

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE Std 1528-2003 and 1528a-2005

SAR EVALUATION REPORT

(Class II Permissive Change)

For GSM & W-CDMA Phone + BT

> Model: LG440G FCC ID: ZNFLG440G

Report Number: 12U14489-3A Issue Date: 9/10/2012

LG440G Prepared for LG ELECTRONICS MOBILECOMM U.S.A., INC. 1000 SYLVAN AVE. ENGLEWOOD CLIFFS, NJ 07632

> Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	7/25/2012	Initial Issue	
А	9/10/2012	Updated Measuring instrument calibration list:	Sunny Shih
		1. Added additional Signal Generator of HP, 8660B	

2. Added additional Thermometer of ERTCO, 639-1S, SN 8350

Table of Contents

1.	Atte	estation of Test Results	5
2.	Tes	st Methodology	6
3.	Fac	cilities and Accreditation	6
4.	Cal	libration and Uncertainty	7
4	1 .1.	Measuring Instrument Calibration	7
4	1.2.	Measurement Uncertainty	8
5.	Me	asurement System Description and Setup	9
6.	SA	R Measurement Procedures	10
6	6.1.	Normal SAR Measurement Procedure	10
6	6.2.	Volume Scan Procedures	11
7.	Dev	vice Under Test	12
7	7.1.	Air Interfaces and Frequency Ranges	12
7	7.2.	Simultaneous Transmission	12
7	7.3.	Hotspot (Wireless router) Exposure Condition	12
8.	Sur	mmary of Test Configurations	13
8	3.1.	Head Test Configuration	13
8	3.2.	Body-worn Accessory Test Configuration	13
9.	RF	Output Power Measurement	14
g	9.1.	GSM850	14
ç	9.2.	GSM1900	15
ç	9.3.	W-CDMA (UMTS) Band V	16
ç	9.4.	W-CDMA (UMTS) Band II	18
ç	9.5.	Bluetooth	20
10.	т	Tissue Dielectric Properties	21
1	0.1.	Composition of Ingredients for the Tissue Material Used in the SAR Tests	22
1	0.2.	Tissue Dielectric Parameter Check Results	23
11.	S	System Performance Check	24
1	1.1.	System Performance Check Measurement Conditions	24
1	1.2.	Reference SAR Values for System Performance Check	24
1	1.3.	System Performance Check Results	25
12.	S	SAR Test Results	26
		Page 3 of 56	
UL	CCS		UP4031G

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

18. Se	tup Photos	53
17. An	tenna Locations & Separation Distances	52
16. Ex	ternal Photos	50
15.9.	Calibration Certificate for D1900V2 - SN 5d043	49
15.8.	Calibration Certificate for D835V2 - SN 4d002	49
15.7.	Calibration Certificate for E-Field Probe EX3DV4 - SN 3686	49
15.6.	Calibration Certificate for E-Field Probe EX3DV4 - SN 3772	49
15.5.	SAR Test Plots for W-CDMA Band II	49
15.4.	SAR Test Plots for W-CDMA Band V	49
15.3.	SAR Test Plots for GSM1900	49
15.2.	SAR Test Plots for GSM850	49
15.1.	System Performance Check Plots	49
15. Ap	pendixes	49
14. Sir	nultaneous Transmission SAR Analysis	48
13.2.	SAR Plots (from Summary of Highest SAR Values)	32
13.1.	Scaled SAR Values to the Maximum tune-up Tolerances	31
13. Su	mmary of Highest SAR Values	30
12.4.	2. Body SAR	29
12.4.		
12.4.	WCDMA (UMTS) Band II	
12.3.	, ,	
12.3.		
12.3.	WCDMA (UMTS) Band V	28
12.2.	2. Body SAR	27
12.2.	1. Head SAR	27
12.2.	GSM1900	27
12.1.	2. Body SAR	26
12.1.	1. Head SAR	26
12.1.	GSM850	26

1. Attestation of Test Results

Applicant	LG ELECTRONICS	LG ELECTRONICS MOBILECOMM U.S.A., INC.			
DUT description	GSM & W-CDMA P	hone +BT			
Model	LG440G				
Test device is	An identical proto	otype			
Device category	Portable				
Exposure category	General Population/	General Population/Uncontrolled Exposure			
Date tested	6/25/2012 – 7/23/20	6/25/2012 – 7/23/2012			
FCC Rule Parts	Freq. Range	Freq. Range Highest 1-g SAR Limit			
22	824-849 MHz	Head: 0.673 W/kg (Left Touch)			
		Body: 0.581 W/kg (Rear w/ 15mm distance)	1.6 W/kg		
24	1850-1910 MHz	1850-1910 MHz Head: 0.765 W/kg (Left Touch)			
		Body: 0.229 W/kg (Rear w/ 15 mm distance)			
	Applicable Standards Test Results				
FCC OET Bulletin 65	FCC OET Bulletin 65 Supplement C 01-01, IEEE Std 1528-2003 and 1528a-2005 Pass				

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Sunny Shih

Sunny Shih Engineering Leader UL CCS Tested By:

Elijah Garcia SAR Engineer UL CCS

Page 5 of 56

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528-2003 & 1528a-2005 and the following KDB Procedures:

- o 648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05
- o 941225 D01 SAR test for 3G devices v02
- 941225 D03 SAR Test Reduction GSM GPRS EDGE v01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

Page 6 of 56

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

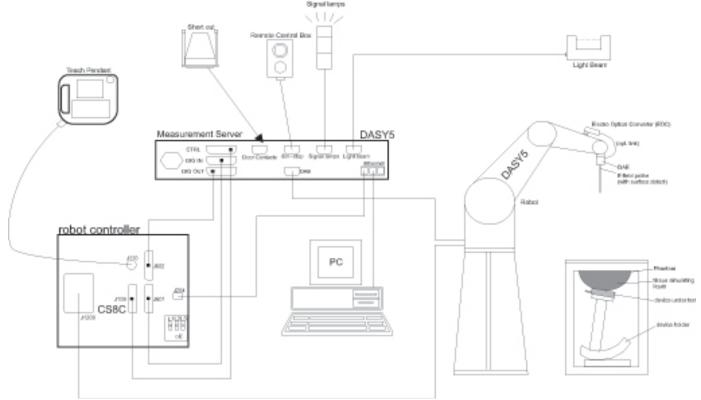
The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Nome of Equipment	Manufacturer Type/Model		Carial Na	Cal. Due date		
Name of Equipment			Serial No.	MM	DD	Year
Dielectronic Probe kit	HP	85070C	N/A		N/	Ά
Base Station Simulator	Agilent	8960	MY48360228	11	28	2012
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	2	11	2013
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012
Synthesized Signal Generator	HP	8665B	3438A00633	2	22	2013
E-Field Probe	SPEAG	EX3DV4	3772	2	16	2013
E-Field Probe	SPEAG	EX3DV4	3686	2	16	2013
Thermometer	ERTCO	639-1S	1718	7	19	2012
Thermometer	ERTCO	639-1S	8350*	7	30	2013
Data Acquisition Electronics	SPEAG	DAE4	1258	3	8	2013
Data Acquisition Electronics	SPEAG	DAE4	1259	2	13	2013
System Validation Dipole	SPEAG	D835V2	4d002	3	6	2013
System Validation Dipole	SPEAG	D1900V2	5d043	11	10	2012
Power Meter	HP	437B	3125U16345	5	22	2013
Power Sensor	HP	8481A	2702A60780	5	22	2013
Amplifier	MITEQ	4D00400600-50-30P 1620606		N/	N/A	
Directional coupler	Werlatone	C8060-102	2141		N/	Ά

Note(s):

*: UL CCS has adopted two year calibration intervals for Thermometer, ERTCO, type 639-1S, SN: 3686.

Page 7 of 56


4.2. Measurement Uncertainty

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram					
Component	Error, %	Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1)	6.00	Normal	1	1	6.00
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	-4.51	Normal	1	0.64	-2.89
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement uncertainty	-4.54	Normal	1	0.6	-2.72
				ertainty Uc(y) =	10.52
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence =					%
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 1.66 dB					dB

Page 8 of 56

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.

• Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. The phantom, the device holder and other accessories a

Page 9 of 56

6. SAR Measurement Procedures

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7x7x9 (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 10 of 56

6.2. Volume Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7x7x9 (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Page 11 of 56

7. Device Under Test

GSM & W-CDMA Phone + BT		
Model: LG440G		
Normal operation	 Held to head, Body (Rear and Front sides) with 15 mm separation distance. 	
Accessory 1. Headset 2. Battery Cover Normal Battery Cover		

7.1. Air Interfaces and Frequency Ranges

Air Interfaces	 GSM, GPRS and EGPRS (Rx only) W-CDMA Rel 99, HSDPA (Rel 5, CAT 8), HSUPA (Not supported) Bluetooth Ver 2.1 with EDR
Tx Frequency Ranges	 GSM850: 824 - 849 MHz GSM1900: 1850 - 1910 MHz W-CDMA Band V: 824 - 849 MHz W-CDMA Band II: 1850 - 1910 MHz Bluetooth: 2402 - 2480 MHz

7.2. Simultaneous Transmission

No.	Conditions
1	GSM850 Voice + BT
2	GSM1900 Voice + BT
3	GSM850 GPRS + BT
4	GSM1900 GPRS + BT
5	W-CDMA Band V+ BT
6	W-CDMA Band II+ BT

Notes:

1. EGPRS is Rx only

7.3. Hotspot (Wireless router) Exposure Condition

The device is not capable of personal hotspot mode.

Page 12 of 56

8. Summary of Test Configurations

Refer to Section 17 "Antenna Location and Separation Distances" for the specific details of the antennato-antenna distances and Section 18 "Setup Photos" for the details of the test positions.

Head Test Configuration 8.1.

FCC ID: ZNFLG440G

Test Configurations	SAR Required	Note
Left Touch	Yes	
Left Tilt (15°)	Yes	
Right Touch	Yes	
Right Tilt (15°)	Yes	

8.2. **Body-worn Accessory Test Configuration**

Test Configurations	Separation distance	SAR Required	Note
Rear	15 mm	Yes	
Front	15 mm	Yes	

Page 13 of 56

9. RF Output Power Measurement

9.1. GSM850

Target Power: 32.5 dBm Tune-up Tolerance: -1.5 dB / +0.7 dB

GMSK (Voice) Mode

Band	Ch No.	Freq. (MHz)	Avg burst Pwr (dBm)
	128	824.2	33.0
850	190	836.6	33.0
	251	848.8	33.0

Target Power: GPRS 1 slot 32.5 dBm GPRS 2 slot 30.0 dBm Tune-up Tolerance: -1.5 dB / +0.7 dB

GMSK (GPRS) Mode - Coding Scheme: CS1

		Frog	Avg burst Pwr (dBm)			
Band	Ch No.	Freq. (MHz)	1 slot	Frame Avg Pwr	2 slots	Frame Avg Pwr
	128	824.2	33.0	24.0	30.4	24.4
850	190	836.6	33.0	23.9	30.4	24.4
	251	848.8	33.0	24.0	30.4	24.4

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

Head: GMSK Voice Mode

· Body: GMSK (GPRS) mode with 2 time slots, based on the output power measurements above

8PSK (EGPRS) Mode - Coding Scheme: MCS5

This mode is Rx only

Page 14 of 56

9.2. GSM1900

Target Power: 29.5 dBm Tune-up Tolerance: -1.5 dB / +0.7 dB

GMSK (Voice) Mode

Band	Ch No.	Freq. (MHz)	Avg burst Pwr (dBm)
	512	1850.2	30.1
1900	661	1880.0	30.0
	810	1909.8	30.1

Target Power: GPRS 1 slot 29.5 dBm GPRS 2 slot 27.5 dBm Tune-up Tolerance: -1.5 dB / +0.7 dB

GMSK (GPRS) Mode - Coding Scheme: CS1

	,	_	Avg burst Pwr (dBm)			
Band	Ch No.	Freq. (MHz)	1 slot	Frame Avg Pwr	2 slots	Frame Avg Pwr
	512	1850.2	30.1	21.1	28.0	22.0
1900	661	1880.0	30.0	21.0	27.9	21.9
	810	1909.8	30.1	21.1	27.8	21.7

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- Head: GMSK Voice Mode
- Body: GMSK (GPRS) mode with 2 time slots, based on the output power measurements above

8PSK (EGPRS) Mode - Coding Scheme: MCS5

N/A: This mode is Rx only

Page 15 of 56

9.3. W-CDMA (UMTS) Band V

Target Power: 23.0 dBm Tune-up Tolerance: -1.5 dB / +0.7 dB

Release 99 (RMC, 12.2kbps)

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 1
MCDMA Conorol Sottingo	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

Output power table

Band	Ch No.	Freq. (MHz)	Avg Pwr (dBm)
850	4132	826.4	23.7
	4183	836.6	23.4
(Band V)	4233	846.6	23.6

HSDPA

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA		
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
	Rel99 RMC	12.2kbps RMC					
	HSDPA FRC	H-Set1					
WCDMA	Power Control Algorithm	Algorithm 2					
General	βς	2/15	12/15	15/15	15/15		
Settings	βd	15/15	15/15	8/15	4/15		
Ba (SF)	Bd (SF)	64					
	βc/βd	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	CM (dB)	0	1	1.5	1.5		
	D _{ACK}	8					
	D _{NAK}	8					
HSDPA	DCQI	8					
Specific	Ack-Nack repetition factor	3					
Settings	CQI Feedback (Table 5.2B.4)	4ms	4ms				
	CQI Repetition Factor (Table 5.2B.4)	2					
	Ahs =βhs/βc	30/15					

Output power table

Band	Subtest	Ch No.	Freq. (MHz)	Avg Pwr (dBm)
		4132	826.4	23.7
	1	4183	836.6	23.4
		4233	846.6	23.7
	2	4132	826.4	23.8
		4183	836.6	23.3
850		4233	846.6	23.8
(Band V)		4132	826.4	23.6
	3	4183	836.6	23.2
		4233	846.6	23.5
		4132	826.4	23.6
	4	4183	836.6	23.3
		4233	846.6	23.5

9.4. W-CDMA (UMTS) Band II

Target Power: 22.5 dBm Tune-up Tolerance: -1.5 dB / +0.7 dB

Release 99 (RMC, 12.2kbps)

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 1
WCDMA Conorol Sottingo	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

Output power table

Band	Ch No.	Freq. (MHz)	Avg Pwr (dBm)
1900	9262	1852.4	22.8
(Band II)	9400	1880.0	23.1
(Danu II)	9538	1907.6	23.1

HSDPA

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA	
	Subtest	1	2	3	4	
	Loopback Mode	Test Mode 1				
	Rel99 RMC	12.2kbps RMC				
HSDPA FRC Bower Control Algorithm		H-Set1				
		Algorithm 2				
WCDMA	βc	2/15	12/15	15/15	15/15	
General Settings	βd	15/15	15/15	8/15	4/15	
-	Bd (SF)	64				
	βc/βd	2/15	12/15	15/8	15/4	
	βhs	4/15	24/15	30/15	30/15	
	CM (dB)	0	1	1.5	1.5	
	D _{ACK}	8				
	D _{NAK}	8				
HSDPA	DCQI	8				
Specific	Ack-Nack repetition factor	3				
Settings	CQI Feedback (Table 5.2B.4)	4ms				
	CQI Repetition Factor (Table 5.2B.4)	2				
	Ahs =βhs/βc	30/15				

Output power table

Band	Subtest	Ch No.	Freq. (MHz)	Avg Pwr (dBm)
		9262	1852.4	22.8
	1	9400	1880.0	23.2
		9538	1907.6	23.0
	2	9262	1852.4	22.8
		9400	1880.0	23.2
1900		9538	1907.6	23.0
(Band II)		9262	1852.4	22.6
(Band II)	3	9400	1880.0	22.9
		9538	1907.6	22.6
		9262	1852.4	22.6
	4	9400	1880.0	22.9
		9538	1907.6	22.8

Page 19 of 56

9.5. Bluetooth

Mode	Channel #		Conducted Avg Power		
INIQUE	ode Channel # Freq. (MHz)		(dBm)	(mW)	
	0	2402	7.62	5.78	
GFSK	39	2441	8.00	6.31	
	78	2480	8.15	6.53	
	0	2402	6.15	4.12	
QPSK	39	2441	6.56	4.53	
	78	2480	6.69	4.67	
	0	2402	6.10	4.07	
8PSK	39	2441	6.45	4.42	
	78	2480	6.64	4.61	

Note(s):

According to KDB 648474, Table 2, Unlicensed transmitters

When there is simultaneous transmission, Stand-alone SAR not required due to

⊠ Output ≤ 2 · P_{Ref} (13.8dBm / 24 mW) and antenna is ≥ 5.0 cm from other antennas

⊠ Output ≤ P_{Ref} (10.79dBm / 12 mW)

Page 20 of 56

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	He	ad
Target Frequency (MHz)	ε _r	σ (S/m)
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 – 2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40

FCC OET Bulletin 65 Supplement C 01-01

Target Frequency (MHz)	- H	ead	Bo	dy
Target Frequency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequen	cy (MHz)				
(% by weight)	45	50	83	35	91	915		00	2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 22 of 56

10.2. Tissue Dielectric Parameter Check Results

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 835	e'	41.7860	Relative Permittivity (c _r):	41.79	41.50	0.69	5
	Head 000	e"	18.6857	Conductivity (σ):	0.87	0.90	-3.61	5
6/25/2012	Head 825	e'	41.5256	Relative Permittivity (c _r):	41.53	41.58	-0.12	5
0/20/2012	11000 020	e"	18.7114	Conductivity (o):	0.86	0.90	-4.51	5
	Head 850	e'	41.1784	Relative Permittivity (ε_r):	41.18	41.50	-0.77	5
		e"	18.6617	Conductivity (σ):	0.88	0.92	-3.61	5
	Head 1900	e'	39.9724	Relative Permittivity (ε_r):	39.97	40.00	-0.07	5
		e"	13.2934	Conductivity (σ):	1.40	1.40	0.31	5
	Head 1850	e' e"	40.1782 13.1451	Relative Permittivity (ε_r):	40.18 1.35	40.00 1.40	0.45	5 5
6/25/2012		e e'	40.0453	Conductivity (σ): Relative Permittivity (ε _r):	40.05	40.00	-3.42	5 5
	Head 1880	e"	13.2339	Conductivity (σ):	1.38	1.40	-1.19	5
		e'	39.9354	Relative Permittivity (ε_r):	39.94	40.00	-0.16	5
	Head 1910	e"	13.3156	Conductivity (σ):	1.41	1.40	1.01	5
	Dark 005	e'	52.8077	Relative Permittivity (ε_r):	52.81	55.20	-4.33	5
	Body 835	e"	20.7114	Conductivity (σ):	0.96	0.97	-0.87	5
6/26/2012	Body 820	e'	52.9635	Relative Permittivity (ε_r) :	52.96	55.28	-4.19	5
0/20/2012	BOUY 620	e"	20.7675	Conductivity (o):	0.95	0.97	-2.23	5
	Body 850	e'	52.6512	Relative Permittivity (c _r):	52.65	55.16	-4.54	5
Bo	Douy 000	e"	20.6619	Conductivity (σ):	0.98	0.99	-1.07	5
	Body 1900	e'	50.9221	Relative Permittivity (ε_r):	50.92	53.30	-4.46	5
	Body 1900	e"	14.2189	Conductivity (σ):	1.50	1.52	-1.17	5
	Body 1850	e'	51.0994	Relative Permittivity (ε_r):	51.10	53.30	-4.13	5
6/26/2012	Body 1050	e"	14.0461	Conductivity (σ):	1.44	1.52	-4.94	5
0/20/2012	Body 1880	e'	50.9875	Relative Permittivity (ε_r):	50.99	53.30	-4.34	5
	Body 1000	e"	14.1506	Conductivity (σ):	1.48	1.52	-2.68	5
	Body 1910	e'	50.8908	Relative Permittivity (ε_r):	50.89	53.30	-4.52	5
	Bouy 1910	e"	14.2503	Conductivity (σ):	1.51	1.52	-0.43	5
	Head 1900	e'	39.0071	Relative Permittivity (ε_r):	39.01	40.00	-2.48	5
	Tieau 1900	e"	13.3518	Conductivity (σ):	1.41	1.40	0.75	5
	Head 1850	e'	39.2346	Relative Permittivity (ε_r):	39.23	40.00	-1.91	5
7/23/2012		e"	13.2460	Conductivity (σ):	1.36	1.40	-2.67	5
1/23/2012	Head 1880	e'	39.0981	Relative Permittivity (ε_r):	39.10	40.00	-2.25	5
		e"	13.3481	Conductivity (σ):	1.40	1.40	-0.33	5
	Head 1910	e'	38.9677	Relative Permittivity (ε_r):	38.97	40.00	-2.58	5
	11600 1310	e"	13.5554	Conductivity (σ):	1.44	1.40	2.83	5

11. System Performance Check

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Target SAR Ref. Values (mW/g)			
System Dipole	Senar No.	Cal. Dale		1g/10g	Head	Body	
D835V2	4d002	3/6/12	835	1g	9.24	9.64	
D035V2	40002	5/0/12	000	10g	6.04	6.32	
			1000	1g	40.8	42.0	
D1900V2	5d043	11/10/11	1900	10g	21.16	21.96	

Page 24 of 56

11.3. System Performance Check Results

Date Tested	System Type	Dipole Serial No.	T.S. Liquid	SAR Measured (Normalized to 1 W)		Target (Ref. Value)	Delta (%)	Tolerance (%)
6/25/2012	D835V2	4d002	Head	1g	9.85	9.24	6.60	±10
0/20/2012	D03372	40002	пеац	10g	6.45	6.04	6.79	±10
6/25/2012	D1900V2	5d043	Head	1g	37.40	40.80	-8.33	±10
0/25/2012	D1900V2	50045	neau	10g	19.40	21.16	-8.32	ΞIŪ
6/26/2012	D835V2	4d002	Body	1g	9.81	9.64	1.76	±10
0/20/2012	D03372	40002	Douy	10g	6.45	6.32	2.06	±10
6/26/2012	D1900V2	5d043	Body	1g	42.40	42.00	0.95	±10
0/20/2012	D1900V2	50045	Воцу	10g	22.70	21.96	3.37	ΞIU
7/23/2012	D1900V2	5d043	Head	1g	43.10	40.80	5.64	±10
1723/2012	D1300VZ	50045	neau	10g	22.30	21.16	5.39	±10

12. SAR Test Results

12.1. GSM850

12.1.1. Head SAR

Test Position	Mode	Ch #.	Freq.	Avg Pwr	SAR (mW/g)	Note
Test Fosition	Mode	UII #.	(MHz)	(dBm)	1-g	10-g	Note
	GMSK	128	824.20	33.0			1
Left Touch	(Voice)	190	836.60	33.0	0.584	0.381	
	(VOICE)	251	848.80	33.0			1
Left Tilt	GMSK	128	824.20	33.0			1
	(Voice)	190	836.60	33.0	0.197	0.153	
(15°)	(voice)	251	848.80	33.0			1
	GMSK	128	824.20	33.0			1
Right Touch	(Voice)	190	836.60	33.0	0.442	0.294	
	(VOICE)	251	848.80	33.0			1
Right Tilt	GMSK	128	824.20	33.0			1
-	(Voice)	190	836.60	33.0	0.201	0.152	
(15°)	(voice)	251	848.80	33.0			1

12.1.2. Body SAR

Test Position	Mode	Dist.	Dist. Ch #.		Avg Pwr	SAR (mW/g)	Note
Test Fusition	MODE	(mm)	On #.	(MHz)	(dBm)	1-g	10-g	NOLE
	GPRS		128	824.20	30.4			1
Rear	2 slots	15	190	836.60	30.4	0.581	0.407	
	2 51015		251	848.80	30.4			1
Rear	GMSK (Voice)	15	190	836.60	33.0	0.515	0.361	2
	GPRS		128	824.20	30.4			1
Front	2 slots	15	190	836.60	30.4	0.137	0.100	
	2 51015		251	848.80	30.4			1

Note(s):

 SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

2. With headset attached.

12.2. GSM1900

12.2.1. Head SAR

Test Position	Mode	Ch #.	Freq.	Avg Pwr	SAR (mW/g)	Note
Test Fosition	Mode	UII #.	(MHz)	(dBm)	1-g	10-g	NOLE
	GMSK	512	1850.2	30.1			1
Left Touch	(Voice)	661	1880.0	30.0	0.765	0.442	
		810	1909.8	30.1			1
Left Tilt	GMSK	512	1850.2	30.1			1
(15°)	(Voice)	661	1880.0	30.0	0.042	0.026	
(15)	(VOICE)	810	1909.8	30.1			1
	GMSK	512	1850.2	30.1			1
Right Touch	(Voice)	661	1880.0	30.0	0.235	0.150	
		810	1909.8	30.1			1
Right Tilt	GMSK	512	1850.2	30.1			1
U U	(Voice)	661	1880.0	30.0	0.035	0.022	
(15°)	(voice)	810	1909.8	30.1			1

12.2.2. Body SAR

Test Position	Mode	Dist.	Ch #.	Freq.			SAR (mW/g)		
163(103)(0)	Mode	(mm)	011 #.	(MHz)	(dBm)			Note	
	GPRS		512	1850.2	28.0			1	
Rear	2 slots	15	661	1880.0	27.9	0.124	0.079		
	2 51015		810	1909.8	27.8			1	
Rear	GMSK (Voice)	15	661	1880.0	30.0	0.085	0.049	2	
	GPRS		512	1850.2	28.0			1	
Front	2 slots	15	661	1880.0	27.9	0.067	0.042		
	2 51015		810	1909.8	27.8			1	

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

2. With headset attached.

12.3. WCDMA (UMTS) Band V

Test mode reduction considerations

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit as per KDB 941225 D01

12.3.1. Head SAR

Test Position	Mode	Ch #.	Freq.	Avg Pwr	SAR (mW/g)	Note
	Mode	011#.	(MHz)	(dBm)	1-g	10-g	NOLE
	Rel 99	4132	826.4	23.7			1
Left Touch	RMC	4183	836.6	23.4	0.673	0.452	
	12.2kbps	4233	846.6	23.6			1
Left Tilt	Rel 99	4132	826.4	23.7			1
(15°)	RMC	4183	836.6	23.4	0.278	0.212	
(15)	12.2kbps	4233	846.6	23.6			1
	Rel 99	4132	826.4	23.7			1
Right Touch	RMC	4183	836.6	23.4	0.594	0.394	
	12.2kbps	4233	846.6	23.6			1
Right Tilt	Rel 99	4132	826.4	23.7			1
-	RMC	4183	836.6	23.4	0.291	0.221	
(15°)	12.2kbps	4233	846.6	23.6			1

12.3.2. Body SAR

Test Position	Mode	Dist.	Ch #.	Freq.	Avg Pwr	SAR (mW/g)	Note
163(103)(10)1	MODE	(mm)	011#.	(MHz)	(dBm)	1-g	10-g	NOLE
	Rel 99		4132	826.4	23.7			1
Rear	RMC	15	4183	836.6	23.4	0.365	0.259	
Real	12.2kbps	15	4183	836.6	23.4	0.370	0.261	2
	12.20095		4233	846.6	23.6			1
	Rel 99		4132	826.4	23.7			1
Front	RMC	15	4183	836.6	23.4	0.122	0.088	
	12.2kbps		4233	846.6	23.6			1

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

2. With headset attached.

12.4. WCDMA (UMTS) Band II

Test mode reduction considerations

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit as per KDB 941225 D01

12.4.1. Head SAR

Test Position	Mode	Ch #.	Freq.	. Avg Pwr SAR (mW/g)		mW/g)	Note
163(105)(101)			(MHz)	(dBm)	1-g	10-g	NOLE
Left Touch	Rel 99	9262	1852.4	22.8			1
	RMC	9400	1880.0	23.1	0.611	0.374	
	12.2kbps	9538	1907.6	23.1			1
Left Tilt (15°)	Rel 99	9262	1852.4	22.8			1
	RMC	9400	1880.0	23.1	0.075	0.047	
	12.2kbps	9538	1907.6	23.1			1
Right Touch	Rel 99	9262	1852.4	22.8			1
	RMC	9400	1880.0	23.1	0.501	0.318	
	12.2kbps	9538	1907.6	23.1			1
Right Tilt (15°)	Rel 99	9262	1852.4	22.8			1
	RMC	9400	1880.0	23.1	0.063	0.040	
	12.2kbps	9538	1907.6	23.1			1

12.4.2. Body SAR

Test Position	Mode	Dist.	Ch #.	Freq.	Avg Pwr	SAR (Note	
		(mm)		(MHz)	(dBm)	1-g	10-g	Note
Rear	Rel 99 RMC 12.2kbps	15	9262	1852.4	22.8			1
			9400	1880.0	23.1	0.229	0.147	
			9400	1880.0	23.1	0.195	0.125	2
			9538	1907.6	23.1			1
Front	Rel 99		9262	1852.4	22.8			1
	RMC 12.2kbps	15	9400	1880.0	23.1	0.142	0.090	
			9538	1907.6	23.1			1

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

2. With headset attached.

Page 29 of 56

13. Summary of Highest SAR Values

Results for highest SAR values for each frequency band and mode

Technology/Band	Tes	st configuration	Mode	Highest 1g SAR (W/kg)	
GSM850	Head	Left Touch	GMSK (Voice)	0.584	
	Body	Rear	GPRS 2 slots	0.581	
GSM1900	Head	Left Touch	GMSK (Voice)	0.765	
	Body	Rear	GPRS 2 slots	0.124	
	Head	Left Touch	Rel99 (RMC, 12.2 kbps)	0.673	
W-CDMA Band V	Body	Rear w/ headset attached	Rel99 (RMC, 12.2 kbps)	0.370	
W-CDMA Band II	Head	Left Touch	Rel99 (RMC, 12.2 kbps)	0.611	
	Body	Rear	Rel99 (RMC, 12.2 kbps)	0.229	

Page 30 of 56

13.1. Scaled SAR Values to the Maximum tune-up Tolerances

The following measured results were scaled to the maximum tune-up tolerance, according to the output power of the channel tested for the highest measured results in each frequency band.

Test Configuration				Frog	Power (dBm)		SAR (W/kg)	
		Mode	Ch #.	Freq. (MHz)	Max. tune-up limit	Measured	Measured	Scaled
Head	Left Touch	GSM850	190	836.6	33.2	33.0	0.584	0.612
Body	Rear	GSM850(GPRS)	190	836.6	30.7	30.4	0.581	0.623
Head	Left Touch	GSM1900	661	1880.0	30.2	30.0	0.765	0.801
Body	Rear	GSM1900 (GPRS)	661	1880.0	28.2	27.9	0.124	0.133
Head	Left Touch	W-CDMA BAND V	4183	836.6	23.7	23.4	0.673	0.721
Body	Rear w/ headset	W-CDMA BAND V	4183	836.6	23.7	23.4	0.370	0.396
Head	Left Touch	W-CDMA BAND II	9400	1880.0	23.2	23.1	0.611	0.625
Body	Rear	W-CDMA BAND II	9400	1880.0	23.2	23.1	0.229	0.234

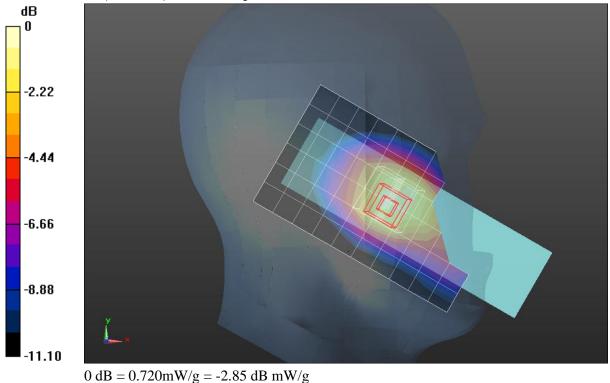
Page 31 of 56

13.2. SAR Plots (from Summary of Highest SAR Values)

Test Laboratory: UL CCS SAR Lab A

GSM850

Frequency: 836.6 MHz; Duty Cycle: 1:8; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.87 mho/m; ε_r = 41.355; ρ = 1000 kg/m³ DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(8.67, 8.67, 8.67); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM v5.0 (B); Type: QD000P40CD; Serial: 1628

Left Touch_GSM ch 190/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

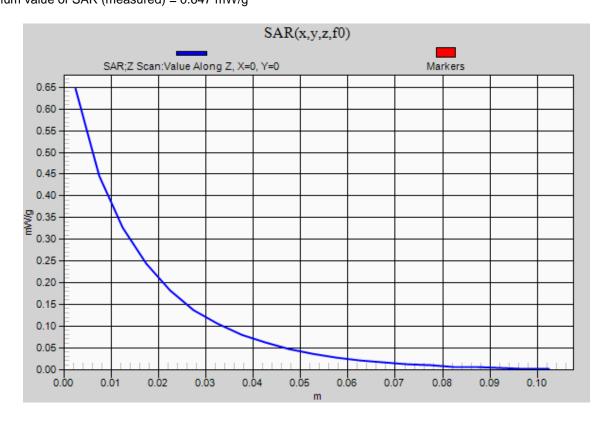
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.604 mW/g

Left Touch_GSM ch 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 26.740 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.8800 SAR(1 g) = 0.584 mW/g; SAR(10 g) = 0.381 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.721 mW/g

Date: 6/25/2012

Report No.: 12U14489-3A FCC ID: ZNFLG440G


Test Laboratory: UL CCS SAR Lab A

Date: 6/25/2012

GSM850

Frequency: 836.6 MHz; Duty Cycle: 1:8

Left Touch_GSM ch 190/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.647 mW/g

Test Laboratory: UL CCS SAR Lab A

Date: 6/26/2012

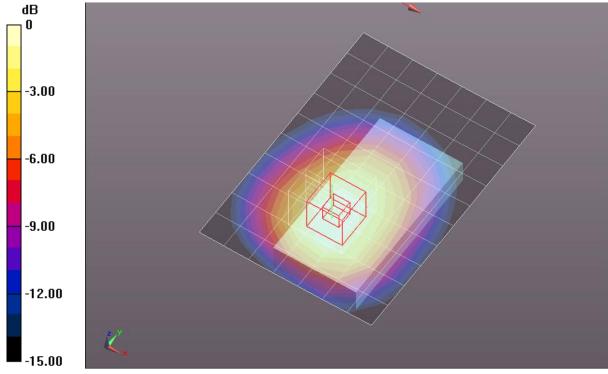
GSM850

Frequency: 836.6 MHz; Duty Cycle: 1:4.00037; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.964 mho/m; ε_r = 52.789; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(8.89, 8.89, 8.89); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Rear/GPRS 2 Slots/Ch 190/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.647 mW/g


Rear/GPRS 2 Slots/Ch 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 26.080 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.7700

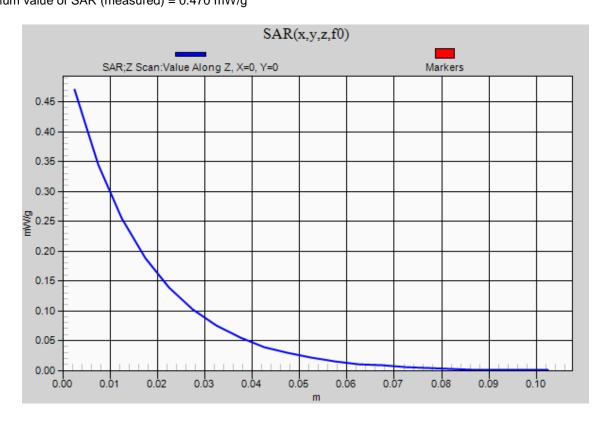
SAR(1 g) = 0.581 mW/g; SAR(10 g) = 0.407 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.669 mW/g

0 dB = 0.670 mW/g = -3.48 dB mW/g

Page 34 of 56

Report No.: 12U14489-3A FCC ID: ZNFLG440G


Test Laboratory: UL CCS SAR Lab A

Date: 6/26/2012

GSM850

Frequency: 836.6 MHz; Duty Cycle: 1:4

Rear/GPRS 2 Slots/Ch 190/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.470 mW/g

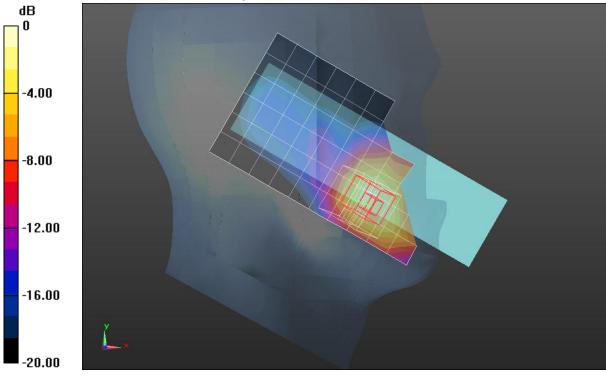
Test Laboratory: UL CCS SAR Lab B Date: 7/23/2012

GSM1900

Frequency: 1880 MHz; Duty Cycle: 1:8.00018; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.396 mho/m; ϵ_r = 39.098; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1259; Calibrated: 2/13/2012
- Probe: EX3DV4 SN3686; ConvF(7.51, 7.51, 7.51); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM; Type: QD000P40CD; Serial: 1629

Left Touch_GSM ch 661/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.748 mW/g

Left Touch_GSM ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 23.567 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.2450

SAR(1 g) = 0.765 mW/g; SAR(10 g) = 0.442 mW/g

Maximum value of SAR (measured) = 0.986 mW/g

0 dB = 0.990 mW/g = -0.09 dB mW/g

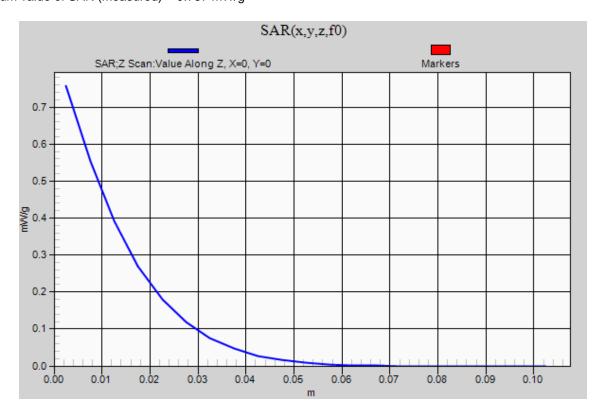
Page 36 of 56

Issue Date: 9/10/12

Test Laboratory: UL CCS SAR Lab B Date: 7/23/2012

GSM1900

Frequency: 1880 MHz; Duty Cycle: 1:8.00018


Left Touch_GSM ch 661/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.748 mW/g

Left Touch_GSM ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm Reference Value = 23.567 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.2450 SAR(1 g) = 0.765 mW/g; SAR(10 g) = 0.442 mW/g Maximum value of SAR (measured) = 0.986 mW/g

Left Touch_GSM ch 661/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.757 mW/g

Issue Date: 9/10/12

Date: 6/26/2012

GSM1900

Frequency: 1880 MHz; Duty Cycle: 1:4; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 50.987; ρ = 1000 kg/m³ DASY5 Configuration:

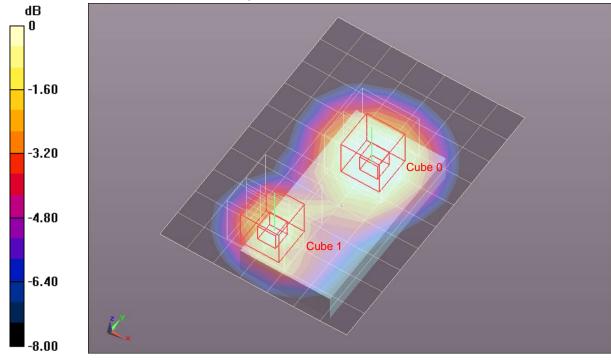
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(7.23, 7.23, 7.23); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (B); Type: QDOVA001BB; Serial: 1099

Rear/GPRS 2 Slots/Ch 661/Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.153 mW/g

Rear/GPRS 2 Slots/Ch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.263 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 0.1830

SAR(1 g) = 0.124 mW/g; SAR(10 g) = 0.079 mW/g

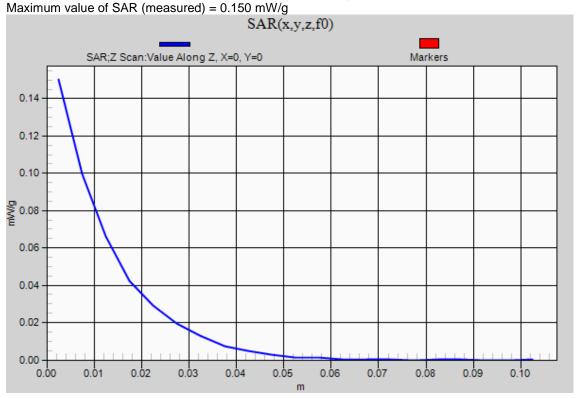
Maximum value of SAR (measured) = 0.150 mW/g

Rear/GPRS 2 Slots/Ch 661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.263 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.1560SAR(1 g) = 0.095 mW/g; SAR(10 g) = 0.055 mW/g Maximum value of SAR (measured) = 0.121 mW/g

 $0 \ dB = 0.120 mW/g = -18.42 \ dB \ mW/g$

Page 38 of 56 UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.


Test Laboratory: UL CCS SAR Lab A

Date: 6/26/2012

GSM1900

Frequency: 1880 MHz; Duty Cycle: 1:4

Rear/GPRS 2 Slots/Ch 661/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date: 6/25/2012

Issue Date: 9/10/12

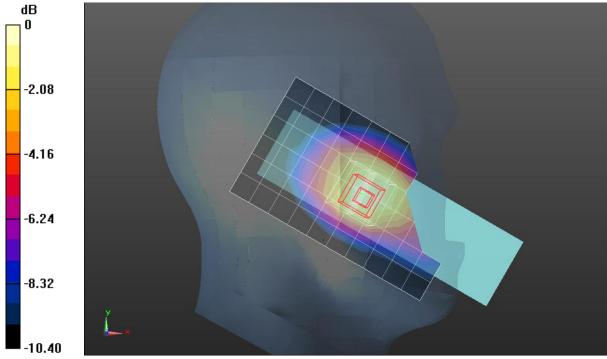
W-CDMA Band V

Frequency: 836.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.87 mho/m; ϵ_r = 41.355; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(8.67, 8.67, 8.67); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM v5.0 (B); Type: QD000P40CD; Serial: 1628

Left Touch_R99_ch 4183/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.702 mW/g


Left Touch_R99_ch 4183/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

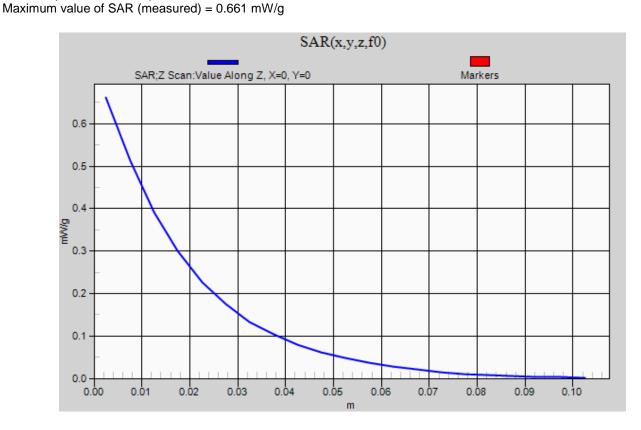
dz=5mm

Reference Value = 28.066 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.9770

SAR(1 g) = 0.673 mW/g; SAR(10 g) = 0.452 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.812 mW/g

0 dB = 0.810 mW/g = -1.83 dB mW/g


Date: 6/25/2012

Issue Date: 9/10/12

W-CDMA Band V

Frequency: 836.6 MHz; Duty Cycle: 1:1

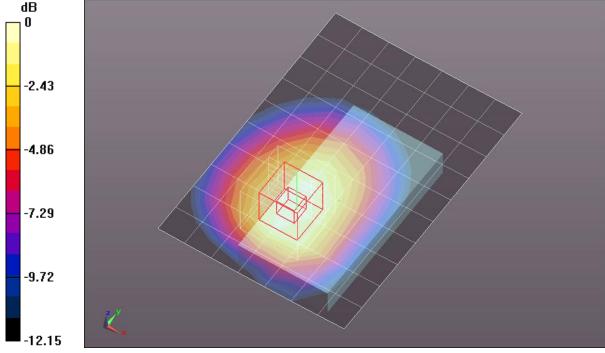
Left Touch_R99_ch 4183/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation.

W-CDMA Band V

Frequency: 836.6 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.964 mho/m; ϵ_r = 52.789; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(8.89, 8.89, 8.89); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: ELI v5.0 (A); Type: QDOVA001BB; Serial: 1120

Rear/with Headset/Rel 99_RMC_12.2kbps/Ch 4183/Area Scan (8x11x1): Measurement grid:


dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.426 mW/g

Rear/with Headset/Rel 99_RMC_12.2kbps/Ch 4183/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.260 V/m; Power Drift = 0.0022 dB Peak SAR (extrapolated) = 0.5000 SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.261 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.421 mW/g

 $0 \ dB = 0.420 mW/g = -7.54 \ dB \ mW/g$

Page 42 of 56

Issue Date: 9/10/12

Date: 6/26/2012

Test Laboratory: UL CCS SAR Lab A

Date: 6/26/2012


W-CDMA Band V

Frequency: 836.6 MHz; Duty Cycle: 1:1

Rear/with Headset/Rel 99_RMC_12.2kbps/Ch 4183/Z Scan (1x1x21): Measurement grid:

dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.428 mW/g

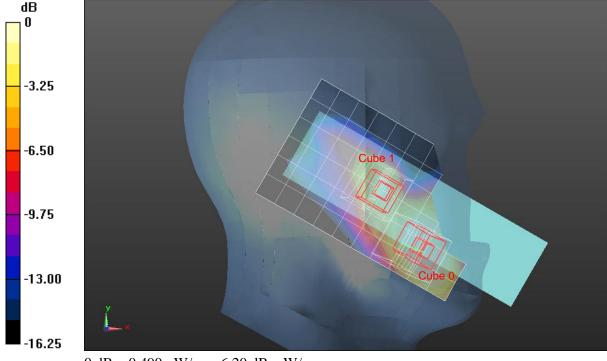
W-CDMA Band II

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.384 mho/m; ϵ_r = 40.045; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012
- Probe: EX3DV4 SN3772; ConvF(7.59, 7.59, 7.59); Calibrated: 2/16/2012
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Phantom: SAM v5.0 (A); Type: QD000P40CC; Serial: 1602

Left Touch_R99_ch 9400 2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.691 mW/g


Left Touch_R99_ch 9400 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.493 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.9390SAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.374 mW/g

Maximum value of SAR (measured) = 0.751 mW/g

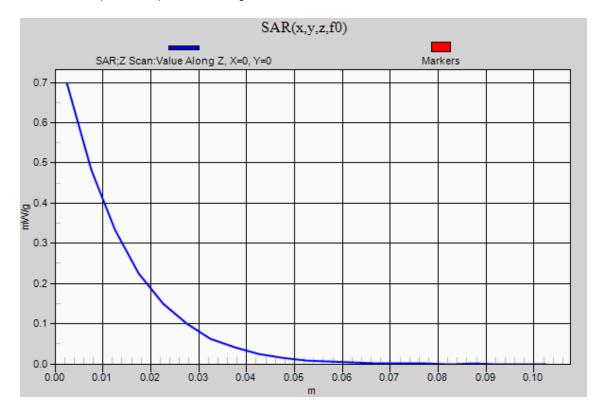
Left Touch_R99_ch 9400 2/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.493 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.6580SAR(1 g) = 0.373 mW/g; SAR(10 g) = 0.188 mW/g Maximum value of SAR (measured) = 0.494 mW/g

0 dB = 0.490 mW/g = -6.20 dB mW/g

Page 44 of 56

Date: 6/26/2012


Test Laboratory: UL CCS SAR Lab A

Date: 6/26/2012

W-CDMA Band II

Frequency: 1880 MHz; Duty Cycle: 1:1

Left Touch_R99_ch 9400 2/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.698 mW/g

W-CDMA Band II

Frequency: 1880 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 24.0°C; Liquid Temperature: 23.0°C Medium parameters used: f = 1880 MHz; σ = 1.48 mho/m; ϵ_r = 50.987; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Electronics: DAE4 Sn1258; Calibrated: 3/8/2012

- Probe: EX3DV4 - SN3772; ConvF(7.23, 7.23, 7.23); Calibrated: 2/16/2012

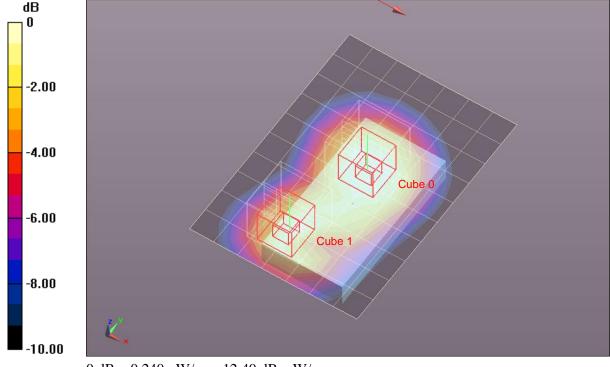
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Phantom: ELI v5.0 (B); Type: QDOVA001BB; Serial: 1099

Rear/Rel. 99_RMC_12.2kbps/Ch 9400/Area Scan (8x11x1): Measurement grid: dx=15mm,

dy=15mm Maximum value of SAR (measured) = 0.261 mW/g

Rear/Rel. 99_RMC_12.2kbps/Ch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm Reference Value = 13.494 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.3370 SAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.147 mW/g Maximum value of SAR (measured) = 0.274 mW/g

Rear/Rel. 99_RMC_12.2kbps/Ch 9400/Zoom Scan (5x5x7)/Cube 1: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 13.494 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.3150

SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.111 mW/g

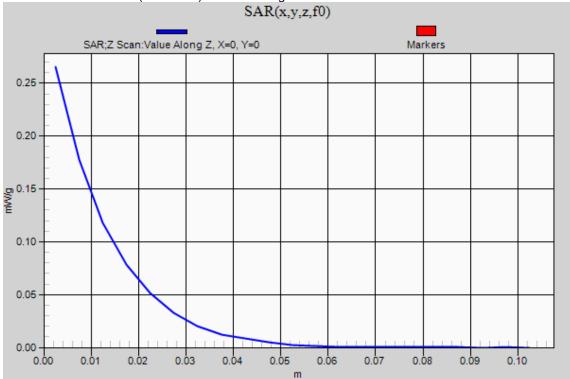
Maximum value of SAR (measured) = 0.242 mW/g

0 dB = 0.240 mW/g = -12.40 dB mW/g

Page 46 of 56

Date: 6/26/2012

Test Laboratory: UL CCS SAR Lab A


Date: 6/26/2012

W-CDMA Band II

Frequency: 1880 MHz; Duty Cycle: 1:1

Rear/Rel. 99_RMC_12.2kbps/Ch 9400/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 0.265 mW/g

14. Simultaneous Transmission SAR Analysis

The Bluetooth's output power is $\leq 2 \cdot P_{Ref}$ (13.8 dBm / 24 mW), which stand-alone SAR evaluation is not required. Therefore, simultaneous transmission SAR evaluation is not required.

Page 48 of 56

15. Appendixes

Refer to separated files for the following appendixes.

- 15.1. System Performance Check Plots
- 15.2. SAR Test Plots for GSM850
- 15.3. SAR Test Plots for GSM1900
- 15.4. SAR Test Plots for W-CDMA Band V
- 15.5. SAR Test Plots for W-CDMA Band II
- 15.6. Calibration Certificate for E-Field Probe EX3DV4 SN 3772
- 15.7. Calibration Certificate for E-Field Probe EX3DV4 SN 3686
- 15.8. Calibration Certificate for D835V2 SN 4d002
- 15.9. Calibration Certificate for D1900V2 SN 5d043