

FCC CFR47 PART 15 SUBPART C

BLUETOOTH LOW ENERGY C2PC CERTIFICATION TEST REPORT

FOR

CDMA/ LTE Phone + Bluetooth, and DTS b/g/n

MODEL NUMBER: LG-LS660, LGLS660, LS660, LG-LS660P, LGLS660P and LS660P

FCC ID: ZNFLS660

REPORT NUMBER: 14U18507-E3 REVISION A

ISSUE DATE: SEPTEMBER 05, 2014

Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS, NEW JERSEY, 07632, U.S.A.

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/20/14	Initial Issue	D. Coronia
А	09/05/14	Update antenna gain information page 6	D. Coronia

Page 2 of 39

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS 4
2.	TE	ST METHODOLOGY
3.	FA	CILITIES AND ACCREDITATION
4.	СА	LIBRATION AND UNCERTAINTY
4	.1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	SAMPLE CALCULATION
4	.3.	MEASUREMENT UNCERTAINTY
5.	EQ	UIPMENT UNDER TEST
5	.1.	DESCRIPTION OF EUT
5	.2.	MAXIMUM OUTPUT POWER
5	.3.	DESCRIPTION OF AVAILABLE ANTENNAS
5	.4.	WORST-CASE CONFIGURATION AND MODE7
5	.5.	DESCRIPTION OF TEST SETUP
6.	TE	ST AND MEASUREMENT EQUIPMENT10
7.	SU	MMARY11
7. 8.	SU AN	MMARY11 TENNA PORT TEST RESULTS
7. 8. 8.	SU AN	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12
7. 8. 8. 8.	SU AN .1. .2.	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12 99% BANDWIDTH 13
7. 8. 8. 8. 8. 8. 8.	SU AN .1. .2. .3.	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12 99% BANDWIDTH 13 OUTPUT POWER 14
7. 8. 8. 8. 8. 8. 8. 8.	SU AN .1. .2. .3. .4.	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12 99% BANDWIDTH 13 OUTPUT POWER 14 AVERAGE POWER 15
7. 8. 8. 8. 8. 8. 8. 8. 8.	SU AN .1. .2. .3. .4. .5.	MMARY11TENNA PORT TEST RESULTS116 dB BANDWIDTH1299% BANDWIDTH13OUTPUT POWER14AVERAGE POWER15POWER SPECTRAL DENSITY16
7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	SU AN .1. .2. .3. .4. .5. .6.	MMARY11TENNA PORT TEST RESULTS116 dB BANDWIDTH1299% BANDWIDTH13OUTPUT POWER14AVERAGE POWER15POWER SPECTRAL DENSITY16CONDUCTED SPURIOUS EMISSIONS17
7. 8. 8. 8. 8. 8. 8. 8. 8. 9.	SU AN .1. .2. .3. .4. .5. .6. RA	MMARY11TENNA PORT TEST RESULTS116 dB BANDWIDTH1299% BANDWIDTH13OUTPUT POWER14AVERAGE POWER15POWER SPECTRAL DENSITY16CONDUCTED SPURIOUS EMISSIONS17DIATED TEST RESULTS18
7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9.	SU AN .1. .2. .3. .4. .5. .6. RA .1.	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12 99% BANDWIDTH 13 OUTPUT POWER 14 AVERAGE POWER 15 POWER SPECTRAL DENSITY 16 CONDUCTED SPURIOUS EMISSIONS 17 DIATED TEST RESULTS 18 LIMITS AND PROCEDURE 18
7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9.	SU AN .1. .2. .3. .4. .5. .6. RA .1. .2.	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12 99% BANDWIDTH 13 OUTPUT POWER 14 AVERAGE POWER 15 POWER SPECTRAL DENSITY 16 CONDUCTED SPURIOUS EMISSIONS 17 DIATED TEST RESULTS 18 LIMITS AND PROCEDURE 18 TRANSMITTER ABOVE 1 GHz 19
7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	SU AN .1. .2. .3. .4. .5. .6. RA .1. .2. .3.	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12 99% BANDWIDTH 13 OUTPUT POWER 14 AVERAGE POWER 15 POWER SPECTRAL DENSITY 16 CONDUCTED SPURIOUS EMISSIONS 17 DIATED TEST RESULTS 18 LIMITS AND PROCEDURE 18 TRANSMITTER ABOVE 1 GHz 19 WORST-CASE BELOW 1 GHz 32
7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	SU AN .1. .2. .3. .4. .5. .6. RA .1. .2. .3.	MMARY 11 TENNA PORT TEST RESULTS 11 6 dB BANDWIDTH 12 99% BANDWIDTH 13 OUTPUT POWER 14 AVERAGE POWER 15 POWER SPECTRAL DENSITY 16 CONDUCTED SPURIOUS EMISSIONS 17 DIATED TEST RESULTS 18 LIMITS AND PROCEDURE 18 TRANSMITTER ABOVE 1 GHz 19 WORST-CASE BELOW 1 GHz 32 AC POWER LINE CONDUCTED EMISSIONS 34

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	LG ELECTRONICS MOBILECOMM U.S.A., INC.
EUT DESCRIPTION:	CDMA/LTE Phone + Bluetooth, and DTS b/g/n.
MODEL:	LG-LS660, LGLS660, LS660, LG-LS660P, LGLS660P and LS660P
SERIAL NUMBER:	780 (Conducted), 781 (Radiated)
DATE TESTED:	AUGUST 8 - 12, 2014

APPLICABLE STANDARDS							
STANDARD	TEST RESULTS						
CFR 47 Part 15 Subpart C	Pass						

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

DAN CORONIA CONSUMER TECHNOLOGY DIVISION PROJECT LEAD UL Verification Services Inc.

CHARLES VERGONIO CONSUMER TECHNOLOGY DIVISION LAB ENGINEER UL Verification Services Inc.

Page 4 of 39

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street					
Chamber A	Chamber D					
🖂 Chamber B	Chamber E					
Chamber C	Chamber F					

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 18000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 39

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a CDMA/LTE Phone + Bluetooth, DTS b/g/n.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Please refer to project 14U18147 for details.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of -2.60 dBi.

Page 6 of 39

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 7 of 39

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List										
Description	Manufacturer	Model	Serial Number	FCC ID						
AC Adapter	LG	STA-U34WRI	N/A	N/A						
AC Adapter	LG	MCS-02WR	N/A	N/A						
AC Adapter	LG	MCS-02WD	N/A	N/A						
Earphone	LG	N/A	N/A	N/A						

I/O CABLES

I/O Cable List										
Cable	Cable Port # of identical Connector Cable Type Cable Length Remarks									
No		ports	Туре		(m)					
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A				
2	Audio	1	Mini-Jack	Unshielded	1m	N/A				

TEST SETUP

EUT was set in the Hidden menu mode to enable BLE communications.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 8 of 39

SETUP DIAGRAM FOR TESTS

Page 9 of 39

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List										
Description	Manufacturer	Model	Asset	Cal Due						
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	4/1/2015						
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	2/26/2015						
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	8/8/2014						
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	5/8/2015						
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	10/22/2014						
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	N/A	3/6/2015						
Antenna, Horn, 18 GHz	ETS	3117	C01022	2/21/2015						
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	12/17/2014						
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/2014						
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/2014						
LISN, 30 MHz	FCC	50/250-25-2	C00626	1/14/2015						

Page 10 of 39

7. SUMMARY

8.

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
15.247 (a)(2)	RSS-210 A8.2(a)	Occupied Band width (6dB)	>500KHz		Pass	see original
2.1051, 15.247 (d)	RSS-210 A8.5	Band Edge / Conducted Spurious Emission	ducted -20dBc		Pass	see original
15.247	RSS-210 A8.4	TX conducted output power	<30dBm	Conducted	Pass	see original
15.247	RSS-210 A8.2	PSD	<8dBm		Pass	see original
15.207 (a)	RSS-GEN 7.2.2	AC Power Line conducted emissions	Section 10		Pass	see original
15.205, 15.209	RSS-210 Clause 2.6, RSS-210 Clause 6	Radiated Spurious Emission	< 54dBuV/m	Radiated	Pass	41.06dBuV/m

Page 11 of 39

ANTENNA PORT TEST RESULTS 8.1. 6 dB BANDWIDTH

<u>LIMITS</u>

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

<u>RESULTS</u>

Please refer to project 14U18147 for details.

8.2. 99% **BANDWIDTH**

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Reference to KDB558074 D01 DTS Meas Guidance v03r01: The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

<u>RESULTS</u>

Please refer to project 14U18147 for details.

Page 13 of 39

8.3. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using KDB558074 D01 DTS Meas Guidance v03r01 April 9, 2013 under section 9.1.1 utilizing spectrum analyze.

<u>RESULTS</u>

Please refer to project 14U18147 for details.

Page 14 of 39

8.4. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Please refer to project 14U18147 for details.

Page 15 of 39

8.5. POWER SPECTRAL DENSITY

<u>LIMITS</u>

FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Power Spectral Density was performed utilizing the "Method PKPSD (Peak PSD)" under KDB558074 D01 DTS Meas Guidance v03r01, April 9, 2013

RESULTS

Please refer to project 14U18147 for details.

Page 16 of 39

8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

Please refer to project 14U18147 for details.

Page 17 of 39

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4 - 2009. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and add duty cycle factor for average measurements. Duty cycle factor = $10 \log (1/x)$. For this sample: DCF = $10\log(1/0.618)=2.08$ dB (Spectrum Analyzer round it up to 2.1dB)

The spectrum from 1GHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 18 of 39

9.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.356	43.48	PK	32	-23.1	0	52.38	-	-	74	-21.62	210	259	Н
4	* 2.364	31.33	RMS	32	-23.1	0	40.23	54	-13.77	-	-	210	259	Н
1	* 2.39	40.77	PK	32.1	-23.1	0	49.77	-	-	74	-24.23	210	259	Н
3	* 2.39	30.98	RMS	32.1	-23.1	0	39.98	54	-14.02	-	-	210	259	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

Page 19 of 39

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 2.33	43.34	PK	31.9	-23.1	0	52.14	-	•	74	-21.86	239	389	V
4	* 2.38	31.3	RMS	32.1	-23.1	0	40.3	54	-13.7	-	-	239	389	V
1	* 2.39	40.51	PK	32.1	-23.1	0	49.51	-	-	74	-24.49	239	389	V
3	* 2.39	30.58	RMS	32.1	-23.1	0	39.58	54	-14.42	-	-	239	389	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

Page 20 of 39

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.12	PK	32.3	-22.8	0	49.62	-	-	74	-24.38	245	362	Н
3	* 2.484	31.09	RMS	32.3	-22.8	0	40.59	54	-13.41	-	-	245	362	Н
2	2.509	43.52	PK	32.3	-22.8	0	53.02	-	-	74	-20.98	245	362	Н
4	2,535	31.23	RMS	32.4	-22.8	0	40.83	54	-13.17	-	-	245	362	н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

Page 21 of 39

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.484	40.42	PK	32.3	-22.8	49.92	-	-	74	-24.08	245	359	V
3	* 2.484	31.02	RMS	32.3	-22.8	40.52	54	-13.48	-	-	245	359	V
2	2.56	43.19	PK	32.4	-22.7	52.89	-	-	74	-21.11	245	359	V
4	2.561	31.36	RMS	32.4	-22.7	41.06	54	-12.94	-	-	245	359	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

Page 22 of 39

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL HORIZONTAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 23 of 39

VERTICAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 24 of 39

REPORT NO: 14U18507-E3-A FCC ID: ZNFLS660

LOW CHANNEL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	* 4.299	33.29	PK	34	-29.6	0	37.69	-	-	74	-36.31	0-360	201	Н
6	* 11.358	26.71	PK	38.1	-20.9	0	43.91	-	-	74	-30.09	0-360	100	V
2	1.938	36.43	PK	31.8	-23.7	0	44.53	-	-	-	-	0-360	100	V
1	2.068	36.58	PK	31.9	-23.5	0	44.98	-	-	-	-	0-360	201	Н
5	6.007	31.47	PK	35.3	-27.9	0	38.87	-	-	-	-	0-360	201	Н
4	8.754	28.84	PK	35.8	-22.9	0	41.74	-	-		-	0-360	201	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBu)/(m)	Avg Limit (dBu)//m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(ubuv)		(ub/iii)	(00)		(ubu v/m)	(ubu v/m)		(ubu v/iii)	(00)			
* 4.299	40.59	PK2	34	-29.6	0	44.99	-	-	74	-29.01	120	202	Н
* 4.299	28.46	MAv1	34	-29.6	2.1	34.96	54	-19.04	-	-	120	202	Н
* 11.356	33.66	PK2	38.1	-20.9	0	50.86	-	-	74	-23.14	120	100	V
* 11.36	22.48	MAv1	38.1	-20.9	2.1	41.78	54	-12.22	-	-	120	100	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 25 of 39

MID CHANNEL

HORIZONTAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 26 of 39

VERTICAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 27 of 39

REPORT NO: 14U18507-E3-A FCC ID: ZNFLS660

MID CHANNEL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	* 10.753	27.75	PK	37.9	-21.6	0	44.05	-	-	74	-29.95	0-360	100	Н
5	* 4.817	33.36	PK	34	-29	0	38.36	-	-	74	-35.64	0-360	201	V
2	1.768	36.64	PK	30.1	-23.8	0	42.94	-	-	-	-	0-360	100	V
1	1.856	36.16	PK	31.2	-23.8	0	43.56	-	-	-	-	0-360	201	Н
6	5.301	32.31	PK	34.3	-28.4	0	38.21	-	-	-	-	0-360	201	V
4	6.426	32.57	PK	35.5	-28.2	0	39.87	-	-	-	-	0-360	201	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 10.751	33.35	PK2	37.9	-21.6	0	49.65	-	-	74	-24.35	1	100	Н
* 10.755	23.16	MAv1	37.9	-21.6	2.1	41.56	54	-12.44	-	-	1	100	Н
* 4.816	40.25	PK2	34	-29	0	45.25	-	-	74	-28.75	1	202	V
* 4.818	29.21	MAv1	34	-29	2.1	36.31	54	-17.69	-	-	1	202	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 28 of 39

HIGH CHANNEL HORIZONTAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Page 29 of 39

VERTICAL

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 30 of 39

REPORT NO: 14U18507-E3-A FCC ID: ZNFLS660

HIGH CHANNEL DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	* 7.717	29.03	PK	35.4	-24.2	0	40.23	-	-	74	-33.77	0-360	201	Н
6	* 4.936	32.21	PK	33.9	-28.4	0	37.71	-	-	74	-36.29	0-360	100	V
1	2.037	36.44	PK	32	-23.5	0	44.94	-	-	-	-	0-360	201	Н
2	2.105	36.91	PK	31.7	-23.5	0	45.11	-	-	-	-	0-360	201	V
5	5.632	32.13	PK	34.4	-28.1	0	38.43	-	-	-	-	0-360	201	V
4	7.042	29.95	PK	35.3	-25.7	0	39.55	-	-	-	-	0-360	201	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T136 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/ m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 7.719	36.15	PK2	35.4	-24.2	0	47.35	-	-	74	-26.65	1	202	Н
* 7.716	25.32	MAv1	35.4	-24.2	2.1	38.62	54	-15.38	-	-	1	202	Н
* 4.936	39.57	PK2	33.9	-28.4	0	45.07	-	-	74	-28.93	1	100	V
* 4.936	27.83	MAv1	33.9	-28.4	2.1	35.43	54	-18.57	-	-	1	100	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 31 of 39

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION WITH U34WDI CHARGER)

Page 32 of 39

Marker	Frequency (MHz)	Meter Reading	Det	Hybrid	Amp/Cbl (dB)	Corrected Reading	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	· · /	(dBuV)				(dBuV/m)	. ,	、 <i>,</i>		• •	
5	* 268.8	35.83	PK	15.7	-28.7	22.83	46.02	-23.19	0-360	100	Н
1	36.9275	40.53	PK	19.3	-30.8	29.03	40	-10.97	0-360	100	V
3	95.96	44.64	PK	11.9	-30.2	26.34	43.52	-17.18	0-360	201	Н
2	148.49	32.71	PK	15.8	-29.6	18.91	43.52	-24.61	0-360	100	V
4	222.2	35.49	PK	13.6	-29	20.09	46.02	-25.93	0-360	100	Н
6	806.1	34.41	PK	24.4	-26.2	32.61	46.02	-13.41	0-360	100	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Page 33 of 39

10. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted L	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4 - 2009

RESULTS

Please refer to project 14U18147 for details.

Page 34 of 39