

RF TEST REPORT

Test item Model No.	:	PCS GSM/GPRS & Cellular/PCS WCDMA & Cellular CDMA Phone with Bluetooth and WLAN/NFC LGL21
Order No.	:	DEMC1208-01659
Date of receipt		2012-08-31
Test duration		2012-09-03 ~ 2012-09-08
Date of issue	:	2012-09-10
Use of report	;	FCC Original Grant
Applicant : LG Electr	ronic	cs MobileComm U.S.A., Inc.
1000 Sylv	van	Avenue, Englewood Cliffs NJ 07632
Test laboratory : Digital EN	NC (Co., Ltd.
683-3, Yu	uban	g-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea
Test specificat	tion	: FCC Part 15 Subpart C 247
		ANSI C63.4-2003, KDB558074
Test environm	ont	: See appended test report
	ent	
Test result		: 🛛 Pass 🔲 Fail
The test regults presented in	thin t	and report and limited and the second second second second second

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

Tested by:

Witnessed by:

N/A

Reviewed by:

Engineer H.S.SON m

Technical Director Harvey Sung

Digital EMC Co., Ltd.

Table of Contents

1. GENERAL INFORMATION	3
2. EUT DESCRIPTION	3
3. TEST METHODOLOGY	3
3.1 EUT CONFIGURATION	1
3.2 EUT EXERCISE	1
3.3 GENERAL TEST PROCEDURES	1
3.4 DESCRIPTION OF TEST MODES	1
4. INSTRUMENT CALIBRATION	5
5. FACILITIES AND ACCREDITATIONS	5
5.1 FACILITIES	5
5.2 EQUIPMENT	5
6. ANTENNA REQUIREMENTS	5
7. TEST RESULT	3
7.1 6dB Bandwidth Measurement6	3
7.2 Maximum Peak Conducted Output Power)
7.3 Maximum Power Spectral Density12	2
7.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions15	
7.5 Radiated Measurement21	
7.5.1 Radiated Spurious Emissions21	
7.6 POWERLINE CONDUCTED EMISSIONS24	
8. LIST OF TEST EQUIPMENT	
APPENDIX I	3

1. GENERAL INFORMATION

Applicant	Electronics MobileComm U.S.	A., Inc.
Address	00 Sylvan Avenue, Englewood	Cliffs NJ 07632
FCC ID	FLGL21	
EUT	S GSM/GPRS & Cellular/PCS etooth and WLAN/NFC	WCDMA & Cellular CDMA Phone with
Model	L21	
Additional Model(s)	N Contraction of the second seco	
Data of Test	12-09-03 ~ 2012-09-08	
Contact person	eol Goo Lee	

2. EUT DESCRIPTION

Product	PCS GSM/GPRS & Cellular/PCS WCDMA & Cellular CDMA Phone with Bluetooth and WLAN/NFC			
Model Name	LGL21			
Power Supply	DC 3.8V			
Battery type	Standard Battery: Lithium Ion Battery			
Frequency Range	2402 ~ 2480MHz(40 channels)			
Max. RF Output Power	7.87 dBm			
Modulation Type	GFSK			
Antenna Specification	Antenna Type: Internal Antenna Gain: -1.035dBi(PK)			

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz(ANSI C63.4-2003) and KDB558074

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The following test modes were chosen as the worst case mode for full test.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number : 678747

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- * The internal antenna of this E.U.T is uniquely attached on the main PCB using specially spring contactors.
- * Therefore this E.U.T Complies with the requirement of §15.203

7. TEST RESULT

7.1 6dB Bandwidth Measurement

Test Requirements and limit, §15.247(d)

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

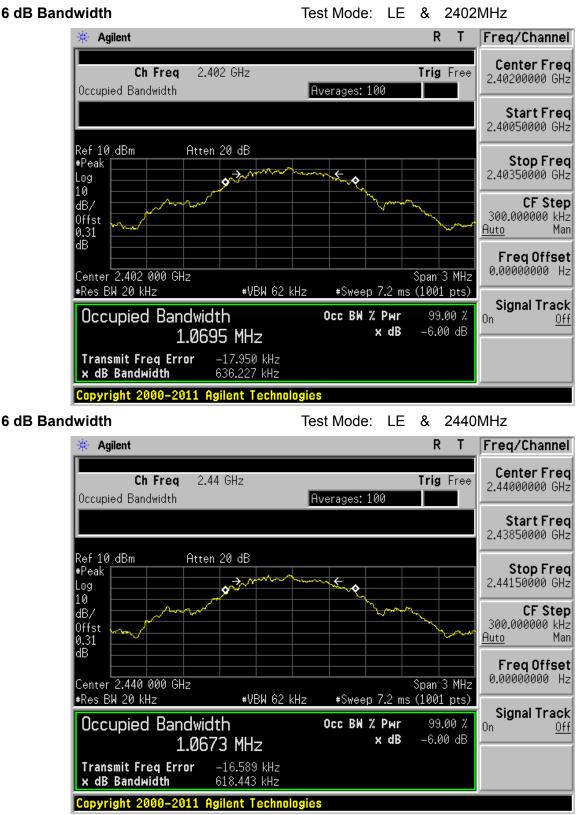
The minimum permissible 6dB bandwidth is 500 kHz.

TEST CONFIGURATION

Refer to the APPENDIX I.

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074.


- 1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW). Actual RBW = 20 KHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW. Actual VBW = 62 KHz
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

TEST RESULTS: Comply

Test Mode	Frequency [MHz]	Test Results [MHz]
	2402	0.636
LE	2440	0.618
	2480	0.634

RESULT PLOTS

🔆 Agilent R T Freg/Channel **Center Freq** Ch Freq 2.48 GHz Trig Free 2.48000000 GHz Occupied Bandwidth Averages: 100 Start Freq 2.47850000 GHz Ref 10 dBm Atten 20 dB #Peak Stop Freq 2.48150000 GHz Log Sel ÷ ¢ ô 10 **CF** Step dB/ 300.000000 kHz Juto Man Offst Auto 0.31 dB Freq Offset 0.0000000 Hz Center 2.480 000 GHz #Res BW 20 kHz Span 3 MHz #Sweep 7.2 ms (1001 pts) ₩VBW 62 kHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % 0n <u> 0ff</u> x dB -6.00 dB 1.0750 MHz –22.722 kHz 633.740 kHz **Transmit Freq Error** x dB Bandwidth Copyright 2000-2011 Agilent Technologies

6 dB Bandwidth

Test Mode: LE & 4bps & 2480MHz

7.2 Maximum Peak Conducted Output Power

Test Requirements and limit, §15.247(d)

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

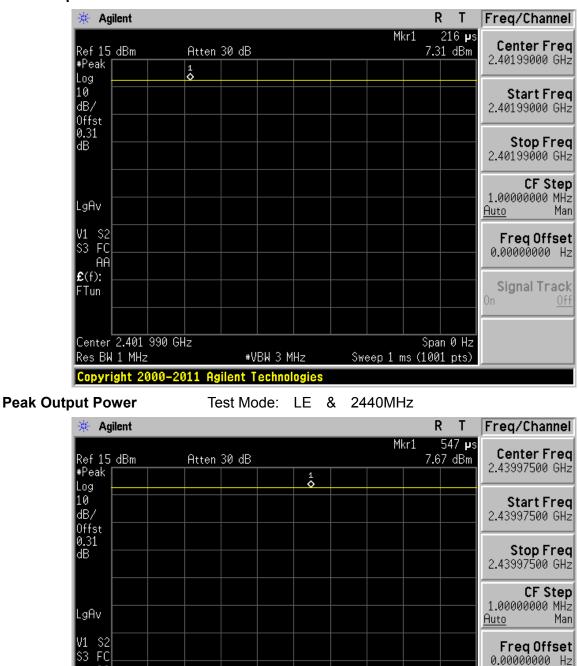
The maximum permissible conducted output power is 1 Watt.

TEST CONFIGURATION

Refer to the APPENDIX I.

TEST CONFIGURATION:

Maximum Peak Conducted Output Power is measured using Measurement Procedure PK1 of KDB558074.


- 1. Set the RBW ≥ EBW. Actual RBW = 1 MHz
- 2. Set the VBW ≥ 3 X RBW. Actual VBW = 3 MHz
- 3. Set span = zero
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = **max hold**
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level within the fundamental emission.

TEST RESULTS: Comply

Teet Mede	Test Results[dBm]			
Test Mode	2402MHz	2440MHz	2480MHz	
LE	7.31	7.67	7.87	

Note : The cable loss was corrected using the offset value of the spectrum analyzer.

RESULT PLOTS

Peak Output Power Test Mode: LE & 2402MHz

AA £(f):

Center 2.439 975 GHz

00–2011 Aailent

Res BW 1 MHz

FTun

#VBW 3 MHz

Technol

Signal Track

Span 0 Hz

Sweep 1 ms (1001 pts)

🔆 Agilent				R	T Freq/Channe
Ref 15 dBm	Atten 30 dB		Μ	kr1 596 7.87 d	Enter Free Bm
Peak		÷			2.47995500 GH
.og .Ø IB/					Start Fre 2.47995500 GH
)ffst).31 IB					Stop Fre 2.47995500 GH
.gAv					CF Ste 1.00000000 MH <u>Auto</u> Ma
/1 S2 3 FC					Freq Offse 0.00000000 +
C(f):					Signal Trac On <u>O</u>
Center 2.479 95				Snop A	
lenter 2.479 95) Res BW 1 MHz		'BW 3 MHz	Sweep 1	Span 0 ms (1001 p	

Peak Output Power Test Mode: LE & 2480MHz

7.3 Maximum Power Spectral Density.

Test requirements and limit, §15.247(d)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

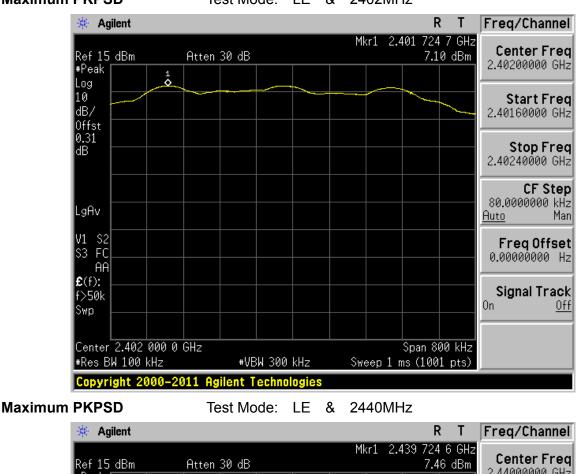
Minimum Standard –specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

TEST CONFIGURATION

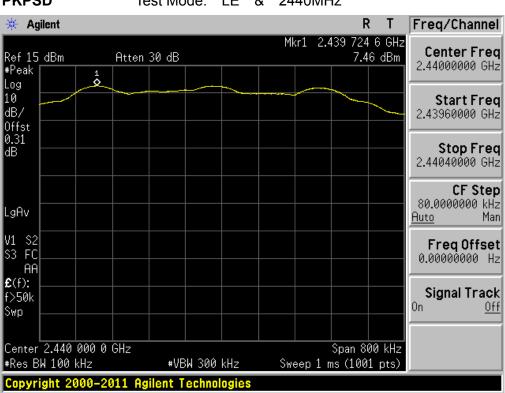
Refer to the APPENDIX I.

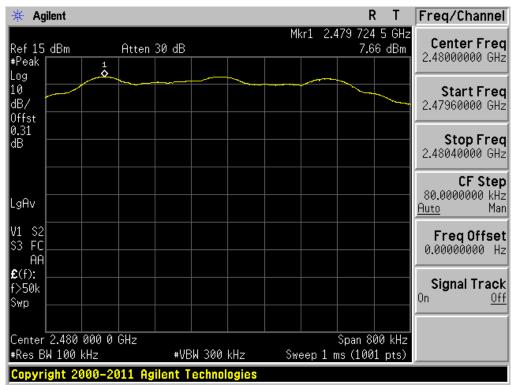
TEST PROCEDURE:

The Measurement Procedure **PKPSD of KDB558074** is used.


- 1. Set the **RBW = 100 kHz**.
- 2. Set the **VBW** ≥ **300** kHz.
- 3. Set the span to 5-30 % greater than the EBW. Actual span = 800KHz
- 4. Detector = peak.
- 5. Sweep time = **auto couple**.
- 6. Trace mode = **max hold**.
- 7. Allow trace to fully stabilize.
- 8. Use the **peak marker function** to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
- Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB).
- 10. The resulting peak PSD level must be ≤ 8 dBm.

TEST RESULTS: Comply


Test Mode	Data Rate	Frequency [MHz]	S/A Reading [dBm]	B.W.C.F [dB]	PKPSD [dBm]
LE 4Mb		2402	7.10	-15.20	-8.100
	4Mbps	2440	7.46	-15.20	-7.740
		2480	7.66	-15.20	-7.540


Note : The cable loss was corrected using the offset value of the spectrum analyzer.

RESULT PLOTS

Maximum PKPSD Test Mode: LE & 2402MHz

Maximum PKPSD Test Mode: LE & 2480MHz

7.4 Out of Band Emissions at the Band Edge/ Conducted Spurious Emissions

Test requirements and limit, §15.247(d)

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If **the peak output power procedure** is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated **by at least 20 dB** relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in **§15.209(a)** is not required.

TEST CONFIGURATION

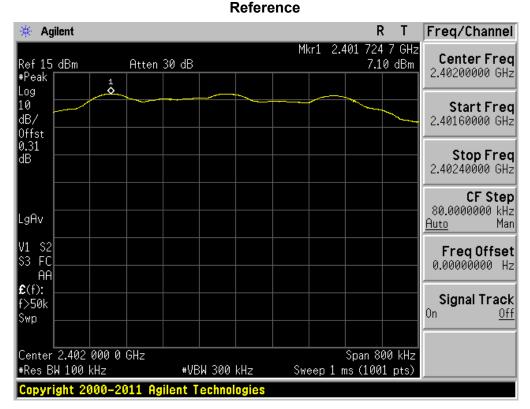
Refer to the APPENDIX I.

TEST PROCEDURE

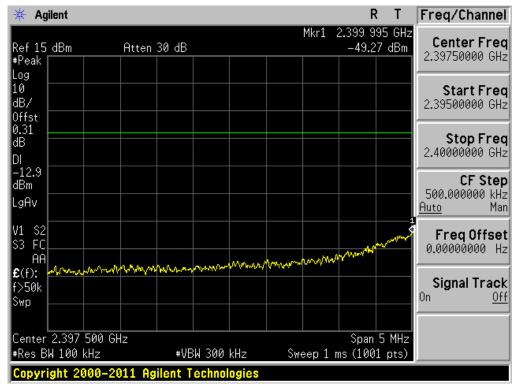
The transmitter output is connected to a spectrum analyzer.

- Measurement Procedure 1 – Reference Level

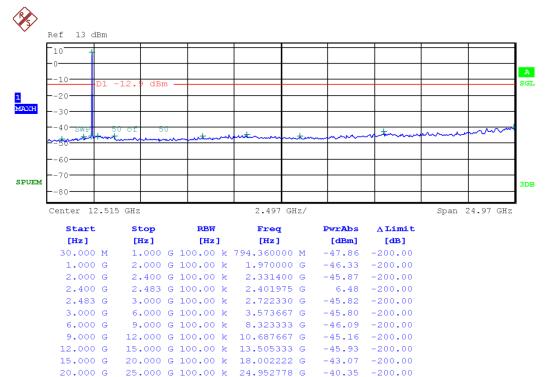
- 1. Set the **RBW = 100 kHz**.
- 2. Set the VBW ≥ 300 kHz.
- 3. Set the span to **5-30 %** greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = **auto couple**.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the **peak marker function** to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.


Next, **determine the power** in 100 kHz band segments outside of the authorized frequency band using the following measurement:

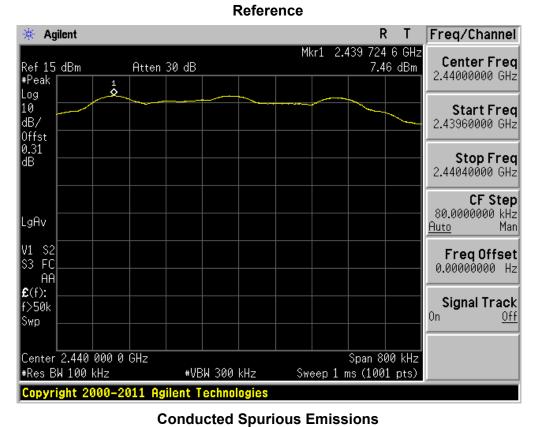
- Measurement Procedure 2 - Unwanted Emissions


- 1. Set **RBW = 100 kHz**.
- 2. Set VBW ≥ 300 kHz.
- 3. Set **span to encompass the spectrum** to be examined.
- 4. Detector = **peak**.
- 5. Trace Mode = **max hold**.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

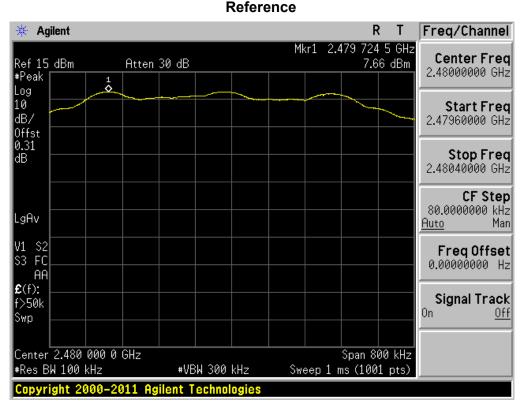
RESULT PLOTS


LE & 2402MHz

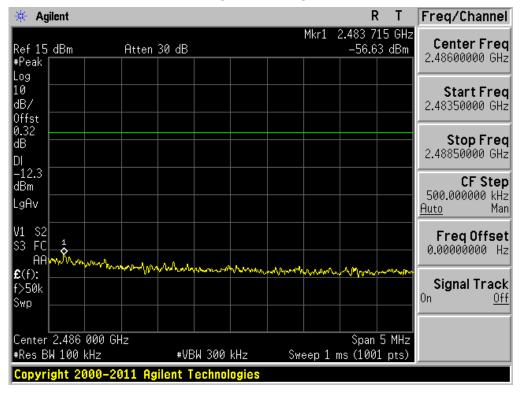
Low Band-edge

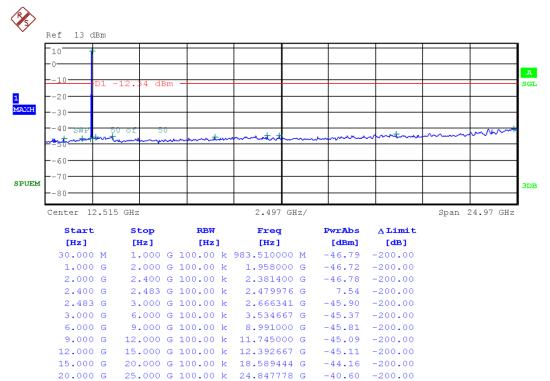


TRF-RF-213(01)120309


Conducted Spurious Emissions

LE & 2440MHz




Ref 13 dBm 10 0. dBr SGL 1 MAXH 40 t SPUEM 3DB -80 Center 12.515 GHz 2.497 GHz/ Span 24.97 GHz Start Stop RBW Freq PwrAbs A Limit [Hz] [Hz] [Hz] [Hz] [dBm] [dB] 30.000 M 1.000 G 100.00 k 749.740000 M -47.93 -200.00 1.000 G 2.000 G 100.00 k 1.989000 G -46.59 -200.00 2.327600 G 2.000 G 2.400 G 100.00 k -200.00 -46.74 2.400 G 2.483 G 100.00 k 2.439721 G 7.36 -200.00 2.483 G 3.000 G 100.00 k 2.682714 G -45.25 -200.00 3.000 G 6.000 G 100.00 k 3.403667 G -45.50 -200.00 6.000 G 9.000 G 100.00 k 7.790000 G -45.67 -200.00 9.000 G 12.000 G 100.00 k 10.659667 G -45.08 -200.00 12.000 G 15.000 G 100.00 k 14.862667 G 20.000 G 100.00 k 17.720556 G -46.05 -200.00 -43.38 -200.00 15.000 G 20.000 G 25.000 G 100.00 k 24.805556 G -39.18 -200.00

LE & 2480MHz

High Band-edge

Conducted Spurious Emissions

7.5 Radiated Measurement.

7.5.1 Radiated Spurious Emissions.

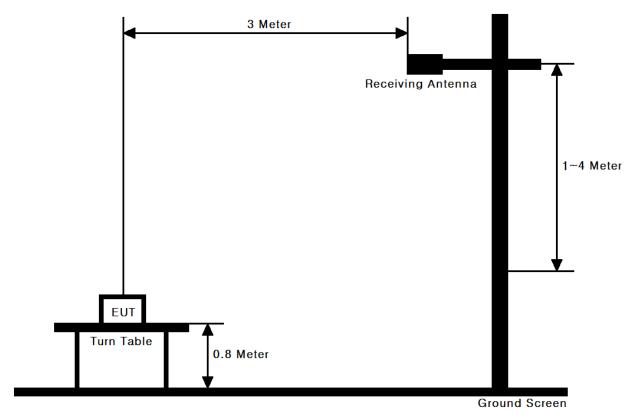
Test Requirements and limit, §15.247(d)

1. In any 100kHz bandwidth outside the operating frequency band. In case the emission

fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500


* Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 ((a): (Only spur	ious emissions	s are permitted in a	ny of the frequ	uency bands listed below:
---------------------	--------	-----------	----------------	----------------------	-----------------	---------------------------

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240			
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

30MHz ~ 25GHz Data(<u>LE</u>)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2386.100	V	Y	PK	48.58	-4.73	43.85	74.00	30.15
2386.400	V	Y	AV	36.21	-4.73	31.48	54.00	22.52
4804.570	Н	Z	PK	59.35	2.15	61.50	74.00	12.50
4803.925	Н	Z	AV	45.67	2.15	47.82	54.00	6.18
-	-	-	-	-	-	-	-	-

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4879.615	Н	Z	PK	56.86	2.94	59.80	74.00	14.20
4879.960	Н	Z	AV	43.55	2.94	46.49	54.00	7.51
-	-	-	-	-	-	-	-	-

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.566	Н	Y	PK	57.48	-4.66	52.82	74.00	21.18
2483.500	Н	Y	AV	40.42	-4.66	35.76	54.00	18.24
4960.390	Н	Z	PK	57.24	2.74	59.98	74.00	14.02
4959.940	Н	Z	AV	44.25	2.74	46.99	54.00	7.01
-	-	-	-	-	-	-	-	-

Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions above table.

2. Above listed point data is the worst case data.

3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

7.6 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.247(d)

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

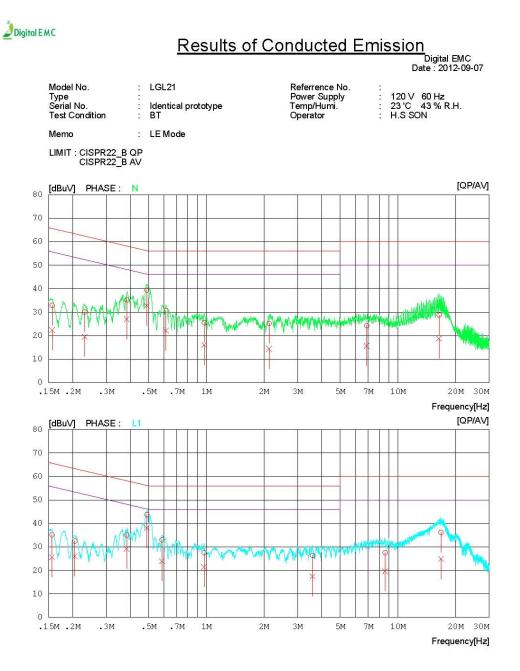
Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and support equipment.


TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

RESULT PLOTS

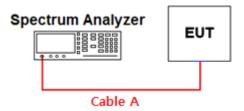
AC Line Conducted Emissions (Graph)

Test Mode: LE & 2440MHz

AC Line Conducted Emissions (List)

Test Mode: LE & 2440MHz

Results of Conducted Emission


										Date	igital EMC 2012-09-07
Model Type	l No.	:	LGL21				Referrence Power Sup		: 1	20 V 60) Hz
Serial No. Test Condition		ldentical prototype BT		Temp/Humi. Operator		23 'C 43 % R.H. H.S SON					
Memo	b	:	LE Mod	e							
LIMIT	: CISPR22 CISPR22										
NO	FREQ [MHz]	QP	DING AV [[dBuV]	C.FACTOR [dB]	RES QP [dBuV]	AV	LIM QP [dBuV]	IIT AV [dBuV]	QP	ARGIN AV [dBuV]	PHASE]
1	0.15646	32.6		0.3	32.9	22.4	65.6	55.6	32.7		N
2	0.23163	29.9	19.4	0.2	30.1	19.6	62.4	52.4	32.3	32.8	N
3	0.38450	34.9		0.3	35.2	27.0	58.2	48.2	23.0		N
4	0.48878	39.2		0.2	39.4	32.8	56.2	46.2	16.8		N
5	0.61478	30.5		0.2	30.7	22.2	56.0	46.0	25.3		N
6	0.97521	25.2		0.3	25.5	16.0	56.0	46.0	30.5		N
7	2.12700	24.9		0.3	25.2	14.4	56.0	46.0	30.8		N
8	6.88250	23.8		0.5	24.3	15.7	60.0	50.0	35.7		N
	16.43150	27.8		1.0	28.8	18.7	60.0	50.0	31.2		N
10	0.15606	34.8	25.3	0.3	35.1	25.6	65.7	55.7	30.6		Ll
11	0.20540	32.4	25.8	0.2	32.6	26.0	63.4	53.4	30.8		L1
12	0.38383	34.8	28.9	0.3	35.1	29.2	58.2	48.2	23.1		Ll
13	0.48866	43.6		0.2	43.8	38.1	56.2	46.2	12.4		L1
14	0.58616	32.8	23.8	0.2	33.0	24.0	56.0	46.0	23.0		Ll
15	0.97249	27.2		0.3	27.5	21.5	56.0	46.0	28.5		L1
16	3.58500	25.9	17.1	0.4	26.3	17.5	56.0	46.0	29.7		L1
17	8.58750	26.9		0.7	27.6	19.7	60.0	50.0	32.4		L1
18	16.79350	35.2	23.9	1.0	36.2	24.9	60.0	50.0	23.8	25.1	L1

8. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent	E4440A	11/09/30	12/09/30	MY45304199
Spectrum Analyzer	Rohde Schwarz	FSQ26	12/01/09	13/01/09	200445
Spectrum Analyzer	Agilent	N9020A	12/01/09	13/01/09	MY49100833
Digital Multimeter	H.P	34401A	12/03/05	13/03/05	3146A13475, US36122178
Signal Generator	Rohde Schwarz	SMR20	12/03/05	13/03/05	101251
Vector Signal Generator	Rohde Schwarz	SMJ100A	12/01/09	13/01/09	100148
Thermo hygrometer	BODYCOM	BJ5478	12/01/13	13/01/13	090205-2
DC Power Supply	HP	6622A	12/03/05	13/03/05	3448A03760
High-pass filter	Wainwright	WHNX3.0	11/09/30	12/09/30	9
BILOG ANTENNA	SCHAFFNER	CBL 6112D	10/12/21	12/12/21	22609
HORN ANT	ETS	3115	12/02/20	13/02/20	6419
HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
Amplifier (22dB)	H.P	8447E	12/01/09	13/01/09	2945A02865
Amplifier (30dB)	Agilent	8449B	12/03/05	13/03/05	3008A00370
Attenuator (3dB)	WEINSCHEL	56-3	11/09/30	12/09/30	Y2342
Attenuator (10dB)	WEINSCHEL	86-10-11	11/09/30	12/09/30	408
EMI TEST RECEIVER	R&S	ESU	12/03/05	13/03/05	100014
Spectrum Analyzer(CE)	H.P	8591E	12/01/09	13/01/09	3649A05889
LISN	R&S	ESH2-Z5	11/09/30	12/09/30	8287391006
CVCF	NF Electronic	4420	12/01/09	13/01/09	304935/337980
RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	12/03/05	13/03/05	4N-170-3

APPENDIX I Conducted Test set up Diagram & Path loss Information

Conducted Measurement

Offset value information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.15	5	0.39
1	0.28	10	0.45
2402	0.31	15	0.53
2440	0.31	20	0.72
2480	0.31	26.5	0.84

Note. 1: The path loss (= S/A's offset value) from EUT to Spectrum analyzer was measured and used for test. Note. 2: For conducted spurious emissions, the offset values were saved as the transducer factors on the spurious measurement function of the spectrum analyzer and the transducer factor of tested frequency is calculated and corrected automatically by the spectrum analyzer's measurement function.