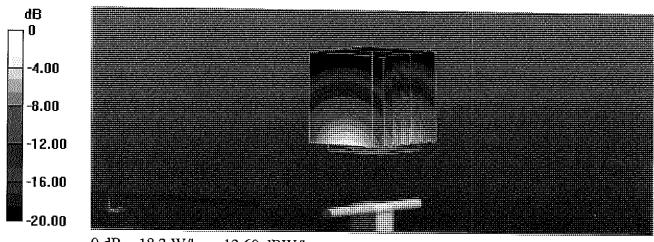
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.2 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.48 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;

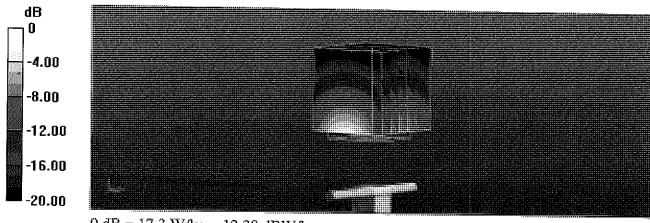
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 17.08.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

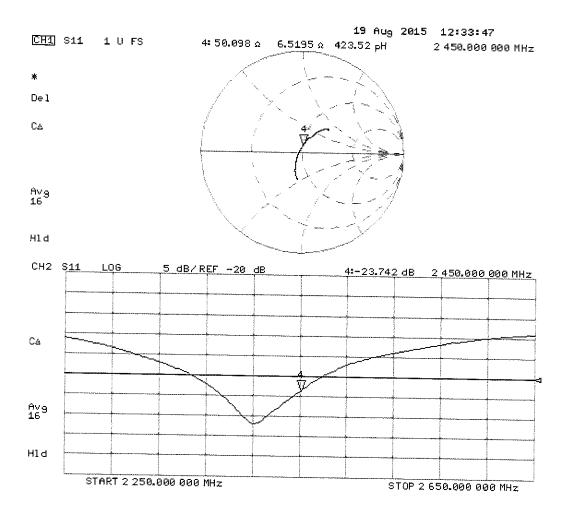
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.73 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Approved by:

PC Test

Certificate No: D2600V2-1004_Apr15

CALIBRATION CERTIFICATE

Object D2600V2 SN: 1004

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date: April 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Şîgnature
Calibrated by:	Claudio Leubler	Laboratory Technician	()/24

Technical Manager

Issued: April 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1004_Apr15 Page 1 of 8

Katja Pokovic

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1004_Apr15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	1.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.2 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	56.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 4.7 jΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω - 3.6 jΩ
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
i Electrical Delay (one direction)	1.150 ns
	11100110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 23, 2006

Certificate No: D2600V2-1004_Apr15

DASY5 Validation Report for Head TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 37.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.49, 4.49, 4.49); Calibrated: 30.12.2014;

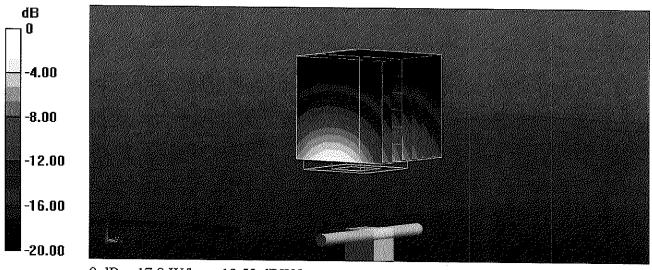
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

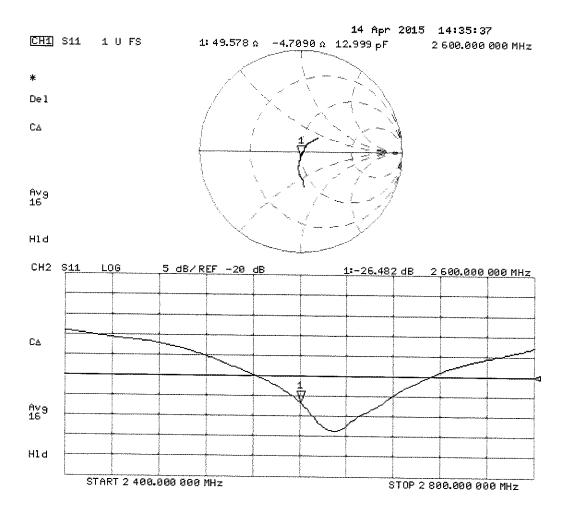
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.70 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 29.8 W/kg


SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.37 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\epsilon_r = 50.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.13, 4.13, 4.13); Calibrated: 30.12.2014;

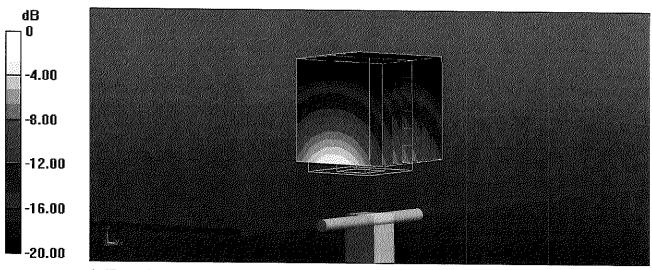
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

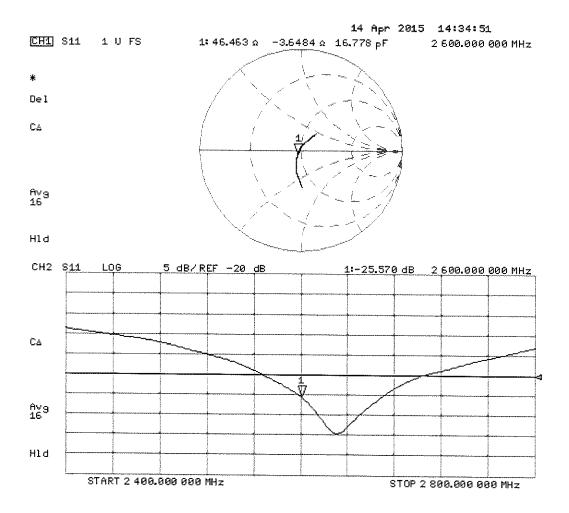
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.83 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 29.6 W/kg


SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.39 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d133_Jul15

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d133

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 23, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Calibrated by:

Function

Laboratory Technician Michael Weber

Approved by:

Katja Pokovic

Technical Manager

Issued: July 23, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Jul15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL

sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D835V2-4d133_Jul15

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.4 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.13 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.94 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.25 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/ k g
SAR for nominal Body TSL parameters	normalized to 1W	6.08 W/kg ± 16.5 % (k=2)

Page 3 of 8 Certificate No: D835V2-4d133_Jul15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.6 Ω - 1.6 jΩ
Return Loss	- 33.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 3.7 jΩ
Return Loss	- 27.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.395 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d133_Jul15

DASY5 Validation Report for Head TSL

Date: 22.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

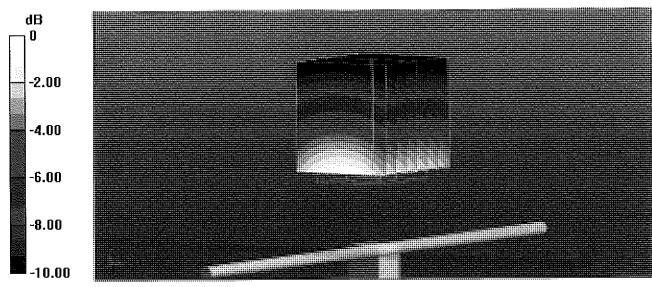
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

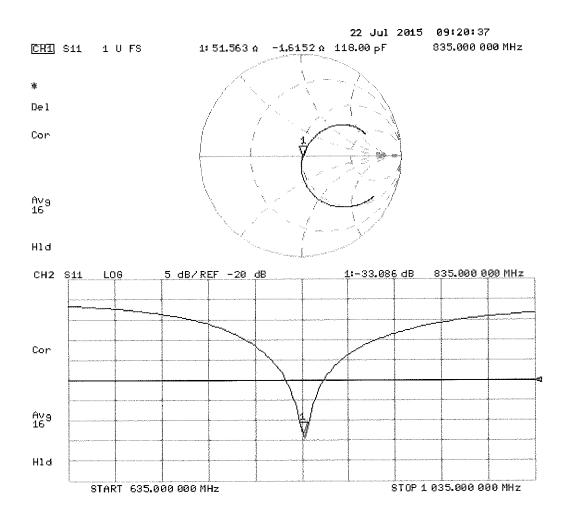
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.11 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.44 W/kg


SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

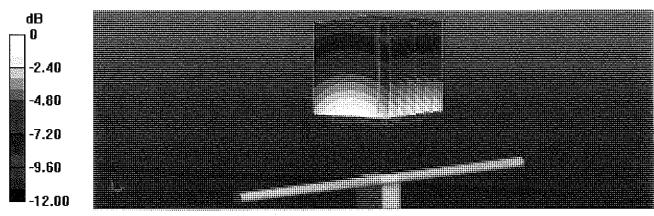
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

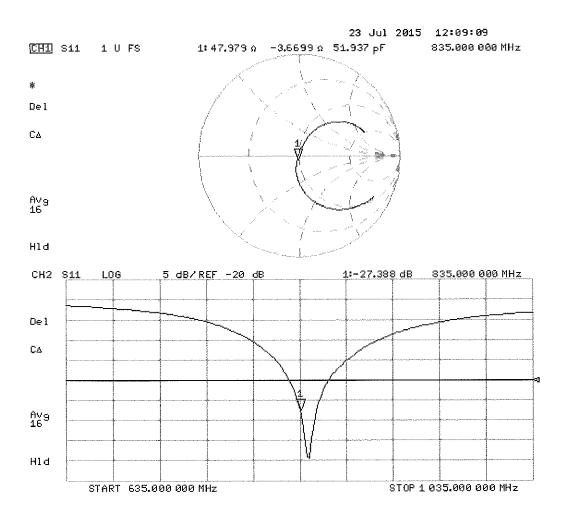
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.56 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.50 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 0108

Certificate No: D1900V2-5d141_Apr15

Object D1900V2 - SN:5d141

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

4/29/15

Calibration date:

April 14, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature 3
Calibrated by:	Claudio Leubler	Laboratory Technician	(X)

Issued: April 14, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign:

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d141_Apr15 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	a u 12.20	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d141_Apr15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 4.6 jΩ
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω + 5.6 jΩ
Return Loss	- 24.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
	1.130115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D1900V2-5d141_Apr15

DASY5 Validation Report for Head TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

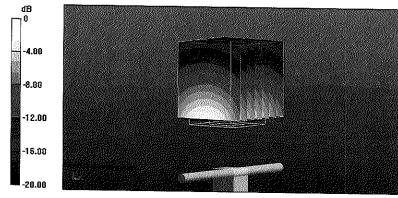
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

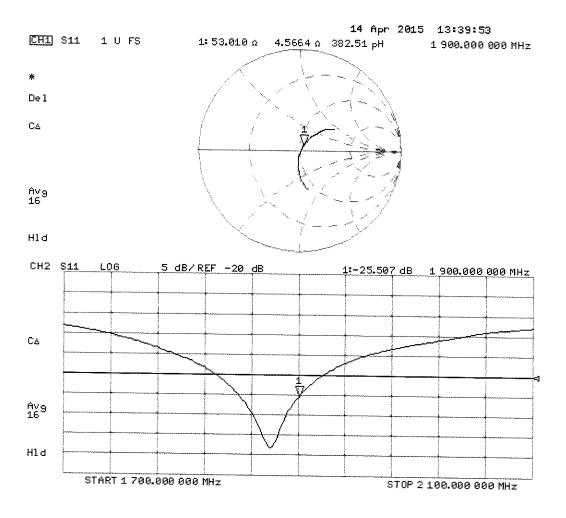
• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.18 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.2 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

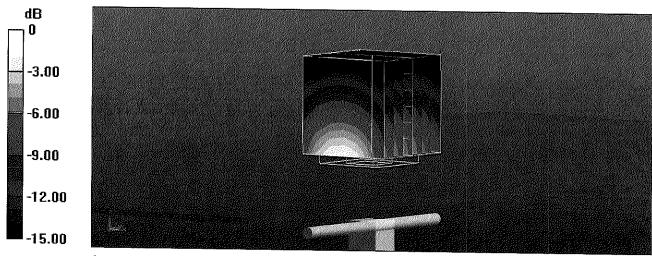
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

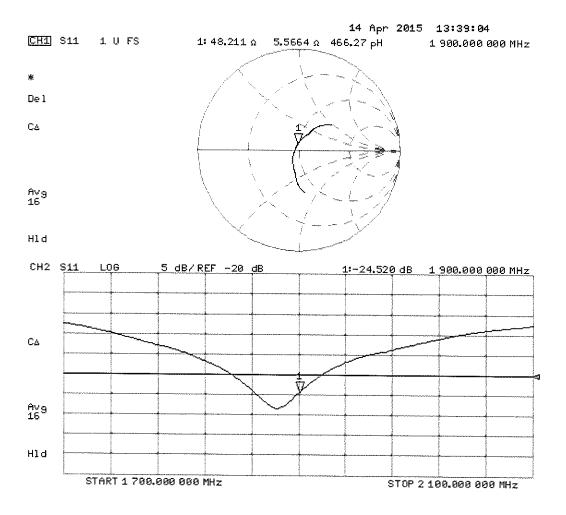
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.73 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.9 W/kg


SAR(1 g) = 9.94 W/kg; SAR(10 g) = 5.29 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Body TSL

